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Useful Data
Me Mass of the earth 5.98 * 1024 kg
Re Radius of the earth 6.37 * 106 m
g Free-fall acceleration on earth 9.80 m/s2

G Gravitational constant 6.67 * 10-11 N m2/kg2

kB Boltzmann’s constant 1.38 * 10-23 J/K
R Gas constant 8.31 J/mol K
NA Avogadro’s number 6.02 * 1023 particles/mol
T0 Absolute zero -273�C
s Stefan-Boltzmann constant 5.67 * 10-8 W/m2 K4

patm Standard atmosphere 101,300 Pa
vsound Speed of sound in air at 20�C 343 m/s
mp Mass of the proton (and the neutron) 1.67 * 10-27 kg
me Mass of the electron 9.11 * 10-31 kg
K Coulomb’s law constant (1/4pP0) 8.99 * 109 N m2/C2

P0 Permittivity constant 8.85 * 10-12 C2/N m2

m0 Permeability constant 1.26 * 10-6 T m/A
e Fundamental unit of charge 1.60 * 10-19 C
c Speed of light in vacuum 3.00 * 108 m/s
h Planck’s constant 6.63 * 10-34 J s 4.14 * 10-15 eV s
U Planck’s constant 1.05 * 10-34 J s 6.58 * 10-16 eV s
aB Bohr radius 5.29 * 10-11 m

Common Prefixes
Prefix Meaning

femto- 10-15

pico- 10-12

nano- 10-9

micro- 10-6

milli- 10-3

centi- 10-2

kilo- 103

mega- 106

giga- 109

terra- 1012

Conversion Factors
Length
1 in = 2.54 cm
1 mi = 1.609 km
1 m = 39.37 in
1 km = 0.621 mi

Velocity
1 mph = 0.447 m/s
1 m/s = 2.24 mph = 3.28 ft/s

Mass and energy
1 u = 1.661 * 10-27 kg
1 cal = 4.19 J
1 eV = 1.60 * 10-19 J

Time
1 day = 86,400 s
1 year = 3.16 * 107 s

Pressure
1 atm = 101.3 kPa = 760 mm of Hg
1 atm = 14.7 lb/in2

Rotation
1 rad = 180�/p = 57.3�
1 rev = 360� = 2p rad
1 rev/s = 60 rpm

Mathematical Approximations
Binominal Approximation: (1 + x)n � 1 + nx if x V 1

Small-Angle Approximation: sin u � tan u � u and cos u � 1 if u V 1 radian

Greek Letters Used in Physics
Alpha a Mu m

Beta b Pi p

Gamma � g Rho r

Delta � d Sigma g s

Epsilon P Tau t

Eta h Phi � f

Theta � u Psi c

Lambda l Omega � v
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Worked Examples walk the student carefully 
through detailed solutions, focusing on underlying 
reasoning and common pitfalls to avoid. 

NEW! Data-based Examples (shown here) help 
students with the skill of drawing conclusions from 
laboratory data.

106    c h a p t e r  4 . Kinematics in Two Dimensions

 Thus    vt = vr    and    at = ar    are analogous equations for the tangential velocity and 
acceleration. In  Example   4.14   , where we found the roulette ball to have angular 
acceleration    a = -1.89 rad/s2,    its tangential acceleration was   

    at = ar = (-1.89 rad/s2)(0.15 m) = -0.28 m/s2   

   eXAMPle 4.15   Analyzing rotational data 
 You’ve been assigned the task of measuring the start-up charac-
teristics of a large industrial motor. After several seconds, when 
the motor has reached full speed, you know that the angular ac-
celeration will be zero, but you hypothesize that the angular ac-
celeration may be constant during the first couple of seconds as the 
motor speed increases. To find out, you attach a shaft encoder to 
the 3.0-cm-diameter axle. A shaft encoder is a device that converts 
the angular position of a shaft or axle to a signal that can be read by 
a computer. After setting the computer program to read four values 
a second, you start the motor and acquire the following data:   

 Time (s)  Angle    (�)   

0.00   0

0.25  16

0.50  69

0.75 161

1.00 267

1.25 428

1.50 620

    a. Do the data support your hypothesis of a constant angular ac-
celeration? If so, what is the angular acceleration? If not, is the 
angular acceleration increasing or decreasing with time?  

   b. A 76-cm-diameter blade is attached to the motor shaft. At what 
time does the acceleration of the tip of the blade reach    10 m/s2?      

  MoDel   The axle is rotating with nonuniform circular motion. 
Model the tip of the blade as a particle.  

  vIsUAlIZe     FIGURe   4.38     shows that the blade tip has both a tangen-
tial and a radial acceleration.   

   a = 2m.    If the graph is not a straight line, our observation of 
whether it curves upward or downward will tell us whether the 
angular acceleration us increasing or decreasing. 

   FIGURe   4.39     is the graph of    u    versus    t 2,    and it confirms our 
hypothesis that the motor starts up with constant angular ac-
celeration. The best-fit line, found using a spreadsheet, gives 
a slope of    274.6�/s2.    The units come not from the spreadsheet 
but by looking at the units of rise    (�)    over run (   s2    because we’re 
graphing    t 2    on the  x -axis). Thus the angular acceleration is 

    a = 2m = 549.2�/s2 *
p rad

180�
= 9.6 rad/s2   

 where we used    180� = p rad    to convert to SI units of    rad/s2.     

  FIGURe 4.38         Pictorial representation of the axle and blade.   
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  FIGURe 4.39         Graph of    u    versus    t 2    for the motor shaft.   

  solve 
    a.  If  the motor starts up with constant angular acceleration, with 

   ui = 0    and    vi = 0 rad/s,    the angle-time equation of rotational 
kinematics is    u =

1
2  

at 2.    This can be written as a linear equation 
   y = mx + b    if we let    u = y    and    t 2 = x.    That is, constant angular 
acceleration predicts that a graph of    u    versus    t 2    should be a straight 
line with slope    m =

1
2  

a    and  y -intercept    b = 0.    We can test this. 
If the graph turns out to be a straight line with zero  y -intercept, 
it will confirm the hypothesis of constant angular acceleration and 
we can then use its slope to determine the angular acceleration: 

   b. The magnitude of the linear acceleration is 

    a = 2ar 

2 + at 

2   

 Constant angular acceleration implies constant tangential ac-
celeration, and the tangential acceleration of the blade tip is 

    at = ar = (9.6 rad/s2)(0.38 m) = 3.65 m/s2   

 We were careful to use the blade’s radius, not its diameter, and 
we kept an extra significant figure to avoid round-off error. The 
radial (centripetal) acceleration increases as the rotation speed 
increases, and the total acceleration reaches    10 m/s2    when 

    ar = 2a2 - at 

2 = 2(10 m/s2)2 - (3.65 m/s2)2 = 9.31 m/s2   

 Radial acceleration is    ar = v2r,    so the corresponding angular 
velocity is 

    v = Aar

r
= B 9.31 m/s2

0.38 m
= 4.95 rad/s   

 For constant angular acceleration,    v = at,    so this angular ve-
locity is achieved at 

    t =
v

a
=

4.95 rad/s

9.6 rad/s2 = 0.52 s   

 Thus it takes    0.52 s    for the acceleration of the blade tip to reach 
   10 m/s2.        

  Assess   The motor has not completed 2 full revolutions in    1.5 s,    so 
it has a slow start and modest accelerations. A tangential accelera-
tion of    3.65 m/s2    seems reasonable, so we have confidence in our 
final answer of    0.52 s.      

1

2

268    c h a p t e r  10 . Energy

    (vix)2M = 0 m/s,    as expected, because we chose a moving reference frame in which 
ball 2 would be at rest. 

   FIGURe   10.35    b now shows a situation—with ball 2 initially at rest—in which we can 
use Equations 10.42 to find the post-collision velocities in frame M: 

    (vfx)1M =
m1 - m2

m1 + m2
 (vix)1M = 1.7 m/s

 (vfx)2M =
2m1

m1 + m2
 (vix)1M = 6.7 m/s 

(10.45)

   

 Reference frame M hasn’t changed—it’s still moving to the left in the lab frame at 
   3.0 m/s   —but the collision has changed both balls’ velocities in frame M. 

 To finish, we need to transform the post-collision velocities in frame M back to the 
lab frame L. We can do so with another application of the Galilean transformation: 

    (vfx)1L = (vfx)1M + (vx)ML = 1.7 m/s +  (-3.0 m/s) = -1.3 m/s

 (vfx)2L = (vfx)2M + (vx)ML = 6.7 m/s + (-3.0 m/s) = 3.7 m/s  
(10.46)

   

   FIGURe   10.36     shows the outcome of the collision in the lab frame. It’s not hard to confirm 
that these final velocities do, indeed, conserve both momentum and energy.  

  FIGURe 10.36         The post-collision velocities 
in the lab frame.   

(vfx)1L � �1.3 m/s (vfx)2L � 3.7 m/s

1 2

we will assume that the collision is perfectly elastic. Third, the 
ball, after it bounces off the paperweight, swings back up as a 
pendulum.  

  vIsUAlIZe     FIGURe   10.37     shows four distinct moments of time: as the 
ball is released, an instant before the collision, an instant after the 
collision but before the ball and paperweight have had time to move, 
and as the ball reaches its highest point on the rebound. Call the ball 
A and the paperweight B, so    mA = 0.20 kg    and    mB = 0.50 kg.      

   CHAlleNGe eXAMPle 10.10    A rebounding pendulum 
 A 200 g steel ball hangs on a 1.0-m-long string. The ball is pulled 
sideways so that the string is at a    45�    angle, then released. At the 
very bottom of its swing the ball strikes a 500 g steel paperweight 
that is resting on a frictionless table. To what angle does the ball 
rebound? 

  MoDel   We can divide this problem into three parts. First the ball 
swings down as a pendulum. Second, the ball and paperweight 
have a collision. Steel balls bounce off each other very well, so 

  FIGURe 10.37         Four moments in the collision of a pendulum with a paperweight.   

Find: u3 

0

L � 1.0 m

mB � 500 g

u0 � 45�

mA � 200 g
A

y

(v0)A � 0 m/s
(y0)A � L(1 � cos u0)

(v3)A � 0 m/s
(y3)A � L(1 � cos u3)

(v1)A � (v1x)A

(y1)A � 0

(v1x)B � 0 m/s

A
(v2x)B(v2x)A

A B
A

BB

Part 1: Conservation of energy

Part 2: Conservation of momentum

Part 3: Conservation of energy

u3

10.4 . Restoring Forces and Hooke’s Law    255

  STOP TO THINK 10.3    A box slides along the 
frictionless surface shown in the figure. It 
is released from rest at the position shown. 
Is the highest point the box reaches on the 
other side at level a, level b, or level c?               

   10.4  Restoring Forces and Hooke’s law 
 If you stretch a rubber band, a force tries to pull the rubber band back to its equilibrium, 
or unstretched, length. A force that restores a system to an equilibrium position is called 
a  restoring force.  Systems that exhibit restoring forces are called  elastic.  The most basic 
examples of elasticity are things like springs and rubber bands. If you stretch a spring, 
a tension-like force pulls back. Similarly, a compressed spring tries to re-expand to its 
equilibrium length. Other examples of elasticity and restoring forces abound. The steel 
beams bend slightly as you drive your car over a bridge, but they are restored to equi-
librium after your car passes by. Nearly everything that stretches, compresses, flexes, 
bends, or twists exhibits a restoring force and can be called elastic. 

 We’re going to use a simple spring as a prototype of elasticity. Suppose you have 
a spring whose  equilibrium length  is    L 0.    This is the length of the spring when it is 
neither pushing nor pulling. If you now stretch the spring to length  L , how hard does it 
pull back? One way to find out is to attach the spring to a bar, as shown in   FIGURe   10.13    , 
then to hang a mass  m  from the spring. The mass stretches the spring to length  L . 
Lengths    L 0    and  L  are easily measured with a meter stick. 

  The mass hangs in static equilibrium, so the upward spring force    F
u

sp    exactly bal-
ances the downward gravitational force    F

u

G    to give    F
u

net = 0
u

.    That is, 

    Fsp = FG = mg (10.24)   

 By using different masses to stretch the spring to different lengths, we can determine 
how    Fsp,    the magnitude of the spring’s restoring force, depends on the length  L . 

   FIGURe   10.14     shows measured data for the restoring force of a real spring. Notice 
that the quantity graphed along the horizontal axis is    �s = L - L 0.    This is the dis-
tance that the end of the spring has moved, which we call the  displacement from 
equilibrium.  The graph shows that the restoring force is proportional to the displace-
ment. That is, the data fall along the straight line 

    Fsp = k �s (10.25)   

 The proportionality constant  k , the slope of the force-versus-displacement graph, is 
called the  spring constant.  The units of the spring constant are    N/m.    

  
PRoBleM-solvING
sTRATeGY 10.1        Conservation of mechanical energy  

  MoDel   Choose a system that is isolated and has no friction or other losses of 
mechanical energy.  

  vIsUAlIZe   Draw a before-and-after pictorial representation. Define symbols, list 
known values, and identify what you’re trying to find.  

  solve   The mathematical representation is based on the law of conservation of 
mechanical energy:  

    Kf + Uf = Ki + Ui    

  Assess   Check that your result has the correct units, is reasonable, and answers 
the question. 

 Exercise 8    

b
c

a

  FIGURe 10.13         A hanging mass stretches 
a spring of equilibrium length    L 0    to 
length  L .   

The relaxed
spring has
length L0.

Displacement
�s � L � L0

L

A block of mass m
stretches the spring
to length L.

The spring’s
restoring force
exactly balances
the pull of gravity.

L0

FG

r

Fsp

r

  FIGURe 10.14         Measured data for the 
restoring force of a real spring.   
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  solve   The mathematical representation is based on the law of conservation of 
mechanical energy:  

    Kf + Uf = Ki + Ui    

  Assess   Check that your result has the correct units, is reasonable, and answers 
the question. 

 Exercise 8    

b
c

a

  FIGURe 10.13         A hanging mass stretches 
a spring of equilibrium length    L 0    to 
length  L .   

The relaxed
spring has
length L0.

Displacement
�s � L � L0

L

A block of mass m
stretches the spring
to length L.

The spring’s
restoring force
exactly balances
the pull of gravity.
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  FIGURe 10.14         Measured data for the 
restoring force of a real spring.   

0.0

2.5

2.0

1.5

1.0

0.5

0.0
0.2 0.4 0.6 0.8

The restoring force is proportional
to the displacement of the spring
from equilibrium.

Fsp (N)

�s � L � L0 (m)

Slope � k � 3.5 N/m

1

3

4

2

224    c h a p t e r  9  . Impulse and Momentum

  TACTICs
B o X  9 . 1  

      Drawing a before-and-after pictorial representation 

     ●1  Sketch the situation.   Use two drawings, labeled “Before” and “After,” to 
show the objects  before  they interact and again  after  they interact.  

    ●2  Establish a coordinate system.   Select your axes to match the motion.  
    ●3  Define symbols.   Define symbols for the masses and for the velocities before 

and after the interaction. Position and time are not needed.  
    ●4  List known information.   Give the values of quantities that are known from 

the problem statement or that can be found quickly with simple geometry or 
unit conversions. Before-and-after pictures are simpler than the pictures for 
dynamics problems, so listing known information on the sketch is adequate.  

    ●5  Identify the desired unknowns.   What quantity or quantities will allow you 
to answer the question? These should have been defined in step 3.  

   ●6   If appropriate,  draw a momentum bar chart  to clarify the situation and 
establish appropriate signs.   

 Exercises 17–19       

   eXAMPle 9.1   Hitting a baseball 
 A 150 g baseball is thrown with a speed of    20 m/s.    It is hit straight 
back toward the pitcher at a speed of    40 m/s.    The interaction force 
between the ball and the bat is shown in   FIGURe   9.7    . What  maxi-
mum  force    Fmax    does the bat exert on the ball? What is the  average  
force of the bat on the ball? 

  vIsUAlIZe     FIGURe   9.8     is a before-and-after pictorial representation. 
The steps from Tactics Box 9.1 are explicitly noted. Because    Fx    
is positive (a force to the right), we know the ball was initially 
moving toward the left and is hit back toward the right. Thus we 
converted the statements about  speeds  into information about 
 velocities,  with    vix    negative.   

  solve   Until now we’ve consistently started the mathematical rep-
resentation with Newton’s second law. Now we want to use the 
impulse-momentum theorem: 

    �px = Jx = area under the force curve   

 We know the velocities before and after the collision, so we can 
calculate the ball’s momenta: 

     pix = mvix = (0.15 kg)(-20 m/s) = -3.0 kg m/s

  pfx = mvfx = (0.15 kg)(40 m/s) = 6.0 kg m/s    
   MoDel   Model the baseball as a particle and the interaction as a 
collision.  

  FIGURe 9.7         The interaction 
force between the baseball 
and the bat.   
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   FIGURe 9.8         A before-and-after pictorial representation.   
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 right with a higher speed.

2. It’s hit to the right.

1. The ball was initially
 moving to the left.

Draw a momentum bar chart.6

  NoTe   � The generic subscripts i and f, for  initial  and  final,  are adequate in equa-
tions for a simple problem, but using numerical subscripts, such as    v1x    and    v2x,    will 
help keep all the symbols straight in more complex problems. �  

10.4 . Restoring Forces and Hooke’s Law    255

  STOP TO THINK 10.3    A box slides along the 
frictionless surface shown in the figure. It 
is released from rest at the position shown. 
Is the highest point the box reaches on the 
other side at level a, level b, or level c?               

   10.4  Restoring Forces and Hooke’s Law 
 If you stretch a rubber band, a force tries to pull the rubber band back to its equilibrium, 
or unstretched, length. A force that restores a system to an equilibrium position is called 
a  restoring force.  Systems that exhibit restoring forces are called  elastic.  The most basic 
examples of elasticity are things like springs and rubber bands. If you stretch a spring, 
a tension-like force pulls back. Similarly, a compressed spring tries to re-expand to its 
equilibrium length. Other examples of elasticity and restoring forces abound. The steel 
beams bend slightly as you drive your car over a bridge, but they are restored to equi-
librium after your car passes by. Nearly everything that stretches, compresses, flexes, 
bends, or twists exhibits a restoring force and can be called elastic. 

 We’re going to use a simple spring as a prototype of elasticity. Suppose you have 
a spring whose  equilibrium length  is    L 0.    This is the length of the spring when it is 
neither pushing nor pulling. If you now stretch the spring to length  L , how hard does it 
pull back? One way to find out is to attach the spring to a bar, as shown in   FIGURE   10.13    , 
then to hang a mass  m  from the spring. The mass stretches the spring to length  L . 
Lengths    L 0    and  L  are easily measured with a meter stick. 

  The mass hangs in static equilibrium, so the upward spring force    F
u

sp    exactly bal-
ances the downward gravitational force    F

u

G    to give    F
u

net = 0
u

.    That is, 

    Fsp = FG = mg (10.24)   

 By using different masses to stretch the spring to different lengths, we can determine 
how    Fsp,    the magnitude of the spring’s restoring force, depends on the length  L . 

   FIGURE   10.14     shows measured data for the restoring force of a real spring. Notice 
that the quantity graphed along the horizontal axis is    �s = L - L 0.    This is the dis-
tance that the end of the spring has moved, which we call the  displacement from 
equilibrium.  The graph shows that the restoring force is proportional to the displace-
ment. That is, the data fall along the straight line 

    Fsp = k �s (10.25)   

 The proportionality constant  k , the slope of the force-versus-displacement graph, is 
called the  spring constant.  The units of the spring constant are    N/m.    

  
PROBLEM-SOLVING
STRATEGY 10.1        Conservation of mechanical energy  

  MODEL   Choose a system that is isolated and has no friction or other losses of 
mechanical energy.  

  VISUALIZE   Draw a before-and-after pictorial representation. Define symbols, list 
known values, and identify what you’re trying to find.  

  SOLVE   The mathematical representation is based on the law of conservation of 
mechanical energy:  

    Kf + Uf = Ki + Ui    

  ASSESS   Check that your result has the correct units, is reasonable, and answers 
the question. 

 Exercise 8    

b
c

a

  FIGURE 10.13         A hanging mass stretches 
a spring of equilibrium length    L 0    to 
length  L .   

The relaxed
spring has
length L0.

Displacement
�s � L � L0

L

A block of mass m
stretches the spring
to length L.

The spring’s
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the pull of gravity.
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  FIGURE 10.14         Measured data for the 
restoring force of a real spring.   
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solve

At the heart of the problem-solving instruction is the consistent 
4-step MODEL/ VISUALIZE/ SOLVE/ ASSESS approach, used 
throughout the book and all supplements. Problem-Solving 
Strategies provide detailed guidance for particular topics and 
categories of problems, often drawing on key skills outlined 
in the step-by-step procedures of Tactics Boxes. Problem-
Solving Strategies and Tactics Boxes are also illustrated in 
dedicated MasteringPhysics Skill-Builder Tutorials.
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     s U M M A R Y 
 The goal of  Chapter   27    has been to understand and apply Gauss’s law. 

  Gauss’s law 
 For any  closed  surface enclosing net charge    Qin   , the net electric flux through 
the surface is 

    �e = C E
u # dA

u

=
Qin 

P0
    

 The electric flux    �e    is the same for  any  closed surface enclosing charge    Qin.     

  symmetry 
 The symmetry of the electric field must match the 
symmetry of the charge distribution. 

 In practice,    �e    is computable only if the symmetry 
of the Gaussian surface matches the symmetry of the 
charge distribution.   

  General Principles     

     symmetric    
    Gaussian surface    

    electric flux,    �e        

    area vector,    A
u

       

    surface integral    
    Gauss’s law    

    screening      

  Terms and Notation 

     Charge  creates the electric field that 
is responsible for the electric flux.             

  Important Concepts       

Charges outside the surface
contribute to the electric field, but
they don’t contribute to the flux.

Qin is the sum of all enclosed
charges. This charge contributes
to the flux.

Gaussian surface

� �

�

�

�

�

     Flux  is the amount of electric field 
passing through a surface of area  A :   

    �e = E
u # A

u

   

 where    A
u

    is the  area vector.  

  
         For closed surfaces:  
 A net flux in or out indicates that 
the surface encloses a net charge. 

Field lines through but with no 
 net  flux mean that the surface 
encloses no  net  charge.     
        

     Surface integrals  calculate the flux by summing the fluxes 
through many small pieces of the surface:   

    �e = a E
u # dA

u

 S 3E
u # dA

u

   

  
         Two important situations:  
 If the electric field is everywhere 
tangent to the surface, then 

    �e = 0   

 If the electric field is everywhere 
perpendicular to the surface  and  has 
the same strength  E  at all points, then   

    �e = E A              

u

A

E

r

r dA
E

r

r

     Conductors in electrostatic equilibrium  

   •   The electric field is zero at all points within the conductor.  

  •   Any excess charge resides entirely on the exterior surface.  

  •   The external electric field is perpendicular to the surface and of magnitude    h/P0   , where    h    is the 
surface charge density.  

  •   The electric field is zero inside any hole within a conductor unless there is a charge in the hole.                   

  Applications   

E
r

�
�

�
�

�
�

�
�

�
�

�
�

�

E � 0
r r
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             This loudspeaker cone generates 
sound waves by oscillating back 
and forth at audio frequencies.    

 Oscillations   

      � looking Ahead   The goal of  Chapter   14    is to understand systems that oscillate with simple harmonic motion.  

 In this chapter you will learn to: 

   ■   Represent simple harmonic motion 
both graphically and mathematically.  

  ■   Understand the dynamics of oscillat-
ing systems.  

  ■   Recognize the similarities among 
many types of oscillating systems.   

 Simple harmonic motion has a very 
close connection to uniform circular 
motion. You’ll learn that an edge-on 
view of uniform circular motion is none 
other than simple harmonic motion.       

   simple Harmonic Motion 
 The most basic 
oscillation, with 
sinusoidal motion, 
is called  simple 
harmonic motion.    
  

       The oscillating cart 
is an example of 
simple harmonic 
motion. You’ll learn 
how to use the 
mass and the spring 
constant to deter-
mine the frequency 
of oscillation.    

  � looking Back 
 Section 4.5 Uniform circular motion  

Oscillation

     Pendulums 
 A mass swinging at the end of a string or 
rod is a  pendulum.  Its motion is another 
example of simple harmonic motion.     

       The period of a pendu-
lum is determined by 
the length of the string; 
neither the mass nor 
the amplitude matters. 
Consequently, the pen-
dulum was the basis of 
time keeping for many 
centuries.     

  Damping and Resonance 
 If there’s drag or other dissipation, then 
the oscillation “runs down.” This is 
called a  damped oscillation.      

       The amplitude of 
a damped oscil-
lation undergoes 
 exponential 
decay.     

 Oscillations can increase in amplitude, 
sometimes dramatically, when driven at 
their natural oscillation frequency. This 
is called  resonance.     

t

x

0

�A

A

     energy of oscillations 
 If there is no friction or other dissipa-
tion, then the mechanical energy of an 
oscillator is conserved. Conservation of 
energy will be an important tool.     

       The system oscil-
lates between all 
kinetic energy and 
all potential energy          

  � looking Back 
 Section 10.5 Elastic potential energy 
 Section 10.6 Energy diagrams  

0

All potential

All kinetic

A
x

�A

     springs 
 Simple harmonic motion occurs when 
there is a  linear restoring force.  The 
simplest example is 
a mass on a spring. 
You will learn how to 
determine the period 
of oscillation.     

       The “bounce” at the 
bottom of a bungee 
jump is an exhilarating 
example of a mass 
oscillating on a spring.          

  � looking Back 
 Section 10.4 Restoring forces  

NEW! PhET Simulations and Tutorials allow students to 
explore real-life phenomena and discover the underlying physics. 
Sixteen tutorials are provided in the MasteringPhysics item 
library, and 76 PhET simulations are available in the Study Area 
and Pearson eText, along with the comprehensive library of 
ActivPhysics applets and applet-based tutorials.
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  static equilibrium 

   eXAMPle 6.1   Finding the force on the kneecap 
 Your kneecap (patella) is attached by a tendon to your quad-
riceps muscle. This tendon pulls at a    10�    angle relative to the 
femur, the bone of your upper leg. The patella is also attached 
to your lower leg (tibia) by a tendon that pulls parallel to the 
leg. To balance these forces, the lower end of your femur 
pushes outward on the patella. Bending your knee increases 

the tension in the tendons, and both have a tension of 60 N 
when the knee is bent to make a    70�    angle between the upper 
and lower leg. What force does the femur exert on the kneecap 
in this position? 

  MoDel   Model the kneecap as a particle in static equilibrium.  

  vIsUAlIZe     FIGURe   6.1     shows how to draw a pictorial representa-
tion. We’ve chosen to align the  x -axis with the femur. The three 
forces—shown on the free-body diagram—are labeled    T 

u

1    and    T 
u

2    
for the tensions and    F

u

    for the femur’s push. Notice that we’ve 
 defined  angle    u    to indicate the direction of the femur’s force on 
the kneecap.   

  solve   This is a static-equilibrium problem, with three forces on 
the kneecap that must sum to zero. Newton’s first law, written in 
component form, is 

     (Fnet)x = a
i

(Fi)x = T1x + T2x + Fx = 0

  (Fnet)y = a
i

(Fi)y = T1y + T2y + Fy = 0   

  NoTe   � You might have been tempted to write    - T1x    in the equation 
since    T 

u

1    points to the left. But the net force, by definition, is the  sum  
of all the individual forces. That fact that    T 

u

1    points to the left will be 
taken into account when we  evaluate  the components. �  

 The components of the force vectors can be evaluated directly 
from the free-body diagram: 

     T1x = -T1 cos 10�  T1y = T1 sin 10�

  T2x = -T2 cos 70�   T2y = -T2 sin 70�

  Fx = F cos u     Fy = F sin u   

  This is where signs enter , with    T1x    being assigned a negative value 
because    T 

u

1    points to the left. Similarly,    T 
u

2    points both to the left 
and down, so both    T2x    and    T2y    are negative. With these compo-
nents, Newton’s first law becomes 

     -T1 cos 10� - T2 cos 70� + F cos u = 0

  T1 sin 10� - T2 sin 70� + F sin u = 0   

 These are two simultaneous equations for the two unknowns    F    
and    u.    We will encounter equations of this form on many occa-
sions, so make a note of the method of solution. First, rewrite the 
two equations as 

     F cos u = T1 cos 10� + T2 cos 70�

  F sin u = -T1 sin 10� + T2 sin 70�   

 Next, divide the second equation by the first to eliminate    F:    

    
F sin u

F cos u
= tan u =

-T1 sin 10� + T2 sin 70�

T1 cos 10� + T2 cos 70�
   

 Then solve for    u:    

     u =  tan-11 -T1 sin 10� + T2 sin 70�

T1 cos 10� + T2 cos 70� 2
  = tan-11 - (60 N) sin 10� + (60 N) sin 70�

(60 N) cos 10� + (60 N) cos 70� 2 = 30�   

 Finally, use    u    to find    F:    

     F =
T1 cos 10� + T2 cos 70�

cos u

  =
(60 N) cos 10� + (60 N) cos 70�)

cos 30�
= 92 N   

 The question asked What force? and force is a vector, so we must 
specify both the magnitude and the direction. With the knee in this 
position, the femur exerts a force    F

u

= (92 N, 30� above horizontal)    
on the kneecap.  

  Assess   The magnitude of the force would be 0 N if the leg were 
straight, 120 N if the knee could be bent    180�    so that the two 
tendons pull in parallel. The knee is closer to fully bent than to 
straight, so we would expect a femur force between 60 N and 
120 N. Thus the calculated magnitude of 92 N seems reasonable.    
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   FIGURe 6.1         Pictorial representation of the kneecap in static equilibrium.   
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   54. |    Show that  Equation   14.51    for the angular frequency of a phys-
ical pendulum gives  Equation   14.48    when applied to a simple 
pendulum of a mass on a string.    

   55. |||    A    15@cm@long, 200 g    rod is pivoted at one end. A 20 g ball of 
clay is stuck on the other end. What is the period if the rod and 
clay swing as a pendulum?   

   56. |||    A uniform rod of mass    M    and length    L    swings as a pendulum 
on a pivot at distance    L/4    from one end of the rod. Find an ex-
pression for the frequency    f     of small-angle oscillations.   

   57. |||    A solid sphere of mass    M    and radius    R    is suspended from a 
thin rod, as shown in   FIGURe   P14.57    . The sphere can swing back 
and forth at the bottom of the rod. Find an expression for the 
frequency    f     of small-angle oscillations.    

   58. ||    A geologist needs to determine the local value of    g   . Unfortu-
nately, his only tools are a meter stick, a saw, and a stopwatch. 
He starts by hanging the meter stick from one end and measuring 
its frequency as it swings. He then saws off 20 cm—using the 
centimeter markings—and measures the frequency again. After 
two more cuts, these are his data:   

Length (cm) Frequency (Hz)

100 0.61

 80 0.67

 60 0.79

 40 0.96

   Use the best-fit line of an appropriate graph to determine the 
local value of    g.      

   59. ||    Interestingly, there have been several studies using cadavers 
to determine the moments of inertia of human body parts, infor-
mation that is important in biomechanics. In one study, the cen-
ter of mass of a 5.0 kg lower leg was found to be 18 cm from the 
knee. When the leg was allowed to pivot at the knee and swing 
freely as a pendulum, the oscillation frequency was 1.6 Hz. What 
was the moment of inertia of the lower leg about the knee joint?   

   60. ||    A 500 g air-track glider attached to a spring with spring con-
stant    10 N/m    is sitting at rest on a frictionless air track. A 250 g 
glider is pushed toward it from the far end of the track at a speed 
of    120 cm/s.    It collides with and sticks to the 500 g glider. What 
are the amplitude and period of the subsequent oscillations?   

   61. ||    A 200 g block attached to a horizontal spring is oscillating 
with an amplitude of 2.0 cm and a frequency of 2.0 Hz. Just as it 
passes through the equilibrium point, moving to the right, a sharp 
blow directed to the left exerts a 20 N force for 1.0 ms. What are 
the new (a) frequency and (b) amplitude?   

   62. ||      FIGURe   P14.62     is a top view of an object of mass  m  connected 
between two stretched rubber bands of length  L . The object rests 
on a frictionless surface. At equilibrium, the tension in each rub-
ber band is  T . Find an expression for the frequency of oscilla- 
tions  perpendicular  to the rubber bands. Assume the amplitude 
is sufficiently small that the magnitude of the tension in the rub-
ber bands is essentially unchanged as the mass oscillates.    

BIO

   63. ||    A molecular bond can be modeled as a spring between two 
atoms that vibrate with simple harmonic motion.   FIGURe   P14.63     
shows an SHM approximation for the potential energy of an 
HCl molecule. For    E 6 4 * 10-19 J    it is a good approximation to 
the more accurate HCl potential-energy curve that was shown in 
Figure 10.31. Because the chlorine atom is so much more mas-
sive than the hydrogen atom, it is reasonable to assume that the 
hydrogen atom    (m = 1.67 * 10-27 kg)    vibrates back and forth 
while the chlorine atom remains at rest. Use the graph to esti-
mate the vibrational frequency of the HCl molecule.    

   64. ||    An ice cube can slide around the inside of a vertical circu-
lar hoop of radius  R . It undergoes small-amplitude oscillations 
if displaced slightly from the equilibrium position at the lowest 
point. Find an expression for the period of these small-amplitude 
oscillations.   

   65. ||    A penny rides on top of a piston as it undergoes vertical simple 
harmonic motion with an amplitude of 4.0 cm. If the frequency 
is low, the penny rides up and down without difficulty. If the 
frequency is steadily increased, there comes a point at which the 
penny leaves the surface. 

    a. At what point in the cycle does the penny first lose contact 
with the piston?  

   b. What is the maximum frequency for which the penny just 
barely remains in place for the full cycle?     

   66. ||    On your first trip to Planet X you happen to take along a 
200 g mass, a 40-cm-long spring, a meter stick, and a stopwatch. 
You’re curious about the free-fall acceleration on Planet X, 
where ordinary tasks seem easier than on earth, but you can’t 
find this information in your Visitor’s Guide. One night you sus-
pend the spring from the ceiling in your room and hang the mass 
from it. You find that the mass stretches the spring by 31.2 cm. 
You then pull the mass down 10.0 cm and release it. With the 
stopwatch you find that 10 oscillations take 14.5 s. Based on this 
information, what is g?   

   67. ||    The 15 g head of a bobble-head doll oscillates in SHM at a 
frequency of 4.0 Hz. 

    a. What is the spring constant of the spring on which the head is 
mounted?  

   b. The amplitude of the head’s oscillations decreases to 0.5 cm 
in 4.0 s. What is the head’s damping constant?     

   68. ||    An oscillator with a mass of 500 g and a period of 0.50 s has 
an amplitude that decreases by 2.0% during each complete oscil-
lation. If the initial amplitude is 10 cm, what will be the ampli-
tude after 25 oscillations?   

   69. ||    A spring with spring constant 15.0 N/m hangs from the ceiling. 
A 500 g ball is attached to the spring and allowed to come to rest. It 
is then pulled down 6.0 cm and released. What is the time constant 
if the ball’s amplitude has decreased to 3.0 cm after 30 oscillations?   
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   54. |    Show that  Equation   14.51    for the angular frequency of a phys-
ical pendulum gives  Equation   14.48    when applied to a simple 
pendulum of a mass on a string.    

   55. |||    A    15@cm@long, 200 g    rod is pivoted at one end. A 20 g ball of 
clay is stuck on the other end. What is the period if the rod and 
clay swing as a pendulum?   

   56. |||    A uniform rod of mass    M    and length    L    swings as a pendulum 
on a pivot at distance    L/4    from one end of the rod. Find an ex-
pression for the frequency    f     of small-angle oscillations.   

   57. |||    A solid sphere of mass    M    and radius    R    is suspended from a 
thin rod, as shown in   FIGURe   P14.57    . The sphere can swing back 
and forth at the bottom of the rod. Find an expression for the 
frequency    f     of small-angle oscillations.    

   58. ||    A geologist needs to determine the local value of    g   . Unfortu-
nately, his only tools are a meter stick, a saw, and a stopwatch. 
He starts by hanging the meter stick from one end and measuring 
its frequency as it swings. He then saws off 20 cm—using the 
centimeter markings—and measures the frequency again. After 
two more cuts, these are his data:   

Length (cm) Frequency (Hz)

100 0.61

 80 0.67

 60 0.79

 40 0.96

   Use the best-fit line of an appropriate graph to determine the 
local value of    g.      

   59. ||    Interestingly, there have been several studies using cadavers 
to determine the moments of inertia of human body parts, infor-
mation that is important in biomechanics. In one study, the cen-
ter of mass of a 5.0 kg lower leg was found to be 18 cm from the 
knee. When the leg was allowed to pivot at the knee and swing 
freely as a pendulum, the oscillation frequency was 1.6 Hz. What 
was the moment of inertia of the lower leg about the knee joint?   

   60. ||    A 500 g air-track glider attached to a spring with spring con-
stant    10 N/m    is sitting at rest on a frictionless air track. A 250 g 
glider is pushed toward it from the far end of the track at a speed 
of    120 cm/s.    It collides with and sticks to the 500 g glider. What 
are the amplitude and period of the subsequent oscillations?   

   61. ||    A 200 g block attached to a horizontal spring is oscillating 
with an amplitude of 2.0 cm and a frequency of 2.0 Hz. Just as it 
passes through the equilibrium point, moving to the right, a sharp 
blow directed to the left exerts a 20 N force for 1.0 ms. What are 
the new (a) frequency and (b) amplitude?   

   62. ||      FIGURe   P14.62     is a top view of an object of mass  m  connected 
between two stretched rubber bands of length  L . The object rests 
on a frictionless surface. At equilibrium, the tension in each rub-
ber band is  T . Find an expression for the frequency of oscilla- 
tions  perpendicular  to the rubber bands. Assume the amplitude 
is sufficiently small that the magnitude of the tension in the rub-
ber bands is essentially unchanged as the mass oscillates.    
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   63. ||    A molecular bond can be modeled as a spring between two 
atoms that vibrate with simple harmonic motion.   FIGURe   P14.63     
shows an SHM approximation for the potential energy of an 
HCl molecule. For    E 6 4 * 10-19 J    it is a good approximation to 
the more accurate HCl potential-energy curve that was shown in 
Figure 10.31. Because the chlorine atom is so much more mas-
sive than the hydrogen atom, it is reasonable to assume that the 
hydrogen atom    (m = 1.67 * 10-27 kg)    vibrates back and forth 
while the chlorine atom remains at rest. Use the graph to esti-
mate the vibrational frequency of the HCl molecule.    

   64. ||    An ice cube can slide around the inside of a vertical circu-
lar hoop of radius  R . It undergoes small-amplitude oscillations 
if displaced slightly from the equilibrium position at the lowest 
point. Find an expression for the period of these small-amplitude 
oscillations.   

   65. ||    A penny rides on top of a piston as it undergoes vertical simple 
harmonic motion with an amplitude of 4.0 cm. If the frequency 
is low, the penny rides up and down without difficulty. If the 
frequency is steadily increased, there comes a point at which the 
penny leaves the surface. 

    a. At what point in the cycle does the penny first lose contact 
with the piston?  

   b. What is the maximum frequency for which the penny just 
barely remains in place for the full cycle?     

   66. ||    On your first trip to Planet X you happen to take along a 
200 g mass, a 40-cm-long spring, a meter stick, and a stopwatch. 
You’re curious about the free-fall acceleration on Planet X, 
where ordinary tasks seem easier than on earth, but you can’t 
find this information in your Visitor’s Guide. One night you sus-
pend the spring from the ceiling in your room and hang the mass 
from it. You find that the mass stretches the spring by 31.2 cm. 
You then pull the mass down 10.0 cm and release it. With the 
stopwatch you find that 10 oscillations take 14.5 s. Based on this 
information, what is g?   

   67. ||    The 15 g head of a bobble-head doll oscillates in SHM at a 
frequency of 4.0 Hz. 

    a. What is the spring constant of the spring on which the head is 
mounted?  

   b. The amplitude of the head’s oscillations decreases to 0.5 cm 
in 4.0 s. What is the head’s damping constant?     

   68. ||    An oscillator with a mass of 500 g and a period of 0.50 s has 
an amplitude that decreases by 2.0% during each complete oscil-
lation. If the initial amplitude is 10 cm, what will be the ampli-
tude after 25 oscillations?   

   69. ||    A spring with spring constant 15.0 N/m hangs from the ceiling. 
A 500 g ball is attached to the spring and allowed to come to rest. It 
is then pulled down 6.0 cm and released. What is the time constant 
if the ball’s amplitude has decreased to 3.0 cm after 30 oscillations?   
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   54. |    Show that  Equation   14.51    for the angular frequency of a phys-
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thin rod, as shown in   FIGURe   P14.57    . The sphere can swing back 
and forth at the bottom of the rod. Find an expression for the 
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its frequency as it swings. He then saws off 20 cm—using the 
centimeter markings—and measures the frequency again. After 
two more cuts, these are his data:   

Length (cm) Frequency (Hz)

100 0.61

 80 0.67

 60 0.79

 40 0.96

   Use the best-fit line of an appropriate graph to determine the 
local value of    g.      

   59. ||    Interestingly, there have been several studies using cadavers 
to determine the moments of inertia of human body parts, infor-
mation that is important in biomechanics. In one study, the cen-
ter of mass of a 5.0 kg lower leg was found to be 18 cm from the 
knee. When the leg was allowed to pivot at the knee and swing 
freely as a pendulum, the oscillation frequency was 1.6 Hz. What 
was the moment of inertia of the lower leg about the knee joint?   

   60. ||    A 500 g air-track glider attached to a spring with spring con-
stant    10 N/m    is sitting at rest on a frictionless air track. A 250 g 
glider is pushed toward it from the far end of the track at a speed 
of    120 cm/s.    It collides with and sticks to the 500 g glider. What 
are the amplitude and period of the subsequent oscillations?   

   61. ||    A 200 g block attached to a horizontal spring is oscillating 
with an amplitude of 2.0 cm and a frequency of 2.0 Hz. Just as it 
passes through the equilibrium point, moving to the right, a sharp 
blow directed to the left exerts a 20 N force for 1.0 ms. What are 
the new (a) frequency and (b) amplitude?   

   62. ||      FIGURe   P14.62     is a top view of an object of mass  m  connected 
between two stretched rubber bands of length  L . The object rests 
on a frictionless surface. At equilibrium, the tension in each rub-
ber band is  T . Find an expression for the frequency of oscilla- 
tions  perpendicular  to the rubber bands. Assume the amplitude 
is sufficiently small that the magnitude of the tension in the rub-
ber bands is essentially unchanged as the mass oscillates.    
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shows an SHM approximation for the potential energy of an 
HCl molecule. For    E 6 4 * 10-19 J    it is a good approximation to 
the more accurate HCl potential-energy curve that was shown in 
Figure 10.31. Because the chlorine atom is so much more mas-
sive than the hydrogen atom, it is reasonable to assume that the 
hydrogen atom    (m = 1.67 * 10-27 kg)    vibrates back and forth 
while the chlorine atom remains at rest. Use the graph to esti-
mate the vibrational frequency of the HCl molecule.    

   64. ||    An ice cube can slide around the inside of a vertical circu-
lar hoop of radius  R . It undergoes small-amplitude oscillations 
if displaced slightly from the equilibrium position at the lowest 
point. Find an expression for the period of these small-amplitude 
oscillations.   

   65. ||    A penny rides on top of a piston as it undergoes vertical simple 
harmonic motion with an amplitude of 4.0 cm. If the frequency 
is low, the penny rides up and down without difficulty. If the 
frequency is steadily increased, there comes a point at which the 
penny leaves the surface. 

    a. At what point in the cycle does the penny first lose contact 
with the piston?  

   b. What is the maximum frequency for which the penny just 
barely remains in place for the full cycle?     

   66. ||    On your first trip to Planet X you happen to take along a 
200 g mass, a 40-cm-long spring, a meter stick, and a stopwatch. 
You’re curious about the free-fall acceleration on Planet X, 
where ordinary tasks seem easier than on earth, but you can’t 
find this information in your Visitor’s Guide. One night you sus-
pend the spring from the ceiling in your room and hang the mass 
from it. You find that the mass stretches the spring by 31.2 cm. 
You then pull the mass down 10.0 cm and release it. With the 
stopwatch you find that 10 oscillations take 14.5 s. Based on this 
information, what is g?   

   67. ||    The 15 g head of a bobble-head doll oscillates in SHM at a 
frequency of 4.0 Hz. 

    a. What is the spring constant of the spring on which the head is 
mounted?  

   b. The amplitude of the head’s oscillations decreases to 0.5 cm 
in 4.0 s. What is the head’s damping constant?     

   68. ||    An oscillator with a mass of 500 g and a period of 0.50 s has 
an amplitude that decreases by 2.0% during each complete oscil-
lation. If the initial amplitude is 10 cm, what will be the ampli-
tude after 25 oscillations?   

   69. ||    A spring with spring constant 15.0 N/m hangs from the ceiling. 
A 500 g ball is attached to the spring and allowed to come to rest. It 
is then pulled down 6.0 cm and released. What is the time constant 
if the ball’s amplitude has decreased to 3.0 cm after 30 oscillations?   
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15. The graph shows how the magnetic field changes
through a rectangular loop of wire with resistance
R. Draw a graph of the current in the loop as a
function of time. Let a counterclockwise 
current be positive, a clockwise current be
negative.

a. What is the magnetic flux through the loop at ?

b. Does this flux change between and ? 

c. Is there an induced current in the loop between and ? 

d. What is the magnetic flux through the loop at ? 

e. What is the change in flux through the loop between and ?

f. What is the time interval between and ?

g. What is the magnitude of the induced emf between and ?

h. What is the magnitude of the induced current between and ?

i. Does the magnetic field point out of or into the loop?

f. Between and , is the magnetic flux increasing or decreasing?

g. To oppose the change in the flux between and , should the 
magnetic field of the induced current point out of or into the loop?

h. Is the induced current between and positive or negative?

i. Does the flux through the loop change after ?

j. Is there an induced current in the loop after ?

k. Use all this information to draw a graph of the induced current. Add appropriate labels on
the vertical axis.
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NEW! Math Remediation found within selected tutorials provide just-
in-time math help and allow students to brush up on the most important 
mathematical concepts needed to successfully complete assignments. This 
new feature links students directly to math review and practice helping 
students make the connection between math and physics.

NEW! Enhanced end-of-chapter problems in 
MasteringPhysics now offer additional support such 
as problem-solving strategy hints, relevant math 
review and practice, links to the eText, and links to 
the related Video Tutor Solution.
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 • Add password protection.
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Gradebook

 • Every assignment is graded automatically.
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 • The Gradebook Diagnostics screen provides your favorite weekly 
diagnostics, summarizing grade distribution, improvement in scores 
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Class Performance on Assignment. Click on a problem to see 
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national average or with your previous class.

NEW! Learning Outcomes. In addition to being able to create 
your own learning outcomes to associate with questions in an 
assignment, you can now select content that is tagged to a large 
number of publisher-provided learning outcomes. You can also 
print or export student results based on learning outcomes for your 
own use or to incorporate into reports for your administration.
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Preface to the Instructor

In	 2003	 we	 published	 Physics for Scientists and Engineers:	 A Strategic Approach.	
This	was	the	first	comprehensive	introductory	textbook	built	from	the	ground	up	on	
research	into	how	students	can	more	effectively	learn	physics.	The	development	and	
testing	that	led	to	this	book	had	been	partially	funded	by	the	National	Science	Founda-
tion.	This	first	edition	quickly	became	the	most	widely	adopted	new	physics	textbook	
in	more	than	30	years,	meeting	widespread	critical	acclaim	from	professors	and	stu-
dents.	For	the	second	edition,	and	now	the	third,	we	have	built	on	the	research-proven	
instructional	techniques	introduced	in	the	first	edition	and	the	extensive	feedback	from	
thousands	of	users	to	take	student	learning	even	further.

Objectives
My	primary	goals	 in	writing	Physics for Scientists and Engineers: A Strategic Ap
proach	have	been:

	■	 To	produce	a	textbook	that	is	more	focused	and	coherent,	less	encyclopedic.
	■	 To	move	key	results	from	physics	education	research	into	the	classroom	in	a	way	

that	allows	instructors	to	use	a	range	of	teaching	styles.
	■	 To	provide	a	balance	of	quantitative	reasoning	and	conceptual	understanding,	with	

special	attention	to	concepts	known	to	cause	student	difficulties.
	■	 To	develop	students’	problem-solving	skills	in	a	systematic	manner.
	■	 To	support	an	active-learning	environment.

These	goals	and	 the	rationale	behind	 them	are	discussed	at	 length	 in	 the	Instructor 
Guide	and	in	my	small	paperback	book,	Five Easy Lessons: Strategies for Successful 
Physics Teaching.	Please	request	a	copy	from	your	local	Pearson	sales	representative	
if	it	is	of	interest	to	you	(ISBN	978-0-8053-8702-5).

What’s New to This Edition
For	this	third	edition,	we	continue	to	apply	the	best	results	from	educational	research,	
and	to	refine	and	tailor	 them	for	 this	course	and	its	students.	At	 the	same	time,	 the	
extensive	feedback	we’ve	received	has	led	to	many	changes	and	improvements	to	the	
text,	the	figures,	and	the	end-of-chapter	problems.	These	include:

	■	 New	illustrated	Chapter Previews	give	a	visual	overview	of	the	upcoming	ideas,	
set	them	in	context,	explain	their	utility,	and	tie	them	to	existing	knowledge	(through	
Looking Back	references).	These	previews	build	on	the	cognitive	psychology	con-
cept	of	an	“advance	organizer.”

	■	 New	Challenge Examples	 illustrate	how	 to	 integrate	multiple	concepts	and	use	
more	 sophisticated	 reasoning	 in	 problem-solving,	 ensuring	 an	 optimal	 range	 of	
worked	examples	for	students	to	study	in	preparation	for	homework	problems.

	■	 New	Data-based Examples	help	 students	with	 the	 skill	of	drawing	conclusions	
from	laboratory	data.	Designed	to	supplement	lab-based	instruction,	these	exam-
ples	also	help	students	in	general	with	mathematical	reasoning,	graphical	interpre-
tation,	and	assessment	of	results.

End-of-chapter	problem	enhancements	include	the	following:

	■	 Data from Mastering Physics® have been thoroughly analyzed	to	ensure	an	opti-
mal	range	of	difficulty,	problem	types,	and	topic	coverage.	In	addition,	the	wording	
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of	every	problem	has	been	reviewed	for	clarity.	Roughly	20%	of	the	end-of-chapter	
problems	are	new	or	significantly	revised.

	■	 Data-based problems	allow	students	to	practice	drawing	conclusions	from	data	(as	
demonstrated	in	the	new	data-based	examples	in	the	text).

	■	 An increased emphasis on symbolic answers	encourages	students	to	work	alge-
braically.	The	Student Workbook	also	contains	new	exercises	to	help	students	work	
through	symbolic	solutions.

	■	 Bio problems	are	set	in	life-science,	bioengineering,	or	biomedical	contexts.

Targeted	 content	 changes	 have	 been	 carefully	 implemented	 throughout	 the	 book.	
These	include:

	■	 Life-science and bioengineering worked examples and applications	 focus	on	
the	physics	of	life-science	situations	in	order	to	serve	the	needs	of	life-science	stu-
dents	taking	a	calculus-based	physics	class.

	■	 Descriptive text throughout has been streamlined	to	focus	the	presentation	and	
generate	a	shorter	text.

	■	 The	 chapter	 on	 Modern Optics and Matter	 Waves	 has	 been	 re-worked	 into	
Chapters 38	and	39	to	streamline	the	coverage	of	this	material.

At	the	front	of	the	book,	you’ll	find	an	illustrated	walkthrough	of	the	new	pedagogical	
features	 in	 this	 third	 edition.	The	 Preface to the Student	 demonstrates	 how	 all	 the	
book’s	features	are	designed	to	help	your	students.

Textbook Organization
The	42-chapter	extended	edition	(ISBN	978-0-321-73608-6/0-321-73608-7)	of	Physics 
for Scientists and Engineers	is	intended	for	a	three-semester	course.	Most	of	the	36-chapter	
standard	edition	(ISBN	978-0-321-75294-9/0-321-75294-5),	ending	with	relativity,	can	
be	covered	in	two	semesters,	although	the	judicious	omission	of	a	few	chapters	will	avoid	
rushing	 through	 the	material	and	give	students	more	 time	 to	develop	 their	knowledge	
and skills.

There’s	 a	 growing	 sentiment	 that	 quantum	 physics	 is	 quickly	 becoming	 the	
province of	engineers,	not	just	scientists,	and	that	even	a	two-semester	course	should	
include	a	reasonable	introduction	to	quantum	ideas.	The	Instructor Guide	outlines	a	
couple	of	routes	through	the	book	that	allow	most	of	the	quantum	physics	chapters	
to	be	included	in	a	two-semester	course.	I’ve	written	the	book	with	the	hope	that	an	
increasing	number	of	instructors	will	choose	one	of	these	routes.

The	 full	 textbook	 is	 divided	 into	 seven	 parts:	 Part	 I:	 Newton’s Laws,	 Part	 II:	
Conservation Laws,	Part	III:	Applications of Newtonian Mechanics,	Part	IV:	Ther
mo dynamics,	 Part	V:	 Waves and Optics,	 Part	VI:	 Electricity and Magnetism,	 and	
Part  VII:	 Relativity and Quantum Physics.	 Although	 I	 recommend	 covering	 the	
parts  in	 this	 order	 (see	 below),	 doing	 so	 is	 by	 no	 means	 essential.	 Each	 topic	 is	
self-contained,	 and	 Parts	 III–VI	 can	 be	 rearranged	 to	 suit	 an	 instructor’s	 needs.	
To	 facilitate	a	 reordering	of	 topics,	 the	 full	 text	 is	available	 in	 the	 five	 individual	
volumes	listed	in	the	margin.

Organization Rationale:	Thermodynamics	is	placed	before	waves	because	it	is	a	
continuation	of	ideas	from	mechanics.	The	key	idea	in	thermodynamics	is	energy,	and	
moving	from	mechanics	into	thermodynamics	allows	the	uninterrupted	development	
of	this	important	idea.	Further,	waves	introduce	students	to	functions	of	two	variables,	
and	the	mathematics	of	waves	is	more	akin	to	electricity	and	magnetism	than	to	me-
chanics.	Thus	moving	 from	waves	 to	 fields	 to	quantum	physics	provides	 a	gradual	
transition	of	ideas	and	skills.

The	 purpose	 of	 placing	 optics	 with	 waves	 is	 to	 provide	 a	 coherent	 presentation	
of	wave	physics,	one	of	the	two	pillars	of	classical	physics.	Optics	as	it	is	presented	
in	 introductory	 physics	 makes	 no	 use	 of	 the	 properties	 of	 electromagnetic	 fields.	
There’s	 little	 reason	other	 than	historical	 tradition	 to	delay	optics	until	 after	E&M.	

 ■ Extended edition, with modern 
physics (ISBN 978-0-321-73608-6 / 
0-321-73608-7): Chapters 1–42.

 ■ Standard edition (ISBN 978-0-
321-75294-9 / 0-321-75294-5):  
Chapters 1–36.

 ■ Volume 1 (ISBN 978-0-321-75291-8 / 
0-321-75291-0) covers mechanics: 
Chapters 1–15.

 ■ Volume 2 (ISBN 978-0-321-75318-2 / 
0-321-75318-6) covers thermodynamics: 
Chapters 16–19.

 ■ Volume 3 (ISBN 978-0-321-75317-5 / 
0-321-75317-8) covers waves and 
optics: Chapters 20–24.

 ■ Volume 4 (ISBN 978-0-321-75316-8 / 
0-321-75316-X) covers electricity  
and magnetism, plus relativity: 
Chapters 25–36.

 ■ Volume 5 (ISBN 978-0-321-75315-1 / 
0-321-75315-1) covers relativity and 
quantum physics: Chapters 36–42.

 ■ Volumes 1–5 boxed set (ISBN 978-0-
321-77265-7 / 0-321-77265-2).
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The	documented	difficulties	that	students	have	with	optics	are	difficulties	with	waves,	
not	difficulties	with	electricity	and	magnetism.	However,	the	optics	chapters	are	eas-
ily	deferred	until	the	end	of	Part	VI	for	instructors	who	prefer	that	ordering	of	topics.

The Student Workbook
A	key	component	of	Physics for Scientists and Engineers: A Strategic Approach	is	the	
accompanying	Student Workbook.	The	workbook	bridges	 the	gap	between	 textbook	
and	homework	problems	by	providing	students	the	opportunity	to	learn	and	practice	
skills	prior	 to	using	 those	skills	 in	quantitative	end-of-chapter	problems,	much	as	a	
musician	practices	technique	separately	from	performance	pieces.	The	workbook	ex-
ercises,	which	are	keyed	to	each	section	of	the	textbook,	focus	on	developing	specific	
skills,	ranging	from	identifying	forces	and	drawing	free-body	diagrams	to	interpreting	
wave	functions.

The	 workbook	 exercises,	 which	 are	 generally	 qualitative	 and/or	 graphical,	 draw	
heavily	upon	the	physics	education	research	literature.	The	exercises	deal	with	issues	
known	 to	 cause	 student	 difficulties	 and	 employ	 techniques	 that	 have	 proven	 to	 be	
effective	at	overcoming	those	difficulties.	The	workbook	exercises	can	be	used	in	class	
as	part	of	an	active-learning	 teaching	strategy,	 in	 recitation	sections,	or	as	assigned	
homework.	 More	 information	 about	 effective	 use	 of	 the	 Student Workbook	 can	 be	
found	in	the	Instructor Guide.

Available	 versions:	 Extended	 (ISBN	 978-0-321-75308-3/0-321-75308-9),	 Stan-
dard	(ISBN	978-0-321-75309-0/0-321-75309-7),	Volume	1	(ISBN	978-0-321-75314-
4/0-321-75314-3),	Volume	 2	 (ISBN	 978-0-321-75313-7/0-321-75313-5),	Volume	 3	
(ISBN	 978-0-321-75312-0/0-321-75310-0),	 Volume	 4	 (ISBN	 978-0-321-75311-3/	
0-321-75311-9),	and	Volume	5	(ISBN	978-0-321-75310-6/0-321-75310-0).

Instructor Supplements
	■	 The	 Instructor Guide for	 Physics for Scientists and 

Engineers	 (ISBN	 978-0-321-74765-5/0-321-74765-8)	
offers	 detailed	 comments	 and	 suggested	 teaching	 ideas	
for	every	chapter,	 an	extensive	 review	of	what	has	been	
learned	 from	physics	 education	 research,	 and	guidelines		
for	 using	 active-learning	 techniques	 in	 your	 classroom.	
This	 invaluable	 guide	 is	 available	 on	 the	 Instructor		
Resource	 DVD,	 and	 via	 download,	 either	 from	 the		
MasteringPhysics	 Instructor	Area	 or	 from	 the	 Instructor	
Resource	Center	(www.pearsonhighered.com/educator).

	■	 The	 Instructor Solutions	 (ISBN	 978-0-321-76940-4/	
0-321-76940-6),	 written	 by	 the	 author,	 Professor	 Larry	
Smith	 (Snow	 College),	 and	 Brett	 Kraabel	 (Ph.D.,	 Uni-
versity	 of	 California,	 Santa	 Barbara),	 provide	 complete	
solutions	 to	 all	 the	 end-of-chapter	 problems.	 The	 solu-
tions	follow	the	four-step	Model/Visualize/Solve/Assess	
procedure	 used	 in	 the	 Problem-Solving	 Strategies	 and	
in	 all	 worked	 examples.	 The	 solutions	 are	 available	 by	
chapter	 as	 editable	 Word®	 documents	 and	 as	 PDFs	 for	
your	own	use	or	for	posting	on	your	password-protected	
course	website.	Also	provided	are	PDFs	of	handwritten	
solutions	to	all	of	the	exercises	in	the	Student Workbook,	
written	 by	 Professor	 James	Andrews	 and	 Brian	 Garcar	
(Youngstown	State	University).	All	solutions	are	available	

only	 via	 download,	 either	 from	 the	 MasteringPhysics	
Instructor	Area	 or	 from	 the	 Instructor	 Resource	 Center	
(www.pearsonhighered.com/educator).

	■	 The	cross-platform	Instructor Resource DVD	(ISBN	978-
0-321-75456-1/0-321-75456-5)	 provides	 a	 comprehensive	
library	 of	 more	 than	 220	 applets	 from	 ActivPhysics 
OnLine	and	76	PhET simulations,	as	well	as	all	figures,	
photos,	tables,	summaries,	and	key	equations	from	the	text-
book	in	JPEG	format.	In	addition,	all	the	Problem-Solving	
Strategies,	Tactics	Boxes,	and	Key	Equations	are	provided	
in	 editable	 Word	 format.	 PowerPoint®	 Lecture Outlines	
with	 embedded	 Classroom Response System “Clicker” 
Questions	(including	reading	quizzes)	are	also	provided.

	■	 MasteringPhysics®	 (www.masteringphysics.com)	
is	the	most	advanced,	educationally	effective,	and	
widely	used	physics	homework	and	tutorial	sys-

tem	in	the	world.	Eight	years	in	development,	it	provides	
instructors	with	a	library	of	extensively	pre-tested	end-of-	
chapter	 problems	 and	 rich,	 multipart,	 multistep	 tutorials	
that	incorporate	a	wide	variety	of	answer	types,	wrong	an-
swer	 feedback,	 individualized	 help	 (comprising	 hints	 or	
simpler	 sub-problems	 upon	 request),	 all	 driven	 by	 the	
largest	 metadatabase	 of	 student	 problem-solving	 in	 the	
world.	NSF-sponsored	published	research	(and	subsequent	

Force and Motion . C H A P T E R 5 5-3

5.4 What Do Forces Do? A Virtual Experiment

9.

a. 2m b. 0.5m

Use triangles to show four points for the object of
mass 2m, then draw a line through the points. Use
squares for the object of mass 0.5m.

10. A constant force applied to object A causes A to
accelerate at 5 m/s2. The same force applied to object B
causes an acceleration of 3 m/s2. Applied to object C, it
causes an acceleration of 8 m/s2.

a. Which object has the largest mass? 

b. Which object has the smallest mass? 

c. What is the ratio of mass A to mass B? (mA/mB) = 

11. A constant force applied to an object causes the object to accelerate at 10 m/s2. What will the
acceleration of this object be if

a. The force is doubled? b. The mass is doubled? 

c. The force is doubled and the mass is doubled? 

d. The force is doubled and the mass is halved? 

12. A constant force applied to an object causes the object to accelerate at 8 m/s2. What will the
acceleration of this object be if

a. The force is halved? b. The mass is halved? 

c. The force is halved and the mass is halved? 

d. The force is halved and the mass is doubled? 

5.5 Newton’s Second Law

13. Forces are shown on two objects. For each:

a. Draw and label the net force vector. Do this right on the figure.
b. Below the figure, draw and label the object’s acceleration vector.

x

y 

0 1 2

Force (rubber bands)

A
cc
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3 4

The figure shows an acceleration-versus-force graph for
an object of mass m. Data have been plotted as individual
points, and a line has been drawn through the points.

Draw and label, directly on the figure, the acceleration-
versus-force graphs for objects of mass
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studies)	show	that	MasteringPhysics	has	dramatic	educa-
tional	results.	MasteringPhysics	allows	instructors	to	build	
wide-ranging	homework	assignments	of	just	the	right	dif-
ficulty	and	length	and	provides	them	with	efficient	tools	to	
analyze	in	unprecedented	detail	both	class	trends	and	the	
work	of	any	student.

	 	 	 MasteringPhysics	routinely	provides	instant	and	in-
dividualized	feedback	and	guidance	to	more	than	100,000	
students	 every	 day.	 A	 wide	 range	 of	 tools	 and	 support	
make	MasteringPhysics	fast	and	easy	for	instructors	and	
students	 to	 learn	 to	 use.	 Extensive	 class	 tests	 show	 that	
by	the	end	of	their	course,	an	unprecedented	nine	of	ten	
students	recommend	MasteringPhysics	as	their	preferred	
way	to	study	physics	and	do	homework.

	 	 For	 the	 third	 edition	 of	 Physics for Scientists and 
Engineers,	MasteringPhysics	now	has	the	following	func-
tionalities:

	 ■	 Learning Outcomes:	In	addition	to	being	able	to	create	
their	own	learning	outcomes	to	associate	with	questions	
in	an	assignment,	professors	can	now	select	content	that	
is	tagged	to	a	large	number	of	publisher-provided	learn-
ing	outcomes.	They	can	also	print	or	export	student	re-
sults	based	on	learning	outcomes	for	their	own	use	or	to	
incorporate	into	reports	for	their	administration.

	 ■	 Quizzing and Testing Enhancements:	These	include	
options	 to	 hide	 item	 titles,	 add	 password	 protection,	
limit	access	to	completed	assignments,	and	to	random-
ize	question	order	in	an	assignment.

	 ■	 Math Remediation:	 Found	 within	 selected	 tutorials,	
special	links	provide	just-in-time	math	help	and	allow	
students	to	brush	up	on	the	most	important	mathemati-
cal	 concepts	 needed	 to	 successfully	 complete	 assign-
ments.	This	new	feature	links	students	directly	to	math	

review	and	practice	helping	students	make	the	connec-
tion	between	math	and	physics.

	 ■	 Enhanced End-of-Chapter Problems:	 A	 subset	 of	
homework	problems	now	offer	additional	support	such	
as	problem-solving	strategy	hints,	relevant	math	review	
and	practice,	links	to	the	eText,	and	links	to	the	related	
Video	Tutor	Solution.

	■	 ActivPhysics OnLine™	 (accessed	 through	 the	
Self	Study	area	within	www.masteringphysics.com)	
provides	 a	 comprehensive	 library	 of	 more	 than	

220	tried	and	tested	ActivPhysics	core	applets	updated	for	
web	delivery	using	the	latest	online	technologies.	In	addi-
tion,	 it	 provides	 a	 suite	 of	 highly	 regarded	 applet-based	
tutorials	 developed	 by	 education	 pioneers	 Alan	 Van	
Heuvelen	and	Paul	D’Alessandris.

	 	 	 The	 online	 exercises	 are	 designed	 to	 encourage	
students	to	confront	misconceptions,	reason	qualitatively	
about	 physical	 processes,	 experiment	 quantitatively,	 and	
learn	to	think	critically.	The	highly	acclaimed	ActivPhysics	
OnLine	companion	workbooks	help	students	work	through	
complex	concepts	and	understand	them	more	clearly.	The	
applets	 from	 the	 ActivPhysics	 OnLine	 library	 are	 also	
available	on	the	Instructor	Resource	DVD	for	this	text.

	■	 The	Test Bank	 (ISBN	978-0-321-74766-2/0-321-74766-6)	
contains	 more	 than	 2,000	 high-quality	 problems,	 with	 a	
range	 of	 multiple-choice,	 true/false,	 short-answer,	 and	
regular	homework-type	questions.	Test	files	are	provided	
both	 in	TestGen	 (an	 easy-to-use,	 fully	 networkable	 pro-
gram	 for	 creating	 and	 editing	 quizzes	 and	 exams)	 and	
Word	format.	They	are	available	only	via	download,	either		
from	 the	 MasteringPhysics	 Instructor	 Area	 or	 from	 the	
Instructor	 Resource	 Center	 (www.pearsonhighered.com/
educator).

Student Supplements
	■	 The	Student Solutions Manuals Chapters 1–19	(ISBN	

978-0-321-74767-9/0-321-74767-4)	and	Chapters 20–42	
(ISBN	 978-0-321-77269-5/0-321-77269-5),	 written	 by	
the	 author,	 Professor	 Larry	 Smith	 (Snow	 College),	 and	
Brett	 Kraabel	 (Ph.D.,	 University	 of	 California,	 Santa		
Barbara),	provide	detailed	solutions	to	more	than	half	of	
the	 odd-numbered	 end-of-chapter	 problems.	 The	 solu-
tions	 follow	 the	 four-step	 Model/Visualize/Solve/Assess	
procedure	used	in	the	Problem-Solving	Strategies	and	in	
all	worked	examples.

	■	 MasteringPhysics®	(www.masteringphysics.com)	
is  a	 home	work,	 tutorial,	 and	 assessment	 system	
based	on	years	of	research	into	how	students	work	

physics	 problems	 and	 precisely	 where	 they	 need	 help.	
Studies	 show	 that	 students	 who	 use	 Mastering	Physics	
significantly	 increase	 their	 scores	 compared	 to	 hand-
written	 homework.	 MasteringPhysics	 achieves	 this	

improvement	 by	 providing	 students	 with	 instantaneous	
feedback	 specific	 to	 their	wrong	answers,	 simpler	 sub-
problems	upon	request	when	they	get	stuck,	and	partial	
credit	 for	 their	 method(s).	 This	 individualized,	 24/7	
Socratic	tutoring	is	recommended	by	9	out	of	10	students	
to	their	peers	as	the	most	effective	and	time-efficient	way	
to	study.

	■	 Pearson eText	 is	 available	 through	 MasteringPhysics,	
either	automatically	when	MasteringPhysics	is	packaged	
with	new	books,	or	available	as	a	purchased	upgrade	on-
line.	Allowing	 students	 access	 to	 the	 text	wherever	 they	
have	access	to	the	Internet,	Pearson	eText	comprises	the	
full	text,	including	figures	that	can	be	enlarged	for	better	
viewing.	With	eText,	students	are	also	able	to	pop	up	defi-
nitions	and	terms	to	help	with	vocabulary	and	the	reading	
of	the	material.	Students	can	also	take	notes	in	eText	using	
the	annotation	feature	at	the	top	of	each	page.
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Special	 thanks	 go	 to	 our	 third	 edition	 review	 panel:	 Kyle	
Altman,	Taner	Edis,	Kent	Fisher,	Marty	Gelfand,	Elizabeth	
George,	 Jason	 Harlow,	 Bob	 Jacobsen,	 David	 Lee,	 Gary	
Morris,	Eric	Murray,	and	Bruce	Schumm.

Gary	B.	Adams,	Arizona State University
Ed	Adelson,	Ohio State University
Kyle	Altmann,	Elon University
Wayne	R.	Anderson,	Sacramento City College
James	H.	Andrews,	Youngstown State University
Kevin	Ankoviak,	Las Positas College
David	Balogh,	Fresno City College
Dewayne	Beery,	Buffalo State College
Joseph	Bellina,	Saint Mary’s College
James	R.	Benbrook,	University of Houston
David	Besson,	University of Kansas

Randy	Bohn,	University of Toledo
Richard	A.	Bone,	Florida International University
Gregory	Boutis,	York College
Art	Braundmeier,	University of Southern Illinois, 

Edwardsville
Carl	Bromberg,	Michigan State University
Meade	Brooks,	Collin College
Douglas	Brown,	Cabrillo College
Ronald	Brown,	California Polytechnic State University, 

San Luis Obispo
Mike	Broyles,	Collin County Community College
Debra	Burris,	University of Central Arkansas
James	Carolan,	University of British Columbia
Michael	Chapman,	Georgia Tech University
Norbert	Chencinski,	College of Staten Island
Kristi	Concannon,	King’s College

Reviewers and Classroom Testers

	■	 Pearson Tutor Services	(www.pearsontutorservices.com)	
Each	student’s	subscription	to	MasteringPhysics	also	con-
tains	 complimentary	 access	 to	 Pearson	 Tutor	 Services,	
powered	 by	 Smarthinking,	 Inc.	 By	 logging	 in	 with	 their	
MasteringPhysics	ID	and	password,	they	will	be	connected	
to	 highly	 qualified	 e-instructors	 who	 provide	 additional	
interactive	online	tutoring	on	the	major	concepts	of	phys-
ics.	Some	restrictions	apply;	offer	subject	to	change.

	■	 ActivPhysics OnLine™	(accessed	through	the	Self	
Study	 area	 within	 www.masteringphysics.com)	

provides	 students	 with	 a	 suite	 of	 highly	 regarded	 applet-
based	tutorials	(see	above).	The	following	workbooks	help	
students	 work	 through	 complex	 concepts	 and	 understand	
them	more	clearly:

	■	 ActivPhysics OnLine Workbook, Volume 1: Mechanics • 
Thermal Physics • Oscillations & Waves	 (ISBN	 978-0-
8053-9060-5/0-8053-9060-X)

	■	 ActivPhysics OnLine Workbook, Volume 2: Electric-
ity & Magnetism • Optics • Modern Physics	(ISBN	978-
0-8053-9061-2/0-8053-9061-8)

Acknowledgments
I	 have	 relied	 upon	 conversations	 with	 and,	 especially,	 the	
written	 publications	 of	 many	 members	 of	 the	 physics	 edu-
cation	 research	 community.	 Those	 who	 may	 recognize	
their	 influence	 include	Arnold	Arons,	 Uri	 Ganiel,	 Ibrahim	
Halloun,	 Richard	 Hake,	 Ken	 Heller,	 Paula	 Heron,	 David	
Hestenes,	Leonard	Jossem,	Jill	Larkin,	Priscilla	Laws,	John	
Mallinckrodt,	 Kandiah	 Manivannan,	 Lillian	 McDermott	
and	 members	 of	 the	 Physics	 Education	 Research	 Group	
at	 the	 University	 of	 Washington,	 David	 Meltzer,	 Edward	
“Joe”	Redish,	Fred	Reif,	Jeffery	Saul,	Rachel	Scherr,	Bruce	
Sherwood,	Josip	Slisko,	David	Sokoloff,	Richard	Steinberg,	
Ronald	 Thornton,	 Sheila	 Tobias,	 Alan	 Van	 Heuleven,	 and	
Michael	 Wittmann.	 John	 Rigden,	 founder	 and	 director	 of	
the	 Introductory	 University	 Physics	 Project,	 provided	 the	
impetus	 that	got	me	started	down	 this	path.	Early	develop-
ment	of	the	materials	was	supported	by	the	National	Science	
Foundation	 as	 the	 Physics for the Year 2000	 project;	 their	
support	is	gratefully	acknowledged.

I	especially	want	 to	 thank	my	editor	 Jim	Smith,	devel-
opment	editor	Alice	Houston,	project	editor	Martha	Steele,	
and	all	 the	other	staff	at	Pearson	for	 their	enthusiasm	and	

hard	work	on	this	project.	Production	project	manager	Beth	
Collins,	Rose	Kernan	and	the	team	at	Nesbitt	Graphics,	Inc.,	
and	photo	researcher	Eric	Schrader	get	a	good	deal	of	 the	
credit	 for	 making	 this	 complex	 project	 all	 come	 together.	
Larry	Smith	and	Brett	Kraabel	have	done	an	outstanding	job	
of	checking	the	solutions	to	every	end-of-chapter	problem	
and	updating	the	Instructor Solutions Manual.	Jim	Andrews	
and	Brian	Garcar	must	be	thanked	for	so	carefully	writing	
out	 the	 solutions	 to	 The Student Workbook	 exercises,	 and	
Jason	Harlow	for	putting	together	the	Lecture	Outlines.	In	
addition	to	the	reviewers	and	classroom	testers	listed	below,	
who	gave	invaluable	feedback,	I	am	particularly	grateful	to	
Charlie	 Hibbard	 for	 his	 close	 scrutiny	 of	 every	 word	 and	
figure.

Finally,	I	am	endlessly	grateful	to	my	wife	Sally	for	her	
love,	 encouragement,	 and	 patience,	 and	 to	 our	 many	 cats,	
past	and	present,	who	understand	clearly	that	their	priority	is	
not	deadlines	but	“Pet	me,	pet	me,	pet	me.”

Randy	Knight,	September	2011
rknight@calpoly.edu

www.pearsontutorservices.com
www.masteringphysics.com


Preface to the Instructor    xiii

Sean	Cordry,	Northwestern College of Iowa
Robert	L.	Corey,	South Dakota School of Mines
Michael	Crescimanno,	Youngstown State University
Dennis	Crossley,	University of Wisconsin–Sheboygan
Wei	Cui,	Purdue University
Robert	J.	Culbertson,	Arizona State University
Danielle	Dalafave,	The College of New Jersey
Purna	C.	Das,	Purdue University North Central
Chad	Davies,	Gordon College
William	DeGraffenreid,	California State 

University–Sacramento
Dwain	Desbien,	Estrella Mountain Community College
John	F.	Devlin,	University of Michigan, Dearborn
John	DiBartolo,	Polytechnic University
Alex	Dickison,	Seminole Community College
Chaden	Djalali,	University of South Carolina
Margaret	Dobrowolska,	University of Notre Dame
Sandra	Doty,	Denison University
Miles	J.	Dresser,	Washington State University
Charlotte	Elster,	Ohio University
Robert	J.	Endorf,	University of Cincinnati
Tilahun	Eneyew,	EmbryRiddle Aeronautical University
F.	Paul	Esposito,	University of Cincinnati
John	Evans,	Lee University
Harold	T.	Evensen,	University of Wisconsin–Platteville
Michael	R.	Falvo,	University of North Carolina
Abbas	Faridi,	Orange Coast College
Nail	Fazleev,	University of Texas–Arlington
Stuart	Field,	Colorado State University
Daniel	Finley,	University of New Mexico
Jane	D.	Flood,	Muhlenberg College
Michael	Franklin,	Northwestern Michigan College
Jonathan	Friedman,	Amherst College
Thomas	Furtak,	Colorado School of Mines
Alina	Gabryszewska-Kukawa,	Delta State University
Lev	Gasparov,	University of North Florida
Richard	Gass,	University of Cincinnati
J.	David	Gavenda,	University of Texas, Austin
Stuart	Gazes,	University of Chicago
Katherine	M.	Gietzen,	Southwest Missouri State University
Robert	Glosser,	University of Texas, Dallas
William	Golightly,	University of California, Berkeley
Paul	Gresser,	University of Maryland
C.	Frank	Griffin,	University of Akron
John	B.	Gruber,	San Jose State University
Stephen	Haas,	University of Southern California
John	Hamilton,	University of Hawaii at Hilo
Jason	Harlow,	University of Toronto
Randy	Harris,	University of California, Davis
Nathan	Harshman,	American University
J.	E.	Hasbun,	University of West Georgia
Nicole	Herbots,	Arizona State University
Jim	Hetrick,	University of Michigan–Dearborn
Scott	Hildreth,	Chabot College
David	Hobbs,	South Plains College
Laurent	Hodges,	Iowa State University

Mark	Hollabaugh,	Normandale Community College
John	L.	Hubisz,	North Carolina State University
Shane	Hutson,	Vanderbilt University
George	Igo,	University of California, Los Angeles
David	C.	Ingram,	Ohio University
Bob	Jacobsen,	University of California, Berkeley
Rong-Sheng	Jin,	Florida Institute of Technology
Marty	Johnston,	University of St. Thomas
Stanley	T.	Jones,	University of Alabama
Darrell	Judge,	University of Southern California
Pawan	Kahol,	Missouri State University
Teruki	Kamon,	Texas A&M University
Richard	Karas,	California State University, San Marcos
Deborah	Katz,	U.S. Naval Academy
Miron	Kaufman,	Cleveland State University
Katherine	Keilty,	Kingwood College
Roman	Kezerashvili,	New York City College of Technology
Peter	Kjeer,	Bethany Lutheran College
M.	Kotlarchyk,	Rochester Institute of Technology
Fred	Krauss,	Delta College
Cagliyan	Kurdak,	University of Michigan
Fred	Kuttner,	University of California, Santa Cruz
H.	Sarma	Lakkaraju,	San Jose State University
Darrell	R.	Lamm,	Georgia Institute of Technology
Robert	LaMontagne,	Providence College
Eric	T.	Lane,	University of Tennessee–Chattanooga
Alessandra	Lanzara,	University of California, Berkeley
Lee	H.	LaRue,	Paris Junior College
Sen-Ben	Liao,	Massachusetts Institute of Technology
Dean	Livelybrooks,	University of Oregon
Chun-Min	Lo,	University of South Florida
Olga	Lobban,	Saint Mary’s University
Ramon	Lopez,	Florida Institute of Technology
Vaman	M.	Naik,	University of Michigan, Dearborn
Kevin	Mackay,	Grove City College
Carl	Maes,	University of Arizona
Rizwan	Mahmood,	Slippery Rock University
Mani	Manivannan,	Missouri State University
Richard	McCorkle,	University of Rhode Island
James	McDonald,	University of Hartford
James	McGuire,	Tulane University
Stephen	R.	McNeil,	Brigham Young University–Idaho
Theresa	Moreau,	Amherst College
Gary	Morris,	Rice University
Michael	A.	Morrison,	University of Oklahoma
Richard	Mowat,	North Carolina State University
Eric	Murray,	Georgia Institute of Technology
Taha	Mzoughi,	Mississippi State University
Scott	Nutter,	Northern Kentucky University
Craig	Ogilvie,	Iowa State University
Benedict	Y.	Oh,	University of Wisconsin
Martin	Okafor,	Georgia Perimeter College
Halina	Opyrchal,	New Jersey Institute of Technology
Yibin	Pan,	University of Wisconsin–Madison
Georgia	Papaefthymiou,	Villanova University
Peggy	Perozzo,	Mary Baldwin College



xiv    Preface to the Instructor

Brian	K.	Pickett,	Purdue University, Calumet
Joe	Pifer,	Rutgers University
Dale	Pleticha,	Gordon College
Marie	Plumb,	Jamestown Community College
Robert	Pompi,	SUNYBinghamton
David	Potter,	Austin Community College–Rio Grande Campus
Chandra	Prayaga,	University of West Florida
Didarul	Qadir,	Central Michigan University
Steve	Quon,	Ventura College
Michael	Read,	College of the Siskiyous
Lawrence	Rees,	Brigham Young University
Richard	J.	Reimann,	Boise State University
Michael	Rodman,	Spokane Falls Community College
Sharon	Rosell,	Central Washington University
Anthony	Russo,	OkaloosaWalton Community College
Freddie	Salsbury,	Wake Forest University
Otto	F.	Sankey,	Arizona State University
Jeff	Sanny,	Loyola Marymount University
Rachel	E.	Scherr,	University of Maryland
Carl	Schneider,	U. S. Naval Academy
Bruce	Schumm,	University of California, Santa Cruz
Bartlett	M.	Sheinberg,	Houston Community College
Douglas	Sherman,	San Jose State University
Elizabeth	H.	Simmons,	Boston University
Marlina	Slamet,	Sacred Heart University
Alan	Slavin,	Trent College
Larry	Smith,	Snow College

William	S.	Smith,	Boise State University
Paul	Sokol,	Pennsylvania State University
LTC	Bryndol	Sones,	United States Military Academy
Chris	Sorensen,	Kansas State University
Anna	and	Ivan	Stern,	AW Tutor Center
Gay	B.	Stewart,	University of Arkansas
Michael	Strauss,	University of Oklahoma
Chin-Che	Tin,	Auburn University
Christos	Valiotis,	Antelope Valley College
Andrew	Vanture,	Everett Community College
Arthur	Viescas,	Pennsylvania State University
Ernst	D.	Von	Meerwall,	University of Akron
Chris	Vuille,	EmbryRiddle Aeronautical University
Jerry	Wagner,	Rochester Institute of Technology
Robert	Webb,	Texas A&M University
Zodiac	Webster,	California State University, 

San Bernardino
Robert	Weidman,	Michigan Technical University
Fred	Weitfeldt,	Tulane University
Jeff	Allen	Winger,	Mississippi State University
Carey	Witkov,	Broward Community College
Ronald	Zammit,	California Polytechnic State University, 

San Luis Obispo
Darin	T.	Zimmerman,	Pennsylvania State University, 

Altoona
Fredy	Zypman,	Yeshiva University



Preface to the Student

The	most	incomprehensible	thing	about	the	universe	is	that	it	is	comprehensible.
—Albert	Einstein

The	day	I	went	into	physics	class	it	was	death.
—Sylvia	Plath,	The Bell Jar

Let’s	have	a	little	chat	before	we	start.	A	rather	one-sided	chat,	admittedly,	because	
you	can’t	respond,	but	that’s	OK.	I’ve	talked	with	many	of	your	fellow	students	over	
the	years,	so	I	have	a	pretty	good	idea	of	what’s	on	your	mind.

What’s	your	reaction	to	taking	physics?	Fear	and	loathing?	Uncertainty?	Excite-
ment?	All	of	the	above?	Let’s	face	it,	physics	has	a	bit	of	an	image	problem	on	campus.	
You’ve	probably	heard	that	it’s	difficult,	maybe	downright	impossible	unless	you’re	
an	Einstein.	Things	that	you’ve	heard,	your	experiences	in	other	science	courses,	and	
many	other	factors	all	color	your	expectations	about	what	this	course	is	going	to	be	
like.

It’s	true	that	there	are	many	new	ideas	to	be	learned	in	physics	and	that	the	course,	
like	college	courses	in	general,	is	going	to	be	much	faster	paced	than	science	courses	
you	had	in	high	school.	I	think	it’s	fair	to	say	that	it	will	be	an	intense	course.	But	we	
can	 avoid	 many	 potential	 problems	 and	 difficulties	 if	 we	 can	 establish,	 here	 at	 the	
beginning,	what	this	course	is	about	and	what	is	expected	of	you—and	of	me!

Just	 what	 is	 physics,	 anyway?	 Physics	 is	 a	 way	 of	 thinking	 about	 the	 physical	
aspects	of	nature.	Physics	is	not	better	than	art	or	biology	or	poetry	or	religion,	which	
are	also	ways	to	think	about	nature;	it’s	simply	different.	One	of	the	things	this	course	
will	emphasize	is	that	physics	is	a	human	endeavor.	The	ideas	presented	in	this	book	
were	not	found	in	a	cave	or	conveyed	to	us	by	aliens;	they	were	discovered	and	devel-
oped	by	real	people	engaged	in	a	struggle	with	real	issues.	I	hope	to	convey	to	you	
something	of	the	history	and	the	process	by	which	we	have	come	to	accept	the	princi-
ples	that	form	the	foundation	of	today’s	science	and	engineering.

You	might	be	surprised	to	hear	that	physics	is	not	about	“facts.”	Oh,	not	that facts	
are	unimportant,	but	physics	 is	 far	more	 focused	on	discovering	relationships	 that	
exist	between	facts	and	patterns	that	exist	in	nature	than	on	learning	facts	for	their	
own	 sake.	 As	 a	 consequence,	 there’s	 not	 a	 lot	 of	 memorization	 when	 you	 study	
physics.	Some—there	are	 still	 definitions	 and	equations	 to	 learn—but	 less	 than	 in	
many	other	courses.	Our	emphasis,	instead,	will	be	on	thinking	and	reasoning.	This	is	
important	to	factor	into	your	expectations	for	the	course.

Perhaps	most	important	of	all,	physics is not math!	Physics	is	much	broader.	We’re	
going	 to	 look	for	patterns	and	relationships	 in	nature,	develop	 the	 logic	 that	 relates	
different	 ideas,	 and	 search	 for	 the	 reasons	why	 things	happen	 as	 they	do.	 In	 doing	
so,	we’re	going	to	stress	qualitative	reasoning,	pictorial	and	graphical	reasoning,	and	
reasoning	by	analogy.	And	yes,	we	will	use	math,	but	it’s	just	one	tool	among	many.

It	will	save	you	much	frustration	if	you’re	aware	of	this	physics–math	distinction	up	
front.	Many	of	you,	I	know,	want	to	find	a	formula	and	plug	numbers	into	it—that	is,	
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to	do	a	math	problem.	Maybe	that	worked	in	high	school	science	courses,	but	it	is	not	
what	this	course	expects	of	you.	We’ll	certainly	do	many	calculations,	but	the	specific	
numbers	are	usually	the	last	and	least	important	step	in	the	analysis.

Physics	is	about	recognizing	patterns.	For	example,	the	top	photograph	is	an	x-ray	
diffraction	pattern	showing	how	a	focused	beam	of	x	rays	spreads	out	after	passing	
through	a	crystal.	The	bottom	photograph	shows	what	happens	when	a	focused	beam	
of	electrons	is	shot	through	the	same	crystal.	What	does	the	obvious	similarity	in	these	
two	photographs	tell	us	about	the	nature	of	light	and	the	nature	of	matter?

As	you	study,	you’ll	sometimes	be	baffled,	puzzled,	and	confused.	That’s	perfectly	
normal	and	to	be	expected.	Making	mistakes	is	OK	too	if	you’re	willing	to	learn	from	
the	experience.	No	one	is	born	knowing	how	to	do	physics	any	more	than	he or	she	
is	born	knowing	how	to	play	the	piano	or	shoot	basketballs.	The	ability	to	do	physics	
comes	from	practice,	repetition,	and	struggling	with	the	ideas	until	you	“own”	them	
and  can	 apply	 them	 yourself	 in	 new	 situations.	 There’s	 no	 way	 to	 make	 learning	
effortless,	 at	 least	 for	 anything	 worth	 learning,	 so	 expect	 to	 have	 some	 difficult	
moments	ahead.	But	also	expect	to	have	some	moments	of	excitement	at	the	joy	of	
discovery.	There	will	be	instants	at	which	the	pieces	suddenly	click	into	place	and	you	
know	that	you	understand	a	powerful	idea.	There	will	be	times	when	you’ll	surprise	
yourself	by	successfully	working	a	difficult	problem	that	you	didn’t	think	you	could	
solve.	My	hope,	as	an	author,	is	that	the	excitement	and	sense	of	adventure	will	far	
outweigh	the	difficulties	and	frustrations.

Getting the Most Out of Your Course
Many	of	you,	I	suspect,	would	like	to	know	the	“best”	way	to	study	for	this	course.	
There	 is	 no	 best	 way.	 People	 are	 different,	 and	 what	 works	 for	 one	 student	 is	 less	
effective	for	another.	But	I	do	want	to	stress	that	reading the text	is	vitally	important.	
Class time	will	be	used	to	clarify	difficulties	and	to	develop	tools	for	using	the	knowl-
edge,	but	your	instructor	will	not	use	class	time	simply	to	repeat	information	in	the	
text.	The	 basic	 knowledge	 for	 this	 course	 is	 written	 down	 on	 these	 pages,	 and	 the	
numberone expectation	 is	 that	 you	 will	 read	 carefully	 and	 thoroughly	 to	 find	 and	
learn that	knowledge.

Despite	there	being	no	best	way	to	study,	I	will	suggest	one	way	that	is	successful	
for	many	students.	It	consists	of	the	following	four	steps:

	 1.	 Read each chapter before it is discussed in class.	I	cannot	stress	too	strongly	
how	important	this	step	is.	Class	attendance	is	much	more	effective	if	you	are	
prepared.	When	you	first	read	a	chapter,	focus	on	learning	new	vocabulary,	defi-
nitions,	and	notation.	There’s	a	 list	of	 terms	and	notations	at	 the	end	of	each	
chapter.	Learn	them!	You	won’t	understand	what’s	being	discussed	or	how	the	
ideas	are	being	used	if	you	don’t	know	what	the	terms	and	symbols	mean.

	 2.	 Participate actively in class.	Take	notes,	ask	and	answer	questions,	and	partici-
pate	in	discussion	groups.	There	is	ample	scientific	evidence	that	active partici
pation	is	much	more	effective	for	learning	science	than	passive	listening.

	 3.	 After class, go back for a careful re-reading of the chapter.	In	your	second	
reading,	pay	closer	attention	to	the	details	and	the	worked	examples.	Look	for	
the	logic	behind	each	example	(I’ve	highlighted	this	to	make	it	clear),	not	just	at	
what	formula	is	being	used.	Do	the	Student Workbook	exercises	for	each	section	
as	you	finish	your	reading	of	it.

	 4.	 Finally, apply what you have learned to the homework problems at the end 
of each chapter.	I	strongly	encourage	you	to	form	a	study	group	with	two	or	
three	classmates.	There’s	good	evidence	that	students	who	study	regularly	with	
a	group	do	better	than	the	rugged	individualists	who	try	to	go	it	alone.
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Preface to the Student    xvii

Did	someone	mention	a	workbook?	The	companion	Student Workbook	 is	a	vital	
part	of	the	course.	Its	questions	and	exercises	ask	you	to	reason	qualitatively,	to	use	
graphical	information,	and	to	give	explanations.	It	is	through	these	exercises	that	you	
will	learn	what	the	concepts	mean	and	will	practice	the	reasoning	skills	appropriate	to	
the	chapter.	You	will	then	have	acquired	the	baseline	knowledge	and	confidence	you	
need	before	turning	to	the	end-of-chapter	homework	problems.	In	sports	or	in	music,	
you	would	never	think	of	performing	before	you	practice,	so	why	would	you	want	to	
do	so	in	physics?	The	workbook	is	where	you	practice	and	work	on	basic	skills.

Many	of	you,	I	know,	will	be	tempted	to	go	straight	to	the	homework	problems	and	
then	thumb	through	the	text	looking	for	a	formula	that	seems	like	it	will	work.	That	
approach	will	not	succeed	in	this	course,	and	it’s	guaranteed	to	make	you	frustrated	
and	discouraged.	Very	 few	homework	problems	are	of	 the	“plug	and	chug”	variety	
where	you	simply	put	numbers	into	a	formula.	To	work	the	homework	problems	suc-
cessfully,	 you	 need	 a	 better	 study	 strategy—either	 the	 one	 outlined	 above	 or	 your	
own—that	helps	you	learn	the	concepts	and	the	relationships	between	the	ideas.

A	traditional	guideline	in	college	is	to	study	two	hours	outside	of	class	for	every	
hour	spent	in	class,	and	this	text	is	designed	with	that	expectation.	Of	course,	two hours	
is	 an	average.	Some	chapters	 are	 fairly	 straightforward	and	will	 go	quickly.	Others	
likely	will	require	much	more	than	two	study	hours	per	class	hour.

Getting the Most Out of Your Textbook
Your	 textbook	 provides	 many	 features	 designed	 to	 help	 you	 learn	 the	 concepts	 of	
physics	and	solve	problems	more	effectively.

	■	 TACTICS BOXES	give	step-by-step	procedures	for	particular	skills,	such	as	inter-
preting	graphs	or	drawing	special	diagrams.	Tactics	Box	steps	are	explicitly	illus-
trated	in	subsequent	worked	examples,	and	these	are	often	the	starting	point	of	a	
full	ProblemSolving Strategy.
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  Thinking About Force 
 It is important to identify correctly all the forces acting on an object. It is equally im-
portant not to include forces that do not really exist. We have established a number of 
criteria for identifying forces; the three critical ones are: 

    ■   A force has an agent. Something tangible and identifiable causes the force.  
   ■   Forces exist at the point of contact between the agent and the object experiencing 

the force (except for the few special cases of long-range forces).  
   ■   Forces exist due to interactions happening  now , not due to what happened in the past.   

 We all have had many experiences suggesting that a force is necessary to keep 
something moving. Consider a bowling ball rolling along on a smooth floor. It is very 
tempting to think that a horizontal “force of motion” keeps it moving in the forward 
direction. But  nothing contacts the ball  except the floor. No agent is giving the ball a 
forward push. According to our definition, then, there is  no  forward “force of motion” 
acting on the ball. So what keeps it going? Recall our discussion of the first law:  No  
cause is needed to keep an object moving at constant velocity. It continues to move 
forward simply because of its inertia.    

 One reason for wanting to include a “force of motion” is that we tend to view the 
problem from our perspective as one of the agents of force. You certainly have to keep 
pushing to move a box across the floor at constant velocity. If you stop, it stops. New-
ton’s laws, though, require that we adopt the object’s perspective. The box experiences 
your pushing force in one direction  and  a friction force in the opposite direction. The 
box moves at constant velocity if the  net  force is zero. This will be true as long as your 
pushing force exactly balances the friction force. When you stop pushing, the friction 
force causes an acceleration that slows and stops the box. 

 A related problem occurs if you throw a ball. A pushing force was indeed required to ac-
celerate the ball  as it was thrown.  But that force disappears the instant the ball loses contact 
with your hand. The force does not stick with the ball as the ball travels through the air. 
Once the ball has acquired a velocity,  nothing  is needed to keep it moving with that velocity.   

   5.7  Free-Body Diagrams 
 Having discussed at length what is and is not a force, we are ready to assemble our 
knowledge about force and motion into a single diagram called a  free-body diagram.  
You will learn in the next chapter how to write the equations of motion directly from 
the free-body diagram. Solution of the equations is a mathematical exercise—possibly 
a difficult one, but nonetheless an exercise that could be done by a computer. The 
 physics  of the problem, as distinct from the purely calculational aspects, are the steps 
that lead to the free-body diagram. 

 A  free-body diagram,  part of the  pictorial representation  of a problem, represents 
the object as a particle and shows  all  of the forces acting on the object.   

        There’s no “force of motion” or any other 
forward force on this arrow. It continues 
to move because of inertia.   

  TACTICs
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       Drawing a free-body diagram 

      ●1  Identify all forces acting on the object.   This step was described in Tactics 
Box 5.2.  

    ●2  Draw a coordinate system.   Use the axes defined in your pictorial representation.  
    ●3  Represent the object as a dot at the origin of the coordinate axes.   This is 

the particle model.  
    ●4  Draw vectors representing each of the identified forces.   This was de-

scribed in Tactics Box 5.1. Be sure to label each force vector.  
    ●5  Draw and label the  net force  vector    F

u

net.      Draw this vector beside the diagram, 
not on the particle. Or, if appropriate, write    F

u

net = 0
u

.    Then check that    F
u

net    points 
in the same direction as the acceleration vector    a

u
    on your motion diagram.   

 Exercises 24–29       

32.6 . Ampère’s Law and Solenoids    935

  Suppose, as shown in   FIGURe   32.23    b, we divide the line into many small segments 
of length    �s.    The first segment is    �s1,    the second is    �s2,    and so on. The sum of all 
the    �s>s    is the length  l  of the line between i and f. We can write this mathemati-
cally as 

    l = a
k

�sk S 3
f

i

ds (32.10)   

 where, in the last step, we let    �s S ds    and the sum become an integral. 
 This integral is called a  line integral.  All we’ve done is to subdivide a line into 

infinitely many infinitesimal pieces, then add them up. This is exactly what you do in 
calculus when you evaluate an integral such as    1x dx.    In fact, an integration along the 
 x -axis  is  a line integral, one that happens to be along a straight line.   Figure   32.23     dif-
fers only in that the line is curved. The underlying idea in both cases is that an integral 
is just a fancy way of doing a sum. 

 The line integral of  Equation   32.10    is not terribly exciting.   FIGURe   32.24    a makes things 
more interesting by allowing the line to pass through a magnetic field.   FIGURe   32.24    b 

again divides the line into small segments, but this time    �s
u

k     is the displacement vector 
of segment  k.  The magnetic field at this point in space is    B

u

k.    
  Suppose we were to evaluate the dot product    B

u

k
# �s

u

k    at each segment, then add the 
values of    B

u

k
# �s

u

k    due to every segment. Doing so, and again letting the sum become 
an integral, we have 

    a
k

B
u

k
# �s

u

k S 3
f

i

B
u # d s

u
= the line integral of B

u

  from i to f   

 Once again, the integral is just a shorthand way to say: Divide the line into lots of little 
pieces, evaluate    B

u

k
# �s

u

k    for each piece, then add them up. 
 Although this process of evaluating the integral could be difficult, the only line 

integrals we’ll need to deal with fall into two simple cases. If the magnetic field is 
 everywhere perpendicular  to the line, then    B

u # ds
u

= 0    at every point along the line and 
the integral is zero. If the magnetic field is  everywhere tangent  to the line  and  has the 
same magnitude  B  at every point, then    B

u # ds
u

= B ds    at every point and 

    3
f

i

 B
u # d s

u
= 3

f

i

B ds = B3
f

i

ds = Bl (32.11)   

 We used  Equation   32.10    in the last step to integrate  ds  along the line. 
 Tactics Box 32.3 summarizes these two situations.     

   FIGURe 32.24         Integrating    B
u

    along a line 
from i to f.   

f

i

(a)

The line passes through a magnetic field.

B
r

f

i

(b)

�sk

Magnetic field at segment k

Displacement of segment k

Bk

r

r
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       evaluating line integrals 

    ●1   If    B
u

    is everywhere perpendicular to a 
line, the line integral of    B

u

    is 

   3
f

i

 B
u # d s

u
= 0    

   ●2   If    B
u

    is everywhere tangent to a line of 
length  l and  has the same magnitude  B  at 
every point, then 

   3
f

i

 B
u # d s

u
= Bl                  

 Exercises 23–24        
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Exercises 10–12: Three forces , , and cause a 1 kg object to accelerate with the acceleration given.
Two of the forces are shown on the free-body diagrams below, but the third is missing. For each, draw and
label on the grid the missing third force vector.

10.

11.

12. The object moves with 
constant velocity.

13. Three arrows are shot horizontally. They have left the bow and are traveling parallel to the ground. Air
resistance is negligible. Rank in order, from largest to smallest, the magnitudes of the horizontal forces
F1, F2, and F3 acting on the arrows. Some may be equal. Give your answer in the form A �B � C �D.

Order:

Explanation:

1

80 g

10 m/s

2

80 g

9 m/s

3

90 g

9 m/s

ar � �3 ĵ m/s2

ar � 2 î m/s2

F
r

3F
r

2F
r

1
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DYNAMICS WORKSHEET Name Problem 

MODEL Make simplifying assumptions.

• Draw a picture. Show important points in the motion. • Draw a motion diagram.
• •
• •

Known

Find

SOLVE
Start with Newton’s first or second law in component form, adding other information as needed to solve the problem.

ASSESS

• • Identify forces and interactions.
• • Draw free-body diagrams.

Have you answered the question?
Do you have correct units, signs, and significant figures?
Is your answer reasonable?

VISUALIZE

Establish a coordinate system. Define symbols.
List knowns. Identify what you’re trying to find.



	■	 PROBLEM-SOLVING STRATEGIES	are	provided	for	each	broad	class	of	problems—
problems	 characteristic	 of	 a	 chapter	 or	 group	 of	 chapters.	The	 strategies	 follow	
a	 consistent	 four-step	 approach	 to	 help	 you	 develop	 confidence	 and	 proficient	
prob	lem-solving	skills:	MODEL, VISUALIZE, SOLVE, ASSESS.

	■	 Worked	EXAMPLES	illustrate	good	problem-solving	practices	through	the	consistent	
use	of	the	four-step	problem-solving	approach	and,	where	appropriate,	the	Tactics	
Box	 steps.	The	worked	examples	 are	often	very	detailed	 and	carefully	 lead	you	
through	the	reasoning	behind	the	solution	as	well	as	the	numerical	calculations.	A	
careful	study	of	the	reasoning	will	help	you	apply	the	concepts	and	techniques	to	
the	new	and	novel	problems	you	will	encounter	in	homework	assignments	and	on	
exams.

	■	 NOTE ▶  paragraphs	 alert	 you	 to	 common	 mistakes	 and	 point	 out	 useful	 tips	 for	
tackling	problems.

	■	 Stop to think	 questions	 embedded	 in	 the	 chapter	 allow	 you	 to	 quickly	 assess	
whether	you’ve	understood	the	main	idea	of	a	section.	A	correct	answer	will	give	
you	confidence	to	move	on	to	the	next	section.	An	incorrect	answer	will	alert	you	
to	re-read	the	previous	section.

	■	 Blue	annotations	on	 figures	help	you	better	understand	what	 the	 figure	 is	 showing.	
They	will	help	you	 to	 interpret	graphs;	 translate	between	graphs,	math,	and	pic-
tures;	grasp	difficult	concepts	through	a	visual	analogy;	and	develop	many	other	
important	skills.

	■	 Pencil sketches	provide	practical	examples	of	 the	 figures	you	should	draw	yourself	
when	solving	a	problem.
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PRoBleM-solvING
sTRATeGY 6.2        Dynamics problems  

  MoDel   Make simplifying assumptions.  

  vIsUAlIZe   Draw a  pictorial representation.  

    ■   Show important points in the motion with a sketch, establish a coordinate 
system, define symbols, and identify what the problem is trying to find.  

   ■   Use a motion diagram to determine the object’s acceleration vector    a
u
.     

   ■   Identify all forces acting on the object  at this instant  and show them on a free-
body diagram.  

   ■   It’s OK to go back and forth between these steps as you visualize the situation.    

  solve   The mathematical representation is based on Newton’s second law: 

    F
u

net = a
i

F
u

i = ma
u

   

 The vector sum of the forces is found directly from the free-body diagram. 
Depending on the problem, either 

    ■   Solve for the acceleration, then use kinematics to find velocities and posi-
tions; or  

   ■   Use kinematics to determine the acceleration, then solve for unknown forces.    

  Assess   Check that your result has the correct units, is reasonable, and answers 
the question. 

 Exercise 22    

 Newton’s second law is a vector equation. To apply the step labeled Solve, you 
must write the second law as two simultaneous equations: 

     (Fnet )x = aFx = max

  (6.2)
  (Fnet )y = aFy = may   

 The primary goal of this chapter is to illustrate the use of this strategy. 

   eXAMPle 6.3   speed of a towed car 
 A 1500 kg car is pulled by a tow truck. The tension in the tow rope 
is 2500 N, and a 200 N friction force opposes the motion. If the car 
starts from rest, what is its speed after 5.0 seconds? 

  MoDel   We’ll treat the car as an accelerating particle. We’ll as-
sume, as part of our  interpretation  of the problem, that the road is 
horizontal and that the direction of motion is to the right.  

  vIsUAlIZe     FIGURe   6.3     on the next page shows the pictorial rep-
resentation. We’ve established a coordinate system and defined 
symbols to represent kinematic quantities. We’ve identified the 
speed    v1,    rather than the velocity    v1x,    as what we’re trying to find.   

  solve   We begin with Newton’s second law: 

     (Fnet)x = aFx = Tx + fx + nx + (FG)x = max

  (Fnet)y = aFy = Ty + fy + ny + (FG)y = may   

 All four forces acting on the car have been included in the vector 
sum. The equations are perfectly general, with    +     signs every-

where, because the four vectors are  added  to give    F
u

net.    We can 
now “read” the vector components from the free-body diagram: 

     Tx = +T   Ty = 0    nx = 0   ny = +n

  fx = - f  fy = 0  (FG)x = 0   (FG)y = -FG   

 The signs depend on which way the vectors point. Substituting 
these into the second-law equations and dividing by  m  give 

     ax =
1
m

 (T - f )

  =
1

1500 kg
 (2500 N - 200 N) = 1.53 m/s2

  ay =
1
m

 (n - FG)    

  NoTe   � Newton’s second law has allowed us to determine    ax    ex-
actly but has given only an algebraic expression for    ay.    However, 
we know  from the motion diagram  that    ay = 0!    That is, the motion 
is purely along the  x -axis, so there is  no  acceleration along the  y -
axis. The requirement    ay = 0    allows us to conclude that    n = FG.    
Although we do not need  n  for this problem, it will be important in 
many future problems. �  

Annotated FIGURE showing the operation 
of the Michelson interferometer.
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	■	 Each	chapter	begins	with	a	Chapter Preview,	a	visual	outline	of	the	chapter	ahead	
with	 recommendations	 of	 important	 topics	 you	 should	 review	 from	 previous	
chapters.	 A	 few	 minutes	 spent	 with	 the	 Preview	 will	 help	 you	 organize	 your	
thoughts	so	as	to	get	the	most	out	of	reading	the	chapter.

	■	 Schematic	 Chapter Summaries	 help	 you	 organize	 what	 you	 have	 learned	 into	 a	
hierarchy,	from	general	principles	(top)	to	applications	(bottom).	Side-by-side	pic-
torial,	 graphical,	 textual,	 and	 mathematical	 representations	 are	 used	 to	 help	 you	
translate	between	these	key	representations.

	■	 Part Overviews	 and	 Summaries	 provide	 a	 global	 framework	 for	 what	 you	 are	
learning.	Each	part	begins	with	an	overview	of	the	chapters	ahead	and	concludes	
with	a	broad	summary	to	help	you	to	connect	the	concepts	presented	in	that	set	of	
chapters. KNOWLEDGE STRUCTURE	tables	in	the	Part	Summaries,	similar	to	the	
Chapter	Summaries,	help	you	to	see	the	forest	rather	than	just	the	trees.

Now	 that	 you	 know	 more	 about	 what	 is	 expected	 of	 you,	 what	 can	 you	 expect	
of	me?	That’s	a	 little	 trickier	because	 the	book	 is	already	written!	Nonetheless,	 the	
book	 was	 prepared	 on	 the	 basis	 of	 what	 I	 think	 my	 students	 throughout	 the	 years	
have	 expected—and	 wanted—from	 their	 physics	 textbook.	 Further,	 I’ve	 listened	 to	
the	extensive	feedback	I	have	received	from	thousands	of	students	like	you,	and	their	
instructors,	who	used	the	first	and	second	editions	of	this	book.

You	 should	 know	 that	 these	 course	 materials—the	 text	 and	 the	 workbook—are	
based	on	extensive	research	about	how	students	learn	physics	and	the	challenges	they	
face.	The	effectiveness	of	many	of	the	exercises	has	been	demonstrated	through	exten-
sive	class	testing.	I’ve	written	the	book	in	an	informal	style	that	I	hope	you	will	find	
appealing	and	that	will	encourage	you	to	do	the	reading.	And,	finally,	I	have	endeav-
ored	to	make	clear	not	only	that	physics,	as	a	technical	body	of	knowledge,	is	relevant	
to	your	profession	but	also	that	physics	is	an	exciting	adventure	of	the	human	mind.

I	hope	you’ll	enjoy	the	time	we’re	going	to	spend	together.

Preface to the Student    xix
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  esseNTIAl CoNCePTs   Particle, acceleration, force, interaction  
  BAsIC GoAls   How does a particle respond to a force? How do objects interact?  

  GeNeRAl PRINCIPles    Newton’s first law  An object will remain at rest or will continue to move with constant velocity 
   (equilibrium) if and only if    F

u

net = 0
u

.    
   Newton’s second law      F

u

net = ma
u

    

   Newton’s third law      F
u

A on B = - F
u

B on A    

  BAsIC PRoBleM-solvING sTRATeGY   Use Newton’s second law for each particle or object. Use Newton’s third law to equate the magni-
tudes of the two members of an action/reaction pair.

   Linear motion Trajectory motion Circular motion  
    aFx = max     

or    
 aFx = 0         aFx = max          aFr = mv 2/r = mv2r    

    aFy = 0         aFy = may         aFy = may            aFt = 0 or mat        

  aFz = 0     

  linear and trajectory kinematics 
  Uniform acceleration:     vfs = vis + as �t    

    (as = constant)        sf = si + vis �t +
1
2 as  (�t)2

         vfs 

2 = vis 

2 + 2as �s    

  Trajectories:  The same equations are used for both  x  and  y . 

  Uniform motion:     sf = si + vs �t

        (a = 0, vs = constant)     

  General case      vs = ds/dt =     slope of the position graph 

     as = dvs /dt =     slope of the velocity graph 

     vfs = vis + 3
tf

ti

as dt = vis +     area under the acceleration curve 

     sf = si + 3
tf

ti

vs dt = si +     area under the velocity curve  

    The goal of Part I  has been to discover the connection be-
tween force and motion. We started with  kinematics,  which 
is the mathematical description of motion; then we proceeded 
to  dynamics,  which is the explanation of motion in terms of 
forces. Newton’s three laws of motion form the basis of our 
explanation. All of the examples we have studied so far are 
applications of Newton’s laws. 

 The table below is called a  knowledge structure  for New-
ton’s laws. A knowledge structure summarizes the essential 
concepts, the general principles, and the primary applications 
of a theory. The first section of the table tells us that New-
tonian mechanics is concerned with how  particles  respond to 
 forces.  The second section indicates that we have introduced 
only three general principles, Newton’s three laws of motion. 

 You use this knowledge structure by working your way 
through it, from top to bottom. Once you recognize a problem 

as a dynamics problem, you immediately know to start with 
Newton’s laws. You can then determine the category of motion 
and apply Newton’s second law in the appropriate form. New-
ton’s third law will help you identify the forces acting on par-
ticles as they interact. Finally, the kinematic equations for that 
category of motion allow you to reach the solution you seek. 

 The knowledge structure provides the  procedural know-
ledge  for solving dynamics problems, but it does not represent 
the total knowledge required. You must add to it knowledge 
about what position and velocity are, about how forces are 
identified, about action/reaction pairs, about drawing and 
using free-body diagrams, and so on. These are specific 
 tools  for problem solving. The problem-solving strategies of 
 Chapters   5    through    8    combine the procedures and the tools 
into a powerful method for thinking about and solving 
problems.   

 Newton’s LawsI
SUMMARY        P A R T 

  KNoWleDGe sTRUCTURe I   Newton’s laws 

  Circular kinematics
   Uniform circular motion:  

   T = 2pr/v = 2p/v
uf = ui + v�t
ar = v 2/r = v2r
vt = vr

     Nonuniform circular motion:  

   vf = vi + a�t

uf = ui + vi �t +
1
2 a(�t)2

vf 

2 = vi 

2 + 2a�u      
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     s U M M A R Y 
 The goal of  Chapter   27    has been to understand and apply Gauss’s law. 

  Gauss’s law 
 For any  closed  surface enclosing net charge    Qin   , the net electric flux through 
the surface is 

    �e = C E
u # dA

u

=
Qin 

P0
    

 The electric flux    �e    is the same for  any  closed surface enclosing charge    Qin.     

  symmetry 
 The symmetry of the electric field must match the 
symmetry of the charge distribution. 

 In practice,    �e    is computable only if the symmetry 
of the Gaussian surface matches the symmetry of the 
charge distribution.   

  General Principles     

     symmetric    
    Gaussian surface    

    electric flux,    �e        

    area vector,    A
u

       

    surface integral    
    Gauss’s law    

    screening      

  Terms and Notation 

     Charge  creates the electric field that 
is responsible for the electric flux.             

  Important Concepts       

Charges outside the surface
contribute to the electric field, but
they don’t contribute to the flux.

Qin is the sum of all enclosed
charges. This charge contributes
to the flux.

Gaussian surface

� �

�

�

�

�

     Flux  is the amount of electric field 
passing through a surface of area  A :   

    �e = E
u # A

u

   

 where    A
u

    is the  area vector.  

  
         For closed surfaces:  
 A net flux in or out indicates that 
the surface encloses a net charge. 

Field lines through but with no 
 net  flux mean that the surface 
encloses no  net  charge.     
        

     Surface integrals  calculate the flux by summing the fluxes 
through many small pieces of the surface:   

    �e = a E
u # dA

u

 S 3E
u # dA

u

   

  
         Two important situations:  
 If the electric field is everywhere 
tangent to the surface, then 

    �e = 0   

 If the electric field is everywhere 
perpendicular to the surface  and  has 
the same strength  E  at all points, then   

    �e = E A              

u

A

E

r

r dA
E

r

r

     Conductors in electrostatic equilibrium  

   •   The electric field is zero at all points within the conductor.  

  •   Any excess charge resides entirely on the exterior surface.  

  •   The external electric field is perpendicular to the surface and of magnitude    h/P0   , where    h    is the 
surface charge density.  

  •   The electric field is zero inside any hole within a conductor unless there is a charge in the hole.                   

  Applications   

E
r

�
�

�
�

�
�

�
�

�
�

�
�

�

E � 0
r r
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Introduction

Said	Alice	to	the	Cheshire	cat,
“Cheshire-Puss,	would	you	tell	me,	please,	which	way	I	ought	to	go	from	here?”
“That	depends	a	good	deal	on	where	you	want	to	go,”	said	the	Cat.
“I	don’t	much	care	where—”	said	Alice.
“Then	it	doesn’t	matter	which	way	you	go,”	said	the	Cat.

—Lewis	Carroll,	Alice in Wonderland

Have	you	ever	wondered	about	questions	such	as

	 Why	is	the	sky	blue?

	 Why	is	glass	an	insulator	but	metal	a	conductor?

	 What,	really,	is	an	atom?

These	are	the	questions	of	which	physics	is	made.	Physicists	try	to	understand	the	
universe	 in	which	we	 live	by	observing	 the	phenomena	of	nature—such	as	 the	sky	
being	blue—and	by	looking	for	patterns	and	principles	to	explain	these	phenomena.	
Many	of	the	discoveries	made	by	physicists,	from	electromagnetic	waves	to	nuclear	
energy,	have	forever	altered	the	ways	in	which	we	live	and	think.

You	are	about	to	embark	on	a	journey	into	the	realm	of	physics.	It	is	a	journey	in	
which	you	will	learn	about	many	physical	phenomena	and	find	the	answers	to	ques-
tions	such	as	 the	ones	posed	above.	Along	 the	way,	you	will	also	 learn	how	to	use	
physics	to	analyze	and	solve	many	practical	problems.

As	you	proceed,	you	are	going	to	see	the	methods	by	which	physicists	have	come	
to	understand	the	laws	of	nature.	The	ideas	and	theories	of	physics	are	not	arbitrary;	
they	are	firmly	grounded	in	experiments	and	measurements.	By	the	time	you	finish	
this	text,	you	will	be	able	to	recognize	the	evidence	upon	which	our	present	knowledge	
of	the	universe	is	based.

Which Way Should We Go?
We	are	rather	like	Alice	in	Wonderland,	here	at	the	start	of	the	journey,	in	that	we	must	
decide	which	way	to	go.	Physics	is	an	immense	body	of	knowledge,	and	without	spe-
cific	goals	it	would	not	much	matter	which	topics	we	study.	But	unlike	Alice,	we	do	
have	some	particular	destinations	that	we	would	like	to	visit.

The	physics	that	provides	the	foundation	for	all	of	modern	science	and	engineering	
can	be	divided	into	three	broad	categories:

■	 Particles	and	energy.
■	 Fields	and	waves.
■	 The	atomic	structure	of	matter.

A	 particle,	 in	 the	 sense	 that	 we’ll	 use	 the	 term,	 is	 an	 idealization	 of	 a	 physical	
object.	We	will	use	particles	to	understand	how	objects	move	and	how	they	interact	
with	each	other.	One	of	the	most	important	properties	of	a	particle	or	a	collection	of	
particles	is	energy.	We	will	study	energy	both	for	its	value	in	understanding	physical	
processes	and	because	of	its	practical	importance	in	a	technological	society.

Journey into Physics

xxix

A scanning tunneling microscope allows  
us to “see” the individual atoms on a 
surface. One of our goals is to understand 
how an image such as this is made.



Particles	are	discrete,	localized	objects.	Although	many	phenomena	can	be	under-
stood	in	terms	of	particles	and	their	interactions,	the	long-range	interactions	of	gravity,	
electricity,	and	magnetism	are	best	understood	in	terms	of	fields,	such	as	the	gravita-
tional	field	and	the	electric	field.	Rather	than	being	discrete,	fields	spread	continuously	
through	space.	Much	of	the	second	half	of	this	book	will	be	focused	on	understanding	
fields	and	the	interactions	between	fields	and	particles.

Certainly	one	of	the	most	significant	discoveries	of	the	past	500	years	is	that	matter	
consists	of	atoms.	Atoms	and	their	properties	are	described	by	quantum	physics,	but	
we	cannot	leap	directly	into	that	subject	and	expect	that	it	would	make	any	sense.	To	
reach	our	destination,	we	are	going	to	have	to	study	many	other	topics	along	the	way—
rather	like	having	to	visit	the	Rocky	Mountains	if	you	want	to	drive	from	New	York	to	
San	Francisco.	All	our	knowledge	of	particles	and	fields	will	come	into	play	as	we	end	
our	journey	by	studying	the	atomic	structure	of	matter.

The Route Ahead
Here	at	the	beginning,	we	can	survey	the	route	ahead.	Where	will	our	journey	take	us?	
What	scenic	vistas	will	we	view	along	the	way?

Parts I and II,	 Newton’s Laws	 and	 Conservation Laws,	 form	 the	 basis	 of	 what	 is	
called	classical mechanics.	Classical	mechanics	is	 the	study	of	motion.	(It	 is	called	
classical	to	distinguish	it	from	the	modern	theory	of	motion	at	the	atomic	level,	which	
is	called	quantum mechanics.)	The	first	two	parts	of	this	textbook	establish	the	basic	
language	and	concepts	of	motion.	Part	I	will	look	at	motion	in	terms	of	particles	and	
forces.	We	will	use	these	concepts	to	study	the	motion	of	everything	from	accelerating	
sprinters	to	orbiting	satellites.	Then,	in	Part	II,	we	will	introduce	the	ideas	of	momentum	
and	energy.	These	concepts—especially	energy—will	give	us	a	new	perspective	on	
motion	and	extend	our	ability	to	analyze	motion.

Part III,	Applications of Newtonian Mechanics,	will	
pause	to	look	at	four	important	applications	of	classi-
cal	mechanics:	Newton’s	theory	of	gravity,	rotational	
motion,	oscillatory	motion,	and	the	motion	of	fluids.	
Only	 oscillatory	 motion	 is	 a	 prerequisite	 for	 later	
chapters.	Your	 instructor	 may	 choose	 to	 cover	 some	
or	all	of	the	other	chapters,	depending	upon	the	time	
available,	but	your	study	of	Parts	IV–VII	will	not	be	
hampered	if	these	chapters	are	omitted.

Part IV,	Thermodynamics,	 extends	 the	 ideas	of	par-
ticles	and	energy	to	systems	such	as	liquids	and	gases	
that	 contain	vast	 numbers	of	particles.	Here	we	will	
look	for	connections	between	the	microscopic	behavior	of	large	numbers	of	atoms	and	
the	macroscopic	properties	of	bulk	matter.	You	will	find	that	some	of	the	properties	
of	gases	that	you	know	from	chemistry,	such	as	the	ideal	gas	law,	turn	out	to	be	direct	
consequences	of	the	underlying	atomic	structure	of	the	gas.	We	will	also	expand	the	
concept	of	energy	and	study	how	energy	is	transferred	and	utilized.
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Waves	are	ubiquitous	in	nature,	whether	they	be	large-scale	oscillations	like	ocean	waves,	
the	less	obvious	motions	of	sound	waves,	or	the	subtle	undulations	of	light	waves	and	
matter	waves	 that	go	 to	 the	heart	of	 the	atomic	 structure	of	matter.	 In	Part V,	Waves 
and Optics,	we	will	 emphasize	 the	unity	of	wave	physics	 and	 find	 that	many	diverse	
wave	phenomena	can	be	analyzed	with	the	same	concepts	and	mathematical	language.	
Light	waves	are	of	special	interest,	and	we	will	end	this	portion	of	our	journey	with	an	
exploration	of	optical	instruments,	ranging	from	microscopes	and	telescopes	to	that	most	
important	of	all	optical	instruments—your	eye.

Part VI,	Electricity and Magnetism,	is	devoted	
to	 the	electromagnetic force,	one	of	 the	most	
important	forces	in	nature.	In	essence,	the	elec-
tromagnetic	 force	 is	 the	 “glue”	 that	 holds	
atoms	together.	It	is	also	the	force	that	makes	
this	the	“electronic	age.”	We’ll	begin	this	part	
of	the	journey	with	simple	observations	of	sta-
tic	 electricity.	 Bit	 by	 bit,	 we’ll	 be	 led	 to	 the	
basic	ideas	behind	electrical	circuits,	to	mag-
netism,	and	eventually	to	the	discovery	of	elec-
tromagnetic	waves.

Part VII	 is	Relativity and Quantum Physics.	
We’ll	 start	 by	 exploring	 the	 strange	 world	
of	 Einstein’s	 theory	 of	 relativity,	 a	 world	 in	
which	 space	 and	 time	 aren’t	 quite	 what	 they	
appear	 to  be.	 Then	 we	 will	 enter	 the	 micro-
scopic	domain	of	atoms,	where	the	behaviors	

of	light	and	matter	are	at	complete	odds	with	what	our	common	sense	tells	us	is	pos-
sible.	Although	the	mathematics	of	quantum	theory	quickly	gets	beyond	the	level	of	
this	text,	and	time	will	be	running	out,	you	will	see	that	the	quantum	theory	of	atoms	
and	nuclei	explains	many	of	the	things	that	you	learned	simply	as	rules	in	chemistry.

We	will	not	have	visited	all	of	physics	on	our	travels.	There	just	isn’t	time.	Many	
exciting	topics,	ranging	from	quarks	to	black	holes,	will	have	to	remain	unexplored.	
But	this	particular	journey	need	not	be	the	last.	As	you	finish	this	text,	you	will	have	
the	background	and	 the	experience	 to	explore	new	topics	further	 in	more	advanced	
courses	or	for	yourself.

With	that	said,	let	us	take	the	first	step.
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1

Overview

Why Things Change
Each of the seven parts of this book opens with an overview to give you a look ahead, 
a glimpse at where your journey will take you in the next few chapters. It’s easy to 
lose sight of the big picture while you’re busy negotiating the terrain of each chapter. 
In Part I, the big picture, in a word, is change.

Simple observations of the world around you show that most things change, few 
things remain the same. Some changes, such as aging, are biological. Others, such as 
sugar dissolving in your coffee, are chemical. We’re going to study change that in-
volves motion of one form or another—the motion of balls, cars, and rockets.

There are two big questions we must tackle:

	■	 How do we describe motion? It is easy to say that an object moves, but it’s not 
obvious how we should measure or characterize the motion if we want to analyze it 
mathematically. The mathematical description of motion is called kinematics, and 
it is the subject matter of Chapters 1 through 4.

	■	 How do we explain motion? Why do objects have the particular motion they do? 
Why, when you toss a ball upward, does it go up and then come back down rather 
than keep going up? Are there “laws of nature” that allow us to predict an object’s 
motion? The explanation of motion in terms of its causes is called dynamics, and it 
is the topic of Chapters 5 through 8.

Two key ideas for answering these questions are force (the “cause”) and accelera-
tion (the “effect”). A variety of pictorial and graphical tools will be developed in 
Chapters 1 through 5 to help you develop an intuition for the connection between force 
and acceleration. You’ll then put this knowledge to use in Chapters 5 through 8 as you 
analyze motion of increasing complexity.

Another important tool will be the use of models. Reality is extremely complicated. 
We would never be able to develop a science if we had to keep track of every little de-
tail of every situation. A model is a simplified description of reality—much as a model 
airplane is a simplified version of a real airplane—used to reduce the complexity of 
a problem to the point where it can be analyzed and understood. We will introduce 
several important models of motion, paying close attention, especially in these earlier 
chapters, to where simplifying assumptions are being made, and why.

The “laws of motion” were discovered by Isaac Newton roughly 350 years ago, so 
the study of motion is hardly cutting-edge science. Nonetheless, it is still extremely 
important. Mechanics—the science of motion—is the basis for much of engineering 
and applied science, and many of the ideas introduced here will be needed later to un-
derstand things like the motion of waves and the motion of electrons through circuits. 
Newton’s mechanics is the foundation of much of contemporary science, thus we will 
start at the beginning.
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Units and Significant 
Figures
Calculations in physics 
are most commonly 
done using SI units–
known more informally 
as the metric system. 
The basic units needed 
in the study of motion 
are the meter (m), the second (s), and the 
kilogram (kg).

Concepts of Motion1

Motion takes many forms. The 
snowboarder seen here is an 
example of translational motion.

Vectors
Numbers alone aren’t always enough; 
sometimes the direction of a quantity 
is also important. We use vectors to 
represent quantities, such as velocity, 
that have both a size and a direction.

Describing Motion
Before solving problems about motion, we first must 
learn to describe motion. In this chapter, you’ll learn 
to describe motion with

■	 Motion diagrams
■	 Graphs
■	 Pictures

In Chapter 2, these tools will become the basis 
of a powerful problem-solving strategy.

Motion concepts that we’ll introduce in 
this chapter include position, velocity, and 
acceleration.

The Chapter Preview
Each chapter will start with an overview 
of the material to come. You should read 
these chapter previews carefully to get a 
sense of the road ahead.

A chapter preview is a visual presentation 
that outlines the big ideas and the organiza-
tion of the chapter that is to come.

The chapter previews not only let you 
know what is coming, they also help you 
make connections with material you have 
already seen.

 Looking Back
each Looking Back box tells you what 
material from previous chapters is 
especially important for understanding 
the new chapter. reviewing this material 
will enhance your learning.
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You will learn to use 
a graphical technique 
to add and subtract 
vectors. Chapter 3 
will explore vectors in 
more detail.

A significant figure is a digit that is reli-
ably known. You will learn the rules for 
using significant figures correctly.

The kilogram.
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Concepts of Motion1

Motion takes many forms. The 
snowboarder seen here is an 
example of translational motion.

Vectors
Numbers alone aren’t always enough; 
sometimes the direction of a quantity 
is also important. We use vectors to 
represent quantities, such as velocity, that 
have both a size and a direction.

Describing Motion
Before solving problems about motion, we first must 
learn to describe motion. In this chapter, you’ll learn 
to describe motion with

■	 Motion diagrams
■	 Graphs
■	 Pictures

In Chapter 2, these tools will become the basis 
of a powerful problem-solving strategy.

Motion concepts that we’ll introduce in 
this chapter include position, velocity, and 
acceleration.

The Chapter Preview
Each chapter will start with an overview 
of the material to come. You should read 
these chapter previews carefully to get a 
sense of the road ahead.

A chapter preview is a visual presentation that 
outlines the big ideas and the organization of 
the chapter that is to come.

The chapter previews not only let you know 
what is coming, they also help you make 
connections with material you have already 
seen.

 Looking Back
each Looking Back box tells you what 
material from previous chapters is 
especially important for understanding 
the new chapter. reviewing this material 
will enhance your learning.

You will learn to use 
a graphical technique 
to add and subtract 
vectors. Chapter 3 
will explore vectors in 
more detail.

Calculations in physics 
are most commonly done 
using SI units–known 
more informally as the 
metric system. The basic 
units needed in the study 
of motion are the meter 
(m), the second (s), and 
the kilogram (kg).

A significant figure is a digit that is reli-
ably known. You will learn the rules for 
using significant figures correctly.

The kilogram.
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Concepts of Motion1

Motion takes many forms. The 
snowboarder seen here is an 
example of translational motion.

Vectors
Numbers alone aren’t always enough; 
sometimes the direction of a quantity 
is also important. We use vectors to 
represent quantities, such as velocity, that 
have both a size and a direction.

Describing Motion
Before solving problems about motion, we first must 
learn to describe motion. In this chapter, you’ll learn 
to describe motion with

■	 Motion diagrams
■	 Graphs
■	 Pictures

In Chapter 2, these tools will become the basis 
of a powerful problem-solving strategy.

Motion concepts that we’ll introduce in 
this chapter include position, velocity, and 
acceleration.

The Chapter Preview
Each chapter will start with an overview 
of the material to come. You should read 
these chapter previews carefully to get a 
sense of the road ahead.

A chapter preview is a visual presentation that 
outlines the big ideas and the organization of 
the chapter that is to come.

The chapter previews not only let you know 
what is coming, they also help you make 
connections with material you have already 
seen.

 Looking Back
Each Looking Back box tells you what 
material from previous chapters is 
especially important for understanding 
the new chapter. Reviewing this material 
will enhance your learning.

You will learn to use 
a graphical technique 
to add and subtract 
vectors. Chapter 3 
will explore vectors in 
more detail.

Calculations in physics 
are most commonly done 
using SI units–known 
more informally as the 
metric system. The basic 
units needed in the study 
of motion are the meter 
(m), the second (s), and 
the kilogram (kg).

A significant figure is a digit that is reli-
ably known. You will learn the rules for 
using significant figures correctly.

The kilogram.
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Units and Significant Figures

Concepts of Motion1

Motion takes many forms. The 
motorcycle and rider seen here 
are an example of translational 
motion.

Vectors
Numbers alone aren’t always enough; 
sometimes the direction of a quantity 
is also important. We use vectors to 
represent quantities, such as velocity, that 
have both a size and a direction.

Describing Motion
Before solving problems about motion, we first must 
learn to describe motion. In this chapter you’ll learn 
to describe motion with

■	 Motion diagrams
■	 Graphs
■	 Pictures

In Chapter 2, these tools will become the basis 
of a powerful problem-solving strategy.

Motion concepts that we’ll introduce in 
this chapter include position, velocity, and 
acceleration.

The Chapter Preview
Each chapter will start with an overview of 
the material to come. You should read these 
chapter previews carefully to get a sense of 
the road ahead.

A chapter preview is a visual presentation that 
outlines the big ideas and the organization of 
the chapter that is to come.

 Looking Ahead The goal of Chapter 1 is to introduce the fundamental concepts of motion.

The chapter previews not only let you know 
what is coming, they also help you make 
connections with material you have already 
seen.

 Looking Back
each Looking Back box tells you what 
material from previous chapters is 
especially important for understanding 
the new chapter. reviewing this material 
will enhance your learning.

You will learn to 
use a graphical 
technique to add 
and subtract vectors.

Calculations in physics 
are most commonly done 
using SI units–known 
more informally as the 
metric system. The basic 
units needed in the study 
of motion are the meter 
(m), the second (s), and 
the kilogram (kg).

A significant figure is a digit that is reliably 
known. You will learn the rules for using 
significant figures correctly.

The Kilogram
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1.1  Motion Diagrams
Motion is a theme that will appear in one form or another throughout this entire book. 
Although  we  all  have  intuition  about  motion,  based  on  our  experiences,  some  of 
the important aspects of motion turn out to be rather subtle. So rather than jumping 
immediately into a lot of mathematics and calculations, this first chapter focuses on 
visualizing  motion  and  becoming  familiar  with  the  concepts  needed  to  describe  a 
moving object. Our goal is to lay the foundations for understanding motion.

As a starting point, let’s define motion as the change of an object’s position with 
time. Figure 1.1 shows four basic types of motion that we will study in this book. The 
first three—linear, circular, and projectile motion—in which the object moves through 
space are called translational motion. The path along which the object moves, whether 
straight or curved,  is called  the object’s trajectory. Rotational motion  is somewhat 
different in that rotation is a change of the object’s angular position. We’ll defer rota-
tional motion until later and, for now, focus on translational motion.

Making a Motion Diagram
An easy way to study motion is to make a movie of a moving object. A movie camera, 
as you probably know, takes photographs at a fixed rate, typically 30 photographs every 
second. Each separate photo is called a frame, and the frames are all lined up one after 
the other in a filmstrip. As an example, Figure 1.2 shows four frames from the movie of a 
car going past. Not surprisingly, the car is in a somewhat different position in each frame.

Suppose we cut the individual frames of the filmstrip apart, stack them on top of 
each other, and project the entire stack at once onto a screen for viewing. The result 
is shown in Figure 1.3. This composite photo, showing an object’s position at several 
equally spaced instants of time, is called a motion diagram. As the example below 
shows, we can define concepts such as at rest, constant speed, speeding up, and slow-
ing down in terms of how an object appears in a motion diagram.

Note  It’s important to keep the camera in a fixed position as the object moves by. 
Don’t “pan” it to track the moving object. 

Linear motion Circular motion

Projectile motion Rotational motion

Figure 1.1  Four basic types of motion.

Figure 1.2  Four frames from the movie 
of a car.

Figure 1.3  A motion diagram of the car 
shows all the frames simultaneously.

The same amount of time elapses
between each image and the next.



Car A Car B
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examples of motion diagrams

An object that occupies only a single position 
in a motion diagram is at rest.

A stationary ball on the ground.

Images that are equally spaced indicate an 
object moving with constant speed.

A skateboarder rolling down the sidewalk.

An increasing distance between the images 
shows that the object is speeding up.

A sprinter starting the 100 meter dash.

A decreasing distance between the images 
shows that the object is slowing down.

A car stopping for a red light.

A more complex motion shows aspects of 
both slowing down (as the ball rises) and 
speeding up (as the ball falls).

A jump shot from center court.

Stop to think 1.1 
 Which car is going faster, A or B? Assume there are equal intervals of time between 

the frames of both movies.

NoTe  Each chapter will have several Stop to Think questions. These questions are 
designed to see if you’ve understood the basic ideas that have been presented. The 
answers are given at the end of the chapter, but you should make a serious effort to 
think about these questions before turning to the answers. If you answer correctly, 
and are sure of your answer rather than just guessing, you can proceed to the next 
section with confidence. But if you answer incorrectly, it would be wise to reread 
the preceding sections before proceeding onward. 

1.2 The Particle Model
For many types of motion, such as that of balls, cars, and rockets, the motion of the 
object as a whole is not influenced by the details of the object’s size and shape. All 
we really need to keep track of is the motion of a single point on the object, so we can 
treat the object as if all its mass were concentrated into this single point. An object 
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(a) Motion diagram of a rocket launch

(b) Motion diagram of a car stopping
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which the frames
were exposed.
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FigUre 1.4 Motion diagrams in which 
the object is represented as a particle.
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that can be represented as a mass at a single point in space is called a particle. A 
particle has no size, no shape, and no distinction between top and bottom or between 
front and back.

If we treat an object as a particle, we can represent the object in each frame of a 
motion diagram as a simple dot rather than having to draw a full picture. FigUre 1.4 
shows how much simpler motion diagrams appear when the object is represented as 
a particle. Note that the dots have been numbered 0, 1, 2, . . . to tell the sequence in 
which the frames were exposed.

Using the Particle Model
Treating an object as a particle is, of course, a simplification of reality. As we noted in 
the Part I Overview, such a simplification is called a model. Models allow us to focus 
on the important aspects of a phenomenon by excluding those aspects that play only a 
minor role. The particle model of motion is a simplification in which we treat a mov-
ing object as if all of its mass were concentrated at a single point. The particle model 
is an excellent approximation of reality for the translational motion of cars, planes, 
rockets, and similar objects. In later chapters, we’ll find that the motion of more com-
plex objects, which cannot be treated as a single particle, can often be analyzed as if 
the object were a collection of particles.

Not all motions can be reduced to the motion of a single point. Consider a rotating 
gear. The center of the gear doesn’t move at all, and each tooth on the gear is moving 
in a different direction. Rotational motion is qualitatively different than translational 
motion, and we’ll need to go beyond the particle model later when we study rotational 
motion.

Stop to think 1.2  Three motion diagrams are 
shown. Which is a dust particle settling to the 
floor at constant speed, which is a ball dropped 
from the roof of a building, and which is a de-
scending rocket slowing to make a soft landing 
on Mars?

1.3 Position and Time
As we look at a motion diagram, it would be useful to know where the object is (i.e., 
its position) and when the object was at that position (i.e., the time). Position measure-
ments can be made by laying a coordinate system grid over a motion diagram. You 
can then measure the (x, y) coordinates of each point in the motion diagram. Of course, 
the world does not come with a coordinate system attached. A coordinate system is an 
artificial grid that you place over a problem in order to analyze the motion. You place 
the origin of your coordinate system wherever you wish, and different observers of a 
moving object might all choose to use different origins. Likewise, you can choose the 
orientation of the x-axis and y-axis to be helpful for that particular problem. The con-
ventional choice is for the x-axis to point to the right and the y-axis to point upward, 
but there is nothing sacred about this choice. We will soon have many occasions to tilt 
the axes at an angle.

Time, in a sense, is also a coordinate system, although you may never have thought of 
time this way. You can pick an arbitrary point in the motion and label it ;t = 0 seconds.” 



The frame at t � 0 s is frame 0.

A coordinate
system has been
added to the
motion diagram.

The ball’s
position in
frame 4 can be
specified with 
coordinates.

(x4,  y4 ) � (12 m, 9 m)

2.5 s

2.0 s

1.5 s

1.0 s

0.5 s

0.0 s

3
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9

6

3

0
60 9 12 15

(a)

y (m)

x (m)

Alternatively, the position
vector specifies the distance
and direction from the origin.

Frame 4

(b)

37�

y

x 

r4 � (15 m, 37�)r

FigUre 1.5 Position and time 
measurements made on the motion 
diagram of a basketball.
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This is simply the instant you decide to start your clock or stopwatch, so it is the origin 
of your time coordinate. Different observers might choose to start their clocks at differ-
ent moments. A movie frame labeled ;t = 4 seconds” was taken 4 seconds after you 
started your clock.

We typically choose t = 0 to represent the “beginning” of a problem, but the object 
may have been moving before then. Those earlier instants would be measured as nega-
tive times, just as objects on the x-axis to the left of the origin have negative values of 
position. Negative numbers are not to be avoided; they simply locate an event in space 
or time relative to an origin.

To illustrate, FigUre 1.5a shows an xy-coordinate system and time information su-
perimposed over the motion diagram of a basketball. You can see that the ball’s 
position is (x4, y4) = (12 m, 9 m) at time t4 = 2.0 s. Notice how we’ve used sub-
scripts to indicate the time and the object’s position in a specific frame of the motion 
diagram.

NoTe  The frame at t = 0 is frame 0. That is why the fifth frame is labeled 4. 

Another way to locate the ball is to draw an arrow from the origin to the point repre-
senting the ball. You can then specify the length and direction of the arrow. An arrow 
drawn from the origin to an object’s position is called the position vector of the object, 
and it is given the symbol r 

u
. FigUre 1.5B shows the position vector r 

u

4 = (15 m, 37�).
The position vector r 

u
 does not tell us anything different than the coordinates (x, y). 

It simply provides the information in an alternative form. Although you’re more fa-
miliar with coordinates than with vectors, you will find that vectors are a useful way 
to describe many concepts in physics.

A Word About Vectors and Notation
Some physical quantities, such as time, mass, and temperature, can be described com-
pletely by a single number with a unit. For example, the mass of an object is 6 kg and 
its temperature is 30�C. A physical quantity described by a single number (with a unit) 
is called a scalar quantity. A scalar can be positive, negative, or zero.

Many other quantities, however, have a directional quality and cannot be de-
scribed by a single number. To describe the motion of a car, for example, you must 
specify not only how fast it is moving, but also the direction in which it is moving. A 
vector quantity is a quantity having both a size (the “How far?” or “How fast?”) and 
a direction (the “Which way?”). The size or length of a vector is called its magnitude. 
The magnitude of a vector can be positive or zero, but it cannot be negative. Vec-
tors will be studied thoroughly in Chapter 3, so all we need for now is a little basic 
information.

We indicate a vector by drawing an arrow over the letter that represents the quan-
tity. Thus r 

u
 and A

u

 are symbols for vectors, whereas r and A, without the arrows, are 
symbols for scalars. In handwritten work you must draw arrows over all symbols that 
represent vectors. This may seem strange until you get used to it, but it is very impor-
tant because we will often use both r and r 

u
, or both A and A

u

, in the same problem, and 
they mean different things! Without the arrow, you will be using the same symbol with 
two different meanings and will likely end up making a mistake. Note that the arrow 
over the symbol always points to the right, regardless of which direction the actual 
vector points. Thus we write r 

u
 or A

u

, never r
z
 or A

z

.

Displacement
Consider the following:

Sam is standing 50 feet (ft) east of the corner of 12th Street and Vine. He then walks 
northeast for 100 ft to a second point. What is Sam’s change of position?
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To add B to A: Draw A.

Place the tail of
B at the tip of A.
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the tail of A to the
tip of B. This is
vector A � B.
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the vector drawn from his
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2. After Sam walks 100 ft
northeast, his new position is   .1. The origin is chosen to be

at the corner. Position
vectors are drawn from the
origin.

50 feet

Origin

r1

N

r1
r

�r

r0
r

r

r

FigUre 1.6 Sam undergoes a displacement �r 
u from position r 

u

0 to position r 
u

1.
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FigUre 1.6 shows Sam’s motion in terms of position vectors. Sam’s initial position is 
the vector r 

u

0 drawn from the origin to the point where he starts walking. Vector r 
u

1  
is his position after he finishes walking. You can see that Sam has changed position, 
and a change of position is called a displacement. His displacement is the vector 
labeled �r 

u
. The Greek letter delta (�) is used in math and science to indi cate the 

change in a quantity. Here it indicates a change in the position r 
u

.

NoTe  �r 
u

 is a single symbol. You cannot cancel out or remove the � in algebraic 
operations. 

TACTiCS
B o x  1 . 1 

 Vector addition

Displacement is a vector quantity; it requires both a length and a direction to de-
scribe it. Specifically, the displacement �r 

u
 is a vector drawn from a starting position 

to an ending position. Sam’s displacement is written

 �r 
u

= (100 ft, northeast)

The length, or magnitude, of a displacement vector is simply the straight-line distance 
between the starting and ending positions.

Sam’s final position in Figure 1.6, vector r 
u

1, can be seen as a combination of where 
he started, vector r 

u

0, plus the vector �r 
u

 representing his change of position. In fact, r 
u

1 
is the vector sum of vectors r 

u

0 and �r 
u

. This is written

 r 
u

1 = r 
u

0 + �r 
u

 (1.1)

Notice, however, that we are adding vector quantities, not numbers. Vector addition is 
a different process from “regular” addition. We’ll explore vector addition more thor-
oughly in Chapter 3, but for now you can add two vectors A

u

 and B
u

 with the three-step 
procedure shown in Tactics Box 1.1.



To subtract B from A: Draw A.

Place the tail of
�B at the tip of A.

Draw an arrow from
the tail of A to the
tip of �B. This is
vector A � B.
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Vector –B has the same length as
B but points in the opposite direction.

r

r

The zero vector 0 has no length.
r

B � (–B) � 0 because the sum 
returns to the starting point.

r r r

FigUre 1.8 The negative of a vector.

End

Start

The displacement vector
is not affected by the 
choice of origin.

50 feet New origin

r3
r�rr

r2
r

FigUre 1.7 Sam’s displacement �r 
u 

is unchanged by using a different 
coordinate system.
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If you examine Figure 1.6, you’ll see that the steps of Tactics Box 1.1 are exactly 
how r 

u

0 and �r 
u

 are added to give r 
u

1.

NoTe  A vector is not tied to a particular location on the page. You can move a 
vector around as long as you don’t change its length or the direction it points. Vec-
tor B

u

 is not changed by sliding it to where its tail is at the tip of A
u

. 

In Figure 1.6, we chose arbitrarily to put the origin of the coordinate system at 
the corner. While this might be convenient, it certainly is not mandatory. FigUre 1.7 
shows a different choice of where to place the origin. Notice something interesting. 
The initial and final position vectors r 

u

0 and r 
u

1 have become new vectors r 
u

2 and r 
u

3, 
but the displacement vector �r 

u
 has not changed! The displacement is a quantity 

that is independent of the coordinate system. In other words, the arrow drawn from 
one position of an object to the next is the same no matter what coordinate system 
you choose.

This observation suggests that the displacement, rather than the actual position, is 
what we want to focus on as we analyze the motion of an object. Equation 1.1 told us 
that r 

u

1 = r 
u

0 + �r 
u

. This is easily rearranged to give a more precise definition of dis-
placement: The displacement � ru of an object as it moves from an initial position 
rui to a final position ruf is

 �r 
u

= r 
u

f - r 
u

i (1.2)

Graphically, � ru is a vector arrow drawn from position r 
u

i to position r 
u

f. The dis-
placement vector is independent of the coordinate system.

NoTe  To be more general, we’ve written Equation 1.2 in terms of an initial posi-
tion and a final position, indicated by subscripts i and f. We’ll frequently use i and f 
when writing general equations, then use specific numbers or values, such as 0 and 
1, when working a problem. 

This definition of �r 
u

 involves vector subtraction. With numbers, subtraction is 
the same as the addition of a negative number. That is, 5 - 3 is the same as 5 + (-3). 
Similarly, we can use the rules for vector addition to find A

u

- B
u

= A
u

+ (-B
u

) if we 
first define what we mean by -B

u

. As FigUre 1.8 shows, the negative of vector B
u

 is 
a vector with the same length but pointing in the opposite direction. This makes 
sense because B

u

- B
u

= B
u

+ (-B
u

) = 0
u

, where 0
u

, a vector with zero length, is called 
the zero vector.

TACTiCS
B o x  1 . 2 

 Vector subtraction



(a) Rocket launch

(b) Car stopping 
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�r3
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FigUre 1.10 Motion diagrams with the 
displacement vectors.
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dot i to dot f.
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FigUre 1.9 Using vector subtraction to find �r 
u

= r 
u

f - r 
u

i.
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Application to Motion Diagrams
The first step in analyzing a motion diagram is to determine all of the displacement 
vectors. As Figure 1.9 shows, the displacement vectors are simply the arrows connect-
ing each dot to the next. Label each arrow with a vector symbol �r 

u

n  , starting with 
n = 0. FigUre 1.10 shows the motion diagrams of Figure 1.4 redrawn to include the 
displacement vectors. You do not need to show the position vectors.

NoTe  When an object either starts from rest or ends at rest, the initial or final 
dots are as close together as you can draw the displacement vector arrow connect-
ing them. In addition, just to be clear, you should write “Start” or “Stop” beside 
the initial or final dot. It is important to distinguish stopping from merely slowing 
down. 

Now we can conclude, more precisely than before, that, as time proceeds:

	■	 An object is speeding up if its displacement vectors are increasing in length.
	■	 An object is slowing down if its displacement vectors are decreasing in length.

exAMPLe 1.1  Headfirst into the snow
Alice is sliding along a smooth, icy road on her sled when she suddenly runs headfirst 
into a large, very soft snowbank that gradually brings her to a halt. Draw a motion dia-
gram for Alice. Show and label all displacement vectors.

MoDeL Use the particle model to represent Alice as a dot.

ViSUALize FigUre 1.11 shows Alice’s motion diagram. The problem statement suggests 
that Alice’s speed is very nearly constant until she hits the snowbank. Thus her displace-
ment vectors are of equal length as she slides along the icy road. She begins slowing 
when she hits the snowbank, so the displacement vectors then get shorter until she stops. 
We’re told that her stop is gradual, so we want the vector lengths to get shorter gradually 
rather than suddenly.

The displacement vectors
are getting shorter, so she’s
slowing down.

Stop

Hits snowbank

This is motion at constant speed
because the displacement vectors 
are a constant length.

�r0
r �r1

r �r2
r �r3

r �r4
r �r5

r �r6
r

FigUre 1.11 Alice’s motion diagram.

FigUre 1.9 uses the vector subtraction rules of Tactics Box 1.2 to prove that the dis-
placement �r 

u
 is simply the vector connecting the dots of a motion diagram.



The victory goes to the runner with the 
highest average speed.

A stopwatch is used to measure a time 
interval.
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Time interval
It’s also useful to consider a change in time. For example, the clock readings of two 
frames of film might be t1 and t2. The specific values are arbitrary because they are 
timed relative to an arbitrary instant that you chose to call t = 0. But the time interval 
�t = t2 - t1 is not arbitrary. It represents the elapsed time for the object to move from 
one position to the next. All observers will measure the same value for �t, regardless 
of when they choose to start their clocks.

The time interval �t � tf � ti measures the elapsed time as an object moves 
from an initial position rui at time ti to a final position ruf at time tf  . The value of 
�t is independent of the specific clock used to measure the times.

To summarize the main idea of this section, we have added coordinate systems 
and clocks to our motion diagrams in order to measure when each frame was exposed 
and where the object was located at that time. Different observers of the motion may 
choose different coordinate systems and different clocks. However, all observers find 
the same values for the displacements �r 

u
 and the time intervals �t because these are 

independent of the specific coordinate system used to measure them.

1.4 Velocity
It’s no surprise that, during a given time interval, a speeding bullet travels farther than 
a speeding snail. To extend our study of motion so that we can compare the bullet to 
the snail, we need a way to measure how fast or how slowly an object moves.

One quantity that measures an object’s fastness or slowness is its average speed, 
defined as the ratio

 average speed =
distance traveled

time interval spent traveling
=

d

�t
 (1.3)

If you drive 15 miles (mi) in 30 minutes (1
2 h), your average speed is

 average speed =
15 mi

1
2 h

= 30 mph (1.4)

Although the concept of speed is widely used in our day-to-day lives, it is not a 
sufficient basis for a science of motion. To see why, imagine you’re trying to land a jet 
plane on an aircraft carrier. It matters a great deal to you whether the aircraft carrier is 
moving at 20 mph (miles per hour) to the north or 20 mph to the east. Simply knowing 
that the boat’s speed is 20 mph is not enough information!

It’s the displacement �r 
u

, a vector quantity, that tells us not only the distance trav-
eled by a moving object, but also the direction of motion. Consequently, a more useful 
ratio than d/�t is the ratio �r 

u
/�t. This ratio is a vector because �r 

u
 is a vector, so 

it has both a magnitude and a direction. The size, or magnitude, of this ratio will be 
larger for a fast object than for a slow object. But in addition to measuring how fast an 
object moves, this ratio is a vector that points in the direction of motion.

It is convenient to give this ratio a name. We call it the average velocity, and it has 
the symbol v  

u

avg. The average velocity of an object during the time interval �t, in 
which the object undergoes a displacement � ru, is the vector

 v  

u

avg =
�r 

u

�t
 (1.5)

An object’s average velocity vector points in the same direction as the displace-
ment vector �ru. This is the direction of motion.



(a)

vavg A � (20 mph, north)

vavg B � (20 mph, east)

(b)

A

B

�rA � (5 mi, north)r

�rB � (5 mi, east)r

r

r

The velocity vectors point
in the direction of motion.

FigUre 1.12 The displacement vectors 
and velocities of ships A and B.

This labels the whole row of
vectors as velocity vectors.

The velocity vectors
are getting longer, so
the car is speeding up.Start

rv

FigUre 1.14 Motion diagram of a car 
accelerating up a hill.

The length of each arrow represents
the average speed. The hare moves
faster than the tortoise.

These are average
velocity vectors.

Hare

Tortoise

v0
r v1

r v2
r

v0
r v1

r v2
r

FigUre 1.13 Motion diagram of the 
tortoise racing the hare.
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NoTe  In everyday language we do not make a distinction between speed and 
velocity, but in physics the distinction is very important. In particular, speed is 
simply “How fast?” whereas velocity is “How fast, and in which direction?” As we 
go along we will be giving other words more precise meanings in physics than they 
have in everyday language. 

As an example, FigUre 1.12a shows two ships that move 5 miles in 15 minutes. Using 
Equation 1.5 with �t = 0.25 h, we find

  v  

u

avg  A = (20 mph, north) 
  (1.6)
  v  

u

avg  B = (20 mph, east) 

Both ships have a speed of 20 mph, but their velocities are different. Notice how the 
velocity vectors in FigUre 1.12b point in the direction of motion.

NoTe  Our goal in this chapter is to visualize motion with motion diagrams. Strictly 
speaking, the vector we have defined in Equation 1.5, and the vector we will show 
on motion diagrams, is the average velocity v  

u

avg. But to allow the motion diagram 
to be a useful tool, we will drop the subscript and refer to the average velocity 
as simply v  

u
. Our definitions and symbols, which somewhat blur the distinction 

between average and instantaneous quantities, are adequate for visualization pur-
poses, but they’re not the final word. We will refine these definitions in Chapter 2, 
where our goal will be to develop the mathematics of motion. 

Motion Diagrams with Velocity Vectors
The velocity vector points in the same direction as the displacement �r 

u
, and the length 

of v  

u
 is directly proportional to the length of �r 

u
. Consequently, the vectors connecting 

each dot of a motion diagram to the next, which we previously labeled as displace-
ments, could equally well be identified as velocity vectors.

This idea is illustrated in FigUre 1.13, which shows four frames from the motion 
diagram of a tortoise racing a hare. The vectors connecting the dots are now labeled 
as velocity vectors v  

u
. The length of a velocity vector represents the average speed 

with which the object moves between the two points. Longer velocity vectors indi-
cate faster motion. You can see that the hare moves faster than the tortoise.

Notice that the hare’s velocity vectors do not change; each has the same length and 
direction. We say the hare is moving with constant velocity. The tortoise is also mov-
ing with its own constant velocity.

exAMPLe 1.2  Accelerating up a hill
The light turns green and a car accelerates, starting from rest, up a 
20� hill. Draw a motion diagram showing the car’s velocity.

MoDeL Use the particle model to represent the car as a dot.

ViSUALize The car’s motion takes place along a straight line, but 
the line is neither horizontal nor vertical. Because a motion dia-
gram is made from frames of a movie, it will show the object mov-
ing with the correct orientation—in this case, at an angle of 20�. 
FigUre 1.14 shows several frames of the motion diagram, where we 
see the car speeding up. The car starts from rest, so the first arrow 
is drawn as short as possible and the first dot is labeled “Start.” 
The displacement vectors have been drawn from each dot to the 
next, but then they are identified and labeled as average velocity 
vectors v  

u
.

NoTe  Rather than label every single vector, it’s easier to give 
one label to the entire row of velocity vectors. You can see this in 
Figure 1.14. 
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FigUre 1.15 Motion diagram of a ball 
traveling from Jake to Jose.
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The velocity vectors are straight,
not curved to follow the trajectory.
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Stop to think 1.3 
 A particle moves from position 1 to position 2 during the interval 

�t. Which vector shows the particle’s average velocity?

1.5 Linear Acceleration
The goal of this chapter is to find a set of concepts with which to describe motion. 
Position, time, and velocity are important concepts, and at first glance they might 
appear to be sufficient. But that is not the case. Sometimes an object’s velocity is con-
stant, as it was in Figure 1.13. More often, an object’s velocity changes as it moves, 
as in Figure 1.14 and 1.15. We need one more motion concept, one that will describe 
a change in the velocity.

Because velocity is a vector, it can change in two possible ways:

 1. The magnitude can change, indicating a change in speed; or
 2. The direction can change, indicating that the object has changed direction.

We will concentrate for now on the first case, a change in speed. The car accelerating 
up a hill in Figure 1.14 was an example in which the magnitude of the velocity vector 
changed but not the direction. We’ll return to the second case in Chapter 4.

When we wanted to measure changes in position, the ratio �r 
u

/�t was useful. This 
ratio is the rate of change of position. By analogy, consider an object whose velocity 
changes from v  

u

1 to v  

u

2 during the time interval �t. Just as �r 
u

= r 
u

2 - r 
u

1 is the change 
of position, the quantity �v  

u
= v  

u

2 - v  

u

1   is the change of velocity. The ratio �v  

u
/�t is 

then the rate of change of velocity. It has a large magnitude for objects that speed up 
quickly and a small magnitude for objects that speed up slowly.

exAMPLe 1.3  it’s a hit!
Jake hits a ball at a 60� angle above horizontal. It is caught by Jose. 
Draw a motion diagram of the ball.

MoDeL This example is typical of how many problems in science 
and engineering are worded. The problem does not give a clear 
statement of where the motion begins or ends. Are we interested 
in the motion of the ball just during the time it is in the air between 
Jake and Jose? What about the motion as Jake hits it (ball rapidly 
speeding up) or as Jose catches it (ball rapidly slowing down)? The 
point is that you will often be called on to make a reasonable in-
terpretation of a problem statement. In this problem, the details of 
hitting and catching the ball are complex. The motion of the ball 
through the air is easier to describe, and it’s a motion you might 
expect to learn about in a physics class. So our interpretation is that 
the motion diagram should start as the ball leaves Jake’s bat (ball 
already moving) and should end the instant it touches Jose’s hand 
(ball still moving). We will model the ball as a particle.

ViSUALize With this interpretation in mind, FigUre 1.15 shows 
the motion diagram of the ball. Notice how, in contrast to the car 

of Figure 1.14, the ball is already moving as the motion diagram 
movie begins. As before, the average velocity vectors are found 
by connecting the dots with straight arrows. You can see that the 
average velocity vectors get shorter (ball slowing down), get lon-
ger (ball speeding up), and change direction. Each v  

u
 is different, 

so this is not constant-velocity motion.
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Many Tactics Boxes will refer you to exercises in the 
Student Workbook where you can practice the new skill.
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TACTiCS
B o x  1 . 3 

 Finding the acceleration vector

exercises 21–24 

The ratio �v  

u
/�t is called the average acceleration, and its symbol is a

u

avg. The 
average acceleration of an object during the time interval �t, in which the object’s 
velocity changes by �v  

u, is the vector

 a
u

avg =
�v  

u

�t
 (1.7)

The average acceleration vector points in the same direction as the vector �v 
u.

Acceleration is a fairly abstract concept. Yet it is essential to develop a good intuition 
about acceleration because it will be a key concept for understanding why objects move 
as they do. Motion diagrams will be an important tool for developing that intuition.

NoTe  As we did with velocity, we will drop the subscript and refer to the average 
acceleration as simply a

u
. This is adequate for visualization purposes, but not the 

final word. We will refine the definition of acceleration in Chapter 2. 

Finding the Acceleration Vectors on a Motion Diagram
Let’s look at how we can determine the average acceleration vector a

u
 from a motion 

diagram. From its definition, Equation 1.7, we see that a
u
 points in the same direction as 

�v  

u
, the change of velocity. This critical idea is the basis for a technique to find a

u
.

Notice that the acceleration vector goes beside the middle dot, not beside the veloc-
ity vectors. This is because each acceleration vector is determined as the difference 
between the two velocity vectors on either side of a dot. The length of a

u
 does not have 

to be the exact length of �v  

u
; it is the direction of a

u
 that is most important.
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FigUre 1.16 Motion diagram of a 
spaceship landing on Mars.
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ProBLeM-SoLViNg
STrATegy 1.1  Motion diagrams

MoDeL Represent the moving object as a particle. Make simplifying assump-
tions when interpreting the problem statement.

ViSUALize A complete motion diagram consists of:

 ■	 The position of the object in each frame of the film, shown as a dot. Use five 
or six dots to make the motion clear but without overcrowding the picture. 
More complex motions may need more dots.

 ■	 The average velocity vectors, found by connecting each dot in the motion 
diagram to the next with a vector arrow. There is one velocity vector linking 
each two position dots. Label the row of velocity vectors v  

u
.

 ■	 The average acceleration vectors, found using Tactics Box 1.3. There is one 
acceleration vector linking each two velocity vectors. Each acceleration vector 
is drawn at the dot between the two velocity vectors it links. Use 0

u

 to indicate a 
point at which the acceleration is zero. Label the row of acceleration vectors a

u
.

Stop to think 1.4  A particle undergoes acceleration a
u

 while 
moving from point 1 to point 2. Which of the choices shows the 
velocity vector v  

u

2 as the particle moves away from point 2?

examples of Motion Diagrams
Let’s look at some examples of the full strategy for drawing motion diagrams.

exAMPLe 1.4  The first astronauts land on Mars
A spaceship carrying the first astronauts to Mars descends safely 
to the surface. Draw a motion diagram for the last few seconds of 
the descent.

MoDeL Represent the spaceship as a particle. It’s reasonable to as-
sume that its motion in the last few seconds is straight down. The 
problem ends as the spacecraft touches the surface.

ViSUALize FigUre 1.16 shows a complete motion diagram as the 
spaceship descends and slows, using its rockets, until it comes 
to rest on the surface. Notice how the dots get closer together 
as it slows. The inset shows how the acceleration vector a

u
 is de-

termined at one point. All the other acceleration vectors will be 
similar, because for each pair of velocity vectors the earlier one is 
longer than the later one.

The procedure of Tactics Box 1.3 can be repeated to find a
u

 at each point in the mo-
tion diagram. Note that we cannot determine a

u
 at the first and last points because we 

have only one velocity vector and can’t find �v  

u
.

The Complete Motion Diagram
You’ve now seen several Tactics Boxes that help you accomplish specific tasks. Tactics 
Boxes will appear in nearly every chapter in this book. We’ll also, where appropriate, 
provide Problem-Solving Strategies.
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FigUre 1.17 Motion diagram of a skier.
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exAMPLe 1.5  Skiing through the woods
A skier glides along smooth, horizontal snow at constant speed, then speeds up going 
down a hill. Draw the skier’s motion diagram.

MoDeL Represent the skier as a particle. It’s reasonable to assume that the downhill slope 
is a straight line. Although the motion as a whole is not linear, we can treat the skier’s 
motion as two separate linear motions.

ViSUALize FigUre 1.17 shows a complete motion diagram of the skier. The dots are 
equally spaced for the horizontal motion, indicating constant speed; then the dots get 
farther apart as the skier speeds up going down the hill. The insets show how the average 
acceleration vector a

u
 is determined for the horizontal motion and along the slope. All the 

other acceleration vectors along the slope will be similar to the one shown because each 
velocity vector is longer than the preceding one. Notice that we’ve explicitly written 0

u

 
for the acceleration beside the dots where the velocity is constant. The acceleration at the 
point where the direction changes will be considered in Chapter 4.

Notice something interesting in Figure 1.16 and 1.17. Where the object is speed-
ing up, the acceleration and velocity vectors point in the same direction. Where 
the object is slowing down, the acceleration and velocity vectors point in opposite 
directions. These results are always true for motion in a straight line. For motion 
along a line:

	■	 An object is speeding up if and only if  v  

u
 and au point in the same direction.

	■	 An object is slowing down if and only if  v  

u
 and au point in opposite directions.

	■	 An object’s velocity is constant if and only if  au � 0
u

.

NoTe  In everyday language, we use the word accelerate to mean “speed up” and 
the word decelerate to mean “slow down.” But speeding up and slowing down are 
both changes in the velocity and consequently, by our definition, both are accelera-
tions. In physics, acceleration refers to changing the velocity, no matter what the 
change is, and not just to speeding up. 

exAMPLe 1.6  Tossing a ball
Draw the motion diagram of a ball tossed straight up in the air.

MoDeL This problem calls for some interpretation. Should we 
include the toss itself, or only the motion after the ball is re-
leased? Should we include the ball hitting the ground? It ap-
pears that this problem is really concerned with the ball’s motion 
through the air. Consequently, we begin the motion diagram at 

Continued

the moment that the tosser releases the ball and end the diagram 
at the moment the ball hits the ground. We will consider neither 
the toss nor the impact. And, of course, we will represent the ball 
as a particle.

ViSUALize We have a slight difficulty here because the ball re-
traces its route as it falls. A literal motion diagram would show 
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FigUre 1.18 Motion diagram of a ball tossed straight up in 
the air.
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acceleration. A downward-pointing acceleration vector is needed 
to turn the velocity vector from up to down. Another way to think 
about this is to note that zero acceleration would mean no change 
of velocity. When the ball reached zero velocity at the top, it 
would hang there and not fall if the acceleration were also zero!

the upward motion and downward motion on top of each other, 
leading to confusion. We can avoid this difficulty by horizontally 
separating the upward motion and downward motion diagrams. 
This will not affect our conclusions because it does not change any 
of the vectors. FigUre 1.18 shows the motion diagram drawn this 
way. Notice that the very top dot is shown twice—as the end point 
of the upward motion and the beginning point of the downward 
motion.

The ball slows down as it rises. You’ve learned that the ac-
celeration vectors point opposite the velocity vectors for an object 
that is slowing down along a line, and they are shown accordingly. 
Similarly, a

u
 and v  

u
 point in the same direction as the falling ball 

speeds up. Notice something interesting: The acceleration vectors 
point downward both while the ball is rising and while it is fall-
ing. Both “speeding up” and “slowing down” occur with the same 
acceleration vector. This is an important conclusion, one worth 
pausing to think about.

Now let’s look at the top point on the ball’s trajectory. The 
velocity vectors are pointing upward but getting shorter as the 
ball approaches the top. As the ball starts to fall, the velocity 
vectors are pointing downward and getting longer. There must 
be a moment—just an instant as v  

u
 switches from pointing up 

to pointing down—when the velocity is zero. Indeed, the ball’s 
velocity is zero for an instant at the precise top of the motion!

But what about the acceleration at the top? The inset shows 
how the average acceleration is determined from the last upward 
velocity before the top point and the first downward velocity. We 
find that the acceleration at the top is pointing downward, just as it 
does elsewhere in the motion.

Many people expect the acceleration to be zero at the highest 
point. But recall that the velocity at the top point is changing—
from up to down. If the velocity is changing, there must be an 

1.6 Motion in one Dimension
As you’ve seen, an object’s motion can be described in terms of three fundamental 
quantities: its position r 

u
, velocity v  

u
, and acceleration a

u
. These quantities are vec-

tors, having a direction as well as a magnitude. But for motion in one dimension, the 
vectors are restricted to point only “forward” or “backward.” Consequently, we can 
describe one-dimensional motion with the simpler quantities x, vx  , and ax (or y, vy  , 
and ay) . However, we need to give each of these quantities an explicit sign, positive 
or negative, to indicate whether the position, velocity, or acceleration vector points 
forward or backward.

Determining the Signs of Position, Velocity, 
and Acceleration
Position, velocity, and acceleration are measured with respect to a coordinate system, a 
grid or axis that you impose on a problem to analyze the motion. We will find it convenient 
to use an x-axis to describe both horizontal motion and motion along an inclined plane. A 
y-axis will be used for vertical motion. A coordinate axis has two essential features:

 1. An origin to define zero; and
 2. An x or y label to indicate the positive end of the axis.

We will adopt the convention that the positive end of an x-axis is to the right and 
the positive end of a y-axis is up. The signs of position, velocity, and acceleration are 
based on this convention.
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  Determining the sign of the position, velocity, and acceleration

exercises 30–31 

Acceleration is where things get a bit tricky. A natural tendency is to think that a 
positive value of ax or ay describes an object that is speeding up while a negative value 
describes an object that is slowing down (decelerating). However, this interpretation 
does not work.

Acceleration was defined as a
u

avg = �v  

u
/�t. The direction of a

u
 can be determined by 

using a motion diagram to find the direction of �v  

u
. The one-dimensional acceleration 

ax (or ay)  is then positive if the vector a
u

 points to the right (or up), negative if a
u

 points 
to the left (or down).

FigUre 1.19 shows that this method for determining the sign of a does not conform 
to the simple idea of speeding up and slowing down. The object in Figure 1.19a has 
a positive acceleration (ax 7 0) not because it is speeding up but because the vector a

u
 

points in the positive direction. Compare this with the motion diagram of Figure 1.19b. 
Here the object is slowing down, but it still has a positive acceleration (ax 7 0) be-
cause a

u
 points to the right.

We found that an object is speeding up if v  

u
and a

u
 point in the same direction, slow-

ing down if they point in opposite directions. For one-dimensional motion this rule 
becomes:

	■	 An object is speeding up if and only if vx and ax have the same sign.
	■	 An object is slowing down if and only if vx and ax have opposite signs.
	■	 An object’s velocity is constant if and only if ax = 0.

Notice how the first two of these rules are at work in Figure 1.19.

Position-versus-Time graphs
FigUre 1.20 is a motion diagram, made at 1 frame per minute, of a student walking to 
school. You can see that she leaves home at a time we choose to call t = 0 min and 
makes steady progress for a while. Beginning at t = 3 min there is a period where the 

x
x � 0 vx � 0 ax � 00

x
x � 0 vx � 0 ax � 00

(a) Speeding up to the right

(b) Slowing down to the left

ar

ar
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FigUre 1.19 One of these objects 
is speeding up, the other slowing 
down, but they both have a positive 
acceleration ax.
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position at all instants of time.

FigUre 1.21 Position graphs of the student’s motion.
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FigUre 1.20 The motion diagram of a student walking to school and a coordinate axis 
for making measurements.
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distance traveled during each time interval becomes less—perhaps she slowed down 
to speak with a friend. Then she picks up the pace, and the distances within each in-
terval are longer.

Figure 1.20 includes a coordinate axis, and you can see that every dot in a motion 
diagram occurs at a specific position. Table 1.1 shows the student’s positions at dif-
ferent times as measured along this axis. For example, she is at position x = 120 m at 
t = 2 min.

The motion diagram is one way to represent the student’s motion. Another is to 
make a graph of the measurements in Table 1.1. FigUre 1.21a is a graph of x versus t for 
the student. The motion diagram tells us only where the student is at a few discrete 
points of time, so this graph of the data shows only points, no lines.

NoTe  A graph of “a versus b” means that a is graphed on the vertical axis and b on 
the horizontal axis. Saying “graph a versus b” is really a shorthand way of saying 
“graph a as a function of b.” 

TABLe 1.1 Measured positions of 
a student walking to school

Time t (min) Position x (m)

0   0

1  60

2 120

3 180

4 200

5 220

6 240

7 340

8 440

9 540

However, common sense tells us the following. First, the student was somewhere 
specific at all times. That is, there was never a time when she failed to have a well-
defined position, nor could she occupy two positions at one time. (As reasonable as 
this belief appears to be, it will be severely questioned and found not entirely accurate 
when we get to quantum physics!) Second, the student moved continuously through 
all intervening points of space. She could not go from x = 100 m to x = 200 m with-
out passing through every point in between. It is thus quite reasonable to believe that 
her motion can be shown as a continuous line passing through the measured points, 
as shown in FigUre 1.21b. A continuous line or curve showing an object’s position as a 
function of time is called a position-versus-time graph or, sometimes, just a position 
graph.

NoTe   A graph is not a “picture” of the motion. The student is walking along 
a straight line, but the graph itself is not a straight line. Further, we’ve graphed 
her position on the vertical axis even though her motion is horizontal. Graphs are 
abstract representations of motion. We will place significant emphasis on the pro-
cess of interpreting graphs, and many of the exercises and problems will give you 
a chance to practice these skills. 
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1. At t � 0 min, the car is 10 km
    to the right of the origin.

5. The car reaches the
 origin at t � 80 min.

4. The car starts moving back
 to the right at t � 40 min.

2. The value of x decreases for
 30 min, indicating that the car
 is moving to the left.

3. The car stops for 10 min at a position
    20 km to the left of the origin.

FigUre 1.22 Position-versus-time graph of a car.

exAMPLe 1.7  interpreting a position graph
The graph in FigUre 1.22a represents the motion of a car along a 
straight road. Describe the motion of the car.

MoDeL Represent the car as a particle.

ViSUALize As FigUre 1.22b shows, the graph represents a car that 
travels to the left for 30 minutes, stops for 10 minutes, then travels 
back to the right for 40 minutes.

1.7 Solving Problems in Physics
Physics is not mathematics. Math problems are clearly stated, such as “What is 2 + 2?< 
Physics is about the world around us, and to describe that world we must use language. 
Now, language is wonderful—we couldn’t communicate without it—but language can 
sometimes be imprecise or ambiguous.

The challenge when reading a physics problem is to translate the words into sym-
bols that can be manipulated, calculated, and graphed. The translation from words to 
symbols is the heart of problem solving in physics. This is the point where ambigu-
ous words and phrases must be clarified, where the imprecise must be made precise, 
and where you arrive at an understanding of exactly what the question is asking.

Using Symbols
Symbols are a language that allows us to talk with precision about the relationships 
in a problem. As with any language, we all need to agree to use words or symbols 
in the same way if we want to communicate with each other. Many of the ways we 
use symbols in science and engineering are somewhat arbitrary, often reflecting 
historical roots. Nonetheless, practicing scientists and engineers have come to agree 
on how to use the language of symbols. Learning this language is part of learning 
physics.

We will use subscripts on symbols, such as x3, to designate a particular point in the 
problem. Scientists usually label the starting point of the problem with the subscript 
“0,” not the subscript “1” that you might expect. When using subscripts, make sure 
that all symbols referring to the same point in the problem have the same numerical 
subscript. To have the same point in a problem characterized by position x1 but veloc-
ity v2x is guaranteed to lead to confusion!

Drawing Pictures
You may have been told that the first step in solving a physics problem is to “draw 
a picture,” but perhaps you didn’t know why, or what to draw. The purpose of 
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drawing a picture is to aid you in the words-to-symbols translation. Complex prob-
lems have far more information than you can keep in your head at one time. Think 
of a picture as a “memory extension,” helping you organize and keep track of vital 
information.

Although any picture is better than none, there really is a method for drawing pic-
tures that will help you be a better problem solver. It is called the pictorial representa-
tion of the problem. We’ll add other pictorial representations as we go along, but the 
following procedure is appropriate for motion problems.

TACTiCS
B o x  1 . 5 

 Drawing a pictorial representation

 ●1 Draw a motion diagram. The motion diagram develops your intuition for 
the motion.

 ●2 Establish a coordinate system. Select your axes and origin to match the 
motion. For one-dimensional motion, you want either the x-axis or the y-axis 
parallel to the motion. The coordinate system determines whether the signs 
of v and a are positive or negative.

 ●3 Sketch the situation. Not just any sketch. Show the object at the beginning 
of the motion, at the end, and at any point where the character of the mo-
tion changes. Show the object, not just a dot, but very simple drawings are 
adequate.

 ●4 Define symbols. Use the sketch to define symbols representing quantities 
such as position, velocity, acceleration, and time. Every variable used later in 
the mathematical solution should be defined on the sketch. Some will have 
known values, others are initially unknown, but all should be given symbolic 
names.

 ●5 List known information. Make a table of the quantities whose values you 
can determine from the problem statement or that can be found quickly with 
simple geometry or unit conversions. Some quantities are implied by the 
problem, rather than explicitly given. Others are determined by your choice 
of coordinate system.

 ●6 Identify the desired unknowns. What quantity or quantities will allow 
you to answer the question? These should have been defined as symbols in 
step 4. Don’t list every unknown, only the one or two needed to answer the 
question.

It’s not an overstatement to say that a well-done pictorial representation of the 
problem will take you halfway to the solution. The following example illustrates how 
to construct a pictorial representation for a problem that is typical of problems you will 
see in the next few chapters.

exAMPLe 1.8  Drawing a pictorial representation
Draw a pictorial representation for the following problem: A 
rocket sled accelerates horizontally at 50 m/s2 for 5.0 s, then 
coasts for 3.0 s. What is the total distance traveled?

ViSUALize The motion diagram shows an acceleration phase fol-
lowed by a coasting phase. Because the motion is horizontal, the ap-
propriate coordinate system is an x-axis. We’ve chosen to place the 
origin at the starting point. The motion has a beginning, an end, and 
a point where the nature of the motion changes from accelerating to 

coasting. These are the three sled positions sketched in FigUre 1.23. 
The quantities x, vx 

, and t are needed at each of three points, so these 
have been defined on the sketch and distinguished by subscripts. 
Accelerations are associated with intervals between the points, so 
only two accelerations are defined. Values for three quantities are 
given in the problem statement, although we need to use the mo-
tion diagram, where a

u
 points to the right, and our choice of coor-

dinate system to know that a0x = +50 m/s2 rather than -50 m/s2. 



A new building requires careful planning. 
The architect’s visualization and drawings 
have to be complete before the detailed 
procedures of construction get under 
way. The same is true for solving 
problems in physics.
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FigUre 1.23 A pictorial representation.
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We didn’t solve the problem; that is not the purpose of the pictorial representation. 
The pictorial representation is a systematic way to go about interpreting a problem and 
getting ready for a mathematical solution. Although this is a simple problem, and you 
probably know how to solve it if you’ve taken physics before, you will soon be faced 
with much more challenging problems. Learning good problem-solving skills at the 
beginning, while the problems are easy, will make them second nature later when you 
really need them.

representations
A picture is one way to represent your knowledge of a situation. You could also rep-
resent your knowledge using words, graphs, or equations. Each representation of 
knowledge gives us a different perspective on the problem. The more tools you have 
for thinking about a complex problem, the more likely you are to solve it.

There are four representations of knowledge that we will use over and over:

 1. The verbal representation. A problem statement, in words, is a verbal represen-
tation of knowledge. So is an explanation that you write.

 2. The pictorial representation. The pictorial representation, which we’ve just pre-
sented, is the most literal depiction of the situation.

 3. The graphical representation. We will make extensive use of graphs.
 4. The mathematical representation. Equations that can be used to find the numeri-

cal values of specific quantities are the mathematical representation.

NoTe  The mathematical representation is only one of many. Much of physics is 
more about thinking and reasoning than it is about solving equations. 

A Problem-Solving Strategy
One of the goals of this textbook is to help you learn a strategy for solving phys-
ics problems. The purpose of a strategy is to guide you in the right direction with 
minimal wasted effort. The four-part problem-solving strategy shown below—Model, 
Visualize, Solve, Assess—is based on using different representations of knowledge. 
You will see this problem-solving strategy used consistently in the worked examples 
throughout this textbook, and you should endeavor to apply it to your own problem 
solving.

The values x0 = 0 m and t0 = 0 s are choices we made when set-
ting up the coordinate system. The value v0x = 0 m/s is part of 
our interpretation of the problem. Finally, we identify x2 as the 

quantity that will answer the question. We now understand quite 
a bit about the problem and would be ready to start a quantitative 
analysis.



FigUre 1.24 Pictorial representation for the rocket.
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Throughout this textbook we will emphasize the first two steps. They are the phys-
ics of the problem, as opposed to the mathematics of solving the resulting equations. 
This is not to say that those mathematical operations are always easy—in many cases 
they are not. But our primary goal is to understand the physics.

general Problem-Solving Strategy

MoDeL It’s impossible to treat every detail of a situation. Simplify the situation 
with a model that captures the essential features. For example, the object in a 
mechanics problem is usually represented as a particle.

ViSUALize This is where expert problem solvers put most of their effort.

 ■	 Draw a pictorial representation. This helps you visualize important aspects 
of the physics and assess the information you are given. It starts the process 
of translating the problem into symbols.

 ■	 Use a graphical representation if it is appropriate for the problem.
 ■	 Go back and forth between these representations; they need not be done in 

any particular order.

SoLVe Only after modeling and visualizing are complete is it time to de-
velop a mathematical representation with specific equations that must be 
solved. All symbols used here should have been defined in the pictorial 
representation.

ASSeSS Is your result believable? Does it have proper units? Does it make sense?

Textbook illustrations are obviously more sophisticated than what you would draw 
on your own paper. To show you a figure very much like what you should draw, the 
final example of this section is in a “pencil sketch” style. We will include one or more 
pencil-sketch examples in nearly every chapter to illustrate exactly what a good prob-
lem solver would draw.

exAMPLe 1.9  Launching a weather rocket
Use the first two steps of the problem-solving strategy to analyze 
the following problem: A small rocket, such as those used for me-
teorological measurements of the atmosphere, is launched verti-
cally with an acceleration of 30 m/s2. It runs out of fuel after 30 s. 
What is its maximum altitude?

MoDeL We need to do some interpretation. Common sense tells 
us that the rocket does not stop the instant it runs out of fuel. 
Instead, it continues upward, while slowing, until it reaches its 
maximum altitude. This second half of the motion, after run-
ning out of fuel, is like the ball that was tossed upward in the 
first half of Example 1.6. Because the problem does not ask 
about the rocket’s descent, we conclude that the problem ends 
at the point of maximum altitude. We’ll represent the rocket as 
a particle.

ViSUALize FigUre 1.24 shows the pictorial representation in pencil-
sketch style. The rocket is speeding up during the first half of the mo-
tion, so a

u

0 points upward, in the positive y-direction. Thus the initial 
acceleration is a0y = 30 m/s2. During the second half, as the rocket 
slows, a

u

1 points downward. Thus a1y is a negative number.



ASSeSS If you’ve had a previous physics class, you may be tempted 
to assign a1y the value -9.8 m/s2, the free-fall acceleration. However, 
that would be true only if there is no air resistance on the rocket. We 
will need to consider the forces acting on the rocket during the sec-
ond half of its motion before we can determine a value for a1y. For 
now, all that we can safely conclude is that a1y is negative.

An atomic clock at the National institute of 
Standards and Technology is the primary 
standard of time.
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This information is included with the known information. 
Although the velocity v2y wasn’t given in the problem statement, 
we know it must be zero at the very top of the trajectory. Last, we 
have identified y2 as the desired unknown. This, of course, is not 
the only unknown in the problem, but it is the one we are specifi-
cally asked to find.

Our task in this section is not to solve problems—all that in due time—but to focus 
on what is happening in a problem. In other words, to make the translation from words 
to symbols in preparation for subsequent mathematical analysis. Modeling and the 
pictorial representation will be our most important tools.

1.8 Units and Significant Figures
Science is based upon experimental measurements, and measurements require units. 
The system of units used in science is called le Système Internationale d’Unités. These 
are commonly referred to as Si units. Older books often referred to mks units, which 
stands for “meter-kilogram-second,” or cgs units, which is “centimeter-gram-second.” 
For practical purposes, SI units are the same as mks units. In casual speaking we often 
refer to metric units, although this could mean either mks or cgs units.

All of the quantities needed to understand motion can be expressed in terms of the 
three basic SI units shown in Table 1.2. Other quantities can be expressed as a combi-
nation of these basic units. Velocity, expressed in meters per second or m/s, is a ratio 
of the length unit to the time unit.

Time
The standard of time prior to 1960 was based on the mean solar day. As time-keeping 
accuracy and astronomical observations improved, it became apparent that the earth’s 
rotation is not perfectly steady. Meanwhile, physicists had been developing a device 
called an atomic clock. This instrument is able to measure, with incredibly high pre-
cision, the frequency of radio waves absorbed by atoms as they move between two 
closely spaced energy levels. This frequency can be reproduced with great accuracy at 
many laboratories around the world. Consequently, the SI unit of time—the second—
was redefined in 1967 as follows:

One second is the time required for 9,192,631,770 oscillations of the radio wave 
absorbed by the cesium-133 atom. The abbreviation for second is the letter s.

Several radio stations around the world broadcast a signal whose frequency is 
linked directly to the atomic clocks. This signal is the time standard, and any time-
measuring equipment you use was calibrated from this time standard.

Length
The SI unit of length—the meter—was originally defined as one ten-millionth of the 
distance from the North Pole to the equator along a line passing through Paris. There 
are obvious practical difficulties with implementing this definition, and it was later 
abandoned in favor of the distance between two scratches on a platinum-iridium bar 
stored in a special vault in Paris. The present definition, agreed to in 1983, is as follows:

One meter is the distance traveled by light in vacuum during 1/299,792,458 of a 
second. The abbreviation for meter is the letter m.

This is equivalent to defining the speed of light to be exactly 299,792,458 m/s. 
Laser technology is used in various national laboratories to implement this defini-
tion and to calibrate secondary standards that are easier to use. These standards 

TABLe 1.2 The basic Si units

Quantity Unit Abbreviation

time second s

length meter m

mass kilogram kg



By international agreement, this metal 
cylinder, stored in Paris, is the definition of 
the kilogram.
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ultimately make their way to your ruler or to a meter stick. It is worth keeping in 
mind that any measuring device you use is only as accurate as the care with which 
it was calibrated.

Mass
The original unit of mass, the gram, was defined as the mass of 1 cubic centimeter of 
water. That is why you know the density of water as 1 g/cm3. This definition proved 
to be impractical when scientists needed to make very accurate measurements. The SI 
unit of mass—the kilogram—was redefined in 1889 as:

One kilogram is the mass of the international standard kilogram, a polished 
platinum-iridium cylinder stored in Paris. The abbreviation for kilogram is kg.

The kilogram is the only SI unit still defined by a manufactured object. Despite the 
prefix kilo, it is the kilogram, not the gram, that is the SI unit.

Using Prefixes
We will have many occasions to use lengths, times, and masses that are either much 
less or much greater than the standards of 1 meter, 1 second, and 1 kilogram. We will 
do so by using prefixes to denote various powers of 10. Table 1.3 lists the common 
prefixes that will be used frequently throughout this book. Memorize it! Few things in 
science are learned by rote memory, but this list is one of them. A more extensive list 
of prefixes is shown inside the cover of the book.

Although prefixes make it easier to talk about quantities, the SI units are meters, 
seconds, and kilograms. Quantities given with prefixed units must be converted to 
SI units before any calculations are done. Unit conversions are best done at the very 
beginning of a problem, as part of the pictorial representation.

Unit Conversions
Although SI units are our standard, we cannot entirely forget that the United States 
still uses English units. Thus it remains important to be able to convert back and forth 
between SI units and English units. Table 1.4 shows several frequently used conver-
sions, and these are worth memorizing if you do not already know them. While the 
English system was originally based on the length of the king’s foot, it is interesting 
to note that today the conversion 1 in = 2.54 cm is the definition of the inch. In other 
words, the English system for lengths is now based on the meter!

There are various techniques for doing unit conversions. One effective method is to 
write the conversion factor as a ratio equal to one. For example, using information in 
Table 1.3 and 1.4, we have

 
10-6 m

1 mm
= 1  and  

2.54 cm

1 in
= 1

Because multiplying any expression by 1 does not change its value, these ratios are 
easily used for conversions. To convert 3.5 mm to meters we compute

 3.5 mm *
10-6 m

1 mm
= 3.5 * 10-6 m

Similarly, the conversion of 2 feet to meters is

 2.00 ft *
12 in

1 ft
*

2.54 cm

1 in
*

10-2 m

1 cm
= 0.610 m

Notice how units in the numerator and in the denominator cancel until only the desired 
units remain at the end. You can continue this process of multiplying by 1 as many 
times as necessary to complete all the conversions.

TABLe 1.3 Common prefixes

Prefix Power of 10 Abbreviation

giga- 109 G

mega- 106 M

kilo- 103 k

centi- 10-2 c

milli- 10-3 m

micro- 10-6 m

nano- 10-9 n

TABLe 1.4 Useful unit conversions

1 in = 2.54 cm

1 mi = 1.609 km

1 mph = 0.447 m/s

1 m = 39.37 in

1 km = 0.621 mi

1 m/s = 2.24 mph



0.00620 � 6.20 � 10�3

A trailing zero after the
decimal place is reliably
known. It is significant.

Leading zeros locate the decimal point.
They are not significant.

The number of significant
figures is the number of
digits when written in
scientific notation.

�  The number of significant figures � the number of decimal places.

�  Changing units shifts the decimal point but does not 
     change the number of significant figures.

µ

�  In whole numbers, trailing zeros are not significant. 320 is
     3.2 � 102 and has 2 significant figures, not 3.

FigUre 1.25 Determining significant figures.
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Assessment
As we get further into problem solving, we will need to decide whether or not the 
answer to a problem “makes sense.” To determine this, at least until you have more 
experience with SI units, you may need to convert from SI units back to the English 
units in which you think. But this conversion does not need to be very accurate. For 
example, if you are working a problem about automobile speeds and reach an answer 
of 35 m/s, all you really want to know is whether or not this is a realistic speed for a 
car. That requires a “quick and dirty” conversion, not a conversion of great accuracy.

Table 1.5 shows several approximate conversion factors that can be used to as-
sess the answer to a problem. Using 1 m/s � 2 mph, you find that 35 m/s is roughly 
70 mph, a reasonable speed for a car. But an answer of 350 m/s, which you might get 
after making a calculation error, would be an unreasonable 700 mph. Practice with 
these will allow you to develop intuition for metric units.

NoTe  These approximate conversion factors are accurate to only one significant 
figure. This is sufficient to assess the answer to a problem, but do not use the con-
version factors from Table 1.5 for converting English units to SI units at the start of 
a problem. Use Table 1.4. 

Significant Figures
It is necessary to say a few words about a perennial source of difficulty: significant 
figures. Mathematics is a subject where numbers and relationships can be as precise as 
desired, but physics deals with a real world of ambiguity. It is important in science and 
engineering to state clearly what you know about a situation—no less and, especially, 
no more. Numbers provide one way to specify your knowledge.

If you report that a length has a value of 6.2 m, the implication is that the actual 
value falls between 6.15 m and 6.25 m and thus rounds to 6.2 m. If that is the case, 
then reporting a value of simply 6 m is saying less than you know; you are withholding 
information. On the other hand, to report the number as 6.213 m is wrong. Any person 
reviewing your work—perhaps a client who hired you—would interpret the number 
6.213 m as meaning that the actual length falls between 6.2125 m and 6.2135 m, thus 
rounding to 6.213 m. In this case, you are claiming to have knowledge and information 
that you do not really possess.

The way to state your knowledge precisely is through the proper use of significant 
figures. You can think of a significant figure as being a digit that is reliably known. 
A number such as 6.2 m has two significant figures because the next decimal place—
the one-hundredths—is not reliably known. As FigUre 1.25 shows, the best way to de-
termine how many significant figures a number has is to write it in scientific notation.

TABLe 1.5 Approximate conversion 
factors. Use these only for assessment, 
not in problem solving.

1 cm � 1
2 in

10 cm � 4 in

1 m � 1 yard

1 m � 3 feet

1 km � 0.6 mile

1 m/s � 2 mph
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TACTiCS
B o x  1 . 6 

 Using significant figures

 ●1 When multiplying or dividing several numbers, or taking roots, the number 
of significant figures in the answer should match the number of significant 
figures of the least precisely known number used in the calculation.

 ●2 When adding or subtracting several numbers, the number of decimal places 
in the answer should match the smallest number of decimal places of any 
number used in the calculation.

 ●3 It is acceptable to keep one or two extra digits during intermediate steps of a 
calculation, as long as the final answer is reported with the proper number of 
significant figures. The goal is to minimize round-off errors in the calcula-
tion. But only one or two extra digits, not the seven or eight shown in your 
calculator display.

exercises 38–39 

exAMPLe 1.10  Using significant figures
An object consists of two pieces. The mass of one piece has been measured to be 6.47 
kg. The volume of the second piece, which is made of aluminum, has been measured to 
be 4.44 * 10-4 m3. A handbook lists the density of aluminum as 2.7 * 103 kg/m3. What 
is the total mass of the object?

SoLVe First, calculate the mass of the second piece:

  m = (4.44 * 10-4 m3)(2.7 * 103 kg/m3)

  = 1.199 kg = 1.2 kg

The number of significant figures of a product must match that of the least precisely 
known number, which is the two-significant-figure density of aluminum. Now add the 
two masses:

 

6.47 kg

+  1.2  kg

7.7  kg

The sum is 7.67 kg, but the hundredths place is not reliable because the second mass has 
no reliable information about this digit. Thus we must round to the one decimal place of 
the 1.2 kg. The best we can say, with reliability, is that the total mass is 7.7 kg.

Calculations with numbers follow the “weakest link” rule. The saying, which you 
probably know, is that “a chain is only as strong as its weakest link.” If nine out of 
ten links in a chain can support a 1000 pound weight, that strength is meaningless if 
the tenth link can support only 200 pounds. Nine out of the ten numbers used in a cal-
culation might be known with a precision of 0.01%; but if the tenth number is poorly 
known, with a precision of only 10%, then the result of the calculation cannot possibly 
be more precise than 10%.

Some quantities can be measured very precisely—three or more significant figures. 
Others are inherently much less precise—only two significant figures. Examples and 
problems in this textbook will normally provide data to either two or three significant 
figures, as is appropriate to the situation. The appropriate number of significant 
figures for the answer is determined by the data provided.
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NoTe  Be careful! Many calculators have a default setting that shows two decimal 
places, such as 5.23. This is dangerous. If you need to calculate 5.23/58.5, your 
calculator will show 0.09 and it is all too easy to write that down as an answer. By 
doing so, you have reduced a calculation of two numbers having three significant 
figures to an answer with only one significant figure. The proper result of this divi-
sion is 0.0894 or 8.94 * 10-2. You will avoid this error if you keep your calculator 
set to display numbers in scientific notation with two decimal places. 

Proper use of significant figures is part of the “culture” of science and engineer-
ing. We will frequently emphasize these “cultural issues” because you must learn to 
speak the same language as the natives if you wish to communicate effectively. Most 
students know the rules of significant figures, having learned them in high school, 
but many fail to apply them. It is important to understand the reasons for significant 
figures and to get in the habit of using them properly.

orders of Magnitude and estimating
Precise calculations are appropriate when we have precise data, but there are many 
times when a very rough estimate is sufficient. Suppose you see a rock fall off a cliff 
and would like to know how fast it was going when it hit the ground. By doing a 
mental comparison with the speeds of familiar objects, such as cars and bicycles, you 
might judge that the rock was traveling at “about” 20 mph.

This is a one-significant-figure estimate. With some luck, you can distinguish 
20 mph from either 10 mph or 30 mph, but you certainly cannot distinguish 20 mph 
from 21 mph. A one-significant-figure estimate or calculation, such as this, is called 
an order-of-magnitude estimate. An order-of-magnitude estimate is indicated by 
the symbol � , which indicates even less precision than the “approximately equal” 
symbol � . You would say that the speed of the rock is v � 20 mph.

A useful skill is to make reliable estimates on the basis of known information, 
simple reasoning, and common sense. This is a skill that is acquired by practice. Many 
chapters in this book will have homework problems that ask you to make order-of-
magnitude estimates. The following example is a typical estimation problem.

Table 1.6 and 1.7 have information that will be useful for doing estimates.

exAMPLe 1.11  estimating a sprinter’s speed
Estimate the speed with which an Olympic sprinter crosses the finish line of the 100 m 
dash.

SoLVe We do need one piece of information, but it is a widely known piece of sports triv-
ia. That is, world-class sprinters run the 100 m dash in about 10 s. Their average speed 
is vavg � (100 m)/(10 s) � 10 m/s. But that’s only average. They go slower than average 
at the beginning, and they cross the finish line at a speed faster than average. How much 
faster? Twice as fast, 20 m/s, would be �40 mph. Sprinters don’t seem like they’re run-
ning as fast as a 40 mph car, so this probably is too fast. Let’s estimate that their final 
speed is 50% faster than the average. Thus they cross the finish line at v � 15 m/s.

Stop to think 1.5  Rank in order, from the most to the least, the number of significant 
figures in the following numbers. For example, if b has more than c, c has the same 
number as a, and a has more than d, you could give your answer as b 7 c = a 7 d.

 a. 82 b. 0.0052 c. 0.430 d. 4.321 * 10-10

TABLe 1.6 Some approximate lengths

Length (m)

Circumference of the earth 4 * 107

New York to Los Angeles 5 * 106

Distance you can drive 
in 1 hour 1 * 105

Altitude of jet planes 1 * 104

Distance across a 
college campus 1000

Length of a football field  100

Length of a classroom   10

Length of your arm    1

Width of a textbook    0.1

Length of your little 
fingernail    0.01

Diameter of a pencil lead 1 * 10-3

Thickness of a sheet of paper 1 * 10-4

Diameter of a dust particle 1 * 10-5

TABLe 1.7 Some approximate masses

Mass (kg)

Large airliner 1 * 105

Small car 1000

Large human  100

Medium-size dog   10

Science textbook    1

Apple    0.1

Pencil    0.01

Raisin 1 * 10-3

Fly 1 * 10-4
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S U M M A r y
The goal of Chapter 1 has been to introduce the fundamental concepts of motion.

general Strategy
Motion Diagrams
•	 Help visualize motion.

•	 Provide a tool for finding acceleration vectors. 

	These are the average velocity and the average acceleration vectors.

Problem Solving
MoDeL Make simplifying assumptions.

ViSUALize Use:

•	 Pictorial representation

•	 Graphical representation

SoLVe Use a mathematical representation to find 
numerical answers.

ASSeSS Does the answer have the proper units? 
Does it make sense?

important Concepts
The particle model represents a moving object as if all its mass 
were concentrated at a single point.

Position locates an object with respect to a chosen coordinate 
system. Change in position is called displacement.

Velocity is the rate of change of the position vector r 
u
.

Acceleration is the rate of change of the velocity vector v  

u
.

An object has an acceleration if it

•	 Changes speed and/or

•	 Changes direction.

Pictorial representation

motion
translational motion
trajectory
motion diagram
particle
particle model

position vector, r 
u

scalar quantity
vector quantity
displacement, �r 

u

zero vector, 0
u

time interval, �t

average speed
average velocity, v 

u

average acceleration, a
u

position-versus-time graph
pictorial representation
representation of knowledge

SI units
significant figures
order-of-magnitude estimate

Terms and Notation

Applications
For motion along a line:

•	 Speeding up: v  

u
 and a

u
 point in the same direction, vx and ax 

have the same sign.

•	 Slowing down: v  

u
 and a

u
 point in opposite directions, vx and ax 

have opposite signs.

•	 Constant speed: a
u

= 0
u

, ax = 0.

Acceleration ax is positive if a
u

 points right, negative if a
u

 points 
left. The sign of ax does not imply speeding up or slowing down.

Significant figures are reliably known digits. The number of 
significant figures for:

•	 Multiplication, division, powers is set by the value with the 
fewest significant figures.

•	 Addition, subtraction is set by the value with the smallest 
number of decimal places.

The appropriate number of significant figures in a calculation is 
determined by the data provided.
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C o N C e P T U A L  Q U e S T i o N S

 1. How many significant figures does each of the following num-
bers have?

 a. 53.2 b. 0.53 c. 5.320 d. 0.0532
 2. How many significant figures does each of the following num-

bers have?
 a. 310 b. 0.00310 c. 1.031 d. 3.10 * 105

 3. Is the particle in FigUre Q1.3 speeding up? Slowing down? Or 
can you tell? Explain.

 4. Does the object represented in FigUre Q1.4 have 
a positive or negative value of ax? Explain.

 5. Does the object represented in FigUre Q1.5 
have a positive or negative value of ay? Explain.

 6. Determine the signs (positive or negative) of the position, veloc-
ity, and acceleration for the particle in FigUre Q1.6.

 7. Determine the signs (positive or negative) of the position, veloc-
ity, and acceleration for the particle in FigUre Q1.7.

 8. Determine the signs (positive or negative) of the position, veloc-
ity, and acceleration for the particle in FigUre Q1.8.

e x e r C i S e S  A N D  P r o B L e M S

exercises

Section 1.1 Motion Diagrams

 1. | A car skids to a halt to avoid hitting an object in the road. 
Draw a basic motion diagram, using the images from the movie, 
from the time the skid begins until the car is stopped.

 2. | A rocket is launched straight up. Draw a basic motion dia-
gram, using the images from the movie, from the moment of 
liftoff until the rocket is at an altitude of 500 m.

 3. | You’re driving along the highway at 60 mph until you enter a 
town where the speed limit is 30 mph. You slow quickly, but not 
instantly, to 30 mph. Draw a basic motion diagram of your car, 
using images from the movie, from 30 s before reaching the city 
limit until 30 s afterward.

Section 1.2 The Particle Model

 4. | a.  Write a paragraph describing the particle model. What is it, 
and why is it important?

 b.  Give two examples of situations, different from those de-
scribed in the text, for which the particle model is appropriate.

 c.  Give an example of a situation, different from those de-
scribed in the text, for which it would be inappropriate.

Section 1.3 Position and Time

Section 1.4 Velocity

 5. | You drop a soccer ball from your third-story balcony. Use 
the particle model to draw a motion diagram showing the ball’s 
position and average velocity vectors from the time you release 
the ball until the instant it touches the ground.

 6. | A softball player hits the ball and starts running toward first 
base. Use the particle model to draw a motion diagram showing 
her position and her average velocity vectors during the first few 
seconds of her run.

 7. | A softball player slides into second base. Use the particle 
model to draw a motion diagram showing his position and his 
average velocity vectors from the time he begins to slide until he 
reaches the base.

Section 1.5 Linear Acceleration

 8. | a.  FigUre ex1.8 shows the first three points of a motion dia-
gram. Is the object’s average speed between points 1 and 
2 greater than, less than, or equal to its average speed be-
tween points 0 and 1? Explain how you can tell.

 b. Use Tactics Box 1.3 to find the average acceleration vector 
at point 1. Draw the completed motion diagram, showing 
the velocity vectors and acceleration vector. 

 9. | a.  FigUre ex1.9 shows the first three points of a motion dia-
gram. Is the object’s average speed between points 1 and 
2 greater than, less than, or equal to its average speed be-
tween points 0 and 1? Explain how you can tell.

 b. Use Tactics Box 1.3 to find the average acceleration vector 
at point 1. Draw the completed motion diagram, showing 
the velocity vectors and acceleration vector.
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 10. || FigUre ex1.10 shows two dots of a motion diagram and 
vector v  

u

1. Copy this figure and add vector v  

u

2 and dot 3 if the 
acceleration vector a

u
 at dot 2 (a) points up and (b) points down.

 11. | FigUre ex1.11 shows two dots of a motion diagram and 
vector v  

u

2. Copy this figure and add vector v  

u

1 and dot 1 if the 
acceleration vector a

u
 at dot 2 (a) points to the right and (b) points 

to the left.
 12. | A car travels to the left at a steady speed for a few seconds, 

then brakes for a stop sign. Draw a complete motion diagram of 
the car.

 13. | A child is sledding on a smooth, level patch of snow. She en-
counters a rocky patch and slows to a stop. Draw a complete 
motion diagram of the child and her sled.

 14. | You use a long rubber band to launch a paper wad straight up. 
Draw a complete motion diagram of the paper wad from the mo-
ment you release the stretched rubber band until the paper wad 
reaches its highest point.

 15. | A roof tile falls straight down from a two-story building. It 
lands in a swimming pool and settles gently to the bottom. Draw 
a complete motion diagram of the tile.

 16. | Your roommate drops a tennis ball from a third-story balcony. 
It hits the sidewalk and bounces as high as the second story. Draw 
a complete motion diagram of the tennis ball from the time it is 
released until it reaches the maximum height on its bounce. Be 
sure to determine and show the acceleration at the lowest point.

 17. | A toy car rolls down a ramp, then across a smooth, horizontal 
floor. Draw a complete motion diagram of the toy car.

Section 1.6 Motion in One Dimension

 18. || FigUre ex1.18 shows the motion diagram of a drag racer. The 
camera took one frame every 2 s.

 a. Measure the x-value of the racer at each dot. List your data 
in a table similar to Table 1.1, showing each position and the 
time at which it occurred.

 b. Make a position-versus-time graph for the drag racer. 
Because you have data only at certain instants, your graph 
should consist of dots that are not connected together.

 19. | Write a short description of the motion of a real object for which 
FigUre ex1.19 would be a realistic position-versus-time graph.

 20. | Write a short description of the motion of a real object for 
which FigUre ex1.20 would be a realistic position-versus-time 
graph.

Section 1.7 Solving Problems in Physics

 21. || Draw a pictorial representation for the following problem. 
Do not solve the problem. The light turns green, and a bicyclist 
starts forward with an acceleration of 1.5 m/s2. How far must she 
travel to reach a speed of 7.5 m/s?

 22. || Draw a pictorial representation for the following problem. Do 
not solve the problem. What acceleration does a rocket need to 
reach a speed of 200 m/s at a height of 1.0 km?

Section 1.8 Units and Significant Figures

 23. | Convert the following to SI units:
 a. 6.15 ms b. 27.2 km
 c. 112 km/h d. 72 mm/ms
 24. | Convert the following to SI units:
 a. 8.0 in b. 66 ft/s
 c. 60 mph d. 14 in2

 25. | Convert the following to SI units:
 a. 3 hours b. 2 days
 c. 1 year d. 215 ft/s
 26. | Using the approximate conversion factors in Table 1.5, con-

vert the following to SI units without using your calculator.
 a. 20 ft b. 60 mi
 c. 60 mph d. 8 in
 27. || Using the approximate conversion factors in Table 1.5, con-

vert the following SI units to English units without using your 
calculator.

 a. 30 cm b. 25 m/s
 c. 5 km d. 0.5 cm
 28. | Compute the following numbers, applying the significant fig-

ure rule adopted in this textbook.
 a. 33.3 * 25.4 b. 33.3 - 25.4
 c. 133.3 d. 333.3 , 25.4
 29. | Compute the following numbers, applying the significant fig-

ure rule adopted in this textbook.
 a. 12.53 b. 12.5 * 5.21
 c. 112.5 - 1.2 d. 12.5-1

 30. | Estimate (don’t measure!) the length of a typical car. Give 
your answer in both feet and meters. Briefly describe how you 
arrived at this estimate.

 31. | Estimate the height of a telephone pole. Give your answer in 
both feet and meters. Briefly describe how you arrived at this 
estimate.

 32. | Estimate the average speed with which you go from home 
to campus via whatever mode of transportation you use most 
commonly. Give your answer in both mph and m/s. Briefly de-
scribe how you arrived at this estimate.
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 33. | Estimate the average speed with which the hair on your head 
grows. Give your answer in both m/s and mm/hour. Briefly de-
scribe how you arrived at this estimate.

Problems

For Problems 34 through 43, draw a complete pictorial representa-
tion. Do not solve these problems or do any mathematics.
 34. | A Porsche accelerates from a stoplight at 5.0 m/s2 for five sec-

onds, then coasts for three more seconds. How far has it traveled?
 35. | A jet plane is cruising at 300 m/s when suddenly the pilot 

turns the engines up to full throttle. After traveling 4.0 km, the 
jet is moving with a speed of 400 m/s. What is the jet’s accelera-
tion as it speeds up?

 36. | Sam is recklessly driving 60 mph in a 30 mph speed zone 
when he suddenly sees the police. He steps on the brakes and 
slows to 30 mph in three seconds, looking nonchalant as he pass-
es the officer. How far does he travel while braking?

 37. | You would like to stick a wet spit wad on the ceiling, so you 
toss it straight up with a speed of 10 m/s. How long does it take 
to reach the ceiling, 3.0 m above?

 38. | A speed skater moving across frictionless ice at 8.0 m/s hits a 
5.0-m-wide patch of rough ice. She slows steadily, then contin-
ues on at 6.0 m/s. What is her acceleration on the rough ice?

 39. | Santa loses his footing and slides down a frictionless, snowy 
roof that is tilted at an angle of 30�. If Santa slides 10 m before 
reaching the edge, what is his speed as he leaves the roof?

 40. | A motorist is traveling at 20 m/s. He is 60 m from a stoplight 
when he sees it turn yellow. His reaction time, before stepping 
on the brake, is 0.50 s. What steady deceleration while braking 
will bring him to a stop right at the light?

 41. | A car traveling at 30 m/s runs out of gas while traveling up a 
10� slope. How far up the hill will the car coast before starting to 
roll back down?

 42. || Ice hockey star Bruce Blades is 5.0 m from the blue line and 
gliding toward it at a speed of 4.0 m/s. You are 20 m from the 
blue line, directly behind Bruce. You want to pass the puck to 
Bruce. With what speed should you shoot the puck down the ice 
so that it reaches Bruce exactly as he crosses the blue line?

 43. || David is driving a steady 30 m/s when he passes Tina, who 
is sitting in her car at rest. Tina begins to accelerate at a steady 
2.0 m/s2 at the instant when David passes. How far does Tina 
drive before passing David?

Problems 44 through 48 show a motion diagram. For each of these 
problems, write a one or two sentence “story” about a real object that 
has this motion diagram. Your stories should talk about people or 
objects by name and say what they are doing. Problems 34 through 43 
are examples of motion short stories.
 44. | 

 45. | 

 46. | 

 47. | 

 48. | 

Problems 49 through 52 show a partial motion diagram. For each:
 a. Complete the motion diagram by adding acceleration vectors.
 b. Write a physics problem for which this is the correct motion dia-

gram. Be imaginative! Don’t forget to include enough informa-
tion to make the problem complete and to state clearly what is 
to be found.

 c. Draw a pictorial representation for your problem.
 49. | 

 50. | 

 51. | StopStart
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Stop to think AnSwerS

Stop to Think 1.1: B. The images of B are farther apart, so it travels a 
larger distance than does A during the same intervals of time.

Stop to Think 1.2: a. Dropped ball. b. Dust particle. c. Descending 
rocket.

Stop to Think 1.3: e. The average velocity vector is found by con-
necting one dot in the motion diagram to the next.

Stop to Think 1.4: b. v  

u

2  = v  

u

1 + �v  

u
, and �v  

u
 points in the direction 

of a
u
.

Stop to Think 1.5: d + c + b � a.

 52.  | 

 53.  |  A regulation soccer field for international play is a rectangle 
with a  length between 100 m and 110 m and a width between 
64 m and 75 m. What are the smallest and largest areas that the 
field could be?

 54.  ||  The quantity called mass density is the mass per unit volume 
of a substance. Express the following mass densities in SI units.

  a.  Aluminum, 2.7 * 10-3 kg/cm3

  b.  Alcohol, 0.81 g/cm3

 55.  ||  Figure p1.55 shows a motion diagram of a car traveling down 
a street. The camera took one frame every 10 s. A distance scale 
is provided.

  a.  Measure the x-value of the car at each dot. Place your data in 
a table, similar to Table 1.1, showing each position and the 
instant of time at which it occurred.

  b.  Make a position-versus-time graph for the car. Because you 
have data only at certain instants of time, your graph should 
consist of dots that are not connected together.

 56.  |  Write a short description of a real object for which Figure p1.56 
would be a realistic position-versus-time graph.

 57.  |  Write a short description of a real object for which Figure p1.57 
would be a realistic position-versus-time graph.
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Solving Problems in Kinematics
You will begin learning to solve problems using a four-part problem-solving strategy.

MODEL Use the particle model.

VISUALIZE Draw a pictorial representation. Use a 
graphical representation.

SOLVE Use three kinematic equations that we’ll 
develop in this chapter.

ASSESS Check whether the result makes sense.

2

This Japanese “bullet train” 
accelerates slowly but steadily 
until reaching a speed of 
300 km/h.

Kinematics in One 
Dimension

It is very important to know when veloc-
ity and acceleration are positive and 
when they are negative.

Graphical Representations of Motion
Position, velocity, and acceleration are related 
graphically.

Kinematics
Kinematics is the name for the mathe-
matical description of motion. We begin 
with motion along a straight line; for 
example, runners, rockets, and skiers. 
Kinematics in two dimensions—projec-
tile motion and circular motion—will 
be taken up in Chapter 4.

The motion of an object is described by 
its position, velocity, and acceleration. 
In one dimension, these quantities are 
represented by x, vx, and ax. You learned 
to show these on motion diagrams in 
Chapter 1.

Now we will use calculus to give precise 
meaning to velocity and acceleration.

  

 Looking Back
Sections 1.4–1.5 Velocity and 
acceleration

 Looking Back
Tactics Box 1.4 The signs of position, 
velocity, and acceleration

■	 You will learn how to draw the position-
versus-time, velocity-versus-time, and 
acceleration-versus-time graphs that 
describe various types of motion.

■	 You will learn that the slope of the position-
versus-time graph is the instantaneous value 
of velocity.

■	 Similarly, the slope of the velocity-versus-
time graph is the instantaneous value of 
acceleration.

 Looking Back
Tactics Box 1.5 Drawing a pictorial 
representation

Problems you will learn to 
solve in this chapter include 
free fall and motion on an 
inclined plane.

ar

vr

x

vx

ax

t

t

t

Turning
point

The goal of Chapter 2 is to learn how to solve problems about motion in a straight line. Looking Ahead
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2.1 Uniform Motion
If you drive your car at a perfectly steady 60 miles per hour (mph), you will cover 
60 mi during the first hour, another 60 mi during the second hour, yet another 60 mi 
during the third hour, and so on. In this case, 60 mi is not your position, but rather the 
change in your position during each hour; that is, your displacement �x. Similarly, 
1 hour is a time interval �t rather than a specific instant of time. Straight-line motion 
in which equal displacements occur during any successive equal-time intervals is 
called uniform motion.

FIGURE 2.1 shows how uniform motion appears in motion diagrams and position-
versus-time graphs. Because all equal-time intervals have equal displacements, the 
position graph is a straight line. In fact, an alternative definition of uniform motion 
is: An object’s motion is uniform if and only if its position-versus-time graph is a 
straight line.

The slope of a straight-line graph is defined as “rise over run.” Because position is 
graphed on the vertical axis, the “rise” of a position-versus-time graph is the object’s 
displacement �x. The “run” is the time interval �t. Consequently, the slope is �x/�t.

Chapter 1 defined the average velocity as �r 
u

/�t. For one-dimensional motion this 
is simply

 vavg K
�x

�t
 or 

�y

�t
= slope of the position@versus@time graph (2.1)

That is, the average velocity is the slope of the position-versus-time graph. Velocity 
has units of “length per time,” such as “miles per hour.” The SI units of velocity are 
meters per second, abbreviated m/s.

NOTE  The symbol K in Equation 2.1 stands for “is defined as” or “is equivalent 
to.” This is a stronger statement than the two sides simply being equal. 

In the case of uniform motion, where the slope �x/�t is the same at all times, it 
appears that the average velocity is constant and unchanging. Consequently, a final 
definition of uniform motion is: An object’s motion is uniform if and only if its 
velocity vx or vy does not change. There’s no real need to specify “average” for a 
velocity that doesn’t change, so we will drop the subscript and refer to the average 
velocity as vx or vy.

ExAMPLE 2.1  Skating with constant velocity
The position-versus-time graph of FIGURE 2.2 represents the motion 
of two students on roller blades. Determine their velocities and 
describe their motion.

MODEL Represent the two students as particles.

VISUALIZE Figure 2.2 is a graphical representation of the students’ 
motion. Both graphs are straight lines, telling us that both skaters 
are moving uniformly with constant velocities.

SOLVE We can determine the students’ velocities by measur-
ing the slopes of the graphs. Skater A undergoes a displacement 
�xA = 2.0 m during the time interval �tA = 0.40 s Thus his ve-
locity is

  (vx)A =
�xA

�tA
=

2.0 m

0.40 s

  = 5.0 m/s

Riding steadily over level ground is a good 
example of uniform motion.

t

Equal
displacements

Position graph is a
straight line. The slope
of the line is vavg.

The displacements between
successive frames are the
same. Dots are equally
spaced. vx is constant.

x

�x

�x

rv

FIGURE 2.1 Motion diagram and position 
graph for uniform motion.
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FIGURE 2.2 Graphical representations of two students on 
roller blades.
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Example 2.1 brought out several points that are worth emphasizing. These are sum-
marized in Tactics Box 2.1.

We need to be more careful with skater B. Although he moves a 
distance of 1.0 m in 0.50 s, his displacement is

 � xB = xat 0.5 s - xat 0.0 s = 0.0 m - 1.0 m = -1.0 m

Careful attention to the signs is very important! This leads to

 (vx)B =
�xB

�tB
=

-1.0 m

0.50 s
= -2.0 m/s

TAcTIcS
B O x  2 . 1 

 Interpreting position-versus-time graphs

	●1	 Steeper slopes correspond to faster speeds.
	●2	 Negative slopes correspond to negative velocities and, hence, to motion to 

the left (or down).
	●3	 The slope is a ratio of intervals, �x/�t, not a ratio of coordinates. That is, the 

slope is not simply x/t. 
	●4	 We are distinguishing between the actual slope and the physically meaning-

ful slope. If you were to use a ruler to measure the rise and the run of the 
graph, you could compute the actual slope of the line as drawn on the page. 
That is not the slope to which we are referring when we equate the velocity 
with the slope of the line. Instead, we find the physically meaningful slope by 
measuring the rise and run using the scales along the axes. The “rise” � x is 
some number of meters; the “run” �t is some number of seconds. The physi-
cally meaningful rise and run include units, and the ratio of these units gives 
the units of the slope.

Exercises 1–3 

An object’s speed v is how fast it’s going, independent of direction. This is simply 
v = � vx �  or v = � vy �  the magnitude or absolute value of the object’s velocity. In 
Example 2.1, for example, skater B’s velocity is -2.0 m/s but his speed is 2.0 m/s. 
Speed is a scalar quantity, not a vector.

NOTE  Our mathematical analysis of motion is based on velocity, not speed. The 
subscript in vx or vy is an essential part of the notation, reminding us that, even in 
one dimension, the velocity is a vector. 

The Mathematics of Uniform Motion
We need a mathematical analysis of motion that will be valid regardless of whether an 
object moves along the x-axis, the y-axis, or any other straight line. Consequently, it 
will be convenient to write equations for a “generic axis” that we will call the s-axis. 
The position of an object will be represented by the symbol s and its velocity by vs.

NOTE  In a specific problem you should use either x or y, whichever is appropriate, 
rather than s. 

Consider an object in uniform motion along the s-axis with the linear position-
versus-time graph shown in FIGURE 2.3. The object’s initial position is si at time ti. The 
term initial position refers to the starting point of our analysis or the starting point in a 

ASSESS The minus sign indicates that skater B is moving to the 
left. Our interpretation of this graph is that two students on roller 
blades are moving with constant velocities in opposite directions. 
Skater A starts at x = 2.0 m and moves to the right with a veloc-
ity of x = 5.0 m/s. Skater B starts at x = 1.0 m and moves to the 
left with a velocity of -2.0 m/s. Their speeds, of �  10 mph and 
�  4 mph, are reasonable for skaters on roller blades.

�s
�t

sf

ti tf

s

si
Initial
position

Final
position

�t

�s

t

The slope of the
line is vs �     .

We will use s as a generic
label for position. In practice,
s could be either x or y.

FIGURE 2.3 The velocity is found from 
the slope of the position-versus-time 
graph.
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problem; the object may or may not have been in motion prior to ti. At a later time tf, 
the ending point of our analysis, the object’s final position is sf.

The object’s velocity vs along the s-axis can be determined by finding the slope of 
the graph:

 vs =
rise
run

=
�s

�t
=

sf - si

tf - ti
 (2.2)

Equation 2.2 is easily rearranged to give

 sf = si + vs �t  (uniform motion) (2.3)

The velocity of a uniformly moving object tells us the amount by which its position 
changes during each second. A particle with a velocity of 20 m/s changes its position 
by 20 m during every second of motion: by 20 m during the first second of its motion, 
by another 20 m during the next second, and so on. If the object starts at si = 10 m, it 
will be at s = 30 m after 1 second of motion and at s = 50 m after 2 seconds of mo-
tion. Thinking of velocity like this will help you develop an intuitive understanding of 
the connection between velocity and position.

FIGURE 2.4 is the position-versus-time graph of a car.

 a. Draw the car’s velocity-versus-time graph.
 b. Describe the car’s motion.

MODEL Represent the car as a particle, with a well-defined posi-
tion at each instant of time.

VISUALIZE Figure 2.4 is the graphical representation.

SOLVE

 a. The car’s position-versus-time graph is a sequence of three 
straight lines. Each of these straight lines represents uniform 
motion at a constant velocity. We can determine the car’s ve-
locity during each interval of time by measuring the slope of 
the line. From t = 0 s to t =  2 s (�t = 2.0 s) the car’s dis-
placement is �x = -4.0 m - 0.0 m = -4.0 m. The velocity 
during this interval is

 vx =
�x

�t
=

-4.0 m

2.0 s
= -2.0 m/s
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FIGURE 2.4 Position-versus-time graph. FIGURE 2.5 The corresponding velocity-versus-time graph.

  The car’s position does not change from t = 2 s to t = 4 s  
(�x = 0), so vx = 0. Finally, the displacement between t = 4 s 
and t = 6 s is �x = 10.0 m. Thus the velocity during this in-
terval is

 vx =
10.0 m

2.0 s
= 5.0 m/s

  These velocities are shown on the velocity-versus-time graph 
of FIGURE 2.5.

 b. The car backs up for 2 s at 2.0 m/s, sits at rest for 2 s, then 
drives forward at 5.0 m/s for at least 2 s. We can’t tell from the 
graph what happens for t 7 6 s.

ASSESS The velocity graph and the position graph look completely 
different. The value of the velocity graph at any instant of time 
equals the slope of the position graph.

ExAMPLE 2.2   Relating a velocity graph to a position graph
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ExAMPLE 2.3  Lunch in cleveland?
Bob leaves home in Chicago at 9:00 a.m. and travels east at a 
steady 60 mph. Susan, 400 miles to the east in Pittsburgh, leaves 
at the same time and travels west at a steady 40 mph. Where will 
they meet for lunch?

MODEL Here is a problem where, for the first time, we can really 
put all four aspects of our problem-solving strategy into play. To 
begin, represent Bob and Susan as particles.

VISUALIZE FIGURE 2.6 shows the pictorial representation. The equal 
spacings of the dots in the motion diagram indicate that the mo-
tion is uniform. In evaluating the given information, we recognize 
that the starting time of 9:00 a.m. is not relevant to the problem. 
Consequently, the initial time is chosen as simply t0 = 0 h. Bob 
and Susan are traveling in opposite directions, hence one of the 
velocities must be a negative number. We have chosen a coordi-
nate system in which Bob starts at the origin and moves to the right 
(east) while Susan is moving to the left (west). Thus Susan has the 
negative velocity. Notice how we’ve assigned position, velocity, 
and time symbols to each point in the motion. Pay special attention 
to how subscripts are used to distinguish different points in the 
problem and to distinguish Bob’s symbols from Susan’s.

One purpose of the pictorial representation is to establish what 
we need to find. Bob and Susan meet when they have the same 
position at the same time t1. Thus we want to find (x1)B at the 
time when (x1)B = (x1)S. Notice that (x1)B and (x1)S are Bob’s and 
Susan’s positions, which are equal when they meet, not the dis-
tances they have traveled.

SOLVE The goal of the mathematical representation is to proceed 
from the pictorial representation to a mathematical solution of the 
problem. We can begin by using Equation 2.3 to find Bob’s and 
Susan’s positions at time t1 when they meet:

  (x1)B = (x0)B + (vx )B (t1 - t0) = (vx)B t1

  (x1)S = (x0)S + (vx )S  (t1 - t0) = (x0)S + (vx)S  t1

It is instructive to look at this example from a graphical perspective. FIGURE 2.7 
shows position-versus-time graphs for Bob and Susan. Notice the negative slope 
for Susan’s graph, indicating her negative velocity. The point of interest is the 
intersection of the two lines; this is where Bob and Susan have the same position 
at the same time. Our method of solution, in which we equated (x1)B and (x1)S, is 
really just solving the mathematical problem of finding the intersection of two 
lines.

Notice two things. First, we started by writing the full statement of 
Equation 2.3. Only then did we simplify by dropping those terms 
known to be zero. You’re less likely to make accidental errors if 
you follow this procedure. Second, we replaced the generic sym-
bol s with the specific horizontal-position symbol x, and we re-
placed the generic subscripts i and f with the specific symbols 0 
and 1 that we defined in the pictorial representation. This is also 
good problem-solving technique.

The condition that Bob and Susan meet is

 (x1)B = (x1)S

By equating the right-hand sides of the above equations, we get

 (vx)B t1 = (x0)S + (vx)S  t1

Solving for t1 we find that they meet at time

 t1 =
(x0)S

(vx)B - (vx)S
=

400 miles

60 mph - (-40) mph
= 4.0 hours

Finally, inserting this time back into the equation for (x1)B gives

 (x1)B = 160 
miles

hour 2 * (4.0 hours) = 240 miles

While this is a number, it is not yet the answer to the question. The 
phrase “240 miles” by itself does not say anything meaningful. 
Because this is the value of Bob’s position, and Bob was driving 
east, the answer to the question is, “They meet 240 miles east of 
Chicago.”

ASSESS Before stopping, we should check whether or not this an-
swer seems reasonable. We certainly expected an answer between 
0 miles and 400 miles. We also know that Bob is driving faster 
than Susan, so we expect that their meeting point will be more than 
halfway from Chicago to Pittsburgh. Our assessment tells us that 
240 miles is a reasonable answer.

FIGURE 2.6 Pictorial representation for Example 2.3.
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FIGURE 2.7 Position-versus-time graphs 
for Bob and Susan.
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Stop to think 2.1  Which position-versus-time graph 
represents the motion shown in the motion diagram?

2.2 Instantaneous Velocity
FIGURE 2.8 shows the motion diagram of a jet as it takes off. The increasing length of 
the velocity vectors tells us that the jet is speeding up, so this is not uniform motion. 
Consequently, the position-versus-time graph is not a straight line.

We can determine the jet’s average speed vavg between any two times ti and tf by 
finding the slope of the straight-line connection between the two points. However, aver-
age velocity has only limited usefulness for an object whose velocity isn’t constant. The 
jet’s average velocity during takeoff might be 30 m/s, but the speedometer in the cockpit 
would show the jet traveling at less than 30 m/s during the first few seconds. Similarly, 
the speedometer would read more than 30 m/s just before the wheels leave the ground.

In contrast to a velocity averaged over some interval of time, the speedometer read-
ing tells you how fast you’re going at that instant. We define an object’s instantaneous 
velocity to be its velocity—a speed and a direction—at a single instant of time t.

As we’ve seen, velocity is the rate at which an object changes its position. Rates tell 
us how quickly or how slowly things change, and that idea is conveyed by the word 
“per.” An instantaneous velocity of 80 miles per hour means that the rate at which your 
car’s position is changing—at that exact instant—is such that it would travel 80 miles in 
1 hour if it continued at that rate without change. Whether or not it actually does travel 
at that velocity for another hour, or even for another millisecond, is not relevant.

Using Motion Diagrams and Graphs
Let’s use motion diagrams and position graphs to analyze a rocket as it takes off. 
FIGURE 2.9a shows a motion diagram made using a normal 30-frames-per-second movie 
camera. We would like to determine the instantaneous velocity v2y at time t2. Because 
the rocket is accelerating, its velocity at t2 is not the same as the average velocity be-
tween t1 and t3. How can we measure v2y?
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�t

(a) 30 frames per second (b) 3000 frames per second (c) The limiting case

The instantaneous 
velocity at time t2 is 
the slope of the line 
tangent to the position 
graph at that point.

The slope of this line is the 
average velocity between 1 
and 3, but it is not the instant-
aneous velocity at time t2.

The highly magnified 
section of the graph 
near point 2 is very 
nearly a straight line. 
The slope of this line is 
a good approximation 
to the instantaneous 
velocity at time t2. The 
slope is the instant-
aneous velocity in the 
limit �t S 0.

The high-speed movie 
shows dots that are 
nearly equally spaced.

t

y

v
t

y

t

y

3

1

0
t2 t2 t2

2 22 2
2

1

3

FIGURE 2.9 Motion diagrams and position graphs of an accelerating rocket.
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Suppose we use a high-speed camera, one that takes 3000 frames per second, to 
film just the segment of motion right around time t2. This “magnified” motion diagram 
is shown in FIGURE 2.9b. At this level of magnification, each velocity vector is almost 
the same length. Further, the greatly magnified section of the curved position graph 
is almost a straight line. That is, the motion appears very nearly uniform on this time 
scale. If the rocket suddenly changed to constant-velocity motion at time t2, it would 
continue to move with a velocity given by the slope of the graph in Figure 2.9b.

In other words, the average velocity vavg = �s/�t becomes a better and better ap-
proximation to the instantaneous velocity vs as the time interval �t over which the 
average is taken gets smaller and smaller. By magnifying the motion diagram, we are 
using smaller and smaller time intervals �t.

We can state this idea mathematically in terms of the limit �t S 0:

 vs K lim
�tS0

 
�s

�t
=

ds

dt
  (instantaneous velocity) (2.4)

As �t continues to get smaller, the average velocity vavg = �s/�t reaches a constant 
or limiting value. That is, the instantaneous velocity at time t is the average velocity 
during a time interval �t, centered on t, as �t approaches zero. In calculus, this 
limit is called the derivative of s with respect to t, and it is denoted ds/dt.

Graphically, �s/�t is the slope of a straight line. As �t gets smaller (i.e., more and 
more magnification), the straight line becomes a better and better approximation of the 
curve at that one point. In the limit �t S 0, the straight line is tangent to the curve. 
As FIGURE 2.9c shows, the instantaneous velocity at time	t	is the slope of the line that 
is tangent to the position-versus-time graph at time	t. That is,

 vs = slope of the position-versus-time graph at time t (2.5)

ExAMPLE 2.4   Finding velocity from position graphically
FIGURE 2.10 shows the position-versus-time graph of an elevator.

 a. At which labeled point or points does the elevator have the 
least speed?

 b. At which point or points does the elevator have maximum velocity?
 c. Sketch an approximate velocity-versus-time graph for the elevator.

 b. The elevator has maximum velocity at point B.

MODEL Represent the elevator as a particle.

VISUALIZE Figure 2.10 is the graphical representation.

SOLVE a. At any instant, the velocity is the slope of the posi-
tion graph. FIGURE 2.11a shows that the elevator has the least 
speed—no speed at all!—at points A and C. At point A, the 
velocity is only instantaneously zero. At point C, the elevator 
has actually stopped and remains at rest.
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FIGURE 2.10 Position-versus-time graph.
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FIGURE 2.11 The velocity-versus-time graph is found 
from the slope of the position graph.
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A Little calculus: Derivatives
Calculus–invented simultaneously in England by Newton and in Germany by Leibniz–
is designed to deal with instantaneous quantities. In other words, it provides us with the 
tools for evaluating limits such as the one in Equation 2.4.

The notation ds/dt is called the derivative of s with respect to t, and Equation 2.4 
defines it as the limiting value of a ratio. As Figure 2.9 showed, ds/dt can be inter-
preted graphically as the slope of the line that is tangent to the position-versus-time 
graph at time t.

The only functions we will use in Parts I and II of this book are powers and poly-
nomials. Consider the function u = ctn, where c and n are constants. The following 
result is proven in calculus:

 The derivative of u = ctn is 
du

dt
= nctn-1 (2.6)

NOTE  The symbol u is a “dummy name.” Equation 2.6 can be used to take the 
derivative of any function of the form ctn. 

For example, suppose the position of a particle as a function of time is s = 2t 2 m 
where t is in s. We can find the particle’s velocity by using Equation 2.6 with c = 2 
and n = 2 to calculate that the derivative of s = 2t 2 with respect to t is

 vs =
ds

dt
= 2 # 2t2-1 = 4t

FIGURE 2.12 shows the particle’s position and velocity graphs. It is critically impor-
tant to understand the relationship between these two graphs. The value of the velocity 
graph at any instant of time, which we can read directly off the vertical axis, is the 
slope of the position graph at that same time. This is illustrated at t = 1 s and t = 3 s.

A value that doesn’t change with time, such as the position of an object at rest, can 
be represented by the function u = c = constant That is, the exponent of t n is n = 0. 
You can see from Equation 2.6 that the derivative of a constant is zero. That is,

 
du

dt
= 0 if u = c = constant (2.7)

This makes sense. The graph of the function u = c is simply a horizontal line at height 
c. The slope of a horizontal line—which is what the derivative du/dt measures—
is zero.

The only other information we need about derivatives for now is how to evaluate 
the derivative of the sum of two or more functions. Let u and w be two separate func-
tions of time. You will learn in calculus that

 
d

dt
 (u + w) =

du

dt
+

dw

dt
 (2.8)

That is, the derivative of a sum is the sum of the derivatives.

 c. Although we cannot find an exact velocity-versus-time graph, 
we can see that the slope, and hence vy, is initially negative, 
becomes zero at point A, rises to a maximum value at point B, 
decreases back to zero a little before point C, then remains at 
zero thereafter. Thus FIGURE 2.11b shows, at least approximate-
ly, the elevator’s velocity-versus-time graph.

ASSESS Once again, the shape of the velocity graph bears no re-
semblance to the shape of the position graph. You must transfer 
slope information from the position graph to value information on 
the velocity graph.
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to calculate the trajectories of rockets.
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ExAMPLE 2.5  Using calculus to find the velocity

A particle’s position is given by the function x = (- t 3 +  3t) m, 
where t is in s.

 a. What are the particle’s position and velocity at t = 2 s?
 b. Draw graphs of x and vx during the interval -3 s … t … 3 s.
 c. Draw a motion diagram to illustrate this motion.

SOLVE

 a. We can compute the position directly from the function x:

 x(at t = 2 s) = - (2)3 + (3)(2) = -8 + 6 = -2 m

The velocity is vx = dx/dt. The function for x is the sum of two 
polynomials, so

 vx =
dx

dt
=

d

dt
 (- t 3 + 3t) =

d

dt
 (- t 3) +

d

dt
 (3t)

The first derivative is a power with c = -1 and n = 3; the 
second has c = 3 and n = 1. Using Equation 2.6, we have

 vx = (-3t 2 + 3) m/s

where t is in s. Evaluating the velocity at t = 2 s gives

 vx  (at t = 2 s) = -3(2)2 + 3 = -9 m/s

The negative sign indicates that the particle, at this instant of 
time, is moving to the left at a speed of 9 m/s.

 b. FIGURE 2.13 shows the position graph and the velocity graph. 
These were created by computing, and then graphing, the 
values of x and vx at several points between -3 s and 3 s. The 
slope of the position-versus-time graph at t = 2 s is -9 m/s; 
this becomes the value that is graphed for the velocity at 
t = 2 s. Similar measurements are shown at t = -1 s, where 
the velocity is instantaneously zero.

 c. Finally, we can interpret the graphs in Figure 2.13 to draw the 
motion diagram shown in FIGURE 2.14.

	■	 The particle is initially to the right of the origin (x 7 0 at 
t = -3 s) but moving to the left (vx 6 0). Its speed is slow-
ing (v = � vx �  is decreasing), so the velocity vector arrows 
are getting shorter.

	■	 The particle passes the origin at t � -1.5 s, but it is still 
moving to the left.

	■	 The position reaches a minimum at t = -1 s; the particle 
is as far left as it is going. The velocity is instantaneously 
vx = 0 m/s as the particle reverses direction.

	■	 The particle moves back to the right between t = -1 s and 
t = 1 s (vx 7 0).

	■	 The particle turns around again at t = 1 s and begins mov-
ing back to the left (vx 6 0). It keeps speeding up, then dis-
appears off to the left.

A point in the motion where a particle reverses direction is called 
a turning point. It is a point where the velocity is instantaneously 
zero while the position is a maximum or minimum. This particle 
has two turning points, at t = -1 s and again at t = +1 s. We will 
see many other examples of turning points.

ASSESS This example has used three different representations 
of motion: the mathematical equations, the graphs, and the mo-
tion diagram. All three describe the motion, but in different ways. 
Learning to move back and forth among the representations is im-
portant for solidifying your understanding of kinematics.

NOTE  You may have learned in calculus to take the derivative dy/dx, where y is a 
function of x. The derivatives we use in physics are the same; only the notation is 
different. We’re interested in how quantities change with time, so our derivatives 
are with respect to t instead of x. 
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Stop to think 2.2  Which velocity-versus-time graph goes with the position-versus-
time graph on the left?

2.3 Finding Position from Velocity
Equation 2.4 provides a means of finding the instantaneous velocity vs if we know 
the position s as a function of time. But what about the reverse problem? Can we 
use the object’s velocity to calculate its position at some future time t ? Equation 2.3, 
sf = si + vs�t, does this for the case of uniform motion with a constant velocity. We 
need to find a more general expression that is valid when vs is not constant.

FIGURE 2.15a is a velocity-versus-time graph for an object whose velocity varies with 
time. Suppose we know the object’s position to be si at an initial time ti. Our goal is to 
find its position sf at a later time tf.

Because we know how to handle constant velocities, using Equation 2.3, let’s ap-
proximate the velocity function of Figure 2.15a as a series of constant-velocity steps 
of width �t. This is illustrated in FIGURE 2.15b. During the first step, from time ti to time 
ti + �t, the velocity has the constant value (vs)1. The velocity during step k has the 
constant value (vs)k. Although the approximation shown in the figure is rather rough, 
with only nine steps, we can easily imagine that it could be made as accurate as desired 
by having more and more ever-narrower steps.

The velocity during each step is constant (uniform motion), so we can apply 
Equation 2.3 to each step. The object’s displacement �s1 during the first step is sim-
ply �s1 = (vs)1�t. The displacement during the second step �s2 = (vs)2�t, and during 
step k the displacement is �sk = (vs)k�t.

The total displacement of the object between ti and tf can be approximated as the sum 
of all the individual displacements during each of the N constant-velocity steps. That is,

 �s = sf - si � �s1 + �s2 + g + �sN = a
N

k=1
(vs)k  �t (2.9)

where g  (Greek sigma) is the symbol for summation. With a simple rearrangement, 
the particle’s final position is

 sf � si + a
N

k=1
(vs)k  �t (2.10)

Our goal was to use the object’s velocity to find its final position sf. Equation 2.10 
nearly reaches that goal, but Equation 2.10 is only approximate because the constant-
velocity steps are only an approximation of the true velocity graph. But if we now 
let �t S 0, each step’s width approaches zero while the total number of steps N ap-
proaches infinity. In this limit, the series of steps becomes a perfect replica of the 
velocity-versus-time graph and Equation 2.10 becomes exact. Thus

 sf = si + lim
�tS0

a
N

k=1
(vs)k  �t = si + 3

tf

ti

vs dt (2.11)

The curlicue symbol is called an integral. The expression on the right is read, “the in-
tegral of vs dt from ti to tf.” Equation 2.11 is the result that we were seeking. It allows 
us to predict an object’s position sf at a future time tf.
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We can give Equation 2.11 an important geometric interpretation. FIGURE 2.16 shows 
step k in the approximation of the velocity graph as a tall, thin rectangle of height 
(vs)k and width �t. The product �sk = (vs)k�t is the area (base * height) of this small 
rectangle. The sum in Equation 2.11 adds up all of these rectangular areas to give the 
total area enclosed between the t-axis and the tops of the steps. The limit of this sum 
as �t S 0 is the total area enclosed between the t-axis and the velocity curve. This is 
called the “area under the curve.” Thus a graphical interpretation of Equation 2.11 is:

 sf = si + area under the velocity curve vs between ti and tf (2.12)

NOTE  Wait a minute! The displacement �s = sf - si is a length. How can a length 
equal an area? Recall earlier, when we found that the velocity is the slope of the 
position graph, we made a distinction between the actual slope and the physically 
meaningful slope? The same distinction applies here. The velocity graph does in-
deed bound a certain area on the page. That is the actual area, but it is not the area 
to which we are referring. Once again, we need to measure the quantities we are us-
ing, vs and �t, by referring to the scales on the axes. �t is some number of seconds 
while vs is some number of meters per second. When these are multiplied together, 
the physically meaningful area has units of meters. 

ExAMPLE 2.6  The displacement during a drag race
FIGURE 2.17 shows the velocity-versus-time graph of a drag racer. 
How far does the racer move during the first 3.0 s?

VISUALIZE Figure 2.17 is the graphical representation.

SOLVE The question “How far?” indicates that we need to find 
a displacement �x rather than a position x. According to Equa-
tion 2.12, the car’s displacement �x = xf - xi between t = 0 s and 
t = 3 s is the area under the curve from t = 0 s to t = 3 s. The 
curve in this case is an angled line, so the area is that of a triangle:

  �x = area of triangle between t = 0 s and t = 3 s

  = 1
2 * base * height

  =
1
2 * 3 s * 12 m/s = 18 m

The drag racer moves 18 m during the first 3 seconds.

ASSESS The “area” is a product of s with m/s, so �x has the proper 
units of m.

MODEL Represent the drag racer as a particle with a well-defined 
position at all times.

ExAMPLE 2.7  Finding the turning point
FIGURE 2.18 is the velocity graph for a particle that starts at 
xi = 30 m at time ti = 0 s. 

 a. Draw a motion diagram for the particle.
 b. Where is the particle’s turning point?
 c. At what time does the particle reach the origin?

decreasing, so the particle is slowing down. At t = 2 s the velocity, 
just for an instant, is zero before becoming negative. This is the 
turning point. The velocity is negative for t 7 2 s, so the particle 
has reversed direction and moves back toward the origin. At some 
later time, which we want to find, the particle will pass x = 0 m.

SOLVE a. FIGURE 2.19 shows the motion diagram. The distance 
  scale will be established in parts b and c but is shown here for 

convenience.
 b. The particle reaches the turning point at t = 2 s. To learn 

where it is at that time we need to find the displacement during 
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t
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�t
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�sk � (vs)k�t is the area
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During the interval ti to tf,
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the “area under the curve.”

FIGURE 2.16 The total displacement �s is 
the “area under the curve.”
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The line is the function
vx � 4t m/s.

The displacement
�x is the area of the
shaded triangle.

FIGURE 2.17 Velocity-versus-time graph for Example 2.6.
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FIGURE 2.18 Velocity-versus-time graph for the particle of 
Example 2.7.

0 m

t � 6 s t � 0 s

Start at xi � 30 m Turning point
at t � 2 s

10 m 20 m 30 m 40 m
x

rv

FIGURE 2.19 Motion diagram for the particle whose velocity 
graph was shown in Figure 2.18.

Continued

VISUALIZE The particle is initially 30 m to the right of the origin 
and moving to the right (vx 7 0) with a speed of 10 m/s. But vx is 
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A Little More calculus: Integrals
Taking the derivative of a function is equivalent to finding the slope of a graph of the 
function. Similarly, evaluating an integral is equivalent to finding the area under a 
graph of the function. The graphical method is very important for building intuition 
about motion but is limited in its practical application. Just as derivatives of standard 
functions can be evaluated and tabulated, so can integrals.

The integral in Equation 2.11 is called a definite integral because there are two 
definite boundaries to the area we want to find. These boundaries are called the lower 
(ti) and upper (tf) limits of integration. For the important function u = ctn, the essential 
result from calculus is that

 3
tf

ti

u dt = 3
tf

ti

ctn dt =
ctn+1

n + 1
  `

tf

ti

=
ctf 

n+1

n + 1
-

cti 

n+1

n + 1
  (n � -1) (2.13)

The vertical bar in the third step with subscript ti and superscript tf is a shorthand nota-
tion from calculus that means—as seen in the last step—the integral evaluated at the 
upper limit tf minus the integral evaluated at the lower limit ti. You also need to know 
that for two functions u and w,

 3
tf

ti

(u + w) dt = 3
tf

ti

u dt + 3
tf

ti

w dt (2.14)

That is, the integral of a sum is equal to the sum of the integrals.

ExAMPLE 2.8  Using calculus to find the position
Use calculus to solve Example 2.7.

SOLVE Figure 2.18 is a linear graph. Its “y-intercept” is seen to 
be 10 m/s and its slope is -5 (m/s)/s. Thus the velocity can be 
described by the equation

 vx = (10 - 5t) m/s

where t is in s. We can find the position x at time t by using 
Equation 2.11:

  x = xi + 3
t

0

vx dt = 30 m + 3
t

0

(10 - 5t) dt

  = 30 m + 3
t

0

10 dt - 3
t

0

5t dt

We used Equation 2.14 for the integral of a sum to get the final 
expression. The first integral is a function of the form u = ctn with 
c = 10 and n = 0; the second is of the form u = ctn with c = 5 
and n = 1. Using Equation 2.13, we have

 3
t

0

10 dt = 10t  `
t

0
= 10 # t - 10 # 0 = 10t m

and  3
t

0

5t dt =
5
2 t 2

 `
t

0
=

5
2
# t 2 -

5
2
# 02 =

5
2t 2 m

Combining the pieces gives

 x = (30 + 10t -
5
2 t 2) m

This is a general result for the position at any time t.
The particle’s turning point occurs at t = 2 s, and its position 

at that time is

 x(at t = 2 s) = 30 + (10)(2) -
5
2 (2)2 = 40 m

The time at which the particle reaches the origin is found by set-
ting x = 0 m:

 30 + 10t -
5
2 t 2 = 0

This quadratic equation has two solutions: t = -2 s or t = 6 s.
When we solve a quadratic equation, we cannot just arbitrarily 

select the root we want. Instead, we must decide which is the 
meaningful root. Here the negative root refers to a time before the 
problem began, so the meaningful one is the positive root, t = 6 s.

ASSESS The results agree with the answers we found previously 
from a graphical solution.

the first two seconds. We can do this by finding the area under 
the curve between t = 0 s and t = 2 s:

  x(at t = 2 s) = xi + area under the curve between 0 s and 2 s

  = 30 m +
1
2 (2 s - 0 s)(10 m/s - 0 m/s)

  = 40 m

The turning point is at x = 40 m.

 c. The particle needs to move �x = -40 m to get from the turn-
ing point to the origin. That is, the area under the curve from 
t = 2 s to the desired time t needs to be -40 m. Because the 
curve is below the axis, with negative values of vx, the area 
to the right of t = 2 s is a negative area. With a bit of geom-
etry, you will find that the triangle with a base extending from 
t = 2 s to t = 6 s has an area of -40 m. Thus the particle 
reaches the origin at t = 6 s.
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Summing Up
As you work on building intuition about motion, you need to be able to move back and 
forth among four different representations of the motion:

	■	 The motion diagram;
	■	 The position-versus-time graph;
	■	 The velocity-versus-time graph;
	■	 The description in words.

Given a description of a certain motion, you should be able to sketch the motion dia-
gram and the position and velocity graphs. Given one graph, you should be able to 
generate the other. And given position and velocity graphs, you should be able to 
“interpret” them by describing the motion in words or in a motion diagram.

vx (m/s) x (m)

4

2

0

�2

10

5

0

�5

�10

10

5

0

�5

�10

10

5

0

�5

�10

10

5

0

�5

�10

t (s)

x (m)

t (s)

x (m)

t (s)t (s)

x (m)

t (s)

(a) (b) (c) (d)

5 10 5 10 5 105 105 10

Stop to think 2.3  Which position-versus-time graph goes with the velocity-versus-time graph on the 
left? The particle’s position at ti = 0 s is xi = -10 m.

2.4 Motion with constant Acceleration
We need one more major concept to describe one-dimensional motion: acceleration. 
Acceleration, as we noted in Chapter 1, is a rather abstract concept. Nonetheless, ac-
celeration is the linchpin of mechanics. We will see very shortly that Newton’s laws 
relate the acceleration of an object to the forces that are exerted on it.

Let’s conduct a race between a Volkswagen Beetle and a Porsche to see which can 
achieve a velocity of 30 m/s (�60 mph) in the shortest time. Both cars are equipped 
with computers that will record the speedometer reading 10 times each second. This 
gives a nearly continuous record of the instantaneous velocity of each car. Table 2.1 
shows some of the data. The velocity-versus-time graphs, based on these data, are 
shown in FIGURE 2.20.

How can we describe the difference in performance of the two cars? It is not 
that one has a different velocity from the other; both achieve every velocity be-
tween 0 and 30 m/s. The distinction is how long it took each to change its velocity 
from 0 to 30 m/s. The Porsche changed velocity quickly, in 6.0 s, while the VW 
needed 15 s to make the same velocity change. Because the Porsche had a velocity 
change �vs = 30 m/s during a time interval �t = 6.0 s the rate at which its velocity 
changed was

 rate of velocity change =
�vs

�t
=

30 m/s

6.0 s
= 5.0 (m/s)/s (2.15)

Notice the units. They are units of “velocity per second.” A rate of velocity change 
of 5.0 “meters per second per second” means that the velocity increases by 5.0 m/s 
during the first second, by another 5.0 m/s during the next second, and so on. In fact, 

Porsche

The Porsche reaches 30 m/s
in 6 s. The VW takes 15 s.

VW
vs (m/s)

30

20

10

0
0 5 10 15

t (s)

Slope � aPorsche avg � 5.0 (m/s)/s

Slope � aVW avg � 2.0 (m/s)/s

�t � 5.0 s

�vs � 10 m/s

FIGURE 2.20 Velocity-versus-time graphs 
for the Porsche and the VW Beetle.

TABLE 2.1 Velocities of a Porsche and a 
Volkswagen Beetle

t(s) vPorsche(m/s) vVW (m/s)

0.0 0.0 0.0

0.1 0.5 0.2

0.2 1.0 0.4

0.3 1.5 0.6

0.4 2.0 0.8
f f f
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the velocity will increase by 5.0 m/s during any second in which it is changing at the 
rate of 5.0 (m/s)/s.

Chapter 1 introduced acceleration as “the rate of change of velocity.” That is, ac-
celeration measures how quickly or slowly an object’s velocity changes. In parallel 
with our treatment of velocity, let’s define the average acceleration aavg during the 
time interval �t to be

 aavg K
�vs

�t
  (average acceleration) (2.16)

Equations 2.15 and 2.16 show that the Porsche had the rather large acceleration of 
5.0 (m/s)/s.

Because �vs and �t are the “rise” and “run” of a velocity-versus-time graph, we 
see that aavg can be interpreted graphically as the slope of a straight-line velocity-
versus-time graph. In other words,

 aavg = slope of the velocity-versus-time graph (2.17)

Figure 2.20 uses this idea to show that the VW’s average acceleration is

 aVW avg =
�vs

�t
=

10 m/s

5.0 s
= 2.0 (m/s)/s

This is less than the acceleration of the Porsche, as expected.
An object whose velocity-versus-time graph is a straight-line graph has a steady 

and unchanging acceleration. There’s no need to specify “average” if the accelera-
tion is constant, so we’ll use the symbol as as we discuss motion along the s-axis with 
constant acceleration.

NOTE  An important aspect of acceleration is its sign. Acceleration a
u
, like position 

r 
u

 and velocity v  

u
, is a vector. For motion in one dimension, the sign of ax (or ay) is 

positive if the vector a
u

 points to the right (or up), negative if it points to the left (or 
down). This was illustrated in Figure 1.19 and the very important Tactics Box 1.4, 
which you may wish to review. It’s particularly important to emphasize that posi-
tive and negative values of as do not correspond to “speeding up” and “slowing 
down.” 

ExAMPLE 2.9  Relating acceleration to velocity

 a. A bicyclist has a velocity of 10 m/s and a constant acceleration 
of 2 (m/s)/s. What is her velocity 1 s later? 2 s later?

 b. A bicyclist has a velocity of -10 m/s and a constant accelera-
tion of 2 (m/s)/s. What is his velocity 1 s later? 2 s later?

SOLVE

 a. An acceleration of 2 (m/s)/s means that the velocity increases 
by 2 m/s every 1 s. If the bicyclist’s initial velocity is 10 m/s, 
then 1 s later her velocity will be 12 m/s. After 2 s, which is 
1 additional second later, it will increase by another 2 m/s to 

NOTE  It is customary to abbreviate the acceleration units (m/s)/s as m/s2. For 
example, the bicyclists in Example 2.9 had an acceleration of 2 m/s2. We will use 
this notation, but keep in mind the meaning of the notation as “(meters per second) 
per second.” 

14 m/s. After 3 s it will be 16 m/s. Here a positive as is causing 
the bicyclist to speed up.

 b. If the bicyclist’s initial velocity is a negative -10 m/s but the 
acceleration is a positive +2 (m/s)/s, then 1 s later his velocity 
will be -8 m/s. After 2 s it will be -6 m/s, and so on. In this 
case, a positive as is causing the object to slow down (decreas-
ing speed v). This agrees with the rule from Tactics Box 1.4: 
An object is slowing down if and only if vs and as have opposite 
signs.
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The Kinematic Equations of constant Acceleration
Consider an object whose acceleration as remains constant during the time interval 
�t = tf - ti. At the beginning of this interval, at time ti, the object has initial veloc-
ity vis and initial position si. Note that ti is often zero, but it does not have to be. We 
would like to predict the object’s final position sf and final velocity vfs at time tf.

The object’s velocity is changing because the object is accelerating. FIGURE 2.23a 
shows the acceleration-versus-time graph, a horizontal line between ti and tf. It is not 
hard to find the object’s velocity vfs at a later time tf. By definition,

 as =
�vs

�t
=

vfs - vis

�t
 (2.18)

which is easily rearranged to give

 vfs = vis + as �t (2.19)

The velocity-versus-time graph, shown in FIGURE 2.23b, is a straight line that starts at vis 
and has slope as.

ExAMPLE 2.10  Running the court
A basketball player starts at the left end of the court and moves 
with the velocity shown in FIGURE 2.21. Draw a motion diagram 
and an acceleration-versus-time graph for the basketball player.

 ax =
�vx

�t
=

-12 m/s

6.0 s
= -2.0 m/s2

The acceleration graph for these 12 s is shown in FIGURE 2.22b. 
Notice that there is no change in the acceleration at t = 9 s, the 
turning point.

VISUALIZE The velocity is positive (motion to the right) and in-
creasing for the first 6 s, so the velocity arrows in the motion 
diagram are to the right and getting longer. From t = 6 s to 
9 s the motion is still to the right (vx is still positive), but the 
arrows are getting shorter because vx is decreasing. There’s a 
turning point at t = 9 s, when vx = 0, and after that the motion 
is to the left (vx is negative) and getting faster. The motion 
diagram of FIGURE 2.22a shows the velocity and the acceleration 
vectors.

SOLVE Acceleration is the slope of the velocity graph. For the first 
6 s, the slope has the constant value

 ax =
�vx

�t
=

6.0 m/s

6.0 s
= 1.0 m/s2

The velocity then decreases by 12 m/s during the 6 s interval from 
t = 6 s to t = 12 s, so

ASSESS The sign of ax does not tell us whether the object is speed-
ing up or slowing down. The basketball player is slowing down 
from  t = 6 s to t = 9 s, then speeding up from t = 9 s to t = 12 s. 
Nonetheless, his acceleration is negative during this entire interval 
because his acceleration vector, as seen in the motion diagram, 
always points to the left.

6

3

0

�3

�6

3 6 9 12
t (s)

vx (m/s)

FIGURE 2.21 Velocity-versus-time graph 
for the basketball player of Example 2.10.
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(a)

(b)
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has constant acceleration.
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FIGURE 2.22 Motion diagram and acceleration graph for 
Example 2.10.
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FIGURE 2.23 Acceleration and velocity 
graphs for constant acceleration.



48    c h a p t e r  2 . Kinematics in One Dimension

As you learned in the last section, the object’s final position is

 sf = si + area under the velocity curve vs between ti and tf (2.20)

The shaded area in Figure 2.23b can be subdivided into a rectangle of area vis �t and a 
triangle of area 12 (as�t)(�t) =

1
2 as(�t)2. Adding these gives

 sf = si + vis  �t +
1
2 as  (�t)2 (2.21)

where �t = tf - ti is the elapsed time. The quadratic dependence on �t causes the 
position-versus-time graph for constant-acceleration motion to have a parabolic shape, 
as shown below in FIGURE 2.24.

Equations 2.19 and 2.21 are two of the basic kinematic equations for motion with 
constant acceleration. They allow us to predict an object’s position and velocity at a 
future instant of time. We need one more equation to complete our set, a direct rela-
tion between position and velocity. First use Equation 2.19 to write �t = (vfs - vis)/as. 
Substitute this into Equation 2.21, giving

 sf = si + vis  1vfs - vis

as
2 +

1
2 as  1vfs - vis

as
2 2

 (2.22)

With a bit of algebra, this is rearranged to read

 vfs 

2 = vis 

2 + 2as  �s (2.23)

where �s = sf - si is the displacement (not the distance!).
Equations 2.19, 2.21, and 2.23, which are summarized in Table 2.2, are the key 

results for motion with constant acceleration.
Figure 2.24 is a comparison of motion with constant velocity (uniform motion) 

and motion with constant acceleration (uniformly accelerated motion). Notice that 
uniform motion is really a special case of uniformly accelerated motion in which the 
constant acceleration happens to be zero. The graphs for a negative acceleration are 
left as an exercise.

TABLE 2.2 The kinematic equations for 
motion with constant acceleration

vfs = vis + as �t

sf = si + vis �t +
1
2 as  (�t)2

vfs 

2 = vis 

2 + 2as �s

Straight line
Parabola

s s

si
sit t

The slope is vs.

Horizontal line

Zero

Motion at constant velocity Motion at constant acceleration

as as

0 0t t

(a) (b)

The acceleration is constant.

Straight lineHorizontal linevs vs

vis

vist t

The slope is as.The velocity is constant.

FIGURE 2.24 Motion with constant velocity and constant acceleration. These graphs 
assume si = 0, vis 7 0, and (for constant acceleration) as 7 0.



2.4 . Motion with Constant Acceleration    49

A Problem-Solving Strategy
This information can be assembled into a problem-solving strategy for kinematics 
with constant acceleration.

PROBLEM-SOLVING
STRATEGy 2.1  Kinematics with constant acceleration

MODEL Use the particle model. Make simplifying assumptions.

VISUALIZE Use different representations of the information in the problem.

 ■	 Draw a pictorial representation. This helps you assess the information you 
are given and starts the process of translating the problem into symbols.

 ■	 Use a graphical representation if it is appropriate for the problem.
 ■	 Go back and forth between these two representations as needed.

SOLVE The mathematical representation is based on the three kinematic equations

  vfs = vis + as  �t

  sf = si + vis  �t +
1
2 as  (�t)2

  vfs 

2 = vis 

2 + 2as  �s

 ■	 Use x or y, as appropriate to the problem, rather than the generic s.
 ■	 Replace i and f with numerical subscripts defined in the pictorial representation.
 ■	 Uniform motion with constant velocity has as = 0.

ASSESS Is your result believable? Does it have proper units? Does it make sense?

NOTE  You are strongly encouraged to solve problems on the Dynamics Work-
sheets found at the back of the Student Workbook. These worksheets will help you 
use the Problem-Solving Strategy and develop good problem-solving skills. 

ExAMPLE 2.11  The motion of a rocket sled

A rocket sled accelerates at 50 m/s2 for 5.0 s, coasts for 3.0 s, 
then deploys a braking parachute and decelerates at 3.0 m/s2 until 
coming to a halt.

 a. What is the maximum velocity of the rocket sled?
 b. What is the total distance traveled?

MODEL Represent the rocket sled as a particle.

VISUALIZE FIGURE 2.25 shows the pictorial representation. Recall 
that we discussed the first two-thirds of this problem as Exam-
ple 1.8 in Chapter 1.

SOLVE a. The maximum velocity is identified in the pictorial 
representation as v1x, the velocity at time t1 when the acceleration 
phase ends. The first kinematic equation in Table 2.2 gives

  v1x = v0x + a0x  (t1 - t0) = a0x  t1

  = (50 m/s2)(5.0 s) = 250 m/s

We started with the complete equation, then simplified by noting 
which terms were zero. Also notice that we found an algebraic ex-
pression for v1x, then substituted numbers. Working algebraically 

FIGURE 2.25 Pictorial representation of the rocket sled.

Continued
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is a hallmark of good problem-solving technique, and many home-
work problems will ask you to do so.
 b. Finding the total distance requires several steps. First, the 

sled’s position when the acceleration ends at t1 is found from 
the second equation in Table 2.2:

  x1 = x0 + v0x  (t1 - t0) +
1
2 a0x  (t1 - t0)

2 =
1
2 a0x  t1 

2

  = 1
2 (50 m/s2)(5.0 s)2 = 625 m

During the coasting phase, which is uniform motion with no 
acceleration (a1x = 0),

  x2 = x1 + v1x  �t = x1 + v1x  (t2 - t1)

  = 625 m + (250 m/s)(3.0 s) = 1375 m

Notice that, in this case, �t is not simply t. The braking phase 
is a little different because we don’t know how long it lasts. But 

we do know that the sled ends with v3x = 0 m/s, so we can use 
the third equation in Table 2.2:

 v3x 

2 = v2x 

2 + 2a2x  � x = v2x 

2 + 2a2x  (x3 - x2)

This can be solved for x3  :

  x3 = x2 +
v3x 

2 - v2x 

2

2a2x

  = 1375 m +
0 - (250 m/s)2

2(-3.0 m/s2)
= 12,000 m

ASSESS Using the approximate conversion factor 1 m/s � 2 mph 
from Table 1.5, we see that the top speed is �  500 mph. The total 
distance traveled is �12 km � 7 mi. This is reasonable because 
it takes a very long distance to stop from a top speed of 500 mph!

NOTE  We used explicit numerical subscripts throughout the mathematical rep-
resentation, each referring to a symbol that was defined in the pictorial represen-
tation. The subscripts i and f in the Table 2.2 equations are just generic “place 
holders” that don’t have unique values. During the acceleration phase we had i = 0 
and f = 1. Later, during the coasting phase, these became i = 1 and f = 2. The nu-
merical subscripts have a clear meaning and are less likely to lead to confusion. 

ExAMPLE 2.12  Friday night football
Fred catches the football while standing directly on the goal line. 
He immediately starts running forward with an acceleration of 
6 ft/s2. At the moment the catch is made, Tommy is 20 yards away 
and heading directly toward Fred with a steady speed of 15 ft/s. 
If neither deviates from a straight-ahead path, where will Tommy 
tackle Fred?

MODEL Represent Fred and Tommy as particles.

VISUALIZE The pictorial representation is shown in FIGURE 2.26. 
With two moving objects we need the additional subscripts F and 
T to distinguish Fred’s symbols and Tommy’s symbols. The axes 
have been chosen so that Fred starts at (x0)F =  0 ft  and moves to 
the right while Tommy starts at (x0)T = 60 ft and runs to the left 
with a negative velocity.

SOLVE We want to find where Fred and Tommy have the same 
position. The pictorial representation designates time t1 as when 
they meet. The second equation of Table 2.2 allows us to find their 
positions at time t1. These are:

  (x1)F = (x0)F + (v0x)F(t1 - t0) +
1
2 (ax)F(t1 - t0)

2

  =
1
2 (ax)F  t1 

2

  (x1)T = (x0)T + (v0x)T(t1 - t0) +
1
2 (ax)T(t1 - t0)

2

  = (x0)T + (v0x)T t1

aF aT � 0

x
0

Known

Start
Fred Tommy

Find

(x0)F � 0 yards  (v0x)F � 0 ft/s  t0 � 0 s

(x0)F, (v0x)F

t0

t1

t0

(x1)F, (v1x)F (x0)T, (v0x)T

(x1)T, (v1x)T

(x0)T � 20 yards � 60 ft
(v0x)T � �15 ft/s
aF � 6 ft/s2  aT � 0 ft/s2

(x1)F at t1 when (x1)F � (x1)T
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Fred Tommy
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r vT

r
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raF

r 0
r

0
r

0
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FIGURE 2.26 Pictorial representation for Example 2.12.
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NOTE  The purpose of the Assess step is not to prove that an answer must be right 
but to rule out answers that, with a little thought, are clearly wrong. 

It is worth exploring Example 2.12 graphically. FIGURE 2.27 shows position-versus-
time graphs for Fred and Tommy. The curves intersect at t = 2.62 s, and that is where 
the tackle occurs. You should compare this problem to Example 2.3 and Figure 2.7 for 
Bob and Susan to notice the similarities and the differences.

Notice that Tommy’s position equation contains the term (v0x)T t1  , 
not - (v0x)T t1  . The fact that he is moving to the left has already 
been considered in assigning a negative value to (v0x)T, hence we 
don’t want to add any additional negative signs in the equation. If 
we now set (x1)F and (x1)T equal to each other, indicating the point 
of the tackle, we can solve for t1:

  12 (ax)F  t1 

2 = (x0)T + (v0x)T t1

  12 (ax)F  t1 

2 - (v0x)T t1 - (x0)T = 0

  3 t1 

2 + 15t1 - 60 = 0

The solutions of this quadratic equation for t1 are t1 =

(-7.62 s, +2.62 s). The negative time is not meaningful in this 

problem, so the time of the tackle is t1 = 2.62 s. We’ve kept an 
extra significant figure in the solution to minimize round-off error 
in the next step. Using this value to compute (x1)F gives

 (x1)F =
1
2 (ax)F  t1 

2 = 20.6 feet = 6.9 yards

Tommy makes the tackle at just about the 7-yard line!

ASSESS The answer had to be between 0 yards and 20 yards. 
Because Tommy was already running, whereas Fred started from 
rest, it is reasonable that Fred will cover less than half the 20-yard 
separation before meeting Tommy. Thus 6.9 yards is a reasonable 
answer.

60

45

30

15

0

x (ft)

t (s)
0 1 2

2.62 s
3 4

Tommy

Fred

Tommy tackles
Fred here.

FIGURE 2.27 Position-versus-time graphs 
for Fred and Tommy.

Stop to think 2.4  Which velocity-versus-time graph or graphs go with the acceleration-versus-
time graph? The particle is initially moving to the right.

2.5 Free Fall
The motion of an object moving under the influence of gravity only, and no other 
forces, is called free fall. Strictly speaking, free fall occurs only in a vacuum, where 
there is no air resistance. Fortunately, the effect of air resistance is small for “heavy 
objects,” so we’ll make only a very slight error in treating these objects as if they were 
in free fall. For very light objects, such as a feather, or for objects that fall through very 
large distances and gain very high speeds, the effect of air resistance is not negligible. 
Motion with air resistance is a problem we will study in Chapter 6. Until then, we will 
restrict our attention to “heavy objects” and will make the reasonable assumption that 
falling objects are in free fall.

Galileo, in the 17th century, was the first to make detailed measurements of fall-
ing objects. The story of Galileo dropping different weights from the leaning bell 

ax vx vx vx vx

0 0 0 0 0t t t t t

(a) (b) (c) (d)
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tower at the cathedral in Pisa is well known, although historians cannot confirm its 
truth. But bell towers were common in the Italy of Galileo’s day, so he had ample 
opportunity to make the measurements and observations that he describes in his 
writings.

Galileo developed a model of motion—motion in the absence of air resistance—
that could only be approximated by any real object. His discovery can be summarized 
as follows:

	■	 Two objects dropped from the same height will, if air resistance can be neglected, 
hit the ground at the same time and with the same speed.

	■	 Consequently, any two objects in free fall, regardless of their mass, have the 
same acceleration	aufree fall. This is an especially important conclusion.

FIGURE 2.28a shows the motion diagram of an object that was released from rest and 
falls freely. FIGURE 2.28b shows the object’s velocity graph. The motion diagram and 
graph are identical for a falling pebble and a falling boulder. The fact that the velocity 
graph is a straight line tells us the motion is one of constant acceleration, and afree fall 
is easily found from the slope of the graph. Careful measurements show that the value 
of a

u

free fall varies ever so slightly at different places on the earth, due to the slightly 
nonspherical shape of the earth and to the fact that the earth is rotating. A global 
average, at sea level, is

 a
u

free fall = (9.80 m/s2, vertically downward) (2.24)

For practical purposes, vertically downward means along a line toward the center of 
the earth. However, we’ll learn in Chapter 13 that the rotation of the earth has a small 
effect on both the size and direction of a

u

free fall.
The length, or magnitude, of a

u

free fall is known as the free-fall acceleration, and it 
has the special symbol g:

 g = 9.80 m/s2 (free-fall acceleration)

Several points about free fall are worthy of note:

	■	 g, by definition, is always positive. There will never be a problem that will use a 
negative value for	g. But, you say, objects fall when you release them rather than 
rise, so how can g be positive?

	■	 g is not the acceleration afree fall, but simply its magnitude. Because we’ve chosen 
the y-axis to point vertically upward, the downward acceleration vector a

u

free fall has 
the one-dimensional acceleration

 ay = afree fall = -g (2.25)

	 	 It is ay that is negative, not g.
	■	 Because free fall is motion with constant acceleration, we can use the kinematic 

equations of Table 2.2 with the acceleration being that of free fall, ay = -g.
	■	 g is not called “gravity.” Gravity is a force, not an acceleration. The symbol g 

recognizes the influence of gravity, but g is the free-fall acceleration.
	■	 g = 9.80 m/s2 only on earth. Other planets have different values of g. You will 

learn in Chapter 13 how to determine g for other planets.

NOTE  Despite the name, free fall is not restricted to objects that are literally fall-
ing. Any object moving under the influence of gravity only, and no other forces, 
is in free fall. This includes objects falling straight down, objects that have been 
tossed or shot straight up, and projectile motion. 

In the absence of air resistance, any two 
objects fall at the same rate and hit the 
ground at the same time. The apple and 
feather seen here are falling in a vacuum.

r

(a)

afree fall
r

rv

afree fall � slope
           � �9.80 m/s2

(b)
vy (m/s)

t (s)0

�9.8

�19.6

�29.4

1 2 3

FIGURE 2.28 Motion of an object in free 
fall.
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ExAMPLE 2.14  Finding the height of a leap

The springbok, an antelope 
found in Africa, gets its name 
from its remarkable jump-
ing ability. When startled, a 
springbok will leap straight 
up into the air—a maneuver 
called a “pronk.” A springbok 
goes into a crouch to perform 
a pronk. It then extends its 
legs forcefully, accelerating 
at 35 m/s2 for 0.70 m as its 
legs straighten. Legs fully ex-
tended, it leaves the ground 
and rises into the air. How 
high does it go?

MODEL Represent the springbok as a particle.

VISUALIZE FIGURE 2.30 shows the pictorial representation. This is 
a problem with a beginning point, an end point, and a point in 

ExAMPLE 2.13  A falling rock
A rock is released from rest at the top of a 100-m-tall building. 
How long does the rock take to fall to the ground, and what is its 
impact velocity?

MODEL Represent the rock as a particle. Assume air resistance is 
negligible.

VISUALIZE FIGURE 2.29 shows the pictorial representation. We 
have placed the origin at the ground, which makes y0 = 100 m. 
Although the rock falls 100 m, it is important to notice that the 
displacement is �y = y1 - y0 = -100 m.

The { sign indicates that there are two mathematical solutions; 
therefore we have to use physical reasoning to choose between 
them. A negative t1 would refer to a time before we dropped the 
rock, so we select the positive root: t1 = 4.52 s.

Now that we know the fall time, we can use the first kinematic 
equation to find v1y  :

  v1y = v0y - g�t = -gt1 = - (9.80 m/s2)(4.52 s)

  = -44.3 m/s

Alternatively, we could work directly from the third kinematic 
equation:

 v1y = 2v0y 

2 - 2g�y = 2-2(9.80 m/s2)(-100 m) = { 44.3 m/s

This method is useful if you don’t know �t. However, we must 
again choose the correct sign of the square root. Because the 
velocity vector points downward, the sign of vy has to be negative. 
Thus v1y = -44.3 m/s. The importance of careful attention to the 
signs cannot be overemphasized!

A common error would be to say “The rock fell 100 m, so 
�y = 100 m.” This would have you trying to take the square root 
of a negative number. As noted above, �y is not a distance. It is a 
displacement, with a carefully defined meaning of yf - yi. In this 
case, �y = y1 - y0 = -100 m.

ASSESS Are the answers reasonable? Well, 100 m is about 300 
feet, which is about the height of a 30-floor building. How long 
does it take something to fall 30 floors? Four or five seconds 
seems pretty reasonable. How fast would it be going at the bottom? 
Using 1 m/s � 2 mph, we find that 44.3 m/s � 90 mph. That also 
seems pretty reasonable after falling 30 floors. Had we misplaced 
a decimal point, though, and found 443 m/s, we would be suspi-
cious when we converted this to � 900 mph! The answers all 
seem reasonable.

a

0

ay

y0, v0y, t0

y1, v1y, t1

r

y

Known
y0 � 100 m
v0y � 0 m/s t0 � 0 s

ay � �g � �9.80 m/s2
y1 � 0 m

Find
t1 and v1y

Start
rv

FIGURE 2.29 Pictorial representation of a falling rock.

SOLVE Free fall is motion with the specific constant acceleration 
ay = -g. The first question involves a relation between time and 
distance, so only the second equation in Table 2.2 is relevant. 
Using v0y = 0 m/s and t0 = 0 s, we find

 y1 = y0 + v0y  �t +
1
2 ay  �t 2 = y0 + v0y  �t -

1
2 g�t 2 = y0 -

1
2 gt1 

2

We can now solve for t1  , finding

 t1 = B2(y0 - y1)

g
= B2(100 m - 0 m)

9.80 m/s2 = { 4.52 s

Continued

between where the nature of the motion changes. We’ve identified 
these points with subscripts 0, 1, and 2. The motion from 0 to 1 
is a rapid upward acceleration until the springbok’s feet leave the 
ground at 1. Even though the springbok is moving upward from 1 

FIGURE 2.30 Pictorial representation of a startled springbok.
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2.6 Motion on an Inclined Plane
FIGURE 2.31a shows a problem closely related to free fall: that of motion down a straight, 
but frictionless, inclined plane, such as a skier going down a slope on frictionless 
snow. What is the object’s acceleration? Although we’re not yet prepared to give 
a rigorous derivation, we can deduce the acceleration with a plausibility argument.

FIGURE 2.31b shows the free-fall acceleration a
u

free fall the object would have if the 
incline suddenly vanished. The free-fall acceleration points straight down. This vector 
can be broken into two pieces: a vector a

u
} that is parallel to the incline and a vector a

u

# 
that is perpendicular to the incline. The surface of the incline somehow “blocks” a

u

#  , 
through a process we will examine in Chapter 6, but a

u
} is unhindered. It is this piece 

of a
u

free fall  , parallel to the incline, that accelerates the object.
By definition, the length, or magnitude, of a

u

free fall is g. Vector a
u
} is opposite angle u 

(Greek theta), so the length, or magnitude, of a
u
} must be g sin u. Consequently, the 

one-dimensional acceleration along the incline is

 as = { g sin u (2.26)

The correct sign depends on the direction in which the ramp is tilted. Examples will 
illustrate.

Equation 2.26 makes sense. Suppose the plane is perfectly horizontal. If you place 
an object on a horizontal surface, you expect it to stay at rest with no acceleration. 
Equation 2.26 gives as = 0 when u = 0�, in agreement with our expectations. Now 
suppose you tilt the plane until it becomes vertical, at u = 90�. Without friction, an 
object would simply fall, in free fall, parallel to the vertical surface. Equation 2.26 
gives as = -g = afree fall when u = 90�, again in agreement with our expectations. 
Equation 2.26 gives the correct result in these limiting cases.

to 2, this is free-fall motion because the springbok is now moving 
under the influence of gravity only.

How do we put “How high?” into symbols? The clue is that 
the very top point of the trajectory is a turning point, and we’ve 
seen that the instantaneous velocity at a turning point is v2y = 0. 
This was not explicitly stated but is part of our interpretation of 
the problem.

SOLVE For the first part of the motion, pushing off, we know a dis-
placement but not a time interval. The third equation in Table 2.2 
is perfect for this situation:

  v1y 

2 = v0y 

2 +  2a0y �y = 2(35 m/s2)(0.70 m) = 49 m2/s2

  v1y = 249 m2/s2 = 7.0 m/s

The springbok leaves the ground with a velocity of 7.0 m/s. This is 
the starting point for the problem of a projectile launched straight 
up from the ground. One possible solution is to use the velocity 

equation to find how long it takes to reach maximum height, then 
the position equation to calculate the maximum height. But that 
takes two separate calculations. It is easier to make another use of 
the velocity-displacement equation:

 v2y 

2 = 0 = v1y 

2 + 2a1y �y = v1y 

2-2g (y2 - y1)

where now the acceleration is a1y = -g. Using y1 = 0, we can 
solve for y2, the height of the leap:

 y2 =
v1y 

2

2g
=

(7.0 m/s)2

2(9.80 m/s2)
= 2.5 m

ASSESS 2.5 m is a bit over 8 feet, a remarkable vertical jump. But 
these animals are known for their jumping ability, so the answer 
seems reasonable. Note that it is especially important in a multi-
part problem like this to use numerical subscripts to distinguish 
different points in the motion.

Same angle

(b)

Angle of
incline

(a)

u

u

u

rv
ar

This piece of afree fall

accelerates the object
down the incline.

r

a}
r

a�
r

afree fall
r

FIGURE 2.31 Acceleration on an inclined 
plane.

ExAMPLE 2.15  Measuring acceleration
In the laboratory, a 2.00-m-long track has been inclined as shown 
in FIGURE 2.32. Your task is to measure the acceleration of a cart 
on the ramp and to compare your result with what you might have 
expected. You have available five “photogates” that measure the 
cart’s speed as it passes through. You place a gate every 30 cm 
from a line you mark near the top of the track as the starting line. 
One run generates the data shown in the table.

180 cm

20 cm

FIGURE 2.32 The 
experimental setup.

Distance (cm) Speed (m/s)

0 0.00
30 0.75
60 1.15
90 1.38
120 1.56
150 1.76
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The first entry isn’t a photogate measurement, but it is a valid data 
point because you know the cart’s speed is zero at the point where 
you release it.

NOTE  Physics is an experimental science. Our knowledge of the 
universe is grounded in observations and measurements. Consequent-
ly, some examples and homework problems throughout this book will 
be based on data. These won’t replace an actual laboratory experi-
ence, but they will provide you with an opportunity for thinking about 
how we make sense of the underlying theory. Data-based homework 
problems require the use of a spreadsheet, graphing software, or a 
graphing calculator in which you can “fit” data with a straight line. 

MODEL Represent the cart as a particle.

VISUALIZE FIGURE 2.33 shows the pictorial representation. We’ve 
chosen the x-axis to be parallel to the track, which is tilted at 
angle u = tan-1(20 cm/180 cm) = 6.34�. This is motion on an 
inclined plane, so you might expect the cart’s acceleration to be 
ax = g sin u = 1.08 m/s2. In any laboratory situation, it’s good to 
have an idea what to expect.

in the +x-direction, so we can interpret the speeds as velocities. And 
we’ve measured distance from the origin, so the distance values are x.

Rather than graphing vx versus x, suppose we graphed vx 

2 
versus x. If we let y = vx 

2, the kinematic equation reads

 y = 2ax  x

This is in the form of a linear equation: y = mx + b, where m is 
the slope and b is the y-intercept. In this case, m = 2ax and b = 0. 
So if the cart really does have constant acceleration, a graph of 
vx 

2 versus x should be linear with a y-intercept of zero. This is a 
prediction that we can test.

Thus our analysis has three steps:

	1.	Graph vx 

2 versus x. If the graph is a straight line with a 
y-intercept of zero (or very close to zero), then we can conclude 
that the cart has constant acceleration on the ramp. If not, the 
acceleration is not constant and we cannot use the kinematic 
equations for constant acceleration.

	2.	 If the graph has the correct shape, we can determine its slope m.
	3.	Because kinematics predicts m = 2ax, the acceleration is 

ax = m/2.

FIGURE 2.34b is the graph of vx 

2 versus x. It does turn out to be 
a straight line with a y-intercept of zero, and this is the evidence 
we need that the cart has a constant acceleration on the ramp. To 
proceed, we want to determine the slope by finding the straight 
line that is the “best fit” to the data. This is a statistical technique, 
justified in a statistics class, but one that is implemented in spread-
sheets and graphing calculators. The solid line in Figure 2.34b is 
the best-fit line for this data, and its equation is shown. We see 
that the slope is m = 2.06 m/s2. Slopes	have	units, and the units 
come not from the fitting procedure but by looking at the axes of 
the graph. Here the vertical axis is velocity squared, with units of 
(m/s)2, while the horizontal axis is position, measured in m. Thus 
the slope, rise over run, has units of m/s2.

Finally, we can determine that the cart’s acceleration was

 ax =
m

2
= 1.03 m/s2

This is about 5% less than the 1.08 m/s2 we expected. Two pos-
sibilities come to mind. Perhaps the distances used to find the tilt 
angle weren’t measured accurately. Or, more likely, the cart rolls 
with a small bit of friction. The predicted acceleration ax = g sin u 
is for a frictionless inclined plane; any friction would decrease the 
acceleration.

ASSESS How did we know to graph vx 

2 versus x rather than vx ver-
sus x? We were guided by theory! The analysis of data requires link-
ing measurements with theory, and we had a theoretical prediction, 
from kinematics, that vx 

2 is proportional to x for constant-accelera-
tion motion that starts from rest at the origin. Thus the shape of a 
vx 

2-versus-x graph both tests the assertion that the acceleration is 
constant and, if the assertion is true, allows us to find the accelera-
tion from the slope of the graph. We’ll see this procedure over and 
over: Use theory to suggest a graph that should be linear if the as-
sumptions of the theory are true, graph it, then—if the graph really is 
linear—match the experimentally determined slope and/or intercept 
with their theoretical predictions to extract useful results.

In this case, the graph was linear and we could use the slope to 
determine the cart’s acceleration. The value was just slightly less 
than would be predicted for a frictionless incline, so the result is 
reasonable.

SOLVE In analyzing data, we want to use all the data, not just pick 
out one or two measurements. Further, we almost always want to use 
graphs when we have a series of measurements. We might start by 
graphing speed versus distance traveled. This is shown in FIGURE 2.34a, 
where—recognizing that our data table has inconsistent units—we 
converted distances to meters. As expected, speed increases with dis-
tance, but the graph isn’t linear and that makes it hard to analyze.

Known

0

Find
x0 � 0 m
t0 � 0 s u � 6.34�

v0x � 0 m/s

x0, v0x, t0 x, vx, t

ax

ax

u

FIGURE 2.33 The pictorial representation 
of the cart on the track.
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0.0

1.0

2.0

0.0 0.3 0.6 0.9 1.51.2

y � 2.06x � 0.00
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x (m)

1.5

2.0

0.0

0.5

1.0

0.0 0.3 0.6 0.9 1.51.2

(b)
v2 (m2/s2)

(a)
v (m/s)

d (m)

FIGURE 2.34 Graphs of velocity and of velocity squared.

Rather than proceeding by trial and error, let’s be guided by 
theory. We have information about speed and distance, but not 
about how long it took the cart to reach each photogate. If the cart 
has constant acceleration—which we don’t yet know and need to 
confirm—the third equation of Table 2.2 tells us that velocity and 
displacement should be related by

 vx 

2 = v0x 

2 +  2ax �x = 2ax  x

The last step was based on starting from rest (v0x = 0) at the origin 
(�x = x - x0 = x). Although we measured speed, the cart is moving 
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Thinking Graphically
Kinematics is the language of motion. The concepts we have developed in this chapter 
will be used extensively throughout the rest of this textbook. One of the most impor-
tant ideas, summarized in Tactics Box 2.2, has been that the relationships among posi-
tion, velocity, and acceleration can be expressed graphically.

TAcTIcS
B O x  2 . 2 

 Interpreting graphical representations of motion

Exercises 15, 16, 22 

ExAMPLE 2.16  From track to graphs
Draw position, velocity, and acceleration graphs for the ball on the 
frictionless track of FIGURE 2.35.

s

vs

as

0

0

0

t

t

t

Initial
position

Initial
velocity

Passing
through
origin

Turning
point

Slope of
position is
value of
velocity.

Slope of
velocity is
value of
acceleration.

The particle is 
speeding up, so vs and 
as have the same signs.The particle is slowing 

down, so vs and as have 
opposite signs.

A good way to solidify your understanding of motion graphs is to consider the 
problem of a hard, smooth ball rolling on a smooth track. The track is made up of 
several straight segments connected together. Each segment may be either horizontal 
or inclined. Your task is to analyze the ball’s motion graphically.

There are a small number of rules to follow:

	 1.	Assume that the ball passes smoothly from one segment of the track to the next, 
with no loss of speed and without ever leaving the track.

	 2.	The position, velocity, and acceleration graphs should be stacked vertically. 
They should each have the same horizontal scale so that a vertical line drawn 
through all three connects points describing the same instant of time.

	 3.	The graphs have no numbers, but they should show the correct relationships. 
For example, the position graph should have steeper slopes in regions of higher 
speed.

	 4.	The position s is the position measured along the track. Similarly, vs and as are 
the velocity and acceleration parallel to the track.

v0s � 0

FIGURE 2.35 A ball rolling along a track.
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Two points are worth noting:

	 1.	The dotted vertical lines through the graphs show the instants when the ball 
moves from one segment of the track to the next. Because of rule 1, the speed 
does not change abruptly at these points; it changes gradually.

	 2.	The parabolic section of the position-versus-time graph blends smoothly into the 
straight lines on either side. This is a consequence of rule 1. An abrupt change of 
slope (a “kink”) would indicate an abrupt change in velocity and would violate rule 1.

VISUALIZE It is often easiest to begin with the velocity. Here the 
ball starts with an initial velocity v0s. There is no acceleration on 
the horizontal surface (as = 0 if u = 0�), so the velocity remains 
constant until the ball reaches the slope. The slope is an inclined 
plane that, as we have learned, has constant acceleration. The ve-
locity increases linearly with time during constant-acceleration 
motion. The ball returns to constant-velocity motion after reaching 
the bottom horizontal segment. The middle graph of FIGURE 2.36 
shows the velocity.

We have enough information to draw the acceleration graph. 
We noted that the acceleration is zero while the ball is on the 
horizontal segments, and as has a constant positive value on the 
slope. These accelerations are consistent with the slope of the 
velocity graph: zero slope, then positive slope, then a return to 
zero slope. The acceleration cannot really change instantly from 
zero to a nonzero value, but the change can be so quick that we do 
not see it on the time scale of the graph. That is what the vertical 
dotted lines imply.

Finally, we need to find the position-versus-time graph. The 
position increases linearly with time during the first segment 
at constant velocity. It also does so during the third segment of 

s

vs

v0s

as

t

t

t

The position graph changes
smoothly, without kinks.

FIGURE 2.36 Motion graphs for the ball in Example 2.16.

motion, but with a steeper slope to indicate a faster velocity. In 
between, while the acceleration is nonzero but constant, the posi-
tion graph has a parabolic shape.

ExAMPLE 2.17  From graphs to track
FIGURE 2.37 shows a set of motion graphs for a ball moving on a 
track. Draw a picture of the track and describe the ball’s initial 
condition. Each segment of the track is straight, but the segments 
may be tilted.

VISUALIZE Let’s begin by examining the velocity graph. The ball 
starts with initial velocity v0s 7 0 and maintains this velocity for 

awhile; there’s no acceleration. Thus the ball must start out roll-
ing to the right on a horizontal track. At the end of the motion, the 
ball is again rolling on a horizontal track (no acceleration, con-
stant velocity), but it’s rolling to the left because vs is negative. 
Further, the final speed ( 0 vs 0 ) is greater than the initial speed. 
The middle section of the graph shows us what happens. The 
ball starts slowing with constant acceleration (rolling uphill), 
reaches a turning point (s is maximum, vs = 0) , then speeds 
up in the opposite direction (rolling downhill). This is still a 
negative acceleration because the ball is speeding up in the nega-
tive s-direction. It must roll farther downhill than it had rolled 
uphill before reaching a horizontal section of track. FIGURE 2.38 
shows the track and the initial conditions that are responsible for 
the graphs of Figure 2.37.

s

vs

v0s

as

t

t

t

0

0

0

FIGURE 2.37 Motion graphs of a ball 
rolling on a track of unknown shape.

v0s � 0

This track has a “switch.”  A ball 
moving to the right passes through and 
heads up the incline, but a ball rolling 
downhill goes
straight through.

FIGURE 2.38 Track responsible for the motion 
graphs of Figure 2.37.
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2.7 Instantaneous Acceleration
Although constant acceleration makes for straightforward problems and will often 
be assumed as part of a simplified model of motion, real moving objects only rarely 
have constant acceleration. For example, FIGURE 2.39a is a realistic velocity-versus-time 
graph for a car leaving a stop sign. The graph is not a straight line, so this is not motion 
with constant acceleration.

We can define an instantaneous acceleration in much the same way that we defined 
the instantaneous velocity. The instantaneous velocity at time t is the slope of the po-
sition-versus-time graph at that time or, mathematically, the derivative of the position 
with respect to time. By analogy: The instantaneous acceleration as is the slope of 
the line that is tangent to the velocity-versus-time curve at time t. Mathematically, 
this is

 as =
dvs

dt
= slope of the velocity-versus-time graph at time t (2.27)

The instantaneous acceleration is the rate of change of the velocity. FIGURE 2.39b applies 
this idea by showing the car’s acceleration graph. At each instant of time, the value of 
the car’s acceleration is the slope of its velocity graph. The initially steep slope indicates 
a large initial acceleration. The acceleration decreases to zero as the car reaches cruising 
speed.

The reverse problem—to find the velocity vs if we know the acceleration as at all in-
stants of time—is also important. Again with analogy to velocity and position, an accel-
eration curve can be divided into N very narrow steps so that during each step the accel-
eration is essentially constant. During step k, the velocity changes by �(vs)k = (as)k�t. 
This is the area of the small rectangle under the step. The total velocity change between 
ti and tf is found by adding all the small �(vs)k  . In the limit �t S 0, we have

 vfs = vis + lim
�tS0

 a
N

k=1
(as)k  �t = vis + 3

tf

ti

as dt (2.28)

The graphical interpretation of Equation 2.28 is

 vfs = vis + area under the acceleration curve as between ti and tf (2.29)

ExAMPLE 2.18  A nonuniform acceleration
A particle’s velocity is given by vs = [10 - (t - 5)2] m/s, where 
t is in s.

 a. Find an expression for the particle’s acceleration as, then draw 
velocity and acceleration graphs.

 b. Describe the motion.

MODEL We’re told that this is a particle.

(a) (b) (c) (d) (e)

as as as as as

t t t t t

Stop to think 2.5  The ball rolls up the ramp, then back down. Which is the correct acceleration graph?

vx

t

The value of the accel-
eration is the slope of
the velocity graph.

The car speeds up from rest until
it reaches a steady cruising speed.

ax

t

Shallow slope is
small acceleration.

Steep slope is large
acceleration; the velocity
is changing quickly.

(a)

(b)

FIGURE 2.39 Velocity and acceleration 
graphs of a car leaving a stop sign.

VISUALIZE FIGURE 2.40a shows the velocity graph. It is a parabola 
centered at t = 5 s with an apex vmax = 10 m/s. The slope of vs 
is positive but decreasing in magnitude for t 6 5 s. The slope is 
zero at t = 5 s, and it is negative and increasing in magnitude for 
t 7 5 s. Thus the acceleration graph should start positive, decrease 
steadily, pass through zero at t = 5 s, then become increasingly 
negative.
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The velocity is maximum
at the instant as � 0.

FIGURE 2.40 Velocity and acceleration 
graphs for Example 2.18.

SOLVE a. We can find an expression for as by taking the deriva-
tive of vs. First, expand the square to give

 vs = (- t 2 + 10t - 15) m/s

Then use the derivative rule (Equation 2.6) to find

 as =
dvs

dt
= (-2t + 10) m/s2

where t is in s. This is a linear equation that is graphed in 
FIGURE 2.40b. The graph meets our expectations.

 b. This is a complex motion. The particle starts out moving to the 
left (vs 6 0) at 15 m/s. The positive acceleration causes the speed 
to decrease (slowing down because vs and as have opposite signs) 
until the particle reaches a turning point (vs = 0) just before 
t = 2 s. The particle then moves to the right (vs 7 0) and speeds 
up until reaching maximum speed at t = 5 s. From t = 5 s to just 
after t = 8 s, the particle is still moving to the right (vs 7 0) but 
slowing down. Another turning point occurs just after t = 8 s. 
Then the particle moves back to the left and gains speed as the 
negative as makes the velocity ever more negative.

Stop to think 2.6  Rank in order, from most 
positive to least positive, the accelerations at 
points A to C.

 a. aA 7 aB 7 aC  

 b. aC 7 aA 7 aB  

 c. aC 7 aB 7 aA  

 d. aB 7 aA 7 aC  

vs

t0

A

B

C

ExAMPLE 2.19  Finding velocity from acceleration
FIGURE 2.41 shows the acceleration graph for a particle with an ini-
tial velocity of 10 m/s. What is the particle’s velocity at t = 8 s?

VISUALIZE Figure 2.41 is a graphical representation of the motion.

SOLVE The change in velocity is found as the area under the ac-
celeration curve:

vfs = vis + area under the acceleration curve as between ti and  tf

The area under the curve between ti = 0 s and tf = 8 s can be sub-
divided into a rectangle (0 s … t … 4 s) and a triangle  (4 s …  
t … 8 s). These areas are easily computed. Thus

  vs(at t = 8 s) = 10 m/s + (4 (m/s)/s)(4 s)

           + 1
2 (4 (m/s)/s)(4 s)

  = 34 m/s

as (m/s2)

t (s)
2 4 6 8 10

�vs is the area
under the curve.4

2

0

�2

FIGURE 2.41 Acceleration graph for Example 2.19.

MODEL We’re told this is the motion of a particle.
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chALLENGE ExAMPLE 2.20  Rocketing along
A rocket sled accelerates along a long, horizontal rail. Starting 
from rest, two rockets burn for 10 s, providing a constant accel-
eration. One rocket then burns out, halving the acceleration, but 
the other burns for an additional 5 s to boost the sled’s speed to 
625 m/s. How far has the sled traveled when the second rocket 
burns out?

MODEL Represent the rocket sled as a particle.

VISUALIZE FIGURE 2.42 shows the pictorial representation. This is 
a two-part problem with a beginning, an end (the second rocket 
burns out), and a point in between where the motion changes (the 
first rocket burns out).

where we simplified as much as possible by knowing that the sled 
started from rest at the origin at t0 = 0 s. We can’t compute nu-
merical values, but these are valid algebraic expressions that we 
can carry over to the second part of the motion.

From t1 to t2, the acceleration is a smaller a1x. The velocity 
when the second rocket burns out is

 v2x = v1x + a1x �t = a0x  t1 + a1x(t2- t1)

where for v1x we used the algebraic result from the first part of the 
motion. Now we have enough information to complete the solu-
tion. We know that the acceleration is halved when the first rocket 
burns out, so a1x =

1
2 a0x. Thus

 v2x = 625 m/s = a0x
# 10 s +

1
2 a0x

# 5 s = (12.5 s) # a0x

Solving, we find a0x = 50 m/s2.
With the acceleration now known, we can calculate the posi-

tion and velocity when the first rocket burns out:

  x1 =
1
2 a0x  t1 

2 =
1
2 (50 m/s2)(10 s)2 = 2500 m

  v1x = a0x  t1 = (50 m/s2)(10 s) = 500 m/s

Finally, the position when the second rocket burns out is

  x2 = x1 + v1x �t +
1
2 a1x(�t)2

  = 2500 m + (500 m/s)(5 s) +
1
2 (25 m/s2)(5 s)2 = 5300 m

The sled has traveled 5300 m when it reaches 625 m/s at the 
burnout of the second rocket.

ASSESS 5300 m is 5.3 km, or roughly 3 miles. That’s a long way 
to travel in 15 s! But the sled reaches incredibly high speeds. At 
the final speed of 625 m/s, over 1200 mph, the sled would travel 
nearly 10 km in 15 s. So 5.3 km in 15 s for the accelerating sled 
seems reasonable.

SOLVE The difficulty with this problem is that there’s not enough 
information to completely analyze either the first or the second 
part of the motion. A successful solution will require combining 
information about both parts of the motion, and that can be done 
only by working algebraically, not worrying about numbers until 
the end of the problem. A well-drawn pictorial representation and 
clearly defined symbols are essential.

The first part of the motion, with both rockets firing, has accel-
eration a0x. The sled’s position and velocity when the first rocket 
burns out are

  x1 = x0 + v0x �t +
1
2 a0x(�t)2 =

1
2 a0x  t1 

2

  v1x = v0x + a0x �t = a0x  t1

FIGURE 2.42 The pictorial representation of the rocket sled.
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S U M M A R y
The goal of Chapter 2 has been to learn how to solve problems about motion in a straight line.

General Principles
Kinematics describes motion in terms of position, velocity, and acceleration.

General kinematic relationships are given mathematically by:

Instantaneous velocity    vs = ds/dt =  slope of position graph

Instantaneous acceleration as = dvs/dt =  slope of velocity graph

Final	position  sf = si + 3
tf

ti

vs dt = si + e area under the velocity
curve from ti to tf

Final	velocity vfs = vis + 3
tf

ti

as dt = vis + e area under the acceleration
curve from ti to tf

The kinematic equations for motion with 
constant acceleration are:

  vfs = vis + as  �t

  sf = si + vis  �t +
1
2 as(�t)2

  vfs 

2 = vis 

2 + 2as  �s

Uniform motion is motion with constant 
velocity and zero acceleration:

sf = si + vs  �t

Important concepts
Position, velocity, and acceleration are 
related graphically.

•	 The slope of the position-versus-time 
graph is the value on the velocity graph.

•	 The slope of the velocity graph is the 
value on the acceleration graph.

•	 s is a maximum or minimum at a turning 
point, and vs = 0.

•	 Displacement is the area under the 
velocity curve.

kinematics
average velocity, vavg

uniform motion

speed, v
initial position, si

final position, sf

instantaneous velocity, vs

turning point
average acceleration, aavg

free fall
free-fall acceleration, g
instantaneous acceleration, as

Terms and Notation

Applications
The sign	of vs indicates the direction of motion.

•	 vs 7 0 is motion to the right or up.

•	 vs 6 0 is motion to the left or down.

The sign	of as indicates which way a
u

 points, not whether the 
object is speeding up or slowing down.

•	 as 7 0 if a
u

 points to the right or up.

•	 as 6 0 if a
u

 points to the left or down.

•	 The direction of a
u

 is found with a motion diagram.

An object is speeding	up if and only if vs and as have the same sign. 
An object is slowing	down if and only if vs and as have opposite 
signs.

Free fall is constant-acceleration motion with

  ay = -g = -9.80 m/s2

Motion on an inclined plane has as = {g sin u. 
The sign depends on the direction of the tilt.

s

vs

as

t

t

t

Turning
point

vs

Area

s

t

t

u
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 4. FIGURE Q2.4 shows a position-versus-time graph for the motion 
of objects A and B as they move along the same axis.

 a. At the instant t = 1 s, is the speed of A greater than, less than, 
or equal to the speed of B? Explain.

 b. Do objects A and B ever have the same speed? If so, at what 
time or times? Explain.

c O N c E P T U A L  Q U E S T I O N S

For Questions 1 through 3, interpret the position graph given in 
each figure by writing a very short “story” of what is happening. Be 
creative! Have characters and situations! Simply saying that “a car 
moves 100 meters to the right” doesn’t qualify as a story. Your stories 
should make specific reference to information you obtain from the 
graph, such as distance moved or time elapsed.

 7. FIGURE Q2.7 shows the position-versus-time graph for a moving 
object. At which lettered point or points:

 a. Is the object moving the fastest?
 b. Is the object moving to the left?
 c. Is the object speeding up?
 d. Is the object turning around?

 8. FIGURE Q2.8 shows six frames from the motion diagrams of two 
moving cars, A and B.

 a. Do the two cars ever have the same position at one instant of 
time? If so, in which frame number (or numbers)?

 b. Do the two cars ever have the same velocity at one instant of 
time? If so, between which two frames?

 9. You’re driving along the highway at a steady speed of 60 mph 
when another driver decides to pass you. At the moment when 
the front of his car is exactly even with the front of your car, and 
you turn your head to smile at him, do the two cars have equal 
velocities? Explain.

 10. A bicycle is traveling east. Can its acceleration vector ever point 
west? Explain.

 11. (a) Give an example of a vertical motion with a positive velocity 
and a negative acceleration. (b) Give an example of a vertical 
motion with a negative velocity and a negative acceleration.

 12. A ball is thrown straight up into the air. At each of the follow-
ing instants, is the magnitude of the ball’s acceleration greater 
than g, equal to g, less than g, or 0? Explain.

 a. Just after leaving your hand.
 b. At the very top (maximum height).
 c. Just before hitting the ground.
 13. A rock is thrown (not dropped) straight down from a bridge into 

the river below. At each of the following instants, is the mag-
nitude of the rock’s acceleration greater than g, equal to g, less 
than g, or 0? Explain.

 a. Immediately after being released.
 b. Just before hitting the water.
 14. A rubber ball dropped from a height of 2 m bounces back to 

a height of 1 m. Draw the ball’s position, velocity, and accel-
eration graphs, stacked vertically, from the instant you release it 
until it returns to its maximum bounce height. Pay close attention 
to the time the ball is in contact with the ground; this is a short 
interval of time, but it’s not zero.

 2. 

 3. 

 1. 

 5. FIGURE Q2.5 shows a position-versus-time graph for the motion 
of objects A and B as they move along the same axis.

 a. At the instant t = 1 s, is the speed of A greater than, less than, 
or equal to the speed of B? Explain.

 b. Do objects A and B ever have the same speed? If so, at what 
time or times? Explain.

 6. FIGURE Q2.6 shows the position-versus-time graph for a moving 
object. At which lettered point or points:

 a. Is the object moving the slowest?
 b. Is the object moving the fastest?
 c. Is the object at rest?
 d. Is the object moving to the left?
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E x E R c I S E S  A N D  P R O B L E M S

Exercises

Section	2.1	Uniform	Motion

 1. | Alan leaves Los Angeles at 8:00 a.m. to drive to San Fran-
cisco, 400 mi away. He travels at a steady 50 mph. Beth leaves 
Los Angeles at 9:00 a.m. and drives a steady 60 mph.

 a. Who gets to San Francisco first?
 b. How long does the first to arrive have to wait for the second?
 2. || Larry leaves home at 9:05 and runs at constant speed to the 

lamppost seen in FIGURE Ex2.2. He reaches the lamppost at 9:07, 
immediately turns, and runs to the tree. Larry arrives at the tree 
at 9:10.

 a. What is Larry’s average velocity, in m/min, during each of 
these two intervals.

 b. What is Larry’s average velocity for the entire run?

 3. || Julie drives 100 mi to Grandmother’s house. On the way to 
Grandmother’s, Julie drives half the distance at 40 mph and half 
the distance at 60 mph. On her return trip, she drives half the 
time at 40 mph and half the time at 60 mph.

 a. What is Julie’s average speed on the way to Grandmother’s 
house?

 b. What is her average speed on the return trip?
 4. | FIGURE Ex2.4 is the position-versus-time graph of a jogger. What 

is the jogger’s velocity at t = 10 s, at t = 25 s, and at t = 35 s?

Section	2.2	Instantaneous	Velocity

Section	2.3	Finding	Position	from	Velocity

 5. | FIGURE Ex2.5 shows the position graph of a particle.
 a. Draw the particle’s velocity graph for the interval 

0 s … t … 4 s.
 b. Does this particle have a turning point or points? If so, at 

what time or times?

 6. | A particle starts from x0 = 10 m at t0 = 0 s and moves with 
the velocity graph shown in FIGURE Ex2.6.

 a. Does this particle have a turning point? If so, at what time?
 b. What is the object’s position at t = 2 s, 3 s, and 4 s?
 7. || FIGURE Ex 2.7 is a somewhat idealized graph of the velocity of 

blood in the ascending aorta during one beat of the heart. 
Approximately how far, in cm, does the blood move during one 
beat?

 8. | FIGURE Ex2.8 shows the velocity graph for a particle having 
initial position x0 = 0 m at t0 = 0 s.

 a. At what time or times is the particle found at x = 35 m? Work 
with the geometry of the graph, not with kinematic equations.

 b. Draw a motion diagram for the particle.

Section	2.4	Motion	with	Constant	Acceleration

 9. | FIGURE Ex2.9 shows the velocity graph of a particle. Draw the 
particle’s acceleration graph for the interval 0 s … t … 4 s. Give 
both axes an appropriate numerical scale. 
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 10. | FIGURE Ex2.7 showed the velocity graph of blood in the aorta. 
Estimate the blood’s acceleration during each phase of the 
motion, speeding up and slowing down.

 11. | FIGURE Ex2.11 shows the velocity graph of a particle moving 
along the x-axis. Its initial position is x0 = 2.0 m at t0 = 0 s. At 
t = 2.0 s, what are the particle’s (a) position, (b) velocity, and 
(c) acceleration?
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 12. | FIGURE Ex2.12 shows the velocity-versus-time graph for a 
particle moving along the x-axis. Its initial position is x0 = 2.0 m 
at t0 = 0 s.

 a. What are the particle’s position, velocity, and acceleration at 
t = 1.0 s?

 b. What are the particle’s position, velocity, and acceleration at 
t = 3.0 s?

 13. || A jet plane is cruising at 300 m/s when suddenly the pilot 
turns the engines up to full throttle. After traveling 4.0 km, the jet 
is moving with a speed of 400 m/s. What is the jet’s acceleration, 
assuming it to be a constant acceleration?

 14. | When you sneeze, the air in your lungs accelerates from rest to 
150 km/h in approximately 0.50 s. What is the acceleration of the 
air in m/s2?

 15. || A speed skater moving across frictionless ice at 8.0 m/s hits a 
5.0-m-wide patch of rough ice. She slows steadily, then contin-
ues on at 6.0 m/s. What is her acceleration on the rough ice?

 16. | A Porsche challenges a Honda to a 400 m race. Because the 
Porsche’s acceleration of 3.5 m/s2 is larger than the Honda’s 
3.0 m/s2, the Honda gets a 1.0 s head start. Who wins?

Section	2.5	Free	Fall

 17. | Ball bearings are made by letting spherical drops of molten 
metal fall inside a tall tower—called a shot tower—and solidify 
as they fall.

 a. If a bearing needs 4.0 s to solidify enough for impact, how 
high must the tower be?

 b. What is the bearing’s impact velocity?
 18. | A ball is thrown vertically upward with a speed of 19.6 m/s.
 a. What is the ball’s velocity and its height after 1.0, 2.0, 3.0, 

and 4.0 s?
 b. Draw the ball’s velocity-versus-time graph. Give both axes 

an appropriate numerical scale.
 19. || A student standing on the ground throws a ball straight up. 

The ball leaves the student’s hand with a speed of 15 m/s when 
the hand is 2.0 m above the ground. How long is the ball in the 
air before it hits the ground? (The student moves her hand out 
of the way.)

 20. || A rock is tossed straight up with a speed of 20 m/s. When it 
returns, it falls into a hole 10 m deep.

 a. What is the rock’s velocity as it hits the bottom of the hole?
 b. How long is the rock in the air, from the instant it is released 

until it hits the bottom of the hole?

Section	2.6	Motion	on	an	Inclined	Plane

 21. || A skier is gliding along at 3.0 m/s on horizontal, frictionless 
snow. He suddenly starts down a 10� incline. His speed at the 
bottom is 15 m/s.

 a. What is the length of the incline?
 b. How long does it take him to reach the bottom?
 22. || A car traveling at 30 m/s runs out of gas while traveling up a 

10� slope. How far up the hill will it coast before starting to roll 
back down?

BIO

Section	2.7	Instantaneous	Acceleration

 23. | A particle moving along the x-axis has its position described 
by the function x = (2t 2 - t + 1) m, where t is in s. At t = 2 s what 
are the particle’s (a) position, (b) velocity, and (c) acceleration?

 24. || A particle moving along the x-axis has its velocity described 
by the function vx = 2t 2 m/s, where t is in s. Its initial position is 
x0 = 1 m at t0 = 0 s. At t = 1 s what are the particle’s (a) posi-
tion, (b) velocity, and (c) acceleration?

 25. || FIGURE Ex2.25 shows the acceleration-versus-time graph 
of a particle moving along the x-axis. Its initial velocity is 
v0x = 8.0 m/s at t0 = 0 s. What is the particle’s velocity at 
t = 4.0 s?

Problems

 26. || A particle’s position on the x-axis is given by the function 
x = (t 2 - 4t + 2) m, where t is in s.

 a. Make a position-versus-time graph for the interval 0 s …

t … 5 s. Do this by calculating and plotting x every 0.5 s from 
0 s to 5 s, then drawing a smooth curve through the points.

 b. Determine the particle’s velocity at t = 1.0 s by drawing the 
tangent line on your graph and measuring its slope.

 c. Determine the particle’s velocity at t = 1.0 s by evaluating 
the derivative at that instant. Compare this to your result from 
part b.

 d. Are there any turning points in the particle’s motion? If so, at 
what position or positions?

 e. Where is the particle when vx = 4.0 m/s?
 f. Draw a motion diagram for the particle.
 27. || Three particles move along the x-axis, each starting with 

v0x = 10 m/s at t0 = 0 s. In FIGURE P2.27, the graph for A is a 
position-versus-time graph; the graph for B is a velocity-versus-
time graph; the graph for C is an acceleration-versus-time graph. 
Find each particle’s velocity at t = 7.0 s. Work with the geom-
etry of the graphs, not with kinematic equations.
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 28. || FIGURE P2.28 shows the acceleration graph for a particle that 
starts from rest at t = 0 s. Determine the object’s velocity at 
times t = 0 s, 2 s, 4 s, 6 s, and 8 s.

 29. | A block is suspended from a spring, pulled down, and released. 
The block’s position-versus-time graph is shown in FIGURE P2.29.

 a. At what times is the velocity zero? At what times is the veloc-
ity most positive? Most negative?

 b. Draw a reasonable velocity-versus-time graph.
 30. || A particle’s velocity is described by the function 

vx = t 2 - 7t + 10 m/s, where t is in s.
 a. At what times does the particle reach its turning points?
 b. What is the particle’s acceleration at each of the turning 

points?
 31. | The position of a particle is given by the function 

x = (2t 3 - 9t 2 + 12) m, where t is in s.
 a. At what time or times is vx = 0 m/s?
 b. What are the particle’s position and its acceleration at this 

time(s)?
 32. | An object starts from rest at x = 0 m at time t = 0 s. Five sec-

onds later, at t = 5.0 s, the object is observed to be at x = 40 m 
and to have velocity vx = 11 m/s.

 a. Was the object’s acceleration uniform or nonuniform? 
Explain your reasoning.

 b. Sketch the velocity-versus-time graph implied by these data. 
Is the graph a straight line or curved? If curved, is it concave 
upward or downward?

 33. ||| A particle’s velocity is described by the function vx = kt 2 m/s, 
where k is a constant and t is in s. The particle’s position 
at t0 = 0 s is x0 = -9.0 m. At t1 = 3.0 s, the particle is at 
x1 = 9.0 m. Determine the value of the constant k. Be sure to 
include the proper units.

 34. || A particle’s acceleration is described by the function 
ax = (10 - t) m/s2, where t is in s. Its initial conditions are 
x0 = 0 m and v0x = 0 m/s at t = 0 s.

 a. At what time is the velocity again zero?
 b. What is the particle’s position at that time?
 35. || A ball rolls along the frictionless track shown in FIGURE P2.35. 

Each segment of the track is straight, and the ball passes smoothly 
from one segment to the next without changing speed or leaving 
the track. Draw three vertically stacked graphs showing position, 
velocity, and acceleration versus time. Each graph should have 
the same time axis, and the proportions of the graph should be 
qualitatively correct. Assume that the ball has enough speed to 
reach the top.

 36. || Draw position, velocity, and acceleration graphs for the ball 
shown in FIGURE P2.36. See Problem 35 for more information.

 37. || Draw position, velocity, and acceleration graphs for the ball 
shown in FIGURE P2.37. See Problem 35 for more information. 
The ball changes direction but not speed as it bounces from the 
reflecting wall.

 38. || FIGURE P2.38 shows a set of kinematic graphs for a ball rolling 
on a track. All segments of the track are straight lines, but some 
may be tilted. Draw a picture of the track and also indicate the 
ball’s initial condition.

 39. || FIGURE P2.39 shows a set of kinematic graphs for a ball rolling 
on a track. All segments of the track are straight lines, but some 
may be tilted. Draw a picture of the track and also indicate the 
ball’s initial condition.

 40. | The takeoff speed for an Airbus A320 jet-
liner is 80 m/s. Velocity data measured dur-
ing takeoff are as shown.

 a. What is the takeoff speed in miles per 
hour?

 b. Is the jetliner’s acceleration constant dur-
ing takeoff? Explain.

 c. At what time do the wheels leave the ground?
 d. For safety reasons, in case of an aborted takeoff, the runway 

must be three times the takeoff distance. Can an A320 take 
off safely on a 2.5-mi-long runway?

 41. | a. What constant acceleration, in SI units, must a car have to 
  go from zero to 60 mph in 10 s?

 b. What fraction of g is this?
 c. How far has the car traveled when it reaches 60 mph? Give 

your answer both in SI units and in feet.
 42. || a. How many days will it take a spaceship to accelerate to the 

  speed of light (3.0 * 108 m/s) with the acceleration g?
 b. How far will it travel during this interval?
 c.  What fraction of a light year is your answer to part b? A light 

year is the distance light travels in one year.

NOTE  We know, from Einstein’s theory of relativity, that 
no object can travel at the speed of light. So this problem, 
while interesting and instructive, is not realistic. 
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 43. | You are driving to the grocery store at 20 m/s. You are 110 m 
from an intersection when the traffic light turns red. Assume that 
your reaction time is 0.50 s and that your car brakes with con-
stant acceleration.

 a. How far are you from the intersection when you begin to 
apply the brakes?

 b. What acceleration will bring you to rest right at the intersection?
 c. How long does it take you to stop after the light turns red?
 44. || a.  Suppose you are driving at speed v0  when a sudden ob-

stacle in the road forces you to make a quick stop. If your 
reaction time before applying the brakes is tR, what con-
stant deceleration (absolute value of ax) do you need to stop 
in distance d? Assume that d is larger than the car travels 
during your reaction time.

 b.  Suppose you are driving at 21 m/s when you suddenly see 
an obstacle 50 m ahead. If your reaction time is 0.50 s and 
if your car’s maximum deceleration is 6.0 m/s2, can you 
stop in time to avoid a collision?

 45. || You’re driving down the highway late one night at 20 m/s 
when a deer steps onto the road 35 m in front of you. Your reac-
tion time before stepping on the brakes is 0.50 s, and the maxi-
mum deceleration of your car is 10 m/s2.

 a. How much distance is between you and the deer when you 
come to a stop?

 b. What is the maximum speed you could have and still not hit 
the deer?

 46. ||| The minimum stopping distance for a car traveling at a speed 
of 30 m/s is 60 m, including the distance traveled during the 
driver’s reaction time of 0.50 s.

 a. What is the minimum stopping distance for the same car trav-
eling at a speed of 40 m/s?

 b. Draw a position-versus-time graph for the motion of the car 
in part a. Assume the car is at x0 = 0 m when the driver first 
sees the emergency situation ahead that calls for a rapid halt.

 47. || When jumping, a flea accelerates at an astounding 1000 m/s2, 
but over only the very short distance of 0.50 mm. If a flea jumps 
straight up, and if air resistance is neglected (a rather poor 
approximation in this situation), how high does the flea go?

 48. || A cheetah spots a Thomson’s gazelle, its preferred prey, and 
leaps into action, quickly accelerating to its top speed of 30 m/s, 
the highest of any land animal. However, a cheetah can maintain 
this extreme speed for only 15 s before having to let up. The 
cheetah is 170 m from the gazelle as it reaches top speed, and the 
gazelle sees the cheetah at just this instant. With negligible 
reaction time, the gazelle heads directly away from the cheetah, 
accelerating at 4.6 m/s2  for 5.0 s, then running at constant speed. 
Does the gazelle escape?

 49. ||| A 200 kg weather rocket is loaded with 100 kg of fuel and 
fired straight up. It accelerates upward at 30 m/s2 for 30 s, then 
runs out of fuel. Ignore any air resistance effects.

 a. What is the rocket’s maximum altitude?
 b. How long is the rocket in the air before hitting the ground?
 c. Draw a velocity-versus-time graph for the rocket from liftoff 

until it hits the ground.
 50. || A 1000 kg weather rocket is launched straight up. The rocket 

motor provides a constant acceleration for 16 s, then the motor 
stops. The rocket altitude 20 s after launch is 5100 m. You can 
ignore any effects of air resistance.

 a. What was the rocket’s acceleration during the first 16 s?
 b. What is the rocket’s speed as it passes through a cloud 

5100 m above the ground?

BIO

BIO

 51. ||| A lead ball is dropped into a lake from a diving board 5.0 m 
above the water. After entering the water, it sinks to the bottom 
with a constant velocity equal to the velocity with which it hit the 
water. The ball reaches the bottom 3.0 s after it is released. How 
deep is the lake?

 52. || A hotel elevator ascends 200 m with a maximum speed of 
5.0 m/s. Its acceleration and deceleration both have a magnitude 
of 1.0 m/s2.

 a. How far does the elevator move while accelerating to full 
speed from rest?

 b. How long does it take to make the complete trip from bottom 
to top?

 53. || A car starts from rest at a stop sign. It accelerates at 4.0 m/s2 
for 6.0 s, coasts for 2.0 s, and then slows down at a rate of 
3.0 m/s2 for the next stop sign. How far apart are the stop signs?

 54. || A car accelerates at 2.0 m/s2 along a straight road. It passes 
two marks that are 30 m apart at times t = 4.0 s and t = 5.0 s. 
What was the car’s velocity at t = 0 s?

 55. || Santa loses his footing and slides down a frictionless, snowy 
roof that is tilted at an angle of 30°. If Santa slides 10 m before 
reaching the edge, what is his speed as he leaves the roof?

 56. || Ann and Carol are driving their cars along the same straight 
road. Carol is located at x = 2.4 mi at t = 0 h and drives at a 
steady 36 mph. Ann, who is traveling in the same direction, is lo-
cated at x = 0.0 mi at t = 0.50 h and drives at a steady 50 mph.

 a. At what time does Ann overtake Carol?
 b. What is their position at this instant?
 c. Draw a position-versus-time graph showing the motion of 

both Ann and Carol.
 57. || a.  A very slippery block of ice slides down a smooth ramp 

tilted at angle u. The ice is released from rest at vertical 
height h above the bottom of the ramp. Find an expression 
for the speed of the ice at the bottom.

 b.  Evaluate your answer to part a for ice released at a height 
of 30 cm on ramps tilted at 20� and 40�.

 58. || A toy train is pushed forward and released at x0 = 2.0 m with 
a speed of 2.0 m/s. It rolls at a steady speed for 2.0 s, then one 
wheel begins to stick. The train comes to a stop 6.0 m from the 
point at which it was released. What is the magnitude of the 
train’s acceleration after its wheel begins to stick?

 59. || Bob is driving the getaway car after the big bank robbery. 
He’s going 50 m/s when his headlights suddenly reveal a nail 
strip that the cops have placed across the road 150 m in front of 
him. If Bob can stop in time, he can throw the car into reverse 
and escape. But if he crosses the nail strip, all his tires will go flat 
and he will be caught. Bob’s reaction time before he can hit the 
brakes is 0.60 s, and his car’s maximum deceleration is 10 m/s2. 
Is Bob in jail?

 60. || One game at the amusement park has you push a puck up a 
long, frictionless ramp. You win a stuffed animal if the puck, 
at its highest point, comes to within 10 cm of the end of the 
ramp without going off. You give the puck a push, releasing 
it with a speed of 5.0 m/s when it is 8.5 m from the end of the 
ramp. The puck’s speed after traveling 3.0 m is 4.0 m/s. Are 
you a winner?

 61. || a.  Your goal in laboratory is to launch a ball of mass m straight 
up so that it reaches exactly height h above the top of the 
launching tube. You and your lab partners will earn fewer 
points if the ball goes too high or too low. The launch tube 
uses compressed air to accelerate the ball over a distance 
d, and you have a table of data telling you how to set the 
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air compressor to achieve a desired acceleration. Find an 
expression for the acceleration that will earn you maximum 
points.

  b.  Evaluate your answer to part a to achieve a height of 3.2 m 
using a 45-cm-long launch tube.

 62. || Nicole throws a ball straight up. Chad watches the ball from 
a window 5.0 m above the point where Nicole released it. The 
ball passes Chad on the way up, and it has a speed of 10 m/s as 
it passes him on the way back down. How fast did Nicole throw 
the ball?

 63. || A motorist is driving at 20 m/s when she sees that a traffic 
light 200 m ahead has just turned red. She knows that this light 
stays red for 15 s, and she wants to reach the light just as it turns 
green again. It takes her 1.0 s to step on the brakes and begin 
slowing. What is her speed as she reaches the light at the instant 
it turns green?

 64. || When a 1984 Alfa Romeo Spider sports car accelerates at the 
maximum possible rate, its motion during the first 20 s is ex-
tremely well modeled by the simple equation

 vx 

2 =
2P

m
 t

  where P = 3.6 * 104 watts is the car’s power output, m =

1200 kg is its mass, and vx is in m/s. That is, the square of the 
car’s velocity increases linearly with time.

 a. What is the car’s speed at t = 10 s and at t = 20 s?
 b. Find an algebraic expression in terms of P, m, and t, for the 

car’s acceleration at time t.
 c. Evaluate the acceleration at t = 1 s and t = 10 s.
 d. This simple model fails for t less than about 0.5 s. Explain 

how you can recognize the failure.
 65. || David is driving a steady 30 m/s when he passes Tina, who 

is sitting in her car at rest. Tina begins to accelerate at a steady 
2.0 m/s2 at the instant when David passes.

 a. How far does Tina drive before passing David?
 b. What is her speed as she passes him?
 66. || A cat is sleeping on the floor in the middle of a 3.0-m-wide 

room when a barking dog enters with a speed of 1.50 m/s. As the 
dog enters, the cat (as only cats can do) immediately accelerates 
at 0.85 m/s2 toward an open window on the opposite side of the 
room. The dog (all bark and no bite) is a bit startled by the cat 
and begins to slow down at 0.10 m/s2 as soon as it enters the 
room. Does the dog catch the cat before the cat is able to leap 
through the window?

 67. || Jill has just gotten out of her car in the grocery store parking 
lot. The parking lot is on a hill and is tilted 3°. Twenty meters 
downhill from Jill, a little old lady lets go of a fully loaded shop-
ping cart. The cart, with frictionless wheels, starts to roll straight 
downhill. Jill immediately starts to sprint after the cart with her 
top acceleration of 2.0 m/s2. How far has the cart rolled before 
Jill catches it?

 68. || As a science project, you drop a watermelon off the top of 
the Empire State Building, 320 m above the sidewalk. It so 
happens that Superman flies by at the instant you release the 
watermelon. Superman is headed straight down with a speed 
of 35 m/s. How fast is the watermelon going when it passes 
Superman?

 69. ||| I was driving along at 20 m/s, trying to change a CD and not 
watching where I was going. When I looked up, I found my-
self 45 m from a railroad crossing. And wouldn’t you know it, 
a train moving at 30 m/s was only 60 m from the crossing. In 

a split second, I realized that the train was going to beat me to 
the crossing and that I didn’t have enough distance to stop. My 
only hope was to accelerate enough to cross the tracks before the 
train arrived. If my reaction time before starting to accelerate 
was 0.50 s, what minimum acceleration did my car need for me 
to be here today writing these words?

 70. || As an astronaut visiting Planet X, you’re assigned to measure 
the free-fall acceleration. Getting out your meter stick and stop 
watch, you time the fall of a heavy ball from several heights. 
Your data are as follows:

  Analyze these data to determine the free-fall acceleration on 
Planet X. Your analysis method should involve fitting a straight line 
to an appropriate graph, similar to the analysis in Example 2.15.

 71. || Your engineering firm has been asked to determine the de-
celeration of a car during hard braking. To do so, you decide to 
measure the lengths of the skid marks when stopping from vari-
ous initial speeds. Your data are as follows:

 a. Do the data support an assertion that the deceleration is con-
stant, independent of speed? Explain.

 b. Determine an experimental value for the car’s deceleration—
that is, the absolute value of the acceleration. Your analysis 
method should involve fitting a straight line to an appropriate 
graph, similar to the analysis in Example 2.15.

In Problems 72 through 75, you are given the kinematic equation  
or equations that are used to solve a problem. For each of these, you 
are to:
 a. Write a realistic problem for which this is the correct equa-

tion(s). Be sure that the answer your problem requests is consis-
tent with the equation(s) given.

 b. Draw the pictorial representation for your problem.
 c. Finish the solution of the problem.
 72. 64 m = 0 m + (32 m/s)(4 s - 0 s) +

1
2 ax(4 s - 0 s)2

 73. (10 m/s)2 = v0y 

2 - 2(9.8 m/s2)(10 m - 0 m)

 74. (0 m/s)2 = (5 m/s)2 - 2(9.8 m/s2)(sin 10�)(x1 - 0 m)

 75. v1x = 0 m/s + (20 m/s2)(5 s - 0 s)

  x1 = 0 m + (0 m/s)(5 s - 0 s) +
1
2 (20 m/s2)(5 s - 0 s)2

  x2 = x1 + v1x(10 s - 5 s)

Height (m) Fall time (s)

0.0 0.00

1.0 0.54

2.0 0.72

3.0 0.91

4.0 1.01

5.0 1.17

Speed (m/s) Skid length (m)

10 7

15 14

20 27

25 37

30 58
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challenge Problems

 76. The two masses in FIGURE cP2.76 
slide on frictionless wires. They are 
connected by a pivoting rigid rod of 
length L. Prove that v2x = -v1y tan u.

 77. A rocket is launched straight up with constant acceleration. 
Four seconds after liftoff, a bolt falls off the side of the rocket. 
The bolt hits the ground 6.0 s later. What was the rocket’s 
acceleration?

 78. Your school science club has devised a special event for home-
coming. You’ve attached a rocket to the rear of a small car that 
has been decorated in the blue-and-gold school colors. The rocket 
provides a constant acceleration for 9.0 s. As the rocket shuts off, 
a parachute opens and slows the car at a rate of 5.0 m/s2. The car 
passes the judges’ box in the center of the grandstand, 990 m 
from the starting line, exactly 12 s after you fire the rocket. What 
is the car’s speed as it passes the judges?

 79. Careful measurements have been made of Olympic sprinters in 
the 100-meter dash. A simple but reasonably accurate model is 
that a sprinter accelerates at 3.6 m/s2 for 31

3 s, then runs at con-
stant velocity to the finish line.

 a. What is the race time for a sprinter who follows this model?
 b. A sprinter could run a faster race by accelerating faster at the 

beginning, thus reaching top speed sooner. If a sprinter’s top 
speed is the same as in part a, what acceleration would he 
need to run the 100-meter dash in 9.9 s?

 c. By what percent did the sprinter need to increase his accelera-
tion in order to decrease his time by 1%?

 80. Careful measurements have been made of Olympic sprinters in 
the 100-meter dash. A quite realistic model is that the sprinter’s 
velocity is given by

 vx = a(1 - e-bt )

  where t is in s, vx is in m/s, and the constants a and b are char-
acteristic of the sprinter. Sprinter Carl Lewis’s run at the 1987 
World Championships is modeled with a = 11.81 m/s and 
b = 0.6887 s-1.

 a. What was Lewis’s acceleration at t = 0 s, 2.00 s, and 
4.00 s?

 b. Find an expression for the distance traveled at time t.
 c. Your expression from part b is a transcendental equation, 

meaning that you can’t solve it for t. However, it’s not hard 
to use trial and error to find the time needed to travel a 
specific distance. To the nearest 0.01 s, find the time Lewis 
needed to sprint 100.0 m. His official time was 0.01 s more 
than your answer, showing that this model is very good, but 
not perfect.

 81. A sprinter can accelerate with constant acceleration for 4.0 s be-
fore reaching top speed. He can run the 100-meter dash in 10.0 s. 
What is his speed as he crosses the finish line?

 82. A rubber ball is shot straight up from the ground with speed v0  . 
Simultaneously, a second rubber ball at height h directly above 
the first ball is dropped from rest.

 a. At what height above the ground do the balls collide? Your 
answer will be an algebraic expression in terms of h, v0, 
and g.

 b. What is the maximum value of h for which a collision occurs 
before the first ball falls back to the ground?

 c. For what value of h does the collision occur at the instant 
when the first ball is at its highest point?

 83. The Starship Enterprise returns from warp drive to ordinary 
space with a forward speed of 50 km/s. To the crew’s great sur-
prise, a Klingon ship is 100 km directly ahead, traveling in the 
same direction at a mere 20 km/s. Without evasive action, the 
Enterprise will overtake and collide with the Klingons in just 
slightly over 3.0 s. The Enterprise’s computers react instantly to 
brake the ship. What magnitude acceleration does the Enterprise 
need to just barely avoid a collision with the Klingon ship? 
Assume the acceleration is constant.

  Hint: Draw a position-versus-time graph showing the motions 
of both the Enterprise and the Klingon ship. Let x0 = 0 km be 
the location of the Enterprise as it returns from warp drive. How 
do you show graphically the situation in which the collision is 
“barely avoided”? Once you decide what it looks like graphi-
cally, express that situation mathematically.

STOP TO ThINK ANSwERS

Stop	to	Think	2.1:	d. The particle starts with positive x and moves 
to negative x.

Stop	to	Think	2.2:	c. The velocity is the slope of the position graph. 
The slope is positive and constant until the position graph crosses the 
axis, then positive but decreasing, and finally zero when the position 
graph is horizontal.

Stop	to	Think	2.3:	b. A constant positive vx corresponds to a linearly 
increasing x, starting from xi = -10 m. The constant negative vx then 
corresponds to a linearly decreasing x.

Stop	to	Think	2.4:	a and b. The velocity is constant while a = 0, 
it decreases linearly while a is negative. Graphs a, b, and c all have 
the same acceleration, but only graphs a and b have a positive initial 
velocity that represents a particle moving to the right.

Stop	to	Think	2.5:	d. The acceleration vector points downhill (nega-
tive s-direction) and has the constant value -g sin u throughout the 
motion.

Stop	to	Think	2.6:	c. Acceleration is the slope of the graph. The slope 
is zero at B. Although the graph is steepest at A, the slope at that point 
is negative, and so aA 6 aB . Only C has a positive slope, so aC 7 aB .

1

2

L

u

FIGURE cP2.76 
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Wind has both a speed and 
a direction, hence the motion 
of the wind is described by 
a vector.

Vectors and Coordinate 
Systems

Components
You will learn how to find the compo-
nents of vectors that are parallel to the 
coordinate axes. We write this as

E
u

= Ex  in + Ey  jn

Unit Vectors
Unit vectors define 
what we mean by the 
+x- and +y-directions 
in space.

You may have learned in a math class 
to think of vectors as pairs or triplets of 
numbers, such as (4, -2, 5). If so, you 
already know a lot about vectors even 
though we will use a different notation 
in physics.

Vectors
A vector is a quantity with both a size—
the magnitude—and a direction.

Examples of vectors that you will meet 
in coming chapters are:

Position Velocity
Displacement Acceleration
Force Momentum

The two most basic vector opera-
tions—addition and subtraction—were 
introduced in Chapter 1.

 Looking Back
Tactics Box 1.1 Vector addition

Tactics Box 1.2 Vector subtraction

Graphical Addition and Subtraction of Vectors
You will learn to add vectors A

u

 and B
u

:

Vector subtraction is addition

A
u

- B
u

= A
u

+ (- B
u

)

with - B
u

 defined to point op-
posite B

u

:

Unit vectors will be very valuable when we 
later use a tilted coordinate system to analyze 
motion on an inclined plane.

Magnitude
of vector

Name of vector

v � 5 m/s

Direction
of vector

vr

r
A r

B

x

y

in

jn

r
�B

r
A

r
B

r r
A � B

Tip-to-tail addition

r
A

r
�B

r r
A � B

Tip-to-tail subtraction

x

y

jn

in

r
E

Ey

Ex

Components will simplify vector math.

 Looking Ahead The goal of Chapter 3 is to learn how vectors are represented and used.

D1
r

D2
r

Dnet
r

The net displacement is the 
vector sum of two individual 
displacements.
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3.1 Vectors
A quantity that is fully described by a single number (with units) is called a scalar 
quantity. Mass, temperature, and volume are all scalars. Other scalar quantities in-
clude pressure, density, energy, charge, and voltage. We will often use an algebraic 
symbol to represent a scalar quantity. Thus m will represent mass, T temperature, 
V volume, E energy, and so on. Notice that scalars, in printed text, are shown in 
italics.

Our universe has three dimensions, so some quantities also need a direction for 
a full description. If you ask someone for directions to the post office, the reply 
“Go three blocks” will not be very helpful. A full description might be, “Go three 
blocks south.” A quantity having both a size and a direction is called a vector 
quantity.

The mathematical term for the length, or size, of a vector is magnitude, so we can 
also say that a vector is a quantity having a magnitude and a direction.

FiGUre 3.1 shows that the geometric representation of a vector is an arrow, with the 
tail of the arrow (not its tip!) placed at the point where the measurement is made. The 
vector then seems to radiate outward from the point to which it is attached. An arrow 
makes a natural representation of a vector because it inherently has both a length and 
a direction. As you’ve already seen, we label vectors by drawing a small arrow over 
the letter that represents the vector: r 

u
 for position, v  

u
 for velocity, a

u
 for acceleration, 

and so on.

Note  Although the vector arrow is drawn across the page, from its tail to its tip, 
this does not indicate that the vector “stretches” across this distance. Instead, the 
vector arrow tells us the value of the vector quantity only at the one point where the 
tail of the vector is placed. 

The magnitude of a vector is sometimes shown using absolute value signs, but 
more frequently indicated by the letter without the arrow. For example, the magnitude 
of the velocity vector in Figure 3.1 is v = 0 v  

u 0 = 5 m/s. This is the object’s speed. The 
magnitude of the acceleration vector a

u
 is written a. The magnitude of a vector is a 

scalar quantity.

Note  The magnitude of a vector cannot be a negative number; it must be positive 
or zero, with appropriate units. 

It is important to get in the habit of using the arrow symbol for vectors. If you omit 
the vector arrow from the velocity vector v  

u
 and write only v, then you’re referring 

only to the object’s speed, not its velocity. The symbols r 
u

 and r, or  v  

u
 and v, do not 

represent the same thing, so if you omit the vector arrow from vector symbols you will 
soon have confusion and mistakes.

3.2 Properties of Vectors
Suppose Sam starts from his front door, walks across the street, and ends up 200 ft 
to the northeast of where he started. Sam’s displacement, which we will label S

u

, is 
shown in FiGUre 3.2a. The displacement vector is a straight-line connection from his 
initial to his final position, not necessarily his actual path.

To describe a vector we must specify both its magnitude and its direction. We can 
write Sam’s displacement as

 S
u

= (200 ft, northeast)

where the first piece of information specifies the magnitude and the second is the 
direction. The magnitude of Sam’s displacement is S = 0 Su 0 = 200 ft, the distance 
between his initial and final points.

Magnitude
of vector

Name of vector
v � 5 m/s

The vector is drawn across 
the page, but it represents 
the particle’s velocity at 
this one point.

Direction
of vector

rv

FiGUre 3.1 The velocity vector v  

u  has 
both a magnitude and a direction.

Displacement is the
straight-line connection
from the initial to
the final position.

20
0 f

t
Sam’s
displacement

Sam’s actual path

(a) (b)
N

Bill’s
house

Sam’s
house

Sam’s
house

S
r

S
r

r
B B and S have the

same magnitude
and direction, so
B � S. 

r

r r

r

FiGUre 3.2 Displacement vectors.

Displacement is the
straight-line connection
from the initial to
the final position.

20
0 f

t
Sam’s
displacement

Sam’s actual path

(a) (b)
N
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Sam’s
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Sam’s
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S
r

S
r

r
B B and S have the
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and direction, so
B � S. 
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Sam’s next-door neighbor Bill also walks 200 ft to the northeast, starting from 
his own front door. Bill’s displacement B

u

= (200 ft, northeast) has the same mag-
nitude and direction as Sam’s displacement S

u

. Because vectors are defined by their 
magnitude and direction, two vectors are equal if they have the same magnitude 
and direction. This is true regardless of the starting points of the vectors. Thus the two 
displacements in FiGUre 3.2b are equal to each other, and we can write B

u

= S
u

.

Note  A vector is unchanged if you move it to a different point on the page as 
long as you don’t change its length or the direction it points. We used this idea in 
Chapter 1 when we moved velocity vectors around in order to find the average 
acceleration vector a

u
. 

Vector Addition
If you earn $50 on Saturday and $60 on Sunday, your net income for the weekend is 
the sum of $50 and $60. With numbers, the word net implies addition. The same is 
true with vectors. For example, FiGUre 3.3 shows the displacement of a hiker who first 
hikes 4 miles to the east, then 3 miles to the north. The first leg of the hike is described 
by the displacement A

u

= (4 mi, east). The second leg of the hike has displacement 
B
u

= (3 mi, north). Vector C
u

 is the net displacement because it describes the net result 
of the hiker’s first having displacement A

u

, then displacement B
u

.
The net displacement C

u

 is an initial displacement A
u

 plus a second displacement 
B
u

, or

 C
u

= A
u

+ B
u

 (3.1)

The sum of two vectors is called the resultant vector. It’s not hard to show that vector 
addition is commutative: A

u

+ B
u

= B
u

+ A
u

. That is, you can add vectors in any order 
you wish.

Look back at Tactics Box 1.1 on page 7 to see the three-step procedure for 
adding two vectors. This tip-to-tail method for adding vectors, which is used to find  
C
u

=  A
u

+ B
u

 in Figure 3.3, is called graphical addition. Any two vectors of the 
same type—two velocity vectors or two force vectors—can be added in exactly the 
same way.

The graphical method for adding vectors is straightforward, but we need to do 
a little geometry to come up with a complete description of the resultant vector  
C
u

. Vector C
u

 of Figure 3.3 is defined by its magnitude C and by its direction. Because 
the three vectors A

u

, B
u

, and C
u

 form a right triangle, the magnitude, or length, of C
u

 is 
given by the Pythagorean theorem:

 C = 2A2 + B2 = 2(4 mi)2 + (3 mi)2 = 5 mi (3.2)

Notice that Equation 3.2 uses the magnitudes A and B of the vectors A
u

 and B
u

. The 
angle u, which is used in Figure 3.3 to describe the direction of C

u

, is easily found for 
a right triangle:

 u = tan-11B

A 2 = tan-113 mi

4 mi 2 = 37� (3.3)

Altogether, the hiker’s net displacement is

 C
u

= A
u

+ B
u

= (5 mi, 37� north of east) (3.4)

Note  Vector mathematics makes extensive use of geometry and trigonometry. 
Appendix A, at the end of this book, contains a brief review of these topics. 

Start

Net displacement

Individual
displacements

End

4 mi

3 mi

N

u
r
A

r
B

C
r

FiGUre 3.3 The net displacement C
u

 
resulting from two displacements A

u

 
and B

u

.
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exAmPLe 3.1   Using graphical addition to find a displacement
SoLVe The two displacements are A

u

= (100 m, east) and B
u

=

(200 m, northwest). The net displacement C
u

= A
u

+ B
u

 is found by 
drawing a vector from the initial to the final position. But describ-
ing C

u

 is a bit trickier than the example of the hiker because A
u

 and 
B
u

 are not at right angles. First, we can find the magnitude of C
u

 by 
using the law of cosines from trigonometry:

  C 2 = A2 + B2 - 2AB cos 45�

  = (100 m)2 + (200 m)2 - 2(100 m)(200 m) cos 45�

  = 21,720 m2

Thus C = 221,720 m2 = 147 m. Then a second use of the law of 
cosines can determine angle f (the Greek letter phi):

 B2 = A2 + C 2 - 2AC cos f

 f = cos-1 c A2 + C 2 - B2

2AC
d = 106�

It is easier to describe C
u

 with the angle u = 180� - f = 74�. 
The bird’s net displacement is

 C
u

= (147 m, 74� north of west)

It is often convenient to draw two vectors with their tails together, as shown in 
FiGUre 3.5a. To evaluate D

u

+ E
u

, you could move vector E
u

 over to where its tail is 
on the tip of D

u

, then use the tip-to-tail rule of graphical addition. That gives vector 
F
u

= D
u

+ E
u

 in FiGUre 3.5b. Alternatively, FiGUre 3.5c shows that the vector sum D
u

+ E
u

 
can be found as the diagonal of the parallelogram defined by D

u

 and E
u

. This method 
for vector addition is called the parallelogram rule of vector addition.

u

End

200 m

Start 100 m

45�

N

f

C
r

Angle u describes the
direction of vector C.

r

r
A

r
B

The bird’s net
displacement is
C � A � B.
r r r

FiGUre 3.4 The bird’s net displacement is C
u

= A
u

+ B
u

.

(c)(b)(a)

What is D � E?

r
E

r

r
E

r
E

r
D

r
D

r
D

r
Parallelogram rule:
Find the diagonal of
the parallelogram
formed by D and E.

rr

Tip-to-tail rule:
Slide the tail of E 
to the tip of D.

r

r

F �
 D

 �
 E
r

r

r

F �
 D

 �
 E
r

r

r

FiGUre 3.5 Two vectors can be added using the tip-to-tail rule or the parallelogram rule.

Vector addition is easily extended to more than two vectors. FiGUre 3.6 shows the 
path of a hiker moving from initial position 0 to position 1, then position 2, then 
position 3, and finally arriving at position 4. These four segments are described  
by displacement vectors D

u

1, D
u

2, D
u

3, and D
u

4. The hiker’s net displacement, an arrow 
from position 0 to position 4, is the vector D

u

net. In this case,

 D
u

net = D
u

1 + D
u

2 + D
u

3 + D
u

4 (3.5)

The vector sum is found by using the tip-to-tail method three times in succession.

Start

Net displacement
End

4
2

1

0

3

Dnet

r

D1

r

D4

r

D2

r

D3

r

FiGUre 3.6 The net displacement after 
four individual displacements.

A bird flies 100 m due east from a tree, then 200 m northwest (that 
is, 45� north of west). What is the bird’s net displacement?

ViSUALize FiGUre 3.4 shows the two individual displacements, 
which we’ve called A

u

 and B
u

. The net displacement is the vector 
sum C

u

= A
u

+ B
u

, which is found graphically.



3.2 . Properties of Vectors    73

Stop to think 3.1 
 Which figure shows A

u

1 + A
u

2 + A
u

3?

more Vector mathematics
In addition to adding vectors, we will need to subtract vectors, multiply vectors by 
scalars, and understand how to interpret the negative of a vector. These operations are 
illustrated in FiGUre 3.7.

exAmPLe 3.2  Velocity and displacement
Carolyn drives her car north at 30 km/h for 1 hour, east at 60 km/h 
for 2 hours, then north at 50 km/h for 1 hour. What is Carolyn’s 
net displacement?

SoLVe Chapter 1 defined velocity as

 v  

u
=

�r 
u

�t

so the displacement �r 
u

 during the time interval �t is �r 
u

= (�t)v  

u
. 

This is multiplication of the vector v  

u
 by the scalar �t. Carolyn’s 

velocity during the first hour is v  

u

1 = (30 km/h, north), so her dis-
placement during this interval is

  �r 
u

1 = (1 hour)(30 km/h, north) = (30 km, north)

Similarly,

  �r 
u

2 = (2 hours)(60 km/h, east) = (120 km, east)

  �r 
u

3 = (1 hour)(50 km/h, north) = (50 km, north)

In this case, multiplication by a scalar changes not only the length 
of the vector but also its units, from km/h to km. The direction, 
however, is unchanged. Carolyn’s net displacement is

 �r 
u

net = �r 
u

1 + �r 
u

2 + �r 
u

3

This addition of the three vectors is shown in FiGUre 3.8, using the 
tip-to-tail method. �r 

u

net stretches from Carolyn’s initial position 

(a) (b) (c) (d) (e)

A1

r

A3

r

A2

r

The length of B is “stretched”
by the factor c. That is, B � cA.

r

B � cA � (cA, u )
r r

A � (A, u )
r

A
r

A
r

A
r

�A
r

�2A
r

Vector �A is equal in
magnitude but opposite
in direction to A.

r

r

Multiplication by a scalar The negative of a vector Multiplication by a negative scalar

C
r

A � C
r r

A � C
r rr

�C

r
�C

r
Tip-to-tail method using �C Parallelogram method using �C

r

u

u

B points in the same
direction as A.

r

r

A � (�A) � 0. The tip of �A
returns to the starting point.

r r rr

The zero vector 0
has zero length

r

A
r

A
r

Vector subtraction: What is A � C?
Write it as A � (�C ) and add!

r r

r r

FiGUre 3.7 Working with vectors.
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FiGUre 3.8 The net displacement is the 
vector sum �r 

u

net = �r 
u

1 + �r 
u

2 + �r 
u

3  .

Continued
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Stop to think 3.2 
 Which figure shows 2A

u

- B
u

?

3.3  Coordinate Systems 
and Vector Components

Vectors do not require a coordinate system. We can add and subtract vectors graphi-
cally, and we will do so frequently to clarify our understanding of a situation. But the 
graphical addition of vectors is not an especially good way to find quantitative results. 
In this section we will introduce a coordinate representation of vectors that will be the 
basis of an easier method for doing vector calculations.

Coordinate Systems
The world does not come with a coordinate system attached to it. A coordinate system 
is an artificially imposed grid that you place on a problem in order to make quantita-
tive measurements.You are free to choose:

	■	 Where to place the origin, and
	■	 How to orient the axes.

Different problem solvers may choose to use different coordinate systems; that is perfectly 
acceptable. However, some coordinate systems will make a problem easier to solve. Part 
of our goal is to learn how to choose an appropriate coordinate system for each problem.

FiGUre 3.9 shows the xy-coordinate system we will use in this book. The placement 
of the axes is not entirely arbitrary. By convention, the positive y-axis is located 90� 
counterclockwise (ccw) from the positive x-axis. Figure 3.9 also identifies the four 
quadrants of the coordinate system, I through IV.

Coordinate axes have a positive end and a negative end, separated by zero at the 
origin where the two axes cross. When you draw a coordinate system, it is important 
to label the axes. This is done by placing x and y labels at the positive ends of the axes, 
as in Figure 3.9. The purpose of the labels is twofold:

	■	 To identify which axis is which, and
	■	 To identify the positive ends of the axes.

This will be important when you need to determine whether the quantities in a problem 
should be assigned positive or negative values.

(a) (b) (c) (d) (e)

r
A

r
B

The navigator had better know which 
way to go, and how far, if she and the 
crew are to make landfall at the expected 
location.

III

IVIII

y

x
90�

FiGUre 3.9 A conventional xy-coordinate 
system and the quadrants of the 
xy-plane.

to her final position. The magnitude of her net displacement is 
found using the Pythagorean theorem:

 rnet = 2(120 km)2 + (80 km)2 = 144 km

The direction of �r 
u

net is described by angle u, which is

 u = tan-11 80 km

120 km 2 = 34�

Thus Carolyn’s net displacement is �r 
u

net = (144 km, 34� north 
of east).
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Component Vectors
FiGUre 3.10 shows a vector A

u

 and an xy-coordinate system that we’ve chosen. Once the 
directions of the axes are known, we can define two new vectors parallel to the axes 
that we call the component vectors of A

u

. You can see, using the parallelogram rule, 
that A

u

 is the vector sum of the two component vectors:

 A
u

= A
u

x + A
u

y (3.6)

In essence, we have broken vector A
u

 into two perpendicular vectors that are parallel 
to the coordinate axes. This process is called the decomposition of vector A

u

 into its 
component vectors.

Note  It is not necessary for the tail of A
u

 to be at the origin. All we need to know 
is the orientation of the coordinate system so that we can draw A

u

x and A
u

y parallel 
to the axes. 

Components
You learned in Chapters 1 and 2 to give the kinematic variable vx a positive sign if 
the velocity vector v  

u
 points toward the positive end of the x-axis, a negative sign if v  

u
 

points in the negative x-direction. The basis of that rule is that vx is what we call the 
x-component of the velocity vector. We need to extend this idea to vectors in general.

Suppose vector A
u

 has been decomposed into component vectors A
u

x and A
u

y parallel 
to the coordinate axes. We can describe each component vector with a single number 
called the component. The x-component and y-component of vector A

u

, denoted Ax 
and Ay  , are determined as follows:

tACtiCS
B o x  3 . 1 

 Determining the components of a vector

	●1	 The absolute value 0Ax 0  of the x-component Ax is the magnitude of the com-
ponent vector A

u

x  .
	●2	 The sign of Ax is positive if A

u

x points in the positive x-direction, negative if 
A
u

x points in the negative x-direction.
	●3	 The y-component Ay is determined similarly.

Exercises 10–18 

In other words, the component Ax tells us two things: how big A
u

x is and, with its sign, 
which end of the axis A

u

x points toward. FiGUre 3.11 shows three examples of determin-
ing the components of a vector.

x

y

The x-component
vector is parallel
to the x-axis.

The y-component
vector is parallel
to the y-axis.

A � Ax � Ay

r r r

Ay

r
r
A

Ax

r

FiGUre 3.10 Component vectors A
u

x and 
A
u

y are drawn parallel to the coordinate 
axes such that A

u

= A
u

x + A
u

y.
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the positive
y-direction, so 
Ay � �2 m.

r
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r r
A
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r
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x-direction, so Ax � �3 m.

r
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3
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r
B

By

r

Bx

r

By points in the 
positive y-direction, 
so By � �2 m.

r

Bx points in the negative
x-direction, so Bx � �2 m.

r

The x-component
of C is Cx � �4 m.

r

Cx

r

C
r

The y-compo-
nent of C is 
Cy � �3 m.
r

r

Cy

r

FiGUre 3.11 Determining the components of a vector.
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Note  Beware of the somewhat confusing terminology. A
u

x and A
u

y are called com-
ponent vectors, whereas Ax and Ay are simply called components. The components 
Ax and Ay are just numbers (with units), so make sure you do not put arrow symbols 
over the components. 

We will frequently need to decompose a vector into its components. We will also 
need to “reassemble” a vector from its components. In other words, we need to move 
back and forth between the geometric and the component representations of a vector. 
FiGUre 3.12 shows how this is done.

Each decomposition requires that you pay close attention to the direction in which 
the vector points and the angles that are defined.

	■	 If a component vector points left (or down), you must manually insert a minus sign 
in front of the component, as was done for By in Figure 3.12.

	■	 The role of sines and cosines can be reversed, depending upon which angle is used 
to define the direction. Compare Ax and Bx.

	■	 The angle used to define direction is almost always between 0� and 90�, so you 
must take the inverse tangent of a positive number. Use absolute values of the com-
ponents, as was done to find angle f (Greek phi) in Figure 3.12.

exAmPLe 3.3   Finding the components of an acceleration vector

ViSUALize It’s important to draw vectors. FiGUre 3.14 shows the 
original vector a

u
 decomposed into components parallel to the 

axes. Notice that the axes are “acceleration axes,” not xy-axes, 
because we’re measuring an acceleration vector.

SoLVe The acceleration vector a
u

= (6.0 m/s2, 30� below the nega-
tive x-axis) points to the left (negative x-direction) and down (neg-
ative y-direction), so the components ax and ay are both negative:

  ax = -a cos 30� = - (6.0 m/s2) cos 30� = -5.2 m/s2

  ay = -a sin 30� = - (6.0 m/s2) sin 30� = -3.0 m/s2

x
y

x

y

Ax � A cos u

Ay � A sin u

Bx � B sin f

By � �B cos f

Bfu

A � "Ax
2 � Ay

2 B � "Bx
2 � By

2 

r
A

A

The components of A are found from the
magnitude and direction. In this example,
Ax � A cos u and Ay � A sin u.

r

u � tan�1 (Ay/Ax) f � tan�1 1Bx / 0By 0 2

The angle is defined differently. In this
example, the magnitude and direction are

r
B

Here the components are Bx � B sin f and
By � �B cos f. Minus signs must be inserted
manually, depending on the vector’s direction.

The magnitude and direction of A are found
from the components. In this example,

r

FiGUre 3.12 Moving between the geometric representation and the component representation.

ASSeSS The units of ax and ay are the same as the units of vector a
u
. 

Notice that we had to insert the minus signs manually by observ-
ing that the vector points left and down.

6.0 m/s2

30�

ar

FiGUre 3.13 The acceleration 
vector au of Example 3.3.

ay is negative.

ax is negative.

FiGUre 3.14 Decomposition of au.

Find the x- and y-components of the acceleration vector a
u

 shown 
in FiGUre 3.13.
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Stop to think 3.3 
 What are the x- and y-components Cx and Cy of vector C

u

?

3.4 Vector Algebra
The vectors (1, +x-direction and (1, +y-direction), shown in FiGUre 3.17, have some 
interesting and useful properties. Each has a magnitude of 1, no units, and is parallel 
to a coordinate axis. A vector with these properties is called a unit vector. These unit 
vectors have the special symbols

  in K (1, positive x@direction)

  jn K (1, positive y@direction)

The notation in (read “i hat”) and jn (read “j hat”) indicates a unit vector with a magni-
tude of 1. Recall that the symbol K means “is defined as.”

Unit vectors establish the directions of the positive axes of the coordinate system. 
Our choice of a coordinate system may be arbitrary, but once we decide to place a 
coordinate system on a problem we need something to tell us “ That direction is the 
positive x-direction.” This is what the unit vectors do.

The unit vectors provide a useful way to write component vectors. The component 
vector A

u

x is the piece of vector A
u

 that is parallel to the x-axis. Similarly, A
u

y is parallel 

exAmPLe 3.4  Finding the direction of motion
FiGUre 3.15 shows a car’s velocity vector v  

u
. Determine the car’s 

speed and direction of motion.

ViSUALize FiGUre 3.16 shows the components vx and vy and defines 
an angle u with which we can specify the direction of motion.

SoLVe We can read the components of v  

u
 directly from the axes: 

vx = -6.0 m/s and vy = 4.0 m/s. Notice that vx is negative. This 
is enough information to find the car’s speed v, which is the mag-
nitude of v  

u
:

 v = 2vx 

2 + vy 

2 = 2(-6.0 m/s)2 + (4.0 m/s)2 = 7.2 m/s

From trigonometry, angle u is

 u = tan-11 vy

0 vx 0 2 = tan-114.0 m/s

6.0 m/s 2 = 34�

The absolute value signs are necessary because vx is a negative 
number. The velocity vector v  

u
 can be written in terms of the speed 

and the direction of motion as

 v  

u
= (7.2 m/s, 34� above the negative x@axis)

or, if the axes are aligned to north,

 v  

u
= (7.2 m/s, 34� north of west)

vx (m/s)

vy (m/s)

�2�4�6

2

4
rv

FiGUre 3.15 The velocity vector v  

u 
of Example 3.4.

�6
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vy (m/s)

Direction u � tan�11vy / 0vx 0 2
�2�4

2

4

Magnitude

v � "vx
2 � vy

2

vy � 4.0 m/s

vx � �6.0 m/s

vy
r

u

rv

vx
r

FiGUre 3.16 Decomposition of v  

u
.

x (cm)

y (cm)
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�3�4 �1�2 1
�1
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C
r
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1

1

2

2 The unit vectors have 
magnitude 1, no units, and 
point in the �x-direction 
and �y-direction.

in

jn

FiGUre 3.17 The unit vectors in and jn.
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to the y-axis. Because, by definition, the vector in points along the x-axis and jn points 
along the y-axis, we can write

  A
u

x = Ax  in
  (3.7)
  A

u

y = Ay  jn

Equations 3.7 separate each component vector into a length and a direction. The full 
decomposition of vector A

u

 can then be written

 A
u

= A
u

x + A
u

y = Ax  in + Ay  jn (3.8)

FiGUre 3.18 shows how the unit vectors and the components fit together to form vector A
u

.

Note  In three dimensions, the unit vector along the +z@direction is called kn, and 
to describe vector A

u

 we would include an additional component vector A
u

z = Az  kn. 

exAmPLe 3.5  run rabbit run!
A rabbit, escaping a fox, runs 40.0� north of west at 10.0 m/s. 
A coordinate system is established with the positive x-axis to the 
east and the positive y-axis to the north. Write the rabbit’s velocity 
in terms of components and unit vectors.

ViSUALize FiGUre 3.19 shows the rabbit’s velocity vector and the 
coordinate axes. We’re showing a velocity vector, so the axes are 
labeled vx and vy rather than x and y.

SoLVe 10.0 m/s is the rabbit’s speed, not its velocity. The veloc-
ity, which includes directional information, is

 v  

u
= (10.0 m/s, 40.0� north of west)

Vector v  

u
 points to the left and up, so the components vx and vy 

are negative and positive, respectively. The components are

  vx = - (10.0 m/s) cos 40.0� = -7.66 m/s

  vy = + (10.0 m/s) sin 40.0� = 6.43 m/s

With vx and vy now known, the rabbit’s velocity vector is

 v  

u
= vx  in + vy  jn = (-7.66 in + 6.43jn ) m/s

Notice that we’ve pulled the units to the end, rather than writing 
them with each component.

ASSeSS Notice that the minus sign for vx was inserted manually. 
Signs don’t occur automatically; you have to set them after 
checking the vector’s direction.

Working with Vectors
You learned in Section 3.2 how to add vectors graphically, but it is a tedious problem 
in geometry and trigonometry to find precise values for the magnitude and direction 
of the resultant. The addition and subtraction of vectors become much easier if we use 
components and unit vectors.

To see this, let’s evaluate the vector sum D
u

= A
u

+ B
u

+ C
u

. To begin, write this sum 
in terms of the components of each vector:

  D
u

= Dx  in + Dy  jn = A
u

+ B
u

+ C
u

  (3.9)
  = (Ax  in + Ay  jn) + (Bx  in + By  jn) + (Cx  in + Cy  jn)

We can group together all the x-components and all the y-components on the right 
side, in which case Equation 3.9 is

 (Dx) in + (Dy) jn = (Ax + Bx + Cx) in + (Ay + By + Cy) jn (3.10)

Comparing the x- and y-components on the left and right sides of Equation 3.10, 
we find:

  Dx = Ax + Bx + Cx
  (3.11)
  Dy = Ay + By + Cy

x

y

Multiplication of a vector
by a scalar doesn’t change
the direction. Vector Axi
has length Ax and points 
in the direction of i.

Unit vectors
identify the x-
and y-directions.

jn

in

n

n

A � Axi � Ay jnn

r

Ay � Ay jn
r

Ax � Axin
r

FiGUre 3.18 The decomposition of 
vector A

u

 is Ax  in + Ay  jn.

vy � v sin 40.0�

vx

vy

vx � �v cos 40.0�

v � 10.0 m/s

40.0�

N
rv

FiGUre 3.19 The velocity vector v  

u 
is decomposed into components 
vx and vy  .



Stated in words, Equation 3.11 says that we can perform vector addition by adding the 
x-components of the individual vectors to give the x-component of the resultant and 
by adding the y-components of the individual vectors to give the y-component of the 
resultant. This method of vector addition is called algebraic addition.

exAmPLe 3.6   Using algebraic addition to find a displacement

  A
u

= 100 in m

  B
u

= (-200 cos 45� in + 200 sin 45�jn) m

  = (-141 in + 141jn) m

Notice that vector quantities must include units. Also notice, as you 
would expect from the figure, that B

u

 has a negative x-component. 
Adding A

u

 and B
u

 by components gives

  C
u

= A
u

 + B
u

= 100 in m + (-141 in + 141jn) m

  = (100 m - 141 m) in + (141 m)jn = (-41 in + 141jn) m

This would be a perfectly acceptable answer for many purposes. 
However, we need to calculate the magnitude and direction of C

u

 
if we want to compare this result to our earlier answer. The mag-
nitude of C

u

 is

 C = 2Cx 

2 + Cy 

2 = 2(-41 m)2 + (141 m)2 = 147 m

The angle u, as defined in Figure 3.20, is

 u = tan-11 Cy

0Cx 0 2 = tan-11141 m

41 m 2 = 74�

Thus C
u

= (147 m, 74� north of west), in perfect agreement with 
Example 3.1.

SoLVe To add the vectors algebraically we must know their com-
ponents. From the figure these are seen to be

x

y N

45�

200 m

100 m

u

r
A

C
rr

B

The net displacement
C � A � B is drawn
according to the 
parallelogram rule.

r rr

FiGUre 3.20 The net displacement is C
u

= A
u

+ B
u

.

Vector subtraction and the multiplication of a vector by a scalar, using components, 
are very much like vector addition. To find R

u

= P
u

- Q
u

 we would compute

  Rx = Px - Qx  (3.12)
  Ry = Py - Qy

Similarly, T 
u

= cS
u

 would be

  Tx = cSx  (3.13)
  Ty = cSy

In other words, a vector equation is interpreted as meaning: Equate the x-components 
on both sides of the equals sign, then equate the y-components, and then the z-components. 
Vector notation allows us to write these three equations in a much more compact form.

tilted Axes and Arbitrary Directions
As we’ve noted, the coordinate system is entirely your choice. It is a grid that you 
impose on the problem in a manner that will make the problem easiest to solve. As 
you’ve already seen in Chapter 2, it is often convenient to tilt the axes of the coordi-
nate system, such as those shown in FiGUre 3.21. The axes are perpendicular, and the 
y-axis is oriented correctly with respect to the x-axis, so this is a legitimate coordinate 
system. There is no requirement that the x-axis has to be horizontal.

Finding components with tilted axes is no harder than what we have done so far. 
Vector C

u

 in Figure 3.21 can be decomposed into C
u

= Cx  in + Cy  jn, where Cx = C cos u 
and Cy = C sin u. Note that the unit vectors in and jn correspond to the axes, not to 
“horizontal” and “vertical,” so they are also tilted.

Tilted axes are useful if you need to determine component vectors “parallel to” and 
“perpendicular to” an arbitrary line or surface. This is illustrated in the following example.

Unit vectors i and j
define the x- and y-axes.

x
y

The components of C 
are found with respect
to the tilted axes.

r

u

in
jn

nn

C � Cxi � Cyjnn

r

Cy

r

Cx

r

FiGUre 3.21 A coordinate system with 
tilted axes.
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Example 3.1 was about a bird that flew 100 m to the east, then 
200 m to the northwest. Use the algebraic addition of vectors to 
find the bird’s net displacement.

ViSUALize FiGUre 3.20 shows displacement vectors A
u

= (100 m,
east) and B

u

= (200 m, northwest). We draw vectors tip-to-tail to 
add them graphically, but it’s usually easier to draw them all from 
the origin if we are going to use algebraic addition.
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exAmPLe 3.7  muscle and bone
The deltoid—the rounded muscle across the top of your upper 
arm—allows you to lift your arm away from your side. It does so by 
pulling on an attachment point on the humerus, the upper arm bone, 
at an angle of 15� with respect to the humerus. If you hold your arm 
at an angle 30� below horizontal, the deltoid must pull with a force 
of 720 N to support the weight of your arm, as shown in FiGUre 3.22a. 
(You’ll learn in Chapter 5 that force is a vector quantity measured 
in units of newtons, abbreviated N.) What are the components of the 
muscle force parallel to and perpendicular to the bone?

ViSUALize FiGUre 3.22b shows a tilted coordinate system with the 
x-axis parallel to the humerus. The force F

u

 is shown 15� from the 
x-axis. The component of force parallel to the bone, which we can 
denote F}, is equivalent to the x-component: F} = Fx. Similarly, 
the component of force perpendicular to the bone is F# = Fy.

SoLVe From the geometry of Figure 3.22b, we see that

  F} = F cos 15� = (720 N) cos 15� = 695 N

  F# = F sin 15� = (720 N) sin 15� = 186 N

ASSeSS The muscle pulls nearly parallel to the bone, so we expected 
F} � 720 N and F# V F}. Thus our results seem reasonable.

(a)

(b)

Deltoid muscle

Humerus

720 N

72
0 N

Shoulder
socket

30�

15�

30�

15�

r
F

F�

r
F}

r

y

x

FiGUre 3.22 Finding the components of force parallel and 
perpendicular to the humerus.

Stop to think 3.4 
 Angle f that specifies the direction of 

C
u

 is given by x

y

fC
r

 a. tan-1( 0Cx 0 /Cy)
 b. tan-1(Cx / 0Cy 0 )
 c. tan-1( 0Cx 0 / 0Cy 0 )

 d. tan-1( 0Cy 0 /Cx)
 e. tan-1(Cy / 0Cx 0 )
 f. tan-1( 0Cy 0 / 0Cx 0 )

ChALLeNGe exAmPLe 3.8  Finding the net force
FiGUre 3.23 shows three forces acting at one point. What is the net 
force F

u

net = F
u

1 + F
u

2 + F
u

3?

ViSUALize Figure 3.23 show the forces and establishes a tilted 
coordinate system.

SoLVe The vector equation F
u

net = F
u

1 + F
u

2 + F
u

3 is really two si-
multaneous equations:

  (Fnet)x = F1x + F2x + F3x

  (Fnet)y = F1y + F2y + F3y

The components of the forces are determined with respect to the 
axes. Thus

  F1x = F1 cos 45� = (50 N) cos 45� = 35 N

  F1y = F1 sin 45� = (50 N) sin 45� = 35 N

F
u

2 is easier. It is pointing along the y-axis, so F2x = 0 N and 
F2y = 20 N. To find the components of F

u

3, we need to recog-
nize—because F

u

3 points straight down—that the angle between 
F
u

3 and the x-axis is 75�. Thus

  F3x = F3 cos 75� = (57 N) cos 75� = 15 N

  F3y = -F3 sin 75� = - (57 N) sin 75� = -55 N

The minus sign in F3y is critical, and it appears not from some 
formula but because we recognized—from the figure—that the 

y-component of F
u

3 points in the -y-direction. Combining the 
pieces, we have

  (Fnet)x = 35 N + 0 N + 15 N = 50 N

  (Fnet)y = 35 N + 20 N + (-55 N) = 0 N

Thus the net force is F
u

net = 50 in N. It points along the x-axis of the 
tilted coordinate system.

ASSeSS Notice that all work was done with reference to the axes 
of the coordinate system, not with respect to vertical or horizontal.

45�

15�

F3

r

F2

r F1

r

y

x

20 N 50 N

57 N

FiGUre 3.23 Three forces.
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The components Ax and Ay are 
the magnitudes of the com-
ponent vectors A

u

x and A
u

y and 
a plus or minus sign to show 
whether the component vector 
points toward the positive end 
or the negative end of the axis.

S U m m A r y
The goals of Chapter 3 have been to learn how vectors are represented and used.

important Concepts
A vector is a quantity described by both a magnitude and a direction. Unit Vectors

Unit vectors have magnitude 1 and 
no units. Unit vectors in and jn 
define the directions of the x- and 
y-axes.

Using Vectors
Components
The component vectors are parallel to the x- and y-axes:

A
u

= A
u

x + A
u

y = Ax  in + Ay  jn

In the figure at the right, for example:

Ax = A cos u A = 2A2
x + A2

y

Ay = A sin u u = tan-1(Ay/Ax)

 Minus signs need to be included if the vector points 
down or left.

scalar quantity
vector quantity
magnitude

resultant vector
graphical addition
zero vector, 0

u

quadrants
component vector
decomposition

component
unit vector, in or jn
algebraic addition

terms and Notation

Working Graphically

The vector
describes the
situation at
this point.

Direction

The length or magnitude is
denoted A. Magnitude is a scalar.

A

r
A

x

y

in

jn

x

y

x

y

Ax � 0

Ay � 0

Ax � 0

Ay � 0

Ax � 0

Ay � 0

Ax � 0

Ay � 0

u

r
A

Ay � Ay jn
r

Ax � Ax in
r

Working Algebraically
Vector calculations are done component by component:

  C
u

= 2A
u

+ B
u

  means  bCx = 2Ax + Bx

Cy = 2Ay + By

The magnitude of C
u

 is then C = 2Cx 

2 + Cy 

2 and its direction is found using tan-1.

r
A cA

rr
A

A � B
r

r
A

r
A

r
B

A � B
r r

r
B

A � B
r r

r
B �B

r r
B

r

�B
r

Addition
Negative Subtraction Multiplication
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C o N C e P t U A L  Q U e S t i o N S

 1. Can the magnitude of the displacement vector be more than the 
distance traveled? Less than the distance traveled? Explain.

 2. If C
u

= A
u

+ B
u

, can C = A + B? Can C 7 A + B? For each, show 
how or explain why not.

 3. If C
u

= A
u

+ B
u

, can C = 0? Can C 6 0? For each, show how or 
explain why not.

 4. Is it possible to add a scalar to a vector? If so, demonstrate. If not, 
explain why not.

 5. How would you define the zero vector 0
u

?
 6. Can a vector have a component equal to zero and still have non-

zero magnitude? Explain.

 7. Can a vector have zero magnitude if one of its components is 
nonzero? Explain.

 8. Suppose two vectors have unequal magnitudes. Can their sum be 
zero? Explain.

 9. Are the following statements true or false? Explain your answer.
 a. The magnitude of a vector can be different in different coor-

dinate systems.
 b. The direction of a vector can be different in different coordi-

nate systems.
 c. The components of a vector can be different in different co-

ordinate systems.

e x e r C i S e S  A N D  P r o B L e m S

exercises

Section	3.1	Vectors

Section	3.2	Properties	of	Vectors

 1. | Trace the vectors in FiGUre ex3.1 onto your paper. Then find 
(a) A

u

+ B
u

 and (b) A
u

- B
u

.

 2. | Trace the vectors in FiGUre ex3.2 onto your paper. Then find 
(a) A

u

+ B
u

 and (b) A
u

- B
u

.

Section	3.3	Coordinate	Systems	and	Vector	Components

 3. | a.  What are the x- and y-components of vec-
tor E

u

  shown in FiGUre ex3.3 in terms of 
the angle u and the magnitude E?

   b.  For the same vector, what are the x- and 
y-components in terms of the angle f and 
the magnitude E?

 4. || A velocity vector 40� below the positive x-axis has a y-compo-
nent of -10 m/s. What is the value of its x-component?

 5. | A position vector in the first quadrant has an x-component 
of 8 m and a magnitude of 10 m. What is the value of its y-
component?

 6. || Draw each of the following vectors, then find its x- and y-
components.

 a. r 
u

= (100 m, 45� below positive x@axis)
 b. v  

u
= (300 m/s, 20� above positive x@axis)

 c. a
u

= (5.0 m/s2, negative y@direction)
 7. || Draw each of the following vectors, then find its x- and y-

components.
 a. v  

u
= (10 m/s, negative y@direction)

 b. a
u

= (20 m/s2, 30� below positive x@axis)
 c. F

u

= (100 N, 36.9� counterclockwise from positive y@axis)

 8. | Let C
u

= (3.15 m, 15� above the negative x-axis) and D
u

=

(25.6 m, 30� to the right of the negative y-axis). Find the magni-
tude, the x-component, and the y-component of each vector.

 9. | The magnetic field inside an instrument is B
u

= (2.0 in - 1.0jn) T 
where B

u

 represents the magnetic field vector and T stands for 
tesla, the unit of the magnetic field. What are the magnitude and 
direction of the magnetic field?

Section	3.4	Vector	Algebra

 10. | Draw each of the following vectors, label an angle that 
specifies the vector’s direction, then find its magnitude and 
direction.

 a. B
u

= -4 in + 4jn b. r 
u

= (-2.0 in - 1.0jn) cm
 c. v  

u
= (-10 in - 100jn) m/s d. a

u
= (20 in + 10jn) m/s2

 11. | Draw each of the following vectors, label an angle that 
specifies the vector’s direction, then find the vector’s magnitude 
and direction.

 a. A
u

= 4 in - 6jn b. r 
u

= (50 in + 80jn) m
 c. v  

u
= (-20 in + 40jn) m/s d. a

u
= (2.0 in - 6.0jn) m/s2

 12. | Let A
u

= 2 in + 3jn and B
u

= 4 in - 2jn.
 a. Draw a coordinate system and on it show vectors A

u

 and B
u

.
 b. Use graphical vector subtraction to find C

u

= A
u

- B
u

.
 13. | Let A

u

= 4 in - 2jn, B
u

= -3 in + 5jn, and C
u

= A
u

+ B
u

.
 a. Write vector C

u

 in component form.
 b. Draw a coordinate system and on it show vectors A

u

, B
u

, and C
u

.
 c. What are the magnitude and direction of vector C

u

?
 14. | Let A

u

= 4 in - 2jn, B
u

= -3 in + 5jn, and D
u

= A
u

- B
u

.
 a. Write vector D

u

 in component form.
 b. Draw a coordinate system and on it show vectors A

u

, B
u

, and D
u

.
 c. What are the magnitude and direction of vector D

u

?
 15. | Let A

u

= 4 in - 2jn, B
u

= -3 in + 5jn, and E
u

= 4A
u

+ 2B
u

.
 a. Write vector E

u

 in component form.
 b. Draw a coordinate system and on it show vectors A

u

, B
u

, and E
u

.
 c. What are the magnitude and direction of vector E

u

?

 16. | Let A
u

= 4 in - 2jn, B
u

= -3 in + 5jn, and F
u

= A
u

- 4B
u

.
 a. Write vector F

u

 in component form.
 b. Draw a coordinate system  and on it show vectors A

u

, B
u

, and F
u

.
 c. What are the magnitude and direction of vector F

u

?

r
A

r
B

FiGUre ex3.1 

r
A

r
B

FiGUre ex3.2 

x

y

u

f
r
E

FiGUre ex3.3 
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 17. || Let B
u

= (5.0 m, 60� counterclockwise from vertical). Find 
the x- and y-components of B

u

 in each of the two coordinate sys-
tems shown in FiGUre ex3.17.

 18. | What are the x- and y-components of the velocity vector 
shown in FiGUre ex3.18?

Problems

 19. || Let A
u

= (3.0 m, 20� south of east), B
u

= (2.0 m, north), and 
C
u

= (5.0 m, 70� south of west).
 a. Draw and label A

u

, B
u

, and C
u

 with their tails at the origin. Use 
a coordinate system with the x-axis to the east.

 b. Write A
u

, B
u

, and C
u

 in component form, using unit vectors.
 c. Find the magnitude and the direction of D

u

= A
u

+ B
u

+ C
u

.
 20. | Let E

u

= 2 in + 3jn and F
u

= 2 in - 2jn. Find the magnitude of
 a. E

u

 and F
u

 b. E
u

+ F
u

 c. - E
u

- 2F
u

 21. | The position of a particle as a function of time is given by 
r 
u

= (5.0 in + 4.0jn)t 2 m, where t is in seconds.
 a. What is the particle’s distance from the origin at t = 0, 2, 

and 5 s?
 b. Find an expression for the particle’s velocity v  

u
 as a function 

of time.
 c. What is the particle’s speed at t = 0, 2, and 5 s?
 22. || FiGUre P3.22 shows vectors A

u

 and B
u

. 
Let C

u

= A
u

+ B
u

.
 a. Reproduce the figure on your page 

as accurately as possible, using a 
ruler and protractor. Draw vector C

u

 
on your figure, using the graphical 
addition of A

u

 and B
u

. Then deter-
mine the magnitude and direction of 
C
u

 by measuring it with a ruler and protractor.
 b. Based on your figure of part a, use geometry and trigonom-

etry to calculate the magnitude and direction of C
u

.
 c. Decompose vectors A

u

 and B
u

 into components, then use these 
to calculate algebraically the magnitude and direction of C

u

.
 23. || For the three vectors shown in FiGUre P3.23, A

u

+ B
u

+ C
u

= 1jn.
 What is vector B

u

?
 a. Write B

u

 in component form.
 b. Write B

u

 as a magnitude and a direction.

 24. | a.  What is the angle f between vectors E
u

 and F
u

 in FiGUre P3.24?
   b.  Use geometry and trigonometry to determine the magni-

tude and direction of G
u

= E
u

+ F
u

.
   c.  Use components to determine the magnitude and direction 

of G
u

= E
u

+ F
u

.

 25. || FiGUre P3.25 shows vectors A
u

 and B
u

. Find vector C
u

 such that 
A
u

+ B
u

+ C
u

= 0
u

. Write your answer in component form.

 26. ||| FiGUre P3.26 shows vectors A
u

 and B
u

. Find D
u

= 2A
u

+ B
u

. Write 
your answer in component form.

 27. || Find a vector that points in the same direction as the vector 
( in + jn) and whose magnitude is 1.

 28. || Carlos runs with velocity v  

u
= (5.0 m/s, 25� north of east) for 

10 minutes. How far to the north of his starting position does 
Carlos end up?

 29. || While vacationing in the mountains you do some hiking. In 
the morning, your displacement is S

u

morning = (2000 m, east) +
(3000 m, north) + (200 m, vertical). After lunch, your dis-
placement is S

u

afternoon = (1500 m, west) + (2000 m, north) -
(300 m, vertical).

 a. At the end of the hike, how much higher or lower are you 
compared to your starting point?

 b. What is the magnitude of your net displacement for the day?
 30. || The minute hand on a watch is 2.0 cm in length. What is the 

displacement vector of the tip of the minute hand
 a. From 8:00 to 8:20 a.m.?
 b. From 8:00 to 9:00 a.m.?
 31. || Bob walks 200 m south, then jogs 400 m southwest, then 

walks 200 m in a direction 30� east of north.
 a. Draw an accurate graphical representation of Bob’s motion. 

Use a ruler and a protractor!
 b. Use either trigonometry or components to find the displace-

ment that will return Bob to his starting point by the most 
direct route. Give your answer as a distance and a direction.

 c. Does your answer to part b agree with what you can measure 
on your diagram of part a?

 32. || Jim’s dog Sparky runs 50 m northeast to a tree, then 70 m west 
to a second tree, and finally 20 m south to a third tree.

 a. Draw a picture and establish a coordinate system.
 b. Calculate Sparky’s net displacement in component form.
 c. Calculate Sparky’s net displacement as a magnitude and 

an angle.
 33. || A field mouse trying to escape a hawk runs east for 

5.0 m, darts southeast for 3.0 m, then drops 1.0 m straight 
down a hole into its burrow. What is the magnitude of its net 
displacement?

 34. | A cannon tilted upward at 30� fires a cannonball with a speed 
of 100 m/s. What is the component of the cannonball’s velocity 
parallel to the ground?

 35. | Jack and Jill ran up the hill at 3.0 m/s. The horizontal compo-
nent of Jill’s velocity vector was 2.5 m/s.

 a. What was the angle of the hill?
 b. What was the vertical component of Jill’s velocity?
 36. | A pine cone falls straight down from a pine tree growing 

on a 20� slope. The pine cone hits the ground with a speed 
of 10 m/s. What is the component of the pine cone’s impact 
velocity (a) parallel to the ground and (b) perpendicular to the 
ground?

x

x

y y

30�

(a) (b)

FiGUre ex3.17 
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 37.  ||  Mary needs to row her boat across a 100-m-wide river that is 
flowing to the east at a speed of 1.0 m/s. Mary can row the boat 
with a speed of 2.0 m/s relative to the water.

  a.  If Mary rows straight north, how far downstream will she land?
  b.  Draw a picture showing Mary’s displacement due to rowing, her 

displacement due to the river’s motion, and her net displacement.
 38.  ||  The  treasure  map  in  Fig-

ure  P3.38  gives  the  following 
directions to the buried treasure: 
“Start at  the old oak  tree, walk 
due  north  for  500  paces,  then 
due  east  for  100  paces.  Dig.” 
But  when  you  arrive,  you  find 
an  angry  dragon  just  north  of 
the  tree.  To  avoid  the  dragon, 
you  set  off  along  the  yellow 
brick road at an angle 60� east of 
north. After walking 300 paces 
you see an opening through the woods. Which direction should 
you go, and how far, to reach the treasure?

 39.  ||  A jet plane is flying horizontally with a speed of 500 m/s over 
a hill that slopes upward with a 3% grade (i.e., the “rise” is 3% 
of the “run”). What is the component of the plane’s velocity per-
pendicular to the ground?

 40.  ||  The  bacterium  E. 
coli  is  a  single-cell 
or gan ism that lives in 
the  gut  of  healthy 
animals, including hu - 
mans. When grown in 
a uniform medium in 
the  laboratory,  these 
bacteria  swim  along 
zigzag paths at a con-
stant speed of 20 mm/s. 
Figure P3.40 shows the trajectory of an E. coli as it moves from 
point A to point E. What are the magnitude and direction of the 
bacterium’s average velocity for the entire trip?

BIO

 41.  ||  A  flock  of  ducks  is  trying  to  migrate  south  for  the  winter, 
but they keep being blown off course by a wind blowing from 
the west at 6.0 m/s. A wise elder duck finally realizes that  the 
solution is to fly at an angle to the wind. If the ducks can fly at 
8.0 m/s  relative  to  the  air, what  direction  should  they head  in 
order to move directly south?

 42.  ||  Figure  P3.42  shows  three  ropes 
tied  together  in a knot. One of your 
friends pulls on a rope with 3.0 units 
of  force and another pulls on a  sec-
ond rope with 5.0 units of force. How 
hard and in what direction must you 
pull on the third rope to keep the knot 
from moving?

 43.  ||  Three  forces  are  exerted  on  an 
object  placed  on  a  tilted  floor  in  Fig-

ure  P3.43. The forces are measured in 
newtons (N). Assuming that forces are 
vectors,

  a.  What  is  the  component  of  the  net 
force  F

u

net = F
u

1 + F
u

2 + F
u

3  parallel 
to the floor?

  b.  What is the component of F
u

net per-
pendicular to the floor?

  c.  What are  the magnitude and direc-
tion of F

u

net?
 44.  ||  Figure P3.44 shows four electric 

charges  located at  the corners of 
a rectangle. Like charges, you will 
recall, repel each other while op-
posite  charges  attract.  Charge  B 
exerts  a  repulsive  force  (directly 
away from  B)  on  charge  A  of 
3.0 N. Charge C exerts an attrac-
tive force (directly  toward C) on 
charge A of 6.0 N. Finally, charge D exerts an attractive force of 
2.0 N on charge A. Assuming that forces are vectors, what are the 
magnitude and direction of the net force F

u

net exerted on charge A?

StoP to think AnSwerS

Stop to Think 3.1: C. The graphical construction of A
u

1 + A
u

2 + A
u

3 is 
shown at right.

Stop to Think 3.2: a. The graphical construction of 2A
u

- B
u

 is shown 

at right.

Stop to Think 3.3: Cx � �4 cm, Cy � 2 cm.

Stop to Think 3.4: c. Vector C
u

 points to the left and down, so both 
Cx and Cy are negative. Cx is in the numerator because it is the side 
opposite f.
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4

The water droplets are following 
the parabolic trajectories of 
projectile motion.

Kinematics in Two 
Dimensions

Circular Motion
Uniform circular motion is circular motion with 
constant speed. Because the direction is changing, 
there is a centripetal acceleration pointing toward 
the center of the circle.

Projectile Motion
Projectile motion is two-dimensional motion 
under the influence of only gravity.

You’ll learn that circular 
motion can be described 
by angular position u, 
angular velocity v, and 
angular acceleration a. 
These are analogous to 
the familiar linear posi-
tion x, velocity v, and 
acceleration a.

vr

vr

vr

ar

ar

ar

x

y

Launch angle

Parabolic
trajectory

Initia
l sp

eed
 v 0

u

Projectile motion follows a parabolic 
trajectory characterized by the initial speed 
and the launch angle.

The London Eye is a stately 
example of circular motion.

You’ll learn to calculate how high 
and how far a projectile travels.

Two-Dimensional Motion
An object moving in two dimensions 
follows a trajectory. The object’s ac-
celeration has a component associated 
with changing speed and a component 
associated with changing direction. The 
latter is perpendicular to the direction of 
motion.

You will learn to extend the motion dia-
grams of Chapter 1 and the kinematics of 
Chapter 2 to motion in two dimensions.

 Looking Back
Section 1.5 Finding acceleration vectors 
on a motion diagram

 Looking Back
Sections 2.5–2.6 Constant acceleration 
kinematics and free fall 

 Looking Ahead  The goal of Chapter 4 is to learn how to solve problems about motion in a plane.

vr

a}
r

a�
r

ar

x

y Trajectory

The parallel component is associated
with a change of speed.

The perpendicular
component is associated
with a change of direction.
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4.1 Acceleration
In Chapter 1 we defined the average acceleration a

u

avg of a moving object to be the 
vector

 a
u

avg =
�v  

u

�t
 (4.1)

From its definition, we see that au points in the same direction as �v  

u, the change 
of velocity. As an object moves, its velocity vector can change in two possible ways:

 1. The magnitude of v  

u
 can change, indicating a change in speed, or

 2. The direction of v  

u
 can change, indicating that the object has changed direction.

The kinematics of Chapter 2 considered only the acceleration of changing speed. 
Now it’s time to look at the acceleration associated with changing direction. Tactics 
Box 4.1 shows how we can use the velocity vectors on a motion diagram to deter-
mine the direction of the average acceleration vector. This is an extension of Tactics 
Box 1.3, which showed how to find a

u
 for one-dimensional motion.

TACTiCs
B o x  4 . 1 

 Finding the acceleration vector

Exercises 1–4 

1

2

3

4 Return to the original motion 
diagram. Draw a vector at the 
middle point in the direction of
�v; label it a. This is the average
acceleration between vn and vn�1. 

Draw the velocity vector vn�1.

Draw �vn at the tip of vn�1.

Draw �v � vn�1 � vn

 � vn�1 � (�vn)
This is the direction of a.  

To find the acceleration between
velocity vn and velocity vn�1:

r r

r

r r

r r r

r r

r

r r

r r

vn
r

vn�1
r

vn�1
r

�vn
r

vn�1
r

�vn
r

�vr

vn�1
r

vn�1
rvn

r

ar

To illustrate, Figure 4.1a shows a motion diagram of Maria riding a Ferris wheel at the 
amusement park. Maria has constant speed but not constant velocity, so she is accel-
erating. Figure 4.1b applies the rules of Tactics Box 4.1 to find that—at every point—
Maria’s acceleration points toward the center of the circle. This is an acceleration due 
to changing direction, not to changing speed.

NoTe  Our everyday use of the word “accelerate” means “speed up.” The techni-
cal definition of acceleration—the rate of change of velocity—also includes slow-
ing down, as you learned in Chapter 2, as well as changing direction. All these are 
motions that change the velocity. 

The lengths of all the velocity 
vectors are the same, 
indicating constant speed.

The direction of each vector is 
different. This is a changing 
velocity.

rv

Maria moves at constant speed but not at
constant velocity. Thus she is accelerating.

(a)

Maria’s acceleration is an acceleration of
changing direction, not of changing speed.

Velocity 
vectors

Acceleration
vectors

ar

ar ar

arar

rv

vn
rvn�1

r

�vn
r

�vr
vn�1
r No matter which dot

is selected, finding �v
like this will show
that it points to the
center of the circle.

All acceleration
vectors point to the
center of the circle.

r
(b)

Figure 4.1 Using Tactics Box 4.1 to find 
Maria’s acceleration on the Ferris wheel.
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Figure 4.3 shows that an object’s acceleration vector can be decomposed into a 
component parallel to the velocity—that is, parallel to the direction of motion—and 
a component perpendicular to the velocity. au} is the piece of the acceleration that 
causes the object to change speed, speeding up if a

u
} points in the same direction as v  

u
, 

slowing down if they point in opposite directions. au# is the piece of the acceleration 
that causes the object to change direction. An object changing direction always has 
a component of acceleration perpendicular to the direction of motion.

Looking back at Example 4.1, we see that a
u

 is parallel to v  

u
 on the straight portions 

of the hill where only speed is changing. At the very bottom, where the ball’s direction 
is changing but not its speed, a

u
 is perpendicular to v  

u
. The acceleration is angled with 

respect to velocity—having both parallel and perpendicular components—at those 
points where both speed and direction are changing.

exAMPLe 4.1  Through the valley
A ball rolls down a long hill, through the valley, and back up the 
other side. Draw a complete motion diagram of the ball, showing 
velocity and acceleration vectors.

MoDeL Model the ball as a particle.

VisuALize Figure 4.2 is the motion diagram. Where the particle 
moves along a straight line, it speeds up if a

u
 and v  

u
 point in the same 

direction and slows down if a
u
 and v  

u
 point in opposite directions. 

This idea was the basis for the one-dimensional kinematics we de-
veloped in Chapter 2. For linear motion, acceleration is a change of 
speed. When the direction of v  

u
 changes, as it does when the ball goes 

through the valley, we need to use vector subtraction to find the direc-
tion of �v  

u
 and thus of a

u
. The procedure is shown at two points in the 

motion diagram. Notice that the point at the bottom of the valley is 
much like the bottom point of Maria’s motion diagram in Figure 4.1b.

rv
�vr

�vrrv

a is perpendicular to v.
Only direction is changing.

rr

Both speed and direction are changing.
a has components parallel and perpendicular to v.rr

a is parallel to v.
Only speed is changing.

rr

ar

ar

ar

Figure 4.2 The motion diagram of the ball of Example 4.1.

rv

ar

a�
r

a}
r

This component of a is changing
the speed of the motion.

r

This component of a is changing
the direction of motion.

r

Figure 4.3 Analyzing the acceleration 
vector.

Stop to think 4.1  This acceleration will cause the particle to

 a. Speed up and curve upward. b. Speed up and curve downward.
 c. Slow down and curve upward. d. Slow down and curve downward.
 e. Move to the right and down. f. Reverse direction.

rv
ar

4.2 Two-Dimensional Kinematics
Motion diagrams are an important tool for visualizing motion, but we also need to de-
velop a mathematical description of motion in two dimensions. We’re going to begin 
with motion in which the horizontal and vertical components of acceleration are in-
dependent of each other. For convenience, we’ll say that the motion is in the xy-plane 
regardless of whether the plane of motion is horizontal or vertical.

Figure 4.4 shows a particle moving along a curved path—its trajectory—in the 
xy-plane. We can locate the particle in terms of its position vector r 

u
= x  in + y jn.

NoTe  In Chapter 2 we made extensive use of position-versus-time graphs, either 
x versus t or y versus t. Figure 4.4, like many of the graphs we’ll use in this chapter, 
is a graph of y versus x. In other words, it’s an actual picture of the trajectory, not 
an abstract representation of the motion. 

x

y

Position vector

Trajectory

r y
 �

 y

rx � x

The x- and y-components of r are simply x and y.r

r �
 x
i �

 y
jn

n

r

Figure 4.4 A particle moving along a 
trajectory in the xy-plane.
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Figure 4.5a shows the particle moving from position r 
u

1 at time t1 to position r 
u

2 at 
a later time t2  . The average velocity—pointing in the direction of the displacement 
�r 

u
—is

 v  

u

avg =
�r 

u

�t
=

� x

�t
 in +

�y

�t
 jn (4.2)

You learned in Chapter 2 that the instantaneous velocity is the limit of v  

u

avg as �t S 0. 
As �t decreases, point 2 moves closer to point 1 until, as Figure 4.5b shows, the dis-
placement vector becomes tangent to the curve. Consequently, the instantaneous ve-
locity vector v  

u
 is tangent to the trajectory.

Mathematically, the limit of Equation 4.2 gives

 v  

u
= lim

�tS0
 
�r 

u

�t
=

d  r  
u

dt
=

dx

dt
 in +

dy

dt
 jn (4.3)

But we can also write the velocity vector in terms of its x- and y-components as

 v  

u
= vx  in + vy  jn (4.4)

Comparing Equations 4.3 and 4.4, you can see that the velocity vector v  

u
 has x- and 

y-components

 vx =
dx

dt
  and  vy =

dy

dt
 (4.5)

That is, the x-component vx of the velocity vector is the rate dx/dt at which the par-
ticle’s x-coordinate is changing. The y-component is similar.

Figure 4.6 illustrates another important feature of the velocity vector. If the vector’s 
angle u is measured from the positive x-direction, the velocity vector components are

  vx = v cos u
  (4.6)
  vy = v sin u

where

 v = 2vx 

2 + vy 

2 (4.7)

is the particle’s speed at that point. Speed is always a positive number (or zero), 
whereas the components are signed quantities (i.e., they can be positive or negative) to 
convey information about the direction of the velocity vector. Conversely, we can use 
the two velocity components to determine the direction of motion:

 tan u =
vy

vx
 (4.8)

NoTe  In Chapter 2, you learned that the value of the velocity component vs at 
time t is given by the slope of the position-versus-time graph at time t. Now we see 
that the direction of the velocity vector v  

u
 is given by the tangent to the y-versus-x 

graph of the trajectory. Figure 4.7 reminds you that these two graphs use different 
interpretations of the tangent lines. The tangent to the trajectory does not tell us 
anything about how fast the particle is moving, only its direction. 

(a)

(b)

vavg
r

x

y

2

1

The average velocity
points in the direction
of �r.r

�rr

r1
r r2

r

�x

�y

x

y

22
2

1

Point 2 moves closer
to point 1 as �t S 0.

�r

As �t S 0, �r becomes
tangent to the curve at 1.

r

rv

r

The instantaneous
velocity v is tangent
to the curve at 1.

r

The displacement is
�r � �xi � �yjr

n n

Figure 4.5 The instantaneous velocity 
vector is tangent to the trajectory.

x

y

vx � v cos u

v y
 �

 v
 s
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 u

v �
   vx

2  �
 v y

2

u

Vertical component of vr

rv

Horizontal component of vr

Figure 4.6 Relating the components of 
v
u to the speed and direction.

Don’t confuse these two graphs!

The value of the
velocity v s is the
slope of the curve.

The direction of the
velocity is tangent
to the curve.

x

y

t

s

TrajectoryPosition-versus-time graph
rv

Figure 4.7 Two different uses of tangent lines.
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Acceleration
Let’s return to the particle moving along a trajectory in the xy-plane. Figure 4.9a shows 
the instantaneous velocity v  

u

1 at point 1 and, a short time later, velocity v  

u

2 at point 2. 
These two vectors are tangent to the trajectory. We can use the vector-subtraction 
technique, shown in the inset, to find a

u

avg on this segment of the trajectory.
If we now take the limit �t S 0, the instantaneous acceleration is

 a
u

= lim
�tS0

 
�v  

u

�t
=

d v  

u

dt
 (4.9)

As �t S 0, points 1 and 2 in Figure 4.9a merge, and the instantaneous acceleration a
u

 
is found at the same point on the trajectory (and the same instant of time) as the instan-
taneous velocity v  

u
. This is shown in Figure 4.9b.

exAMPLe 4.2  Describing the motion with graphs
A particle’s motion is described by the two equations

  x = 2t 2 m

  y = (5t + 5) m

where the time t is in s.

 a. Draw a graph of the particle’s trajectory.
 b. Draw a graph of the particle’s speed as a function of time.

MoDeL These are parametric equations that give the particle’s co-
ordinates x and y separately in terms of the parameter t.

soLVe a. The trajectory is a curve in the xy-plane. The easiest 
way to proceed is to calculate x and y at several instants of time.

t (s) x (m) y (m) v (m/s)

0  0  5 5.0

1  2 10 6.4

2  8 15 9.4

3 18 20 13.0

4 32 25 16.8

  These points are plotted in Figure 4.8a; then a smooth curve is 
drawn through them to show the trajectory.

 b. The particle’s speed is given by Equation 4.7. We first need to 
use Equation 4.5 to find the components of the velocity vector:

 vx =
dx

dt
= 4t m/s  and  vy =

dy

dt
= 5 m/s

  Using these gives the particle’s speed at time t:

 v = 2vx 

2 + vy 

2 = 216t 2 + 25 m/s

The speed was computed in the table and is graphed in Figure 4.8b.

Assess The y-versus-x graph of Figure 4.8a is a trajectory, not 
a position-versus-time graph. Thus the slope is not the particle’s 
speed. The particle is speeding up, as you can see in the second 
graph, even though the slope of the trajectory is decreasing.
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(b)

Figure 4.8 Two motion graphs for the particle of Example 4.2.
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Figure 4.9 The average and instantaneous acceleration vectors on a curved trajectory.
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By definition, the acceleration vector a
u

 is the rate at which the velocity v  

u
 is chang-

ing at that instant. To show this, Figure 4.10a decomposes a
u

 into components a
u
} and a

u

# 
that are parallel and perpendicular to the trajectory. a

u
} is associated with a change of 

speed, and a
u

# is associated with a change of direction. Both kinds of changes are ac-
celerations. Notice that a

u

# always points toward the “inside” of the curve because that 
is the direction in which v  

u
 is changing.

The parallel and perpendicular components of a
u

 convey important ideas about ac-
celeration, but it’s usually more practical to write a

u
 in terms of the x- and y-compo-

nents shown in Figure 4.10b. Because v  

u
= vx  in + vy  jn, we find

 a
u

= ax  in + ay  jn =
d v  

u

dt
=

dvx

dt
 in +

dvy

dt
 jn (4.10)

from which we see that

 ax =
dvx

dt
  and  ay =

dvy

dt
 (4.11)

That is, the x-component of a
u

 is the rate dvx /dt at which the x-component of velocity 
is changing.

Constant Acceleration
If the acceleration a

u
= ax  in + ay  jn is constant, then the two components ax and ay are 

both constant. In this case, everything you learned about constant-acceleration kine-
matics in Chapter 2 carries over to two-dimensional motion.

Consider a particle that moves with constant acceleration from an initial position 
r 
u

i = xi  in + yi  jn, starting with initial velocity v  

u

i = vix  in + viy  jn. Its position and velocity 
at a final point f are

 
 xf = xi + vix �t +

1
2 ax  (�t)2

vfx = vix + ax �t

  
yf = yi + viy �t +

1
2 ay  (�t)2

vfy = viy + ay �t

 (4.12)

There are many quantities to keep track of in two-dimensional kinematics, making the 
pictorial representation all the more important as a problem-solving tool.

NoTe  For constant acceleration, the x-component of the motion and the y-compo-
nent of the motion are independent of each other. However, they remain connected 
through the fact that �t must be the same for both. 

Instantaneous velocity

x

y

Instantaneous
acceleration

The x- and y-components
are mathematically more
convenient.

(b)

rv
ax
r

ay
rar

x

y

Instantaneous
acceleration

Instantaneous velocity

(a) The parallel component is associated
with a change of speed.

The perpendicular
component is associated
with a change of direction.

a}
r

a�
r

ar

rv

Figure 4.10 Decomposition of the 
instantaneous acceleration au.

exAMPLe 4.3  Plotting the trajectory of the shuttlecraft
The up thrusters on the shuttlecraft of the starship Enterprise give 
it an upward acceleration of 5.0 m/s2. Its forward thrusters provide 
a forward acceleration of 20 m/s2. As it leaves the Enterprise, the 
shuttlecraft turns on only the up thrusters. After clearing the flight 
deck, 3.0 s later, it adds the forward thrusters. Plot a trajectory of 
the shuttlecraft for its first 6 s.

MoDeL Represent the shuttlecraft as a particle. There are two seg-
ments of constant-acceleration motion.

VisuALize Figure 4.11 shows a pictorial representation. The co-
ordinate system has been chosen so that the shuttlecraft starts at 
the origin and initially moves along the y-axis. The craft moves 
vertically for 3.0 s, then begins to acquire a forward motion. There 
are three points in the motion: the beginning, the end, and the point 
at the which forward thrusters are turned on. These points are 
labeled (x0  , y0), (x1, y1), and (x2, y2). The velocities are (v0x, v0y), 
(v1x, v1y), and (v2x, v2y). This will be our standard labeling scheme 
for trajectories, where it is essential to keep the x-components and 
y-components separate.
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Stop to think 4.2  During which time interval or intervals is the particle described by 
these position graphs at rest? More than one may be correct.

 a. 0–1 s
 b. 1–2 s
 c. 2–3 s
 d. 3–4 s

4.3 Projectile Motion
Baseballs and tennis balls flying through the air, Olympic divers, and daredevils shot 
from cannons all exhibit what we call projectile motion. A projectile is an object that 
moves in two dimensions under the influence of only gravity. Projectile motion is an 
extension of the free-fall motion we studied in Chapter 2. We will continue to neglect 
the influence of air resistance, leading to results that are a good approximation of 
reality for relatively heavy objects moving relatively slowly over relatively short dis-
tances. As we’ll see, projectiles in two dimensions follow a parabolic trajectory like 
the one seen in Figure 4.13.

The start of a projectile’s motion, be it thrown by hand or shot from a gun, is called 
the launch, and the angle u of the initial velocity v  

u

0 above the horizontal (i.e., above 

soLVe During the first phase of the acceleration, when a0x =

0 m/s2 and a0y = 5.0 m/s2, the motion is described by

  y = y0 + v0y  (t - t0) +
1
2 a0y  (t - t0)

2 = 2.5t 2 m

  vy = v0y + a0y  (t - t0) = 5.0t m/s

where the time t is in s. These equations allow us to calculate the 
position and velocity at any time t. At t1 = 3.0 s, when the first 
phase of the motion ends, we find that

  x1 = 0 m  v1x = 0 m/s

  y1 = 22.5 m   v1y = 15 m/s

During the next 3 s, when a1x = 20 m/s2 and a1y = 5.0 m/s2, the 
x- and y-coordinates are

  x = x1 + v1x  (t - t1) +
1
2 a1x  (t - t1)

2

  = 10(t - 3.0)2 m

  y = y1 + v1y  (t - t1) +
1
2 a1y  (t - t1)

2

  = 122.5 + 15(t - 3.0) + 2.5(t - 3.0)22  m

where, again, t is in s. To show the trajectory, we’ve calculated 
x and y every 0.5 s, plotted the points in Figure 4.12, and drawn a 
smooth curve through the points.
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Forward 
thrusters
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x0 � y0 � 0 m   v0x � v0y � 0 m/s     t0 � 0
a0x � 0 m/s2   a0y � 5.0 m/s2     t1 � 3.0 s

x1,  y1,  t1

v1x, v1y 

x2,  y2,  t2

v2x, v2y 

x0,  y0, t0

v0x, v0y

a1x � 20 m/s2  a1y � 5.0 m/s2     t2 � 6.0 s

Find
x and y at time t 

Pictorial representation

a1
r

a0
r

Figure 4.11 Pictorial representation of the motion of the shuttlecraft.
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Figure 4.12 The shuttlecraft trajectory.
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Figure 4.13 The parabolic trajectory of a 
bouncing ball.
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the x-axis) is called the launch angle. Figure 4.14 illustrates the relationship between 
the initial velocity vector v  

u

0 and the initial values of the components v0x and v0y  . You 
can see that

  v0x = v0 cos u
  (4.13)
  v0y = v0 sin u

where v0 is the initial speed.

NoTe  The components v0x and v0y are not necessarily positive. In particular, a pro-
jectile launched at an angle below the horizontal (such as a ball thrown downward 
from the roof of a building) has negative values for u and v0y  . However, the speed 
v0 is always positive. 

Gravity acts downward, and we know that objects released from rest fall straight 
down, not sideways. Hence a projectile has no horizontal acceleration, while its verti-
cal acceleration is simply that of free fall. Thus

  ax = 0
  (projectile motion) (4.14)
  ay = -g 

In other words, the vertical component of acceleration ay is just the familiar �g  
of free fall, while the horizontal component ax is zero. Projectiles are in free fall.

To see how these conditions influence the motion, Figure 4.15 shows a projectile 
launched from (x0, y0) = (0 m, 0 m) with an initial velocity v  

u

0 = (9.8 in + 19.6jn) m/s. 
The value of vx never changes because there’s no horizontal acceleration, but vy de creases 
by 9.8 m/s every second. This is what it means to accelerate at ay = -9.8 m/s2 =  
(-9.8 m/s) per second.

You can see from Figure 4.15 that projectile motion is made up of two indepen-
dent motions: uniform motion at constant velocity in the horizontal direction and 
free-fall motion in the vertical direction. The kinematic equations that describe these 
two motions are simply Equations 4.12 with ax = 0 and ay = -g.
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Figure 4.14 A projectile launched with 
initial velocity v  
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Figure 4.15 The velocity and 
acceleration vectors of a projectile 
moving along a parabolic trajectory.

exAMPLe 4.4  Don’t try this at home!
A stunt man drives a car off a 10.0-m-high cliff at a speed of 
20.0 m/s. How far does the car land from the base of the cliff?

MoDeL Represent the car as a particle in free fall. Assume that the 
car is moving horizontally as it leaves the cliff.

VisuALize The pictorial representation, shown in Figure 4.16, is 
very important because the number of quantities to keep track of is 
quite large. We have chosen to put the origin at the base of the cliff. 
The assumption that the car is moving horizontally as it leaves the 
cliff leads to v0x = v0 and v0y = 0 m/s.

soLVe Each point on the trajectory has x- and y-components of 
position, velocity, and acceleration but only one value of time. The 
time needed to move horizontally to x1 is the same time needed to 
fall vertically through distance y0. Although the horizontal and 
vertical motions are independent, they are connected through 
the time t. This is a critical observation for solving projectile 
motion problems. The kinematics equations with  ax = 0 and 
ay = -g are

  x1 = x0 + v0x  (t1 - t0) = v0  t1

  y1 = 0 = y0 + v0y  (t1 - t0) -
1
2 g(t1 - t0)

2 = y0 -
1
2 gt1 

2

We can use the vertical equation to determine the time t1 needed 
to fall distance y0:

 t1 = B 2y0

g
= B 2(10.0 m)

9.80 m/s2 = 1.43 s

We then insert this expression for t into the horizontal equation to 
find the distance traveled:

 x1 = v0  t1 = (20.0 m/s)(1.43 s) = 28.6 m

Assess The cliff height is �  33 ft and the initial speed is 
v0 � 40 mph. Traveling x1 = 29 m � 95 ft before hitting the 
ground seems reasonable.

x0, y0, t0

v0x, v0y

x1, y1, t1

v1x, v1y

0
0

x

y

Known
x0 � 0 m    v0y � 0 m/s    t0 � 0 s
y0 � 10.0 m  v0x � v0 � 20.0 m/s
ax � 0 m/s2  ay � �g  y1 � 0 m

Find
x1

ar

v0
r

Figure 4.16 Pictorial representation for the car of Example 4.4.



The x- and y-equations of Example 4.4 are parametric equations. It’s not hard to 
eliminate t and write an expression for y as a function of x. From the x1 equation, 
t1 = x1/v0  . Substituting this into the y1 equation, we find

 y = y0 -
g

2v0 

2 x2 (4.15)

The graph of y = ax2 is a parabola, so Equation 4.15 represents an inverted parabola 
that starts from height y0. This proves, as we asserted above, that a projectile follows 
a parabolic trajectory.

reasoning About Projectile Motion
Think about the following question:

A heavy ball is launched exactly horizontally at height h above a horizontal field. 
At the exact instant that the ball is launched, a second ball is simply dropped from 
height h. Which ball hits the ground first?

It may seem hard to believe, but—if air resistance is neglected—the balls hit the 
ground simultaneously. They do so because the horizontal and vertical components of 
projectile motion are independent of each other. The initial horizontal velocity of the 
first ball has no influence over its vertical motion. Neither ball has any initial motion 
in the vertical direction, so both fall distance h in the same amount of time. You can 
see this in Figure 4.17.

Figure 4.18a shows a useful way to think about the trajectory of a projectile. Without 
gravity, a projectile would follow a straight line. Because of gravity, the particle at 
time t has “fallen” a distance 12 gt2 below this line. The separation grows as 12 gt2, giving 
the trajectory its parabolic shape.

Use this idea to think about the following “classic” problem in physics:

A hungry bow-and-arrow hunter in the jungle wants to shoot down a coconut that 
is hanging from the branch of a tree. He points his arrow directly at the coconut, 
but as luck would have it, the coconut falls from the branch at the exact instant the 
hunter releases the string. Does the arrow hit the coconut?

You might think that the arrow will miss the falling coconut, but it doesn’t. Al-
though the arrow travels very fast, it follows a slightly curved parabolic trajectory, 
not a straight line. Had the coconut stayed on the tree, the arrow would have curved 
under its target as gravity causes it to fall a distance 1

2 gt2 below the straight line. 
But 1

2 gt2 is also the distance the coconut falls while the arrow is in flight. Thus, as 
Figure 4.18b shows, the arrow and the coconut fall the same distance and meet at the 
same point!

Figure 4.17 A projectile launched 
horizontally falls in the same time as a 
projectile that is released from rest.

x

y
Trajectory
without
gravity

Actual trajectory

The distance between
the gravity-free trajectory
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Figure 4.18 A projectile follows a parabolic trajectory because it “falls” a distance 1
2 gt 2 

below a straight-line trajectory.
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solving Projectile Motion Problems

 
ProBLeM-soLViNg
sTrATegy 4.1  Projectile motion problems

MoDeL Make simplifying assumptions, such as treating the object as a particle. 
Is it reasonable to ignore air resistance?

VisuALize Use a pictorial representation. Establish a coordinate system with the 
x-axis horizontal and the y-axis vertical. Show important points in the motion on 
a sketch. Define symbols and identify what the problem is trying to find.

soLVe The acceleration is known: ax = 0 and ay = -g. Thus the problem is one 
of two-dimensional kinematics. The kinematic equations are

   xf = xi + vix �t   yf = yi + viy �t -
1
2 g(�t)2

  vfx = vix = constant   vfy = viy - g �t

�t is the same for the horizontal and vertical components of the motion. Find �t 
from one component, then use that value for the other component.

Assess Check that your result has the correct units, is reasonable, and answers 
the question.

exAMPLe 4.5  Jumping frog contest
Frogs, with their long, strong legs, are excellent jumpers. And 
thanks to the good folks of Calaveras County, California, who have 
a jumping frog contest every year in honor of a Mark Twain story, 
we have very good data on how far a determined frog can jump.

High-speed cameras show that a good jumper goes into a 
crouch, then rapidly extends his legs by typically 15 cm during a 
42 ms push off, leaving the ground at a 30� angle. How far does 
this frog leap?

MoDeL Represent the frog as a particle. Model the push off as 
linear motion with constant acceleration. A bullfrog is fairly heavy 
and dense, so ignore air resistance and consider the leap to be pro-
jectile motion.

VisuALize This is a two-part problem: linear acceleration fol-
lowed by projectile motion. A key observation is that the final 
velocity for pushing off the ground becomes the initial veloc-
ity of the projectile motion. Figure 4.19 shows a separate picto-
rial representation for each part. Notice that we’ve used different 
coordinate systems for the two parts; coordinate systems are our 

choice, and for each part of the motion we’ve chosen the coordi-
nate system that makes the problem easiest to solve.

soLVe While pushing off, the frog travels 15 cm = 0.15 m in 
42 ms = 0.042 s. We could find his speed at the end of pushing 
off if we knew the acceleration. Because the initial velocity is 
zero, we can find the acceleration from the position-acceleration-
time kinematic equation:

  x1 = x0 + v0x �t +
1
2 ax (�t)2 =

1
2 ax (�t)2

  ax =
2x1

(�t)2 =
2(0.15 m)

(0.042 s)2 = 170 m/s2

This is a substantial acceleration, but it doesn’t last long. At the 
end of the 42 ms pu sh off, the frog’s velocity is

 v1x = v0x + ax �t = (170 m/s2)(0.042 s) = 7.14 m/s

We’ll keep an extra significant figure here to avoid round-off error 
in the second half of the problem.

Figure 4.19 Pictorial representations of the jumping frog.
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As Example 4.5 found, a projectile that lands at the same elevation from which it 
was launched travels distance

 distance =
v0 

2 sin (2u)
g

 (4.16)

The maximum distance occurs for u = 45�, where sin(2u) = 1. But there’s more 
that we can learn from this equation. Because sin (180� - x) = sin x, it follows that 
sin (2(90� - u)) = sin (2u). Consequently, a projectile launched either at angle u or 
at angle (90� - u) will travel the same distance over level ground. Figure 4.20 shows 
the trajectories of projectiles launched with the same initial speed in 15� increments 
of angle.

NoTe  Equation 4.16 is not a general result. It applies only in situations where the 
projectile lands at the same elevation from which it was fired. 

Stop to think 4.3  A 50 g marble rolls off a table and lands 2 m from the base of the 
table. A 100 g marble rolls off the same table with the same speed. It lands at distance

 a. Less than 1 m. b. 1 m. c. Between 1 m and 2 m.
 d. 2 m. e. Between 2 m and 4 m. f. 4 m.

4.4 relative Motion
Figure 4.21 shows Amy and Bill watching Carlos on his bicycle. According to Amy, 
Carlos’s velocity is vx = 5 m/s. Bill sees the bicycle receding in his rearview mirror, in 
the negative x-direction, getting 10 m farther away from him every second. According 
to Bill, Carlos’s velocity is vx = -10 m/s. Which is Carlos’s true velocity?

Velocity is not a concept that can be true or false. Carlos’s velocity relative to Amy 
is (vx)CA = 5 m/s, where the subscript notation means “C relative to A.” Similarly, 
Carlos’s velocity relative to Bill is (vx)CB = -10 m/s. These are both valid descrip-
tions of Carlos’s motion.

The end of the push off is the beginning of the projectile mo-
tion, so the second part of the problem is to find the distance of a 
projectile launched with velocity v  

u

0 = (7.14 m/s, 30�). The initial 
x- and y-components of the launch velocity are

 v0x = v0 cos u  v0y = v0 sin u

The kinematic equations of projectile motion, with ax = 0 and 
ay = -g, are

  x1 = x0 + v0x �t

  = (v0 cos u)�t

  y1 = y0 + v0y �t -
1
2 g(�t)2

  = (v0 sin u)�t -
1
2 g(�t)2

We can find the time of flight from the vertical equation by setting 
y1 = 0:

 0 = (v0 sin u)�t -
1
2 g(�t) 

2 = (v0 sin u -
1
2 g  �t)�t

and thus

 �t = 0  or  �t =
2v0 sin u

g

Both are legitimate solutions. The first corresponds to the instant 
when y = 0 at the launch, the second to when y = 0 as the frog 
hits the ground. Clearly, we want the second solution. Substituting 
this expression for �t into the equation for x1 gives

 x1 = (v0 cos u) 
2v0 sin u

g
=

2v0 

2 sin u cos u

g

We can simplify this result with the trigonometric identity 
2 sin u cos u = sin(2u). Thus the distance traveled by the frog is

 x1 =
v0 

2 sin(2u)

g

Using v0 = 7.14 m/s and u = 30�, we find that the frog leaps a 
distance of 4.5 m.

Assess 4.5 m is about 15 feet. This is much farther than a human 
can jump from a standing start, but it seems believable. In fact, 
the current record holder, Rosie the Ribeter, made a leap of 
6.5 m!
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Figure 4.20 Trajectories of a projectile 
launched at different angles with a 
speed of 99 m/s.

15 m/s

5 m/s Bill
Carlos

Amy

Figure 4.21 Amy and Bill each measure 
the velocity of Carlos on his bicycle. The 
velocities shown are in Amy’s reference 
frame.
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It’s not hard to see how to combine the velocities for one-dimensional motion:

 (vx)CB � (vx)CA � (vx)AB

The first subscript is the
same on both sides.

The inner subscripts “cancel.”

The last subscript is the
same on both sides.

 
(4.17)

We’ll justify this relationship later in this section and then extend it to two-dimensional 
motion.

Equation 4.17 tells us that the velocity of C relative to B is the velocity of C relative 
to A plus the velocity of A relative to B. Note that

 (vx)AB = -(vx)BA (4.18)

because if B is moving to the right relative to A, then A is moving to the left 
relative to B. In Figure 4.21, Bill is moving to the right relative to Amy with 
(vx)BA = 15 m/s, so (vx)AB = -15 m/s. Knowing that Carlos’s velocity rela-
tive to Amy is 5 m/s, we find that Carlos’s velocity relative to Bill is, as expected, 
(vx)CB = (vx)CA + (vx)AB = 5 m/s + (-15) m/s = -10 m/s.

exAMPLe 4.6  A speeding bullet
The police are chasing a bank robber. While driving at 50 m/s, 
they fire a bullet to shoot out a tire of his car. The police gun 
shoots bullets at 300 m/s. What is the bullet’s speed as measured 
by a TV camera crew parked beside the road?

MoDeL Assume that all motion is in the positive x-direction. The 
bullet is the object that is observed from both the police car and 
the ground.

soLVe The bullet B’s velocity relative to the gun G is (vx)BG =  
300 m/s. The gun, inside the car, is traveling relative to the TV crew 
C at (vx)GC = 50 m/s. We can combine these values to find that the 
bullet’s velocity relative to the TV crew on the ground is

 (vx)BC = (vx)BG + (vx)GC = 300 m/s + 50 m/s = 350 m/s

Assess It should be no surprise in this simple situation that we 
simply add the velocities.

reference Frames
A coordinate system in which an experimenter (possibly with the assistance of help-
ers) makes position and time measurements of physical events is called a reference 
frame. In Figure 4.21, Amy and Bill each had their own reference frame (where they 
were at rest) in which they measured Carlos’s velocity.

More generally, Figure 4.22 shows two reference frames, A and B, and an object C. 
It is assumed that the reference frames are moving with respect to each other. At this 
instant of time, the position vector of C in reference frame A is r 

u

CA, meaning “the 
position of C relative to the origin of frame A.” Similarly, r 

u

CB is the position vector of 
C in reference frame B. Using vector addition, you can see that

 r 
u

CB = r 
u

CA +r 
u

AB (4.19)

where r
u

AB locates the origin of A relative to the origin of B.

In general, object C is moving relative to both reference frames. To find its velocity 
in each reference frame, take the time derivative of Equation 4.19:

 
d  r 

u

CB

dt
=

d  r 
u

CA

dt
+

d  r 
u

AB

dt
 (4.20)

By definition, d  r 
u

/dt is a velocity. The first derivative is v  

u

CB, the velocity of C relative 
to B. Similarly, the second derivative is the velocity of C relative to A, v  

u

CA. The last 
derivative is slightly different because it doesn’t refer to object C. Instead, this is the 
velocity v  

u

AB of reference frame A relative to reference frame B. As we noted in one 
dimension, v  

u

AB = -v  

u

BA.
Writing Equation 4.20 in terms of velocities, we have

 v  

u

CB = v  

u

CA +v  

u

AB (4.21)
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Object C can be located
relative to A or to B.

Figure 4.22 Object C is measured from 
two different reference frames.



This relationship between velocities in different reference frames was recognized by 
Galileo in his pioneering studies of motion, hence it is known as the galilean transfor-
mation of velocity. If you know an object’s velocity in one reference frame, you can 
transform it into the velocity that would be measured in a different reference frame. 
Just as in one dimension, the velocity of C relative to B is the velocity of C relative to 
A plus the velocity of A relative to B, but you must add the velocities as vectors for 
two-dimensional motion.

As we’ve seen, the Galilean velocity transformation is pretty much common sense 
for one-dimensional motion. The real usefulness appears when an object travels in a 
medium moving with respect to the earth. For example, a boat moves relative to the 
water. What is the boat’s net motion if the water is a flowing river? Airplanes fly rela-
tive to the air, but the air at high altitudes often flows at high speed. Navigation of 
boats and planes requires knowing both the motion of the vessel in the medium and 
the motion of the medium relative to the earth.

exAMPLe 4.7  Flying to Cleveland i
Cleveland is 300 miles east of Chicago. A plane leaves Chicago 
flying due east at 500 mph. The pilot forgot to check the weather 
and doesn’t know that the wind is blowing to the south at 50 mph. 
What is the plane’s ground speed? Where is the plane 0.60 h later, 
when the pilot expects to land in Cleveland?

MoDeL Establish a coordinate system with the x-axis pointing 
east and the y-axis north. The plane P flies in the air, so its veloc-
ity relative to the air A is v  

u

PA = 500 in mph. Meanwhile, the air is 
moving relative to the ground G at v  

u

AG = -50 jn mph.

soLVe The velocity equation v 
u

PG = v  

u

PA + v  

u

AG is a vector-addition 
equation. Figure 4.23 shows graphically what happens. Although the 
nose of the plane points east, the wind carries the plane in a direction 
somewhat south of east. The plane’s velocity relative to the ground is

 v 

u

PG = v
u

PA + v  

u

AG = (500 in - 50 jn ) mph

The plane’s ground speed is

 v = 2(vx) 

2
PG + (vy) 

2
PG = 502 mph

After flying for 0.60 h at this velocity, the plane’s location (rela-
tive to Chicago) is

  x = (vx)PG t = (500 mph)(0.60 h) = 300 mi

  y = (vy)PG t = (-50 mph)(0.60 h) = -30 mi

The plane is 30  mi due south of Cleveland! Although the pilot 
thought he was flying to the east, his actual heading has been 
tan-1 (50 mph/500 mph) = tan-1 (0.10) = 5.71� south of east.

Chicago Cleveland

vAG of airr

vPG of plane
relative to ground

r

vPA of plane relative to airr

Figure 4.23 The wind causes a plane flying due east in the air 
to move to the southeast relative to the ground.

exAMPLe 4.8  Flying to Cleveland ii
A wiser pilot flying from Chicago to Cleveland on the same day 
plots a course that will take her directly to Cleveland. In which 
direction does she fly the plane? How long does it take to reach 
Cleveland?

MoDeL Establish a coordinate system with the x-axis pointing east 
and the y-axis north. The air is moving relative to the ground at 
v  

u

AG = -50 jn mph.

soLVe The objective of navigation is to move between two points 
on the earth’s surface. The wiser pilot, who knows that the wind will 
affect her plane, draws the vector picture of Figure 4.24. She sees 
that she’ll need (vy)PG = 0, in order to fly due east to Cleveland. 
This will require turning the nose of the plane at an angle u north of 
east, making v  

u

PA = (500 cos u  in +  500 sin u  jn) mph.
The velocity equation is v  

u

PG = v  

u

PA+v  

u

AG. The desired heading 
is found from setting the y-component of this equation to zero:

 (vy)PG = (vy)PA + (vy)AG = (500 sin u-50) mph = 0 mph

 u = sin-11 50 mph

500 mph 2 = 5.74�

The plane’s velocity relative to the ground is then v  

u

PG =  
(500 mph) * cos 5.74�  in = 497 in mph. This is slightly slower than 
the speed relative to the air. The time needed to fly to Cleveland 
at this speed is

 t =
300 mi

497 mph
= 0.604 h

It takes 0.004 h = 14 s longer to reach Cleveland than it would on 
a day without wind.

Assess A boat crossing a river or an ocean current faces the same 
difficulties. These are exactly the kinds of calculations performed 
by pilots of boats and planes as part of navigation.

Chicago Cleveland
u

vAG of airr

vPG of plane
relative to ground

r

vPA of plane relative to airr

Figure 4.24 To travel due east in a south wind, a pilot has 
to point the plane somewhat to the northeast.
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Stop to think 4.4  A plane traveling horizontally to the right at 100 m/s flies past a 
helicopter that is going straight up at 20 m/s. From the helicopter’s perspective, the 
plane’s direction and speed are

 a. Right and up, less than 100 m/s. b. Right and up, 100 m/s.
 c. Right and up, more than 100 m/s. d. Right and down, less than 100 m/s.
 e. Right and down, 100 m/s. f. Right and down, more than 100 m/s.

4.5 uniform Circular Motion
Figure 4.25 shows a particle moving around a circle of radius r. The particle might be a 
satellite in an orbit, a ball on the end of a string, or even just a dot painted on the side 
of a rotating wheel. Circular motion is another example of motion in a plane, but it is 
quite different from projectile motion.

To begin the study of circular motion, consider a particle that moves at constant 
speed around a circle of radius r. This is called uniform circular motion. Regardless 
of what the particle represents, its velocity vector v  

u
 is always tangent to the circle. The 

particle’s speed v is constant, so vector v  

u
 is always the same length.

The time interval it takes the particle to go around the circle once, completing one 
revolution (abbreviated rev), is called the period of the motion. Period is represented 
by the symbol T. It’s easy to relate the particle’s period T to its speed v. For a particle 
moving with constant speed, speed is simply distance/time. In one period, the particle 
moves once around a circle of radius r and travels the circumference 2pr. Thus

 v =
1 circumference

1 period
=

2pr

T
 (4.22)

exAMPLe 4.9  A rotating crankshaft
A 4.0-cm-diameter crankshaft turns at 2400 rpm (revolutions per minute). What is the 
speed of a point on the surface of the crankshaft?

soLVe We need to determine the time it takes the crankshaft to make 1 rev. First, we 
convert 2400 rpm to revolutions per second:

2400 rev

1 min
*

1 min

60 s
= 40 rev/s

If the crankshaft turns 40 times in 1 s, the time for 1 rev is

T =
1

40
 s = 0.025 s

Thus the speed of a point on the surface, where r = 2.0 cm = 0.020 m, is

v =
2pr

T
=

2p(0.020 m)

0.025 s
= 5.0 m/s

The velocity is tangent to the
circle. The velocity vectors
are all the same length.

r

r

r

rv

rv

rv

Figure 4.25 A particle in uniform 
circular motion.

Circular motion is one of the most 
common types of motion.

Angular Position
Rather than using xy-coordinates, it will be more convenient to describe the position 
of a particle in circular motion by its distance r from the center of the circle and 
its angle u from the positive x-axis. This is shown in Figure 4.26. The angle u is the 
angular position of the particle.

We can distinguish a position above the x-axis from a position that is an equal angle 
below the x-axis by defining u to be positive when measured counterclockwise (ccw) 
from the positive x-axis. An angle measured clockwise (cw) from the positive x-axis has 
a negative value. “Clockwise” and “counterclockwise” in circular motion are analogous, 
respectively, to “left of the origin” and “right of the origin” in linear motion, which we 

r
s

Particle
Arc length

Center of
circular motion

x

y

u

This is the particle’s
angular position.

Figure 4.26 A particle’s position is 
described by distance r and angle u.
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associated with negative and positive values of x. A particle 30� below the positive x-
axis is equally well described by either u = -30� or u = +330�. We could also describe 
this particle by u =

11
12 rev, where revolutions are another way to measure the angle.

Although degrees and revolutions are widely used measures of angle, mathemati-
cians and scientists usually find it more useful to measure the angle u in Figure 4.26 
by using the arc length s that the particle travels along the edge of a circle of radius r. 
We define the angular unit of radians such that

 u(radians) K
s
r
 (4.23)

The radian, which is abbreviated rad, is the SI unit of an angle. An angle of 1 rad has 
an arc length s exactly equal to the radius r.

The arc length completely around a circle is the circle’s circumference 2pr. Thus 
the angle of a full circle is

 ufull circle =
2pr

r
= 2p rad

This relationship is the basis for the well-known conversion factors

 1 rev = 360� = 2p rad

As a simple example of converting between radians and degrees, let’s convert an angle 
of 1 rad to degrees:

 1 rad = 1 rad *
360�

2p rad
= 57.3�

Thus a rough approximation is 1 rad � 60�. We will often specify angles in degrees, 
but keep in mind that the SI unit is the radian.

An important consequence of Equation 4.23 is that the arc length spanning angle u is

 s = ru  (with u in rad) (4.24)

This is a result that we will use often, but it is valid only if u is measured in radians 
and not in degrees. This very simple relationship between angle and arc length is one 
of the primary motivations for using radians.

NoTe  Units of angle are often troublesome. Unlike the kilogram or the second, for 
which we have standards, the radian is a defined unit. Further, its definition as a ratio 
of two lengths makes it a pure number without dimensions. Thus the unit of angle, 
be it radians or degrees or revolutions, is really just a name to remind us that we’re 
dealing with an angle. Consequently, the radian unit sometimes appears or disappears 
without warning. This seems rather mysterious until you get used to it. This textbook 
will call your attention to such behavior the first few times it occurs. With a little 
practice, you’ll soon learn when the rad unit is needed and when it’s not. 

Angular Velocity
Figure 4.27 shows a particle moving in a circle from an initial angular position ui at time 
ti to a final angular position uf at a later time tf  . The change �u = uf - ui is called 
the angular displacement. We can measure the particle’s circular motion in terms 
of the rate of change of u, just as we measured the particle’s linear motion in terms of 
the rate of change of its position s.

In analogy with linear motion, let’s define the average angular velocity to be

 average angular velocity K
�u

�t
 (4.25)

As the time interval �t becomes very small, �t S 0, we arrive at the definition of the 
instantaneous angular velocity

 v K lim
�tS0

 
�u

�t
=

du

dt
  (angular velocity) (4.26)

r

Position
at time ti

x

y Position at
time tf � ti � �t

�u

v

uf

ui

The particle has
an angular dis-
placement �u.

Figure 4.27 A particle moves with 
angular velocity v.
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The symbol v is a lowercase Greek omega, not an ordinary w. The SI unit of angular 
velocity is rad/s, but �/s, rev/s, and rev/min are also common units. Revolutions per 
minute is abbreviated rpm.

Angular velocity is the rate at which a particle’s angular position is changing as it 
moves around a circle. A particle that starts from u = 0 rad with an angular velocity 
of 0.5 rad/s will be at angle u = 0.5 rad after 1 s, at u = 1.0 rad after 2 s, at u = 1.5 
rad after 3 s, and so on. Its angular position is increasing at the rate of 0.5 radian per 
second. A particle moves with uniform circular motion if and only if its angular 
velocity V is constant and unchanging.

Angular velocity, like the velocity vs of one-dimensional motion, can be positive or 
negative. The signs shown in Figure 4.28 are based on the fact that u was defined to be 
positive for a counterclockwise rotation. Because the definition v = du/dt for circular 
motion parallels the definition vs = ds/dt for linear motion, the graphical relationships 
we found between vs and s in Chapter 2 apply equally well to v and u:

  v = slope of the u@versus@t graph at time t

  uf = ui + area under the v@versus@t curve between ti and tf (4.27)

  = ui + v
 

�t

You will see many more instances where circular motion is analogous to linear mo-
tion with angular variables replacing linear variables. Thus much of what you learned 
about linear kinematics carries over to circular motion.

v is positive for a
counterclockwise rotation.

v is negative for a
clockwise rotation.

Figure 4.28 Positive and negative 
angular velocities.

exAMPLe 4.10   A graphical representation of circular motion

1 3 6520 4

2p

0

4p

6p

t (s)

u (rad)

Figure 4.29 Angular position graph for 
the wheel of Example 4.10.

soLVe Although circular motion seems to “start over” every revo-
lution (every 2p rad) , the angular position u continues to increase. 
u = 6p rad corresponds to three revolutions. This wheel makes 
3 ccw rev (because u is getting more positive) in 3 s, immediately 
reverses direction and makes 1 cw rev in 2 s, then stops at t = 5 s 

and holds the position u = 4p rad. The angular velocity is found 
by measuring the slope of the graph:

  t = 0 93 s   slope = �u/�t = 6p rad/3 s = 2p rad/s

  t = 395 s  slope = �u/�t = -2p rad/2 s = -p rad/s

  t 7 5 s  slope = �u/�t = 0 rad/s

These results are shown as an v@versus@t graph in Figure 4.30. For the 
first 3 s, the motion is uniform circular motion with v = 2p rad/s. 
The wheel then changes to a different uniform circular motion with 
v = -p rad/s for 2 s, then stops.

�p

0

p

2p
v (rad/s)

1 3 652 4
t (s)

The value of v is the 
slope of the angular 
position graph.

Figure 4.30 v@versus-t graph for the 
wheel of Example 4.10.

NoTe  In physics, we nearly always want to give results as numerical values. 
Example 4.9 had a p in the equation, but we used its numerical value to compute 
v = 5.0 m/s. However, angles in radians are an exception to this rule. It’s okay to 
leave a p in the value of u or v, and we have done so in Example 4.10. 

Not surprisingly, the angular velocity v is closely related to the period T of the 
motion. As a particle goes around a circle one time, its angular displacement is 

Figure 4.29 shows the angular position of a painted dot on the edge 
of a rotating wheel. Describe the wheel’s motion and draw an 
v@versus@t graph.
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�u = 2p rad during the interval �t = T. Thus, using the definition of angular veloc-
ity, we find

 0v 0 =
2p rad

T
  or  T =

2p rad

0v 0  (4.28)

The period alone gives only the absolute value of 0v 0 . You need to know the direction 
of motion to determine the sign of v.

exAMPLe 4.11  At the roulette wheel
A small steel roulette ball rolls ccw around the inside of a 30-cm-
diameter roulette wheel. The ball completes 2.0 rev in 1.20 s.

 a. What is the ball’s angular velocity?
 b. What is the ball’s position at t = 2.0 s? Assume ui = 0.

MoDeL Model the ball as a particle in uniform circular motion.

soLVe a. The period of the ball’s motion, the time for 1 rev, is 
T = 0.60 s. Angular velocity is positive for ccw motion, so

 v =
2p rad

T
=

2p rad

0.60 s
= 10.47 rad/s

 b. The ball starts at ui = 0 rad. After �t = 2.0 s, its position is

 uf = 0 rad + (10.47 rad/s)(2.0 s) = 20.94 rad

where we’ve kept an extra significant figure to avoid round-off 
error. Although this is a mathematically acceptable answer, an 
observer would say that the ball is always located somewhere 
between 0� and 360�. Thus it is common practice to subtract an 
integer number of 2p rad, representing the completed revolu-
tions. Because 20.94/2p = 3.333, we can write

  uf = 20.94 rad = 3.333 * 2p rad

  = 3 * 2p rad + 0.333 * 2p rad

  = 3 * 2p rad + 2.09 rad

In other words, at t = 2.0 s the ball has completed 3 rev and is 
2.09 rad = 120� into its fourth revolution. An observer would 
say that the ball’s position is uf = 120�.

Stop to think 4.5  A particle moves cw around a circle at constant speed for 2.0 s. It 
then reverses direction and moves ccw at half the original speed until it has traveled 
through the same angle. Which is the particle’s angle-versus-time graph?

t t t t

(a) (b) (c) (d)

u u u u

4.6  Velocity and Acceleration 
in uniform Circular Motion

For a particle in circular motion, such as the one in Figure 4.31, the velocity vector v
u
 is 

always tangent to the circle. In other words, the velocity vector has only a tangential 
component, which we will designate vt.

The tangential velocity component vt is the rate ds/dt at which the particle moves 
around the circle, where s is the arc length measured from the positive x-axis. From 
Equation 4.24, the arc length is s = ru. Taking the derivative, we find

 vt =
ds

dt
= r 

du

dt

But du/dt is the angular velocity v. Thus the tangential velocity and the angular veloc-
ity are related by

 vt = vr  (with v in rad/s) (4.29)

NoTe  v is restricted to rad/s because the relationship s = ru is the definition of 
radians. While it may be convenient in some problems to measure v in rev/s or 
rpm, you must convert to SI units of rad/s before using Equation 4.29. 

v

rv

rv

rv

ar

ar

ar

The instantaneous
velocity v is tangent to
the circle at all points.

r

The angular velocity
is constant.

For uniform circular motion,
the acceleration a points to
the center of the circle.

r

Figure 4.31 Velocity and acceleration of 
uniform circular motion.



102    c h a p t e r  4 . Kinematics in Two Dimensions

The tangential velocity vt is positive for ccw motion, negative for cw motion. 
Because vt is the only nonzero component of v  

u
, the particle’s speed is v = 0 vt 0 = 0v 0 r. 

We’ll sometimes write this as v = vr if there’s no ambiguity about the sign of v.
As a simple example, a particle moving cw at 2.0 m/s in a circle of radius 40 cm 

has angular velocity

 v =
vt

r
=

-2.0 m/s

0.40 m
= -5.0 rad/s

where vt and v are negative because the motion is clockwise. Notice the units. Veloc-
ity divided by distance has units of s-1. But because the division, in this case, gives us 
an angular quantity, we’ve inserted the dimensionless unit rad to give v the appropri-
ate units of rad/s.

Acceleration
Figure 4.1 at the beginning of this chapter looked at the uniform circular motion of a 
Ferris wheel. You are strongly encouraged to review that figure. There we found that 
a particle in uniform circular motion, although moving with constant speed, has an 
acceleration because the direction of the velocity vector v  

u
 is always changing. The 

motion-diagram analysis showed that the acceleration au points toward the center of 
the circle. The instantaneous velocity is tangent to the circle, so v  

u
 and a

u
 are perpen-

dicular to each other at all points on the circle, as Figure 4.31 shows.
The acceleration of uniform circular motion is called centripetal acceleration, a 

term from a Greek root meaning “center seeking.” Centripetal acceleration is not a 
new type of acceleration; all we are doing is naming an acceleration that corresponds 
to a particular type of motion. The magnitude of the centripetal acceleration is constant 
because each successive �v  

u
 in the motion diagram has the same length.

The motion diagram tells us the direction of a
u
, but it doesn’t give us a value for a. 

To complete our description of uniform circular motion, we need to find a quantita-
tive relationship between a and the particle’s speed v. Figure 4.32 shows the velocity v  

u

i 
at one instant of motion and the velocity v  

u

f an infinitesimal amount of time dt later. 
During this small interval of time, the particle has moved through the infinitesimal 
angle du and traveled distance ds = r du.

By definition, the acceleration is a
u

= d  v  

u
/dt. We can see from the inset to Fig-

ure 4.32 that d  v  

u
 points toward the center of the circle—that is, a

u
 is a centripetal accel-

eration. To find the magnitude of a
u
, we can see from the isosceles triangle of velocity 

vectors that, if du is in radians,

 dv = 0 d  v  

u 0 = v du (4.30)

For uniform circular motion at constant speed, v = ds/dt = r du/dt and thus the time 
to rotate through angle du is

 dt =
r du

v
 (4.31)

Combining Equations 4.30 and 4.31, we see that the acceleration has magnitude

 a = 0 au 0 =
0 d  v  

u 0
dt

=
v du

r du/v
=

v 2

r

In vector notation, we can write

 a
u

= 1v 2

r
 , toward center of circle2  (centripetal acceleration) (4.32)

Using Equation 4.29, v = vr, we can also express the magnitude of the centripetal 
acceleration in terms of the angular velocity v as

 a = v2r (4.33)

The centripetal acceleration is enormous in 
a high-speed centrifuge.

Same
angle

ds

du

du

vf
r

vi
r vf

r vi
r

dv

r

These are the velocities at times
t and t � dt. The inset shows
dv, the change in velocity. "

"

dv is the arc of a circle
with arc length dv � vdu.

"

Figure 4.32 Finding the acceleration of 
circular motion.
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NoTe  Centripetal acceleration is not a constant acceleration. The magnitude of 
the centripetal acceleration is constant during uniform circular motion, but the di-
rection of a

u
 is constantly changing. Thus the constant-acceleration kinematics 

equations of Chapter 2 do not apply to circular motion. 

exAMPLe 4.12  The acceleration of a Ferris wheel
A typical carnival Ferris wheel has a radius of 9.0 m and rotates 
4.0 times per minute. What magnitude acceleration do the riders 
experience?

MoDeL Model the rider as a particle in uniform circular motion.

soLVe The period is T =
1
4 min = 15 s. From Equation 4.22, a 

rider’s speed is

 v =
2pr

T
=

2p(9.0 m)

15 s
= 3.77 m/s

Consequently, the centripetal acceleration is

 a =
v 2

r
=

(3.77 m/s)2

9.0 m
= 1.6 m/s2

Assess This was not intended to be a profound problem, merely 
to illustrate how centripetal acceleration is computed. The accel-
eration is enough to be noticed and make the ride interesting, but 
not enough to be scary.

Stop to think 4.6  Rank in order, from largest to smallest, the centripetal accelerations 
aa to ae of particles a to e.

4.7  Nonuniform Circular Motion 
and Angular Acceleration

A roller coaster car doing a loop-the-loop slows down as it goes up one side, speeds 
up as it comes back down the other. The ball in a roulette wheel gradually slows until 
it stops. Circular motion with a changing speed is called nonuniform circular motion.

To begin our analysis of nonuniform circular motion, Figure 4.33 shows a wheel 
rotating on an axle. Notice that two points on the wheel, marked with dots, turn 
through the same angle as the wheel rotates, even though their radii may differ. That 
is, �u1 = �u2 during some time interval �t. As a consequence, any two points on a 
rotating object have equal angular velocities, v1 = v2, and we can refer to v as the 
angular velocity of the wheel.

Suppose the wheel’s rotation is speeding up or slowing down—that is, points on the 
wheel have nonuniform circular motion. For linear motion, we defined acceleration as 
ax = dvx /dt. By analogy, let’s define the angular acceleration a (Greek alpha) of a 
rotating object, or a point on the object, to be

 a K
dv

dt
  (angular acceleration) (4.34)

The units of angular acceleration are rad/s2. Angular acceleration is the rate at which 
the angular velocity v changes, just as linear acceleration is the rate at which the linear 
velocity vx changes. Figure 4.34 on the next page illustrates this idea.

r

(a)

v

2r

(d)

v

2r

(e)

r

(c)

vr

(b)

2v

2v

1

2

r1

r2

Same angles

Different
radii

Axle

Every point on
the wheel undergoes
circular motion with the
same angular velocity v.

�u1

v

�u2

Figure 4.33 All points on the wheel 
rotate with the same angular velocity.
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For linear acceleration, positive ax means that vx is increasing to the right or de-
creasing to the left; negative ax means that vx is increasing to the left or decreasing to 
the right. For rotational motion, a is positive if v is increasing ccw (the direction of 
positive angle) or decreasing cw, negative if v is increasing cw or decreasing ccw. 
These ideas are illustrated in Figure 4.35.

exAMPLe 4.13  A rotating wheel
Figure 4.36a is a graph of angular velocity versus time for a 
rotating wheel. Describe the motion and draw a graph of angular 
acceleration versus time.

soLVe This is a wheel that starts from rest, gradually speeds up 
counterclockwise until reaching top speed at t1, maintains a con-
stant angular velocity until t2, then gradually slows down until 
stopping at t3. The motion is always ccw because v is always posi-
tive. The angular acceleration graph of Figure 4.36b is based on the 
fact that a is the slope of the v@versus@t graph.

Conversely, the initial linear increase of v can be seen as the 
increasing area under the a@versus@t graph as t increases from 0 
to t1  . The angular velocity doesn’t change from t1   to t2   when the 
area under the a@versus@t is zero.

v � 0 rad/s

v � 2 rad/s

v � 4 rad/s

t � 0 s
a � 2 rad/s2

t � 1 s
a � 2 rad/s2

t � 2 s
a � 2 rad/s2

Angular
velocity
increases by
2 rad/s per
second.

The angular position
of the dot is pro-
portional to t 2.

Figure 4.34 A wheel with angular 
acceleration a = 2 rad/s2.

v � 0

a � 0

Speeding up ccw

v � 0

a � 0

Slowing down ccw

v � 0

a � 0

Slowing down cw

v � 0

a � 0

Speeding up cw

Initial angular velocity

Figure 4.35 The signs of angular velocity and acceleration. The rotation is speeding up if 
v and a have the same sign, slowing down if they have opposite signs.

NoTe  Be careful with the sign of a. You learned in Chapter 2 that positive and 
negative values of the acceleration can’t be interpreted as simply “speeding up” and 
“slowing down.” Similarly, positive and negative values of angular acceleration 
can’t be interpreted as a rotation that is speeding up or slowing down. 

Because a is the time derivative of v, we can use exactly the same graphical rela-
tionships that we found for linear motion:

  a = slope of the v@versus@t graph at time t 
  (4.35)
  vf = vi + area under the a@versus@t curve between ti and tf

These relationships involving slopes and areas are illustrated in the following example.

Table 4.1 shows the kinematic equations for rotational motion with constant angu-
lar acceleration. These equations apply to a particle in circular motion or to the rota-
tion of a rigid object. The rotational kinematic equations are exactly analogous to 
the linear kinematic equations, as they must be since the mathematical relationships 
among u, v, and a are identical to the relationships among x, vx, and ax. Thus all the 
problem-solving techniques you learned in Chapter 2 for linear motion carry over to 
circular and rotational motion.

t
0 t1 t2 t3

Constant positive
slope, so    is positive.�

Zero slope,
so    is zero.�

Constant negative
slope, so    is negative.�

t
0 t1

t2 t3

(a)

(b) a

v

Figure 4.36 v-versus-t graph and the corresponding a-versus-t 
graph for a rotating wheel.



TABLe 4.1 Rotational and linear kinematics for constant acceleration

Rotational kinematics Linear kinematics

vf = vi + a �t vfs = vis + as �t

uf = ui + vi �t +
1
2 a(�t)2 sf = si + vis �t +

1
2 as(�t)2

vf 

2 = vi 

2 + 2a �u vfs 

2 = vis 

2 + 2as �s

exAMPLe 4.14  Back to the roulette wheel
A small steel roulette ball rolls around the inside of a 30-cm-
diameter roulette wheel. It is spun at 150 rpm, but it slows to 
60 rpm over an interval of 5.0 s. How many revolutions does the 
ball make during these 5.0 s?

MoDeL The ball is a particle in nonuniform circular motion. 
Assume constant angular acceleration as it slows.

soLVe During these 5.0 s the ball rotates through angle

 �u = uf - ui = vi �t +
1
2 a(�t)2

where �t = 5.0 s. We can find the angular acceleration from the 
initial and final angular velocities, but first they must be converted 
to SI units:

  vi = 150 
rev

min
*

1 min

60 s
*

2p rad

1 rev
= 15.71 rad/s

r
Reference
line for
measuring
angles

at

ar

The velocity is 
always tangent to 
the circle, so the 
radial component 
vr is always zero.

The tangential
acceleration
causes the
particle to
change speed.

The radial or 
centripetal 
acceleration 
causes the 
particle to change 
direction. 

The angular velocity v is 
the rate of change of u. v 
is positive for ccw rotation, 
negative for cw rotation.

v

u

rv

ar

Figure 4.37 Acceleration in nonuniform 
circular motion.

  vf = 60 
rev

min
= 0.40vi = 6.28 rad/s

The angular acceleration a is

 a =
�v

�t
=

6.28 rad/s - 15.71 rad/s

5.0 s
= -1.89 rad/s2

Thus the ball rotates through angle

�u = (15.71 rad/s)(5.0 s) +
1
2 (-1.89 rad/s2)(5.0 s)2 = 54.9 rad

Because 54.9/2p = 8.75, the ball completes 8 34 revolutions as it 
slows to 60 rpm.

Assess This problem is solved just like the linear kinematics 
problems you learned to solve in Chapter 2.

Tangential Acceleration
Figure 4.37 shows a particle in nonuniform circular motion. Any circular motion, wheth-
er uniform or nonuniform, has a centripetal acceleration because the particle is chang-
ing direction; this was the acceleration component a

u

# of Figure 4.10. The centripetal 
acceleration, which points radially toward the center of the circle, will now be called 
the radial acceleration ar. The centripetal expression ar = vt  

2/r = v2r is still valid in 
nonuniform circular motion.

For a particle to speed up or slow down as it moves around a circle, it needs—
in addition to the centripetal acceleration—an acceleration parallel to the trajectory 
or, equivalently, parallel to v

u
. This is the acceleration component a

u
} associated with 

changing speed. We’ll call this the tangential acceleration at because, like the veloc-
ity vt  

, it is always tangent to the circle. Because of the tangential acceleration, the 
acceleration vector au of a particle in nonuniform circular motion does not point 
toward the center of the circle. It points “ahead” of center for a particle that is speed-
ing up, as in Figure 4.37, but it would point “behind” center for a particle slowing 
down. You can see from Figure 4.37 that the magnitude of the acceleration is

 a = 2ar 

2 + at 

2 (4.36)

If at is constant, then the arc length s traveled by the particle around the circle and the 
tangential velocity vt are found from constant-acceleration kinematics:

  sf = si + vit �t +
1
2 at  (�t)2

  (4.37)  vft = vit + at �t 

Because tangential acceleration is the rate at which the tangential velocity changes, 
at = dvt /dt, and we already know that the tangential velocity is related to the angular 
velocity by vt = vr, it follows that

 at =
dvt

dt
=

d(vr)

dt
=

dv

dt
 r = ar (4.38)
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Thus vt = vr and at = ar are analogous equations for the tangential velocity and 
acceleration. In Example 4.14, where we found the roulette ball to have angular 
acceleration a = -1.89 rad/s2, its tangential acceleration was

 at = ar = (-1.89 rad/s2)(0.15 m) = -0.28 m/s2

exAMPLe 4.15  Analyzing rotational data
You’ve been assigned the task of measuring the start-up charac-
teristics of a large industrial motor. After several seconds, when 
the motor has reached full speed, you know that the angular ac-
celeration will be zero, but you hypothesize that the angular ac-
celeration may be constant during the first couple of seconds as the 
motor speed increases. To find out, you attach a shaft encoder to 
the 3.0-cm-diameter axle. A shaft encoder is a device that converts 
the angular position of a shaft or axle to a signal that can be read by 
a computer. After setting the computer program to read four values 
a second, you start the motor and acquire the following data:

Time (s) Angle(�)

0.00   0

0.25  16

0.50  69

0.75 161

1.00 267

1.25 428

1.50 620

 a. Do the data support your hypothesis of a constant angular ac-
celeration? If so, what is the angular acceleration? If not, is the 
angular acceleration increasing or decreasing with time?

 b. A 76-cm-diameter blade is attached to the motor shaft. At what 
time does the acceleration of the tip of the blade reach 10 m/s2?

MoDeL The axle is rotating with nonuniform circular motion. 
Model the tip of the blade as a particle.

VisuALize Figure 4.38 shows that the blade tip has both a tangen-
tial and a radial acceleration.

a = 2m. If the graph is not a straight line, our observation of 
whether it curves upward or downward will tell us whether the 
angular acceleration us increasing or decreasing.

Figure 4.39 is the graph of u versus t 2, and it confirms our 
hypothesis that the motor starts up with constant angular ac-
celeration. The best-fit line, found using a spreadsheet, gives 
a slope of 274.6�/s2. The units come not from the spreadsheet 
but by looking at the units of rise (�) over run (s2 because we’re 
graphing t 2 on the x-axis). Thus the angular acceleration is

 a = 2m = 549.2�/s2 *
p rad

180�
= 9.6 rad/s2

where we used 180� = p rad to convert to SI units of rad/s2.

Figure 4.38 Pictorial representation of the axle and blade.
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Figure 4.39 Graph of u versus t 2 for the motor shaft.

soLVe

 a. If the motor starts up with constant angular acceleration, with 
ui = 0 and vi = 0 rad/s, the angle-time equation of rotational 
kinematics is u =

1
2  

at 2. This can be written as a linear equation 
y = mx + b if we let u = y and t 2 = x. That is, constant angular 
acceleration predicts that a graph of u versus t 2 should be a straight 
line with slope m =

1
2  

a and y-intercept b = 0. We can test this. 
If the graph turns out to be a straight line with zero y-intercept, 
it will confirm the hypothesis of constant angular acceleration and  
we can then use its slope to determine the angular acceleration:  

 b. The magnitude of the linear acceleration is

 a = 2ar 

2 + at 

2

Constant angular acceleration implies constant tangential ac-
celeration, and the tangential acceleration of the blade tip is

 at = ar = (9.6 rad/s2)(0.38 m) = 3.65 m/s2

We were careful to use the blade’s radius, not its diameter, and 
we kept an extra significant figure to avoid round-off error. The 
radial (centripetal) acceleration increases as the rotation speed 
increases, and the total acceleration reaches 10 m/s2 when

 ar = 2a2 - at 

2 = 2(10 m/s2)2 - (3.65 m/s2)2 = 9.31 m/s2

Radial acceleration is ar = v2r, so the corresponding angular 
velocity is

 v = Aar

r
= B 9.31 m/s2

0.38 m
= 4.95 rad/s

For constant angular acceleration, v = at, so this angular ve-
locity is achieved at

 t =
v

a
=

4.95 rad/s

9.6 rad/s2 = 0.52 s

Thus it takes 0.52 s for the acceleration of the blade tip to reach 
10 m/s2.

Assess The motor has not completed 2 full revolutions in 1.5 s, so 
it has a slow start and modest accelerations. A tangential accelera-
tion of 3.65 m/s2 seems reasonable, so we have confidence in our 
final answer of 0.52 s.



Stop to think 4.7  The fan blade is slowing down.
What are the signs of v and a?

 a. v is positive and a is positive.
 b. v is positive and a is negative.
 c. v is negative and a is positive.
 d. v is negative and a is negative.

ChALLeNge exAMPLe 4.16  hit the target!
One day when you come into lab, you see a spring-loaded wheel 
that can launch a ball straight up. To do so, you place the ball in a 
cup on the rim of the wheel, turn the wheel to stretch the spring, 
then release. The wheel rotates through an angle �u, then hits a 
stop when the cup is level with the axle and pointing straight up. 
The cup stops, but the ball flies out and keeps going. You’re told 
that the wheel has been designed to have constant angular accel-
eration as it rotates through �u. The lab assignment is first to mea-
sure the wheel’s angular acceleration. Then the lab instructor is 
going to place a target at height h above the point where the ball is 
launched. Your task will be to launch the ball so that it just barely 
hits the target. You’ll lose points if the ball doesn’t reach the target 
or if it slams into the target.

 a. Find an expression in terms of quantities that you can measure 
for the angle �u that launches the ball at the correct speed.

 b. Evaluate �u if you’ve determined that the wheel’s diameter is 
62 cm, its angular acceleration is 200 rad/s2, the mass of the 
ball is 25 g, and the instructor places the target 190 cm above 
the launch point.

MoDeL Model the ball as a particle. It first undergoes nonuniform 
circular motion. We’ll then ignore air resistance and treat the verti-
cal motion as free fall.

VisuALize Figure 4.40 is a pictorial representation. This is a two-
part problem, with the speed at the end of the angular accel-
eration being the launch speed for the vertical motion. We’ve 
chosen to call the wheel radius R and the target height h. These 
and the angular acceleration a are considered “known” because 
we will measure them, but we don’t have numerical values at 
this time.

soLVe

 a. The circular motion problem and the vertical motion problem 
are connected through the ball’s speed: The final speed of 
the angular acceleration is the launch speed of the vertical 
motion. We don’t know anything about time intervals, which 
suggests using the kinematic equations that relate distance 
and acceleration (for the vertical motion) and angle and an-
gular acceleration (for the circular motion). For the angular 
acceleration, with v0 = 0 rad/s,

 v1 

2 = v0 

2 + 2a  �u = 2a  �u

The final speed of the ball and cup, when the wheel hits the 
stop, is

 v1 = v1  R = R22a  �u

Thus the vertical-motion problem begins with the ball being 
shot upward with velocity v1y =  R22a  �u. How high does it 
go? The highest point is the point where v2y = 0, so the free-
fall equation is

 v2y 

2 = 0 = v1y 

2-2g�y = R2 # 2a  �u - 2gh

Rather than solve for height h, we need to solve for the angle 
that produces a given height. This is

 �u =
gh

aR2

Once we’ve determined the properties of the wheel and then 
measured the height at which our instructor places the target, 
we’ll quickly be able to calculate the angle through which we 
should pull back the wheel to launch the ball.

 b. For the values given in the problem statement, �u = 
0.969 rad = 56�. Don’t forget that equations involving angles 
need values in radians and return values in radians.

Assess The angle needed to be less than 90� or else the ball would 
fall out of the cup before launch. And an angle of only a few de-
grees would seem suspiciously small. Thus 56� seems to be rea-
sonable. Notice that the mass was not needed in this problem. Part 
of becoming a better problem solver is evaluating the informa-
tion you have to see what is relevant. Some homework problems 
will help you develop this skill by providing information that isn’t 
necessary.

Figure 4.40 Pictorial representation of the ball launcher.
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s u M M A r y
The goal of Chapter 4 has been to learn how to solve problems about motion in a plane.

general Principles
The instantaneous velocity

v  

u
= dr  

u
/dt

is a vector tangent to the trajectory.

The instantaneous acceleration is

a
u

= dv  

u
/dt

a
u
}, the component of a

u
 parallel to v  

u
, is responsible for change of 

speed. a
u

#, the component of a
u

 perpendicular to v  

u
, is responsible 

for change of direction.

Relative motion

If object C moves relative to refer-
ence frame A with velocity v  

u

CA, 
then it moves relative to a different 
reference frame B with velocity

v  

u

CB = v  

u

CA + v  

u

AB

where v  

u

AB is the velocity of A 
relative to B. This is the Galilean 
transformation of velocity.

important Concepts
uniform Circular Motion
Angular velocity v = du/dt.
vt and v are constant:

vt = vr

The centripetal acceleration points toward the center of the circle:

  a =
v 2

r
= v2r

It changes the particle’s direction but not its speed.

Nonuniform Circular Motion
Angular acceleration a = dv/dt.
The radial acceleration

  ar =
v 2

r
= v2r

changes the particle’s direction. The tangential component

  at = ar

changes the particle’s speed.

Applications
Kinematics in two dimensions

If a
u

 is constant, then the x- and y-components of motion 
are independent of each other.

 xf = xi + vix �t +
1
2 ax  (�t)2

 yf = yi + viy �t +
1
2 ay  (�t)2

 vfx = vix + ax �t

 vfy = viy + ay �t

Projectile motion occurs if the object moves under the influence of only 
gravity. The motion is a parabola.

•	 Uniform motion in the horizontal 
direction with v0x = v0 cos u.

•	 Free-fall motion in the vertical direction 
with ay = -g and v0y = v0 sin u.

•	 The x and y kinematic equations have the 
same value for �t.

x

y

a}
r

ar
a�
r

vr

A

y

x

B

y

x

Reference
frame A

Reference frame B

C

Object C moves relative
to both A and B.

vr

ar

v
ar

at

ar

vr

v

x

y

u

v0
r

Circular motion kinematics

Period T =
2pr

v
=

2p
v

Angular position u =
s

r

vf = vi + a �t

uf = ui + vi �t +
1
2 a(�t)2

vf 

2 = vi 

2 + 2a �u

Angle, angular velocity, and angular 
acceleration are related graphically.

•	 The angular velocity is the slope of 
the angular position graph.

•	 The angular acceleration is the slope 
of the angular velocity graph.

sr
u

vvr

u

v

t

t

t

a
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projectile
launch angle, u
reference frame
Galilean transformation of 

velocity

uniform circular motion
period, T
angular position, u
arc length, s
radians

angular displacement, �u

angular velocity, v
centripetal acceleration, a
nonuniform circular motion
angular acceleration, a

radial acceleration, ar

tangential acceleration, at

Terms and Notation

C o N C e P T u A L  Q u e s T i o N s

 1. a.  At this instant, is the particle in Figure Q4.1 speeding up, 
slowing down, or traveling at constant speed?

 b. Is this particle curving to the right, curving to the left, or trav-
eling straight?

 2. a.  At this instant, is the particle in Figure Q4.2 speeding up, 
slowing down, or traveling at constant speed?

 b. Is this particle curving upward, curving downward, or travel-
ing straight?

 3. Tarzan swings through the jungle by hanging from a vine.
 a. Immediately after stepping off a branch to swing over to an-

other tree, is Tarzan’s acceleration a
u

 zero or not zero? If not 
zero, which way does it point? Explain.

 b. Answer the same question at the lowest point in Tarzan’s 
swing.

 4. A projectile is launched at an angle of 30�.
 a. Is there any point on the trajectory where v  

u
 and a

u
 are parallel 

to each other? If so, where?
 b. Is there any point where v  

u
 and a

u
 are perpendicular to each 

other? If so, where?
 5. For a projectile, which of the following quantities are constant 

during the flight: x, y, r, vx  , vy  , v, ax  , ay  ? Which of these quanti-
ties are zero throughout the flight?

 6. A cart that is rolling at constant velocity on a level table fires a 
ball straight up.

 a. When the ball comes back down, will it land in front of the 
launching tube, behind the launching tube, or directly in the 
tube? Explain.

 b. Will your answer change if the cart is accelerating in the for-
ward direction? If so, how?

 7. A rock is thrown from a bridge at an angle 30� below horizontal. 
Immediately after the rock is released, is the magnitude of its 
acceleration greater than, less than, or equal to g? Explain.

 8. Anita is running to the right at 5 m/s in Figure Q4.8. Balls 1 
and 2 are thrown toward her by friends standing on the ground. 
According to Anita, both balls are approaching her at 10 m/s. 

Which ball was thrown at a faster speed? Or were they thrown 
with the same speed? Explain.

 9. An electromagnet on the ceiling of an airplane holds a steel ball. 
When a button is pushed, the magnet releases the ball. The ex-
periment is first done while the plane is parked on the ground, 
and the point where the ball hits the floor is marked with an X. 
Then the experiment is repeated while the plane is flying level 
at a steady 500 mph. Does the ball land slightly in front of the X 
(toward the nose of the plane), on the X, or slightly behind the X 
(toward the tail of the plane)? Explain.

 10. Zack is driving past his house in Figure Q4.10. He wants to toss 
his physics book out the window and have it land in his drive-
way. If he lets go of the book exactly as he passes the end of the 
driveway, should he direct his throw outward and toward the 
front of the car (throw 1), straight outward (throw 2), or outward 
and toward the back of the car (throw 3)? Explain.

 11. In Figure Q4.11, Yvette and Zack are driving down the freeway 
side by side with their windows down. Zack wants to toss his 
physics book out the window and have it land in Yvette’s front 
seat. Ignoring air resistance, should he direct his throw outward and 
toward the front of the car (throw 1), straight outward (throw 2), or 
outward and toward the back of the car (throw 3)? Explain.

 12. In uniform circular motion, which of the following quantities are 
constant: speed, instantaneous velocity, tangential velocity, ra-
dial acceleration, tangential acceleration? Which of these quanti-
ties are zero throughout the motion?
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 13. Figure Q4.13 shows three points on a 
steadily rotating wheel.

 a. Rank in order, from largest to 
smallest, the angular velocities v1, 
v2, and v3 of these points. Explain.

 b. Rank in order, from largest to small-
est, the speeds v1, v2, and v3 of these 
points. Explain.

 14. Figure Q4.14 shows four rotating wheels. For each, determine the 
signs (+  or - ) of v and a.

 15. Figure Q4.15 shows a pendulum at one end 
point of its arc.

 a. At this point, is v positive, negative, or 
zero? Explain.

 b. At this point, is a positive, negative, or 
zero? Explain.

1 2

3

Figure Q4.13 
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up
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e x e r C i s e s  A N D  P r o B L e M s

exercises

Section 4.1 Acceleration

Problems 1 and 2 show a partial motion diagram. For each:
 a. Complete the motion diagram by adding acceleration vectors.
 b. Write a physics problem for which this is the correct motion dia-

gram. Be imaginative! Don’t forget to include enough informa-
tion to make the problem complete and to state clearly what is to 
be found.

 1. | 

 2. | 

Answer Problems 3 through 5 by choosing one 
of the eight labeled acceleration vectors or se-
lecting option I: a

u
= 0

u

.

 3. | At this instant, the particle is slowing and 
curving upward. What is the direction of its 
acceleration?

 4. | At this instant, the particle has steady speed 
and is curving to the right. What is the direction 
of its acceleration?

 5. | At this instant, the particle is speeding up and 
curving downward. What is the direction of its 
acceleration?

Section 4.2 Two-Dimensional Kinematics

 6. || A sailboat is traveling east at 5.0 m/s. A sudden gust of wind 
gives the boat an acceleration a

u
= (0.80 m/s2, 40� north of east). 

What are the boat’s speed and direction 6.0 s later when the gust 
subsides?

 7. || A model rocket is launched from rest with an upward accel-
eration of 6.00 m/s2 and, due to a strong wind, a horizontal ac-
celeration of 1.50 m/s2 How far is the rocket from the launch pad 
6.00 s later when the rocket engine runs out of fuel?

 8. || A particle’s trajectory is described by x = 11
2 t 3 - 2t 22  m and 

y = 11
2 t 2 - 2t2  m, where t is in s.

 a. What are the particle’s position and speed at t = 0 s and 
t = 4 s?

 b. What is the particle’s direction of motion, measured as an 
angle from the x-axis, at t = 0 s and t = 4 s?

 9. || A rocket-powered hockey puck moves on a horizontal fric-
tionless table. Figure ex4.9 shows graphs of vx and vy, the x- and 
y-components of the puck’s velocity. The puck starts at the 
origin.

 a. In which direction is the puck moving at t = 2 s? Give your 
answer as an angle from the x-axis.

 b. How far from the origin is the puck at t = 5 s?
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 10. || A rocket-powered hockey puck moves on a horizontal fric-
tionless table. Figure ex4.10 shows graphs of vx and vy, the x- and 
y-components of the puck’s velocity. The puck starts at the ori-
gin. What is the magnitude of the puck’s acceleration at t = 5 s?

Section 4.3 Projectile Motion

 11. | A physics student on Planet Exidor throws a ball, and it fol-
lows the parabolic trajectory shown in Figure ex4.11. The ball’s 
position is shown at 1 s intervals until t = 3 s. At t = 1 s, the 
ball’s velocity is v  

u
= (2.0 in + 2.0 jn) m/s.

 a. Determine the ball’s velocity at t = 0 s, 2 s, and 3 s.
 b. What is the value of g on Planet Exidor?
 c. What was the ball’s launch angle?

 12. | A ball thrown horizontally at 25 m/s travels a horizontal dis-
tance of 50 m before hitting the ground. From what height was 
the ball thrown?

 13. || A rifle is aimed horizontally at a target 50 m away. The bullet 
hits the target 2.0 cm below the aim point.

 a. What was the bullet’s flight time?
 b. What was the bullet’s speed as it left the barrel?
 14. || A supply plane needs to drop a package of food to scientists 

working on a glacier in Greenland. The plane flies 100 m above 
the glacier at a speed of 150 m/s. How far short of the target 
should it drop the package?

Section 4.4 Relative Motion

 15. || A boat takes 3.0 hours to travel 30 km down a river, then 
5.0 hours to return. How fast is the river flowing?

 16. || When the moving sidewalk at the airport is broken, as it often 
seems to be, it takes you 50 s to walk from your gate to baggage 
claim. When it is working and you stand on the moving sidewalk 
the entire way, without walking, it takes 75 s to travel the same dis-
tance. How long will it take you to travel from the gate to baggage 
claim if you walk while riding on the moving sidewalk?

 17. || Mary needs to row her boat across a 100-m-wide river that is 
flowing to the east at a speed of 1.0 m/s. Mary can row with a 
speed of 2.0 m/s.

 a. If Mary points her boat due north, how far from her intended 
landing spot will she be when she reaches the opposite shore?

 b. What is her speed with respect to the shore?

 18. || Susan, driving north at 60 mph, and Trent, driving east at 
45 mph, are approaching an intersection. What is Trent’s speed 
relative to Susan’s reference frame?

Section 4.5 Uniform Circular Motion

 19. | Figure ex4.19 shows the angular-position-versus-time graph 
for a particle moving in a circle. What is the particle’s angular 
velocity at (a) t = 1 s, (b) t = 4 s, and (c) t = 7 s?

 20. || Figure ex4.20 shows the angular-velocity-versus-time graph 
for a particle moving in a circle. How many revolutions does the 
object make during the first 4 s?

 21. | Figure ex4.21 shows the angular-velocity-versus-time graph 
for a particle moving in a circle, starting from u0 = 0 rad at 
t = 0 s. Draw the angular-position-versus-time graph. Include 
an appropriate scale on both axes.

 22. | An old-fashioned single-play vinyl record rotates on a turn-
table at 45 rpm. What are (a) the angular velocity in rad/s and 
(b) the period of the motion?

 23. || The earth’s radius is about 4000 miles. Kampala, the capital 
of Uganda, and Singapore are both nearly on the equator. The 
distance between them is 5000 miles. The flight from Kampala 
to Singapore takes 9.0 hours. What is the plane’s angular velocity 
with respect to the earth’s surface? Give your answer in �/h.

Section 4.6 Velocity and Acceleration 
in Uniform Circular Motion

 24. || A 3000-m-high mountain is located on the equator. How 
much faster does a climber on top of the mountain move than a 
surfer at a nearby beach? The earth’s radius is 6400 km.

 25. | How fast must a plane fly along the earth’s equator so that 
the sun stands still relative to the passengers? In which direction 
must the plane fly, east to west or west to east? Give your answer 
in both km/h and mph. The earth’s radius is 6400 km.

 26. | To withstand “g-forces” of up to 10 g’s, caused by suddenly 
pulling out of a steep dive, fighter jet pilots train on a “human 
centrifuge.” 10 g’s is an acceleration of 98 m/s2. If the length of 
the centrifuge arm is 12 m, at what speed is the rider moving 
when she experiences 10 g’s?
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 27. | The radius of the earth’s very nearly circular orbit around the 
sun is 1.5 * 1011 m. Find the magnitude of the earth’s (a) ve-
locity, (b) angular velocity, and (c) centripetal acceleration as it 
travels around the sun. Assume a year of 365 days.

 28. || Your roommate is working on his bicycle and has the bike up-
side down. He spins the 60-cm-diameter wheel, and you notice 
that a pebble stuck in the tread goes by three times every second. 
What are the pebble’s speed and acceleration?

Section 4.7 Nonuniform Circular Motion and Angular Acceleration

 29. | Figure ex4.29 shows the angular velocity graph of the crank-
shaft in a car. What is the crankshaft’s angular acceleration at  
(a) t = 1 s, (b) t = 3 s, and (c) t = 5 s?

 30. || Figure ex4.30 shows the angular acceleration graph of a turn-
table that starts from rest. What is the turntable’s angular veloc-
ity at (a) t = 1 s, (b) t = 2 s, and (c)  t = 3 s?

 31. || Figure ex4.31 shows the 
angular-velocity-versus-time 
graph for a particle moving in 
a circle. How many revolutions 
does the object make during 
the first 4 s?

 32. || A 5.0-m-diameter merry-go-round is initially turning with a 
4.0 s period. It slows down and stops in 20 s.

 a. Before slowing, what is the speed of a child on the rim?
 b. How many revolutions does the merry-go-round make as it 

stops?
 33. || An electric fan goes from rest to 1800 rpm in 4.0 s. What is its 

angular acceleration?
 34. ||| A bicycle wheel is rotating at 50 rpm when the cyclist begins 

to pedal harder, giving the wheel a constant angular acceleration 
of 0.50 rad/s2.

 a. What is the wheel’s angular velocity, in rpm, 10 s later?
 b. How many revolutions does the wheel make during this 

time?
 35. ||| A 3.0-cm-diameter crankshaft that is rotating at 2500 rpm 

comes to a halt in 1.5 s.
 a. What is the tangential acceleration of a point on the surface?
 b. How many revolutions does the crankshaft make as it 

stops?

Problems

 36. || A particle starts from rest at r 
u

0 = 9.0 jn m and moves in the 
xy-plane with the velocity shown in Figure P4.36. The particle 
passes through a wire hoop located at r 

u

1 = 20 in m, then contin-
ues onward.

 a. At what time does the particle pass through the hoop?
 b. What is the value of v4y, the y-component of the particle’s 

velocity at t = 4 s?

 37. || A spaceship maneuvering near Planet Zeta is located at 
r 
u

= (600 in - 400jn + 200kn) * 103 km, relative to the planet, and 
traveling at v  

u
= 9500 in m/s. It turns on its thruster engine and 

accelerates with a
u

= (40 in - 20kn) m/s2 for 35 min. Where is the 
spaceship located when the engine shuts off? Give your answer 
as a vector measured in km.

 38. || A projectile’s horizontal range on level ground is R =   
v0 

2 sin 2u/g. At what launch angle or angles will the projectile 
land at half of its maximum possible range?

 39. ||  a.  A projectile is launched with speed v0 and angle u. Derive 
an expression for the projectile’s maximum height h.

    b.  A baseball is hit with a speed of 33.6 m/s. Calculate its 
height and the distance traveled if it is hit at angles of 
30.0�, 45.0�, and 60.0�.

 40. || A gray kangaroo can bound across level ground with each 
jump carrying it 10 m from the takeoff point. Typically the kan-
garoo leaves the ground at a 20� angle. If this is so:

 a. What is its takeoff speed?
 b. What is its maximum height above the ground?
 41. || A projectile is fired with an initial speed of 30 m/s at an angle 

of 60� above the horizontal. The object hits the ground 7.5 s 
later.

 a. How much higher or lower is the launch point relative to the 
point where the projectile hits the ground?

 b. To what maximum height above the launch point does the 
projectile rise?

 42. || In the Olympic shotput event, an athlete throws the shot 
with an initial speed of 12.0 m/s at a 40.0� angle from the 
horizontal. The shot leaves her hand at a height of 1.80 m 
above the ground.

 a. How far does the shot travel?
 b. Repeat the calculation of part (a) for angles 42.5�, 45.0�, and 

47.5�. Put all your results, including 40.0�, in a table. At what 
angle of release does she throw the farthest?

 43. || On the Apollo 14 mission to the moon, astronaut Alan 
Shepard hit a golf ball with a 6 iron. The free-fall acceler-
ation on the moon is 1/6 of its value on earth. Suppose he 
hit the ball with a speed of 25 m/s at an angle 30� above the 
horizontal.

 a. How much farther did the ball travel on the moon than it 
would have on earth?

 b. For how much more time was the ball in flight?
 44. || A ball is thrown toward a cliff of height h with a speed of 

30 m/s and an angle of 60� above horizontal. It lands on the edge 
of the cliff 4.0 s later.

 a. How high is the cliff?
 b. What was the maximum height of the ball?
 c. What is the ball’s impact speed?
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 45. || A tennis player hits a ball 2.0 m above the ground. The ball 
leaves his racquet with a speed of 20.0 m/s at an angle 5.0� 
above the horizontal. The horizontal distance to the net is 7.0 m, 
and the net is 1.0 m high. Does the ball clear the net? If so, by 
how much? If not, by how much does it miss?

 46. ||| A baseball player friend of yours wants to determine his pitch-
ing speed. You have him stand on a ledge and throw the ball 
horizontally from an elevation 4.0 m above the ground. The ball 
lands 25 m away.

 a. What is his pitching speed?
 b. As you think about it, you’re not sure he threw the ball exactly 

horizontally. As you watch him throw, the pitches seem to 
vary from 5� below horizontal to 5� above horizontal. What 
are the lowest and highest speeds with which the ball might 
have left his hand?

 47. || You are playing right field for the baseball team. Your team is 
up by one run in the bottom of the last inning of the game when 
a ground ball slips through the infield and comes straight toward 
you. As you pick up the ball 65 m from home plate, you see a 
runner rounding third base and heading for home with the tying 
run. You throw the ball at an angle of 30� above the horizontal 
with just the right speed so that the ball is caught by the catcher, 
standing on home plate, at the same height as you threw it. As 
you release the ball, the runner is 20 m from home plate and run-
ning full speed at 8.0 m/s. Will the ball arrive in time for your 
team’s catcher to make the tag and win the game?

 48. || You’re 6.0 m from one wall of the house seen in Figure P4.48. 
You want to toss a ball to your friend who is 6.0 m from the oppo-
site wall. The throw and catch each occur 1.0 m above the ground.

 a. What minimum speed will allow the ball to clear the roof?
 b. At what angle should you toss the ball?

 49. || Sand moves without slipping at 6.0 m/s down a conveyer that 
is tilted at 15�. The sand enters a pipe 3.0 m below the end of the 
conveyer belt, as shown in Figure P4.49. What is the horizontal 
distance d between the conveyer belt and the pipe?

 50. || A stunt man drives a car at a speed of 20 m/s off a 30-m-high cliff. 
The road leading to the cliff is inclined upward at an angle of 20�. 

 a. How far from the base of the cliff does the car land?
 b. What is the car’s impact speed?
 51. || A javelin thrower standing at rest holds the center of the 

javelin behind her head, then accelerates it through a distance of 
70 cm as she throws. She releases the javelin 2.0 m above the 
ground traveling at an angle of 30� above the horizontal. Top-
rated javelin throwers do throw at about a 30� angle, not the 45� 
you might have expected, because the biomechanics of the arm 
allow them to throw the javelin much faster at 30� than they 
would be able to at 45�. In this throw, the javelin hits the ground 
62 m away. What was the acceleration of the javelin during 
the throw? Assume that it has a constant acceleration.

 52. || Ships A and B leave port together. For the next two hours, 
ship A travels at 20 mph in a direction 30� west of north while 
the ship B travels 20� east of north at 25 mph.
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 a. What is the distance between the two ships two hours after 
they depart?

 b. What is the speed of ship A as seen by ship B?
 53. || A kayaker needs to paddle north across a 100-m-wide harbor. 

The tide is going out, creating a tidal current that flows to the 
east at 2.0 m/s. The kayaker can paddle with a speed of 3.0 m/s.

 a. In which direction should he paddle in order to travel straight 
across the harbor?

 b. How long will it take him to cross?
 54. || Mike throws a ball upward and toward the east at a 63� angle 

with a speed of 22 m/s. Nancy drives east past Mike at 30 m/s at 
the instant he releases the ball.

 a. What is the ball’s initial angle in Nancy’s reference frame?
 b. Find and graph the ball’s trajectory as seen by Nancy.
 55. || While driving north at 25 m/s during a rainstorm you notice 

that the rain makes an angle of 38� with the vertical. While driv-
ing back home moments later at the same speed but in the op-
posite direction, you see that the rain is falling straight down. 
From these observations, determine the speed and angle of the 
raindrops relative to the ground.

 56. || You’ve been assigned the task of using a shaft encoder—a 
device that measures the angle of a shaft or axle and provides a 
signal to a computer—to analyze the rotation of an engine crank-
shaft under certain conditions. The table lists the crankshaft’s 
angles over a 0.6 s interval.

  Is the crankshaft rotating with uniform circular motion? If so, 
what is its angular velocity in rpm? If not, is the angular accel-
eration positive or negative?

 57. || A speck of dust on a spinning DVD has a centripetal accelera-
tion of 20 m/s2. 

 a. What is the acceleration of a different speck of dust that is 
twice as far from the center of the disk?

 b. What would be the acceleration of the first speck of dust if 
the disk’s angular velocity was doubled?

 58. || A typical laboratory centrifuge rotates at 4000 rpm. Test tubes 
have to be placed into a centrifuge very carefully because of the 
very large accelerations.

 a. What is the acceleration at the end of a test tube that is 10 cm 
from the axis of rotation?

 b. For comparison, what is the magnitude of the acceleration a 
test tube would experience if dropped from a height of 1.0 
m and stopped in a 1.0-ms-long encounter with a hard floor?

 59. || Astronauts use a centrifuge to simulate the acceleration of a 
rocket launch. The centrifuge takes 30 s to speed up from rest to 
its top speed of 1 rotation every 1.3 s. The astronaut is strapped 
into a seat 6.0 m from the axis.

 a. What is the astronaut’s tangential acceleration during the first 
30 s?

 b. How many g’s of acceleration does the astronaut experience 
when the device is rotating at top speed? Each 9.8 m/s2 of 
acceleration is 1 g.
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6.0 m

1.0 m
3.0 m

6.0 m 6.0 m

45�

Figure P4.48 

15�

6.0 m/s

3.0 m
d

Figure P4.49 

Time (s) Angle (rad)

0.0 0.0
0.1 2.0
0.2 3.2
0.3 4.3
0.4 5.3
0.5 6.1
0.6 7.0



114    c h a p t e r  4 . Kinematics in Two Dimensions

 60. || Peregrine falcons are known for their maneuvering ability. In 
a tight circular turn, a falcon can attain a centripetal acceleration 
1.5 times the free-fall acceleration. What is the radius of the turn 
if the falcon is flying at 25 m/s?

 61. || As the earth rotates, what is the speed of (a) a physics student 
in Miami, Florida, at latitude 26�, and (b) a physics student in 
Fairbanks, Alaska, at latitude 65�? Ignore the revolution of the 
earth around the sun. The radius of the earth is 6400 km.

 62. || Communications satellites are placed in a circular orbit where 
they stay directly over a fixed point on the equator as the earth 
rotates. These are called geosynchronous orbits. The radius of 
the earth is 6.37 * 106 m, and the altitude of a geosynchronous 
orbit is 3.58 * 107 m (�  22,000 miles). What are (a) the speed 
and (b) the magnitude of the acceleration of a satellite in a geo-
synchronous orbit?

 63. || A computer hard disk 8.0 cm in diameter is initially at rest. A 
small dot is painted on the edge of the disk. The disk accelerates 
at 600 rad/s2 for 1

2 s, then coasts at a steady angular velocity for 
another 12 s.

 a. What is the speed of the dot at t = 1.0 s?
 b. Through how many revolutions has the disk turned?
 64. ||  a.  A turbine spinning with angular velocity v0 rad/s comes 

to a halt in T seconds. Find an expression for the angle �u 
through which the turbine turns while stopping.

  b.  A turbine is spinning at 3800 rpm. Friction in the bearings 
is so low that it takes 10 min to coast to a stop. How many 
revolutions does the turbine make while stopping?

 65. || A high-speed drill rotating ccw at 2400 rpm comes to a halt 
in 2.5 s.

 a. What is the drill’s angular acceleration?
 b. How many revolutions does it make as it stops?
 66. || A wheel initially rotating at 60 rpm experiences the angular 

acceleration shown in Figure P4.66. What is the wheel’s angular 
velocity, in rpm, at t = 3.0 s?

 67. || Your car tire is rotating at 3.5 rev/s when suddenly you press 
down hard on the accelerator. After traveling 200 m, the tire’s 
rotation has increased to 6.0 rev/s. What was the tire’s angular 
acceleration? Give your answer in rad/s2.

 68. || The angular velocity of a process control motor is 
v = (20 -

1
2  

t 2) rad/s,  where t is in seconds.
 a. At what time does the motor reverse direction?
 b. Through what angle does the motor turn between t =  0 s 

and the instant at which it reverses direction?
 69. || A Ferris wheel of radius R speeds up with angular acceleration 

a starting from rest. Find an expression for the (a) velocity and 
(b) centripetal acceleration of a rider after the Ferris wheel has 
rotated through angle �u.

 70. || A 6.0-cm-diameter gear rotates with angular velocity 
v = (2.0 +

1
2  

t 2) rad/s, where t is in seconds. At t =  4.0 s, what 
are:

 a. The gear’s angular acceleration?
 b. The tangential acceleration of a tooth on the gear?
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 71. || On a lonely highway, with no other cars in sight, you decide 

to measure the angular acceleration of your engine’s crankshaft 
while braking gently. Having excellent memory, you are able to 
read the tachometer every 1.0 s and remember seven values long 
enough to later write them down. The table shows your data:

  What is the magnitude of the crankshaft’s angular acceleration? 
Give your result in rad/s2.

 72. ||| A car starts from rest on a curve with a radius of 120 m and 
accelerates at 1.0 m/s2. Through what angle will the car have 
traveled when the magnitude of its total acceleration is 2.0 m/s2?

 73. ||| A long string is wrapped around a 6.0-cm-diameter cylinder, 
initially at rest, that is free to rotate on an axle. The string is then 
pulled with a constant acceleration of 1.5 m/s2 until 1.0 m of 
string has been unwound. If the string unwinds without slipping, 
what is the cylinder’s angular speed, in rpm, at this time?

In Problems 74 through 76 you are given the equations that are used 
to solve a problem. For each of these, you are to
 a. Write a realistic problem for which these are the correct equa-

tions. Be sure that the answer your problem requests is consistent 
with the equations given.

 b. Finish the solution of the problem, including a pictorial 
representation.

 74. 100 m = 0 m + (50 cos u m/s)t1

  0 m = 0 m + (50 sin u m/s)t1 -
1
2 (9.80 m/s2)t1 

2

 75. vx = - (6.0 cos 45�) m/s + 3.0 m/s
  vy = (6.0 sin 45�) m/s + 0 m/s
  100 m = vy  t1, x1 = vx  t1

 76. 2.5 rad = 0 rad + vi  (10 s) + 1(1.5 m/s2)/2(50 m)2(10 s)2

  vf = vi + 1(1.5 m/s2)/(50 m)2(10 s)

Challenge Problems

 77. You are asked to consult for 
the city’s research hospital, 
where a group of doctors is in-
vestigating the bombardment 
of cancer tumors with high-en-
ergy ions. The ions are fired 
directly toward the center of 
the tumor at speeds of 
5.0 * 106 m/s. To cover the 
entire tumor area, the ions are deflected sideways by passing 
them between two charged metal plates that accelerate the ions 
perpendicular to the direction of their initial motion. The accel-
eration region is 5.0 cm long, and the ends of the acceleration 
plates are 1.5 m from the patient. What sideways acceleration is 
required to deflect an ion 2.0 cm to one side?

BIO

t (s)
1 2 3

a (rad/s2)

2

4

0
0Figure P4.66 

Time (s) rpm

0.0 3010

1.0 2810

2.0 2450

3.0 2250

4.0 1940

5.0 1810

6.0 1510

Ion

Acceleration plates

5.0 cm

1.5 m

Target

�

Figure CP4.77 



Exercises and Problems    115

Stop to Think 4.1: d. The parallel component of a
u

 is opposite v  

u
 and 

will cause the particle to slow down. The perpendicular component of 
a
u

 will cause the particle to change direction downward.

Stop to Think 4.2: c. v = 0 requires both vx = 0 and vy = 0. Neither 
x nor y can be changing.

Stop to Think 4.3: d. A projectile’s acceleration a
u

= -g jn does not 
depend on its mass. The second marble has the same initial velocity 
and the same acceleration, so it follows the same trajectory and lands 
at the same position.

Stop to Think 4.4: f. The plane’s 
velocity relative to the helicopter 
is v  

u

PH = v  

u

PG + v  

u

GH = v  

u

PG - v  

u

HG, 
where G is the ground. The vector 
addition shows that v  

u

PH is to the 
right and down with a magnitude greater than the 100 m/s of v  

u

PG.

 78. In one contest at the county fair, 
seen in Figure CP4.78, a spring-
loaded plunger launches a ball 
at a speed of 3.0 m/s from one 
corner of a smooth, flat board 
that is tilted up at a 20° angle. To 
win, you must make the ball hit 
a small target at the adjacent cor-
ner, 2.50 m away. At what angle u should you tilt the ball launcher?

 79. You are watching an archery tournament when you start wonder-
ing how fast an arrow is shot from the bow. Remembering your 
physics, you ask one of the archers to shoot an arrow parallel to the 
ground. You find the arrow stuck in the ground 60 m away, making 
a 3.0� angle with the ground. How fast was the arrow shot?

 80. An archer standing on a 15� slope shoots an arrow 20� above the 
horizontal, as shown in Figure CP4.80. How far down the slope 
does the arrow hit if it is shot with a speed of 50 m/s from 1.75 m 
above the ground?

He intends to ride off a horizontal platform at 40 m/s, cross the 
burning buses in a pit below him, then land on a ramp sloping down 
at 20�. It’s very important that he not bounce when he hits the land-
ing ramp because that could cause him to lose control and crash. 
You immediately recognize that he won’t bounce if his velocity 
is parallel to the ramp as he touches down. This can be accom-
plished if the ramp is tangent to his trajectory and if he lands right 
on the front edge of the ramp. There’s no room for error! Your task 
is to determine where to place the landing ramp. That is, how far 
from the edge of the launching platform should the front edge of 
the landing ramp be horizontally and how far below it? There’s a 
clause in your contract that requires you to test your design before 
the hero goes on national television to set the record.

 84. A cannon on a train car fires a projectile to the right with speed v0, 
relative to the train, from a barrel elevated at angle u. The cannon 
fires just as the train, which had been cruising to the right along a 
level track with speed vtrain, begins to accelerate with acceleration 
a. Find an expression for the angle at which the projectile should 
be fired so that it lands as far as possible from the cannon. You 
can ignore the small height of the cannon above the track.

 85. A child in danger of drowning in a river is being carried down-
stream by a current that flows uniformly with a speed of 2.0 m/s. 
The child is 200 m from the shore and 1500 m upstream of the 
boat dock from which the rescue team sets out. If their boat 
speed is 8.0 m/s with respect to the water, at what angle from the 
shore should the pilot leave the shore to go directly to the child?

 86. An amusement park game, shown in Figure CP4.86, launches a 
marble toward a small cup. The marble is placed directly on top 
of a spring-loaded wheel and held with a clamp. When released, 
the wheel spins around clockwise at constant angular acceleration, 
opening the clamp and releasing the marble after making 11

12 revo-
lution. What angular acceleration is needed for the ball to land in 
the cup? The top of the cup is level with the center of the wheel.

20�

Launch
Target

u

v0
r

Figure CP4.78 

15�

20�

Figure CP4.80 

20�3.0 m

Figure CP4.81 

vPG of plane relative to groundr

�vHG
r

vPH � vPG � vHG of 
plane relative to helicopter

r r r

CupSpring-loaded
wheel

Marble loaded and
ready for release

40 cm

100 cm
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sToP To ThiNK ANswers

Stop to Think 4.5: b. An initial cw rotation causes the particle’s an-
gular position to become increasingly negative. The speed drops to 
half after reversing direction, so the slope becomes positive and is half 
as steep as the initial slope. Turning through the same angle returns 
the particle to u = 0�.

Stop to Think 4.6: ab + ae + aa � ac + ad. Centripetal accel-
eration is v 2/r. Doubling r decreases ar by a factor of 2. Doubling v 
increases ar by a factor of 4. Reversing direction doesn’t change ar  .

Stop to Think 4.7: c. v is negative because the rotation is cw. Be-
cause v is negative but becoming less negative, the change �v is 
positive. So a is positive.

 81. A rubber ball is dropped onto a ramp that is tilted at 20�, as shown in 
Figure CP4.81. A bouncing ball obeys the “law of reflection,” which 
says that the ball leaves the surface at the same angle it approached 
the surface. The ball’s next bounce is 3.0 m to the right of its first 
bounce. What is the ball’s rebound speed on its first bounce?

 82. A skateboarder starts up a 1.0-m-high, 30� ramp at a speed of 
7.0 m/s. The skateboard wheels roll without friction. How far 
from the end of the ramp does the skateboarder touch down?

 83. A motorcycle daredevil wants to set a record for jumping over 
burning school buses. He has hired you to help with the design. 



5 Force and Motion

These ice boats are a memorable 
example of the connection 
between force and motion.

Identifying Forces
In this chapter you will learn to identify 
forces and then to represent them on a 
free-body diagram.

Newton’s Laws
You’ve likely seen Newton’s second 
law, the famous equation F = ma.  This 
is the first of several chapters in which 
you’ll learn to use Newton’s three laws 
of motion to solve dynamics problems.

Force
The fundamental concept of dynamics is that of force.

■	 A force is a push or a pull.
■	 A force acts on an object.
■	 A force is a vector.
■	 A force can be a contact force or a long-range force.

Some important forces that we’ll study in this chapter are

Force

Acceleration

Thrust force Fthrust
r

Gravity FG
r

Normal force nr

x

y

nr Fthrust
r

Fnet
r

FG
r

Gravity Tension Friction Drag

An object 
accel erates in  
the same 
direction as 
the net force 
on the object. Except for the long-range force of gravity, 

forces act at points of contact.

What Causes Motion?
Kinematics describes how an object 
moves. For the more fundamental issue 
of understanding why an object moves, 
we now turn our attention to dynamics.

Dynamics joins with kinematics to form 
mechanics, the science of motion.

 Looking Back
Section 1.5 Acceleration

Section 3.2 Vector addition

Force and Motion
Force causes an object to accelerate!

0
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A
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n

You’ll learn that the acceleration of an 
object is directly proportional to the force 
exerted on it.

 Looking Ahead  The goal of Chapter 5 is to establish a connection between force and motion.
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5.1 Force
The two major issues that this chapter will examine are:

	■	 What is a force?
	■	 What is the connection between force and motion?

We begin with the first of these questions in the table below.

What is a force?

A force is a push or a pull.

Our commonsense idea of a force is that it is a push or a pull. We will refine this idea as we go along, 
but it is an adequate starting point. Notice our careful choice of words: We refer to “a force,” rather 
than simply “force.” We want to think of a force as a very specific action, so that we can talk about a 
single force or perhaps about two or three individual forces that we can clearly distinguish. Hence the 
concrete idea of “a force” acting on an object.

A force acts on an object.

Implicit in our concept of force is that a force acts on an object. In other words, pushes and pulls are 
applied to something—an object. From the object’s perspective, it has a force exerted on it. Forces do 
not exist in isolation from the object that experiences them.

A force requires an agent.

Every force has an agent, something that acts or exerts power. That is, a force has a specific, identifiable 
cause. As you throw a ball, it is your hand, while in contact with the ball, that is the agent or the cause 
of the force exerted on the ball. If a force is being exerted on an object, you must be able to identify a 
specific cause (i.e., the agent) of that force. Conversely, a force is not exerted on an object unless you can 
identify a specific cause or agent. Although this idea may seem to be stating the obvious, you will find it 
to be a powerful tool for avoiding some common misconceptions about what is and is not a force.

A force is a vector.

If you push an object, you can push either gently or very hard. Similarly, you can push either left or 
right, up or down. To quantify a push, we need to specify both a magnitude and a direction. It should 
thus come as no surprise that a force is a vector quantity. The general symbol for a force is the vector 
symbol F

 u
. The size or strength of a force is its magnitude F.

A force can be either a contact force . . .

There are two basic classes of forces, depending on whether the agent touches the object or not. Contact 
forces are forces that act on an object by touching it at a point of contact. The bat must touch the ball to 
hit it. A string must be tied to an object to pull it. The majority of forces that we will examine are contact 
forces.

. . . or a long-range force.

Long-range forces are forces that act on an object without physical contact. Magnetism is an example 
of a long-range force. You have undoubtedly held a magnet over a paper clip and seen the paper clip 
leap up to the magnet. A coffee cup released from your hand is pulled to the earth by the long-range 
force of gravity.

NoTe  In the particle model, objects cannot exert forces on themselves. A force 
on an object will always have an agent or cause external to the object. Now, there 
are certainly objects that have internal forces (think of all the forces inside the en-
gine of your car!), but the particle model is not valid if you need to consider those 
internal forces. If you are going to treat your car as a particle and look only at the 
overall motion of the car as a whole, that motion will be a consequence of external 
forces acting on the car. 

Object

Agent
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Force Vectors
We can use a simple diagram to visualize how forces are exerted on objects.

Step 2 may seem contrary to what a “push” should do, but recall that moving a 
vector does not change it as long as the length and angle do not change. The vector F

u

 
is the same regardless of whether the tail or the tip is placed on the particle. FIgure 5.1 
shows three examples of force vectors.

Represent the object as a particle.

Draw the force vector as an arrow pointing
in the proper direction and with a length
proportional to the size of the force.

Give the vector an appropriate label.

Place the tail of the force vector
on the particle.

1

2

3

4

r
F

TACTICs
B o x  5 . 1 

 Drawing force vectors

The spring is the agent.The rope is the agent.

Pushing force of spring

Earth is the agent.

Long-range
force of
gravity

Box

Box

Pulling force of rope

Box

FIgure 5.1 Three examples of forces and 
their vector representations.

Combining Forces
FIgure 5.2a shows a box being pulled by two ropes, each exerting a force on the box. 
How will the box respond? Experimentally, we find that when several forces F

u

1, F
u

2, 
F
u

3, . . . are exerted on an object, they combine to form a net force given by the vector 
sum of all the forces:

 F
u

net K a
N

i=1
F
u

i = F
u

1 + F
u

2 + g + F
u

N (5.1)

Recall that K is the symbol meaning “is defined as.” Mathematically, this summation 
is called a superposition of forces. FIgure 5.2b shows the net force on the box.

Stop to think 5.1  Two of the three forces exerted on an object are shown. The net 
force points to the left. Which is the missing third force?

Top view
of box

(a)

This is the
net force on
the box.

The box is
represented
as a particle.

Pulling forces
of the ropes

(b) F1

r

Fnet � F1 � F2

r r r

F2

r

FIgure 5.2 Two forces applied to a box.

(a)

F1

Two of the three
forces exerted on
an object

r

F2

r

F3

r

(b)

F3

r

(c)

F3

r

(d)

F3

r
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5.2 A short Catalog of Forces
There are many forces we will deal with over and over. This section will introduce you 
to some of them. Many of these forces have special symbols. As you learn the major 
forces, be sure to learn the symbol for each.

gravity
Gravity—the only long-range force we will encounter in the next few chapters—keeps 
you in your chair, and the planets in their orbits around the sun. We’ll have a thorough 
look at gravity in Chapter 13. For now we’ll concentrate on objects on or near the 
surface of the earth (or other planet).

The pull of a planet on an object on or near the surface is called the gravitational 
force. The agent for the gravitational force is the entire planet. Gravity acts on all 
objects, whether moving or at rest. The symbol for gravitational force is F

u

G. The 
gravitational force vector always points vertically downward, as shown in FIgure 5.3.

NoTe  We often refer to “the weight” of an object. For an object at rest on the 
surface of a planet, its weight is simply the magnitude FG  of the gravitational force. 
However, weight and gravitational force are not the same thing, nor is weight the 
same as mass. We will briefly examine mass later in the chapter, and we’ll explore 
the rather subtle connections among gravity, weight, and mass in Chapter 6. 

spring Force
Springs exert one of the most common contact forces. A spring can either push (when 
compressed) or pull (when stretched). FIgure 5.4 shows the spring force, for which we 
use the symbol F

u

sp. In both cases, pushing and pulling, the tail of the force vector is 
placed on the particle in the force diagram.

Ground

The gravitational force
pulls the box down.

FG

r

FIgure 5.3 Gravity.

(a) A compressed spring exerts
a pushing force on an object.

Fsp

r
Fsp

r

(b) A stretched spring exerts
a pulling force on an object.

FIgure 5.4 The spring force.

Although you may think of a spring as a metal coil that can be stretched or com-
pressed, this is only one type of spring. Hold a ruler, or any other thin piece of wood 
or metal, by the ends and bend it slightly. It flexes. When you let go, it “springs” back 
to its original shape. This is just as much a spring as is a metal coil.

Tension Force
When a string or rope or wire pulls on an object, it exerts a contact force that we call 
the tension force, represented by a capital T 

u

. The direction of the tension force is 
always in the direction of the string or rope, as you can see in FIgure 5.5. The common-
place reference to “the tension” in a string is an informal expression for T, the size or 
magnitude of the tension force.

NoTe  Tension is represented by the symbol T. This is logical, but there’s a risk 
of confusing the tension T with the identical symbol T for the period of a particle in 
circular motion. The number of symbols used in science and engineering is so large 
that some letters are used several times to represent different quantities. The use of 
T is the first time we’ve run into this problem, but it won’t be the last. You must be 
alert to the context of a symbol’s use to deduce its meaning. 

r
T

The rope exerts a tension
force on the sled.

FIgure 5.5 Tension.
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If you were to use a very powerful microscope to look inside a rope, you would 
“see” that it is made of atoms joined together by molecular bonds. Molecular bonds 
are not rigid connections between the atoms. They are more accurately thought of as 
tiny springs holding the atoms together, as in FIgure 5.6. Pulling on the ends of a string 
or rope stretches the molecular springs ever so slightly. The tension within a rope and 
the tension force experienced by an object at the end of the rope are really the net 
spring force being exerted by billions and billions of microscopic springs.

This atomic-level view of tension introduces a new idea: a microscopic atomic model 
for understanding the behavior and properties of macroscopic objects. It is a model because 
atoms and molecular bonds aren’t really little balls and springs. We’re using macroscopic 
concepts—balls and springs—to understand atomic-scale phenomena that we cannot 
directly see or sense. This is a good model for explaining the elastic properties of materials, 
but it would not necessarily be a good model for explaining other phenomena. We will 
frequently use atomic models to obtain a deeper understanding of our observations.

Normal Force
If you sit on a bed, the springs in the mattress compress and, as a consequence of the 
compression, exert an upward force on you. Stiffer springs would show less compres-
sion but still exert an upward force. The compression of extremely stiff springs might 
be measurable only by sensitive instruments. Nonetheless, the springs would com-
press ever so slightly and exert an upward spring force on you.

FIgure 5.7 shows an object resting on top of a sturdy table. The table may not vis-
ibly flex or sag, but—just as you do to the bed—the object compresses the molecular 
springs in the table. The size of the compression is very small, but it is not zero. As 
a consequence, the compressed molecular springs push upward on the object. We 
say that “the table” exerts the upward force, but it is important to understand that the 
pushing is really done by molecular springs. Similarly, an object resting on the ground 
compresses the molecular springs holding the ground together and, as a consequence, 
the ground pushes up on the object.

We can extend this idea. Suppose you place your hand on a wall and lean against 
it, as shown in FIgure 5.8. Does the wall exert a force on your hand? As you lean, you 
compress the molecular springs in the wall and, as a consequence, they push outward 
against your hand. So the answer is yes, the wall does exert a force on you.

The force the table surface exerts is vertical; the force the wall exerts is horizontal. 
In all cases, the force exerted on an object that is pressing against a surface is in a di-
rection perpendicular to the surface. Mathematicians refer to a line that is perpendicu-
lar to a surface as being normal to the surface. In keeping with this terminology, we 
define the normal force as the force exerted by a surface (the agent) against an object 
that is pressing against the surface. The symbol for the normal force is n

u
.

We’re not using the word normal to imply that the force is an “ordinary” force or to 
distinguish it from an “abnormal force.” A surface exerts a force perpendicular (i.e., 
normal) to itself as the molecular springs press outward. FIgure 5.9 shows an object on 
an inclined surface, a common situation.

In essence, the normal force is just a spring force, but one exerted by a vast num-
ber of microscopic springs acting at once. The normal force is responsible for the 
“solidness” of solids. It is what prevents you from passing right through the chair you 
are sitting in and what causes the pain and the lump if you bang your head into a door.

Friction
Friction, like the normal force, is exerted by a surface. But whereas the normal force 
is perpendicular to the surface, the friction force is always tangent to the surface. It is 
useful to distinguish between two kinds of friction:

	■	 Kinetic friction, denoted f 
u

k, appears as an object slides across a surface. This is a 
force that “opposes the motion,” meaning that the friction force vector f 

u

k points in 
a direction opposite the velocity vector v  

u
 (i.e., “the motion”).
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bonds

Atoms
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Atomic-level
view of a rope,
with molecular
bonds as springs
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T

FIgure 5.6 An atomic model of tension.

The compressed
molecular springs push
upward on the object.

Molecular bonds

Atoms
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FIgure 5.7 An atomic model of the 
force exerted by a table.

The compressed
molecular springs
in the wall press
outward against
her hand.

nr

FIgure 5.8 The wall pushes outward.

The surface pushes outward
against the bottom of the frog.

nr

FIgure 5.9 The normal force.
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	■	 Static friction, denoted f 
u

s,  is the force that keeps an object “stuck” on a surface 
and prevents its motion. Finding the direction of f 

u

s  is a little trickier than finding 
it for f 

u

k.  Static friction points opposite the direction in which the object would move 
if there were no friction. That is, it points in the direction necessary to prevent motion.

FIgure 5.10 shows examples of kinetic and static friction.

NoTe  A surface exerts a kinetic friction force when an object moves relative to 
the surface. A package on a conveyor belt is in motion, but it does not experience a 
kinetic friction force because it is not moving relative to the belt. So to be precise, 
we should say that the kinetic friction force points opposite to an object’s motion 
relative to a surface. 

Drag
Friction at a surface is one example of a resistive force, a force that opposes or resists 
motion. Resistive forces are also experienced by objects moving through fluids—gas-
es and liquids. The resistive force of a fluid is called drag, with symbol D

u

. Drag, like 
kinetic friction, points opposite the direction of motion. FIgure 5.11 shows an example.

Drag can be a significant force for objects moving at high speeds or in dense fluids. 
Hold your arm out the window as you ride in a car and feel how the air resistance 
against it increases rapidly as the car’s speed increases. Drop a lightweight object into 
a beaker of water and watch how slowly it settles to the bottom.

For objects that are heavy and compact, that move in air, and whose speed is not 
too great, the drag force of air resistance is fairly small. To keep things as simple as 
possible, you can neglect air resistance in all problems unless a problem explicitly 
asks you to include it.

Thrust
A jet airplane obviously has a force that propels it forward during takeoff. Likewise 
for the rocket being launched in FIgure 5.12. This force, called thrust, occurs when a 
jet or rocket engine expels gas molecules at high speed. Thrust is a contact force, with 
the exhaust gas being the agent that pushes on the engine. The process by which thrust 
is generated is rather subtle, and we will postpone a full discussion until we study 
Newton’s third law in Chapter 7. For now, we will treat thrust as a force opposite the 
direction in which the exhaust gas is expelled. There’s no special symbol for thrust, so 
we will call it F

u

thrust.

electric and Magnetic Forces
Electricity and magnetism, like gravity, exert long-range forces. We will study electric 
and magnetic forces in detail in Part VI. For now, it is worth noting that the forces 
holding molecules together—the molecular bonds—are not actually tiny springs. 
Atoms and molecules are made of charged particles—electrons and protons—and what 
we call a molecular bond is really an electric force between these particles. So when 

Kinetic friction
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FIgure 5.10 Kinetic and static friction.

Air resistance is a significant force
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the direction of motion.
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FIgure 5.11 Air resistance is an example 
of drag.
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FIgure 5.12 Thrust force on a rocket.
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we say that the normal force and the tension force are due to “molecular springs,” or 
that friction is due to atoms running into each other, what we’re really saying is that 
these forces, at the most fundamental level, are actually electric forces between the 
charged particles in the atoms.

5.3 Identifying Forces
Force and motion problems generally have two basic steps:

 1. Identify all of the forces acting on an object.
 2. Use Newton’s laws and kinematics to determine the motion.

Understanding the first step is the primary goal of this chapter. We’ll turn our attention 
to step 2 in the next chapter.

A typical physics problem describes an object that is being pushed and pulled in 
various directions. Some forces are given explicitly; others are only implied. In order to 
proceed, it is necessary to determine all the forces that act on the object. The procedure 
for identifying forces will become part of the pictorial representation of the problem.

Force Notation

General force F
u

Gravitational force F
u

G

Spring force F
u

sp

Tension T 
u

Normal force n
u

Static friction f 
u

s

Kinetic friction f 
u

k

Drag D
u

Thrust F
u

thrust TACTICs
B o x  5 . 2 

 Identifying forces

 ●1 Identify the object of interest. This is the object whose motion you wish to 
study.

 ●2 Draw a picture of the situation. Show the object of interest and all other 
objects—such as ropes, springs, or surfaces—that touch it.

 ●3 Draw a closed curve around the object. Only the object of interest is inside 
the curve; everything else is outside.

 ●4 Locate every point on the boundary of this curve where other objects 
touch the object of interest. These are the points where contact forces are 
exerted on the object.

 ●5 Name and label each contact force acting on the object. There is at least 
one force at each point of contact; there may be more than one. When neces-
sary, use subscripts to distinguish forces of the same type.

 ●6 Name and label each long-range force acting on the object. For now, the 
only long-range force is the gravitational force.

Exercises 3–8 

exAMpLe 5.1  Forces on a bungee jumper
A bungee jumper has leapt off a bridge and is nearing the bottom of her fall. What forces are being exerted on the jumper?

VIsuALIze

Identify the object of interest. Here the object is
the bungee jumper.

Draw a picture of the situation.

Draw a closed curve around the object.

Locate the points where other objects touch the
object of interest. Here the only point of contact
is where the cord attaches to her ankles.

Name and label each contact force. The force
exerted by the cord is a tension force.

Name and label long-range forces. Gravity
is the only one.

1

4

5

6

2

3

Gravity FG

r

Tension T
r

FIgure 5.13 Forces on a bungee jumper.
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NoTe  You might have expected two friction forces and two normal forces in 
Example 5.2, one on each ski. Keep in mind, however, that we’re working within 
the particle model, which represents the skier by a single point. A particle has only 
one contact with the ground, so there is one normal force and one friction force. 

exAMpLe 5.2  Forces on a skier
A skier is being towed up a snow-covered hill by a tow rope. What forces are being exerted on the skier?

VIsuALIze

Identify the object of interest.
Here the object is the skier.

Draw a picture of
the situation.

Draw a closed curve
around the object.

Locate the points where other objects
touch the object of interest. Here the
rope and the ground touch the skier.

Name and label each contact force. The rope
exerts a tension force and the ground exerts
both a normal and a kinetic friction force.

Name and label long-range forces. Gravity
is the only one.

1

2

3

4

5

6

Tension T
r

Normal force n
Kinetic friction fk

r

r

Gravity FG

r

FIgure 5.14 Forces on a skier.

exAMpLe 5.3  Forces on a rocket
A rocket is being launched to place a new satellite in orbit. 
Air resistance is not negligible. What forces are being 
exerted on the rocket?

VIsuALIze This drawing is much more like the sketch you 
would make when identifying forces as part of solving a 
problem.

FIgure 5.15 Forces on a rocket.

Stop to think 5.2  You’ve just kicked a rock, and it is now sliding across the ground 
about 2 meters in front of you. Which of these forces act on the rock? List all that apply.

 a. Gravity, acting downward.
 b. The normal force, acting upward.
 c. The force of the kick, acting in the direction of motion.
 d. Friction, acting opposite the direction of motion.

5.4 What Do Forces Do? A Virtual experiment
Having learned to identify forces, we ask the next question: How does an object 
move when a force is exerted on it? The only way to answer this question is to do 
experiments. Let’s conduct a “virtual experiment,” one you can easily visualize. 
Imagine using your fingers to stretch a rubber band to a certain length—say 



124    c h a p t e r  5 . Force and Motion

10 centimeters—that you can measure with a ruler, as shown in FIgure 5.16. You 
know that a stretched rubber band exerts a force—a spring force—because your 
fingers feel the pull. Furthermore, this is a reproducible force; the rubber band 
exerts the same force every time you stretch it to this length. We’ll call this the 
standard force F. Not surprisingly, two identical rubber bands exert twice the pull 
of one rubber band, and N side-by-side rubber bands exert N times the standard 
force: Fnet = NF.

Now attach one rubber band to a 1 kg block and stretch it to the standard 
length. The object experiences the same force F as did your finger. The rubber 
band gives us a way of applying a known and reproducible force to an object. 
Then imagine using the rubber band to pull the block across a horizontal, friction-
less table. (We can imagine a frictionless table since this is a virtual experiment, 
but in practice you could nearly eliminate friction by supporting the object on a 
cushion of air.)

If you stretch the rubber band and then release the object, the object moves toward 
your hand. But as it does so, the rubber band gets shorter and the pulling force de-
creases. To keep the pulling force constant, you must move your hand at just the right 
speed to keep the length of the rubber band from changing! FIgure 5.17a shows the ex-
periment being carried out. Once the motion is complete, you can use motion diagrams 
and kinematics to analyze the object’s motion.

Standard length 

One rubber band
stretched the standard
length exerts the
standard force F.

r
F

Standard length 

Two rubber bands
stretched the standard
length exert twice
the standard force.

2F
r

FIgure 5.16 A reproducible force.

The first important finding of this experiment is that an object pulled with a con-
stant force moves with a constant acceleration. That is, the answer to the question 
What does a force do? is: A force causes an object to accelerate, and a constant force 
produces a constant acceleration. This finding could not have been anticipated in ad-
vance. It’s conceivable that the object would speed up for a while, then move with a 
steady speed. Or that it would speed up, but that the rate of increase, the acceleration, 
would steadily decline. These are conceivable motions, but they’re not what happens. 
Instead, the object accelerates with a constant acceleration a1 for as long as you pull 
it with a constant force F.

What happens if you increase the force by using several rubber bands? To find out, 
use two rubber bands, then three rubber bands, then four, and so on. With N rubber 
bands, the force on the block is NF. FIgure 5.17b shows the results of this experiment. 
You can see that doubling the force causes twice the acceleration, tripling the force 
causes three times the acceleration, and so on. The graph reveals our second important 
finding: The acceleration is directly proportional to the force. This result can be 
written as

 a = cF (5.2)

where c, called the proportionality constant, is the slope of the graph.

FIgure 5.17 Measuring the motion of an object that is pulled with a constant force.
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The concept of proportionality arises frequently in physics. A 
quantity symbolized by u is proportional to another quantity sym-
bolized by v if

 u = cv

where c (which might have units) is called the proportionality 
constant. This relationship between u and v is often written

 u � v

where the symbol � means “is proportional to.”
If v is doubled to 2v, then u is doubled to c(2v) = 2(cv) = 2u.  

In general, if v is changed by any factor f, then u changes by the 
same factor. This is the essence of what we mean by proportionality.

A graph of u versus v is a straight 
line passing through the origin (i.e., 
the y-intercept is zero) with slope = c. 
Notice that proportionality is a much 
more specific relationship between u 
and v than mere linearity. The linear 
equation u = cv + b has a straight-
line graph, but it doesn’t pass through 
the origin (unless b happens to be zero) and doubling v does not 
double u.

If u � v, then u1 = cv1 and u2 = cv2. Dividing the second 
equation by the first, we find

 
u2

u1
=

v2

 v1

By working with ratios, we can deduce information about u with-
out needing to know the value of c. (This would not be true if 
the relationship were merely linear.) This is called proportional 
reasoning.

Proportionality is not limited to being linearly proportional. The 
graph on the left below shows that u is clearly not proportional to w. 
But a graph of u versus 1/w2 is a straight line passing through the 
origin, thus, in this case, u is proportional to 1/w2, or u � 1/w2. We 
would say that “u is proportional to the inverse square of w.”

The graph passes 
through the origin.

u

v

The slope 
is c.

u is proportional to v.

exAMpLe u is proportional to the inverse square of w. By what fac-
tor does u change if w is tripled?

soLuTIoN This is an opportunity for proportional reasoning; we 
don’t need to know the proportionality constant. If u is propor-
tional to 1/w2, then

 
u2

u1
=

1/w2 

2

1/w1 

2 =
w1 

2

w2 

2 = 1w1

w2
2 2

Tripling w, with w2 /w1 = 3, and thus w1 /w2 =
1
3, changes u to

 u2 = 1w1

w2
2 2

 u1 = 11

3 2 2

u1 =
1

9
 u1

Tripling w causes u to become 19 of its original value.
Many Student Workbook and end-of-chapter homework ques-

tions will require proportional reasoning. It’s an important skill 
to learn.

1
w2

u
Is not proportional Is proportional

w

u

u is proportional to the inverse square of w.

The final question for our virtual experiment is: How does the acceleration depend 
on the mass of the object being pulled? To find out, apply the same force—for ex-
ample, the standard force of one rubber band—to a 2 kg block, then a 3 kg block, and 
so on, and for each measure the acceleration. Doing so gives you the results shown in 
FIgure 5.18. An object with twice the mass of the original block has only half the ac-
celeration when both are subjected to the same force.

Mathematically, the graph of Figure 5.18 is one of inverse proportionality. That 
is, the acceleration is inversely proportional to the object’s mass, which we can 
write as

 a =
c�

m
 (5.3)

where c� is another proportionality constant.
Force causes an object to accelerate! The results of our experiment are that the ac-

celeration is directly proportional to the force applied and inversely proportional to the 
object’s mass. We can combine these into the single statement

 a =
F
m

 (5.4)

if we define the basic unit of force as the force that causes a 1 kg mass to accelerate 
at 1 m/s2. That is,

 1 basic unit of force K 1 kg * 1 
m

s2 = 1 
kg m

s2   
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acceleration is
1/3 as much.

FIgure 5.18 Acceleration is inversely 
proportional to mass.
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This basic unit of force is called a newton:

One newton is the force that causes a 1 kg mass to accelerate at 1 m/s2. The ab-
breviation for newton is N. Mathematically, 1 N = 1 kg m/s2.

Table 5.1 lists some typical forces. As you can see, “typical” forces on “typical” ob-
jects are likely to be in the range 0.01–10,000 N.

Mass
We’ve been using the term mass without a clear definition. As we learned in Chapter 1, 
the SI unit of mass, the kilogram, is based on a particular metal block kept in a vault in 
Paris. This suggests that mass is the amount of matter an object contains, and that is cer-
tainly our everyday concept of mass. Now we see that a more precise way of defining an 
object’s mass is in terms of its acceleration in response to a force. Figure 5.18 shows that 
an object with twice the amount of matter accelerates only half as much in response to the 
same force. The more matter an object has, the more it resists accelerating in response to 
a force. You’re familiar with this idea: Your car is much harder to push than your bicycle. 
The tendency of an object to resist a change in its velocity (i.e., to resist acceleration) is 
called inertia. Consequently, the mass used in Equation 5.4, a measure of an object’s re-
sistance to changing its motion, is called inertial mass. We’ll meet a different concept of 
mass, gravitational mass, when we study Newton’s law of gravity in Chapter 13.

Stop to think 5.3   Two rubber bands stretched to the standard length cause an object 
to accelerate at 2 m/s2. Suppose another object with twice the mass is pulled by four 
rubber bands stretched to the standard length. The acceleration of this second object is

 a. 1 m/s2 b. 2 m/s2 c. 4 m/s2 d. 8 m/s2 e. 16 m/s2

Hint: Use proportional reasoning.

5.5 Newton’s second Law
Equation 5.4 is an important finding, but our experiment was limited to looking at an 
object’s response to a single applied force. Realistically, an object is likely to be sub-
jected to several distinct forces F

u

1, F
u

2, F
u

3,  . . . that may point in different directions. 
What happens then? In that case, it is found experimentally that the acceleration is 
determined by the net force.

Newton was the first to recognize the connection between force and motion. This 
relationship is known today as Newton’s second law.

Newton’s second law An object of mass m subjected to forces F
u

1, F
u

2, F
u

3, . . . will 
undergo an acceleration a 

u
 given by

 a
u

=
F
u

net

 m
 (5.5)

where the net force F
u

net = F
u

1 + F
u

2 + F
u

3 + g  is the vector sum of all forces 
acting on the object. The acceleration vector a 

u
 points in the same direction as the 

net force vector F
u

net.

The significance of Newton’s second law cannot be overstated. There was no rea-
son to suspect that there should be any simple relationship between force and accelera-
tion. Yet there it is, a simple but exceedingly powerful equation relating the two. The 
critical idea is that an object accelerates in the direction of the net force vector F

u

net.

TABLe 5.1 Approximate magnitude of 
some typical forces

Force

Approximate  
magnitude  
(newtons)

Weight of a U.S. quarter 0.05

Weight of a 1 pound object 5

Weight of a 110 pound person 500

Propulsion force of a car 5,000

Thrust force of a  
 rocket motor 5,000,000
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We can rewrite Newton’s second law in the form

 F
u

net = ma
u

 (5.6)

which is how you’ll see it presented in many textbooks. Equations 5.5 and 5.6 are 
mathematically equivalent, but Equation 5.5 better describes the central idea of New-
tonian mechanics: A force applied to an object causes the object to accelerate.

It’s also worth noting that the object responds only to the forces acting on it at 
this instant. The object has no memory of forces that may have been exerted at earlier 
times. This idea is sometimes called Newton’s zeroth law.

NoTe  Be careful not to think that one force “overcomes” the others to determine 
the motion. Forces are not in competition with each other! It is F

u

net, the sum of all 
the forces, that determines the acceleration a

u
. 

As an example, FIgure 5.19a shows a box being pulled by two ropes. The ropes exert 
tension forces T 

u

1 and T 
u

2 on the box. FIgure 5.19b represents the box as a particle, shows 
the forces acting on the box, and adds them graphically to find the net force F

u

net. The 
box will accelerate in the direction of F

u

net with acceleration

 a
u

=
F
u

net 
m

=
T 
u

1 + T 
u

2

m

NoTe  The acceleration is not (T1 + T2 )/m. You must add the forces as vectors, 
not merely add their magnitudes as scalars. 

Forces Are Interactions
There’s one more important aspect of forces. If you push against a door (the object) to 
close it, the door pushes back against your hand (the agent). If a tow rope pulls on a 
car (the object), the car pulls back on the rope (the agent). In general, if an agent exerts 
a force on an object, the object exerts a force on the agent. We really need to think of 
a force as an interaction between two objects. This idea is captured in Newton’s third 
law—that for every action there is an equal but opposite reaction.

Although the interaction perspective is a more exact way to view forces, it adds 
complications that we would like to avoid for now. Our approach will be to start by 
focusing on how a single object responds to forces exerted on it. Then, in Chapter 7, 
we’ll return to Newton’s third law and the larger issue of how two or more objects 
interact with each other.

Stop to think 5.4  Three forces act on an object. In which direction does the object 
accelerate?

5.6 Newton’s First Law
Aristotle and his contemporaries in the world of ancient Greece were very interested 
in motion. One question they asked was: What is the “natural state” of an object if left 
to itself? It is easy to see that every moving object on earth, if left to itself, eventually 
comes to rest. Aristotle concluded that the natural state of an earthly object is to be at 
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FIgure 5.19 Acceleration of a pulled box.
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rest. An object at rest requires no explanation. A moving object, though, is not in its 
natural state and thus requires an explanation: Why is this object moving? What keeps 
it going and prevents it from being in its natural state?

Galileo reopened the question of the “natural state” of objects. He suggested fo-
cusing on the limiting case in which resistance to the motion (e.g., friction or air re-
sistance) is zero. Many careful experiments in which he minimized the influence of 
friction led Galileo to a conclusion that was in sharp contrast to Aristotle’s belief that 
rest is an object’s natural state.

Galileo found that an external influence (i.e., a force) is needed to make an object 
accelerate—to change its velocity. In particular, a force is needed to put an object in 
motion. In the absence of friction or air resistance, a moving object would continue to 
move along a straight line forever with no loss of speed. In other words, the natural 
state of an object—its behavior if free of external influences—is uniform motion with 
constant velocity! This does not happen in practice because friction or air resistance 
prevents the object from being left alone. “At rest” has no special significance in 
Galileo’s view of motion; it is simply uniform motion that happens to have v  

u
= 0

u

.
It was left to Newton to generalize this result, and today we call it Newton’s first 

law of motion.

Newton’s first law An object that is at rest will remain at rest, or an object that is 
moving will continue to move in a straight line with constant velocity, if and only 
if the net force acting on the object is zero.

Newton’s first law is also known as the law of inertia. If an object is at rest, it has 
a tendency to stay at rest. If it is moving, it has a tendency to continue moving with 
the same velocity.

NoTe  The first law refers to net force. An object can remain at rest, or can move 
in a straight line with constant velocity, even though forces are exerted on it as long 
as the net force is zero. 

Notice the “if and only if” aspect of Newton’s first law. If an object is at rest or 
moves with constant velocity, then we can conclude that there is no net force acting 
on it. Conversely, if no net force is acting on it, we can conclude that the object will 
have constant velocity, not just constant speed. The direction remains constant, too!

An object on which the net force is zero, F
u

net = 0
u

, is said to be in mechanical equi-
librium. There are two distinct forms of mechanical equilibrium:

 1. The object is at rest. This is static equilibrium.
 2. The object is moving in a straight line with constant velocity. This is dynamic 

equilibrium.

Two examples of mechanical equilibrium are shown in FIgure 5.20. Both share the com-
mon feature that the acceleration is zero: a

u
= 0

 u
.

What good Is Newton’s First Law?
The first law completes our definition of force. It answers the question: What is a 
force? If an “influence” on an object disturbs a state of equilibrium by causing the 
object’s velocity to change, the influence is a force.

Newton’s first law changes the question the ancient Greeks were trying to answer: 
What causes an object to move? Newton’s first law says no cause is needed for an 
object to move! Uniform motion is the object’s natural state. Nothing at all is required 
for it to remain in that state. The proper question, according to Newton, is: What 
causes an object to change its velocity? Newton, with Galileo’s help, also gave us the 
answer. A force is what causes an object to change its velocity.

The preceding paragraph contains the essence of Newtonian mechanics. This new 
perspective on motion, however, is often contrary to our common experience. We all 

a � 0r r
v � 0

rr

An object at rest is
in static equilibrium:
Fnet � 0.
r r

An object moving in a straight line at constant
velocity is in dynamic equilibrium: Fnet � 0.

rr

a � 0
rr

rv

FIgure 5.20 Two examples of mechan-
ical equilibrium.



know perfectly well that you must keep pushing an object—exerting a force on it—to 
keep it moving. Newton is asking us to change our point of view and to consider mo-
tion from the object’s perspective rather than from our personal perspective. As far 
as the object is concerned, our push is just one of several forces acting on it. Others 
might include friction, air resistance, or gravity. Only by knowing the net force can we 
determine the object’s motion.

Newton’s first law may seem to be merely a special case of Newton’s second law. 
After all, the equation F

u

net = ma
u

 tells us that an object moving with constant velocity 
(a
u

= 0
u

) has F
u

net = 0
u

. The difficulty is that the second law assumes that we already 
know what force is. The purpose of the first law is to identify a force as something that 
disturbs a state of equilibrium. The second law then describes how the object responds 
to this force. Thus from a logical perspective, the first law really is a separate state-
ment that must precede the second law. But this is a rather formal distinction. From a 
pedagogical perspective it is better—as we have done—to use a commonsense under-
standing of force and start with Newton’s second law.

Inertial reference Frames
If a car stops suddenly, you may be “thrown” into the windshield if you’re not wearing 
your seat belt. You have a very real forward acceleration relative to the car, but is 
there a force pushing you forward? A force is a push or a pull caused by an identifiable 
agent in contact with the object. Although you seem to be pushed forward, there’s no 
agent to do the pushing.

The difficulty—an acceleration without an apparent force—comes from using an 
inappropriate reference frame. Your acceleration measured in a reference frame at-
tached to the car is not the same as your acceleration measured in a reference frame 
attached to the ground. Newton’s second law says F

u

net = ma
u
. But which a

u
? Measured 

in which reference frame?
We define an inertial reference frame as a reference frame in which Newton’s laws 

are valid. The first law provides a convenient way to test whether a reference frame 
is inertial. If a

u
= 0

u

 (an object is at rest or moving with constant velocity) only when 
F
u

net = 0
u

, then the reference frame in which a
u
 is measured is an inertial reference frame.

Not all reference frames are inertial reference frames. FIgure 5.21a shows a physics 
student cruising at constant velocity in an airplane. If the student places a ball on the 
floor, it stays there. There are no horizontal forces, and the ball remains at rest rela-
tive to the airplane. That is, a

u
 = 0

u

 in the airplane’s reference frame when F
u

net = 0
u

. 
Newton’s first law is satisfied, so this airplane is an inertial reference frame.

The physics student in FIgure 5.21b conducts the same experiment during takeoff. 
He carefully places the ball on the floor just as the airplane starts to accelerate down 
the runway. You can imagine what happens. The ball rolls to the back of the plane as 
the passengers are being pressed back into their seats. Nothing exerts a horizontal con-
tact force on the ball, yet the ball accelerates in the plane’s reference frame. This violates 
Newton’s first law, so the plane is not an inertial reference frame during takeoff.

In the first example, the plane is traveling with constant velocity. In the second, 
the plane is accelerating. Accelerating reference frames are not inertial reference 
frames. Consequently, Newton’s laws are not valid in an accelerating reference frame.

The earth is not exactly an inertial reference frame because the earth rotates on its 
axis and orbits the sun. However, the earth’s acceleration is so small that violations of 
Newton’s laws can be measured only in high-precision experiments. We will treat the 
earth and laboratories attached to the earth as inertial reference frames, an approxima-
tion that is exceedingly well justified.

To understand the motion of the passengers in a braking car, you need to measure 
velocities and accelerations relative to the ground. From the perspective of an ob-
server on the ground, the body of a passenger in a braking car tries to continue moving 
forward with constant velocity, exactly as we would expect on the basis of Newton’s 
first law, while his immediate surroundings are decelerating. The passenger is not 
“thrown” into the windshield. Instead, the windshield runs into the passenger!

This guy thinks there’s a force hurling him 
into the windshield. What a dummy!

The ball stays in place.

A ball with no horizontal forces stays at rest
in an airplane cruising at constant velocity.
The airplane is an inertial reference frame.

(a)

a � 0r r

The ball rolls to the back.

The ball rolls to the back of the plane during
takeoff. An accelerating plane is not an
inertial reference frame.

(b)

Accelerating

FIgure 5.21 Reference frames.
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Thinking About Force
It is important to identify correctly all the forces acting on an object. It is equally im-
portant not to include forces that do not really exist. We have established a number of 
criteria for identifying forces; the three critical ones are:

	■	 A force has an agent. Something tangible and identifiable causes the force.
	■	 Forces exist at the point of contact between the agent and the object experiencing 

the force (except for the few special cases of long-range forces).
	■	 Forces exist due to interactions happening now, not due to what happened in the past.

We all have had many experiences suggesting that a force is necessary to keep 
something moving. Consider a bowling ball rolling along on a smooth floor. It is very 
tempting to think that a horizontal “force of motion” keeps it moving in the forward 
direction. But nothing contacts the ball except the floor. No agent is giving the ball a 
forward push. According to our definition, then, there is no forward “force of motion” 
acting on the ball. So what keeps it going? Recall our discussion of the first law: No 
cause is needed to keep an object moving at constant velocity. It continues to move 
forward simply because of its inertia.

One reason for wanting to include a “force of motion” is that we tend to view the 
problem from our perspective as one of the agents of force. You certainly have to keep 
pushing to move a box across the floor at constant velocity. If you stop, it stops. New-
ton’s laws, though, require that we adopt the object’s perspective. The box experiences 
your pushing force in one direction and a friction force in the opposite direction. The 
box moves at constant velocity if the net force is zero. This will be true as long as your 
pushing force exactly balances the friction force. When you stop pushing, the friction 
force causes an acceleration that slows and stops the box.

A related problem occurs if you throw a ball. A pushing force was indeed required to ac-
celerate the ball as it was thrown. But that force disappears the instant the ball loses contact 
with your hand. The force does not stick with the ball as the ball travels through the air. 
Once the ball has acquired a velocity, nothing is needed to keep it moving with that velocity.

5.7 Free-Body Diagrams
Having discussed at length what is and is not a force, we are ready to assemble our 
knowledge about force and motion into a single diagram called a free-body diagram. 
You will learn in the next chapter how to write the equations of motion directly from 
the free-body diagram. Solution of the equations is a mathematical exercise—possibly 
a difficult one, but nonetheless an exercise that could be done by a computer. The 
physics of the problem, as distinct from the purely calculational aspects, are the steps 
that lead to the free-body diagram.

A free-body diagram, part of the pictorial representation of a problem, represents 
the object as a particle and shows all of the forces acting on the object.

There’s no “force of motion” or any other 
forward force on this arrow. It continues 
to move because of inertia.

TACTICs
B o x  5 . 3 

 Drawing a free-body diagram

 ●1 Identify all forces acting on the object. This step was described in Tactics 
Box 5.2.

 ●2 Draw a coordinate system. Use the axes defined in your pictorial representation.
 ●3 Represent the object as a dot at the origin of the coordinate axes. This is 

the particle model.
 ●4 Draw vectors representing each of the identified forces. This was de-

scribed in Tactics Box 5.1. Be sure to label each force vector.
 ●5 Draw and label the net force vector F

u

net. Draw this vector beside the diagram, 
not on the particle. Or, if appropriate, write F

u

net = 0
u

. Then check that F
u

net points 
in the same direction as the acceleration vector a

u
 on your motion diagram.

Exercises 24–29 
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exAMpLe 5.4  An elevator accelerates upward
An elevator, suspended by a cable, speeds up as it moves upward from the ground floor. 
Identify the forces and draw a free-body diagram of the elevator.

MoDeL Treat the elevator as a particle.

VIsuALIze

Assess The coordinate axes, with a vertical y-axis, are the ones we would use in a picto-
rial representation of the motion. The elevator is accelerating upward, so F

u

net must point 
upward. For this to be true, the magnitude of T 

u

 must be larger than the magnitude of F
u

G. 
The diagram has been drawn accordingly.

Force identification

Identify all
forces acting
on the object.

1

Tension T
r

Gravity FG

r

Free-body diagram Draw a coordinate
system.

Represent the
object as a dot
at the origin.

y

x

Draw vectors for
the identified forces.

2

3

4
5

FG

r

Fnet

r

Draw and label
Fnet beside the
diagram.

r

r
T

FIgure 5.22 Free-body diagram of an elevator accelerating upward.

exAMpLe 5.5  An ice block shoots across a frozen lake
Bobby straps a small model rocket to a block of ice and shoots it 
across the smooth surface of a frozen lake. Friction is negligible. 
Draw a pictorial representation of the block of ice.

MoDeL Treat the block of ice as a particle. The pictorial repre-
sentation consists of a motion diagram to determine a

u
, a force-

identification picture, and a free-body diagram. The statement of 
the situation implies that friction is negligible.

VIsuALIze

Force identificationMotion diagram Free-body diagram

Check that Fnet points in the same direction as a.
r r

FIgure 5.23 Pictorial representation for a block of ice shooting across a frictionless frozen lake.

Assess The motion diagram tells us that the acceleration is in 
the positive x-direction. According to the rules of vector addition, 
this can be true only if the upward-pointing n 

u
 and the downward-

pointing F
u

G are equal in magnitude and thus cancel each other 

1(FG)y = -ny2 . The vectors have been drawn accordingly, and 
this leaves the net force vector pointing toward the right, in agree-
ment with a

u
 from the motion diagram.
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exAMpLe 5.6  A skier is pulled up a hill
A tow rope pulls a skier up a snow-covered hill at a constant speed. 
Draw a pictorial representation of the skier.

MoDeL This is Example 5.2 again with the additional informa-
tion that the skier is moving at constant speed. The skier will be 

treated as a particle in dynamic equilibrium. If we were doing a 
kinematics problem, the pictorial representation would use a tilted 
coordinate system with the x-axis parallel to the slope, so we use 
these same tilted coordinate axes for the free-body diagram.

VIsuALIze

Force identification Free-body diagramMotion diagram

Check that Fnet points in the same direction as a.rr

Notice that the angle between
FG and the negative y-axis is
the same as the angle of
the incline.

r

FIgure 5.24 Pictorial representation for a skier being towed at a constant speed.

Assess We have shown T 
u

 pulling parallel to the slope and f
u

k, 
which opposes the direction of motion, pointing down the slope. 
n
u

 is perpendicular to the surface and thus along the y-axis. Finally, 
and this is important, the gravitational force F

u

G is vertically 
downward, not along the negative y-axis. In fact, you should con-
vince yourself from the geometry that the angle u between the F

u

G 

vector and the negative y-axis is the same as the angle u of the in-
cline above the horizontal. The skier moves in a straight line with 
constant speed, so a

u
 = 0

 u
 and, from Newton’s first law, F

u

net = 0
 u

. 
Thus we have drawn the vectors such that the y-component of F

u

G 
is equal in magnitude to n

u
. Similarly, T 

u

 must be large enough to 
match the negative x-components of both f

u

k and F
u

G.

Free-body diagrams will be our major tool for the next several chapters. Careful 
practice with the workbook exercises and homework in this chapter will pay immedi-
ate benefits in the next chapter. Indeed, it is not too much to assert that a problem is 
half solved, or even more, when you complete the free-body diagram.

Stop to think 5.5   An elevator suspended by a cable is moving upward and slowing 
to a stop. Which free-body diagram is correct?

y

x

y

x

y

x

y

x

(a) (b) (c) (d) (e)

Fnet � 0
rr

Felevator

r

FG

r
FG

r
FG

r
FG

r

r
T

r
T

r
T

r
T
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s u M M A r y
The goal of Chapter 5 has been to establish a connection between force and motion.

dynamics
mechanics
force, F

u

agent
contact force
long-range force
net force, F

u

net

superposition of forces

gravitational force, F
u

G

spring force, F
u

sp

tension force, T 
u

atomic model
normal force, n

u

friction, f
u

k  or f
u

s

drag, D
u

thrust, F
u

thrust

proportionality
proportionality constant
proportional reasoning
newton, N
inertia
inertial mass, m
Newton’s second law
Newton’s zeroth law

Newton’s first law
mechanical equilibrium
static equilibrium
dynamic equilibrium
inertial reference frame
free-body diagram

Terms and Notation

general principles
Newton’s First Law
An object at rest will remain at rest, or an 
object that is moving will continue to move 
in a straight line with constant velocity, if 
and only if the net force on the object is 
zero.

The first law tells us that no “cause” is 
needed for motion. Uniform motion is the 
“natural state” of an object.

Newton’s second Law
An object with mass m will undergo acceleration

a
u
 =

1
m

 F
u

net

where F
u

net = F
u

1 + F
u

2 + F
u

3 + g  is the vector sum 
of all the individual forces acting on the object.

The second law tells us that a net force causes an 
object to accelerate. This is the connection between 
force and motion that we are seeking.

Fnet � 0
r r

a � 0
rr

vr vr vr vr vr

vr vr vr vr vr

ar

Fnet
r

Force is a push or a pull on an object.

•	 Force is a vector, with a magnitude and a 
direction.

•	 Force requires an agent.

•	 Force is either a contact force or a long-range 
force.

Important Concepts
Acceleration is the link to kinematics.

From F
u

net, find a
u
.

From a, find v and x.

a
u

= 0
u

 is the condition for equilibrium.

Static equilibrium if v  

u
= 0

u

.
Dynamic equilibrium if v  

u
= constant.

Equilibrium occurs if and only if F
u

net = 0
u

.

Mass is the resistance of an 
object to acceleration. It is an 
intrinsic property of an object.

Mass is the inverse 
of the slope. Larger 
mass, smaller slope.

Force

A
cc

el
er

at
io

n

Key skills
Identifying Forces
Forces are identified by locating 
the points where other objects 
touch the object of interest. These 
are points where contact forces are 
exerted. In addition, objects with mass 
feel a long-range gravitational force.

Free-Body Diagrams
A free-body diagram represents the 
object as a particle at the origin of a 
coordinate system. Force vectors are 
drawn with their tails on the particle. 
The net force vector is drawn beside 
the diagram.

Thrust force Fthrust
r

Gravity FG
r

Normal force nr

x

y

nr Fthrust
r

Fnet
r

FG
r

Newton’s laws are
valid only in inertial
reference frames. 
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C o N C e p T u A L  Q u e s T I o N s

 1. An elevator suspended by a cable is descending at constant ve-
locity. How many force vectors would be shown on a free-body 
diagram? Name them.

 2. A compressed spring is pushing a block across a rough horizon-
tal table. How many force vectors would be shown on a free-
body diagram? Name them.

 3. A brick is falling from the roof of a three-story building. How 
many force vectors would be shown on a free-body diagram? 
Name them.

 4. In FIgure Q5.4, block B is falling 
and dragging block A across a 
table. How many force vectors 
would be shown on a free-body 
diagram of block A? Name them.

 5. You toss a ball straight up in the 
air. Immediately after you let go 
of it, what forces are acting on the 
ball? For each force you name, (a) state whether it is a contact 
force or a long-range force and (b) identify the agent of the 
force.

 6. A constant force applied to A causes A to accelerate at 5 m/s2. 
The same force applied to B causes an acceleration of 3 m/s2. 
Applied to C, it causes an acceleration of 8 m/s2.

 a. Which object has the largest mass? Explain.
 b. Which object has the smallest mass?
 c. What is the ratio mA/mB  of the mass of A to the mass of B?
 7. An object experiencing a constant force accelerates at 10 m/s2. 

What will the acceleration of this object be if
 a. The force is doubled? Explain.
 b. The mass is doubled?
 c. The force is doubled and the mass is doubled?
 8. An object experiencing a constant force accelerates at 8 m/s2. 

What will the acceleration of this object be if
 a. The force is halved? Explain.
 b. The mass is halved?
 c. The force is halved and the mass is halved?

 9. If an object is at rest, can you conclude that there are no forces 
acting on it? Explain.

 10. If a force is exerted on an object, is it possible for that object to 
be moving with constant velocity? Explain.

 11. Is the statement “An object always moves in the direction of the 
net force acting on it” true or false? Explain.

 12. Newton’s second law says F
u

net = ma
u
. So is ma

u
 a force? Explain.

 13. Is it possible for the friction force on an object to be in the direc-
tion of motion? If so, give an example. If not, why not?

 14. Suppose you press your physics book against a wall hard enough 
to keep it from moving. Does the friction force on the book point 
(a) into the wall, (b) out of the wall, (c) up, (d) down, or (e) is 
there no friction force? Explain.

 15. FIgure Q5.15 shows a hollow tube forming three-quarters of a 
circle. It is lying flat on a table. A ball is shot through the tube at 
high speed. As the ball emerges from the other end, does it fol-
low path A, path B, or path C? Explain.

 16. Which, if either, of the basketballs in FIgure Q5.16 are in equilib-
rium? Explain.

 17. Which of the following are inertial reference frames? Explain.
 a. A car driving at steady speed on a straight and level road.
 b. A car driving at steady speed up a 10° incline.
 c. A car speeding up after leaving a stop sign.
 d. A car driving at steady speed around a curve.

A

B

FIgure Q5.4 

View from above

A
B

C

FIgure Q5.15 FIgure Q5.16 

e x e r C I s e s  A N D  p r o B L e M s

exercises

Section 5.3 Identifying Forces

 1. | A chandelier hangs from a chain in the middle of a dining 
room. Identify the forces on the chandelier.

 2. | A car is parked on a steep hill. Identify the forces on the car.
 3. || A jet plane is speeding down the runway during takeoff. Air 

resistance is not negligible. Identify the forces on the jet.
 4. | A baseball player is sliding into second base. Identify the 

forces on the baseball player.
 5. || A bullet has just been shot from a gun and is now traveling 

horizontally. Air resistance is not negligible. Identify the forces 
on the bullet.

Section 5.4 What Do Forces Do? A Virtual Experiment

 6. | Two rubber bands cause an object to accelerate with accelera-
tion a. How many rubber bands are needed to cause an object 
with half the mass to accelerate three times as quickly?

 7. | Two rubber bands pulling on an object cause it to accelerate at 
1.2 m/s2.

 a. What will be the object’s acceleration if it is pulled by four 
rubber bands?

 b. What will be the acceleration of two of these objects glued 
together if they are pulled by two rubber bands?

http://www.meetyourbrain.com/bookChapters.php?book=Physics-for-Scientists-and-Engineers-A-Strategic-Approach-with-Modern-Physics-3rd-Edition-Solutions&title=0
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 8. || FIgure ex5.8 shows an acceleration-versus-force graph for three 
objects pulled by rubber bands. The mass of object 2 is 0.20 kg. 
What are the masses of objects 1 and 3? Explain your reasoning.

 9. || FIgure ex5.9 shows acceleration-versus-force graphs for two 
objects pulled by rubber bands. What is the mass ratio m1 /m2?

 10. || For an object starting from rest and accelerating with constant 
acceleration, distance traveled is proportional to the square of the 
time. If an object travels 2.0 furlongs in the first 2.0 s, how far 
will it travel in the first 4.0 s?

 11. || The period of a pendulum is proportional to the square root of 
its length. A 2.0-m-long pendulum has a period of 3.0 s. What is 
the period of a 3.0-m-long pendulum?

Section 5.5 Newton’s Second Law

 12. | FIgure ex5.12 shows an acceleration-versus-force graph for a 
500 g object. What acceleration values go in the blanks on the 
vertical scale?

 13. | FIgure ex5.13 shows an acceleration-versus-force graph for a 
200 g object. What force values go in the blanks on the horizon-
tal scale?

 14. | FIgure ex5.14 shows an object’s acceleration-versus-force 
graph. What is the object’s mass?

 15. | FIgure ex5.15 shows the acceleration of objects of different mass 
that experience the same force. What is the magnitude of the force?

 16. | Based on the information in Table 5.1, estimate
 a. The weight of a laptop computer.
 b. The propulsion force of a bicycle.
 17. | Based on the information in Table 5.1, estimate
 a. The weight of a pencil.
 b. The propulsion force of a sprinter.

Section 5.6 Newton’s First Law

Exercises 18 through 20 show two of the three forces acting on an 
object in equilibrium. Redraw the diagram, showing all three forces. 

Label the third force F
u

3.
 18. ||  19. ||  20. || 

Section 5.7 Free-Body Diagrams

Exercises 21 through 23 show a free-body diagram. For each:
 a. Redraw the free-body diagram.
 b. Write a short description of a real object for which this is the 

correct free-body diagram. Use Examples 5.4, 5.5, and 5.6 as 
models of what a description should be like.

 21. |  22. |  23. | 

Exercises 24 through 27 describe a situation. For each, identify all 
forces acting on the object and draw a free-body diagram of the object.
 24. | A cat is sitting on a window sill.
 25. | An ice hockey puck glides across frictionless ice.
 26. | Your physics textbook is sliding across the table.
 27. | A steel beam is being lowered at steady speed by a crane.

problems

 28. | Redraw the two motion diagrams shown in 
FIgure p5.28, then draw a vector beside each one 
to show the direction of the net force acting on 
the object. Explain your reasoning.
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 29. | Redraw the two motion 
diagrams shown in FIgure 

p5.29, then draw a vector be-
side each one to show the di-
rection of the net force acting 
on the object. Explain your 
reasoning.

 30. | A single force with x-component Fx acts on a 2.0 kg object as 
it moves along the x-axis. The object’s acceleration graph (ax 
versus t) is shown in FIgure p5.30. Draw a graph of Fx versus t.

 31. | A single force with x-component Fx acts on a 500 g object 
as it moves along the x-axis. The object’s acceleration graph 
(ax versus t) is shown in FIgure p5.31. Draw a graph of Fx versus t.

 32. | A single force with x-component Fx acts on a 2.0 kg object 
as it moves along the x-axis. A graph of Fx versus t is shown in 
FIgure p5.32. Draw an acceleration graph (ax versus t) for this 
object.

 33. | A single force with x-component Fx acts on a 500 g object 
as it moves along the x-axis. A graph of Fx versus t is shown in 
FIgure p5.33. Draw an acceleration graph (ax versus t) for this 
object.

 34. | A constant force is applied to an object, causing the object to 
accelerate at 8.0 m/s2. What will the acceleration be if

 a. The force is doubled?
 b. The object’s mass is doubled?
 c. The force and the object’s mass are both doubled?
 d. The force is doubled and the object’s mass is halved?
 35. | A constant force is applied to an object, causing the object to 

accelerate at 10 m/s2. What will the acceleration be if
 a. The force is halved?
 b. The object’s mass is halved?
 c. The force and the object’s mass are both halved?
 d. The force is halved and the object’s mass is doubled?

Problems 36 through 41 show a free-body diagram. For each:
 a. Redraw the diagram.
 b. Identify the direction of the acceleration vector a

u
 and show it as 

a vector next to your diagram. Or, if appropriate, write a
u

= 0
 u

.
 c. If possible, identify the direction of the velocity vector v  

u
 and 

show it as a labeled vector.
 d. Write a short description of a real object for which this is the 

correct free-body diagram. Use Examples 5.4, 5.5, and 5.6 as 
models of what a description should be like.

 36. |  37. | 

 38. |  39. | 

 40. ||  41. || 

 42. || In lab, you propel a cart with four known forces while using 
an ultrasonic motion detector to measure the cart’s acceleration. 
Your data are as follows:

Force (N) Acceleration (m/s2)
0.25 0.5

0.50 0.8

0.75 1.3

1.00 1.8

 a. How should you graph these data so as to determine the mass 
of the cart from the slope of the line? That is, what values 
should you graph on the horizontal axis and what on the verti-
cal axis?

 b. Is there another data point that would be reasonable to add, 
even though you made no measurements? If so, what is it?

 c. What is your best determination of the cart’s mass?

(a)

vr

(b)

vr
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Problems 43 through 52 describe a situation. For each, draw a motion 
diagram, a force-identification diagram, and a free-body diagram.
 43. | An elevator, suspended by a single cable, has just left the tenth 

floor and is speeding up as it descends toward the ground floor.
 44. || A rocket is being launched straight up. Air resistance is not 

negligible.
 45. | A jet plane is speeding down the runway during takeoff. Air 

resistance is not negligible.
 46. | You’ve slammed on the brakes and your car is skidding to a 

stop while going down a 20� hill.
 47. || A skier is going down a 20� slope. A horizontal headwind is 

blowing in the skier’s face. Friction is small, but not zero.
 48. || You’ve just kicked a rock on the sidewalk and it is now sliding 

along the concrete.
 49. | A Styrofoam ball has just been shot straight up. Air resistance 

is not negligible.
 50. | A spring-loaded gun shoots a plastic ball. The trigger has just 

been pulled and the ball is starting to move down the barrel. The 
barrel is horizontal.

 51. || A person on a bridge throws a rock straight down toward the 
water. The rock has just been released.

 52. | A gymnast has just landed on a trampoline. She’s still moving 
downward as the trampoline stretches.

 53. || The leaf hopper, champion jumper of the insect world, can 
jump straight up at 4 m/s2. The jump itself lasts a mere 1 ms 
before the insect is clear of the ground.

 a. Draw a free-body diagram of this mighty leaper while the 
jump is taking place.

 b. While the jump is taking place, is the force of the ground on 
the leaf hopper greater than, less than, or equal to the force of 
gravity on the leaf hopper? Explain.

Challenge problems

 54. A heavy box is in the back of a truck. The truck is accelerating 
to the right. Draw a motion diagram, a force-identification dia-
gram, and a free-body diagram for the box.

BIO

 55. A bag of groceries is on the seat of your car as you stop for a stop 
light. The bag does not slide. Draw a motion diagram, a force-
identification diagram, and a free-body diagram for the bag.

 56. A rubber ball bounces. We’d like to understand how the ball 
bounces.

 a. A rubber ball has been dropped and is bouncing off the floor. 
Draw a motion diagram of the ball during the brief time inter-
val that it is in contact with the floor. Show 4 or 5 frames as 
the ball compresses, then another 4 or 5 frames as it expands. 
What is the direction of a

u
 during each of these parts of the 

motion?
 b. Draw a picture of the ball in contact with the floor and iden-

tify all forces acting on the ball.
 c. Draw a free-body diagram of the ball during its contact with 

the ground. Is there a net force acting on the ball? If so, in 
which direction?

 d. Write a paragraph in which you describe what you learned 
from parts a to c and in which you answer the question: How 
does a ball bounce?

 57. If a car stops suddenly, you feel “thrown forward.” We’d like to 
understand what happens to the passengers as a car stops. Imag-
ine yourself sitting on a very slippery bench inside a car. This 
bench has no friction, no seat back, and there’s nothing for you 
to hold onto.

 a. Draw a picture and identify all of the forces acting on you as 
the car travels at a perfectly steady speed on level ground.

 b. Draw your free-body diagram. Is there a net force on you? If 
so, in which direction?

 c. Repeat parts a and b with the car slowing down.
 d. Describe what happens to you as the car slows down.
 e. Use Newton’s laws to explain why you seem to be “thrown 

forward” as the car stops. Is there really a force pushing you 
forward?

 f. Suppose now that the bench is not slippery. As the car slows 
down, you stay on the bench and don’t slide off. What force 
is responsible for your deceleration? In which direction does 
this force point? Include a free-body diagram as part of your 
answer.

sTop To ThINK ANsWers

Stop to Think 5.4: d.

Stop to Think 5.5: c. The acceleration vector points downward as 

the elevator slows. F
u

net points in the same direction as a
u
, so F

u

net also 
points down. This will be true if the tension is less than the gravita-
tional force: T 6 FG.

F1
r

F2
r

F3
r

The y-component of F3

cancels the y-component of F1.

r

r

The x-component of F3 is
to the left and larger than
the x-component of F2.

r

r

F1
r

F2
r

F3
r

First add
F1 and F2.
r r

Then add F3.
r

F3
r

F1 � F2
r r

Fnet
r

This is Fnet.
r

a is in the same
direction as Fnet.

r

r
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Stop to Think 5.1: c.

Stop to Think 5.2: a, b, and d. Friction and the normal force are the 
only contact forces. Nothing is touching the rock to provide a “force 
of the kick.”

Stop to Think 5.3: b. Acceleration is proportional to force, so dou-
bling the number of rubber bands doubles the acceleration of the orig-
inal object from 2 m/s2 to 4 m/s2. But acceleration is also inversely 
proportional to mass. Doubling the mass cuts the acceleration in half, 
back to 2 m/s2.



Problem Solving
We’ll develop a strategy for solving 
force and motion problems, one based 
on a set of procedures rather than a 
memorized set of equations.

This chapter focuses on 
motion in a straight line, 
the motion of bicycles, cars, 
planes, and rockets.

Friction and Drag
We’ll expand our understanding of 
friction and drag by developing a 
model of each.

■	 Static and kinetic friction depend on 
the coefficient of friction, but not on 
the object’s speed.

■	 Drag depends on the square 
of the speed and also on the 
object’s cross-section area.

Dynamics
A net force on an object causes the 
object to accelerate. This is Newton’s 
second law.

To solve dynamics problems, you will need 
to use constant-acceleration kinematics.

 Looking Back
Sections 2.4–2.6 Constant-acceleration 
kinematics

Gravity FG
r

Normal nr

Friction fs
r

u

6 Dynamics I: Motion 
Along a Line

The powerful thrust of the 
jet engines accelerates this 
enormous plane to a speed of 
over 150 mph in less than a mile.

Mass and Weight
You’ll learn how mass and weight are 
different.

■	 Mass is the amount of matter in an 
object. It is the same everywhere.

■	 Weight is the result of weighing 
an object on a scale. It depends  
on gravity and  
acceleration.

Equilibrium
An object at rest or moving in a 
straight line with constant velocity is in 
equilibrium. The net force is zero.

To solve equilibrium problems, you must 
be able to identify and work with forces.

 Looking Back
Section 5.2 A catalog of forces

Gravity FG
r

Normal force nr

Tension T
r

What tension is 
needed to tow the 
car at constant 
velocity?

What is the acceler-
a tion of the file 
cabinet?

This astronaut on the 
moon weighs only 1/6 of 
what he does on earth, 
but his mass is the same.

FG
r

D
r

A falling object reaches 
terminal speed when the 
drag force balances the 
gravitational force.

Forces
In Chapter 5 you learned what a force is 
and how force and motion are related 
through Newton’s second law.

In this chapter, you’ll study in more 
detail some of the forces introduced in 
Chapter 5. You’ll also learn to solve 
equilibrium problems (with zero net 
force) and then dynamics problems.

The problem-solving procedures 
developed in this chapter will be used 
throughout the remainder of the book.

 Looking Back
Sections 5.3 and 5.7 Identifying forces, 
drawing free-body diagrams

 Looking Ahead  The goal of Chapter 6 is to learn how to solve linear force-and-motion problems.
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6.1 Equilibrium
An object on which the net force is zero is in equilibrium. The object might be at rest 
in static equilibrium, or it might be moving along a straight line with constant veloc-
ity in dynamic equilibrium. Both are identical from a Newtonian perspective because 
F
u

net = 0
u

 and a
u

= 0
u

.
Newton’s first law is the basis for a four-step strategy for solving equilibrium 

problems.

ProBLEM-SoLving
STrATEgy 6.1  Equilibrium problems

MoDEL Make simplifying assumptions. When appropriate, represent the object 
as a particle.

viSuALizE

 ■	 Establish a coordinate system, define symbols, and identify what the prob-
lem is asking you to find. This is the process of translating words into 
symbols.

 ■	 Identify all forces acting on the object and show them on a free-body 
diagram.

 ■	 These elements form the pictorial representation of the problem.

SoLvE The mathematical representation is based on Newton’s first law:

 F
u

net = a
i

F
u

i = 0
u

The vector sum of the forces is found directly from the free-body diagram.

ASSESS Check that your result has the correct units, is reasonable, and answers 
the question.

Newton’s laws are vector equations. The requirement for equilibrium, F
u

net = 0
u

, is 
a shorthand way of writing two simultaneous equations:

  (Fnet)x = a
i

(Fi)x = 0

  (6.1)

  (Fnet)y = a
i

(Fi)y = 0

In other words, each component of F
u

net must simultaneously be zero. Although real-
world situations often have forces pointing in three dimensions, thus requiring a third 
equation for the z-component of F

u

net  , we will restrict ourselves for now to problems that 
can be analyzed in two dimensions.

noTE  The equilibrium condition of Equations 6.1 applies only to particles, which 
cannot rotate. Equilibrium of an extended object, which can rotate, requires an ad-
ditional condition that we will study in Chapter 12. 

Equilibrium problems occur frequently, especially in engineering applications. 
Let’s look at a couple of examples.

The concept of equilibrium is essential 
for the engineering analysis of stationary 
objects such as bridges.
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Static Equilibrium

ExAMPLE 6.1  Finding the force on the kneecap
Your kneecap (patella) is attached by a tendon to your quad-
riceps muscle. This tendon pulls at a 10� angle relative to the 
femur, the bone of your upper leg. The patella is also attached 
to your lower leg (tibia) by a tendon that pulls parallel to the 
leg. To balance these forces, the lower end of your femur 
pushes outward on the patella. Bending your knee increases 

the tension in the tendons, and both have a tension of 60 N 
when the knee is bent to make a 70� angle between the upper 
and lower leg. What force does the femur exert on the kneecap 
in this position?

MoDEL Model the kneecap as a particle in static equilibrium.

viSuALizE FigurE 6.1 shows how to draw a pictorial representa-
tion. We’ve chosen to align the x-axis with the femur. The three 
forces—shown on the free-body diagram—are labeled T 

u

1 and T 
u

2 
for the tensions and F

u

 for the femur’s push. Notice that we’ve 
defined angle u to indicate the direction of the femur’s force on 
the kneecap.

SoLvE This is a static-equilibrium problem, with three forces on 
the kneecap that must sum to zero. Newton’s first law, written in 
component form, is

  (Fnet)x = a
i

(Fi)x = T1x + T2x + Fx = 0

  (Fnet)y = a
i

(Fi)y = T1y + T2y + Fy = 0

noTE  You might have been tempted to write - T1x in the equation 
since T 

u

1 points to the left. But the net force, by definition, is the sum 
of all the individual forces. That fact that T 

u

1 points to the left will be 
taken into account when we evaluate the components. 

The components of the force vectors can be evaluated directly 
from the free-body diagram:

  T1x = -T1 cos 10�  T1y = T1 sin 10�

  T2x = -T2 cos 70�   T2y = -T2 sin 70�

  Fx = F cos u     Fy = F sin u

This is where signs enter, with T1x being assigned a negative value 
because T 

u

1 points to the left. Similarly, T 
u

2 points both to the left 
and down, so both T2x and T2y are negative. With these compo-
nents, Newton’s first law becomes

  -T1 cos 10� - T2 cos 70� + F cos u = 0

  T1 sin 10� - T2 sin 70� + F sin u = 0

These are two simultaneous equations for the two unknowns F 
and u. We will encounter equations of this form on many occa-
sions, so make a note of the method of solution. First, rewrite the 
two equations as

  F cos u = T1 cos 10� + T2 cos 70�

  F sin u = -T1 sin 10� + T2 sin 70�

Next, divide the second equation by the first to eliminate F:

 
F sin u

F cos u
= tan u =

-T1 sin 10� + T2 sin 70�

T1 cos 10� + T2 cos 70�

Then solve for u:

  u =  tan-11 -T1 sin 10� + T2 sin 70�

T1 cos 10� + T2 cos 70� 2
  = tan-11 - (60 N) sin 10� + (60 N) sin 70�

(60 N) cos 10� + (60 N) cos 70� 2 = 30�

Finally, use u to find F:

  F =
T1 cos 10� + T2 cos 70�

cos u

  =
(60 N) cos 10� + (60 N) cos 70�)

cos 30�
= 92 N

The question asked What force? and force is a vector, so we must 
specify both the magnitude and the direction. With the knee in this 
position, the femur exerts a force F

u

= (92 N, 30� above horizontal) 
on the kneecap.

ASSESS The magnitude of the force would be 0 N if the leg were 
straight, 120 N if the knee could be bent 180� so that the two 
tendons pull in parallel. The knee is closer to fully bent than to 
straight, so we would expect a femur force between 60 N and 
120 N. Thus the calculated magnitude of 92 N seems reasonable.

y

x

Identify the patella
as the object.

There’s no
net force.

Establish a coordinate
system aligned with
the femur.

Identify forces.

Femur

Quadriceps
10�

10�

70�70�

Tendon

Femur push

Patella

Tibia

Draw free-body diagram.

Three forces act
on the patella.

u

Fnet � 0
r r

F
r

T1

r

T2

r Name and label the
angle of the push.

List knowns and unknowns.

Known

T1 � 60 N
T2 � 60 N

Find

F

FigurE 6.1 Pictorial representation of the kneecap in static equilibrium.
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Dynamic Equilibrium

ExAMPLE 6.2  Towing a car up a hill
A car with a weight of 15,000 N is being towed up a 20� slope at 
constant velocity. Friction is negligible. The tow rope is rated at 
6000 N maximum tension. Will it break?

MoDEL We’ll treat the car as a particle in dynamic equilibrium.

viSuALizE This problem asks for a yes or no answer, not a num-
ber, but we still need a quantitative analysis. Part of our analysis of 
the problem statement is to determine which quantity or quantities 

allow us to answer the question. In this case the answer is clear: 
We need to calculate the tension in the rope. FigurE 6.2 shows the 
pictorial representation. Note the similarities to Examples 5.2 and 
5.6 in Chapter 5, which you may want to review.

We noted in Chapter 5 that the weight of an object at rest is 
the magnitude FG of the gravitational force acting on it, and that 
information has been listed as known.

y

x

Same
angle

u

u

Tension T
r

r
T

nr

Normal force nrGravity FG

r

FG

r

Fnet � 0
r r

The coordinate system is chosen
with one axis parallel to the motion
so that the acceleration vector has
only one nonzero component.

The normal force is
perpendicular to the surface.

Known

u � 20�
FG � 15,000 N

T

Find

FigurE 6.2 Pictorial representation of a car being towed up a hill.

SoLvE The free-body diagram shows forces T
u

, n
u
, and F

u

G acting 
on the car. Newton’s first law is

  (Fnet)x = aFx = Tx + nx + (FG)x = 0

  (Fnet)y = aFy = Ty + ny + (FG)y = 0

From here on, we’ll use gFx and gFy, without the label i, as 
a simple shorthand notation to indicate that we’re adding all the 
x-components and all the y-components of the forces.

We can deduce the components directly from the free-body 
diagram:

  Tx = T   Ty = 0

  nx = 0  ny = n

  (FG)x = -FG sin u   (FG)y = -FG cos u

noTE  The gravitational force has both x- and y-components 
in this coordinate system, both of which are negative due to the 
direction of the vector F

u

G. You’ll see this situation often, so be 
sure you understand where (FG)x and (FG)y come from. 

With these components, the first law becomes

  T - FG sin u = 0

  n - FG cos u = 0

The first of these can be rewritten as

  T = FG sin u = (15,000 N) sin  20� = 5100 N

Because T 6 6000 N, we conclude that the rope will not break. It 
turned out that we did not need the y-component equation in this 
problem.

ASSESS Because there’s no friction, it would not take any tension 
force to keep the car rolling along a horizontal surface (u = 0�). 
At the other extreme, u = 90�, the tension force would need to 
equal the car’s weight (T = 15,000 N) to lift the car straight up 
at constant velocity. The tension force for a 20� slope should be 
somewhere in between, and 5100 N is a little less than half the 
weight of the car. That our result is reasonable doesn’t prove it’s 
right, but we have at least ruled out careless errors that give un-
reasonable results.

6.2 using newton’s Second Law
The essence of Newtonian mechanics can be expressed in two steps:

	■	 The forces acting on an object determine its acceleration a
u

= F
u

net /m.
	■	 The object’s trajectory can be determined by using a

u
 in the equations of kinematics.

These two ideas are the basis of a strategy for solving dynamics problems.
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ProBLEM-SoLving
STrATEgy 6.2  Dynamics problems

MoDEL Make simplifying assumptions.

viSuALizE Draw a pictorial representation.

 ■	 Show important points in the motion with a sketch, establish a coordinate 
system, define symbols, and identify what the problem is trying to find.

 ■	 Use a motion diagram to determine the object’s acceleration vector a
u
.

 ■	 Identify all forces acting on the object at this instant and show them on a free-
body diagram.

 ■	 It’s OK to go back and forth between these steps as you visualize the situation.

SoLvE The mathematical representation is based on Newton’s second law:

 F
u

net = a
i

F
u

i = ma
u

The vector sum of the forces is found directly from the free-body diagram. 
Depending on the problem, either

 ■	 Solve for the acceleration, then use kinematics to find velocities and posi-
tions; or

 ■	 Use kinematics to determine the acceleration, then solve for unknown forces.

ASSESS Check that your result has the correct units, is reasonable, and answers 
the question.

Exercise 22 

Newton’s second law is a vector equation. To apply the step labeled Solve, you 
must write the second law as two simultaneous equations:

  (Fnet )x = aFx = max

  (6.2)
  (Fnet )y = aFy = may

The primary goal of this chapter is to illustrate the use of this strategy.

ExAMPLE 6.3  Speed of a towed car
A 1500 kg car is pulled by a tow truck. The tension in the tow rope 
is 2500 N, and a 200 N friction force opposes the motion. If the car 
starts from rest, what is its speed after 5.0 seconds?

MoDEL We’ll treat the car as an accelerating particle. We’ll as-
sume, as part of our interpretation of the problem, that the road is 
horizontal and that the direction of motion is to the right.

viSuALizE FigurE 6.3 on the next page shows the pictorial rep-
resentation. We’ve established a coordinate system and defined 
symbols to represent kinematic quantities. We’ve identified the 
speed v1, rather than the velocity v1x, as what we’re trying to find.

SoLvE We begin with Newton’s second law:

  (Fnet)x = aFx = Tx + fx + nx + (FG)x = max

  (Fnet)y = aFy = Ty + fy + ny + (FG)y = may

All four forces acting on the car have been included in the vector 
sum. The equations are perfectly general, with +  signs every-

where, because the four vectors are added to give F
u

net. We can 
now “read” the vector components from the free-body diagram:

  Tx = +T   Ty = 0    nx = 0   ny = +n

  fx = - f  fy = 0  (FG)x = 0   (FG)y = -FG

The signs depend on which way the vectors point. Substituting 
these into the second-law equations and dividing by m give

  ax =
1
m

 (T - f )

  =
1

1500 kg
 (2500 N - 200 N) = 1.53 m/s2

  ay =
1
m

 (n - FG)

noTE  Newton’s second law has allowed us to determine ax ex-
actly but has given only an algebraic expression for ay. However, 
we know from the motion diagram that ay = 0! That is, the motion 
is purely along the x-axis, so there is no acceleration along the y-
axis. The requirement ay = 0 allows us to conclude that n = FG. 
Although we do not need n for this problem, it will be important in 
many future problems. 
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Sketch Motion diagram and forces

Agrees

FigurE 6.3 Pictorial representation of a car being towed.

Because ax is a constant 1.53 m/s2, we can finish by using 
constant-acceleration kinematics to find the velocity:

  v1x = v0x + ax �t

  = 0 + (1.53 m/s2)(5.0 s) = 7.7 m/s

The problem asked for the speed after 5.0 s, which is v1 =  
7.7 m/s.

ASSESS 7.7 m/s � 15 mph, a quite reasonable speed after 5 s of 
acceleration.

ExAMPLE 6.4  Altitude of a rocket
A 500 g model rocket with a weight of 4.90 N is launched straight 
up. The small rocket motor burns for 5.00 s and has a steady thrust 
of 20.0 N. What maximum altitude does the rocket reach? Ignore 
the mass loss of the burned fuel.

MoDEL We’ll treat the rocket as an accelerating particle. Air resis-
tance will be neglected.

viSuALizE The pictorial representation of FigurE 6.4 finds that this 
is a two-part problem. First, the rocket accelerates straight up. Sec-
ond, the rocket continues going up as it slows down, a free-fall 
situation. The maximum altitude is at the end of the second part 
of the motion.

SoLvE We now know what the problem is asking, have established 
relevant symbols and coordinates, and know what the forces are. 
We begin the mathematical representation by writing Newton’s 
second law, in component form, as the rocket accelerates upward. 
The free-body diagram shows two forces, so

  (Fnet)x = aFx = (Fthrust)x + (FG)x = ma0x

  (Fnet)y = aFy = (Fthrust)y + (FG)y = ma0y

The fact that vector F
u

G points downward—and which might 
have tempted you to use a minus sign in the y-equation—will be 
taken into account when we evaluate the components. None of 

The weight of an object at
rest is the magnitude of the
gravitational force.

a0y

a1y

y
Max altitude

0

y2, v2y, t2

y1, v1y, t1

y0, v0y, t0

Sketch

Known

Find

y0 � 0 m
v0y � 0 m/s
t0 � 0 s
t1 � 5.00 s
v2y � 0 (top)

y2

a1y � �9.80 m/s2

m � 500 g � 0.500 kg

FG � 4.90 N

Fthrust � 20.0 N

y

x

After burnout

y

x

Before burnout

Stop

Fuel out

Start

Motion diagram and forces

Agrees

Agrees
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ar

ar

Gravity FG 
r

Thrust Fthrust

r
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r
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Fthrust

r

FG

r

Fnet

r

FigurE 6.4 Pictorial representation of a rocket launch.

Continued
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The solutions to these first few examples have been quite detailed. Our purpose has 
been to show how the problem-solving strategy is put into practice. Future examples 
will be briefer, but the basic procedure will remain the same.

Stop to think 6.1  A Martian lander is approaching the surface. It is slowing its 
descent by firing its rocket motor. Which is the correct free-body diagram?

6.3 Mass, Weight, and gravity
Ordinary language does not make a large distinction between mass and weight. How-
ever, these are separate and distinct concepts in science and engineering. We need to 
understand how they differ, and how they’re related to gravity, if we’re going to think 
clearly about force and motion.

Mass: An intrinsic Property
Mass, you’ll recall from Chapter 5, is a scalar quantity that describes an object’s iner-
tia. Loosely speaking, it also describes the amount of matter in an object. Mass is an 
intrinsic property of an object. It tells us something about the object, regardless of 
where the object is, what it’s doing, or whatever forces may be acting on it.

A pan balance, shown in FigurE 6.5, is a device for measuring mass. Although a 
pan balance requires gravity to function, it does not depend on the strength of gravity. 
Consequently, the pan balance would give the same result on another planet.

the vectors in this problem has an x-component, so only the y-
component of the second law is needed. We can use the free-body 
diagram to see that

  (Fthrust)y = +Fthrust

 (FG)y = -FG

This is the point at which the directional information about the 
force vectors enters. The y-component of the second law is then

  a0y =
1
m

 (Fthrust - FG)

  =
20.0 N - 4.90 N

0.500 kg
= 30.2 m/s2

Notice that we converted the mass to SI units of kilograms before 
doing any calculations and that, because of the definition of the 
newton, the division of newtons by kilograms automatically gives 
the correct SI units of acceleration.

The acceleration of the rocket is constant until it runs out of 
fuel, so we can use constant-acceleration kinematics to find the 
altitude and velocity at burnout (�t = t1 = 5.00 s):

  y1 = y0 + v0y �t +
1
2 a0y  (�t)2

  = 1
2 a0y  (�t)2 = 377 m

  v1y = v0y + a0y �t = a0y �t = 151 m/s

The only force on the rocket after burnout is gravity, so the second 
part of the motion is free fall. We do not know how long it takes 
to reach the top, but we do know that the final velocity is v2y = 0. 
Constant-acceleration kinematics with a1y = -g gives

 v2y 

2 = 0 = v1y 

2 - 2g �y = v1y 

2 - 2g(y2 - y1)

which we can solve to find

  y2 = y1 +
v1y 

2

2g
= 377 m +

(151 m/s)2

2(9.80 m/s2)

  = 1540 m = 1.54 km

ASSESS The maximum altitude reached by this rocket is 1.54 km, 
or just slightly under one mile. While this does not seem unreason-
able for a high-acceleration rocket, the neglect of air resistance 
was probably not a terribly realistic assumption.

Descending
and slowing

(a) (b) (c) (d) (e)

Pivot

If the unknown mass differs
from the known masses, the
beam will rotate about the pivot.

Both pans are pulled down
by the force of gravity.

Known
masses

The pans balance when
the masses are equal.

Unknown
mass

FG

r
FG

r

FigurE 6.5 A pan balance measures mass.
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gravity: A Force
The idea of gravity has a long and interesting history intertwined with our evolving 
ideas about the solar system. It was Newton who—along with discovering his three 
laws of motion—first recognized that gravity is an attractive, long-range force be-
tween any two objects.

FigurE 6.6 shows two objects with masses m1 and m2 separated by distance r. Each 
object pulls on the other with a force given by Newton’s law of gravity:

 F1 on 2 = F2 on 1 =
Gm1  m2

r2   (Newton>s law of gravity) (6.3)

where G = 6.67 * 10-11 N m2/kg2, called the gravitational constant, is one of the 
basic constants of nature. Notice that the force gets weaker as the distance between 
the objects increases.

The gravitational force between two human-sized objects is minuscule, completely 
insignificant in comparison with other forces. That’s why you’re not aware of being 
tugged toward everything around you. Only when one or both objects is planet-sized 
or larger does gravity become an important force. Indeed, Chapter 13 will explore in 
detail the application of Newton’s law of gravity to the orbits of satellites and planets.

For objects moving near the surface of the earth (or other planet), things like balls 
and cars and planes that we’ll be studying in the next few chapters, we can make the 
flat-earth approximation shown in FigurE 6.7. That is, if the height above the surface 
is very small in comparison with the size of the planet, then the curvature of the sur-
face is not noticeable and there’s virtually no difference between r and the planet’s 
radius R. Consequently, a very good approximation for the gravitational force of the 
planet on mass m is simply

 F
u

G = F
u

planet on m = 1GMm

R2 , straight down2 = (mg, straight down) (6.4)

The magnitude or size of the gravitational force is FG = mg, where the quantity g—a 
property of the planet—is defined to be

 g =
GM

R2  (6.5)

In addition, the direction of the gravitational force defines what we mean by “straight 
down.”

But why did we choose to call it g, a symbol we’ve already used for free-fall 
acceleration? To see the connection, recall that free fall is motion under the influence 
of gravity only. FigurE 6.8 shows the free-body diagram of an object in free fall near 
the surface of a planet. With F

u

net = F
u

G, Newton’s second law predicts the accelera-
tion to be

 a
u

free fall =
F
u

net

m
=

F
u

G

m
= (g, straight down) (6.6)

Because g is a property of the planet, independent of the object, all objects on the 
same planet, regardless of mass, have the same free-fall acceleration. We intro-
duced this idea in Chapter 2 as an experimental discovery of Galileo, but now we see 
that the mass independence of a

u

free fall is a prediction of Newton’s law of gravity.
But does Newton’s law predict the correct value, which we know from experiment 

to be g = 0 afree fall 0 = 9.80 m/s2? We can use the average radius (Rearth = 6.37 * 106 m) 
and mass (Mearth = 5.98 * 1024 kg) of the earth to calculate

 gearth =
GMearth

(Rearth) 

2 =
(6.67 * 10-11 N m2/kg2)(5.98 * 1024 kg)

(6.37 * 106 m)2 = 9.83 N/kg 

You should convince yourself that N/kg is equivalent to m/s2, so gearth = 9.83 m/s2. 
(Data for other astronomical objects, which you may need for homework, are provided 
inside the back cover of the book.)

r

r is the distance
between the
centers.

m1

m2

The forces are along the 
line between the centers. 
From Newton’s third 
law, the forces are equal 
in magnitude but 
opposite in direction. 

F1 on 2

r

F2 on 1

r

FigurE 6.6 Newton’s law of gravity.
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FigurE 6.7 Gravity near the surface of a 
planet.

x

y

FG

r
Gravity is the only
force acting on this
object, so Fnet � FG.

r r

FigurE 6.8 The free-body diagram of an 
object in free fall.
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Newton’s prediction is very close, but it’s not quite right. The free-fall acceleration 
would be 9.83 m/s2 on a stationary earth, but, in reality, the earth is rotating on its axis. The 
“missing” 0.03 m/s2 is due to the earth’s rotation, a claim we’ll justify when we study cir-
cular motion in Chapter 8. Because we’re on the outside of a rotating sphere, rather like be-
ing on the outside edge of a merry-go-round, the effect of rotation is to “weaken” gravity.

Our goal is to analyze motion from within our own reference frame, a reference 
frame attached to the earth. Strictly speaking, Newton’s laws of motion are not valid 
in our reference frame because it is rotating and thus is not an inertial reference frame. 
Fortunately, we can use Newton’s laws to analyze motion near the earth’s surface, and 
we can use FG = mg for the gravitational force if we use g = 0 afree fall 0 = 9.80 m/s2 
rather than g = gearth. (This assertion is proved in more advanced classes.) In our rotat-
ing reference frame, F

u

G is the effective gravitational force, the true gravitational force 
given by Newton’s law of gravity plus a small correction due to our rotation. This is 
the force to show on free-body diagrams and use in calculations.

Weight: A Measurement
When you weigh yourself, you stand on a spring scale and compress a spring. You 
weigh apples in the grocery store by placing them in a spring scale and stretching a 
spring. The reading of a spring scale, such as the two shown in FigurE 6.9, is Fsp, the 
magnitude of the force the spring is exerting.

With that in mind, let’s define the weight of an object as the reading Fsp of a calibrat-
ed spring scale on which the object is stationary. That is, weight is a measurement, the 
result of “weighing” an object. Because Fsp is a force, weight is measured in newtons.

Suppose the scales in Figure 6.9 are at rest relative to the earth. Then the object 
being weighed is in static equilibrium, with F

u

net = 0
u

. The stretched spring pulls up, 
the compressed spring pushes up, but in both cases F

u

net = 0
u

 only if the upward spring 
force exactly balances the downward gravitational force of magnitude mg:

 Fsp = FG = mg (6.7)

Because we defined weight as the reading Fsp of a spring scale, the weight of a 
stationary object is

 w = mg  (weight of a stationary object) (6.8)

The scale does not “know” the weight of the object. All it can do is to measure how 
much its spring is stretched or compressed. On earth, a student with a mass of 70 kg 
has weight w = (70 kg)(9.80 m/s2) = 686 N because he compresses a spring until 
the spring pushes upward with 686 N. On a different planet, with a different value 
for g, the expansion or compression of the spring would be different and the student’s 
weight would be different.

noTE  Mass and weight are not the same thing. Mass, in kg, is an intrinsic prop-
erty of an object; its value is unique and always the same. Weight, in N, depends on 
the object’s mass, but it also depends on the situation—the strength of gravity and, 
as we will see, whether or not the object is accelerating. Weight is not a property of 
the object, and thus weight does not have a unique value. 

Surprisingly, you cannot directly feel or sense gravity. Your sensation—how heavy 
you feel—is due to contact forces pressing against you, forces that touch you and 
activate nerve endings in your skin. As you read this, your sensation of weight is due 
to the normal force exerted on you by the chair in which you are sitting. When you 
stand, you feel the contact force of the floor pushing against your feet.

But recall the sensations you feel while accelerating. You feel “heavy” when an 
elevator suddenly accelerates upward, but this sensation vanishes as soon as the eleva-
tor reaches a steady speed. Your stomach seems to rise a little and you feel lighter than 
normal as the upward-moving elevator brakes to a halt or a roller coaster goes over the 
top. Has your weight actually changed?

Cutaway detail
showing the spring

(a)

0

10 5

The object is 
stretching the 
spring.

The scale reading 
is the magnitude 
of Fsp.

r

Fsp

r

FG

r

(b) The object is 
compressing 
the spring.Fsp

r

FG

r

FigurE 6.9 A spring scale measures 
weight.



To answer this question, FigurE 6.10 shows a man weighing himself on a spring scale 
in an accelerating elevator. The only forces acting on the man are the upward spring 
force of the scale and the downward gravitational force. This seems to be the same 
situation as Figure 6.9b, but there’s one big difference: The man is accelerating, hence 
there must be a net force on the man in the direction of a

u
.

For the net force F
u

net to point upward, the magnitude of the spring force must be 
greater than the magnitude of the gravitational force. That is, Fsp 7 mg. Looking at the 
free-body diagram in Figure 6.10, we see that the y-component of Newton’s second law is

 (Fnet)y = (Fsp)y + (FG)y = Fsp - mg = may (6.9)

where m is the man’s mass.
We defined weight as the reading Fsp of a calibrated spring scale on which the 

object is stationary. That is the case here as the scale and man accelerate upward to-
gether. Thus the man’s weight as he accelerates vertically is

 w = scale reading Fsp = mg + may = mg11 +
ay

g 2  (6.10)

If an object is either at rest or moving with constant velocity, then ay = 0 and w = mg. 
That is, the weight of an object at rest is the magnitude of the (effective) gravitational 
force acting on it. But its weight differs if it has a vertical acceleration.

You do weigh more as an elevator accelerates upward (ay 7 0) because the reading 
of a scale—a weighing—increases. Similarly, your weight is less when the accelera-
tion vector a

u
 points downward (ay 6 0) because the scale reading goes down. Weight, 

as we’ve defined it, corresponds to your sensation of heaviness or lightness.*
We found Equation 6.10 by considering a person in an accelerating elevator, but it 

applies to any object with a vertical acceleration. Further, an object doesn’t really have 
to be on a scale to have a weight; an object’s weight is the magnitude of the contact 
force supporting it. It makes no difference whether this is the spring force of the scale 
or simply the normal force of the floor.

noTE  Informally, we sometimes say “This object weighs such and such” or “The 
weight of this object is. . . .” We’ll interpret these expressions as meaning mg, the 
weight of an object of mass m at rest (ay = 0) on the surface of the earth or some 
other astronomical body. 

Weightlessness
Suppose the elevator cable breaks and the elevator, along with the man and his scale, 
plunges straight down in free fall! What will the scale read? When the free-fall ac-
celeration ay = -g is used in Equation 6.10, we find w = 0. In other words, the man 
has no weight!

Suppose, as the elevator falls, the man inside releases a ball from his hand. In the 
absence of air resistance, as Galileo discovered, both the man and the ball would fall 
at the same rate. From the man’s perspective, the ball would appear to “float” beside 
him. Similarly, the scale would float beneath him and not press against his feet. He 
is what we call weightless. Gravity is still pulling down on him—that’s why he’s 
falling—but he has no sensation of weight as everything floats around him in free fall.

But isn’t this exactly what happens to astronauts orbiting the earth? If an astronaut 
tries to stand on a scale, it does not exert any force against her feet and reads zero. She 
is said to be weightless. But if the criterion to be weightless is to be in free fall, and if 
astronauts orbiting the earth are weightless, does this mean that they are in free fall? 
This is a very interesting question to which we shall return in Chapter 8.

Spring scale

The man feels heavier
than normal while
accelerating upward.

ar

x

y

r
Fsp Fnet

r

FG

r

FigurE 6.10 A man weighing himself in 
an accelerating elevator.

*Surprisingly, there is no universally agreed-upon definition of weight. Some textbooks define weight as 
the gravitational force on an object, w 

u
= (mg, down). In that case, the scale reading of an accelerating 

object, and your sensation of weight, is often called apparent weight. This textbook prefers the definition 
of weight as being what a scale reads, the result of a weighing measurement.

Astronauts are weightless as they orbit the 
earth.
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Stop to think 6.2  An elevator that has descended from the 50th floor is coming to a 
halt at the 1st floor. As it does, your weight is

 a. More than mg. b. Less than mg. c. Equal to mg. d. Zero.

6.4 Friction
Friction is absolutely essential for many things we do. Without friction you could not 
walk, drive, or even sit down (you would slide right off the chair!). Although friction 
is a complicated force, many aspects of friction can be described with a simple model.

Static Friction
Chapter 5 defined static friction f 

u

s as the force on an object that keeps it from slipping. 
FigurE 6.11 shows a person pushing on a box that, due to static friction, isn’t moving. 
The box is in static equilibrium, so the static friction force must exactly balance the 
pushing force:

 fs = Fpush (6.11)

To determine the direction of f 
u

s, decide which way the object would move if there 
were no friction. The static friction force f 

u

s points in the opposite direction to prevent 
the motion.

Unlike the gravitational force, which has the precise and unambiguous magnitude 
FG = mg, the size of the static friction force depends on how hard you push. The 
harder the person in Figure 6.11 pushes, the harder the floor pushes back. Reduce the 
pushing force, and the static friction force will automatically be reduced to match. 
Static friction acts in response to an applied force. FigurE 6.12 illustrates this idea.

But there’s clearly a limit to how big fs can get. If you push hard enough, the object 
slips and starts to move. In other words, the static friction force has a maximum pos-
sible size fs max.

	■	 An object remains at rest as long as fs 6  fs max.
	■	 The object slips when fs = fs max.
	■	 A static friction force fs 7 fs max  is not physically possible.

Experiments with friction show that fs max is proportional to the magnitude of the nor-
mal force. That is,

 fs max = msn (6.12)

where the proportionality constant ms is called the coefficient of static friction. The 
coefficient is a dimensionless number that depends on the materials of which the 
object and the surface are made. Table 6.1 on the next page shows some typical  
coefficients of friction. It is to be emphasized that these are only approximate. The 
exact value of the coefficient depends on the roughness, cleanliness, and dryness of 
the surfaces.

Kinetic Friction
Once the box starts to slide, as in FigurE 6.13, the static friction force is replaced by a 
kinetic friction force f 

u

k. Experiments show that kinetic friction, unlike static friction, 
has a nearly constant magnitude. Furthermore, the size of the kinetic friction force is 
less than the maximum static friction, fk 6  fs max, which explains why it is easier to 
keep the box moving than it was to start it moving. The direction of f 

u

k is always op-
posite to the direction in which an object slides across the surface.

The kinetic friction force is also proportional to the magnitude of the normal force:

 fk = mkn (6.13)
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FigurE 6.11 Static friction keeps an 
object from slipping.
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FigurE 6.13 The kinetic friction force is 
opposite the direction of motion.
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where mk is called the coefficient of kinetic friction. Table 6.1 includes typical values 
of mk. You can see that mk 6 ms, causing the kinetic friction to be less than the maxi-
mum static friction.

rolling Friction
If you slam on the brakes hard enough, your car tires slide against the road surface and 
leave skid marks. This is kinetic friction. A wheel rolling on a surface also experiences 
friction, but not kinetic friction. The portion of the wheel that contacts the surface is 
stationary with respect to the surface, not sliding. To see this, roll a wheel slowly and 
watch how it touches the ground.

No wheel is perfectly round and thus, as FigurE 6.14 shows, a wheel has an area of 
contact with the ground. Molecular bonds are quickly established where the wheel 
presses against the surface. These bonds have to be broken as the wheel rolls forward, 
and the effort needed to break them causes rolling friction. (Think how it is to walk 
with a wad of chewing gum stuck to the sole of your shoe!) The force of rolling fric-
tion can be calculated in terms of a coefficient of rolling friction mr:

 fr = mrn (6.14)

Rolling friction acts very much like kinetic friction, but values of mr (see Table 6.1) 
are much lower than values of mk. This is why it is easier to roll an object on wheels 
than to slide it.

A Model of Friction
These ideas can be summarized in a model of friction:

 

Static: f 
u

s … (ms n, direction as necessary to prevent motion)

Kinetic: f 
u

k = (mk n, direction opposite the motion)

Rolling: f 
u

r = (mr n, direction opposite the motion)

 (6.15)

Here “motion” means “motion relative to the surface.” The maximum value of static 
friction fs max = msn occurs at the point where the object slips and begins to move.

noTE  Equations 6.15 are a “model” of friction, not a “law” of friction. These 
equations—a simplification of reality—provide a reasonably accurate, but not per-
fect, description of how friction forces act. They are not a “law of nature” on a level 
with Newton’s laws. 

FigurE 6.15 summarizes these ideas graphically by showing how the friction force 
changes as the magnitude of an applied force F

u

push increases.

TABLE 6.1 Coefficients of friction

Materials
Static  
Ms

Kinetic  
Mk

Rolling 
Mr

Rubber on  
 concrete 1.00 0.80 0.02

Steel on steel  
 (dry) 0.80 0.60 0.002

Steel on steel  
 (lubricated) 0.10 0.05

Wood on wood 0.50 0.20

Wood on snow 0.12 0.06

Ice on ice 0.10 0.03

Contact area

The wheel flattens where it touches
the surface, giving a contact area
rather than a point of contact.

Molecular bonds
break as the wheel
rolls forward.

FigurE 6.14 Rolling friction is due to the 
contact area between a wheel and the 
surface.
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FigurE 6.15 The friction force response to an increasing applied force.
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Stop to think 6.3  Rank in order, from largest to smallest, the sizes of the friction forces f 
u

a to f 
u

e in these 5 different situations. 
The box and the floor are made of the same materials in all situations.

No
push

At rest

(a)

fa

r

Push

On the verge of slipping

(b)

fb

r

Push

Speeding up

(c)

fc

r

ar

(d)

Push

Constant speed

a � 0r r

fd

r

Push

Slowing down

(e)

fe

r

ar

ExAMPLE 6.5  How far does a box slide?
Carol pushes a 50 kg wood box across a wood floor at a steady 
speed of 2.0 m/s. How much force does Carol exert on the box? 
If she stops pushing, how far will the box slide before coming to 
rest?

MoDEL We model the box as a particle and we describe the fric-
tion forces with the model of static and kinetic friction. This is a 
two-part problem: first while Carol is pushing the box, then as it 
slides after she releases it.

viSuALizE This is a fairly complex situation, one that calls for 
careful visualization. FigurE 6.16 shows the pictorial representa-
tion both while Carol pushes, when a

u
= 0

u

, and after she stops. 
We’ve placed x = 0 at the point where she stops pushing because 
this is the point where the kinematics calculation for “How far?” 
will begin. Notice that each part of the motion needs its own free-
body diagram. The box is moving until the very instant that the 
problem ends, so only kinetic friction is relevant.

SoLvE We’ll start by finding how hard Carol has to push to keep 
the box moving at a steady speed. The box is in dynamic equilib-

rium (a
u

= 0
u

), and Newton’s first law is

  aFx = Fpush - fk = 0

  aFy = n - FG = n - mg = 0

where we’ve used FG = mg for the gravitational force. The nega-
tive sign occurs in the first equation because f 

u

k points to the 
left and thus the component is negative: (fk)x = - fk. Similarly, 
(FG)y = -FG because the gravitational force vector—with mag-
nitude mg—points down. In addition to Newton’s laws, we also 
have our model of kinetic friction:

 fk = mk  n

Altogether we have three simultaneous equations in the three un-
knowns Fpush, fk  , and n. Fortunately, these equations are easy to 
solve. The y-component of Newton’s law tells us that n = mg. We 
can then find the friction force to be

 fk = mk  mg

We substitute this into the x-component of the first law, giving

  Fpush = fk = mk  mg

  = (0.20)(50 kg)(9.80 m/s2) = 98 N

This is how hard Carol pushes to keep the box moving at a steady 
speed.

The box is not in equilibrium after Carol stops pushing it. Our 
strategy for the second half of the problem is to use Newton’s 
second law to find the acceleration, then use constant-acceleration 
kinematics to find how far the box moves before stopping. We 

The coefficient of friction is
found in Table 6.1.

FigurE 6.16 Pictorial representation of a box sliding across a floor.



know from the motion diagram that ay = 0. Newton’s second law, 
applied to the second free-body diagram of Figure 6.16, is

  aFx = - fk = max

  aFy = n - mg = may = 0

We also have our model of friction,

 fk = mk  n

We see from the y-component equation that n = mg, and thus 
fk = mk  mg. Using this in the x-component equation gives

 max = - fk = -mk  mg

This is easily solved to find the box’s acceleration:

 ax = -mk  g = - (0.20)(9.80 m/s2) = -1.96 m/s2

The acceleration component ax is negative because the acceleration 
vector a

u
 points to the left, as we see from the motion diagram.

Now we are left with a problem of constant-acceleration 
kinematics. We are interested in a distance, rather than a time 
interval, so the easiest way to proceed is

 v1x 

2 = 0 = v0x 

2 + 2ax � x = v0x 

2 + 2ax  x1

from which the distance that the box slides is

 x1 =
-v0x 

2

2ax

=
- (2.0 m/s)2

2(-1.96 m/s2)
= 1.0 m

ASSESS Carol was pushing at 2 m/s � 4 mph, which is fairly 
fast. The box slides 1.0 m, which is slightly over 3 feet. That 
sounds reasonable.

noTE  We needed both the horizontal and the vertical com-
ponents of the second law even though the motion was entirely 
horizontal. This need is typical when friction is involved be-
cause we must find the normal force before we can evaluate 
the friction force. 

ExAMPLE 6.6  Dumping a file cabinet
A 50 kg steel file cabinet is in the back of a dump truck. The 
truck’s bed, also made of steel, is slowly tilted. What is the size of 
the static friction force on the cabinet when the bed is tilted 20�? 
At what angle will the file cabinet begin to slide?

MoDEL We’ll model the file cabinet as a particle. We’ll also use 
the model of static friction. The file cabinet will slip when the 
static friction force reaches its maximum value fs max.

viSuALizE FigurE 6.17 shows the pictorial representation when the 
truck bed is tilted at angle u. We can make the analysis easier if we 
tilt the coordinate system to match the bed of the truck. To prevent 
the file cabinet from slipping, the static friction force must point 
up the slope.

SoLvE The file cabinet is in static equilibrium. Newton’s first law is

  (Fnet)x = aFx = nx + (FG)x + (  fs)x = 0

  (Fnet)y = aFy = ny + (FG)y + (  fs)y = 0

From the free-body diagram we see that fs has only a negative 
x-component and that n has only a positive y-component. The grav-

itational force vector can be written F
u

G = +FG sin u in - FG cos u jn, 

so F
u

G has both x- and y-components in this coordinate system. 
Thus the first law becomes

  aFx = FG sin u - fs = mg sin u - fs = 0

  aFy = n - FG cos u = n - mg cos u = 0

where we’ve used FG = mg.
You might be tempted to solve the y-component equation for 

n, then to use Equation 6.12 to calculate the static friction force 
as msn. But Equation 6.12 does not say fs � Msn. Equation 6.12 
gives only the maximum possible static friction force fs max  , the 
point at which the object slips. In nearly all situations, the actual 
static friction force is less than fs max. In this problem, we can 
use the x-component equation—which tells us that static friction 
has to exactly balance the component of the gravitational force 
along the incline—to find the size of the static friction force when 
u = 20�:

  fs = mg sin u = (50 kg)(9.80 m/s2) sin 20�

  = 170 N

u

Normal nr

Friction fs

r
Gravity FG

r

y

x

fs where u � 20�
u where cabinet slips

Known

Find

u
u

ms � 0.80  m � 50 kg
mk � 0.60

FG

r

fs

r

nr

The coefficients of
friction are found in
Table 6.1.

FigurE 6.17 The pictorial representation of a file cabinet in a tilted dump truck.

Continued
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Causes of Friction
It is worth a brief pause to look at the causes of friction. All surfaces, even those quite 
smooth to the touch, are very rough on a microscopic scale. When two objects are 
placed in contact, they do not make a smooth fit. Instead, as FigurE 6.18 shows, the high 
points on one surface become jammed against the high points on the other surface, 
while the low points are not in contact at all. The amount of contact depends on how 
hard the surfaces are pushed together, which is why friction forces are proportional 
to n.

At the points of actual contact, the atoms in the two materials are pressed closely 
together and molecular bonds are established between them. These bonds are the 
“cause” of the static friction force. For an object to slip, you must push it hard enough 
to break these molecular bonds between the surfaces. Once they are broken, and the 
two surfaces are sliding against each other, there are still attractive forces between 
the atoms on the opposing surfaces as the high points of the materials push past each 
other. However, the atoms move past each other so quickly that they do not have time 
to establish the tight bonds of static friction. That is why the kinetic friction force is 
smaller. Friction can be minimized with lubrication, a very thin film of liquid between 
the surfaces that allows them to “float” past each other with many fewer points in 
actual contact.

6.5 Drag
The air exerts a drag force on objects as they move through the air. You experience 
drag forces every day as you jog, bicycle, ski, or drive your car. The drag force D

u

	■	 Is opposite in direction to v  

u
.

	■	 Increases in magnitude as the object’s speed increases.

FigurE 6.19 illustrates the drag force.
Drag is a more complex force than ordinary friction because drag depends on the 

object’s speed. Drag also depends on the object’s shape and on the density of the me-
dium through which it moves. Fortunately, we can use a fairly simple model of drag if 
the following three conditions are met:

	■	 The object is moving through the air near the earth’s surface.
	■	 The object’s size (diameter) is between a few millimeters and a few meters.
	■	 The object’s speed is less than a few hundred meters per second.

These conditions are usually satisfied for balls, people, cars, and many other objects in 
our everyday world. Under these conditions, the drag force on an object moving with 
speed v can be written

 D
u

= ( 12 CrAv2, direction opposite the motion) (6.16)

Two surfaces
in contact

Very few points
are actually
in contact.

Molecular bonds form
between the two
materials. These bonds
have to be broken
as the object slides.

FigurE 6.18 An atomic-level view of 
friction.

D
r

FigurE 6.19 The drag force on a high-
speed motorcyclist is significant.

Slipping occurs when the static friction reaches its maximum value

 fs = fs max = ms  n

From the y-component of Newton’s law we see that n = mg cos u. 
Consequently,

 fs max = ms  mg cos u

noTE  A common error is to use simply n = mg. Be sure to 
evaluate the normal force within the context of each specific prob-
lem. In this example, n = mg cos u. 

Substituting this into the x-component of the first law gives

 mg sin u - ms  mg cos u = 0

The mg in both terms cancels, and we find

 
sin u

cos u
= tan u = ms

 u = tan-1 ms = tan-1(0.80) = 39�

ASSESS Steel doesn’t slide all that well on unlubricated steel, so a 
fairly large angle is not surprising. The answer seems reasonable.
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Notice that the drag force is proportional to the square of the object’s speed. The sym-
bols in Equation 6.16 are:

	■	 A is the cross-section area of the object as it “faces into the wind,” as illustrated in 
FigurE 6.20.

	■	 r is the density of the air, which is 1.2 kg/m3 at atmospheric pressure and room 
temperature.

	■	 C is the drag coefficient. It is smaller for aerodynamically shaped objects, larger 
for objects presenting a flat face to the wind. Figure 6.20 gives approximate values 
for a sphere and two cylinders.

This model of drag fails for objects that are very small (such as dust particles), very 
fast (such as bullets), or that move in liquids (such as water). We’ll leave those situa-
tions to more advanced textbooks.

A falling sphere
C � 0.5

The cross section is
an equatorial circle.

A � pr 2

r

A cylinder falling end down
C � 0.8

r

A � pr 2

The cross section
is a circle.

A cylinder falling side down
C � 1.1

The cross section
is a rectangle.

A � 2rL

2r

L

FigurE 6.20 Cross-section areas for objects of different shape.

ExAMPLE 6.7   Air resistance compared to rolling friction

Car’s cross-
section area A

Drag due to air
resistance

Rolling friction
due to road

rv

y

x

nr

r
D

fr

r

FG

r

FigurE 6.21 A car experiences both rolling friction and drag.

SoLvE Drag is less than friction at low speeds, where air resis-
tance is negligible. But drag increases as v increases, so there will 
be a speed at which the two forces are equal in size. Above this 
speed, drag is more important than rolling friction.

There’s no motion and no acceleration in the vertical direc-
tion, so we can see from the free-body diagram that n = FG = mg. 
Thus fr = mr  mg. Equating friction and drag, we have

 1
2  CrAv 2 = mr  mg

Solving for v, we find

v = B 2mr  mg

CrA
= C 2(0.02)(1500 kg)(9.80 m/s2)

(0.35)(1.2 kg/m3) (1.4 m * 1.6 m)
= 25 m/s

where the value of mr for rubber on concrete was taken from 
Table 6.1.

ASSESS 25 m/s is approximately 50 mph, a reasonable result. This 
calculation shows that we can reasonably ignore air resistance for 
car speeds less than 30 or 40 mph. Calculations that neglect drag 
will be increasingly inaccurate as speeds go above 50 mph.

The profile of a typical 1500 kg passenger car, as seen from the 
front, is 1.6 m wide and 1.4 m high. Aerodynamic body shaping 
gives a drag coefficient of 0.35. At what speed does the magnitude 
of the drag equal the magnitude of the rolling friction?

MoDEL Treat the car as a particle. Use the models of rolling fric-
tion and drag.

viSuALizE FigurE 6.21 shows the car and a free-body diagram. A 
full pictorial representation is not needed because we won’t be 
doing any kinematics calculations.
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Terminal Speed
The drag force increases as an object falls and gains speed. If the object falls far 
enough, it will eventually reach a speed, shown in FigurE 6.22, at which D = FG. That 
is, the drag force will be equal and opposite to the gravitational force. The net force 
at this speed is F

u

net = 0
u

, so there is no further acceleration and the object falls with a 
constant speed. The speed at which the exact balance between the upward drag force 
and the downward gravitational force causes an object to fall without acceleration is 
called the terminal speed vterm. Once an object has reached terminal speed, it will 
continue falling at that speed until it hits the ground.

It’s not hard to compute the terminal speed. It is the speed, by definition, at which 
D = FG or, equivalently, 12 CrAv2 = mg. This speed is

 vterm = B 2mg

CrA
 (6.17)

A more massive object has a larger terminal speed than a less massive object of equal 
size and shape. A 10-cm-diameter lead ball, with a mass of 6 kg, has a terminal speed 
of 160 m/s, while a 10-cm-diameter Styrofoam ball, with a mass of 50 g, has a termi-
nal speed of only 15 m/s.

A popular use of Equation 6.17 is to find the terminal speed of a skydiver. A sky-
diver is rather like the cylinder of Figure 6.20 falling “side down,” for which we see 
that C � 1.1. A typical skydiver is 1.8 m long and 0.40 m wide (A = 0.72 m2) and has 
a mass of 75 kg. His terminal speed is

 vterm = B 2mg

CrA
= C 2(75 kg)(9.8 m/s2)

(1.1)(1.2 kg/m3)(0.72 m2)
= 39 m/s

This is roughly 90 mph. A higher speed can be reached by falling feet first or head 
first, which reduces the area A and the drag coefficient.

FigurE 6.23 shows the results of a more detailed calculation for a falling object. With-
out drag, the velocity graph is a straight line with slope = ay = -g. When drag is 
included, the slope steadily decreases in magnitude and approaches zero (no further 
acceleration) as the object reaches terminal speed.

Although we’ve focused our analysis on objects moving vertically, the same ideas 
apply to objects moving horizontally. If an object is thrown or shot horizontally, D

u

 
causes the object to slow down. An airplane reaches its maximum speed, which is 
analogous to the terminal speed, when the drag is equal and opposite to the thrust: 
D = Fthrust  . The net force is then zero and the plane cannot go any faster. The maxi-
mum speed of a passenger jet is about 550 mph.

t0

vy

�vterm

As drag increases with
increasing speed, the slope
decreases in magnitude.

The velocity starts at zero, then
becomes increasingly negative
(motion in �y-direction).

The slope approaches zero
(no further acceleration) as
the object approaches
terminal speed vterm.

Without drag, the graph is a
straight line with slope ay � �g.

FigurE 6.23 The velocity-versus-time 
graph of a falling object with and 
without drag.

Stop to think 6.4  The terminal speed of a Styrofoam ball is 15 m/s. Suppose a Styrofoam ball is shot straight down with an 
initial speed of 30 m/s. Which velocity graph is correct?

t0

vy (m/s)

�30

(a)

t0

�30

vy (m/s)

(b)

t0

�30

vy (m/s)

(c)

t0

�30

vy (m/s)

(d)

t0

�30

vy (m/s)

(e)

Terminal speed is
reached when the
drag force exactly
balances the
gravitational force:
a � 0.

rr

FG

r

r
D

FigurE 6.22 An object falling at terminal 
speed.
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ExAMPLE 6.8  Stopping distances
A 1500 kg car is traveling at a speed of 30 m/s when the driver 
slams on the brakes and skids to a halt. Determine the stopping 
distance if the car is traveling up a 10� slope, down a 10� slope, or 
on a level road.

MoDEL We’ll represent the car as a particle and we’ll use the 
model of kinetic friction. We want to solve the problem only once, 
not three separate times, so we’ll leave the slope angle u unspeci-
fied until the end.

viSuALizE FigurE 6.24 shows the pictorial representation. We’ve 
shown the car sliding uphill, but these representations work 
equally well for a level or downhill slide if we let u be zero or 
negative, respectively. We’ve used a tilted coordinate system so 
that the motion is along one of the axes. We’ve assumed that the 
car is traveling to the right, although the problem didn’t state this. 
You could equally well make the opposite assumption, but you 
would have to be careful with negative values of x and vx. The car 
skids to a halt, so we’ve taken the coefficient of kinetic friction for 
rubber on concrete from Table 6.1.

SoLvE Newton’s second law and the model of kinetic friction are

  aFx = nx + (FG)x + ( fk)x

  = -mg sin u - fk = max

  aFy = ny + (FG)y + ( fk)y

  = n - mg cos u = may = 0

  fk = mk  n

We’ve written these equations by “reading” the motion diagram 
and the free-body diagram. Notice that both components of the 
gravitational force vector F

u

G are negative. ay = 0 because the mo-
tion is entirely along the x-axis.

The second equation gives n = mg cos u. Using this in the fric-
tion model, we find fk = mk  mg cos u. Inserting this result back 
into the first equation then gives

  max = -mg sin u - mk  mg cos u

  = -mg(sin u + mk cos u)

  ax = -g(sin u + mk cos u)

This is a constant acceleration. Constant-acceleration kinematics 
gives

 v1x 

2 = 0 = v0x 

2 + 2ax  (x1 - x0) = v0x 

2 + 2ax  x1

which we can solve for the stopping distance x1:

 x1 = -  
v0x 

2

2ax

=
v0x 

2

2g(sin u + mk cos u)

Notice how the minus sign in the expression for ax canceled the 
minus sign in the expression for x1. Evaluating our result at the 
three different angles gives the stopping distances:

 x1 = c 48 m u = 10� uphill

57 m u = 0� level

75 m u = -10� downhill

The implications are clear about the danger of driving downhill 
too fast!

ASSESS 30 m/s � 60 mph and 57 m � 180 feet on a level sur-
face. This is similar to the stopping distances you learned when 
you got your driver’s license, so the results seem reasonable. Ad-
ditional confirmation comes from noting that the expression for ax 
becomes -g sin u if mk = 0. This is what you learned in Chapter 2 
for the acceleration on a frictionless inclined plane.

This representation works for a downhill
slide if we let u be negative.

FigurE 6.24 Pictorial representation of a skidding car.

6.6  More Examples of newton’s 
Second Law

We will finish this chapter with four additional examples in which we use the problem-
solving strategy in more complex scenarios.
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Falling weightMotion detector

250 g cart

FigurE 6.25 The experimental arrangement.

MoDEL Model the cart as a particle.

viSuALizE The cart changes velocity—it accelerates—when both 
pulled and rolled. Consequently, there must be a net force for 
both motions. For rolling, force identification finds that the only 
horizontal force is rolling friction, a force that opposes the mo-
tion and slows the cart. There is no “force of motion” or “force 
of the hand” because the hand is no longer in contact with the 
cart. (Recall Newton’s “zeroth law”: The cart responds only to 
forces applied at this instant.) Pulling adds a tension force in the 
direction of motion. The two free-body diagrams are shown in 
FigurE 6.26.

  aFx = (fr)x = - fr = max = maroll

  aFy = ny+ (FG)y = n - mg = 0

Make sure you understand where the signs come from and how we 
used our knowledge that a

u
 has only an x-component, which we called 

aroll. The magnitude of the friction force, which is all we’ll need to 
determine the tension, is found from the x-component equation:

fr = -ma
 roll = -m *  slope of the rolling@velocity graph

But we’ll need to do a bit more analysis to get the coefficient of 
rolling friction. The y-component equation tells us that n = mg. 
Using this in the model of rolling friction, fr = mr  n = mr  mg, we 
see that the coefficient of rolling friction is

 mr =
fr

mg

The x-component equation of Newton’s second law 
when the cart is pulled is

 aFx = T + (  fr )x = T - fr = max = mapulled

Thus the tension that we seek is

 T = fr + mapulled = fr + m * slope of the pulled@velocity graph

FigurE 6.27 shows the graphs of the velocity data. The accelera-
tions are the slopes of these lines, and from the equations of the 
best-fit lines we find aroll = -0.124 m/s2 and apulled = 1.55 m/s2. 
Thus the friction force is

 fr =  -maroll = - (0.25 kg)(-0.124 m/s2) = 0.031 N

Knowing this, we find that the string tension pulling the cart is

 T = fr + mapulled = 0.031 N + (0.25 kg)(1.55 m/s2) = 0.42 N

and the coefficient of rolling friction is

 mr =
fr

mg
=

0.031 N

(0.25 kg)(9.80 m/s2)
= 0.013

y

Rolling

x
T
r

nr

fr

r

Fnet

r
FG

r

y

Pulled

x

nr

fr

r

Fnet

r
FG

r

FigurE 6.26 Pictorial representations of the cart.

SoLvE The cart’s acceleration when pulled, which we can find 
from the velocity data, will allow us to find the net force. Isolating 
the tension force will require knowing the friction force, but we 
can determine that from the rolling motion. For the rolling motion, 
Newton’s second law can be written by “reading” the free-body 
diagram on the left:

Best-fit lines

Rolling
y � �0.124x � 1.20

Pulled
y � 1.55x � 0.01

t (s)

v (m/s) 

0.25 0.50 0.75 1.00 1.25 1.500.00
0.0

0.5

1.0

1.5

2.0

2.5

FigurE 6.27 The velocity graphs of the rolling and pulled 
motion. The slopes of these graphs are the cart’s acceleration.

ExAMPLE 6.9  Measuring the tension pulling a cart
Your instructor has set up a lecture demonstration in which a 250 g 
cart can roll along a level, 2.00-m-long track while its velocity is 
measured with a motion detector. First, the instructor simply gives 
the cart a push and measures its velocity as it rolls down the track. 
The data below show that the cart slows slightly before reaching 
the end of the track. Then, as FigurE 6.25 shows, the instructor at-
taches a string to the cart and uses a falling weight to pull the cart. 
She then asks you to determine the tension in the string. For extra 
credit, find the coefficient of rolling friction.

Time (s) Rolled velocity (m/s) Pulled velocity (m/s)

0.00 1.20 0.00

0.25 1.17 0.36

0.50 1.15 0.80

0.75 1.12 1.21

1.00 1.08 1.52

1.25 1.04 1.93

1.50 1.02 2.33

ASSESS The coefficient of rolling friction is very small, but it’s 
similar to the values in Table 6.1 and thus believable. That gives 
us confidence that our value for the tension is also correct. It’s 
reasonable that the tension needed to accelerate the cart is small 
because the cart is light and there’s very little friction.



The mathematical representation of this last example was quite straightforward. The 
challenge was in the analysis that preceded the mathematics—that is, in the physics 
of the problem rather than the mathematics. It is here that our analysis tools—motion 
diagrams, force identification, and free-body diagrams—prove their value.

ExAMPLE 6.10  Make sure the cargo doesn’t slide
A 100 kg box of dimensions 50 cm * 50 cm * 50 cm is in the 
back of a flatbed truck. The coefficients of friction between the 
box and the bed of the truck are ms = 0.40 and mk = 0.20. What 
is the maximum acceleration the truck can have without the box 
slipping?

MoDEL This is a somewhat different problem from any we have 
looked at thus far. Let the box, which we’ll model as a particle, 
be the object of interest. It contacts other objects only where it 
touches the truck bed, so only the truck can exert contact forces on 
the box. If the box does not slip, then there is no motion of the box 
relative to the truck and the box must accelerate with the truck: 
abox = atruck. As the box accelerates, it must, according to New-
ton’s second law, have a net force acting on it. But from what?

Imagine, for a moment, that the truck bed is frictionless. The 
box would slide backward (as seen in the truck’s reference frame) 
as the truck accelerates. The force that prevents sliding is static 
friction, so the truck must exert a static friction force on the box 
to “pull” the box along with it and prevent the box from sliding 
relative to the truck.

viSuALizE This situation is shown in FigurE 6.28. There is only one 
horizontal force on the box, f 

u

s, and it points in the forward direction 
to accelerate the box. Notice that we’re solving the problem with 
the ground as our reference frame. Newton’s laws are not valid in 
the accelerating truck because it is not an inertial reference frame.

SoLvE Newton’s second law, which we can “read” from the free-
body diagram, is

  aFx = fs = max

  aFy = n - FG = n - mg = may = 0

Now, static friction, you will recall, can be any value between 0 
and fs max. If the truck accelerates slowly, so that the box doesn’t 
slip, then fs 6  fs max. However, we’re interested in the acceleration 
amax at which the box begins to slip. This is the acceleration at 
which fs reaches its maximum possible value

 fs = fs max = ms  n

The y-equation of the second law and the friction model combine 
to give fs max = ms  mg. Substituting this into the x-equation, and 
noting that ax is now amax  , we find

 amax =
fs max

m
= ms  g = 3.9 m/s2

The truck must keep its acceleration less than 3.9 m/s2 if slipping 
is to be avoided.

ASSESS 3.9 m/s2 is about one-third of g. You may have noticed 
that items in a car or truck are likely to tip over when you start or 
stop, but they slide only if you really floor it and accelerate very 
quickly. So this answer seems reasonable. Notice that the dimen-
sions of the crate were not needed. Real-world situations rarely 
have exactly the information you need, no more and no less. Many 
problems in this textbook will require you to assess the informa-
tion in the problem statement in order to learn which is relevant 
to the solution.

Known

m � 100 kg
Box dimensions 50 cm � 50 cm � 50 cm
ms � 0.40     mk � 0.20

Acceleration at which box slips

Find

x

y

nr
fs

r

Fnet

r
FG

r

Gravity FG

r
Normal nr

Static friction fs

r

FigurE 6.28 Pictorial representation for the box in a flatbed truck.

CHALLEngE ExAMPLE 6.11  Acceleration from a variable force
MoDEL Model the object as a particle.

viSuALizE The sine function is 0 at t = 0 and again at t = T, when 
the value of the argument is p rad. Over the interval 0 … t … T, 
the force grows from 0 to c and back to 0, always pointing in the 
positive x-direction. FigurE 6.29 on the next page shows a graph of 
the force and a pictorial representation.

Continued
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Force Fx = c sin (p t /T  ), where c and T  are constants, is applied 
to an object of mass m that moves on a horizontal, frictionless 
surface. The object is at rest at the origin at t = 0.

 a. Find an expression for the object’s velocity. Graph your result 
for 0 … t … T.

 b. What is the maximum velocity of a 500 g object if c = 2.5 N 
and T = 1.0 s?
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SoLvE The object’s acceleration increases between 0 and T/2 as 
the force increases. You might expect the object to slow down 
between T/2 and T  as the force decreases. However, there’s still a 
net force in the positive x-direction, so there must be an accelera-
tion in the positive x-direction. The object continues to speed up, 
only more slowly as the acceleration decreases. Maximum veloc-
ity is reached at t = T.

 a. This is not constant-acceleration motion, so we cannot use 
the familiar equations of constant-acceleration kinematics. 
Instead, we must use the definition of acceleration as the rate 
of change—the time derivative—of velocity. With no fric-
tion, we need only the x-component equation of Newton’s 
second law:

 ax =
dvx

dt
=

Fnet

m
=

c

m
  sin 1pt

T 2
First we rewrite this as

 dvx =
c

m
  sin 1pt

T 2dt

Then we integrate both sides from the initial conditions (vx =  
v0x = 0 at t = t0 = 0) to the final conditions (vx at the later 
time t):

 3
vx

0

 dvx =
c

m3
t

0

 sin 1pt

T 2dt

The fraction c/m is a constant that we could take outside the 
integral. The integral on the right side is of the form

 3sin (ax) dx = -
1
a

  cos (ax)

Using this, and integrating both sides of the equation, we find

 vx `
vx

0
= vx - 0 = -

cT

pm
  cos 1pt

T 2 ` t
0

= -
cT

pm
 1cos 1pt

T 2 - 12
Simplifying, we find the object’s velocity at time t is

 vx =
cT

pm
 11 - cos 1pt

T 2 2
This expression is graphed in FigurE 6.30, where we see that, as 
predicted, maximum velocity is reached at t = T.

FigurE 6.29 Pictorial representation for a variable force.

FigurE 6.30 The object’s velocity as a function of time.

 b. Maximum velocity, at t = T, is

 vmax =
cT

pm
 (1-  cos p) =

2cT

pm
=

2(2.5 N)(1.0 s)

p(0.50 kg)
= 3.2 m/s

ASSESS A steady 2.5 N force would cause a 0.5 kg object to accel-
erate at 5 m/s2 and reach a speed of 5 m/s in 1 s. A variable force 
with a maximum of 2.5 N will produce less acceleration, so a top 
speed of 3.2 m/s seems reasonable.
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S u M M A r y
The goal of Chapter 6 has been to learn how to solve linear force-and-motion problems.

general Strategy
All examples in this chapter follow a four-part strategy. You’ll become a better problem solver if you adhere to it as you do the homework 
problems. The Dynamics Worksheets in the Student Workbook will help you structure your work in this way.

Equilibrium Problems
Object at rest or moving with constant velocity.

MoDEL Make simplifying assumptions.

viSuALizE

•	 Translate words into symbols.
•	 Identify forces.
•	 Draw a free-body diagram.

SoLvE Use Newton’s first law:

F
u

net = a
i

 F
u

i = 0
u

“Read” the vectors from the free-body diagram.

ASSESS Is the result reasonable?

Dynamics Problems
Object accelerating.

MoDEL Make simplifying assumptions.

viSuALizE

•	 Translate words into symbols.
•	 Draw a sketch to define the situation.
•	 Draw a motion diagram.
•	 Identify forces.
•	 Draw a free-body diagram.

SoLvE Use Newton’s second law:

 F
u

net = a
i

 F
u

i = ma
u

“Read” the vectors from the free-body diagram. 
Use kinematics to find velocities and positions.

ASSESS Is the result reasonable?

flat-earth approximation
weight
coefficient of static friction, ms

coefficient of kinetic friction, mk

rolling friction
coefficient of rolling friction, mr

drag coefficient, C
terminal speed, vterm

Terms and notation

important Concepts
Specific information about three important forces:

Gravity F
u

G = (mg, downward)

Friction f 
u

s = (0 to ms  n, direction as necessary to prevent motion)

  f 
u

k = (mk  n, direction opposite the motion)

  f 
u

r = (mr  n, direction opposite the motion)

Drag D
u

= ( 12 CrAv 2, direction opposite the motion)

Newton’s laws are vector 
expressions.You must write 
them out by components:

 (Fnet)x = aFx = max 

 (Fnet)y = aFy = may 

The acceleration is zero in equi-
librium and also along an axis 
perpendicular to the motion.

y

x

Fnet
r

Applications
Mass is an intrinsic property of an object that describes the object’s 
inertia and, loosely speaking, its quantity of matter.

The weight of an object is the reading of a calibrated spring scale 
on which the object is stationary. Weight is the result of weighing. 
An object’s weight depends on its mass, its acceleration, and the 
strength of gravity. An object in free fall is weightless.

A falling object reaches 
terminal speed

vterm = B 2mg

CrA
FG
r

D
r

Terminal speed is reached 
when the drag force exactly 
balances the gravitational 
force:  a � 0.

rr

Go back and forth 
between these
steps as needed. 56
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C o n C E P T u A L  Q u E S T i o n S

 1. Are the objects described here in static equilibrium, dynamic 
equilibrium, or not in equilibrium at all? Explain.

 a. A 200 pound barbell is held over your head.
 b. A girder is lifted at constant speed by a crane.
 c. A girder is being lowered into place. It is slowing down.
 d. A jet plane has reached its cruising speed and altitude.
 e. A box in the back of a truck doesn’t slide as the truck stops.
 2. A ball tossed straight up has v = 0 at its highest point. Is it in 

equilibrium? Explain.
 3. Kat, Matt, and Nat are arguing about why a physics book on 

a table doesn’t fall. According to Kat, “Gravity pulls down on 
it, but the table is in the way so it can’t fall.” “Nonsense,” says 
Matt. “There are all kinds of forces acting on the book, but the 
upward forces overcome the downward forces to prevent it from 
falling.” “But what about Newton’s first law?” counters Nat. 
“It’s not moving, so there can’t be any forces acting on it.” None 
of the statements is exactly correct. Who comes closest, and how 
would you change his or her statement to make it correct?

 4. If you know all of the forces acting on a moving object, can you 
tell the direction the object is moving? If yes, explain how. If no, 
give an example.

 5. An elevator, hanging from a single cable, moves upward at 
constant speed. Friction and air resistance are negligible. Is the 
tension in the cable greater than, less than, or equal to the gravi-
tational force on the elevator? Explain. Include a free-body dia-
gram as part of your explanation.

 6. An elevator, hanging from a single cable, moves downward and 
is slowing. Friction and air resistance are negligible. Is the ten-
sion in the cable greater than, less than, or equal to the gravita-
tional force on the elevator? Explain. Include a free-body dia-
gram as part of your explanation.

 7. Are the following statements true or false? Explain.
 a. The mass of an object depends on its location.
 b. The weight of an object depends on its location.
 c. Mass and weight describe the same thing in different units.
 8. An astronaut takes his bathroom scale to the moon and then 

stands on it. Is the reading of the scale his weight? Explain.
 9. The four balls in FigurE Q6.9 have been thrown straight up. They 

have the same size, but different masses. Air resistance is negli-
gible. Rank in order, from largest to smallest, the magnitude of 
the net force acting on each ball. Some may be equal. Give your 
answer in the form a 7 b = c 7 d and explain your ranking.

 10. Suppose you attempt to pour out 100 g of salt, using a pan bal-
ance for measurements, while in a rocket accelerating upward. 
Will the quantity of salt be too much, too little, or the correct 
amount? Explain.

 11. A box with a passenger inside is launched straight up into the 
air by a giant rubber band. Before launch, the passenger stood 
on a scale and weighed 750 N. Once the box has left the rubber 
band but is still moving upward, is the passenger’s weight 
more than 750 N, 750 N, less than 750 N but not zero, or zero? 
Explain.

 12. An astronaut orbiting the earth is handed two balls that have 
identical outward appearances. However, one is hollow while 
the other is filled with lead. How can the astronaut determine 
which is which? Cutting or altering the balls is not allowed.

 13. A hand presses down on the book in FigurE Q6.13. Is the normal 
force of the table on the book larger than, smaller than, or equal 
to mg?

 14. Suppose you push a hockey puck of mass m across frictionless 
ice for a time �t, starting from rest, giving the puck speed v after 
traveling distance d. If you repeat the experiment with a puck of 
mass 2m,

 a. How long will you have to push for the puck to reach the 
same speed v?

 b. How long will you have to push for the puck to travel the 
same distance d?

 15. A block pushed along the floor with velocity v0x slides a distance 
d after the pushing force is removed.

 a. If the mass of the block is doubled but its initial velocity 
is not changed, what distance does the block slide before 
stopping?

 b. If the initial velocity is doubled to 2v0x but the mass is not 
changed, what distance does the block slide before stopping?

 16. Can the friction force on an object ever point in the direction of 
the object’s motion? If yes, give an example. If no, why not?

 17. A crate of fragile dishes is in the back of a pickup truck. The 
truck accelerates north from a stop sign, and the crate moves 
without slipping. Does the friction force on the crate point north 
or south? Or is the friction force zero? Explain.

 18. Five balls move through the air as shown in FigurE Q6.18. All 
five have the same size and shape. Air resistance is not negli-
gible. Rank in order, from largest to smallest, the magnitudes of 
the accelerations aa to ae. Some may be equal. Give your answer 
in the form a 7 b = c 7 d 7 e and explain your ranking.

3 m/s

c

4 m/s

b

5 m/s

a

3 m/s

300 g300 g200 g 400 g

d

FigurE Q6.9 

Book of mass m
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Just released
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100 g
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c
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d

100 g

e

50 g

vy � 20 m/s
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E x E r C i S E S  A n D  P r o B L E M S

Exercises

Section 6.1 Equilibrium

 1. | The three ropes in FigurE Ex6.1 are tied to a small, very light 
ring. Two of the ropes are anchored to walls at right angles, and 
the third rope pulls as shown. What are T1 and T2, the magni-
tudes of the tension forces in the first two ropes?

 2. | The three ropes in FigurE Ex6.2 are tied to a small, very light 
ring. Two of these ropes are anchored to walls at right angles 
with the tensions shown in the figure. What are the magnitude 
and direction of the tension T

u

3 in the third rope?
 3. || A 20 kg loudspeaker is suspended 2.0 m below the ceiling by 

two 3.0-m-long cables that angle outward at equal angles. What 
is the tension in the cables?

 4. || A football coach sits on a sled while two of his players build 
their strength by dragging the sled across the field with ropes. 
The friction force on the sled is 1000 N and the angle between 
the two ropes is 20�. How hard must each player pull to drag the 
coach at a steady 2.0 m/s?

 5. |  A construction worker with a weight of 850 N stands on a 
roof that is sloped at 20�. What is the magnitude of the normal 
force of the roof on the worker?

Section 6.2 Using Newton’s Second Law

 6. | In each of the two free-body diagrams in FigurE Ex6.6, 
the forces are acting on a 2.0 kg object. For each diagram, 
find the values of ax and ay, the x- and y-components of the 
acceleration.

 7. || In each of the two free-body diagrams in FigurE Ex6.7, the 
forces are acting on a 2.0 kg object. For each diagram, find the 
values of ax and ay, the x- and y-components of the acceleration.

 8. | FigurE Ex6.8 shows the velocity graph of a 2.0 kg object as 
it moves along the x-axis. What is the net force acting on this 
object at t = 1 s? At 4 s? At 7 s?

 9. | FigurE Ex6.9 shows the force acting on a 2.0 kg object as it 
moves along the x-axis. The object is at rest at the origin at 
t = 0 s. What are its acceleration and velocity at t = 6 s?

 10. | A horizontal rope is tied to a 50 kg box on frictionless ice. 
What is the tension in the rope if:

 a. The box is at rest?
 b. The box moves at a steady 5.0 m/s?
 c. The box has  vx = 5.0 m/s and ax = 5.0 m/s2?
 11. | A 50 kg box hangs from a rope. What is the tension in the rope if:
 a. The box is at rest?
 b. The box moves up at a steady 5.0 m/s?
 c. The box has vy = 5.0 m/s and is speeding up at 5.0 m/s2?
 d. The box has vy = 5.0 m/s and is slowing down at 5.0 m/s2?
 12. || a.  The block in FigurE Ex6.12 floats on a cushion of air. It is 

pushed to the right with a force that remains constant as the 
block moves from 0 to 1. The block

  A. Speeds up from 0 to 1.
  B.  Speeds up at first, then has constant speed.
  C. Moves with constant speed from 0 to 1.
 b. From 1 to 2, the size of the force steadily decreases until it 

reaches half of its initial value. The block
  A. Continues to speed up from 1 to 2.
  B. Moves with constant speed from 1 to 2.
  C. Slows down.

Section 6.3 Mass, Weight, and Gravity

 13. | A woman has a mass of 55 kg.
 a. What is her weight while standing on earth?
 b. What are her mass and her weight on Mars, where 

g = 3.76 m/s2?
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 14. | It takes the elevator in a skyscraper 4.0 s to reach its cruising 
speed of 10 m/s. A 60 kg passenger gets aboard on the ground 
floor. What is the passenger’s weight

 a. Before the elevator starts moving?
 b. While the elevator is speeding up?
 c. After the elevator reaches its cruising speed?
 15. || FigurE Ex6.15 shows the velocity graph of a 75 kg passenger in 

an elevator. What is the passenger’s weight at t = 1 s? At 5 s? At 
9 s?

 16. || What thrust does a 200 g model rocket need in order to have a 
vertical acceleration of 10 m/s2

 a. On earth?
 b. On the moon, where g = 1.62 m/s2?

Section 6.4 Friction

 17. || Bonnie and Clyde are sliding a 300 kg bank safe across the 
floor to their getaway car. The safe slides with a constant speed 
if Clyde pushes from behind with 385 N of force while Bonnie 
pulls forward on a rope with 350 N of force. What is the safe’s 
coefficient of kinetic friction on the bank floor?

 18. | A stubborn, 120 kg mule sits down and refuses to move. To 
drag the mule to the barn, the exasperated farmer ties a rope 
around the mule and pulls with his maximum force of 800 N. 
The coefficients of friction between the mule and the ground are 
ms = 0.8 and mk = 0.5. Is the farmer able to move the mule?

 19. || A 10 kg crate is placed on a horizontal conveyor belt. The 
materials are such that ms = 0.5 and mk = 0.3.

 a. Draw a free-body diagram showing all the forces on the crate 
if the conveyer belt runs at constant speed.

 b. Draw a free-body diagram showing all the forces on the crate 
if the conveyer belt is speeding up.

 c. What is the maximum acceleration the belt can have without 
the crate slipping?

 20. | Bob is pulling a 30 kg filing cabinet with a force of 200 N, but 
the filing cabinet refuses to move. The coefficient of static fric-
tion between the filing cabinet and the floor is 0.80. What is the 
magnitude of the friction force on the filing cabinet?

 21. || A 4000 kg truck is parked on a 15� slope. How big is the fric-
tion force on the truck? The coefficient of static friction between 
the tires and the road is 0.90.

 22. | A 1500 kg car skids to a halt on a wet road where mk = 0.50. 
How fast was the car traveling if it leaves 65-m-long skid marks?

 23. || A 50,000 kg locomotive is traveling at 10 m/s when its engine 
and brakes both fail. How far will the locomotive roll before it 
comes to a stop? Assume the track is level.

Section 6.5 Drag

 24. || A 75 kg skydiver can be modeled as a rectangular “box” with 
dimensions 20 cm * 40 cm * 180 cm. What is his terminal 
speed if he falls feet first? Use 0.8 for the drag coefficient.

 25. || A 6.5-cm-diameter tennis ball has a terminal speed of 26 m/s. 
What is the ball’s mass?

Problems

 26. || A 5.0 kg object initially at rest at the origin is subjected to the 
time-varying force shown in FigurE P6.26. What is the object’s 
velocity at t = 6 s?

 27. || A 2.0 kg object initially at rest at the origin is subjected to the 
time-varying force shown in FigurE P6.27. What is the object’s 
velocity at t = 4 s?

 28. || The 1000 kg steel beam in FigurE P6.28 is supported by two 
ropes. What is the tension in each?

 29. || In an electricity experiment, a 1.0 g plastic ball is suspended 
on a 60-cm-long string and given an electric charge. A charged 

rod brought near the ball exerts a horizontal electrical force F
u

elec 
on it, causing the ball to swing out to a 20� angle and remain 
there.

 a. What is the magnitude of F
u

elec?
 b. What is the tension in the string?
 30. | A 500 kg piano is being lowered into position by a crane while 

two people steady it with ropes pulling to the sides. Bob’s rope 
pulls to the left, 15� below horizontal, with 500 N of tension. 
Ellen’s rope pulls toward the right, 25� below horizontal.

 a. What tension must Ellen maintain in her rope to keep the 
piano descending at a steady speed?

 b. What is the tension in the main cable supporting the piano?
 31. || Henry gets into an elevator on the 50th floor of a building and 

it begins moving at t = 0 s. FigurE P6.31 shows his weight over 
the next 12 s.

 a. Is the elevator’s initial direction up or down? Explain how 
you can tell.

 b. What is Henry’s mass?
 c. How far has Henry traveled at t = 12 s?

 32. | Zach, whose mass is 80 kg, is in an elevator descending at 
10 m/s. The elevator takes 3.0 s to brake to a stop at the first 
floor.

 a. What is Zach’s weight before the elevator starts braking?
 b. What is Zach’s weight while the elevator is braking?
 33. || An accident victim with a broken leg is being placed in trac-

tion. The patient wears a special boot with a pulley attached to the 
sole. The foot and boot together have a mass of 4.0 kg, and the 
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doctor has decided to hang a 6.0 kg 
mass from the rope. The boot is 
held suspended by the ropes, as 
shown in FigurE P6.33, and does not 
touch the bed.

 a. Determine the amount of tension 
in the rope by using Newton’s 
laws to analyze the hanging mass.

 b. The net traction force needs 
to pull straight out on the leg. 
What is the proper angle u for 
the upper rope?

 c. What is the net traction force 
pulling on the leg?

  Hint: If the pulleys are frictionless, which we will assume, the 
tension in the rope is constant from one end to the other.

 34. || Seat belts and air bags save lives by reducing the forces ex-
erted on the driver and passengers in an automobile collision. 
Cars are designed with a “crumple zone” in the front of the car. 
In the event of an impact, the passenger compartment decelerates 
over a distance of about 1 m as the front of the car crumples. An 
occupant restrained by seat belts and air bags decelerates with 
the car. By contrast, an unrestrained occupant keeps moving for-
ward with no loss of speed (Newton’s first law!) until hitting the 
dashboard or windshield. These are unyielding surfaces, and the 
unfortunate occupant then decelerates over a distance of only 
about 5 mm.

 a. A 60 kg person is in a head-on collision. The car’s speed at 
impact is 15 m/s. Estimate the net force on the person if he or 
she is wearing a seat belt and if the air bag deploys.

 b. Estimate the net force that ultimately stops the person if he or 
she is not restrained by a seat belt or air bag.

 c. How do these two forces compare to the person’s weight?
 35. || The position of a 2.0 kg mass is given by x = (2t 3 - 3t 2) m, 

where t is in seconds. What is the net horizontal force on the 
mass at (a) t = 0 s and (b) t = 1 s?

 36. || The piston of a machine exerts a constant force on a ball as 
it moves horizontally through a distance of 15 cm. You use a 
motion detector to measure the speed of five different balls as 
they come off the piston; the data are shown below. Use theory 
to find two quantities that, when graphed, should give a straight 
line. Then use the graph to find the size of the piston’s force.

Mass (g) Speed (m/s)

 200 9.4

 400 6.3

 600 5.2

 800 4.9

1000 4.0

 37. || Compressed air is used to fire a 50 g ball vertically upward 
from a 1.0-m-tall tube. The air exerts an upward force of 2.0 N 
on the ball as long as it is in the tube. How high does the ball go 
above the top of the tube?

 38. || a.  A rocket of mass m is launched straight up with thrust 
F
u

thrust.  Find an expression for the rocket’s speed at height 
h if air resistance is neglected.

 b. The motor of a 350 g model rocket generates 9.5 N thrust. 
If air resistance can be neglected, what will be the rocket’s 
speed as it reaches a height of 85 m?

BIO

 39. || A rifle with a barrel length of 60 cm fires a 10 g bullet with a 
horizontal speed of 400 m/s. The bullet strikes a block of wood 
and penetrates to a depth of 12 cm.

 a. What resistive force (assumed to be constant) does the wood 
exert on the bullet?

 b. How long does it take the bullet to come to rest?
 c. Draw a velocity-versus-time graph for the bullet in the wood.
 40. || A 20,000 kg rocket has a rocket motor that generates 

3.0 * 105 N of thrust.
 a. What is the rocket’s initial upward acceleration?
 b. At an altitude of 5000 m the rocket’s acceleration has in-

creased to 6.0 m/s2. What mass of fuel has it burned?
 41. || a.  An object of mass m is at rest at the top of a smooth slope 

of height h and length L. The coefficient of kinetic friction 
between the object and the surface, mk, is small enough that 
the object will slide down the slope if given a very small 
push to get it started. Find an expression for the object’s 
speed at the bottom of the slope.

 b. Sam, whose mass is 75 kg, stands at the top of a 12-m-high, 
100-m-long snow-covered slope. His skis have a coef-
ficient of kinetic friction on snow of 0.07. If he uses his 
poles to get started, then glides down, what is his speed at 
the bottom? 

 42. || Sam, whose mass is 75 kg, takes off across level snow on his 
jet-powered skis. The skis have a thrust of 200 N and a coeffi-
cient of kinetic friction on snow of 0.10. Unfortunately, the skis 
run out of fuel after only 10 s.

 a. What is Sam’s top speed?
 b. How far has Sam traveled when he finally coasts to a stop?
 43. ||| Sam, whose mass is 75 kg, takes off down a 50-m-high, 10� 

slope on his jet-powered skis. The skis have a thrust of 200 N. 
Sam’s speed at the bottom is 40 m/s. What is the coefficient of 
kinetic friction of his skis on snow?

 44. || A baggage handler drops your 10 kg suitcase onto a conveyor 
belt running at 2.0 m/s. The materials are such that ms = 0.50 
and mk = 0.30. How far is your suitcase dragged before it is rid-
ing smoothly on the belt?

 45. ||| You and your friend Peter are putting new shingles on a roof 
pitched at 25�. You’re sitting on the very top of the roof when Pe-
ter, who is at the edge of the roof directly below you, 5.0 m away, 
asks you for the box of nails. Rather than carry the 2.5 kg box of 
nails down to Peter, you decide to give the box a push and have it 
slide down to him. If the coefficient of kinetic friction between the 
box and the roof is 0.55, with what speed should you push the box 
to have it gently come to rest right at the edge of the roof?

 46. || It’s moving day, and you need to push a 100 kg box up a 20� 
ramp into the truck. The coefficients of friction for the box on the 
ramp are ms = 0.90 and mk = 0.60. Your largest pushing force is 
1000 N. Can you get the box into the truck without assistance if 
you get a running start at the ramp? If you stop on the ramp, will 
you be able to get the box moving again?

 47. || An Airbus A320 jetliner has a takeoff mass of 75,000 kg. It 
reaches its takeoff speed of 82 m/s (180 mph) in 35 s. What is 
the thrust of the engines? You can neglect air resistance but not 
rolling friction.

 48. || A 2.0 kg wood block is launched up a wooden ramp that is 
inclined at a 30� angle. The block’s initial speed is 10 m/s.

 a. What vertical height does the block reach above its starting 
point?

 b. What speed does it have when it slides back down to its start-
ing point?

6.0 kg

15�4.0 kg

u

FigurE P6.33 
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 49. ||| It’s a snowy day and you’re pulling a friend along a level road 
on a sled. You’ve both been taking physics, so she asks what you 
think the coefficient of friction between the sled and the snow 
is. You’ve been walking at a steady 1.5 m/s, and the rope pulls 
up on the sled at a 30� angle. You estimate that the mass of the 
sled, with your friend on it, is 60 kg and that you’re pulling with 
a force of 75 N. What answer will you give?

 50. || a.  A large box of mass M is pulled across a horizontal, fric-
tionless surface by a horizontal rope with tension T. A small 
box of mass m sits on top of the large box. The coefficients 
of static and kinetic friction between the two boxes are ms  
and mk, respectively. Find an expression for the maximum 
tension Tmax for which the small box rides on top of the 
large box without slipping.

 b. A horizontal rope pulls a 10 kg wood sled across friction-
less snow. A 5.0 kg wood box rides on the sled. What is the 
largest tension force for which the box doesn’t slip?

 51. || a.  A large box of mass M is moving on a horizontal surface at 
speed v0. A small box of mass m sits on top of the large box. 
The coefficients of static and kinetic friction between the 
two boxes are ms and mk, respectively. Find an expression 
for the shortest distance dmin in which the large box can stop 
without the small box slipping.

 b. A pickup truck with a steel bed is carrying a steel file cabi-
net. If the truck’s speed is 15 m/s, what is the shortest dis-
tance in which it can stop without the file cabinet sliding?

 52. || Your assignment in lab is to measure the coefficient of kinetic 
friction between a 350 g block and a smooth metal table. To do 
so, you decide to launch the block at various speeds and measure 
how far it slides; your data are listed in the table. Use a graph to 
determine the value of mk.

Speed (m/s) Distance (cm)

0.5   5

1.0  24

1.5  41

2.0  83

2.5 130

 53. || You’re driving along at 25 m/s with your aunt’s valuable an-
tiques in the back of your pickup truck when suddenly you see a 
giant hole in the road 55 m ahead of you. Fortunately, your foot 
is right beside the brake and your reaction time is zero! Will the 
antiques be as fortunate?

 a. Can you stop the truck before it falls into the hole?
 b. If your answer to part a is yes, can you stop without the 

antiques sliding and being damaged? Their coefficients of 
friction are ms = 0.60 and mk = 0.30.

  Hint: You’re not trying to stop in the shortest possible distance. 
What’s your best strategy for avoiding damage to the antiques?

 54. || The 2.0 kg wood box in FigurE P6.54 slides down a vertical 
wood wall while you push on it at a 45� angle. What magnitude 
of force should you apply to cause the box to slide down at a 
constant speed?

 55. || A 1.0 kg wood block is pressed against a vertical wood wall 
by the 12 N force shown in FigurE P6.55. If the block is initially 
at rest, will it move upward, move downward, or stay at rest?

 56. || A person with compromised 
pinch strength in his fingers can 
exert a force of only 6.0 N to either 
side of a pinch-held object, such as 
the book shown in FigurE P6.56. 
What is the heaviest book he can 
hold vertically before it slips out 
of his fingers? The coefficient of 
static friction between his fingers 
and the book cover is 0.80.

 57. ||| What is the terminal speed for an 80 kg skier going down a 
40� snow-covered slope on wooden skis? Assume that the skier 
is 1.8 m tall and 0.40 m wide.

 58. || A ball is shot from a compressed-air gun at twice its terminal 
speed.

 a. What is the ball’s initial acceleration, as a multiple of g, if it 
is shot straight up?

 b. What is the ball’s initial acceleration, as a multiple of g, if it 
is shot straight down?

 59. || An artist friend of yours needs help hanging a 500 lb sculpture 
from the ceiling. For artistic reasons, she wants to use just two 
ropes. One will be 30� from vertical, the other 60�. She needs 
you to determine the smallest diameter rope that can safely sup-
port this expensive piece of art. On a visit to the hardware store 
you find that rope is sold in increments of 1

8@inch diameter and 
that the safety rating is 4000 pounds per square inch of cross sec-
tion. What diameter rope should you buy?

 60. || You’ve entered a “slow ski race” where the winner is the skier 
who takes the longest time to go down a 15� slope without ever 
stopping. You need to choose the best wax to apply to your skis. 
Red wax has a coefficient of kinetic friction 0.25, yellow is 0.20, 
green is 0.15, and blue is 0.10. Having just finished taking phys-
ics, you realize that a wax too slippery will cause you to ac-
celerate down the slope and lose the race. But a wax that’s too 
sticky will cause you to stop and be disqualified. You know that 
a strong headwind will apply a 50 N horizontal force against you 
as you ski, and you know that your mass is 82 kg. Which wax do 
you choose?

 61. || Astronauts in space “weigh” themselves by oscillating on a 
spring. Suppose the position of an oscillating 75 kg astronaut 
is given by x = (0.30 m) sin((p rad/s) # t), where t is in s. What 
force does the spring exert on the astronaut at (a) t = 1.0 s and 
(b) 1.5 s? Note that the angle of the sine function is in radians.

 62. || A particle of mass m moving along the x-axis experiences the 
net force Fx =  ct, where c is a constant. The particle has veloc-
ity v0x at t = 0. Find an algebraic expression for the particle’s 
velocity vx at a later time t.
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 63. || At t = 0, an object of mass m is at rest at x = 0 on a hori-
zontal, frictionless surface. A horizontal force Fx = F0(1 - t/T), 
which decreases from F0 at t = 0 to zero at t = T, is exerted on 
the object. Find an expression for the object’s (a) velocity and 
(b) position at time T.

 64. ||| At t = 0, an object of mass m is at rest at x = 0 on a hori-
zontal, frictionless surface. Starting at t = 0, a horizontal force 
Fx = F0e

-t/T is exerted on the object. 
 a. Find and graph an expression for the object’s velocity at an 

arbitrary lateer time t.
 b. What is the object’s velocity after a very long time has 

elapsed?
 65. ||| Large objects have inertia and tend to keep moving—

Newton’s first law. Life is very different for small microorgan-
isms that swim through water. For them, drag forces are so large 
that they instantly stop, without coasting, if they cease their 
swimming motion. To swim at constant speed, they must exert a 
constant propulsion force by rotating corkscrew-like flagella or 
beating hair-like cilia. The quadratic model of drag of Equa-
tion 6.16 fails for very small particles. Instead, a small object 
moving in a liquid experiences a linear drag force, D

u

= (bv, di-
rection opposite the motion), where b is a constant. For a sphere 
of radius R, the drag constant can be shown to be b = 6phR, 
where h is the viscosity of the liquid. Water at 20�C has viscos-
ity 1.0 * 10-3 N s/m2.

 a. A paramecium is about 100 mm long. If it’s modeled as a 
sphere, how much propulsion force must it exert to swim 
at a typical speed of 1.0 mm/s? How about the propulsion 
force of a 2.0@mm@diameter E. coli bacterium swimming at 
30 mm/s?

 b. The propulsion forces are very small, but so are the organ-
isms. To judge whether the propulsion force is large or small 
relative to the organism, compute the acceleration that the 
propulsion force could give each organism if there were no 
drag. The density of both organisms is the same as that of 
water, 1000 kg/m3.

 66. ||| Very small objects, such as dust particles, experience a linear 
drag force, D

u

= (bv, direction opposite the motion), where b is 
a constant. That is, the quadratic model of drag of Equation 6.16 
fails for very small particles. For a sphere of radius R, the drag 
constant can be shown to be b = 6phR, where h is the viscosity 
of the gas. 

 a. Find an expression for the terminal speed vterm of a spherical 
particle of radius R and mass m falling through a gas of vis-
cosity h.

 b. Suppose a gust of wind has carried a 50@mm@diameter dust 
particle to a height of 300 m. If the wind suddenly stops, 
how long will it take the dust particle to settle back to the 
ground? Dust has a density of 2700 kg/m3, the viscosity 
of 25�C air is 2.0 * 10-5 N s/m2, and you can assume that 
the falling dust particle reaches terminal speed almost in-
stantly.

Problems 67 and 68 show a free-body diagram. For each:
 a. Write a realistic dynamics problem for which this is the correct 

free-body diagram. Your problem should ask a question that can 
be answered with a value of position or velocity (such as “How 
far?” or “How fast?”), and should give sufficient information to 
allow a solution.

 b. Solve your problem!
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 67.   68.  

In Problems 69 through 71 you are given the dynamics equations that 
are used to solve a problem. For each of these, you are to
 a. Write a realistic problem for which these are the correct equations.
 b. Draw the free-body diagram and the pictorial representation for 

your problem.
 c. Finish the solution of the problem.
 69. -0.80n = (1500 kg)ax

  n - (1500 kg)(9.80 m/s2) = 0
 70. T - 0.20n - (20 kg)(9.80 m/s2) sin 20�

    = (20 kg)(2.0 m/s2)
  n - (20 kg)(9.80 m/s2) cos 20� = 0
 71. (100 N) cos 30� - fk = (20 kg)ax

  n + (100 N) sin 30� - (20 kg)(9.80 m/s2) = 0
  fk = 0.20n

Challenge Problems

 72. A block of mass m is at rest at the origin at t = 0. It is pushed 
with constant force F0 from x = 0 to x = L across a horizontal 
surface whose coefficient of kinetic friction is mk = m0(1 - x/L). 
That is, the coefficient of friction decreases from m0 at x = 0 to 
zero at x = L. 

 a. Use what you’ve learned in calculus to prove that

ax = vx 
dvx

dx

 b. Find an expression for the block’s speed as it reaches position L.
 73. The machine in FigurE CP6.73 

has an 800 g steel shuttle that is 
pulled along a square steel rail by 
an elastic cord. The shuttle is re-
leased when the elastic cord has 
20 N tension at a 45� angle. What 
is the initial acceleration of the 
shuttle?

 74. FigurE CP6.74  shows an acceler-
ometer, a device for measuring 
the horizontal acceleration of cars 
and airplanes. A ball is free to roll 
on a parabolic track described by 
the equation y = x2, where both x 
and y are in meters. A scale along 
the bottom is used to measure the 
ball’s horizontal position x.

 a. Find an expression that allows you to use a measured posi-
tion x (in m) to compute the acceleration ax (in m/s2). (For 
example, ax = 3x is a possible expression.)

 b. What is the acceleration if x = 20 cm?

y

x

9.8 N

9.8 N

20 N

4.9 N

FigurE P6.67 

y

x

15,000 N

12,000 N

14,500 N

15�

FigurE P6.68 

45�

Elastic cord

Fixed steel rail

FigurE CP6.73 
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166    c h a p t e r  6 . Dynamics I: Motion Along a Line

 75.  An object moving  in  a  liquid  experiences  a  linear  drag  force: 

D
u

= (bv, direction opposite the motion),  where  b  is  a  constant 
called  the  drag coefficient.  For  a  sphere  of  radius  R,  the  drag 
constant can be computed as b = 6phR, where h is the viscosity 
of the liquid.

  a.  Find  an  algebraic  expression  for  vx  (t),  the  x-component  of 
velocity as a function of time, for a spherical particle of ra-
dius R and mass m that is shot horizontally with initial speed 
v0 through a liquid of viscosity h.

  b.  Water at 20�C has viscosity h = 1.0 * 10-3 N s/m2. Suppose 
a 4.0-cm-diameter, 33 g ball is shot horizontally into a tank 
of 20�C water. How long will it take for the horizontal speed 
to decrease to 50% of its initial value?

 76.  An object moving  in  a  liquid  experiences  a  linear  drag  force: 

D
u

= (bv, direction opposite the motion),  where  b  is  a  constant 
called  the  drag coefficient.  For  a  sphere  of  radius  R,  the  drag 
constant can be computed as b = 6phR, where h is the viscosity 
of the liquid.

  a.  Use what you’ve learned in calculus to prove that

ax = vx 
dvx

dx

  b.  Find an algebraic expression  for  vx  (x),  the x-component of 
velocity  as  a  function  of  distance  traveled,  for  a  spherical 
particle of radius R and mass m that is shot horizontally with 
initial speed v0 through a liquid of viscosity h.

  c.  Water at 20�C has viscosity h = 1.0 * 10-3 N s/m2. Suppose 
a 1.0-cm-diameter,  1.0 g marble  is  shot horizontally  into  a 
tank of 20�C water at 10 cm/s. How far will it travel before 
stopping?

 77.  An object with cross section A  is shot horizontally across fric-
tionless ice. Its initial velocity is v0x at t0 = 0 s. Air resistance is 
not negligible.

  a.  Show that the velocity at time t is given by the expression

vx =
v0x

1 + CrAv0x  t/2m

  b.  A 1.6-m-wide, 1.4-m-high, 1500 kg car with a drag coeffi-
cient of 0.35 hits a very slick patch of ice while going 20 m/s. 
If friction is neglected, how long will  it  take until  the car’s 
speed drops to 10 m/s? To 5 m/s?

  c.  Assess  whether  or  not  it  is  reasonable  to  neglect  kinetic 
friction.

Stop to think AnSwerS

Stop to Think 6.1: a. The lander is descending and slowing. The ac-

celeration vector points upward, and so F
u

net points upward. This can 
be true only if the thrust has a larger magnitude than the weight.

Stop to Think 6.2: a. You are descending and slowing, so your accel-
eration vector points upward and there is a net upward force on you. 
The floor pushes up against your feet harder than gravity pulls down.

Stop to Think 6.3:  fb + fc � fd � fe + fa. Situations c, d, and e 
are all kinetic friction, which does not depend on either velocity or 

acceleration. Kinetic friction is smaller than the maximum static fric-
tion that is exerted in b.  fa = 0 because no friction is needed to keep 
the object at rest.

Stop to Think 6.4:  d.  The  ball  is  shot  down  at  30 m/s,  so 
v0y = -30 m/s. This exceeds the terminal speed, so the upward drag 
force is larger than the downward weight force. Thus the ball slows 
down even though it is “falling.” It will slow until vy = -15 m/s, the 
terminal velocity, then maintain that velocity.
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Problem-Solving Strategy
We will expand the problem-solving 
strategy that we began in Chapter 6.

■	 Draw an interaction diagram.
■	 Identify the system.
■	 Draw a separate free-body diagram 

for each object in the system.
■	 Write Newton’s second law for each 

object.
■	 Use Newton’s third law to relate 

action/reaction pairs of forces.

Ropes and Pulleys
A common way that two objects interact 
is via ropes or cables or strings. Pulleys 
can be used to change the direction of 
the tension force.

You’ll learn that:

■	 Objects that are connected together 
must have the same acceleration.

■	 Tension is con-
stant throughout 
a rope or string if 
we can model it 
as being massless 
and pulleys as 
frictionless.

Interaction Diagrams
You’ll learn how to draw interaction 
diagrams to show the action/reaction 
pairs of forces between interacting 
objects.

Newton’s Third Law
Interactions are described by Newton’s 
third law:

■	 Every force occurs as one member of 
an action/reaction pair.

■	 The two members of a pair act on two 
different objects.

■	 The two members of 
a pair are equal in 
magnitude but oppo-
site in direction.

7

The hammer and nail are 
interacting. The forces of the 
hammer on the nail and the nail 
on the hammer are an action/
reaction pair of forces.

Newton’s Third Law

Interactions
Newton’s second law treats an object as 
an isolated entity acted upon by external 
forces.

For example, we’ve looked at the normal 
force of a table on a book. But what 
about the book’s effect on the table?

Whenever two or more objects exert 
forces on each other, by touching, being 
tied together, or via long-range forces, 
we say that they interact.

You’ll learn that if object A exerts 
a force on object B, then object B 
exerts a force on object A. These two 
forces form what is called an action/
reaction pair.

A

Isolated
object

F1

F2

F3
r

r

r

A

Action/reaction pair

B

FB on A
r

FA on B
r

B

A

aA
r

aB
r

 Looking Back
Sections 6.1–6.2 Problem-solving 
strategies for force and motion

 Looking Back
Sections 5.1–5.3 Basic concepts of 
force and the atomic model of tension

Thrust and propulsion are 
two important applications 
of Newton’s third law.

System

C

A B

External
forces

Environment

Internal
interactions

The system consists of those objects 
whose motion we wish to analyze. Objects 
that exert forces but whose motion is not 
of interest—such as the earth—form the 
environment.

 Looking Ahead  The goal of Chapter 7 is to use Newton’s third law to understand how objects interact.
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7.1 Interacting Objects
FIguRe 7.1 shows a hammer hitting a nail. The hammer exerts a force on the nail as it 
drives the nail forward. At the same time, the nail exerts a force on the hammer. If 
you’re not sure that it does, imagine hitting the nail with a glass hammer. It’s the force 
of the nail on the hammer that would cause the glass to shatter.

In fact, any time an object A pushes or pulls on another object B, B pushes or pulls 
back on A. When you pull someone with a rope in a tug-of-war, that person pulls back 
on you. Your chair pushes up on you (the normal force) as you push down on the chair. 
These are examples of an interaction, the mutual influence of two objects on each other.

To be more specific, if object A exerts a force F
u

A on B on object B, then object B 
exerts a force F

u

B on A on object A. This pair of forces, shown in FIguRe 7.2, is called an 
action/reaction pair. Two objects interact by exerting an action/reaction pair of forces 
on each other. Notice the very explicit subscripts on the force vectors. The first letter 
is the agent, the second letter is the object on which the force acts. F

u

A on B is a force 
exerted by A on B.

NOTe  The name “action/reaction pair” is somewhat misleading. The forces occur 
simultaneously, and we cannot say which is the “action” and which the “reaction.” 
An action/reaction pair of forces exists as a pair, or not at all. In identify-
ing action/reaction pairs, the labels are the key. Force F

u

A on B is paired with force 
F
u

B on A. 

The hammer and nail interact through contact forces. The same idea holds true 
for long-range forces such as gravity. If you release a ball, it falls because the earth’s 
gravity exerts a downward force F

u

earth on ball. But does the ball really pull upward on the 
earth with a force F

u

ball on earth?
Newton was the first to realize that, indeed, the ball does pull upward on the earth. 

His evidence was the tides. Astronomers had known since antiquity that the tides de-
pend on the phase of the moon, but Newton was the first to understand that tides are 
the ocean’s response to the gravitational pull of the moon on the earth. As FIguRe 7.3 
shows, the flexible water bulges toward the moon while the relatively inflexible crust 
remains behind.

Objects, Systems, and the environment
Chapters 5 and 6 considered forces acting on a single object that we modeled as a 
particle. FIguRe 7.4a shows a diagrammatic representation of single-particle dynamics. 
We can use Newton’s second law, a

u
= F

u

net /m, to determine the particle’s acceleration.
We now want to extend the particle model to situations in which two or more ob-

jects, each represented as a particle, interact with each other. For example, FIguRe 7.4b 
shows three objects interacting via action/reaction pairs of forces. The forces can be 
given labels such as F

u

A on B and F
u

B on A. How do these particles move?
We will often be interested in the motion of some of the objects, say objects A and 

B, but not of others. For example, objects A and B might be the hammer and the nail, 
while object C is the earth. The earth interacts with both the hammer and the nail via 

The force of the nail
on the hammer

The force of the
hammer on the nail 

FIguRe 7.1 The hammer and nail are 
interacting with each other.

A

Action/reaction pair

B

FB on A

r FA on B

r

FIguRe 7.2 An action/reaction pair of 
forces.

Earth

Moon
Tidal bulge

Fmoon on earth

r

Fearth on moon

r

FIguRe 7.3 The ocean tides are 
an indication of the long-range 
gravitational interaction of the earth 
and the moon.

Each line represents an interaction
and an action/reaction pair of forces.
Some pairs of objects, such as A and
B, can have more than one interaction.

This is a force diagram. This is an interaction diagram.

A

Isolated
object

Objects

(a) Single-particle dynamics (b) Interacting objects (c) System and environment

Forces acting
on the object C

A B

System

C

A B

External
forces

Environment

Internal
interactions

F1

r

F2

r

F3

r

FIguRe 7.4 Single-particle dynamics and a model of interacting objects.
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gravity, but in a practical sense the earth remains “at rest” while the hammer and nail 
move. Let’s define the system as those objects whose motion we want to analyze and 
the environment as objects external to the system. 

FIguRe 7.4c is a new kind of diagram, an interaction diagram, in which we’ve en-
closed the objects of the system in a box and represented interactions as lines connect-
ing objects. This is a rather abstract, schematic diagram, but it captures the essence 
of the interactions. Notice that interactions with objects in the environment are called 
external forces. For the hammer and nail, the gravitational force on each—an interac-
tion with the earth—is an external force.

NOTe  The system–environment distinction is a practical matter, not a fundamen-
tal distinction. If object A pushes or pulls on object B, then B pushes or pulls on A. 
Every force is one member of an action/reaction pair, and there is no such thing as 
a true “external force.” What we call an external force is an interaction between an 
object of interest, one we’ve chosen to place inside the system, and an object whose 
motion is not of interest. 

7.2 Analyzing Interacting Objects

The bat and the ball are interacting with 
each other.

TAcTIcS
B O x  7 . 1 

 Analyzing interacting objects

 ●1 Represent each object as a circle. Place each in the correct position relative 
to other objects.

■	 Give each a name and a label.

■	 The surface of the earth (contact forces) and the entire earth (long-range 
forces) should be considered separate objects. Label the entire earth EE.

■	 Ropes and pulleys often need to be considered objects.

 ●2 Identify interactions. Draw connecting lines between the circles to represent 
interactions.

■	 Draw one line for each interaction. Label it with the type of force.

■	 Every interaction line connects two and only two objects.

■	 There can be at most two interactions at a surface: a force parallel to the 
surface (e.g., friction) and a force perpendicular to the surface (e.g., a 
normal force).

■	 The entire earth interacts only by the long-range gravitational force.

 ●3 Identify the system. Identify the objects of interest; draw and label a box 
enclosing them. This completes the interaction diagram.

 ●4 Draw a free-body diagram for each object in the system. Include only the 
forces acting on each object, not forces exerted by the object.

■	 Every interaction line crossing the system boundary is one external force 
acting on the object. The usual force symbols, such as n

u
 and T 

u

, can be 
used.

■	 Every interaction line within the system represents an action/reaction 
pair of forces. There is one force vector on each of the objects, and these 
forces always point in opposite directions. Use labels like F

u

A on B and 
F
u

B on A.

■	 Connect the two action/reaction forces—which must be on different free-
body diagrams—with a dashed line.

Exercises 1–7 
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We’ll illustrate these ideas with two concrete examples. The first example will 
be much longer than usual because we’ll go carefully through all the steps in the 
reasoning.

exAmPLe 7.1  Pushing a crate
FIguRe 7.5 shows a person pushing a large crate across a rough 
surface. Identify all interactions, show them on an interaction dia-
gram, then draw free-body diagrams of the person and the crate.

FIguRe 7.5 A person pushes a 
crate across a rough floor.

System

Push

FrictionFriction

Normal

Gravity Gravity

S

EE

P P � Person
C � Crate
S � Surface
EE � Entire Earth

C
1

2

3

FIguRe 7.6 The interaction diagram.

Figure 7.6 also identifies the various interactions. Some, like 
the pushing interaction between the person and the crate, are fairly 
obvious. The interactions with the earth are a little trickier. Grav-
ity, a long-range force, is an interaction between each object and 
the earth as a whole. Friction forces and normal forces are contact 
interactions between each object and the earth’s surface. These 
are two different interactions, so two interaction lines connect the 
crate to the surface and the person to the surface. Altogether, there 
are seven interactions. Finally, we’ve enclosed the person and 
crate in a box labeled System. These are the objects whose motion 
we wish to analyze.

NOTe  Interactions are between two different objects. None of the 
interactions are between an object and itself. 

We can now draw free-body diagrams for the objects in the 
system, the crate and the person. FIguRe 7.7 correctly locates 
the crate’s free-body diagram to the right of the person’s free-
body diagram. For each, three interaction lines cross the system 
boundary and thus represent external forces. These are the grav-
itational force from the entire earth, the upward normal force 

from the surface, and a friction force from the surface. We can 
use familiar labels such as n

u

P and f 
u

C,  but it’s very important 
to distinguish different forces with subscripts. There’s now 
more than one normal force. If you call both simply n

u
, you’re 

almost certain to make mistakes when you start writing out the 
second-law equations.

The directions of the normal forces and the gravitational forces 
are clear, but we have to be careful with friction. Friction force f 

u

C  
is kinetic friction of the crate sliding across the surface, so it points 
left, opposite the motion. But what about friction between the per-
son and the surface? It is tempting to draw force f 

u

P  pointing to the 
left. After all, friction forces are supposed to be in the direction 
opposite the motion. But if we did so, the person would have two 
forces to the left, F

u

C on P and f 
u

P, and none to the right, causing the 
person to accelerate backward! That is clearly not what happens, 
so what is wrong?

Imagine pushing a crate to the right across loose sand. Each 
time you take a step, you tend to kick the sand to the left, behind 
you. Thus friction force f 

u

P on S ,  the force of the person pushing 
against the earth’s surface, is to the left. In reaction, the force of 
the earth’s surface against the person is a friction force to the right. 
It is force f 

u

S on P,  which we’ve shortened to f 
u

P,  that causes the per-
son to accelerate in the forward direction. Further, as we’ll discuss 
more below, this is a static friction force; your foot is planted on 
the ground, not sliding across the surface.

Finally, we have one internal interaction. The crate is pushed 
with force F

u

P on C. If A pushes or pulls on B, then B pushes or pulls 
back on A. The reaction to force F

u

P on C is F
u

C on P  , the crate pushing 
back against the person’s hands. Force F

u

P on C is a force exerted on 
the crate, so it’s shown on the crate’s free-body diagram. Force 
F
u

C on P is exerted on the person, so it is drawn on the person’s free-
body diagram. The two forces of an action/ reaction pair never 
occur on the same object. Notice that forces F

u

P on C and F
u

C on P 
are pointing in opposite directions. We’ve connected them with a 
dashed line to show that they are an action/ reaction pair.

ASSeSS The completed free-body diagrams of Figure 7.7 could 
now be the basis for a quantitative analysis.

x

y

x

y

nP

Similar external forces are
distinguished by subscripts.

Action/reaction pair
between the two systems

CratePerson

4

FC on P

r

(FG)P

r
(FG)C

r

FP on C

r
fC

r
fP

r

r nC
r

FIguRe 7.7 Free-body diagrams of the person and the crate.

VISuALIze The interaction diagram of FIguRe 7.6 starts by repre-
senting every object as a circle in the correct position but sepa-
rated from all other objects. The person and the crate are obvious 
objects. The earth is also an object that both exerts and experiences 
forces, but it’s necessary to distinguish between the surface, which 
exerts contact forces, and the entire earth, which exerts the long-
range gravitational force.
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Propulsion
The friction force f 

u

P (force of surface on person) is an example of propulsion. It is 
the force that a system with an internal source of energy uses to drive itself forward. 
Propulsion is an important feature not only of walking or running but also of the for-
ward motion of cars, jets, and rockets. Propulsion is somewhat counterintuitive, so it 
is worth a closer look.

If you try to walk across a frictionless floor, your foot slips and slides backward. 
In order for you to walk, the floor needs to have friction so that your foot sticks to 
the floor as you straighten your leg, moving your body forward. The friction that 
prevents slipping is static friction. Static friction, you will recall, acts in the direction 
that prevents slipping. The static friction force f 

u

P has to point in the forward direction 
to prevent your foot from slipping backward. It is this forward-directed static friction 
force that propels you forward! The force of your foot on the floor, the other half of 
the action/reaction pair, is in the opposite direction.

The distinction between you and the crate is that you have an internal source of 
energy that allows you to straighten your leg by pushing backward against the sur-
face. In essence, you walk by pushing the earth away from you. The earth’s surface 
responds by pushing you forward. These are static friction forces. In contrast, all the 
crate can do is slide, so kinetic friction opposes the motion of the crate.

FIguRe 7.8 shows how propulsion works. A car uses its motor to spin the tires, caus-
ing the tires to push backward against the ground. This is why dirt and gravel are 
kicked backward, not forward. The earth’s surface responds by pushing the car for-
ward. These are also static friction forces. The tire is rolling, but the bottom of the tire, 
where it contacts the road, is instantaneously at rest. If it weren’t, you would leave one 
giant skid mark as you drove and would burn off the tread within a few miles.

What force causes this sprinter to 
accelerate?

The person pushes backward
against the earth. The earth
pushes forward on the person.
Static friction.

The car pushes backward
against the earth. The earth
pushes forward on the car.
Static friction.

The rocket pushes the hot
gases backward. The gases
push the rocket forward.
Thrust force.

FIguRe 7.8 Examples of propulsion.

exAmPLe 7.2  Towing a car
A tow truck uses a rope to pull a car along a horizontal road, as 
shown in FIguRe 7.9. Identify all interactions, show them on an 
interaction diagram, then draw free-body diagrams of each object 
in the system.

FIguRe 7.9 A truck towing a car.

VISuALIze The interaction diagram of FIguRe 7.10 represents the 
objects as separate circles, but with the correct relative positions. 
The rope is shown as a separate object. Many of the interactions 
are identical to those in Example 7.1. The system—the objects in 
motion—consists of the truck, the rope, and the car.

Continued

The three objects in the system require three free-body diagrams, 
shown in FIguRe 7.11 on the next page. Gravity, friction, and nor-
mal forces at the surface are all interactions that cross the system 
boundary and are shown as external forces. The car is an inert object 
rolling along. It would slow and stop if the rope were cut, so the 
surface must exert a rolling friction force f 

u

C  to the left. The truck, 
however, has an internal source of energy. The truck’s drive wheels 

System

FrictionFriction

Normal

Pull Pull

Gravity

Gravity Gravity

S

EE

C C � Car
R � Rope
T � Truck
S � Surface
EE � Entire Earth

TR

FIguRe 7.10 The interaction diagram.
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Stop to think 7.1  A rope of negligible mass pulls a crate across the floor. The rope 
and crate are the system; the hand is part of the environment. What, if anything, is 
wrong with the free-body diagrams?

7.3 Newton’s Third Law
Newton was the first to recognize how the two members of an action/reaction pair of 
forces are related to each other. Today we know this as Newton’s third law:

Newton’s third law Every force occurs as one member of an action/reaction pair 
of forces.

■	 The two members of an action/reaction pair act on two different objects.
■	 The two members of an action/reaction pair are equal in magnitude but 

opposite in direction: F
u

A on B = - F
u

B on A.

We deduced most of the third law in Section 7.2. There we found that the two 
members of an action/reaction pair are always opposite in direction (see Figures 7.7 
and 7.11). According to the third law, this will always be true. But the most significant 

push the ground to the left with force f 
u

T on S.  In reaction, the ground 
propels the truck forward, to the right, with force f 

u

T.
We next need to identify the horizontal forces between the car, 

the truck, and the rope. The rope pulls on the car with a tension 
force T 

u

R on C. You might be tempted to put the reaction force on the 
truck because we say that “the truck pulls the car,” but the truck 
is not in contact with the car. The truck pulls on the rope, then 
the rope pulls on the car. Thus the reaction to T 

u

R on C is a force on 
the rope: T 

u

C on R. These are an action/reaction pair. At the other 
end, T 

u

T on R and T 
u

R on T are also an action/reaction pair.

NOTe  Drawing an interaction diagram helps you avoid mis-
takes because it shows very clearly what is interacting with 
what. 

x

y

x

y

RopeCar

x

y

Truck

The rope has to sag in
order for the forces
to balance.

This is the propulsion force
pushing the truck forward. It
is a static friction force.

fC

r
fT

r

nT
r

nC
r

TR on C

r

TC on R

r
TT on R

r

TR on T

r

(FG)T

r

(FG)R

r

(FG)C

r

FIguRe 7.11 Free-body diagrams of Example 7.2.

Notice that the tension forces of the rope cannot be horizon-
tal. If they were, the rope’s free-body diagram would show a net 
downward force, because of its weight, and the rope would ac-
celerate downward. The tension forces T 

u

T on R and T 
u

C on R have to 
angle slightly upward to balance the gravitational force, so any 
real rope has to sag at least a little in the center.

ASSeSS Make sure you avoid the common error of considering 
n
u

 and F
u

G to be an action/reaction pair. These are both forces on 
the same object, whereas the two forces of an action/reaction pair 
are always on two different objects that are interacting with each 
other. The normal and gravitational forces are often equal in mag-
nitude, as they are in this example, but that doesn’t make them an 
action/reaction pair of forces.

y

x

RopeCrate
y

x

FG

r

Fhand

r
TR on C

r
TC on R

r
fk
r

nr
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portion of the third law, which is by no means obvious, is that the two members of 
an action/reaction pair have equal magnitudes. That is, FA on B = FB on A. This is the 
quantitative relationship that will allow you to solve problems of interacting objects.

Newton’s third law is frequently stated as “For every action there is an equal but 
opposite reaction.” While this is indeed a catchy phrase, it lacks the preciseness of our 
preferred version. In particular, it fails to capture an essential feature of action/reaction 
pairs—that they each act on a different object.

NOTe  Newton’s third law extends and completes our concept of force. We can 
now recognize force as an interaction between objects rather than as some “thing” 
with an independent existence of its own. The concept of an interaction will become 
increasingly important as we begin to study the laws of momentum and energy. 

Reasoning with Newton’s Third Law
Newton’s third law is easy to state but harder to grasp. For example, consider what 
happens when you release a ball. Not surprisingly, it falls down. But if the ball and the 
earth exert equal and opposite forces on each other, as Newton’s third law alleges, why 
doesn’t the earth “fall up” to meet the ball?

The key to understanding this and many similar puzzles is that the forces are 
equal but the accelerations are not. Equal causes can produce very unequal effects. 
FIguRe 7.12 shows equal-magnitude forces on the ball and the earth. The force on ball B 
is simply the gravitational force of Chapter 6:

 F
u

earth on ball = (F
u

G)B = -mB  gjn (7.1)

where mB is the mass of the ball. According to Newton’s second law, this force gives 
the ball an acceleration

 a
u

B =
(F

u

G)B

mB
= -gjn (7.2)

This is just the familiar free-fall acceleration.
According to Newton’s third law, the ball pulls up on the earth with force F

u

ball on earth  .  
Because F

u

earth on ball and F
u

ball on earth are an action/reaction pair, F
u

ball on earth must be equal 
in magnitude and opposite in direction to F

u

earth on ball. That is,

 F
u

ball on earth = - F
u

earth on ball = -(F
u

G)B = +mB  gjn (7.3)

Using this result in Newton’s second law, we find the upward acceleration of the earth 
as a whole is

 a
u

E =
F
u

ball on earth

mE
=

mB  gjn
mE

= 1mB

mE
2gjn (7.4)

The upward acceleration of the earth is less than the downward acceleration of the 
ball by the factor mB/mE . If we assume a 1 kg ball, we can estimate the magnitude 
of a

u

E:

 aE =
1 kg

6 * 1024 kg
 g � 2 * 10-24 m/s2

With this incredibly small acceleration, it would take the earth 8 * 1015 years, ap-
proximately 500,000 times the age of the universe, to reach a speed of 1 mph! So we 
certainly would not expect to see or feel the earth “fall up” after we drop a ball.

NOTe  Newton’s third law equates the size of two forces, not two accelerations. 
The acceleration continues to depend on the mass, as Newton’s second law states. 
In an interaction between two objects of different mass, the lighter mass will 
do essentially all of the accelerating even though the forces exerted on the two 
objects are equal. 

The earth pulls
on the ball.

The ball pulls
equally hard
on the earth.

Fearth on ball

r

Fball on earth

r

FIguRe 7.12 The action/reaction forces 
of a ball and the earth are equal in 
magnitude.
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exAmPLe 7.3  The forces on accelerating boxes
The hand shown in FIguRe 7.13 pushes boxes A and B to the right 
across a frictionless table. The mass of B is larger than the mass of A.

 a. Draw free-body diagrams of A, B, and the hand H, showing 
only the horizontal forces. Connect action/reaction pairs with 
dashed lines.

 b. Rank in order, from largest to smallest, the horizontal forces 
shown on your free-body diagrams.

Frictionless surface

H

A
B

mB � mA

ar

FIguRe 7.13 Hand H pushes boxes A and B.

VISuALIze a. The hand H pushes on box A, and A pushes 

back on H. Thus F
u

H on A and F
u

A on H are an action/reaction pair. 

Similarly, A pushes on B and B pushes back on A. The hand 
H does not touch box B, so there is no interaction between 
them. There is no friction. FIguRe 7.14 shows the four horizon-
tal forces and identifies two action/reaction pairs. Notice that 
each force is shown on the free-body diagram of the object that 
it acts on.
 b. According to Newton’s third law, FA on H = FH on A and 

FA on B = FB on A. But the third law is not our only tool. The 
boxes are accelerating to the right, because there’s no friction, 
so Newton’s second law tells us that box A must have a net 
force to the right. Consequently, FH on A 7 FB on A. Thus

 FA on H = FH on A 7 FB on A = FA on B

ASSeSS You might have expected FA on B to be larger than FH on A 
because mB 7 mA. It’s true that the net force on B is larger than 
the net force on A, but we have to reason more closely to judge 
the individual forces. Notice how we used both the second and the 
third laws to answer this question.

x

y

x

y

AH

x

y

B

FA on H

r
FB on A

r
FH on A

r

Fnet

r

FA on B

r

Fnet

r

FIguRe 7.14 The free-body diagrams, showing only the horizontal forces.

Stop to think 7.2  Car B is stopped for a red light. Car A, which 
has the same mass as car B, doesn’t see the red light and runs into 
the back of B. Which of the following statements is true?

 a. B exerts a force on A, but A doesn’t exert a force on B.
 b. B exerts a larger force on A than A exerts on B.
 c. B exerts the same amount of force on A as A exerts on B.
 d. A exerts a larger force on B than B exerts on A.
 e. A exerts a force on B, but B doesn’t exert a force on A.

Acceleration constraints
Newton’s third law is one quantitative relationship you can use to solve problems of 
interacting objects. In addition, we frequently have other information about the motion 
in a problem. For example, if two objects A and B move together, their accelerations 
are constrained to be equal: a

u

A = a
u

B. A well-defined relationship between the acceler-
ations of two or more objects is called an acceleration constraint. It is an independent 
piece of information that can help solve a problem.

In practice, we’ll express acceleration constraints in terms of the x- and y-compo-
nents of a

u
. Consider the car being towed in FIguRe 7.15. This is one-dimensional motion, 

so we can write the acceleration constraint as

 aCx = aTx = ax

Because the accelerations of both objects are equal, we can drop the subscripts C and 
T and call both of them ax.

A B

The rope is under tension.

aT
raC

r

FIguRe 7.15 The car and the truck have 
the same acceleration.



PROBLem-SOLVINg
STRATegy 7.1  Interacting-objects problems

mODeL Identify which objects are part of the system and which are part of the 
environment. Make simplifying assumptions.

VISuALIze Draw a pictorial representation.

 ■	 Show important points in the motion with a sketch. You may want to give 
each object a separate coordinate system. Define symbols and identify what 
the problem is trying to find.

 ■	 Identify acceleration constraints.
 ■	 Draw an interaction diagram to identify the forces on each object and all 

action/reaction pairs.
 ■	 Draw a separate free-body diagram for each object. Each shows only the 

forces acting on that object, not forces exerted by the object.
 ■	 Connect the force vectors of action/reaction pairs with dashed lines. Use sub-

script labels to distinguish forces that act independently on more than one 
object.

SOLVe Use Newton’s second and third laws.

 ■	 Write the equations of Newton’s second law for each object, using the force 
information from the free-body diagrams.

 ■	 Equate the magnitudes of action/reaction pairs.
 ■	 Include the acceleration constraints, the friction model, and other quantitative 

information relevant to the problem.
 ■	 Solve for the acceleration, then use kinematics to find velocities and positions.

ASSeSS Check that your result has the correct units, is reasonable, and answers 
the question.

Don’t assume the accelerations of A and B will always have the same sign. Con-
sider blocks A and B in FIguRe 7.16. The blocks are connected by a string, so they are 
constrained to move together and their accelerations have equal magnitudes. But A has 
a positive acceleration (to the right) in the x-direction while B has a negative accelera-
tion (downward) in the y-direction. Thus the acceleration constraint is

 aAx = -aBy

This relationship does not say that aAx is a negative number. It is simply a relational 
statement, saying that aAx is (-1) times whatever aBy happens to be. The acceleration 
aBy in Figure 7.16 is a negative number, so aAx is positive. In some problems, the signs 
of aAx and aBy may not be known until the problem is solved, but the relationship is 
known from the beginning.

A Revised Strategy for Interacting-Objects Problems
Problems of interacting objects can be solved with a few modifications to the basic 
problem-solving strategy we developed in Chapter 6. A revised problem-solving 
strategy follows.

A

String

B

Pulley

aA
r

aB
r

FIguRe 7.16 The string constrains the 
two objects to accelerate together.

You might be puzzled that the Solve step calls for the use of the third law to equate 
just the magnitudes of action/reaction forces. What about the “opposite in direction” 
part of the third law? You have already used it! Your free-body diagrams should 
show the two members of an action/reaction pair to be opposite in direction, and that 
information will have been utilized in writing the second-law equations. Because 
the directional information has already been used, all that is left is the magnitude 
information.

7.3 . Newton’s Third Law    175
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NOTe  Two steps are especially important when drawing the free-body diagrams. 
First, draw a separate diagram for each object. The diagrams need not have the 
same coordinate system. Second, show only the forces acting on that object. The 
force F

u

A on B  goes on the free-body diagram of object B, but F
u

B on A  goes on the 
diagram of object A. The two members of an action/reaction pair always appear on 
two different free-body diagrams—never on the same diagram. 

exAmPLe 7.4  Keep the crate from sliding
You and a friend have just loaded a 200 kg crate filled with price-
less art objects into the back of a 2000 kg truck. As you press down 
on the accelerator, force F

u

surface on truck propels the truck forward. 
To keep things simple, call this just F

u

T. What is the maximum 
magnitude F

u

T can have without the crate sliding? The static and 
kinetic coefficients of friction between the crate and the bed of the 
truck are 0.80 and 0.30. Rolling friction of the truck is negligible.

mODeL The crate and the truck are separate objects that form the 
system. We’ll model them as particles. The earth and the road sur-
face are part of the environment.

VISuALIze The sketch in FIguRe 7.17 establishes a coordinate sys-
tem, lists the known information, and—new to problems of in-
teracting objects—identifies the acceleration constraint. As long 
as the crate doesn’t slip, it must accelerate with the truck. Both 
accelerations are in the positive x-direction, so the acceleration 
constraint in this problem is

 aCx = aTx = ax

The interaction diagram of Figure 7.17 shows the crate in-
teracting twice with the truck—a friction force parallel to the 
surface of the truck bed and a normal force perpendicular to 
this surface. The truck interacts similarly with the road surface, 
but notice that the crate does not interact with the ground; 
there’s no contact between them. The two interactions within 
the system are each an action/reaction pair, so this is a total of 
four forces. You can also see four external forces crossing the 
system boundary, so the free-body diagrams should show a total 
of eight forces.

Finally, the interaction information is transferred to the free-
body diagrams, where we see friction between the crate and truck 
as an action/reaction pair and the normal forces (the truck pushes 
up on the crate, the crate pushes down on the truck) as another 

action/reaction pair. It’s easy to overlook forces such as f 
u

C on T,  but 
you won’t make this mistake if you first identify action/reaction 
pairs on an interaction diagram. Note that f 

u

C on T  and f 
u

T on C  are 
static friction forces because they are forces that prevent slipping; 
force f 

u

T on C  must point forward to prevent the crate from sliding 
out the back of the truck.

SOLVe Now we’re ready to write Newton’s second law. For the 
crate:

  a (Fon crate)x = fT on C = mC aCx = mC ax

  a (Fon crate)y = nT on C - (FG)C = nT on C - mC g = 0

For the truck:

  a (Fon truck)x = FT - fC on T = mT aTx = mT ax

  a (Fon truck)y = nT - (FG)T - nC on T

  = nT - mT g - nC on T = 0

Be sure you agree with all the signs, which are based on the free-
body diagrams. The net force in the y-direction is zero because 
there’s no motion in the y-direction. It may seem like a lot of effort 
to write all the subscripts, but it is very important in problems with 
more than one object.

Notice that we’ve already used the acceleration constraint 
aCx = aTx = ax. Another important piece of information is 
Newton’s third law, which tells us that fC on T = fT on C and 
nC on T =  nT on C. Finally, we know that the maximum value of 
FT will occur when the static friction on the crate reaches its 
maximum value:

 fT on C = fs max = ms  nT on C

C

x

y

y

x

Known
mT � 2000 kg
mC � 200 kg
ms � 0.80
mk � 0.30
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(FT)max without
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x

Sketch Free-body diagrams
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r
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FIguRe 7.17 Pictorial representation of the crate and truck in Example 7.4.
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7.4 Ropes and Pulleys
Many objects are connected by strings, ropes, cables, and so on. In single-particle dy-
namics, we defined tension as the force exerted on an object by a rope or string. Now 
we need to think more carefully about the string itself. Just what do we mean when we 
talk about the tension “in” a string?

Tension Revisited
FIguRe 7.18a shows a heavy safe hanging from a rope, placing the rope under tension. If 
you cut the rope, the safe and the lower portion of the rope will fall. Thus there must 
be a force within the rope by which the upper portion of the rope pulls upward on the 
lower portion to prevent it from falling.

Chapter 5 introduced an atomic-level model in which tension is due to the stretch-
ing of spring-like molecular bonds within the rope. Stretched springs exert pulling 
forces, and the combined pulling force of billions of stretched molecular springs in a 
string or rope is what we call tension.

An important aspect of tension is that it pulls equally in both directions. FIguRe 7.18b 
is a very thin cross section through the rope. This small piece of rope is in equilibrium, 
so it must be pulled equally from both sides. To gain a mental picture, imagine holding 
your arms outstretched and having two friends pull on them. You’ll remain at rest—
but “in tension”—as long as they pull with equal strength in opposite directions. But 
if one lets go, analogous to the breaking of molecular bonds if a rope breaks or is cut, 
you’ll fly off in the other direction!

The friction depends on the normal force on the crate, not the nor-
mal force on the truck.

Now we can assemble all the pieces. From the y-equation of the 
crate, nT on C = mC g. Thus

 fT on C = msnT on C = ms  mC g

Using this in the x-equation of the crate, we find that the accelera-
tion is

 ax =
fT on C

mC
= ms  g

This is the crate’s maximum acceleration without slipping. Now 
use this acceleration and the fact that fC on T = fT on C = ms  mC g in 
the x-equation of the truck to find

 FT - fC on T = FT - ms  mC g = mT ax = mT ms  g

Solving for FT, we find the maximum propulsion without the crate 
sliding is

  (FT)max = ms  (mT + mC)g

  = (0.80)(2200 kg)(9.80 m/s2) = 17,000 N

ASSeSS This is a hard result to assess. Few of us have any intu-
ition about the size of forces that propel cars and trucks. Even 
so, the fact that the forward force on the truck is a significant 
fraction (80%) of the combined weight of the truck and the 
crate seems plausible. We might have been suspicious if FT had 
been only a tiny fraction of the weight or much greater than the 
weight.

As you can see, there are many equations and many pieces of 
information to keep track of when solving a problem of interact-
ing objects. These problems are not inherently harder than the 
problems you learned to solve in Chapter 6, but they do require a 
high level of organization. Using the systematic approach of the 
problem-solving strategy will help you solve similar problems 
successfully.

Stop to think 7.3  Boxes A and B are sliding to the right across a frictionless table. The 
hand H is slowing them down. The mass of A is larger than the mass of B. Rank in order, 
from largest to smallest, the horizontal forces on A, B, and H.

 a. FB on H = FH on B = FA on B = FB on A b. FB on H = FH on B 7 FA on B = FB on A

 c. FB on H = FH on B 6 FA on B = FB on A d. FH on B = FH on A 7 FA on B

Frictionless surface

H

B
A

Slowing

mA � mB

rv

(a)

Safe

Stretched
molecular
bonds

Magnified view
inside the rope

Atoms

(b) Upward pull
from bonds above

Downward pull
from bonds below

One layer
of atoms

FIguRe 7.18 Tension forces within 
the rope are due to stretching the 
spring-like molecular bonds.
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exAmPLe 7.5  Pulling a rope
FIguRe 7.19a shows a student pulling horizontally with a 100 N 
force on a rope that is attached to a wall. In FIguRe 7.19b, two stu-
dents in a tug-of-war pull on opposite ends of a rope with 100 N 
each. Is the tension in the second rope larger than, smaller than, or 
the same as that in the first rope?

(a)

T � ?

Rope 1100 N

(b)

T � ?

Rope 2100 N 100 N

FIguRe 7.19 Pulling on a rope. Which produces a larger tension?

SOLVe Surely pulling on a rope from both ends causes more ten-
sion than pulling on one end. Right? Before jumping to conclu-
sions, let’s analyze the situation carefully.

FIguRe 7.20a shows the first student, the rope, and the wall as 
separate, interacting objects. Force F

u

S on R  is the student pulling on 
the rope, so it has magnitude 100 N. Forces F

u

S on R  and F
u

R on S  are 
an action/reaction pair and must have equal magnitudes. Similarly 
for forces F

u

W on R  and F
u

R on W.  Finally, because the rope is in static 
equilibrium, force F

u

W on R  has to balance force F
u

S on R.  Thus

 FR on W = FW on R = FS on R = FR on S = 100 N

The first and third equalities are Newton’s third law; the second 
equality is Newton’s first law for the rope.

Forces F
u

R on S  and F
u

R on W  are the pulling forces exerted by the 
rope and are what we mean by “the tension in the rope.” Thus the 
tension in the first rope is 100 N.

FIguRe 7.20b repeats the analysis for the rope pulled by two 
students. Each student pulls with 100 N, so FS1 on R = 100 N and 
FS2 on R = 100 N. Just as before, there are two action/reaction pairs 
and the rope is in static equilibrium. Thus

 FR on S2 = FS2 on R = FS1 on R = FR on S1 = 100 N

The tension in the rope—the pulling forces F
u

R on S1 and F
u

R on S2—is 
still 100 N!

You may have assumed that the student on the right in Figure 7.19b 
is doing something to the rope that the wall in Figure 7.19a does not 
do. But our analysis finds that the wall, just like the student, pulls to 
the right with 100 N. The rope doesn’t care whether it’s pulled by a 
wall or a hand. It experiences the same forces in both cases, so the 
rope’s tension is the same in both.

ASSeSS Ropes and strings exert forces at both ends. The force 
with which they pull—and thus the force pulling on them at each 
end—is the tension in the rope. Tension is not the sum of the pull-
ing forces.

(a)

Student Wall

100 N pull

The rope is in
equilibrium.

FR on S

r

FS on R

r
FW on R

r

FR on W

r

Student 1 Student 2

100 N pullFR on S1

r

FS1 on R

r
FS2 on R

r

FR on S2

r

(b) The rope is in
equilibrium.

FIguRe 7.20 Analysis of tension forces.

Stop to think 7.4  All three 50 kg blocks are at rest. 
Is the tension in rope 2 greater than, less than, or equal 
to the tension in rope 1?

50 kg 50 kg

50 kg

2

2

1

The massless String Approximation
The tension is constant throughout a rope that is in equilibrium, but what happens if 
the rope is accelerating? For example, FIguRe 7.21a shows two connected blocks being 
pulled by force F

u

. Is the string’s tension at the right end, where it pulls back on B, the 
same as the tension at the left end, where it pulls on A?



FIguRe 7.21b shows the horizontal forces acting on the blocks and the string. The only 
horizontal forces acting on the string are T 

u

A on S and T 
u

B on S, so Newton’s second law 
for the string is

 (Fnet)x = TB on S - TA on S = ms  ax (7.5)

where ms is the mass of the string. If the string is accelerating, then the tensions at the 
two ends can not be the same. The tension at the “front” of the string must be higher 
than the tension at the “back” in order to accelerate the string!

Often in physics and engineering problems the mass of the string or rope is much 
less than the masses of the objects that it connects. In such cases, we can adopt the 
massless string approximation. In the limit ms S 0, Equation 7.5 becomes

 TB on S = TA on S  (massless string approximation) (7.6)

In other words, the tension in a massless string is constant. This is nice, but it isn’t 
the primary justification for the massless string approximation.

Look again at Figure 7.21b. If TB on S = TA on S, then

 T 
u

S on A = -T 
u

S on B (7.7)

That is, the force on block A is equal and opposite to the force on block B. Forces 
T 
u

S on A and T 
u

S on B act as if they are an action/reaction pair of forces. Thus we can draw 
the simplified diagram of FIguRe 7.22 in which the string is missing and blocks A and B 
interact directly with each other through forces that we can call T 

u

A on B and T 
u

B on A.
In other words, if objects A and B interact with each other through a massless 

string, we can omit the string and treat forces F
u

A on B and F
u

B on A as if they are an 
action/reaction pair. This is not literally true because A and B are not in contact. None-
theless, all a massless string does is transmit a force from A to B without changing the 
magnitude of that force. This is the real significance of the massless string approximation.

NOTe  For problems in this book, you can assume that any strings or ropes are 
massless unless the problem explicitly states otherwise. The simplified view of 
Figure 7.22 is appropriate under these conditions. But if the string has a mass, it 
must be treated as a separate object. 

FIguRe 7.21 The string’s tension pulls 
forward on block A, backward on 
block B.

A B

(a)

A
String S

B

(b)

r
F

r
F

TS on B

r

TB on S

r
TA on S

r
TS on A

r

A

as if

B

This pair of forces acts as if
it were an action/reaction pair.

We can omit the string if
we assume it is massless.

TB on A

r
TA on B

r r
F

FIguRe 7.22 The massless string 
approximation allows objects A and B 
to act as if they are directly interacting.

exAmPLe 7.6  comparing two tensions
Blocks A and B in FIguRe 7.23 are connected by massless string 2 
and pulled across a frictionless table by massless string 1. B has a 
larger mass than A. Is the tension in string 2 larger than, smaller 
than, or equal to the tension in string 1?

B 2 1
A

mB � mA

T1

r

FIguRe 7.23 Blocks A and B are pulled across a 
frictionless table by massless strings.

mODeL The massless string approximation allows us to treat A 
and B as if they interact directly with each other. The blocks are 
accelerating because there’s a force to the right and no friction.

SOLVe B has a larger mass, so it may be tempting to conclude that 
string 2, which pulls B, has a greater tension than string 1, which 
pulls A. The flaw in this reasoning is that Newton’s second law 
tells us only about the net force. The net force on B is larger than 

the net force on A, but the net force on A is not just the tension T 
u

1 
in the forward direction. The tension in string 2 also pulls back-
ward on A!

FIguRe 7.24 shows the horizontal forces in this frictionless 
situation. Forces T 

u

A on B and T 
u

B on A act as if they are an action/
reaction pair.

From Newton’s third law,

 TA on B = TB on A = T2

where T2 is the tension in string 2. From Newton’s second law, the 
net force on A is

 (FA net)x = T1 - TB on A = T1 - T2 = mA aAx

x

yy

B Aas if

TA on B

r
TB on A

r

T1

r

FIguRe 7.24 The horizontal forces on blocks A and B.

Continued
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Pulleys
Strings and ropes often pass over pulleys. The application might be as simple as lift-
ing a heavy weight or as complex as the internal cable-and-pulley arrangement that 
precisely moves a robot arm.

FIguRe 7.25a shows a simple situation in which block B drags block A across a fric-
tionless table as it falls. FIguRe 7.25b shows the objects separately as well as the forces. 
As the string moves, static friction between the string and pulley causes the pulley to 
turn. If we assume that

	■	 The string and the pulley are both massless, and
	■	 There is no friction where the pulley turns on its axle,

then no net force is needed to accelerate the string or turn the pulley. In this case,

 TA on S = TB on S

In other words, the tension in a massless string remains constant as it passes over 
a massless, frictionless pulley.

The net force on A is the difference in tensions. The blocks are 
accelerating to the right, making aAx 7 0, so

 T1 7 T2

The tension in string 2 is smaller than the tension in string 1.

ASSeSS This is not an intuitively obvious result. A careful study of 
the reasoning in this example is worthwhile. An alternative analy-
sis would note that T 

u

1 accelerates both blocks, of combined mass 
(mA + mB), whereas T 

u

2 accelerates only block B. Thus string 1 
must have the larger tension.

A

PulleyString S

Frictionless table

(a)

B

A

B

(b)

TS on A

r

FP on S

r

TB on S

r

P

TS on B

r

(FG)B

r

(FG)A

r

nA
r

If the string has
mass, it must be
treated as a
separate object.

TA on S

r

x

y

x

y

(c)

A

B

as if

nA
r

(FG)A

r

(FG)B

r

TA on B

r

TB on A

r

A massless string and a
massless, frictionless
pulley

FIguRe 7.25 Blocks A and B are connected by a string that passes over a pulley.

Because of this, we can draw the simplified free-body diagram of FIguRe 7.25c, in 
which the string and pulley are omitted. Forces T 

u

A on B and T 
u

B on A act as if they are an 
action/reaction pair, even though they are not opposite in direction because the tension 
force gets “turned” by the pulley.

TAcTIcS
B O x  7 . 2 

 Working with ropes and pulleys

For massless ropes or strings and massless, frictionless pulleys:

■	 If a force pulls on one end of a rope, the tension in the rope equals the 
magnitude of the pulling force.

■	 If two objects are connected by a rope, the tension is the same at both ends.

■	 If the rope passes over a pulley, the tension in the rope is unaffected.

Exercises 17–22 
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Stop to think 7.5  In Figure 7.25, is the tension in the string greater than, less than, 
or equal to the gravitational force acting on block B?

7.5  examples of Interacting-Objects 
Problems

We will conclude this chapter with three extended examples. Although the mathemat-
ics will be more involved than in any of our work up to this point, we will continue 
to emphasize the reasoning one uses in approaching problems such as these. The so-
lutions will be based on Problem-Solving Strategy 7.1. In fact, these problems are 
now reaching such a level of complexity that, for all practical purposes, it becomes 
impossible to work them unless you are following a well-planned strategy. Our earlier 
emphasis on identifying forces and using free-body diagrams will now really begin to 
pay off!

exAmPLe 7.7  Placing a leg in traction
Serious fractures of the leg often need a stretching force to keep 
contracting leg muscles from forcing the broken bones together 
too hard. This is done using traction, an arrangement of a rope, a 
weight, and pulleys as shown in FIguRe 7.26.The rope must make 
the same angle on both sides of the pulley so that the net force on 
the leg is horizontal, but the angle can be adjusted to control the 
amount of traction. The doctor has specified 50 N of traction for 
this patient with a 4.2 kg hanging mass. What is the proper angle?

4.2 kg

u

u

FIguRe 7.26 A leg in traction.

mODeL Model the leg and the weight as particles. The other point 
where forces are applied is the pulley attached to the patient’s 
foot, which we’ll treat as a separate object. We’ll assume massless 
ropes and a massless, frictionless pulley.

VISuALIze FIguRe 7.27 shows three free-body diagrams. Forces 
T 
u

P1  and T 
u

P2  are the tension forces of the rope as it pulls on the 
pulley. The pulley is in static equilibrium, so these forces are bal-
anced by F

u

L on P, which forms an action/reaction pair with the 50 N 
traction force F

u

P on L. Our model of the rope and pulley makes the 
tension force constant, TP1 = TP2 = TW, so we’ll call it simply T.

SOLVe The x-component equation of Newton’s first law for the 
pulley is

  a (Fon P)x = TP1 cos u + TP2 cos u - FL on P

  = 2T cos u - FL on P = 0

Thus the correct angle for the ropes is

 u =  cos -11FL on P

2T 2
We know, from Newton’s third law, that FL on P = FP on L = 50 N. 
We can determine the tension force by analyzing the weight. It 
also is in static equilibrium, so the upward tension force exactly 
balances the downward gravitational force:

 T = (FG)W = mW g = (4.2 kg)(9.80 m/s2) = 41 N

Thus the proper angle is

 u =  cos -11 50 N

2(41 N) 2 = 52�

ASSeSS The traction force would approach 82 N if angle u ap-
proached zero because the two ropes would pull in parallel. Con-
versely, the traction would approach 0 N if u approached  90�. The 
desired traction is roughly midway between these two extremes, 
so an angle near 45� seems reasonable.

x

TP2

r

TP1

r

FL on P

r
FP on L

r

u
u

y

x

(FG)W

r

TW

r

y

Pulley

Weight

as if

x
Fbody on leg

r

yLeg

FIguRe 7.27 The free-body diagrams.
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exAmPLe 7.8  The show must go on!
A 200 kg set used in a play is stored in the loft above the stage. 
The rope holding the set passes up and over a pulley, then is tied 
backstage. The director tells a 100 kg stagehand to lower the set. 
When he unties the rope, the set falls and the unfortunate man is 
hoisted into the loft. What is the stagehand’s acceleration?

mODeL The system is the stagehand M and the set S, which we 
will model as particles. Assume a massless rope and a massless, 
frictionless pulley.

VISuALIze FIguRe 7.28 shows the pictorial representation. The 
man’s acceleration aMy is positive, while the set’s acceleration 
aSy is negative. These two accelerations have the same magnitude 
because the two objects are connected by a rope, but they have 
opposite signs. Thus the acceleration constraint is aSy = -aMy  . 
Forces T 

u

M on S and T 
u

S on M are not literally an action/reaction pair, 
but they act as if they are because the rope is massless and the pul-
ley is massless and frictionless. Notice that the pulley has “turned” 
the tension force so that T 

u

M on S and T 
u

S on M are parallel to each 
other rather than opposite, as members of a true action/reaction 
pair would have to be.

SOLVe Newton’s second law for the man and the set are

  a (Fon M)y = TS on M - mM g = mM aMy

  a (Fon S)y  = TM on S - mS g  = mS aSy = -mS aMy

Only the y-equations are needed. Notice that we used the accelera-
tion constraint in the last step. Newton’s third law is

 TM on S = TS on M = T

where we can drop the subscripts and call the tension simply T. 
With this substitution, the two second-law equations can be written

  T - mM g = mM aMy

  T - mS g  = -mS aMy

These are simultaneous equations in the two unknowns T and aMy. 
We can eliminate T by subtracting the second equation from the 
first to give

 (mS - mM)g = (mS + mM)aMy

Finally, we can solve for the hapless stagehand’s acceleration:

 aMy =
mS - mM

mS + mM
 g =

100 kg

300 kg
 9.80 m/s2 = 3.27 m/s2

This is also the acceleration with which the set falls. If the rope’s 
tension was needed, we could now find it from T = mMaMy + mMg.

ASSeSS If the stagehand weren’t holding on, the set would fall 
with free-fall acceleration g. The stagehand acts as a counter-
weight to reduce the acceleration.

y

x

M

Sketch

S

Rope R

Known
mM � 100 kg
mS � 200 kg

Acceleration
constraint

Find

aMy

aSy � �aMy

aM
r

aS
r

y

Free-body diagramsInteraction diagram

y as if

M S

M R

EE

SPullPull

Gravity Gravity

TM

r

TS

r

(FG)S

r

(FG)M

r

FIguRe 7.28 Pictorial representation for Example 7.8.

Stop to think 7.6  A small car is pushing a 
larger truck that has a dead battery. The mass of 
the truck is larger than the mass of the car. Which 
of the following statements is true?

 a. The car exerts a force on the truck, but the truck doesn’t exert a force on the car.
 b. The car exerts a larger force on the truck than the truck exerts on the car.
 c. The car exerts the same amount of force on the truck as the truck exerts on the car.
 d. The truck exerts a larger force on the car than the car exerts on the truck.
 e. The truck exerts a force on the car, but the car doesn’t exert a force on the truck.

ar



chALLeNge exAmPLe 7.9  A not-so-clever bank robbery
Bank robbers have pushed a 1000 kg safe to a second-story floor-
to-ceiling window. They plan to break the window, then lower 
the safe 3.0 m to their truck. Not being too clever, they stack up 
500 kg of furniture, tie a rope between the safe and the furni-
ture, and place the rope over a pulley. Then they push the safe 
out the window. What is the safe’s speed when it hits the truck? 
The coefficient of kinetic friction between the furniture and the 
floor is 0.50.

mODeL This is a continuation of the situation that we analyzed in 
Figures 7.16 and 7.25, which are worth reviewing. The system is 
the safe S and the furniture F, which we will model as particles. 
We will assume a massless rope and a massless, frictionless 
pulley.

VISuALIze The safe and the furniture are tied together, so their ac-
celerations have the same magnitude. The safe has a y-component 
of acceleration aSy that is negative because the safe accelerates in 
the negative y-direction. The furniture has an x-component aF that 
is positive. Thus the acceleration constraint is

 aFx = -aSy

The free-body diagrams shown in FIguRe 7.29 are modeled after 
Figure 7.25 but now include a kinetic friction force on the furni-
ture. Forces T 

u

F on S  and T 
u

S on F  act as if they are an action/reaction 
pair, so they have been connected with a dashed line.

SOLVe We can write Newton’s second law directly from the free-
body diagrams. For the furniture,

  a (Fon F)x = TS on F - fk = T - fk = mF  aFx = -mF  aSy

  a (Fon F)y = n - mF g = 0

And for the safe,

 a (Fon S)y = T - mS g = mS aSy

Notice how we used the acceleration constraint in the first equa-
tion. We also went ahead and made use of Newton’s third law: 

TF on S = TS on F = T. We have one additional piece of information, 
the model of kinetic friction:

 fk = mkn = mkmF g

where we used the y-equation of the furniture to deduce that 
n = mF g. Substitute this result for fk into the x-equation of the 
furniture, then rewrite the furniture’s x-equation and the safe’s 
y-equation:

 T - mk  mF  g = -mF  aSy

 T - mS  g = mS  aSy

We have succeeded in reducing our knowledge to two simul-
taneous equations in the two unknowns aSy and T. Subtract the 
second equation from the first to eliminate T:

 (mS - mk  mF)g = - (mS + mF)aSy

Finally, solve for the safe’s acceleration:

  aSy = - 1mS - mk  mF

mS + mF
2g

  = -  
1000 kg - (0.50)(500 kg)

1000 kg + 500 kg
 9.80 m/s2 = -4.9 m/s2

Now we need to calculate the kinematics of the falling safe. Be-
cause the time of the fall is not known or needed, we can use

  v1y 

2 = v0y 

2 + 2aSy �y = 0 + 2aSy  (y1 - y0) = -2aSy  y0

  v1 = 2-2aSy  y0 = 2-2(-4.9 m/s2)(3.0 m) = 5.4 m/s

The value of v1y is negative, but we only needed to find the 
speed so we took the absolute value. This is about 12 mph, so 
it seems unlikely that the truck will survive the impact of the 
1000 kg safe!

Sketch Free-body diagramsInteraction diagram

FIguRe 7.29 Pictorial representation for Challenge Example 7.9.
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S u m m A R y
The goal of Chapter 7 has been to use Newton’s third law to understand how objects interact.

interaction
action/reaction pair
system

environment
interaction diagram
external force

propulsion
Newton’s third law

acceleration constraint
massless string approximation

Terms and Notation

general Principles
Newton’s Third Law
Every force occurs as one member of an action/reaction pair of 
forces. The two members of an action/reaction pair:

•	 Act on two different objects.

•	 Are equal in magnitude but opposite in direction:

F
u

A on B = - F
u

B on A

Solving Interacting-Objects Problems
mODeL Choose the objects of interest.

VISuALIze
Draw a pictorial representation.

Sketch and define coordinates.
Identify acceleration constraints.
Draw an interaction diagram.
Draw a separate free-body diagram for each object.
Connect action/reaction pairs with dashed lines.

SOLVe Write Newton’s second law for each object.
Include all forces acting on each object.
Use Newton’s third law to equate the magnitudes of action/

reaction pairs.
Include acceleration constraints and friction.

ASSeSS Is the result reasonable?

Action/reaction pair

A

B

FA on B
r

FB on A
r

Important concepts
Objects, systems, and the environment

Objects whose motion is of interest are the system.
Objects whose motion is not of interest form the environment.
The objects of interest interact with the environment, but those 
interactions can be considered external forces.

Interaction diagram System

C

A B

External
forces

Environment

Internal
interactions

Applications
Acceleration constraints

Objects that are constrained 
to move together must have 
accelerations of equal 
magnitude: aA = aB.
This must be expressed in 
terms of components, such 
as aAx = -aBy.

Strings and pulleys

The tension in a string or rope pulls in both 
directions. The tension is constant in a 
string if the string is:

•	 Massless, or

•	 In equilibrium

Objects connected by massless strings 
passing over massless, frictionless pulleys 
act as if they interact via an 
action/reaction pair of forces.

B

A

aA
r

aB
r

A B
TB on S
r

TA on S
r

TS on A
r

TS on B
r

B

A

as if

TB on A
r

TA on B
r
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c O N c e P T u A L  Q u e S T I O N S

 1. You find yourself in the middle of a frozen lake with a surface so 
slippery (ms = mk = 0) you cannot walk. However, you happen 
to have several rocks in your pocket. The ice is extremely hard. 
It cannot be chipped, and the rocks slip on it just as much as your 
feet do. Can you think of a way to get to shore? Use pictures, 
forces, and Newton’s laws to explain your reasoning.

 2. How do you paddle a canoe in the forward direction? Explain. 
Your explanation should include diagrams showing forces on the 
water and forces on the paddle.

 3. How does a rocket take off? What is the upward force on it? 
Your explanation should include diagrams showing forces on the 
rocket and forces on the parcel of hot gas that was just expelled 
from the rocket’s exhaust.

 4. How do basketball players jump straight up into the air? Your 
explanation should include pictures showing forces on the player 
and forces on the ground.

 5. A mosquito collides head-on with a car traveling 60 mph. Is the 
force of the mosquito on the car larger than, smaller than, or 
equal to the force of the car on the mosquito? Explain.

 6. A mosquito collides head-on with a car traveling 60 mph. Is the 
magnitude of the mosquito’s acceleration larger than, smaller 
than, or equal to the magnitude of the car’s acceleration? 
Explain.

 7. A small car is pushing a large truck. They are speeding up. Is the 
force of the truck on the car larger than, smaller than, or equal to 
the force of the car on the truck?

 8. A very smart 3-year-old child is given a wagon for her birthday. 
She refuses to use it. “After all,” she says, “Newton’s third law 
says that no matter how hard I pull, the wagon will exert an equal 
but opposite force on me. So I will never be able to get it to move 
forward.” What would you say to her in reply?

 9. Teams red and blue are having a tug-of-war. According to New-
ton’s third law, the force with which the red team pulls on the 
blue team exactly equals the force with which the blue team pulls 
on the red team. How can one team ever win? Explain.

 10. Will hanging a magnet in front of the iron cart in FIguRe Q7.10 
make it go? Explain.

 11. FIguRe Q7.11 shows two masses at rest. The string is massless 
and the pulley is frictionless. The spring scale reads in kg. What 
is the reading of the scale?

 12. FIguRe Q7.12 shows two masses at rest. The string is massless 
and the pulley is frictionless. The spring scale reads in kg. What 
is the reading of the scale?

 13. The hand in FIguRe Q7.13 is pushing on the back of block A. 
Blocks A and B, with mB 7 mA, are connected by a massless 
string and slide on a frictionless surface. Is the force of the string 
on B larger than, smaller than, or equal to the force of the hand 
on A? Explain.

 14. Blocks A and B in FIguRe Q7.14 are connected by a massless 
string over a massless, frictionless pulley. The blocks have just 
been released from rest. Will the pulley rotate clockwise, coun-
terclockwise, or not at all? Explain.

 15. In case a in FIguRe Q7.15, block A is accelerated across a 
frictionless table by a hanging 10 N weight (1.02 kg). In case 
b, block A is accelerated across a frictionless table by a steady 
10 N tension in the string. The string is massless, and the pul-
ley is massless and frictionless. Is A’s acceleration in case b 
greater than, less than, or equal to its acceleration in case a? 
Explain.

N

S

FIguRe Q7.10 

5 kg

5 kg

FIguRe Q7.11 

5 kg5 kg

FIguRe Q7.12 

Hand

B A

FIguRe Q7.13 

1 kgA

B 1 kg
FIguRe Q7.14 

10 N

A

Case a

A

10 N
tension

Case b

FIguRe Q7.15 
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e x e R c I S e S  A N D  P R O B L e m S

exercises

Section 7.2 Analyzing Interacting Objects

Exercises 1 through 6 describe a situation. For each:
 a. Draw an interaction diagram, following the steps of Tactics 

Box 7.1.
 b. Identify the “system” on your interaction diagram.
 c. Draw a free-body diagram for each object in the system. Use 

dashed lines to connect the members of an action/reaction pair.
 1. | A weightlifter stands up at constant speed from a squatting 

position while holding a heavy barbell across his shoulders.
 2. | A soccer ball and a bowling ball have a head-on collision at 

this instant. Rolling friction is negligible.
 3. | A mountain climber is using a rope to pull a bag of supplies up 

a 45� slope. The rope is not massless.
 4. || A battery-powered toy car pushes a stuffed rabbit across the 

floor.
 5. || Block A in FIguRe ex7.5 is heavier than block B and is sliding 

down the incline. All surfaces have friction. The rope is mass-
less, and the massless pulley turns on frictionless bearings. The 
rope and the pulley are among the interacting objects, but you’ll 
have to decide if they’re part of the system.

 6. || Block A in FIguRe ex7.6 is sliding down the incline. The rope 
is massless, and the massless pulley turns on frictionless bear-
ings, but the surface is not frictionless. The rope and the pulley 
are among the interacting objects, but you’ll have to decide if 
they’re part of the system.

Section 7.3 Newton’s Third Law

 7. | a.  How much force does an 80 kg astronaut exert on his chair 
while sitting at rest on the launch pad?

   b.  How much force does the astronaut exert on his chair while 
accelerating straight up at 10 m/s2?

 8. || Block B in FIguRe ex7.8 rests on a surface for which the static 
and kinetic coefficients of friction are 0.60 and 0.40, respectively. 
The ropes are massless. What is the maximum mass of block A 
for which the system is in equilibrium?

 9. || A 1000 kg car pushes a 2000 kg truck that has a dead battery. 
When the driver steps on the accelerator, the drive wheels of the 
car push against the ground with a force of 4500 N. Rolling fric-
tion can be neglected.

 a. What is the magnitude of the force of the car on the truck?
 b. What is the magnitude of the force of the truck on the car?
 10. || Blocks with masses of 1 kg, 2 kg, and 3 kg are lined up in a 

row on a frictionless table. All three are pushed forward by a 
12 N force applied to the 1 kg block.

 a. How much force does the 2 kg block exert on the 3 kg block?
 b. How much force does the 2 kg block exert on the 1 kg block?
 11. || A massive steel cable drags a 20 kg block across a horizontal, 

frictionless surface. A 100 N force applied to the cable causes the 
block to reach a speed of 4.0 m/s in a distance of 2.0 m. What is 
the mass of the cable?

Section 7.4 Ropes and Pulleys

 12. || What is the tension in the rope of FIguRe ex7.12?

 13. || FIguRe ex7.13 shows two 1.0 kg blocks connected 
by a rope. A second rope hangs beneath the lower 
block. Both ropes have a mass of 250 g. The entire 
assembly is accelerated upward at 3.0 m/s2 by 
force F

u

.
 a. What is F?
 b. What is the tension at the top end of rope 1?
 c. What is the tension at the bottom end of rope 1?
 d. What is the tension at the top end of rope 2?
 14. || Jimmy has caught two fish in Yellow Creek. He has tied the 

line holding the 3.0 kg steelhead trout to the tail of the 1.5 kg 
carp. To show the fish to a friend, he lifts upward on the carp 
with a force of 60 N.

 a. Draw separate free-body diagrams for the trout and the carp. 
Label all forces, then use dashed lines to connect action/
reaction pairs or forces that act as if they are a pair.

 b. Rank in order, from largest to smallest, the magnitudes of all 
the forces shown on your free-body diagrams. Explain your 
reasoning.

 15. || A 2.0-m-long, 500 g rope pulls a 10 kg block of ice across a 
horizontal, frictionless surface. The block accelerates at 2.0 m/s2. 
How much force pulls forward on (a) the ice, (b) the rope?

 16. || The cable cars in San Francisco are pulled along their tracks 
by an underground steel cable that moves along at 9.5 mph. The 
cable is driven by large motors at a central power station and 
extends, via an intricate pulley arrangement, for several miles 
beneath the city streets. The length of a cable stretches by up 
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to 100 ft during its lifetime. To 
keep the tension constant, the 
cable passes around a 1.5-m-
diameter “tensioning pulley” 
that rolls back and forth on 
rails, as shown in FIguRe ex7.16. 
A 2000 kg block is attached to 
the tensioning pulley’s cart, 
via a rope and pulley, and is 
suspended in a deep hole. What 
is the tension in the cable car’s 
cable?

 17. || A 2.0 kg rope hangs from the ceiling. What is the tension at 
the midpoint of the rope?

 18. || A mobile at the art museum 
has a 2.0 kg steel cat and a 
4.0 kg steel dog suspended from 
a lightweight cable, as shown in 
FIguRe ex7.18. It is found that 
u1 = 20� when the center rope 
is adjusted to be perfectly hori-
zontal. What are the tension and 
the angle of rope 3?

Problems

 19. ||| FIguRe P7.19 shows two 
strong magnets on opposite 
sides of a small table. The 
long-range attractive force be-
tween the magnets keeps the 
lower magnet in place.

 a. Draw an interaction dia-
gram and draw free-body 
diagrams for both magnets 
and the table. Use dashed lines to connect the members of an 
action/reaction pair.

 b. Suppose the weight of the table is 20 N, the weight of each 
magnet is 2.0 N, and the magnetic force on the lower magnet 
is three times its weight. Find the magnitude of each of the 
forces shown on your free-body diagrams.

 20. || An 80 kg spacewalking astronaut pushes off a 640 kg satellite, 
exerting a 100 N force for the 0.50 s it takes him to straighten 
his arms. How far apart are the astronaut and the satellite after 
1.0 min?

 21. || A massive steel cable drags a 20 kg block across a horizontal, 
frictionless surface. A 100 N force applied to the cable causes the 
block to reach a speed of 4.0 m/s in 2.0 s. What is the difference 
in tension between the two ends of the cable?

 22. || FIguRe P7.22 shows a 6.0 N force pushing two gliders along an 
air track. The 200 g spring between the gliders is compressed. 
How much force does the spring exert on (a) glider A and (b) 
glider B?

 23. || The sled dog in FIguRe P7.23 drags sleds A and B across the 
snow. The coefficient of friction between the sleds and the snow is 
0.10. If the tension in rope 1 is 150 N, what is the tension in rope 2?

 24. || A rope of length L and mass m is suspended from the ceiling. 
Find an expression for the tension in the rope at position y, mea-
sured upward from the free end of the rope. 

 25. || While driving to work last year, I was holding my coffee mug 
in my left hand while changing the CD with my right hand. Then 
the cell phone rang, so I placed the mug on the flat part of my dash-
board. Then, believe it or not, a deer ran out of the woods and on 
to the road right in front of me. Fortunately, my reaction time was 
zero, and I was able to stop from a speed of 20 m/s in a mere 50 m, 
just barely avoiding the deer. Later tests revealed that the static and 
kinetic coefficients of friction of the coffee mug on the dash are 0.50 
and 0.30, respectively; the coffee and mug had a mass of 0.50 kg; 
and the mass of the deer was 120 kg. Did my coffee mug slide?

 26. || Two-thirds of the weight of a 1500 kg car rests on the drive 
wheels. What is the maximum acceleration of this car on a con-
crete surface?

 27. ||| A Federation starship (2.0 * 106 kg) uses its tractor beam to 
pull a shuttlecraft (2.0 * 104 kg) aboard from a distance of 10 km 
away. The tractor beam exerts a constant force of 4.0 * 104 N on 
the shuttlecraft. Both spacecraft are initially at rest. How far does 
the starship move as it pulls the shuttlecraft aboard?

 28. || Your forehead can withstand a force of about 6.0 kN before 
fracturing, while your cheekbone can withstand only about 
1.3 kN. Suppose a 140 g baseball traveling at 30 m/s strikes your 
head and stops in 1.5 ms.

 a. What is the magnitude of the force that stops the baseball?
 b. What force does the baseball exert on your head? Explain.
 c. Are you in danger of a fracture if the ball hits you in the fore-

head? On the cheek?
 29. || Bob, who has a mass of 75 kg, can throw a 500 g rock with a 

speed of 30 m/s. The distance through which his hand moves as 
he accelerates the rock from rest until he releases it is 1.0 m.

 a. What constant force must Bob exert on the rock to throw it 
with this speed?

 b. If Bob is standing on frictionless ice, what is his recoil speed 
after releasing the rock?

 30. || You see the boy next door trying to push a crate down the 
sidewalk. He can barely keep it moving, and his feet occasion-
ally slip. You start to wonder how heavy the crate is. You call to 
ask the boy his mass, and he replies “50 kg.” From your recent 
physics class you estimate that the static and kinetic coefficients 
of friction are 0.8 and 0.4 for the boy’s shoes, and 0.5 and 0.2 for 
the crate. Estimate the mass of the crate.

 31. ||| Two packages at UPS start sliding down the 20� ramp shown 
in FIguRe P7.31. Package A has a mass of 5.0 kg and a coefficient 
of friction of 0.20. Package B has a mass of 10 kg and a coef-
ficient of friction of 0.15. How long does it take package A to 
reach the bottom?

 32. ||| The two blocks in FIguRe P7.32 are sliding down the incline. 
What is the tension in the massless string?
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 33. || The 1.0 kg block in FIguRe P7.33 is tied to the wall with a rope. 
It sits on top of the 2.0 kg block. The lower block is pulled to 
the right with a tension force of 20 N. The coefficient of kinetic 
friction at both the lower and upper surfaces of the 2.0 kg block 
is mk = 0.40.

 a. What is the tension in the rope holding the 1.0 kg block to the 
wall?

 b. What is the acceleration of the 2.0 kg block?

 34. || The coefficient of static friction is 0.60 between the two 
blocks in FIguRe P7.34. The coefficient of kinetic friction between 
the lower block and the floor is 0.20. Force F

u

 causes both blocks 
to cross a distance of 5.0 m, starting from rest. What is the least 
amount of time in which this motion can be completed without 
the top block sliding on the lower block?

 35. ||| The lower block in FIguRe P7.35 
is pulled on by a rope with a ten-
sion force of 20 N. The coeffi-
cient of kinetic friction between 
the lower block and the surface 
is 0.30. The coefficient of kinetic 
friction between the lower block and the upper block is also 0.30. 
What is the acceleration of the 2.0 kg block?

 36. || The block of mass M in FIguRe P7.36 slides on a frictionless 
surface. Find an expression for the tension in the string.

 37. ||| A rope attached to a 20 kg wood sled pulls the sled up a 20� 
snow-covered hill. A 10 kg wood box rides on top of the sled. 
If the tension in the rope steadily increases, at what value of the 
tension does the box slip?

 38. || The 100 kg block in FIguRe P7.38 takes 6.0 s to reach the floor 
after being released from rest. What is the mass of the block on 
the left? The pulley is massless and frictionless.

 39. ||| The 10.2 kg block in FIguRe P7.39 is held in place by a force 
applied to a rope passing over two massless, frictionless pulleys. 
Find the tensions T1 to T5 and the magnitude of force F

u

.

 40. ||| The coefficient of kinetic friction between the 2.0 kg block in 
FIguRe P7.40 and the table is 0.30. What is the acceleration of the 
2.0 kg block?

 41. || FIguRe P7.41 shows a block of mass m resting on a 20� slope. 
The block has coefficients of friction ms = 0.80 and mk = 0.50 
with the surface. It is connected via a massless string over a 
massless, frictionless pulley to a hanging block of mass 2.0 kg.

 a. What is the minimum mass m that will stick and not slip?
 b. If this minimum mass is nudged ever so slightly, it will start 

being pulled up the incline. What acceleration will it have?
 42. || A 4.0 kg box is on a frictionless 35� slope and is connected 

via a massless string over a massless, frictionless pulley to a 
hanging 2.0 kg weight. The picture for this situation is similar to  
FIguRe P7.41.

 a. What is the tension in the string if the 4.0 kg box is held in 
place, so that it cannot move?

 b. If the box is then released, which way will it move on the 
slope?

 c. What is the tension in the string once the box begins to move?
 43. || The 1.0 kg physics book in 

FIguRe P7.43 is connected by 
a string to a 500 g coffee cup. 
The book is given a push up the 
slope and released with a speed 
of 3.0 m/s. The coefficients 
of friction are ms = 0.50 and 
mk = 0.20.

 a. How far does the book slide?
 b. At the highest point, does the 

book stick to the slope, or 
does it slide back down?

 44. || The 2000 kg cable car shown 
in FIguRe P7.44 descends a 
200-m-high hill. In addition to 
its brakes, the cable car controls 
its speed by pulling an 1800 kg 
counterweight up the other side of the hill. The rolling friction of 
both the cable car and the counterweight are negligible.

 a. How much braking force does the cable car need to descend 
at constant speed?

 b. One day the brakes fail just as the cable car leaves the top on 
its downward journey. What is the runaway car’s speed at the 
bottom of the hill?

 45. ||| The century-old ascensores in Valparaiso, Chile, are small ca-
ble cars that go up and down the steep hillsides. As FIguRe P7.45 
shows, one car ascends as the other descends. The cars use a two-
cable arrangement to compensate for friction; one cable passing 
around a large pulley connects the cars, the second is pulled by a 
small motor. Suppose the mass of both cars (with passengers) is 
1500 kg, the coefficient of rolling friction is 0.020, and the cars 
move at constant speed. What is the tension in (a) the connecting 
cable and (b) the cable to the motor?
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 46. || A house painter uses the chair-and-pulley arrangement of 
FIguRe P7.46 to lift himself up the side of a house. The painter’s 
mass is 70 kg and the chair’s mass is 10 kg. With what force 
must he pull down on the rope in order to accelerate upward at 
0.20 m/s2?

 47. ||| Jorge, with mass m, is wearing roller skates whose coefficient 
of friction with the floor is mr. He ties a massless rope around his 
waist, passes it around a frictionless pulley, and grabs hold of the 
other end, as shown in FIguRe P7.47. Jorge then pulls hand over 
hand on the rope with a constant force F. Find an expression for 
Jorge’s acceleration toward the wall.

 48. ||| A 70 kg tightrope walker stands at the center of a rope. The 
rope supports are 10 m apart and the rope sags 10� at each end. 
The tightrope walker crouches down, then leaps straight up with 
an acceleration of 8.0 m/s2 to catch a passing trapeze. What is 
the tension in the rope as he jumps?

 49. || Find an expression for the magnitude of the horizontal force 
F in FIguRe P7.49 for which m1 does not slip either up or down 
along the wedge. All surfaces are frictionless.

 50. || A 100 kg basketball player can leap straight up in the air to a 
height of 80 cm, as shown in FIguRe P7.50. You can understand 
how by analyzing the situation as follows:

 a. The player bends his legs until the upper part of his body has 
dropped by 60 cm, then he begins his jump. Draw separate 
free-body diagrams for the player and for the floor as he is 
jumping, but before his feet leave the ground.

 b. Is there a net force on the player as he jumps (before his feet 
leave the ground)? How can that be? Explain.

 c. With what speed must the player leave the ground to reach a 
height of 80 cm?

 d. What was his acceleration, assumed to be constant, as he 
jumped?

 e. Suppose the player jumps while standing on a bathroom scale 
that reads in newtons. What does the scale read before he 
jumps, as he is jumping, and after his feet leave the ground?

Problems 51 and 52 show the free-body diagrams of two interacting 
systems. For each of these, you are to
 a. Write a realistic problem for which these are the correct free-

body diagrams. Be sure that the answer your problem requests is 
consistent with the diagrams shown.

 b. Finish the solution of the problem.
 51.  52. 

challenge Problems

 53. A 100 g ball of clay is thrown horizontally with a speed of 
10 m/s toward a 900 g block resting on a frictionless surface. It 
hits the block and sticks. The clay exerts a constant force on the 
block during the 10 ms it takes the clay to come to rest relative to 
the block. After 10 ms, the block and the clay are sliding along 
the surface as a single system.

 a. What is their speed after the collision?
 b. What is the force of the clay on the block during the collision?
 c. What is the force of the block on the clay?

NOTe  This problem can be worked using the conservation laws 
you will be learning in the next few chapters. However, here 
you’re asked to solve the problem using Newton’s laws. 

 54. In FIguRe cP7.54, find an expression 
for the acceleration of m1. The pul-
leys are massless and frictionless.

  Hint: Think carefully about the 
acceleration constraint.
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 55.  What  is  the  acceleration  of  the  2.0  kg  block  in  Figure CP7.55 
across the frictionless table?

    Hint: Think carefully about the acceleration constraint.

 56.  Figure CP7.56 shows a 200 g hamster sitting on an 800 g wedge-
shaped  block.  The  block,  in  turn,  rests  on  a  spring  scale.  An 
extra-fine lubricating oil having ms = mk = 0 is sprayed on the 
top surface of the block, causing the hamster to slide down. Fric-
tion  between  the  block  and  the  scale  is  large  enough  that  the 
block does not  slip on  the  scale. What does  the  scale  read,  in 
grams, as the hamster slides down?

 57.  Figure CP7.57 shows three hang-
ing masses connected by mass-
less  strings  over  two  massless, 
frictionless pulleys.

  a.  Find  the  acceleration  con-
straint for this system. It is a 
single  equation  relating  a1y, 
a2y, and a3y.

Hint: yA  isn’t constant.
  b.  Find  an  expression  for  the 

tension in string A.
Hint:  You  should  be  able  to 
write four second-law equations. 
These, plus the acceleration con-
straint, are five equations in five 
unknowns.

  c.  Suppose: m1 = 2.5 kg, m2 =  1.5 kg, and m3 = 4.0 kg. Find 
the acceleration of each.

  d.  The 4.0 kg mass would appear to be in equilibrium. Explain 
why it accelerates.
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StoP to think AnSwerS

Stop to Think 7.1: The crate’s gravitational force and the normal 
force are incorrectly identified as an action/reaction pair. The nor-
mal force should be paired with a downward force of the crate on the 

ground. Gravity is the pull of the entire earth, so F
u

G should be paired 
with a force pulling up on the entire earth.

Stop to Think 7.2: c. Newton’s third law says that the force of A on B 
is equal and opposite to the force of B on A. This is always true. The 
speed of the objects isn’t relevant.

Stop to Think 7.3: b. FB on H = FH on B and FA on B = FB on A because 
these are action/reaction pairs. Box B is slowing down and therefore 
must have a net force to the left. So from Newton’s second law we 
also know that FH on B 7 FA on B.

Stop to Think 7.4: Equal to. Each block is hanging in equilibrium, 
with no net force, so the upward tension force is mg.

Stop to Think 7.5: Less than. Block B is accelerating downward, so 
the net force on B must point down. The only forces acting on B are 
the tension and gravity, so TS on B 6 (FG)B.

Stop to Think 7.6: c. Newton’s third law says that the force of A on B 
is equal and opposite to the force of B on A. This is always true. The 
mass of the objects isn’t relevant.
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Reasoning About Circular 
Motion
Water in a bucket swung over your head 
has a downward gravitation pull, but it 
doesn’t fall out.

These riders at 
the carnival feel 
pressed against 
the wall, yet the 
force on them 
points inward, 
toward the center.

You will learn to understand and explain 
the physics of these seemingly odd 
effects.

Gravity and Orbits
You’ll see that an orbit can be thought 
of as projectile motion that never gets 
any closer to the ground because the 
ground curves away as fast as the 
object falls.

An orbiting 
projectile is  
in free fall!

Dynamics of Circular 
Motion
For uniform circular motion, there must 
be a net force toward the center of the 
circle to create the centripetal acceleration  
of changing direction.

Acceleration points 
toward the center for 
uniform circular motion at 
constant speed. You’ll 
learn that non-uniform 
circular motion has a 
tangential component of 
acceleration.

8

Why doesn’t the roller 
coaster fall off the track 
at the top of the loop?

Dynamics II:  
Motion in a Plane

Newton’s Laws in 2D
This chapter extends Newton’s laws to 
two-dimensional motion in a plane.

One important application is circular 
motion. You studied the kinematics in 
Chapter 4; now we want to look at the 
forces of circular motion.

You’ll learn that the 
net force on this turn-
ing plane is directed 
toward the center of 
the circle.

You’ll learn to analyze circular motion 
using a coordinate system with radial 
and tangential components—what we’ll 
call the rtz-coordinate system.

The kinematics of projectile motion was 
another important topic of Chapter 4. 
We’ll justify those equations and learn 
how to handle situations where there are 
forces in addition to gravity.

◀ Looking Back
Chapter 4 Kinematics of planar and 
circular motion

▶ Looking Ahead The goal of Chapter 8 is to learn how to solve problems about motion in a plane.

tr
z

◀ Looking Back
Section 6.2 Solving dynamics problems  
with Newton’s second law
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Dynamics in a Plane
Two-dimensional motion with acceler-
ation along both axes often can be 
analyzed writing Newton’s second law in 
terms of its x- and y-components.

An example is projectile motion with air 
resistance, for which maximum range no 
longer occurs for a 45° launch.
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◀ Looking Back
Section 6.3 Gravity and weight
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8.1 Dynamics in Two Dimensions
Newton’s second law, a

u
= F

u

net/m, determines an object’s acceleration. It makes no 
distinction between linear motion and two-dimensional motion in a plane. In general, 
the x- and y-components of the acceleration vector are given by

 ax =
(Fnet)x

m
  and  ay =

(Fnet)y

m
 (8.1)

Suppose the x- and y-components of acceleration are independent of each other. 
That is, ax does not depend on either y or vy  , and similarly ay does not depend on x or 
vx  . Then Problem-Solving Strategy 6.2 for dynamics problems, on page 142, is still 
valid. As a quick review, you should

	 1.	Draw a pictorial representation—a sketch and a free-body diagram.
	 2.	Use Newton’s second law in component form:

 (Fnet)x = aFx = max  and  (Fnet)y = aFy = may

	 	 The force components (including proper signs) are found from the free-body 
diagram.

	 3.	Solve for the acceleration. If the acceleration is constant, use the two-dimensional 
kinematic equations of Chapter 4 to find velocities and positions.

ExAMPLE 8.1  Rocketing in the wind
A small rocket for gathering weather data has a mass of 30 kg 
and generates 1500 N of thrust. On a windy day, the wind exerts 
a 20 N horizontal force on the rocket. If the rocket is launched 
straight up, what is the shape of its trajectory, and by how much 
has it been deflected sideways when it reaches a height of 1.0 km? 
Because the rocket goes much higher than this, assume there’s no 
significant mass loss during the first 1.0 km of flight.

MODEL Model the rocket as a particle. We need to find the func-
tion y(x) describing the curve the rocket follows. Because rockets 
have pointy, aerodynamic shapes, we’ll assume no vertical air 
resistance.

VisuALizE FiGuRE 8.1 shows a pictorial representation. We’ve cho-
sen a coordinate system with a vertical y-axis. Three forces act on 
the rocket: two vertical and one horizontal. The wind force is es-
sentially drag (the rocket is moving sideways relative to the wind), 
so we’ve labeled it D

u

.

sOLVE The vertical and horizontal forces are independent of each 
other, so we can follow the problem-solving strategy summarized 

above. Newton’s second law is

  ax =
(Fnet)x

m
=

D

m

  ay =
(Fnet)y

m
=

Fthrust - mg

m

Both accelerations are constant, so we can use kinematics to find

  x = 1
2 ax (�t)2 =

D

2m
 (�t)2

  y = 1
2 ay (�t)2 =

Fthrust - mg

2m
 (�t)2

where we used the fact that all initial positions and velocities are 
zero. From the x-equation, (�t)2 = 2mx/D. Substituting this into 
the y-equation, we find

 y(x) = c Fthrust - mg

D
d  x

This is the equation of the rocket’s trajectory. It is a linear equa-
tion. Somewhat surprisingly, given that the rocket has both verti-
cal and horizontal accelerations, its trajectory is a straight line. We 
can rearrange this result to find the deflection at height y:

 x = c D

Fthrust - mg
d  y

From the data provided, we can calculate a deflection of 17 m at 
a height of 1000 m.

AssEss The solution depended on the fact that the time parameter 
�t is the same for both components of the motion.

Fthrust

y

x

r

FG

r

0

0
x

y
Known

Deflection

xi � yi � 0 m
vix � viy � 0 m/s
yf � 1000 m 
m � 30 kg
Fthrust � 1500 N
D � 20 N

Find
xf 

xf

yf

r
D

FiGuRE 8.1 Pictorial representation of the rocket launch.
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Projectile Motion
We found in Chapter 6 that the gravitational force on an object near the surface of a 
planet is F

u

G = (mg, down). If we choose a coordinate system with a vertical y-axis, 
then

 F
u

G = -mg jn (8.2)

Consequently, from Newton’s second law, the acceleration is

  ax =
(FG)x

m
= 0

  ay =
(FG)y

m
= -g (8.3)

Equations 8.3 justify the accelerations of Chapter 4—a downward acceleration 
ay = -g with no horizontal acceleration—that led to the parabolic motion of a drag-
free projectile. The vertical motion is free fall, while the horizontal motion is one of 
constant velocity.

However, the situation is quite different for a low-mass projectile, where the effects 
of drag are too large to ignore. We’ll leave it as a homework problem for you to show 
that the acceleration of a projectile subject to drag is

  ax = -  
rCA

2m
 vx2vx 

2 + vy 

2

  ay = -g -
rCA

2m
 vy2vx 

2 + vy 

2 (8.4)

Here the components of acceleration are not independent of each other because ax 
depends on vy and vice versa. It turns out that these two equations cannot be solved 
exactly for the trajectory, but they can be solved numerically. FiGuRE 8.2 shows the nu-
merical solution for the motion of a 5 g plastic ball that’s been hit with an initial speed 
of 25 m/s. It doesn’t travel very far (the maximum distance would be more than 60 m 
in a vacuum), and the maximum range is no longer reached for a launch angle of 45°. 
In this case, maximum distance is achieved by hitting the ball at a 30° angle. A 60° 
launch angle, which gives the same distance as 30° in vacuum, travels only �  75% as 
far. Notice that the trajectories are not at all parabolic.

Stop to think 8.1  This acceleration will cause the particle to

 a. Speed up and curve upward. b. Speed up and curve downward.
 c. Slow down and curve upward. d. Slow down and curve downward.
 e. Move to the right and down. f. Reverse direction.

8.2 uniform Circular Motion
We studied the mathematics of circular motion in Chapter 4, and a review is highly 
recommended. Recall that a particle in uniform circular motion with angular velocity 
v has speed v = vr and centripetal acceleration

 a
u

= 1v 2

r
 , toward center of circle2 = (v2r, toward center of circle) (8.5)

Now we’re ready to study dynamics—how forces cause circular motion.
The xy-coordinate system we’ve been using for linear motion and projectile mo-

tion is not the best coordinate system for circular dynamics. FiGuRE 8.3 shows a circular 

When drag is included, the angle for 
maximum range of a projectile depends 
both on its size and mass. The optimum 
angle is roughly 35° for baseballs. The 
flight of a golf ball is even more complex 
because the dimples and the high rate 
of spin greatly affect its aerodynamics. 
Professional golfers achieve their maximum 
distance at launch angles of barely 15°.

FiGuRE 8.2 A projectile is affected by 
drag. This example shows trajectories 
of a plastic ball launched at different 
angles.

x (m)

y (m)

0 2 4 6
0

2

4

6

8

60�

45�

30�

Maximum range
is at 30�.

rv
ar

FiGuRE 8.3 The rtz-coordinate system.
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trajectory and the plane in which the circle lies. Let’s establish a coordinate system 
with its origin at the point where the particle is located. The axes are defined as follows:

	■	 The r-axis (radial axis) points from the particle toward the center of the circle.
	■	 The t-axis (tangential axis) is tangent to the circle, pointing in the ccw direction.
	■	 The z-axis is perpendicular to the plane of motion.

The three axes of this rtz-coordinate system are mutually perpendicular, just like the 
axes of the familiar xyz-coordinate system. Notice how the axes move with the particle 
so that the r-axis always points to the center of the circle. It will take a little getting 
used to, but you will soon see that circular-motion problems are most easily described 
in these coordinates.

FiGuRE 8.4, from Chapter 4, reminds you that a particle in uniform circular motion has 
a velocity tangential to the circle and an acceleration—the centripetal acceleration—
pointing toward the center of the circle. Thus the rtz-components of v  

u
 and a

u
 are

 vr = 0  ar =
v 2

r
= v2r

 vt = vr  at = 0  (8.6)

 vz = 0  az = 0

where v = du/dt, the angular velocity, must be in rad/s. In other words, the velocity 
vector has only a tangential component, the acceleration vector has only a radial 
component. Now you can begin to see the advantages of the rtz-coordinate system. 
For convenience, we’ll generally refer to ar as “the centripetal acceleration” rather 
than “the radial acceleration.”

NOTE  Recall that v is positive for a counterclockwise (ccw) rotation, negative 
for a clockwise (cw) rotation. Hence the tangential velocity vt is positive/negative 
for ccw/cw rotations. Because vt is the only nonzero component of velocity, the 
particle’s speed is v = � vt � = �v � r. We’ll sometimes write this as v =  vr if there’s 
no ambiguity about the signs. 

FiGuRE 8.4 The velocity and acceleration 
vectors in the rtz-coordinate system.

t-axis

r-axis

ar rv

v has only a tangential
component.

r

a has only a radial
component.

r
v

ExAMPLE 8.2  The ultracentrifuge
A 17-cm-diameter ultracentrifuge produces an extraordinarily 
large acceleration of 600,000g, where g is the free-fall accelera-
tion. What is the rotational frequency in rpm? What is the speed of 
a bacterium at the bottom of the centrifuge tube?

sOLVE The radius of the circular motion is 8.5 cm, or 0.085 m. 
From Equations 8.6, we see that the angular velocity is

 v = Aar

r
= B (600,000)(9.8 m/s2)

0.085 m
= 8320 rad/s

Converting to rpm, we find

 v = 8320 
rad

s
*

1 rev

2p rad
*

60 s

1 min
= 80,000 rpm

This incredibly fast rotation rate is why it’s called an ultracentri-
fuge. The tubes pivot outward as the centrifuge spins, so a bacte-
rium at the “bottom” of the tube is rotating at the end of an arm of 
radius 8.5 cm. Its speed is

 v = vr = (8320 rad/s)(0.085 m) = 710 m/s

This is more than twice the speed of sound!

Stop to think 8.2 
 Rank in order, from largest to smallest, the centripetal accelera-

tions (ar)a to (ar)e of particles a to e.

r

(a)

v

2r

(d)

v

2r

(e)

r

(c)

vr

(b)

2v

2v
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Dynamics of uniform Circular Motion
A particle in uniform circular motion is clearly not traveling at constant velocity in a 
straight line. Consequently, according to Newton’s first law, the particle must have a 
net force acting on it. We’ve already determined the acceleration of a particle in uni-
form circular motion—the centripetal acceleration of Equation 8.5. Newton’s second 
law tells us exactly how much net force is needed to cause this acceleration:

 F
u

net = ma
u

= 1mv 2

r
, toward center of circle2  (8.7)

In other words, a particle of mass m moving at constant speed v around a circle of 
radius r must have a net force of magnitude mv 2/r pointing toward the center of the 
circle. Without such a force, the particle would move off in a straight line tangent to 
the circle.

FiGuRE 8.5 shows the net force F
u

net acting on a particle as it undergoes uniform cir-
cular motion. You can see that F

u

net	points along the radial axis of the rtz-coordinate 
system, toward the center of the circle. The tangential and perpendicular compo-
nents of F

u

net are zero.

NOTE  The force described by Equation 8.7 is not a new force. Our rules for iden-
tifying forces have not changed. What we are saying is that a particle moves with 
uniform circular motion if and only if a net force always points toward the center 
of the circle. The force itself must have an identifiable agent and will be one of our 
familiar forces, such as tension, friction, or the normal force. Equation 8.7 simply 
tells us how the force needs to act—how strongly and in which direction—to cause 
the particle to move with speed v in a circle of radius r. 

The usefulness of the rtz-coordinate system becomes apparent when we write 
Newton’s second law, Equation 8.7, in terms of the r-, t-, and z-components:

  (Fnet)r = aFr = mar =
mv 2

r
= mv2r

  (Fnet)t = aFt = mat = 0  (8.8)

  (Fnet)z = aFz = maz = 0

Notice that we’ve used our explicit knowledge of the acceleration, as given in Equa-
tions 8.6, to write the right-hand sides of these equations. For uniform circular mo-
tion, the sum of the forces along the t-axis and along the z-axis must equal zero, 
and the sum of the forces along the r-axis must equal mar, where ar is the centrip-
etal acceleration.

A few examples will clarify these ideas and show how some of the forces you’ve 
come to know can be involved in circular motion.

Highway and racetrack curves are banked 
to allow the normal force of the road to 
provide the centripetal acceleration of 
the turn.

FiGuRE 8.5 The net force points in the 
radial direction, toward the center of 
the circle.

Plane of motion

t
r z

Without the force, the particle would
continue moving in the direction of v.r

Fnet

r
vr

ExAMPLE 8.3  spinning in a circle
An energetic father places his 20 kg child on a 5.0 kg cart to which 
a 2.0-m-long rope is attached. He then holds the end of the rope 
and spins the cart and child around in a circle, keeping the rope 
parallel to the ground. If the tension in the rope is 100 N, how 
many revolutions per minute (rpm) does the cart make? Rolling 
friction between the cart’s wheels and the ground is negligible.

MODEL Model the child in the cart as a particle in uniform circular 
motion.

VisuALizE FiGuRE 8.6 on the next page shows the pictorial represen-
tation. A circular-motion problem usually does not have starting and 
ending points like a projectile problem, so numerical subscripts such 
as x1 or y2 are usually not needed. Here we need to define the cart’s 
speed v and the radius r of the circle. Further, a motion diagram is 
not needed for uniform circular motion because we already know 
the acceleration a

u
 points to the center of the circle.

Continued
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ExAMPLE 8.4  Turning the corner i
What is the maximum speed with which a 1500 kg car can make a 
left turn around a curve of radius 50 m on a level (unbanked) road 
without sliding?

MODEL Although the car turns only a quarter of a circle, we can 
model the car as a particle in uniform circular motion as it goes 
around the turn. Assume that rolling friction is negligible.

VisuALizE FiGuRE 8.7 shows the pictorial representation. The issue 
we must address is how a car turns a corner. What force or forces 
cause the direction of the velocity vector to change? Imagine 
driving on a completely frictionless road, such as a very icy road. 
You would not be able to turn a corner. Turning the steering wheel 
would be of no use; the car would slide straight ahead, in accor-
dance with both Newton’s first law and the experience of anyone 

The essential part of the pictorial representation is the free-body 
diagram. For	uniform	circular	motion	we’ll	draw	the	free-body	
diagram	in	the	rz-plane,	looking	at	the	edge	of	the	circle,	be-
cause	this	is	the	plane	of	the	forces. The contact forces acting on 
the cart are the normal force of the ground and the tension force 
of the rope. The normal force is perpendicular to the plane of the 
motion and thus in the z-direction. The direction of T 

u

 is deter-
mined by the statement that the rope is parallel to the ground. In 
addition, there is the long-range gravitational force F

u

G.

sOLVE We defined the r-axis to point toward the center of the 
circle, so T 

u

 points in the positive r-direction and has r-component 
Tr = T. Newton’s second law, using the rtz-components of Equa-
tions 8.8, is

  aFr = T =
mv 2

r

  aFz = n - mg = 0

We’ve taken the r- and z-components of the forces directly from 
the free-body diagram, as you learned to do in Chapter 6. Then 

we’ve explicitly equated the sums to ar = v 2/r and az = 0. This is 
the basic strategy for all uniform circular-motion problems. From 
the z-equation we can find that n = mg. This would be useful if 
we needed to determine a friction force, but it’s not needed in this 
problem. From the r-equation, the speed of the cart is

 v = B rT

m
= B (2.0 m)(100 N)

25 kg
= 2.83 m/s

The cart’s angular velocity is then found from Equations 8.6:

 v =
vt

r
=

v

r
=

2.83 m/s

2.0 m
= 1.41 rad/s

This is another case where we inserted the radian unit because v 
is specifically an angular velocity. Finally, we need to convert v 
to rpm:

 v =
1.41 rad

1 s
*

1 rev

2p rad
*

60 s

1 min
= 14 rpm

AssEss 14 rpm corresponds to a period T = 4.3 s. This result is 
reasonable.

FiGuRE 8.6 Pictorial representation of a cart spinning in a circle.

FiGuRE 8.7 Pictorial representation of a car turning a corner.
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rv
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rv
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fs

r

nr

FG

r

Fnet

r

who has ever driven on ice! So it must be friction that somehow 
allows the car to turn.

Figure 8.7 shows the top view of a tire as it turns a corner. If the 
road surface were frictionless, the tire would slide straight ahead. 
The force that prevents an object from sliding across a surface is stat-
ic friction. Static friction f 

u

s pushes sideways on the tire, toward the 
center of the circle. How do we know the direction is sideways? If f 

u

s 
had a component either parallel to v  

u
 or opposite to v  

u
, it would cause 

the car to speed up or slow down. Because the car changes direction 
but not speed, static friction must be perpendicular to v  

u
. f 

u

s causes 
the centripetal acceleration of circular motion around the curve, and 
thus the free-body diagram, drawn from behind the car, shows the 
static friction force pointing toward the center of the circle.
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sOLVE The maximum turning speed is reached when the static 
friction force reaches its maximum fs max = ms  n. If the car enters 
the curve at a speed higher than the maximum, static friction will 
not be large enough to provide the necessary centripetal accelera-
tion and the car will slide.

The static friction force points in the positive r-direction, so its 
radial component is simply the magnitude of the vector: (  fs)r = fs. 
Newton’s second law in the rtz-coordinate system is

  aFr = fs =
mv 2

r

  aFz = n - mg = 0

The only difference from Example 8.3 is that the tension force to-
ward the center has been replaced by a static friction force toward 
the center. From the radial equation, the speed is

 v = B rfs

m

The speed will be a maximum when fs reaches its maximum value:

 fs = fs max = ms  n = ms  mg

where we used n = mg from the z-equation. At that point,

  vmax = B rfs max

m
= 2ms  rg

  = 2(1.0)(50 m)(9.80 m/s2) = 22 m/s

where the coefficient of static friction was taken from Table 6.1.

AssEss 22 m/s � 45 mph, a reasonable answer for how fast a car 
can take an unbanked curve. Notice that the car’s mass canceled 
out and that the final equation for vmax is quite simple. This is 
another example of why it pays to work algebraically until the 
very end.

Because ms depends on road conditions, the maximum safe speed through turns 
can vary dramatically. Wet roads, in particular, lower the value of ms and thus lower 
the speed of turns. Icy conditions are even worse. The corner you turn every day at 
45 mph will require a speed of no more than 15 mph if the coefficient of static friction 
drops to 0.1.

ExAMPLE 8.5  Turning the corner ii
A highway curve of radius 70 m is banked at a 15° angle. At what 
speed v0 can a car take this curve without assistance from friction?

MODEL The car is a particle in uniform circular motion.

VisuALizE Having just discussed the role of friction in turning cor-
ners, it is perhaps surprising to suggest that the same turn can also 
be accomplished without friction. Example 8.4 considered a level 
roadway, but real highway curves are banked by being tilted up 
at the outside edge of the curve. The angle is modest on ordinary 
highways, but it can be quite large on high-speed racetracks. The 
purpose of banking becomes clear if you look at the free-body 
diagram in FiGuRE 8.8. The normal force n

u
 is perpendicular to the 

road, so tilting the road causes n
u

 to have a component toward the 
center of the circle. The radial component	nr	is the inward force 
that causes the centripetal acceleration needed to turn the car. 
Notice that we are not using a tilted coordinate system, although 

this looks rather like an inclined-plane problem. The center of the 
circle is in the same horizontal plane as the car, and for circular-
motion problems we need the r-axis to pass through the center. 
Tilted axes are for linear motion along an incline.

sOLVE Without friction, nr = n sin u is the only component of 
force in the radial direction. It is this inward component of the 
normal force on the car that causes it to turn the corner. Newton’s 
second law is

  aFr = n sin u =
mv0 

2

r

  aFz = n cos u - mg = 0

where u is the angle at which the road is banked and we’ve as-
sumed that the car is traveling at the correct speed v0. From the 
z-equation,

 n =
mg

cos u

Substituting this into the r-equation and solving for v0 give

 
mg

cos u
 sin u = mg tan u =

mv0 

2

r

 v0 = 2rg tan u = 14 m/s

AssEss This is �  28 mph, a reasonable speed. Only at this very 
specific speed can the turn be negotiated without reliance on fric-
tion forces.

FiGuRE 8.8 Pictorial representation of a car on a banked curve.
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FiGuRE 8.9 Free-body diagrams for a car going around a banked curve at speeds higher 
and lower than the friction-free speed v0  .

Speed v � v0

r

z

Static friction must point downhill:
A faster speed requires a larger net
force toward the center of the circle.
The radial component of static friction
adds to nr to allow the car to make the
turn. Maximum speed occurs when the
static friction force reaches its maximum.

Speed v � v0

r

z

Static friction must point uphill:
Without a static friction force up the
slope, a slow-moving car would slide
down the incline! Further, nr is too much
radial force for circular motion at v � v0.
Here the radial component of static friction
reduces the net radial force.

Road surface Road surface
nr

nr

fs

r
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r

FG

r
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rFnet

r

FG

r

ExAMPLE 8.6  A rock in a sling
A Stone Age hunter places a 1.0 kg rock in a sling and swings it 
in a horizontal circle around his head on a 1.0-m-long vine. If the 
vine breaks at a tension of 200 N, what is the maximum angular 
speed, in rpm, with which he can swing the rock?

MODEL Model the rock as a particle in uniform circular motion.

VisuALizE This problem appears, at first, to be essentially the 
same as Example 8.3, where the father spun his child around on 
a rope. However, the lack of a normal force from a supporting 
surface makes a big difference. In this case, the only contact force 
on the rock is the tension in the vine. Because the rock moves in a 
horizontal circle, you may be tempted to draw a free-body diagram 
like FiGuRE 8.10a, where T

u

 is directed along the r-axis. You will 
quickly run into trouble, however, because this diagram has a net 
force in the z-direction and it is impossible to satisfy gFz = 0. 
The gravitational force F

u

G certainly points vertically downward, 
so the difficulty must be with T

u

.
As an experiment, tie a small weight to a string, swing it over 

your head, and check the angle of the string. You will quickly dis-
cover that the string is not horizontal but, instead, is angled down-
ward. The sketch of FiGuRE 8.10b labels the angle u. Notice that the 
rock moves in a horizontal circle, so the center of the circle is not 
at his hand. The r-axis points to the center of the circle, but the 
tension force is directed along the vine. Thus the correct free-body 
diagram is the one in Figure 8.10b.

sOLVE The free-body diagram shows that the downward gravita-
tional force is balanced by an upward component of the tension, 
leaving the radial component of the tension to cause the centripetal 

acceleration. Newton’s second law is

  aFr = T cos u =
mv 2

r

  aFz = T sin u - mg = 0

where u is the angle of the vine below horizontal. From the 
z-equation we find

 sin u =
mg

T

 u = sin-11 (1.0 kg)(9.8 m/s2)

200 N 2 = 2.81�

where we’ve evaluated the angle at the maximum tension of 
200 N. The vine’s angle of inclination is small but not zero.

Turning now to the r-equation, we find the rock’s speed is

 v = B rT cos u
m

Careful! The radius r of the circle is not the length L of the vine. 
You can see in Figure 8.10b that r = L cos u. Thus

 v = BLT cos2 u
m

= B (1.0 m)(200 N)(cos 2.81�)2

1.0 kg
= 14.1 m/s

We can now find the maximum angular speed, the value of v that 
brings the tension to the breaking point:

 vmax =
v

r
=

v

L cos u
=

14.1 rad

1 s
*

1 rev

2p rad
*

60 s

1 min
= 135 rpm

FiGuRE 8.10 Pictorial representation of a rock in a sling.
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It’s interesting to explore what happens at other speeds on a banked curve. FiGuRE 8.9 
shows that the car will need to rely on both the banking and friction if it takes the curve 
at a speed higher or lower than v0.
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8.3 Circular Orbits
Satellites orbit the earth, the earth orbits the sun, and our entire solar system orbits the 
center of the Milky Way galaxy. Not all orbits are circular, but in this section we’ll 
limit our analysis to circular orbits. We’ll look at the elliptical orbits of satellites and 
planets in Chapter 13.

How does a satellite orbit the earth? What forces act on it? Why does it move in a 
circle? To answer these important questions, let’s return, for a moment, to projectile 
motion. Projectile motion occurs when the only force on an object is gravity. Our 
analysis of projectiles assumed that the earth is flat and that the acceleration due to 
gravity is everywhere straight down. This is an acceptable approximation for projec-
tiles of limited range, such as baseballs or cannon balls, but there comes a point where 
we can no longer ignore the curvature of the earth.

FiGuRE 8.11 shows a perfectly smooth, spherical, airless planet with one tower of 
height h. A projectile is launched from this tower parallel to the ground (u = 0�) with 
speed v0  . If v0 is very small, as in trajectory A, the “flat-earth approximation” is valid 
and the problem is identical to Example 4.4 in which a car drove off a cliff. The pro-
jectile simply falls to the ground along a parabolic trajectory.

As the initial speed v0 is increased, the projectile begins to notice that the ground 
is curving out from beneath it. It is falling the entire time, always getting closer to 
the ground, but the distance that the projectile travels before finally reaching the 
ground—that is, its range—increases because the projectile must “catch up” with the 
ground that is curving away from it. Trajectories B and C are of this type. The actual 
calculation of these trajectories is beyond the scope of this textbook, but you should 
be able to understand the factors that influence the trajectory.

If the launch speed v0 is sufficiently large, there comes a point where the curve of 
the trajectory and the curve of the earth are parallel. In this case, the projectile “falls” 
but it never gets any closer to the ground! This is the situation for trajectory D. A 
closed trajectory around a planet or star, such as trajectory D, is called an orbit.

The most important point of this qualitative analysis is that an orbiting projectile 
is in free fall. This is, admittedly, a strange idea, but one worth careful thought. An 
orbiting projectile is really no different from a thrown baseball or a car driving off a 
cliff. The only force acting on it is gravity, but its tangential velocity is so large that the 
curvature of its trajectory matches the curvature of the earth. When this happens, the 
projectile “falls” under the influence of gravity but never gets any closer to the surface, 
which curves away beneath it.

In the flat-earth approximation, shown in FiGuRE 8.12a, the gravitational force acting 
on an object of mass m is

 F
u

G = (mg, vertically downward)  (flat@earth approximation) (8.9)

But since stars and planets are actually spherical (or very close to it), the “real” force 
of gravity acting on an object is directed toward the center of the planet, as shown in 
FiGuRE 8.12b. In this case the gravitational force is

 F
u

G = (mg, toward center)  (spherical planet) (8.10)

FiGuRE 8.11 Projectiles being launched 
at increasing speeds from height h on a 
smooth, airless planet.
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This projectile “falls” all
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Stop to think 8.3 
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FiGuRE 8.12 The “real” gravitational 
force is always directed toward the 
center of the planet.
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As you have learned, a force of constant magnitude that always points toward the 
center of a circle causes the centripetal acceleration of uniform circular motion. Thus 
the gravitational force of Equation 8.10 on the object in Figure 8.12b causes it to have 
acceleration

 a
u

=
F
u

net

m
= (g, toward center) (8.11)

An object moving in a circle of radius r at speed vorbit will have this centripetal ac-
celeration if

 ar =
(vorbit)

2

r
= g (8.12)

That is, if an object moves parallel to the surface with the speed

 vorbit = 1rg (8.13)

then the free-fall acceleration provides exactly the centripetal acceleration needed for 
a circular orbit of radius r. An object with any other speed will not follow a circular 
orbit.

The earth’s radius is r = Re = 6.37 * 106 m. (A table of useful astronomical data 
is inside the back cover of this book.) The orbital speed of a projectile just skimming 
the surface of an airless, bald earth is

 vorbit = 2rg = 2(6.37 * 106 m)(9.80 m/s2) = 7900 m/s � 16,000 mph

Even if there were no trees and mountains, a real projectile moving at this speed would 
burn up from the friction of air resistance.

Suppose, however, that we launched the projectile from a tower of height 
h = 200 mi � 3.2 * 105 m, just above the earth’s atmosphere. This is approximately 
the height of low-earth-orbit satellites, such as the space shuttle. Note that h V Re, 
so the radius of the orbit r = Re + h = 6.69 * 106 m is only 5% greater than the 
earth’s radius. Many people have a mental image that satellites orbit far above the 
earth, but in fact many satellites come pretty close to skimming the surface. Our cal-
culation of vorbit thus turns out to be quite a good estimate of the speed of a satellite 
in low earth orbit.

We can use vorbit to calculate the period of a satellite orbit:

 T =
2pr
vorbit

= 2p A r
g

 (8.14)

For a low earth orbit, with r = Re + 200 miles, we find T = 5190 s = 87 min. The 
period of the space shuttle at an altitude of 200 mi is, indeed, close to 87 minutes. (The 
actual period of the shuttle at this elevation is 91 min. The difference, you’ll learn in 
Chapter 13, arises because g is slightly less at a satellite’s altitude.)

When we discussed weightlessness in Chapter 6, we discovered that it occurs dur-
ing free fall. We asked the question, at the end of Section 6.3, whether astronauts and 
their spacecraft were in free fall. We can now give an affirmative answer: They are, 
indeed, in free fall. They are falling continuously around the earth, under the influence 
of only the gravitational force, but never getting any closer to the ground because the 
earth’s surface curves beneath them. Weightlessness in space is no different from the 
weightlessness in a free-falling elevator. It does not occur from an absence of gravity. 
Instead, the astronaut, the spacecraft, and everything in it are weightless because they 
are all falling together.

The orbiting space shuttle is in free fall.
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Gravity
We can leave this section with a glance ahead, where we will look at the gravitational 
force more closely. If a satellite is simply “falling” around the earth, with the gravita-
tional force causing a centripetal acceleration, then what about the moon? Is it obeying 
the same laws of physics? Or do celestial objects obey laws that we cannot discover 
by experiments here on earth?

The radius of the moon’s orbit around the earth is r = Rm = 3.84 * 108 m. If we 
use Equation 8.14 to calculate the period of the moon’s orbit, the time it takes the 
moon to circle the earth once, we get

 T = 2p A r
g

= 2p B3.84 * 108 m

9.80 m/s2 = 655 min � 11 h

This is clearly wrong. As you probably know, the full moon occurs roughly once a 
month. More exactly, we know from astronomical measurements that the period of the 
moon’s orbit is T = 27.3 days = 2.36 * 106 s, a factor of 60 longer than we calculated 
it to be.

Newton believed that the laws of motion he had discovered were universal. That 
is, they should apply to the motion of the moon as well as to the motion of objects 
in the laboratory. But why should we assume that the free-fall acceleration g is the 
same at the distance of the moon as it is on or near the earth’s surface? If gravity 
is the force of the earth pulling on an object, it seems plausible that the size of that 
force, and thus the size of g, should diminish with increasing distance from the 
earth.

If the moon orbits the earth because of the earth’s gravitational pull, what value of 
g would be needed to explain the moon’s period? We can calculate gat moon from Equa-
tion 8.14 and the observed value of the moon’s period:

 gat moon =
4p2Rm

Tmoon 

2 = 0.00272 m/s2

This is much less than the earth-bound value of 9.80 m/s2.
As you learned in Chapter 6, Newton proposed the idea that the earth’s force of grav-

ity decreases inversely with the square of the distance from the earth. In Chapter 13, 
we’ll use Newton’s law of gravity, the mass of the earth, and the distance to the moon 
to predict that gat moon = 0.00272 m/s2, exactly as expected. The moon, just like the 
space shuttle, is simply “falling” around the earth!

8.4 Fictitious Forces
If you are riding in a car that makes a sudden stop, you may feel as if a force “throws” 
you forward toward the windshield. But there really is no such force. You cannot 
identify any agent that does the throwing. An observer watching from beside the road 
would simply see you continuing forward as the car stops.

The decelerating car is not an inertial reference frame. You learned in Chapter 5 
that Newton’s laws are valid only in inertial reference frames. The roadside observer 
is in the earth’s inertial reference frame. His observations of the car decelerating rela-
tive to the earth while you continue forward with constant velocity are in accord with 
Newton’s laws.

Nonetheless, the fact that you seem to be hurled forward relative to the car is a 
very real experience. You can describe your experience in terms of what are called 
fictitious forces. These are not real forces because no agent is exerting them, but they 
describe your motion relative to a noninertial reference frame. FiGuRE 8.13 shows the 
situation from both reference frames.

Saturn’s beautiful rings consist of dust 
particles and small rocks orbiting the 
planet.

FiGuRE 8.13 The forces are properly 
identified only in an inertial reference 
frame.
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Centrifugal Force?
If the car turns a corner quickly, you feel “thrown” against the door. But is there really such 
a force? FiGuRE 8.14 shows a bird’s-eye view of you riding in a car as it makes a left turn. 
You try to continue moving in a straight line, obeying Newton’s first law, when—without 
having been provoked—the door suddenly turns in front of you and runs into you! You do, 
indeed, then feel the force of the door because it is now the normal force of the door, point-
ing inward toward the center of the curve, causing you to turn the corner. But you were not 
“thrown” into the door; the door ran into you. The bird’s-eye view, from an inertial refer-
ence frame, gives the proper perspective of what happens.

The “force” that seems to push an object to the outside of a circle is called the 
centrifugal force. Despite having a name, the centrifugal force is a fictitious force. It 
describes your experience relative to a noninertial reference frame, but there really is 
no such force. You must always use Newton’s laws in an inertial reference frame. 
There are no centrifugal forces in an inertial reference frame.

NOTE  You might wonder if the rtz-coordinate system is an inertial reference 
frame. It is, and Newton’s laws apply, although the reason is rather subtle. We’re 
using the rtz-coordinates to establish directions for decomposing vectors, but we’re 
not making measurements in the rtz-system. That is, velocities and accelerations 
are measured in the laboratory reference frame. The particle would always be at 
rest (v  

u
= 0

u

) if we measured velocities in a reference frame attached to the particle. 
Thus the analysis of this chapter really is in an inertial reference frame. 

Gravity on a Rotating Earth
There is one small problem with the admonition that you must use Newton’s laws in 
an inertial reference frame: A reference frame attached to the ground isn’t truly inertial 
because of the earth’s rotation. Fortunately, we can make a simple correction that al-
lows us to continue using Newton’s laws on the earth’s surface.

FiGuRE 8.15 shows an object being weighed by a spring scale on the earth’s equator. 
An observer hovering in an inertial reference frame above the north pole sees two 
forces on the object: the gravitational force F

u

M on m, given by Newton’s law of gravity, 
and the outward spring force F

u

sp. The object moves in a circle as the earth rotates—it’s 
accelerating—and circular motion requires a net force directed toward the center of 
the circle. The gravitational force points toward the center of the circle, the spring 
force points away, so Newton’s second law is

 aFr = FM on m - Fsp = mv2R

where v is the angular speed of the rotating earth. The spring-scale reading 
Fsp = FM on m - mv2R is less than it would be on a nonrotating earth.

The blow-up in Figure 8.15 shows how we see things in a noninertial, flat-earth 
reference frame. Here the object is at rest, in static equilibrium. If we insist on using 
Newton’s laws, we have to conclude that F

u

net = 0
u

 and hence the upward spring force 
must be exactly balanced by a downward gravitational force F

u

G. Thus the spring-scale 
reading is Fsp = FG.

Now both we and the hovering, inertial observer measure the same spring compres-
sion and read the same number on the scale. If Fsp is the same for both of us, then

 FG = FM on m - mv2R (8.15)

In other words, force F
u

G—what we called the effective gravitational force in Chap-
ter 6—is slightly less than the true gravitational force F

u

M on m because of the earth’s 
rotation. In essence, mv2R is the centrifugal force, a fictitious force trying—from our 
perspective in a noninertial reference frame—to “throw” us off the rotating platform. 

FiGuRE 8.15 The earth’s rotation affects 
the measured value of g.
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This has the effect of “weakening” gravity. There really is no such force, but—this is 
the important point—we can continue to use Newton’s laws in our rotating refer-
ence frame if we pretend there is.

Because FG = mg for an object at rest, the effect of the centrifugal term in 
Equation 8.15 is to make g a little smaller than it would be on a nonrotating earth:

 g =
FG

m
=

FM on m - mv2R

m
=

GM

R2 - v2R = gearth - v2R (8.16)

We calculated gearth = 9.83 m/s2 in Chapter 6. Using v = 1 rev/day (which must be 
converted to SI units) and R = 6370 km, we find v2R = 0.033 m/s2 at the equator. 
Thus the free-fall acceleration—what we actually measure in our rotating reference 
frame—is about 9.80 m/s2. The purely gravitational acceleration gearth has been re-
duced by the centripetal acceleration of our rotation.

Things are a little more complicated at other latitudes, but the bottom line is that we 
can safely use Newton’s laws in our rotating, noninertial reference frame on the earth’s 
surface if we calculate the gravitational force—as we’ve been doing—as FG = mg 
with g the measured free-fall value, a value that compensates for our rotation, rather 
than the purely gravitational gearth.

Why Does the Water stay in the Bucket?
If you swing a bucket of water over your head quickly, the water stays in, but you’ll 
get a shower if you swing too slowly. Why? We’ll answer this question by starting 
with an equivalent situation, a roller coaster doing a loop-the-loop.

FiGuRE 8.16a shows a roller-coaster car going around a vertical loop-the-loop of ra-
dius r. Why doesn’t the car fall off at the top of the circle? FiGuRE 8.16b shows the car’s 
free-body diagrams at the top and bottom of the loop. Now, motion in a vertical circle 
is not uniform circular motion; the car slows down as it goes up one side and speeds up 
as it comes back down the other. But at the very top and very bottom points, only the 
car’s direction is changing, not its speed, so at those points the acceleration is purely 
centripetal.

Because the car is moving in a circle, there must be a net force toward the cen-
ter of the circle. First consider the very bottom of the loop. The only forces acting on 
the car are the gravitational force F

u

G and the normal force n
u

 of the track pushing up 
on it, so a net force toward the center—upward at this point—requires n 7 FG. The 
normal force has to exceed the gravitational force to provide the net force needed to 
“turn the corner” at the bottom of the circle. This is why you “feel heavy” at the bottom 
of the circle or at the bottom of a valley on a roller coaster.

We can analyze the situation quantitatively by writing the r-component of Newton’s 
second law. At the bottom of the circle, with the r-axis pointing upward, we have

 aFr = nr + (FG)r = n - mg = mar =
m(vbot)

2

r
 (8.17)

From Equation 8.17 we find

 n = mg +
m(vbot)

2

r
 (8.18)

The normal force at the bottom is larger than mg.
Things are a little trickier as the roller-coaster car crosses the top of the loop. 

Whereas the normal force of the track pushes up when the car is at the bottom of the 
circle, it presses down when the car is at the top and the track is above the car. Think 
about the free-body diagram to make sure you agree.

The car is still moving in a circle, so there must be a net force toward the center of 
the circle to provide the centripetal acceleration. The r-axis, which points toward the 

FiGuRE 8.16 A roller-coaster car going 
around a loop-the-loop.
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center of the circle, now points downward. Consequently, both forces have positive 
components. Newton’s second law at the top of the circle is

 aFr = nr + (FG)r = n + mg =
m(vtop)

2

r
 (8.19)

Thus at the top the normal force of the track on the car is

 n =
m(vtop)

2

r
- mg (8.20)

The normal force at the top can exceed mg if vtop is large enough. Our interest, 
however, is in what happens as the car goes slower and slower. As vtop decreases, there 
comes a point when n reaches zero. “No normal force” means “no contact,” so at that 
speed, the track is not pushing against the car. Instead, the car is able to complete the 
circle because gravity alone provides sufficient centripetal acceleration.

The speed at which n = 0 is called the critical speed vc :

 vc = A rmg

m
= 2rg (8.21)

The critical speed is the slowest speed at which the car can complete the circle. 
Equation 8.20 would give a negative value for n if v 6 vc, but that is physically 
impossible. The track can push against the wheels of the car (n 7 0), but it can’t pull 
on them. If v 6 vc, the car cannot turn the full loop but, instead, comes off the track 
and becomes a projectile! FiGuRE 8.17 summarizes this reasoning for the car on the 
loop-the-loop.

Water stays in a bucket swung over your head for the same reason: Circular 
motion requires a net force toward the center of the circle. At the top of the circle—
if you swing the bucket fast enough—the bucket adds to the force of gravity by 
pushing down on the water, just like the downward normal force of the track on the 
roller-coaster car. As long as the bucket is pushing against the water, the bucket 
and the water are in contact and thus the water is “in” the bucket. As you swing 
slower and slower, requiring the water to have less and less centripetal accelera-
tion, the bucket-on-water normal force decreases until it becomes zero at the criti-
cal speed. At the critical speed, gravity alone provides sufficient centripetal accel-
eration. Below the critical speed, gravity provides too much downward force for 
circular motion, so the water leaves the bucket and becomes a projectile following a 
parabolic trajectory toward your head!

Notice the similarity to the car making the left turn in Figure 8.14. The passenger 
feels like he’s being “hurled” into the door by a centrifugal force, but it’s actually the 
pushing force from the door, toward the center of the circle, that causes the passenger 
to turn the corner instead of moving straight ahead. Here, while it seems like the water 
is being “pinned” against the bottom of the bucket by a centrifugal force, it’s really 
the pushing force from the bottom of the bucket causing the water to move in a circle 
instead of following a free-fall parabola.

Stop to think 8.4 
 An out-of-gas car is rolling 

over the top of a hill at speed v. At this instant,

 a. n 7 FG  

 b. n 6 FG  

 c. n = FG  

 d. We can’t tell about n 
without knowing v.

FiGuRE 8.17 A roller-coaster car at the 
top of the loop.
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8.5 Nonuniform Circular Motion
Many interesting examples of circular motion involve objects whose speed changes. 
As we’ve already noted, a roller-coaster car doing a loop-the-loop slows down as it 
goes up one side, speeds up as it comes back down the other side. Circular motion with 
a changing speed is called nonuniform circular motion.

FiGuRE 8.18, which is borrowed from Chapter 4, reminds you of the key ideas. Here 
the particle is speeding up or slowing down as it moves around the circle. In addition 
to centripetal acceleration, a particle in nonuniform circular motion has a tangential 
acceleration at. Tangential acceleration, parallel to v  

u
, is the acceleration of chang-

ing speed. Mathematically, the tangential acceleration is simply the rate at which the 
tangential velocity changes:

 at =
dvt

dt
 (8.22)

It is usually most convenient to write the kinematic equations for circular motion in 
terms of the angular velocity v and the angular acceleration a = dv/dt. In Chapter 4, 
we found the connection between the tangential and angular accelerations to be

 at = ra (8.23)

This is analogous to the similar equation vt = rv for tangential and angular ve-
locity. In terms of angular quantities, the equations of constant-acceleration 
kinematics are

  uf = ui + vi �t +
1
2 a(�t)2

  vf = vi + a �t (8.24)

 vf 

2 = vi 

2 + 2a �u

In addition, the centripetal acceleration equation ar = v 2/r = v2r is still valid.

Dynamics of Nonuniform Circular Motion
FiGuRE 8.19 shows a net force F

u

net acting on a particle as it moves around a circle of 
radius r. F

u

net is likely to be a superposition of several forces, such as a tension force in 
a string, a thrust force, a friction force, and so on.

We can decompose the force vector F
u

net into a tangential component (Fnet)t and 
a radial component (Fnet)r. The component (Fnet)t is positive for a tangential force in 
the ccw direction, negative for a tangential force in the cw direction. Because of our 
definition of the r-axis, the component (Fnet)r is positive for a radial force toward the 
center, negative for a radial force away from the center. For example, the particular 
force illustrated in Figure 8.19 has positive values for both (Fnet)t and (Fnet)r.

The force component (Fnet)r perpendicular to the trajectory creates a centripetal 
acceleration and causes the particle to change directions. It is the component (Fnet)t 
parallel to the trajectory that creates a tangential acceleration and causes the particle 
to change speed. Force and acceleration are related to each other through Newton’s 
second law:

  (Fnet)r = aFr = mar =
mv 2

r
= mv2r

  (Fnet)t  = aFt = mat  (8.25)

  (Fnet)z = aFz = 0

NOTE  Equations 8.25 differ from Equations 8.8 for uniform circular motion only 
in the fact that at is no longer constrained to be zero. 

FiGuRE 8.18 Nonuniform circular motion.
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FiGuRE 8.21 Graph of angular velocity versus time. 
Angular acceleration is the slope of the best-fit line.
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ExAMPLE 8.7  Circular motion of a grinding machine
A machine for grinding small samples down to thin slabs of uni-
form thickness consists of a 2.0 kg steel block that spins around 
on a table at the end of an 80-cm-long arm. Samples are glued to 
the bottom of the heavy block, then dragged across the sandpaper-
like surface of the table as the block spins. A tachometer attached 
to the motor shaft gives the following readings after the motor is 
disengaged at t = 0 s:

Time (s) rpm

0.0 156

0.5 114

1.0 88

1.5 52

2.0 17

What is the coefficient of kinetic friction between the sample and 
the surface? How many revolutions does the block make as it 
comes to a halt?

MODEL Model the block and sample as a particle in nonuniform 
circular motion. Assume that the mass of the sample is negligible 
compared to the mass of the block and that the axle is frictionless.

VisuALizE FiGuRE 8.20 shows a pictorial representation. For the 
first time, we need a free-body diagram showing forces in three 
dimensions.

force, so we can use the  t-component of Newton’s second law to 
find the tangential acceleration:

  aFt = (  fk)t = - fk = mat

  at =
- fk

m
=

-mk  mg

m
= -mkg

Thus the angular acceleration is a = at /r = -mkg/r.
We can find a experimentally as the slope of the v@versus@t 

graph. FiGuRE 8.21 shows a graph of the data (after conversion of 
rpm to rad/s) and a best-fit line. We see that the angular acceleration 
is a = -7.12 rad/s2, and with this value we can calculate the coef-
ficient of kinetic friction:

 mk = -
ar

g
= -

(-7.12 rad/s2)(0.80 m)

9.80 m/s2 = 0.58

We can now use the kinematic equation vf 

2 = 0 = vi 

2 + 2a  �u 
to find how many revolutions the block makes as it comes to rest. 
But what is vi? The first data entry is 156 rpm = 16.3 rad/s, but 
clearly—from the graph—the data have uncertainties. The first 
entry has no more claim to being “perfect” than any other entry. 
It’s better to use the y-intercept of our best-fit line, 16.1 rad/s. 
That is, a statistical analysis of all the data tells us that 16.1 rad/s 
(154 rpm) is our best estimate of the angular velocity vi when the 
motor was disengaged at t = 0 s. With this:

 �u = -
vi 

2

2a
= -

(16.1 rad/s)2

2(-7.12 rad/s2)
= 18.2 rad = 2.9 rev

The block makes 2.9 revolutions while stopping.

FiGuRE 8.20 Pictorial representation of the circular motion.
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sOLVE The block slows down because kinetic friction between 
the sample and the table’s surface exerts a retarding force f 

u

k. Kinetic 
friction is always opposite the direction of motion, so f 

u

k is tangent to 
the circle and has magnitude fk = mk  n.

There’s no net force in the vertical direction, so the z-component 
of the second law is

 aFz = n - FG = 0

from which we can conclude that n = FG = mg and thus 
fk = mk  mg. The friction force is the only tangential component of 

AssEss A coefficient of kinetic friction of 0.58 is reasonable 
for a sandpaper-like surface. And even though the friction is 
fairly large, it’s reasonable that the block would make several 
revolutions before stopping. The purpose of the Assess step, 
as always, is not to prove that the answer is right but to rule 
out obviously unreasonable answers that have been reached by 
mistake.
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We’ve come a long way since our first dynamics problems in Chapter 6, but our 
basic strategy has not changed.

PROBLEM-sOLViNG
sTRATEGy 8.1 Circular-motion problems

MODEL Make simplifying assumptions.

VisuALizE Draw a pictorial representation. Use rtz-coordinates.

■	 Establish a coordinate system with the r-axis pointing toward the center of 
the circle.

■	 Show important points in the motion on a sketch. Define symbols and identify 
what the problem is trying to find.

■	 Identify the forces and show them on a free-body diagram.

sOLVE Newton’s second law is

  (Fnet)r = aFr = mar =
mv 2

r
= mv2r

  (Fnet)t = aFt = mat

  (Fnet)z = aFz = 0

■	 Determine the force components from the free-body diagram. Be careful with 
signs.

■	 The tangential acceleration for uniform circular motion is at = 0.
■	 Solve for the acceleration, then use kinematics to find velocities and positions.

AssEss Check that your result has the correct units, is reasonable, and answers 
the question.

Exercise 17 

Stop to think 8.5  A ball on a string is swung in a 
vertical circle. The string happens to break when it is 
parallel to the ground and the ball is moving up. Which 
trajectory does the ball follow?

a

b

c

d

String
breaks

ChALLENGE ExAMPLE 8.8  Circular motion inside a cone
A small ball of mass m rolls in a horizontal circle around the inside 
of the inverted cone shown in FiGuRE 8.22. The walls of the cone 
make an angle u with a horizontal plane. The coefficient of static 
friction between the ball and the cone is ms; rolling friction is neg-
ligible. What minimum speed vmin must the ball maintain to re-
main at a constant height h?

MODEL Model the ball as a particle in uniform circular motion.

Continued

FiGuRE 8.22 Pictorial representation of the circular motion.

h

r

u
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VisuALizE The forces on the ball are a normal force, perpendicular 
to the surface; a static friction force parallel to the surface that 
keeps the ball from sliding up or down; and gravity. FiGuRE 8.23 
shows a free-body diagram with the r-axis pointing toward the 
center of the circle. Notice that the situation is very similar to that 
of a car on a banked curve. Figure 8.9 showed that the static fric-
tion force must point up the slope to keep a slow-moving car from 
sliding down the slope, and that information was used in drawing 
Figure 8.23.

sOLVE This is uniform circular motion, so we need to consider 
only the r- and z-component equations of Newton’s second law. 
All the information is on the free-body diagram, but considerable 
care is needed to write down all the components correctly. The 
two equations are

 aFr = nr + (fs)r + (FG)r = n sin u - fs cos u =
mv 2

r

 aFz = nz + (fs)z + (FG)z = n cos u + fs sin u - mg = 0

The r-axis points toward the center of the circle, here on the 
left, so n

u
 has a positive r-component while  f 

u

s has a negative 
r-component.

There is one specific speed at which the ball would roll around 
the inside without friction, just like the car in Example 8.5. For 
slower speeds, some amount of static friction is needed to keep the 
ball from sliding down. Our task is to find the minimum speed for 
maintaining motion in a horizontal plane, and that occurs when the 
static friction force reaches its maximum value: fs max = msn. Then 
the r-component equation becomes

 
mvmin 

2

r
= n sin u - msn cos u = n(sin u - ms cos u)

To find n, we use the z-component equation with fs max = msn:

 n cos u + msn sin u = n(cos u + ms sin u) = mg

 n =
mg

 cos u + ms sin u

Substituting this into the equation for vmin and taking the square 
root, we find

 vmin = Brg1  sin u - ms cos u

 cos u + ms sin u 2
This is a complicated answer, but we can check it because without 
friction the ball should roll around at the same speed as the car 
turning a banked curve without friction. If we set ms = 0, we find

 vfrictionless = 2rg tan u

which, indeed, was the answer to Example 8.5.
The information we have is the ball’s height h, not the radius 

of the circle, so the final step, which we can see from Figure 8.22, 
is to substitute r = h/tan u. Thus the minimum speed for the ball 
to circle at height h is

 vmin = B hg

 tan u1  sin u - mscos u

 cos u + ms sin u 2
AssEss An important problem-solving skill to learn is checking 
new results by comparing them to previously known results. In 
this case, we recognized that the ball rolling around the inside of 
the cone without the aid of friction is equivalent to a car turning 
a banked curve without friction. The fact that we could reproduce 
that earlier result gives us confidence in our answer.

FiGuRE 8.23 Free-body diagram of the ball.

The center of the circle
is in the same horizontal
plane as the ball.
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s u M M A R y
The goal of Chapter 8 has been to learn how to solve problems about motion in a plane.

important Concepts
rtz-coordinates

•	 The r-axis points toward 
the center of the circle.

•	 The t-axis is tangent, 
pointing counterclockwise.

Angular velocity

v = du/dt

vt = vr

Angular acceleration

a = dv/dt

at = ar

tr
z sr

v

u

vr

Terms and Notation
orbit
fictitious force

Orbits

A circular orbit has radius r if

v = 2rg

Hills and valleys

Circular motion requires 
a net force pointing to the 
center. n must be 7 0 for 
the object to be in contact 
with a surface.

Applications

Fnet
r

FG
r

FG
r

Fnet
r

nr

nrFG
r

FG
r

FG
r

General Principles
Newton’s second Law
Expressed in x- and y-component form:

 (Fnet)x = aFx = max

 (Fnet)y = aFy = may

Expressed in rtz-component form:

(Fnet)r = aFr = mar =
mv 2

r
= mv2r

(Fnet)t = aFt = b 0 uniform circular motion

mat nonuniform circular motion

(Fnet)z = aFz = 0

uniform Circular Motion
•	 v is constant.

•	 F
u

net points toward the center of the circle.

•	 The centripetal	acceleration a
u

 points 
toward the center of the circle. It changes 
the particle’s direction but not its speed.

Nonuniform Circular Motion
•	 v changes.

•	 a
u

 is parallel to F
u

net.

•	 The radial component ar changes 
the particle’s direction.

•	 The tangential component at changes the particle’s speed.

Fnet

ar

vr

r ar

at

Fnet
r ar

vr
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 1. In uniform circular motion, which of the following are constant: 
speed, velocity, angular velocity, centripetal acceleration, mag-
nitude of the net force?

 2. A car runs out of gas while driving down a hill. It rolls through 
the valley and starts up the other side. At the very bottom of the 
valley, which of the free-body diagrams in FiGuRE Q8.2 is cor-
rect? The car is moving to the right, and drag and rolling friction 
are negligible.

 3. FiGuRE Q8.3 is a bird’s-eye view of particles moving in horizontal 
circles on a tabletop. All are moving at the same speed. Rank in 
order, from largest to smallest, the tensions Ta to Td. Give your 
answer in the form a 7 b = c 7 d and explain your ranking.

 4. Tarzan swings through the jungle on a vine. At the lowest point 
of his swing, is the tension in the vine greater than, less than, or 
equal to the gravitational force on Tarzan? Explain.

C O N C E P T u A L  Q u E s T i O N s

 5. FiGuRE Q8.5 shows two balls of equal 
mass moving in vertical circles. Is 
the tension in string A greater than, 
less than, or equal to the tension in 
string B if the balls travel over the 
top of the circle (a) with equal speed 
and (b) with equal angular velocity?

 6. Ramon and Sally are observing a toy car speed up as it goes 
around a circular track. Ramon says, “The car’s speeding up, so 
there must be a net force parallel to the track.” “I don’t think so,” 
replies Sally. “It’s moving in a circle, and that requires centrip-
etal acceleration. The net force has to point to the center of the 
circle.” Do you agree with Ramon, Sally, or neither? Explain.

 7. A jet plane is flying on a level course at constant speed. The 
engines are at full throttle.

 a. What is the net force on the plane? Explain.
 b. Draw a free-body diagram of the plane as seen from the side 

with the plane flying to the right. Name (don’t just label) any 
and all forces shown on your diagram.

 c. Airplanes bank when they turn. Draw a free-body diagram of 
the plane as seen from behind as it makes a right turn.

 d. Why do planes bank as they turn? Explain.
 8. A small projectile is launched parallel to the ground at height 

h =  1 m with sufficient speed to orbit a completely smooth, air-
less planet. A bug rides inside a small hole inside the projectile. 
Is the bug weightless? Explain.

 9. You can swing a ball on a string in a vertical circle if you swing 
it fast enough. But if you swing too slowly, the string goes slack 
as the ball nears the top. Explain why there’s a minimum speed 
to keep the ball moving in a circle.

 10. A golfer starts with the club over her head and swings it to reach 
maximum speed as it contacts the ball. Halfway through her 
swing, when the golf club is parallel to the ground, does the ac-
celeration vector of the club head point (a) straight down, (b) 
parallel to the ground, approximately toward the golfer’s shoul-
ders, (c) approximately toward the golfer’s feet, or (d) toward a 
point above the golfer’s head? Explain.

(a) (b) (c) (d) (e) (f)

vr
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E x E R C i s E s  A N D  P R O B L E M s

Problems labeled  integrate material from earlier chapters.

Exercises

Section	8.1	Dynamics	in	Two	Dimensions

 1. || As a science fair project, you want to launch an 800 g model 
rocket straight up and hit a horizontally moving target as it 
passes 30 m above the launch point. The rocket engine provides 
a constant thrust of 15.0 N. The target is approaching at a speed 
of 15 m/s. At what horizontal distance between the target and the 
rocket should you launch?

 2. || A 500 g model rocket is on a cart that is rolling to the right at 
a speed of 3.0 m/s. The rocket engine, when it is fired, exerts an 
8.0 N thrust on the rocket. Your goal is to have the rocket pass 

through a small horizontal hoop that is 20 m above the launch point. 
At what horizontal distance left of the hoop should you launch?

 3. || A 4.0 * 1010 kg asteroid is heading directly toward the center 
of the earth at a steady 20 km/s. To save the planet, astronauts 
strap a giant rocket to the asteroid perpendicular to its direction 
of travel. The rocket generates 5.0 * 109 N of thrust. The rocket 
is fired when the asteroid is 4.0 * 106 km away from earth. You 
can ignore the earth’s gravitational force on the asteroid and their 
rotation about the sun.

 a. If the mission fails, how many hours is it until the asteroid 
impacts the earth?

 b. The radius of the earth is 6400 km. By what minimum angle 
must the asteroid be deflected to just miss the earth?

 c. The rocket fires at full thrust for 300 s before running out of 
fuel. Is the earth saved?

http://www.meetyourbrain.com/bookChapters.php?book=Physics-for-Scientists-and-Engineers-A-Strategic-Approach-with-Modern-Physics-3rd-Edition-Solutions&title=0


Section	8.2	Uniform	Circular	Motion

 4. | A 1500 kg car drives around a flat 200-m-diameter circular 
track at 25 m/s. What are the magnitude and direction of the net 
force on the car? What causes this force?

 5. | A 1500 kg car takes a 50-m-radius unbanked curve at 15 m/s. 
What is the size of the friction force on the car?

 6. || A 200 g block on a 50-cm-long string swings in a circle on a 
horizontal, frictionless table at 75 rpm.

 a. What is the speed of the block?
 b. What is the tension in the string?
 7. || In the Bohr model of the hydrogen atom, an electron 

(mass m = 9.1 * 10-31 kg) orbits a proton at a distance of 
5.3 * 10-11 m. The proton pulls on the electron with an electric 
force of 8.2 * 10-8 N. How many revolutions per second does 
the electron make?

 8. || A highway curve of radius 500 m is designed for traffic mov-
ing at a speed of 90 km/h. What is the correct banking angle of 
the road?

 9. || Suppose the moon were held in its orbit not by gravity but by 
a massless cable attached to the center of the earth. What would 
be the tension in the cable? Use the table of astronomical data 
inside the back cover of the book.

 10. | It is proposed that future space stations create an artificial 
gravity by rotating. Suppose a space station is constructed as a 
1000-m-diameter cylinder that rotates about its axis. The inside 
surface is the deck of the space station. What rotation period will 
provide “normal” gravity?

Section	8.3	Circular	Orbits

 11. | A satellite orbiting the moon very near the surface has a period 
of 110 min. What is free-fall acceleration on the surface of the 
moon?

 12. || What is free-fall acceleration toward the sun at the distance of 
the earth’s orbit? Astronomical data are inside the back cover of 
the book.

Section	8.4	Fictitious	Forces

 13. | A car drives over the top of a hill that has a radius of 50 m. 
What maximum speed can the car have at the top without flying 
off the road?

 14. || The weight of passengers on a roller coaster increases by 50% 
as the car goes through a dip with a 30 m radius of curvature. 
What is the car’s speed at the bottom of the dip?

 15. || A roller coaster car crosses the top of a circular loop-the-loop 
at twice the critical speed. What is the ratio of the normal force 
to the gravitational force?

 16. || The normal force equals the magnitude of the gravitational 
force as a roller coaster car crosses the top of a 40-m-diameter 
loop-the-loop. What is the car’s speed at the top?

 17. || A student has 65-cm-long arms. What is the minimum angular 
velocity (in rpm) for swinging a bucket of water in a vertical 
circle without spilling any? The distance from the handle to the 
bottom of the bucket is 35 cm.

 18. | While at the county fair, you decide to ride the Ferris wheel. 
Having eaten too many candy apples and elephant ears, you find 
the motion somewhat unpleasant. To take your mind off your 
stomach, you wonder about the motion of the ride. You estimate 
the radius of the big wheel to be 15 m, and you use your watch to 
find that each loop around takes 25 s.

 a. What are your speed and the magnitude of your acceleration?
 b. What is the ratio of your weight at the top of the ride to your 

weight while standing on the ground?
 c. What is the ratio of your weight at the bottom of the ride to 

your weight while standing on the ground?

Section	8.5	Nonuniform	Circular	Motion

 19. || A new car is tested on a 200-m-diameter track. If the car 
speeds up at a steady 1.5 m/s2, how long after starting is the 
magnitude of its centripetal acceleration equal to the tangential 
acceleration?

 20. || A toy train rolls around a horizontal 1.0-m-diameter track. 
The coefficient of rolling friction is 0.10.

 a. What is the magnitude of the train’s angular acceleration  
after it is released?

 b. How long does it take the train to stop if it’s released with an 
angular speed of 30 rpm?

Problems

 21. || A popular pastime is to see who can push an object closest 
to the edge of a table without its going off. You push the 100 g 
object and release it 2.0 m from the table edge. Unfortunately, 
you push a little too hard. The object slides across, sails off the 
edge, falls 1.0 m to the floor, and lands 30 cm from the edge of 
the table. If the coefficient of kinetic friction is 0.50, what was 
the object’s speed as you released it?

 22. || A motorcycle daredevil plans to ride up a 2.0-m-high, 20° 
ramp, sail across a 10-m-wide pool filled with hungry croco-
diles, and land at ground level on the other side. He has done this 
stunt many times and approaches it with confidence. Unfortu-
nately, the motorcycle engine dies just as he starts up the ramp. 
He is going 11 m/s at that instant, and the rolling friction of his 
rubber tires (coefficient 0.02) is not negligible. Does he survive, 
or does he become crocodile food?

 23. ||| Sam (75 kg) takes off up a 50-m-high, 10° frictionless slope 
on his jet-powered skis. The skis have a thrust of 200 N. He 
keeps his skis tilted at 10° after becoming airborne, as shown 
in FiGuRE P8.23. How far does Sam land from the base of 
the cliff?

 24. || Derive Equations 8.4 for the acceleration of a projectile sub-
ject to drag.

 25. || A 5000 kg interceptor rocket is launched at an angle of 44.7°. 
The thrust of the rocket motor is 140,700 N.

 a. Find an equation y(x) that describes the rocket’s trajectory.
 b. What is the shape of the trajectory?
 c. At what elevation does the rocket reach the speed of sound, 

330 m/s?
 26. ||| A rocket-powered hockey puck has a thrust of 2.0 N and a 

total mass of 1.0 kg. It is released from rest on a frictionless 
table, 4.0 m from the edge of a 2.0 m drop. The front of the 
rocket is pointed directly toward the edge. How far does the puck 
land from the base of the table?

FiGuRE P8.23 

10�

10�

50 mStart
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 27. || A 500 g model rocket is resting horizontally at the top edge 
of a 40-m-high wall when it is accidentally bumped. The bump 
pushes it off the edge with a horizontal speed of 0.5 m/s and at 
the same time causes the engine to ignite. When the engine fires, 
it exerts a constant 20 N horizontal thrust away from the wall.

 a. How far from the base of the wall does the rocket land?
 b. Describe the trajectory of the rocket while it travels to the 

ground.
 28. || An experimental aircraft begins its takeoff at t = 0 s. Every 

second, an onboard GPS measures and records the plane’s dis-
tances east and north of a reference marker. The following data 
are downloaded to your computer:

Time (s) East (m) North (m)

0.0 91 0

1.0 86 4

2.0 77 18

3.0 65 39

4.0 39 63

5.0 19 101

  Analyze these data to determine the magnitude of the aircraft’s 
takeoff acceleration.

 29. || Communications satellites are placed in circular orbits where 
they stay directly over a fixed point on the equator as the earth 
rotates. These are called geosynchronous orbits. The altitude of 
a geosynchronous orbit is 3.58 * 107 m (�22,000 miles).

 a. What is the period of a satellite in a geosynchronous orbit?
 b. Find the value of g at this altitude.
 c. What is the weight of a 2000 kg satellite in a geosynchronous 

orbit?
 30. || A 75 kg man weighs himself at the north pole and at the equa-

tor. Which scale reading is higher? By how much?
 31. || A 500 g ball swings in a vertical circle at the end of a 

1.5-m-long string. When the ball is at the bottom of the circle, 
the tension in the string is 15 N. What is the speed of the ball at 
that point?

 32. ||| A concrete highway curve of radius 70 m is banked at a 15° 
angle. What is the maximum speed with which a 1500 kg rubber-
tired car can take this curve without sliding?

 33. || a.  An object of mass m swings in a horizontal circle on a string 
of length L that tilts downward at angle u. Find an expres-
sion for the angular velocity v.

 b. A student ties a 500 g rock to a 1.0-m-long string and 
swings it around her head in a horizontal circle. At what an-
gular speed, in rpm, does the string tilt down at a 10° angle?

 34. || A 5.0 g coin is placed 15 cm from the center of a turntable. 
The coin has static and kinetic coefficients of friction with the 
turntable surface of ms = 0.80 and mk = 0.50. The turntable 
very slowly speeds up to 60 rpm. Does the coin slide off?

 35. || You’ve taken your neighbor’s young child to the carnival to 
ride the rides. She wants to ride The Rocket. Eight rocket-shaped 
cars hang by chains from the outside edge of a large steel disk. A 
vertical axle through the center of the ride turns the disk, causing 
the cars to revolve in a circle. You’ve just finished taking physics, 
so you decide to figure out the speed of the cars while you wait. 
You estimate that the disk is 5 m in diameter and the chains are 6 
m long. The ride takes 10 s to reach full speed, then the cars swing 
out until the chains are 20° from vertical. What is the cars’ speed?

 36. || A conical pendulum is formed by attaching a ball of mass m to 
a string of length L, then allowing the ball to move in a horizon-
tal circle of radius r. FiGuRE P8.36 shows that the string traces out 
the surface of a cone, hence the name.

 a. Find an expression for the tension T in the string.
 b. Find an expression for the ball’s angular speed v.
 c. What are the tension and angular speed (in rpm) for a 500 g 

ball swinging in a 20-cm-radius circle at the end of a 1.0-m-
long string?

 37. ||| Two wires are tied to the 2.0 kg sphere shown in FiGuRE P8.37. 
The sphere revolves in a horizontal circle at constant speed.

 a. For what speed is the tension the same in both wires?
 b. What is the tension?

 38. ||| In an old-fashioned amusement park ride, passengers stand 
inside a 5.0-m-diameter hollow steel cylinder with their backs 
against the wall. The cylinder begins to rotate about a vertical 
axis. Then the floor on which the passengers are standing sud-
denly drops away! If all goes well, the passengers will “stick” to 
the wall and not slide. Clothing has a static coefficient of friction 
against steel in the range 0.60 to 1.0 and a kinetic coefficient in 
the range 0.40 to 0.70. A sign next to the entrance says “No chil-
dren under 30 kg allowed.” What is the minimum angular speed, 
in rpm, for which the ride is safe?

 39. || A 10 g steel marble is spun so that it rolls at 150 rpm around 
the inside of a vertically oriented steel tube. The tube, shown 
in FiGuRE P8.39, is 12 cm in diameter. Assume that the rolling 
resistance is small enough for the marble to maintain 150 rpm 
for several seconds. During this time, will the marble spin in a 
horizontal circle, at constant height, or will it spiral down the 
inside of the tube?

FiGuRE P8.36 
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 40. || The ultracentrifuge is an important tool for separating and 
analyzing proteins. Because of the enormous centripetal accel-
erations, the centrifuge must be carefully balanced, with each 
sample matched by a sample of identical mass on the opposite 
side. Any difference in the masses of opposing samples creates a 
net force on the shaft of the rotor, potentially leading to a cata-
strophic failure of the apparatus. Suppose a scientist makes a 
slight error in sample preparation and one sample has a mass 
10 mg larger than the opposing sample. If the samples are 12 cm 
from the axis of the rotor and the ultracentrifuge spins at 
70,000 rpm, what is the magnitude of the net force on the rotor 
due to the unbalanced samples?

 41. || Three cars are driving at 25 m/s along the road shown in 
FiGuRE P8.41. Car B is at the bottom of a hill and car C is at the 
top. Both hills have a 200 m radius of curvature. Suppose each 
car suddenly brakes hard and starts to skid. What is the tangen-
tial acceleration (i.e., the acceleration parallel to the road) of 
each car? Assume mk = 1.0.

 42. || A 500 g ball moves in a vertical circle on a 102-cm-long string. 
If the speed at the top is 4.0 m/s, then the speed at the bottom will 
be 7.5 m/s. (You’ll learn how to show this in Chapter 10.)

 a. What is the gravitational force acting on the ball?
 b. What is the tension in the string when the ball is at the top?
 c. What is the tension in the string when the ball is at the 

bottom?
 43. || In an amusement park ride 

called The Roundup, passengers 
stand inside a 16-m-diameter 
rotating ring. After the ring has 
acquired sufficient speed, it tilts 
into a vertical plane, as shown in 
FiGuRE P8.43.

 a. Suppose the ring rotates once 
every 4.5 s. If a rider’s mass 
is 55 kg, with how much 
force does the ring push on 
her at the top of the ride? At 
the bottom?

 b. What is the longest rotation period of the wheel that will pre-
vent the riders from falling off at the top?

 44. || You have a new job designing rides for an amusement park. 
In one ride, the rider’s chair is attached by a 9.0-m-long chain 
to the top of a tall rotating tower. The tower spins the chair and 
rider around at the rate of 1.0 rev every 4.0 s. In your design, 
you’ve assumed that the maximum possible combined weight 
of the chair and rider is 150 kg. You’ve found a great price for 
chain at the local discount store, but your supervisor wonders if 
the chain is strong enough. You contact the manufacturer and 
learn that the chain is rated to withstand a tension of 3000 N. 
Will this chain be strong enough for the ride?

 45. || Suppose you swing a ball of mass m in a vertical circle on a 
string of length L. As you probably know from experience, there 
is a minimum angular velocity vmin you must maintain if you 

want the ball to complete the full circle without the string going 
slack at the top.

 a. Find an expression for vmin.
 b. Evaluate vmin in rpm for a 65 g ball tied to a 1.0-m-long 

string.
 46. || A heavy ball with a weight of 100 N (m = 10.2 kg) is hung 

from the ceiling of a lecture hall on a 4.5-m-long rope. The ball is 
pulled to one side and released to swing as a pendulum, reaching 
a speed of 5.5 m/s as it passes through the lowest point. What is 
the tension in the rope at that point?

 47. || A 30 g ball rolls around a 40-cm-
diameter L-shaped track, shown in 
FiGuRE P8.47, at 60 rpm. What is the 
magnitude of the net force that the 
track exerts on the ball? Rolling fric-
tion can be neglected.

  Hint: The track exerts more than one force on the ball.
 48. || Mass m1   on the frictionless table of FiGuRE P8.48 is connected 

by a string through a hole in the table to a hanging mass m2  . 
With what speed must m1   rotate in a circle of radius r if m2   is to 
remain hanging at rest?

 49. || The physics of circular motion sets an upper limit to the 
speed of human walking. (If you need to go faster, your gait 
changes from a walk to a run.) If you take a few steps and 
watch what’s happening, you’ll see that your body pivots in 
circular motion over your forward foot as you bring your rear 
foot forward for the next step. As you do so, the normal force 
of the ground on your foot decreases and your body tries to "lift 
off" from the ground.

 a. A person’s center of mass is very near the hips, at the top of 
the legs. Model a person as a particle of mass m at the top of a 
leg of length L. Find an expression for the person’s maximum 
walking speed vmax.

 b. Evaluate your expression for the maximum walking speed 
of a 70 kg person with a typical leg length of 70 cm. Give 
your answer in both m/s and mph, then comment, based on 
your experience, as to whether this is a reasonable result. A 
“normal” walking speed is about 3 mph. 

 50. || A 100 g ball on a 60-cm-long string is swung in a vertical 
circle about a point 200 cm above the floor. The tension in the 
string when the ball is at the very bottom of the circle is 5.0 N. A 
very sharp knife is suddenly inserted, as shown in FiGuRE P8.50, 
to cut the string directly below the point of support. How far to 
the right of where the string was cut does the ball hit the floor?
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In Problems 57 and 58 you are given the equation used to solve a 
problem. For each of these, you are to
 a. Write a realistic problem for which this is the correct equa-

tion. Be sure that the answer your problem requests is consis-
tent with the equation given.

 b. Finish the solution of the problem.
 57. 60 N = (0.30 kg)v2(0.50 m)
 58. (1500 kg)(9.8 m/s2) - 11,760 N = (1500 kg) v 2/(200 m)

Challenge Problems

 59. In the absence of air resistance, a projectile that lands at the el-
evation from which it was launched achieves maximum range 
when launched at a 45° angle. Suppose a projectile of mass m is 
launched with speed v0 into a headwind that exerts a constant, 
horizontal retarding force F

u

wind = -Fwind in.
 a. Find an expression for the angle at which the range is maximum.
 b. By what percentage is the maximum range of a 0.50 kg ball 

reduced if Fwind = 0.60 N?
 60. The father of Example 8.3 stands at the summit of a conical hill 

as he spins his 20 kg child around on a 5.0 kg cart with a 2.0-m-
long rope. The sides of the hill are inclined at 20°. He again 
keeps the rope parallel to the ground, and friction is negligible. 
What rope tension will allow the cart to spin with the same 
14 rpm it had in the example?

 61. A small ball rolls around a horizontal circle at height y inside the 
cone shown in FiGuRE CP8.61. Find an expression for the ball’s 
speed in terms of a, h, y, and g.

 62. A 500 g steel block rotates on a steel table while attached to a 
1.2-m-long hollow tube as shown in FiGuRE CP8.62. Compressed 
air fed through the tube and ejected from a nozzle on the back of 
the block exerts a thrust force of 4.0 N perpendicular to the tube. 
The maximum tension the tube can withstand without breaking 
is 50 N. If the block starts from rest, how many revolutions does 
it make before the tube breaks?

 63. Two wires are tied to the 300 g 
sphere shown in FiGuRE CP8.63. The 
sphere revolves in a horizontal cir-
cle at a constant speed of 7.5 m/s. 
What is the tension in each of the 
wires?

 51. || A 60 g ball is tied to the end of a 
50-cm-long string and swung in a ver-
tical circle. The center of the circle, as 
shown in FiGuRE P8.51, is 150 cm above 
the floor. The ball is swung at the mini-
mum speed necessary to make it over the 
top without the string going slack. If the 
string is released at the instant the ball is 
at the top of the loop, how far to the right 
does the ball hit the ground?

 52. || Elm Street has a pronounced dip at the bottom of a steep hill 
before going back uphill on the other side. Your science teacher 
has asked everyone in the class to measure the radius of curva-
ture of the dip. Some of your classmates are using surveying 
equipment, but you decide to base your measurement on what 
you’ve learned in physics. To do so, you sit on a spring scale, 
drive through the dip at different speeds, and for each speed re-
cord the scale’s reading as you pass through the bottom of the 
dip. Your data are as follows:

Speed (m/s) Scale reading (N)

5 599

10 625

15 674

20 756

25 834

  Sitting on the scale while the car is parked gives a reading of 
588 N. Analyze your data, using a graph, to determine the dip’s 
radius of curvature.

 53. || A 100 g ball on a 60-cm-long string is swung in a vertical 
circle about a point 200 cm above the floor. The string suddenly 
breaks when it is parallel to the ground and the ball is moving 
upward. The ball reaches a height 600 cm above the floor. What 
was the tension in the string an instant before it broke?

 54. ||| A 1500 kg car starts from rest and drives around a flat 50-m-
diameter circular track. The forward force provided by the car’s 
drive wheels is a constant 1000 N.

 a. What are the magnitude and direction of the car’s acceleration 
at t = 10 s? Give the direction as an angle from the r-axis.

 b. If the car has rubber tires and the track is concrete, at what 
time does the car begin to slide out of the circle?

 55. || A 500 g steel block rotates on a steel 
table while attached to a 2.0-m-long 
massless rod. Compressed air fed 
through the rod is ejected from a noz-
zle on the back of the block, exerting 
a thrust force of 3.5 N. The nozzle is 
70° from the radial line, as shown in 
FiGuRE P8.55. The block starts from rest.

 a. What is the block’s angular veloc-
ity after 10 rev?

 b. What is the tension in the rod after 10 rev?
 56. || A 2.0 kg ball swings in a vertical circle on the end of an 

80-cm-long string. The tension in the string is 20 N when its 
angle from the highest point on the circle is u = 30�.

 a. What is the ball’s speed when u = 30�?
 b. What are the magnitude and direction of the ball’s accelera-

tion when u = 30�?
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 64. A small ball rolls around a hori-
zontal circle at height y inside a 
frictionless hemispherical bowl of 
radius R, as shown in FiGuRE CP8.64.

 a. Find an expression for the 
ball’s angular velocity in terms 
of R, y, and g.

 b. What is the minimum value of  
v for which the ball can move in a circle?

 c. What is v in rpm if R = 20 cm and the ball is halfway up?
 65. You are flying to New York. You’ve been reading the in-flight 

magazine, which has an article about the physics of flying. You 
learned that the airflow over the wings creates a lift force that is 
always perpendicular to the wings. In level flight, the upward 
lift force exactly balances the downward gravitational force. The 
pilot comes on to say that, because of heavy traffic, the plane is 
going to circle the airport for a while. She says that you’ll main-
tain a speed of 400 mph at an altitude of 20,000 ft. You start to 
wonder what the diameter of the plane’s circle around the airport 
is. You notice that the pilot has banked the plane so that the wings 
are 10° from horizontal. The safety card in the seatback pocket 
informs you that the plane’s wing span is 250 ft. What can you 
learn about the diameter?

FiGuRE CP8.66 
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frictionless

sTOP TO ThiNk ANsWERs

Stop	to	Think	8.1: d. The parallel component of a
u

 is opposite v  

u
 and 

will cause the particle to slow down. The perpendicular component of 
a
u

 will cause the particle to change directions in a downward direction.

Stop	to	Think	8.2: (ar)b + (ar)e + (ar)a � (ar)c + (ar)d. Centrip-
etal acceleration is v 2/r. Doubling r decreases ar by a factor of 2. 
Doubling v increases ar by a factor of 4. Reversing direction doesn’t 
change ar  .

Stop	to	Think	8.3: Td + Tb � Te + Tc + Ta. The center-directed 
force is mv2r. Changing r by a factor of 2 changes the tension by a 

factor of 2, but changing v by a factor of 2 changes the tension by a 
factor of 4.

Stop	to	Think	8.4: b. The car is moving in a circle, so there must be 
a net force toward the center of the circle. The circle is below the car, 
so the net force must point downward. This can be true only if FG 7 n.

Stop	to	Think	8.5: c. The ball does not have a “memory” of its previ-
ous motion. The velocity v  

u
 is straight up at the instant the string breaks. 

The only force on the ball after the string breaks is the gravitational 
force, straight down. This is just like tossing a ball straight up.

 66. If a vertical cylinder of water (or any other liquid) rotates about 
its axis, as shown in FiGuRE CP8.66, the surface forms a smooth 
curve. Assuming that the water rotates as a unit (i.e., all the water 
rotates with the same angular velocity), show that the shape of 
the surface is a parabola described by the equation z = (v2/2g)r2.

  Hint: Each particle of water on the surface is subject to only two 
forces: gravity and the normal force due to the water underneath 
it. The normal force, as always, acts perpendicular to the surface.

FiGuRE CP8.64 

2R

y

 67. FiGuRE CP8.67 shows a small block of mass m sliding around the 
inside of an L-shaped track of radius r. The bottom of the track is 
frictionless; the coefficient of kinetic friction between the block 
and the wall of the track is mk. The block’s speed is v0 at t0 = 0. 
Find an expression for the block’s speed at a later time t.
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EssENTiAL CONCEPTs Particle, acceleration, force, interaction
BAsiC GOALs How does a particle respond to a force? How do objects interact?

GENERAL PRiNCiPLEs Newton’s	first	law An object will remain at rest or will continue to move with constant velocity 
   (equilibrium) if and only if F

u

net = 0
u

.
 Newton’s	second	law  F

u

net = ma
u

 Newton’s	third	law  F
u

A on B = - F
u

B on A

BAsiC PROBLEM-sOLViNG sTRATEGy Use Newton’s second law for each particle or object. Use Newton’s third law to equate the magni-
tudes of the two members of an action/reaction pair.

Linear	motion	 Trajectory	motion	 Circular	motion

aFx = max  
or 

 aFx = 0   aFx = max    aFr = mv 2/r = mv2r

aFy = 0   aFy = may   aFy = may    aFt = 0 or mat

  aFz = 0

Linear and trajectory kinematics
Uniform	acceleration:	 vfs = vis + as �t

(as = constant)  sf = si + vis �t +
1
2 as  (�t)2

 vfs 

2 = vis 

2 + 2as �s

Trajectories: The same equations are used for both x and y.

Uniform	motion: sf = si + vs �t

(a = 0, vs = constant)

General case vs = ds/dt =  slope of the position graph

 as = dvs /dt =  slope of the velocity graph

 vfs = vis + 3
tf

ti

as dt = vis +  area under the acceleration curve

 sf = si + 3
tf

ti

vs dt = si +  area under the velocity curve

The goal of Part i has been to discover the connection be-
tween force and motion. We started with kinematics, which 
is the mathematical description of motion; then we proceeded 
to dynamics, which is the explanation of motion in terms of 
forces. Newton’s three laws of motion form the basis of our 
explanation. All of the examples we have studied so far are 
applications of Newton’s laws.

The table below is called a knowledge structure for New-
ton’s laws. A knowledge structure summarizes the essential 
concepts, the general principles, and the primary applications 
of a theory. The first section of the table tells us that New-
tonian mechanics is concerned with how particles respond to 
forces. The second section indicates that we have introduced 
only three general principles, Newton’s three laws of motion.

You use this knowledge structure by working your way 
through it, from top to bottom. Once you recognize a problem 

as a dynamics problem, you immediately know to start with 
Newton’s laws. You can then determine the category of motion 
and apply Newton’s second law in the appropriate form. New-
ton’s third law will help you identify the forces acting on par-
ticles as they interact. Finally, the kinematic equations for that 
category of motion allow you to reach the solution you seek.

The knowledge structure provides the procedural know-
ledge for solving dynamics problems, but it does not represent 
the total knowledge required. You must add to it knowledge 
about what position and velocity are, about how forces are 
identified, about action/reaction pairs, about drawing and  
using free-body diagrams, and so on. These are specific 
tools for problem solving. The problem-solving strategies of 
Chapters 5 through 8 combine the procedures and the tools  
into a powerful method for thinking about and solving 
problems.

Newton’s LawsI
SuMMArYP a r t 

kNOWLEDGE sTRuCTuRE i Newton’s Laws

Circular kinematics
Uniform	circular	motion:

T = 2pr/v = 2p/v
uf = ui + v�t
ar = v 2/r = v2r
vt = vr

Nonuniform	circular	motion:

vf = vi + a�t

uf = ui + vi �t +
1
2 a(�t)2

vf 

2 = vi 

2 + 2a�u
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What are the fundamental forces of nature? That is, what 
set of distinct, irreducible forces can explain everything we 
know about nature? This is a question that has long intrigued 
physicists. For example, friction is not a fundamental force 
because it can be reduced to electric forces between atoms. 
What about other forces?

Physicists have long recognized three basic forces: the 
gravitational force, the electric force, and the magnetic 
force. The gravitational force is an inherent attraction be-
tween two masses. The electric force is a force between 
charges. The magnetic force, which is a bit more mysteri-
ous, causes compass needles to point north and holds your 
shopping list on the refrigerator door.

In the 1860s, the Scottish physicist James Clerk Maxwell 
developed a theory that unified the electric and magnetic 
forces into a single electromagnetic force. Where there had 
appeared to be two separate forces, Maxwell found there 
to be a single force that, under appropriate conditions, ex-
hibits “electric behavior” or “magnetic behavior.” Maxwell 
used his theory to predict the existence of electromagnetic 
waves, including light. Our entire telecommunications in-
dustry is testimony to Maxwell’s genius.

Maxwell’s electromagnetic force was soon found to be the 
“glue” holding atoms, molecules, and solids together. With 
the exception of gravity, every force we have considered so 
far can be traced to electromagnetic forces between atoms.

The discovery of the atomic nucleus, about 1910, pre-
sented difficulties that could not be explained by either 
gravitational or electromagnetic forces. The atomic nucleus 
is an unimaginably dense ball of protons and neutrons. But 
what holds it together against the repulsive electric forces 
between the protons? There must be an attractive force in-
side the nucleus that is stronger than the repulsive electric 
force. This force, called the strong force, is the force that 
holds atomic nuclei together. The strong force is a short-
range force, extending only about 10-14 m. It is completely 
negligible outside the nucleus. The subatomic particles 
called quarks, of which you have likely heard, are part of 
our understanding of how the strong force works.

In the 1930s, physicists found that the nuclear radioac-
tivity called beta decay could not be explained by either the 

electromagnetic or the strong force. Careful experiments es-
tablished that the decay is due to a previously undiscovered 
force within the nucleus. The strength of this force is less 
than either the strong force or the electromagnetic force, so 
this new force was named the weak force. Although dis-
covered in conjunction with radioactivity, it is now known 
to play an important role in the fusion reactions that power 
the stars.

By 1940, the recognized forces of nature were four: the 
gravitational force, the electromagnetic force, the strong 
force, and the weak force. Physicists were understandably 
curious whether all four of these were truly fundamental or 
if some of them could be further unified. Indeed, innovative 
work in the 1960s and 1970s produced a theory that unified 
the electromagnetic force and the weak force.

Predictions of this new theory were confirmed during 
the 1980s at some of the world’s largest particle accelera-
tors, and we now speak of the electroweak force. Under ap-
propriate conditions, the electroweak force exhibits either 
“electromagnetic behavior” or “weak behavior.” But under 
other conditions, new phenomena appear that are conse-
quences of the full electroweak force. These conditions ap-
pear on earth only in the largest and most energetic particle 
accelerators, which is why we were not previously aware of 
the unified nature of these two forces. However, the earli-
est moments of the Big Bang provided the right conditions 
for the electroweak force to play a significant role. Thus a 
theory developed to help us understand the workings of na-
ture on the smallest subatomic scale has unexpectedly given 
us powerful new insights into the origin of the universe.

The success of the electroweak theory has prompted ef-
forts to unify the electroweak force and the strong force 
into a grand unified theory. Only time will tell if the strong 
force and the electroweak force are really just two different 
aspects of a single force, or if they are truly distinct. Some 
physicists even envision a day when all the forces of nature 
will be unified in a single theory, the so-called Theory of 
Everything! For today, however, our understanding of the 
forces of nature is in terms of three fundamental forces: the 
gravitational force, the electroweak force, and the strong 
force.

ONE STEP BEYOND

The Forces of Nature

FiGuRE i.1 A historical progression of our understanding of the fundamental forces of nature.
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Overview

Why Some Things Don’t Change
Part I of this textbook was about change. One particular type of change—motion—is 
governed by Newton's second law. Although Newton's second law is a very powerful 
statement, it isn't the whole story. Part II will now focus on things that stay the same 
as other things around them change.

Consider, for example, an explosive chemical reaction taking place inside a closed, 
sealed box. No matter how violent the explosion, the total mass of the products—the 
final mass Mf —is the same as the initial mass Mi of the reactants. In other words, mat-
ter cannot be created or destroyed, only rearranged. This is an important and powerful 
statement about nature.

A quantity that stays the same throughout an interaction is said to be conserved. 
Our knowledge about mass can be stated as a conservation law:

Law of conservation of mass The total mass in a closed system is constant. 
Mathematically, Mf = Mi.*

The qualification “in a closed system” is important. Mass certainly won't be conserved 
if you open the box halfway through and remove some of the matter. Other conserva-
tion laws we'll discover also have qualifications stating the circumstances under which 
they apply.

A system of interacting objects has another curious property. Each system is char-
acterized by a certain number, and no matter how complex the interactions, the value 
of this number never changes. This number is called the energy of the system, and the 
fact that it never changes is called the law of conservation of energy. It is, perhaps, the 
single most important physical law ever discovered.

But what is energy? How do you determine the energy number for a system? These 
are not easy questions. Energy is an abstract idea, not as tangible or easy to picture as 
mass or force. Our modern concept of energy wasn't fully formulated until the middle 
of the 19th century, two hundred years after Newton, when the relationship between 
energy and heat was finally understood. That is a topic we will take up in Part IV, 
where the concept of energy will be found to be the basis of thermodynamics. But 
all that in due time. In Part II we will be content to introduce the concept of energy 
and show how energy can be a useful problem-solving tool. We'll also meet another 
quantity—momentum—that is conserved under the proper circumstances.

Conservation laws give us a new and different perspective on motion. This is not 
insignificant. You've seen optical illusions where a figure appears first one way, then 
another, even though the information has not changed. Likewise with motion. Some 
situations are most easily analyzed from the perspective of Newton's laws; others 
make more sense from a conservation-law perspective. An important goal of Part II is 
to learn which is better for a given problem.

*Surprisingly, Einstein's 1905 theory of relativity showed that there are circumstances in which mass 
is not conserved but can be converted to energy in accordance with his famous formula E = mc2. 
Nonetheless, conservation of mass is an exceedingly good approximation in nearly all applications of 
science and engineering.
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Before:

After:

Representations
Conservation laws require new visual 
tools. You will learn to draw and use:

Momentum  
bar charts to 
show how 
impulse changes 
momentum.

Before-and-after 
pictorial represen-
tations to com-
pare quantities 
before and after 
an interaction.

An explosion is 
when a short but 
intense interac-
tion causes two or 
more particles to 
move apart.

Collisions and Explosions
You will learn to apply conservation of 
momentum to the analysis of collisions 
and explosions.

The mass, the momentum, and the energy  
of an isolated system are conserved. Con-
servation laws will be the basis of a new 
and powerful problem solving strategy:

Conservation of momentum for an 
isolated system is a consequence of 
Newton’s third law.

final value = initial value A collision is when 
two or more particles 
come together for 
a short but intense 
interaction.

we say that the bat 
delivers an impulse 
to the ball.

Impulse
A force of short  
dura tion is an 
impulsive force. The 
impulse Jx is the area 
under the force-
versus-time curve.

The impulse-momentum theorem says 
that an impulse changes a particle’s 
momentum: �px = Jx.

Conservation Laws
Part I of this textbook was about how 
interactions cause things to change. 
Part II will explore how some things are 
not changed by the interactions. We say 
they are conserved.

The particles of an isolated system 
interact with each other—perhaps very 
intensely—but not with the external 
environment.

Momentum
An object’s momentum is the product of 
its mass and velocity: p

u
= m  v  

u
.

Momentum is a vector. Paying attention 
to the signs of the components of mo-
mentum will be especially important.

You’ll learn to write Newton’s second 
law in terms of momentum.

An object can have a large momentum by 
having a large mass or a large velocity.

impulse and 
Momentum

9

An exploding firework is a 
dramatic event. Nonetheless, 
the explosion obeys some 
simple laws of physics.

◀ Looking Back
Sections 7.1–7.3 Action/reaction force 
pairs and Newton’s third law

� �

� �pix Jx pfx

0

�

�

▶ Looking Ahead The goals of Chapter 9 are to understand and apply the new concepts of impulse and momentum.
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9.1 Momentum and Impulse
A collision is a short-duration interaction between two objects. The collision between a 
tennis ball and a racket, or a baseball and a bat, may seem instantaneous to your eye, but 
that is a limitation of your perception. A careful look at the photograph reveals that the 
right side of the ball is flattened and pressed up against the strings of the racket. It takes 
time to compress the ball, and more time for the ball to re-expand as it leaves the racket.

The duration of a collision depends on the materials from which the objects are 
made, but 1 to 10 ms (0.001 to 0.010 s) is fairly typical. This is the time during which 
the two objects are in contact with each other. The harder the objects, the shorter the 
contact time. A collision between two steel balls lasts less than 1 ms.

FIguRE 9.1 shows a microscopic view of a collision in which object A bounces off 
object B. The spring-like molecular bonds—the same bonds that cause normal forces 
and tension forces—compress during the collision, then re-expand as A bounces back. 
The forces F

u

A on B and F
u

B on A are an action/reaction pair and, according to Newton’s 
third law, have equal magnitudes: FA on B = FB on A. The force increases rapidly as the 
bonds compress, reaches a maximum at the instant A is at rest (point of maximum 
compression), then decreases as the bonds re-expand.

A

B

Before During After

A

B

A

B

Spring-like
molecular bonds

A and B exert equal
but opposite forces
on each other.

Object A approaches. Object A bounces back as
the bonds re-expand.

The bonds
compress.

vi
r vf

rFA on B

r
FB on A

r

FIguRE 9.1 Atomic model of a collision.

A large force exerted for a small interval of time is called an impulsive force. FIguRE 9.2 
shows that a particle undergoing a collision enters with initial velocity v

u

i, experiences an 
impulsive force of short duration �t, then leaves with final velocity v

u

f. The graph shows 
how a typical impulsive force behaves, growing to a maximum and then decreasing back 
to zero. Because an impulsive force is a function of time, we will write it as Fx  (t).

NoTE  Both vx and Fx are components of vectors and thus have signs indicating 
which way the vectors point. 

We can use Newton’s second law to find the final velocity. Acceleration in one 
dimension is ax = dvx /dt, so the second law is

 max = m 
dvx

dt
= Fx  (t)

After multiplying both sides by dt, we can write the second law as

 m dvx = Fx  (t) dt (9.1)

The force is nonzero only during the interval of time from ti to tf, so let’s integrate 
Equation 9.1 over this interval. The velocity changes from vix to vfx during the colli-
sion; thus

 m3
vf

vi

dvx = mvfx - mvix = 3
tf

ti

Fx  (t) dt (9.2)

We need some new tools to help us make sense of Equation 9.2.

A tennis ball collides with a racket. Notice 
that the right side of the ball is flattened.
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The impulsive force is a function
of time. It grows to a maximum,
then returns to zero.

FIguRE 9.2 A particle undergoes a 
collision.



222    c h a p t e r  9  . Impulse and Momentum

Momentum
The product of a particle’s mass and velocity is called the momentum of the particle:

 momentum = p
u

K mv  

u
 (9.3)

Momentum, like velocity, is a vector. The units of momentum are kg m/s. The plural 
of “momentum” is “momenta,” from its Latin origin.

The momentum vector p
u

 is parallel to the velocity vector v  

u
. FIguRE 9.3 shows that p

u
, 

like any vector, can be decomposed into x- and y-components. Equation 9.3, which is 
a vector equation, is a shorthand way to write the simultaneous equations

  px = mvx

  py = mvy

An object can have a large momentum by having either a small mass but a large 
velocity (a bullet fired from a rifle) or a small velocity but a large mass (a large truck 
rolling at a slow 1 mph).

NoTE  One of the most common errors in momentum problems is a failure to use the 
appropriate signs. The momentum component px has the same sign as vx. Momentum 
is negative for a particle moving to the left (on the x-axis) or down (on the y-axis). 

Newton actually formulated his second law in terms of momentum rather than 
acceleration:

 F
u

= ma
u

= m 
dv  

u

dt
=

d(mv  

u
)

dt
=

dp
u

dt
 (9.4)

This statement of the second law, saying that force is the rate of change of momen-
tum, is more general than our earlier version F

u

= ma
u
. It allows for the possibility that 

the mass of the object might change, such as a rocket that is losing mass as it burns fuel.
Returning to Equation 9.2, you can see that mvix and mvfx are pix and pfx, the x-

component of the particle’s momentum before and after the collision. Further, pfx - pix 
is �px, the change in the particle’s momentum. In terms of momentum, Equation 9.2 is

 �px = pfx - pix = 3
tf

ti

Fx  (t) dt (9.5)

Now we need to examine the right-hand side of Equation 9.5.

Impulse
Equation 9.5 tells us that the particle’s change in momentum is related to the time 
integral of the force. Let’s define a quantity Jx called the impulse to be

 impulse = Jx K 3
tf

ti

Fx  (t) dt

  = area under the Fx  (t) curve between ti and tf 
(9.6)

Strictly speaking, impulse has units of N s, but you should be able to show that N s are 
equivalent to kg m/s, the units of momentum.

The interpretation of the integral in Equation 9.6 as an area under a curve is espe-
cially important. FIguRE 9.4a portrays the impulse graphically. Because the force changes 
in a complicated way during a collision, it is often useful to describe the collision in 
terms of an average force Favg. As FIguRE 9.4b shows, Favg is the height of a rectangle 
that has the same area, and thus the same impulse, as the real force curve. The impulse 
exerted during the collision is

 Jx = Favg �t (9.7)

Equation 9.2, which we found by integrating Newton’s second law, can now be 
rewritten in terms of impulse and momentum as

 �px = Jx  (impulse@momentum theorem) (9.8)

FIguRE 9.3 A particle's momentum 
vector p

u can be decomposed into x- and 
y-components.

m

Momentum is a vector
pointing in the same direction
as the object’s velocity.

rv
pr

py
r

px
r

FIguRE 9.4 Looking at the impulse 
graphically.

Fx

Fmax

Particle has
momentum pix

Particle has
momentum pfx

Impulse Jx is the area
under the force curve.

0 t

(a)

Fx

Favg

Same duration �t

The area under the
rectangle of height
Favg is the same as
the area in part (a).

0 t

(b)
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This result is called the impulse-momentum theorem. The name is rather unusual, 
but it’s not the name that is important. The important new idea is that an impulse de-
livered to a particle changes the particle’s momentum. The momentum pfx “after” 
an interaction, such as a collision or an explosion, is equal to the momentum pix 
“before” the interaction plus the impulse that arises from the interaction:

 pfx = pix + Jx (9.9)

FIguRE 9.5 illustrates the impulse-momentum theorem for a rubber ball bouncing off 
a wall. Notice the signs; they are very important. The ball is initially traveling toward 
the right, so vix and pix are positive. After the bounce, vfx and pfx are negative. The 
force on the ball is toward the left, so Fx is also negative. The graphs show how the 
force and the momentum change with time.

Although the interaction is very complex, the impulse—the area under the force 
graph—is all we need to know to find the ball’s velocity as it rebounds from the wall. 
The final momentum is

 pfx = pix + Jx = pix + area under the force curve

and the final velocity is vfx = pfx /m. In this example, the area has a negative value.

Momentum Bar Charts
The impulse-momentum theorem tells us that impulse transfers momentum to an 
object. If an object has 2 kg m/s of momentum, a 1 kg m/s impulse exerted on the 
object increases its momentum to 3 kg m/s. That is, pfx = pix + Jx.

We can represent this “momentum accounting” with a momentum bar chart. 
FIguRE 9.6a shows a bar chart in which one unit of impulse adds to an initial two units 
of momentum to give three units of momentum. The bar chart of FIguRE 9.6b represents 
the ball colliding with a wall in Figure 9.5. Momentum bar charts are a tool for visual-
izing an interaction.

NoTE  The vertical scale of a momentum bar chart has no numbers; it can be 
adjusted to match any problem. However, be sure that all bars in a given problem 
use a consistent scale. 

Stop to think 9.1
 The cart’s change of momentum is

 a. -30 kg m/s
 b. -20 kg m/s
 c. 0 kg m/s
 d. 10 kg m/s
 e. 20 kg m/s
 f. 30 kg m/s

9.2  Solving Impulse and 
Momentum Problems

Pictorial representations have become an important problem-solving tool. The pic-
torial representations you learned to draw in Part I were oriented toward the use of 
Newton’s laws and a subsequent kinematic analysis. For conservation-law problems 
we need a new representation, the before-and-after pictorial representation.

2 m/s

Before:

After:

10 kg

1 m/s

t

t

Jx � area
under curve

Maximum
compression

Contact
begins

Contact
ends

vix � 0

pix

pfx

vfx � 0

Fx

px

0

Before: After:

0

�px � Jx

r
F

The wall applies an
impulse to the ball.

The impulse
changes the ball’s
momentum.

FIguRE 9.5 The impulse-momentum 
theorem helps us understand a rubber 
ball bouncing off a wall.

FIguRE 9.6 Two examples of momentum 
bar charts.

0

�

� �

� �

�

pix Jx pfx

(b)
1. The ball was initially
    moving to the right.

2. It’s hit
    to the
    left.

3. The ball rebounds to the
    left with no loss of speed.

0

�

� �

� �

�

pix Jx pfx

(a)
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TACTICS
B o x  9 . 1  

Drawing a before-and-after pictorial representation

 ●1 Sketch the situation. Use two drawings, labeled “Before” and “After,” to 
show the objects before they interact and again after they interact.

 ●2 Establish a coordinate system. Select your axes to match the motion.
 ●3 Define symbols. Define symbols for the masses and for the velocities before 

and after the interaction. Position and time are not needed.
 ●4 List known information. Give the values of quantities that are known from 

the problem statement or that can be found quickly with simple geometry or 
unit conversions. Before-and-after pictures are simpler than the pictures for 
dynamics problems, so listing known information on the sketch is adequate.

 ●5 Identify the desired unknowns. What quantity or quantities will allow you 
to answer the question? These should have been defined in step 3.

 ●6 If appropriate, draw a momentum bar chart to clarify the situation and 
establish appropriate signs.

exercises 17–19 

ExAMPLE 9.1  Hitting a baseball
A 150 g baseball is thrown with a speed of 20 m/s. It is hit straight 
back toward the pitcher at a speed of 40 m/s. The interaction force 
between the ball and the bat is shown in FIguRE 9.7. What maxi-
mum force Fmax does the bat exert on the ball? What is the average 
force of the bat on the ball?

VISuALIzE FIguRE 9.8 is a before-and-after pictorial representation. 
The steps from Tactics Box 9.1 are explicitly noted. Because Fx 
is positive (a force to the right), we know the ball was initially 
moving toward the left and is hit back toward the right. Thus we 
converted the statements about speeds into information about 
velocities, with vix negative.

SoLVE Until now we’ve consistently started the mathematical rep-
resentation with Newton’s second law. Now we want to use the 
impulse-momentum theorem:

 �px = Jx = area under the force curve

We know the velocities before and after the collision, so we can 
calculate the ball’s momenta:

  pix = mvix = (0.15 kg)(-20 m/s) = -3.0 kg m/s

  pfx = mvfx = (0.15 kg)(40 m/s) = 6.0 kg m/s
MoDEL Model the baseball as a particle and the interaction as a 
collision.

FIguRE 9.7 The interaction 
force between the baseball 
and the bat.

Fx

Fmax

0

6.0 ms

t

FIguRE 9.8 A before-and-after pictorial representation.

vix � �20 m/s

x

Fmax and Favg

vfx � 40 m/s

m � 0.15 kg

0

Before: After:

Find:

Draw the before-and-after pictures.

Establish a
coordinate
system.

Define symbols.

List known
information.

Identify desired
unknowns.

x

1

2

3

4

5

0

�

� �

� �

�

pix Jx pfx

3. The ball moves to the
 right with a higher speed.

2. It’s hit to the right.

1. The ball was initially
 moving to the left.

Draw a momentum bar chart.6

NoTE  The generic subscripts i and f, for initial and final, are adequate in equa-
tions for a simple problem, but using numerical subscripts, such as v1x and v2x, will 
help keep all the symbols straight in more complex problems. 



Other forces often act on an object during a collision or other brief interaction. 
In Example 9.1, for instance, the baseball is also acted on by gravity. Usually these 
other forces are much smaller than the interaction forces. The 1.5 N weight of the ball 
is vastly less than the 3000 N force of the bat on the ball. We can reasonably neglect 
these small forces during the brief time of the impulsive force by using what is called 
the impulse approximation.

When we use the impulse approximation, pix and pfx (and vix and vfx) are the mo-
menta (and velocities) immediately before and immediately after the collision. For 
example, the velocities in Example 9.1 are those of the ball just before and after it 
collides with the bat. We could then do a follow-up problem, including gravity and 
drag, to find the ball’s speed a second later as the second baseman catches it. We’ll 
look at some two-part examples later in the chapter.

Thus the change in momentum is

 �px = pfx - pix = 9.0 kg m/s

The force curve is a triangle with height Fmax and width 6.0 ms. 
The area under the curve is

 Jx = area =
1

2
* Fmax * (0.0060 s) = (Fmax)(0.0030 s)

According to the impulse-momentum theorem,

 9.0 kg m/s = (Fmax)(0.0030 s)

Thus the maximum force is

 Fmax =
9.0 kg m/s

0.0030 s
= 3000 N

The average force, which depends on the collision duration 
�t = 0.0060 s, has the smaller value:

 Favg =
Jx

�t
=

�px

�t
=

9.0 kg m/s

0.0060 s
= 1500 N

ASSESS Fmax is a large force, but quite typical of the impulsive 
forces during collisions. The main thing to focus on is our new 
perspective: An impulse changes the momentum of an object.

ExAMPLE 9.2  A bouncing ball
A 100 g rubber ball is dropped 
from a height of 2.00 m onto a 
hard floor. FIguRE 9.9 shows the 
force that the floor exerts on 
the ball. How high does the ball 
bounce?

MoDEL Model the ball as a 
particle subjected to an impul-
sive force while in contact with 
the floor. Using the impulse 
approximation, we’ll neglect 
gravity during these 8.00 ms. 
The fall and subsequent rise are 
free-fall motion.

VISuALIzE FIguRE 9.10 is a pictorial representation. Here we have 
a three-part problem (downward free fall, impulsive collision, up-
ward free fall), so the pictorial motion includes both the before 
and after of the collision (v1y changing to v2y) and the beginning 
and end of the free-fall motion. The bar chart shows the momen-
tum change during the brief collision. Note that p is negative for 
downward motion.

FIguRE 9.9 The force of the 
floor on a bouncing rubber 
ball.

300 N

0

Fy

t

8.00 ms

FIguRE 9.10 Pictorial representation of the ball and a 
momentum bar chart of the collision with the floor.

0

y

Collision

Free fall

y0 � 2.00 m
v0y � 0
m � 0.100 kg

y3

v3y � 0

v2y

v1y

Before:

Find: y3

After:

0

�

� �

� �

�

p1y Jy p2y

The impulse changes
the ball’s momentum
from “down” to “up.”

Continued
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NoTE  Example 9.2 illustrates an important point: The impulse-momentum 
theorem applies only during the brief interval in which an impulsive force is 
applied. Many problems will have segments of the motion that must be analyzed 
with kinematics or Newton’s laws. The impulse-momentum theorem is a new and 
useful tool, but it doesn’t replace all that you’ve learned up until now. 

Stop to think 9.2
 A 10 g rubber ball and a 10 g clay ball are thrown at a wall with 

equal speeds. The rubber ball bounces, the clay ball sticks. Which ball exerts a larger 
impulse on the wall?

 a. The clay ball exerts a larger impulse because it sticks.
 b. The rubber ball exerts a larger impulse because it bounces.
 c. They exert equal impulses because they have equal momenta.
 d. Neither exerts an impulse on the wall because the wall doesn’t move.

9.3 Conservation of Momentum
The impulse-momentum theorem was derived from Newton’s second law and is really 
just an alternative way of looking at single-particle dynamics. To discover the real 
power of momentum for problem solving, we need also to invoke Newton’s third law, 
which will lead us to one of the most important principles in physics: conservation of 
momentum.

FIguRE 9.11 shows two objects with initial velocities (vix)1 and (vix)2. The objects 
collide, then bounce apart with final velocities (vfx)1 and (vfx)2. The forces during 
the collision, as the objects are interacting, are the action/reaction pair F

u

1 on 2 and 
F
u

2 on 1. For now, we’ll continue to assume that the motion is one dimensional along 
the x-axis.

NoTE  The notation, with all the subscripts, may seem excessive. But there are two 
objects, and each has an initial and a final velocity, so we need to distinguish among 
four different velocities. 

SoLVE Velocity v1y, the ball’s velocity immediately before the col-
lision, is found using free-fall kinematics with �y = -2.0 m:

v1y 

2 = v0y 

2 - 2g�y = 0 - 2g�y

v1y = 2-2g�y = 2-2(9.80 m/s2)(-2.00 m) = -6.26 m/s

We’ve chosen the negative root because the ball is moving in the 
negative y-direction.

The impulse-momentum theorem is p2y = p1y + Jy. The ini-
tial momentum, just before the collision, is p1y = mv1y =

-  0.626 kg m/s. The force of the floor is upward, so Jy is positive. 
From Figure 9.9, the impulse Jy is

 Jy = area under the force curve =
1

2
* (300 N) * (0.00800 s)

 = 1.200 N s

Thus

 p2y = p1y + Jy = (-0.626 kg m/s) + 1.200 N s = 0.574 kg m/s

and the post-collision velocity is

 v2y =
p2y

m
=

0.574 kg m/s

0.100 kg
= 5.74 m/s

The rebound speed is less than the impact speed, as expected. 
Finally a second use of free-fall kinematics yields

  v3y 

2 = 0 = v2y 

2 - 2g�y = v2y 

2 - 2gy3

  y3 =
v2y 

2

2g
=

(5.74 m/s)2

2(9.80 m/s2)
= 1.68 m

The ball bounces back to a height of 1.68 m.

ASSESS The ball bounces back to less than its initial height, which 
is realistic.

FIguRE 9.11  A collision between two 
objects.

(vix )1 (vix )2

Before

During

After

The forces
during the
collision are an
action/reaction
pair.

(vfx)2(vfx)1

1

1 2

2

1 2

F2 on 1

r
F1 on 2

r
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Newton’s second law for each object during the collision is

  
d(px)1

dt
= (Fx)2 on 1

  
d(px)2

dt
= (Fx)1 on 2 = -(Fx)2 on 1 

(9.10)

We made explicit use of Newton’s third law in the second equation.
Although Equations 9.10 are for two different objects, suppose—just to see what 

happens—we were to add these two equations. If we do, we find that

 
d(px)1

dt
+

d(px)2

dt
=

d

dt
 c (px)1 + (px)2 d = (Fx)2 on 1 + (-(Fx)2 on 1) = 0 (9.11)

If the time derivative of the quantity (px)1 + (px)2 is zero, it must be the case that

 (px)1 + (px)2 = constant (9.12)

Equation 9.12 is a conservation law! If (px)1 + (px)2 is a constant, then the sum of 
the momenta after the collision equals the sum of the momenta before the collision. 
That is,

 (pfx)1 + (pfx)2 = (pix)1 + (pix)2 (9.13)

Furthermore, this equality is independent of the interaction force. We don’t need to 
know anything about F

u

1 on 2 and F
u

2 on 1 to make use of Equation 9.13.
As an example, FIguRE 9.12 is a before-and-after pictorial representation of two 

equal-mass train cars colliding and coupling. Equation 9.13 relates the momenta of 
the cars after the collision to their momenta before the collision:

 m1  (vfx)1 + m2  (vfx)2 = m1  (vix)1 + m2  (vix)2

Initially, car 1 is moving with velocity (vix)1 = vi while car 2 is at rest. Afterward, they 
roll together with the common final velocity vf. Furthermore, m1 = m2 = m. With this 
information, the sum of the momenta is

 mvf + mvf = 2mvf = mvi + 0

The mass cancels, and we find that the train cars’ final velocity is vf =
1
2 vi. That is, we 

can make the very simple prediction that the final speed is exactly half the initial speed 
of car 1 without knowing anything at all about the very complex interaction between 
the two cars as they collide.

Law of Conservation of Momentum
Equation 9.13 illustrates the idea of a conservation law for momentum, but it was 
derived for the specific case of two particles colliding in one dimension. Our goal 
is to develop a more general law of conservation of momentum, a law that will be 
valid in three dimensions and that will work for any type of interaction. The next few 
paragraphs are fairly mathematical, so you might want to begin by looking ahead 
to Equations 9.21 and the statement of the law of conservation of momentum to see 
where we’re heading.

Consider a system consisting of N particles. FIguRE 9.13 shows a simple case where 
N = 3. The particles might be large entities (cars, baseballs, etc.), or they might be the 
microscopic atoms in a gas. We can identify each particle by an identification number 
k. Every particle in the system interacts with every other particle via action/reaction 
pairs of forces F

u

j on k and F
u

k on j. In addition, every particle is subjected to possible ex-
ternal forces F

u

ext on k from agents outside the system.
If particle k has velocity v  

u

k, its momentum is p
u

k = mkv  

u

k. We define the total 
momentum P

u

 of the system as the vector sum

 P
u

= total momentum = p
u

1 + p
u

2 + p
u

3 + g + p
u

N = a
N

k=1
p
u

k (9.14)

FIguRE 9.12 Two colliding train cars.

Before:
(vix )1 � vi (vix)2 � 0

m2 � mm1 � m

(vfx)1 � (vfx)2 � vf

After:

m1 � m2 � 2m

FIguRE 9.13 A system of particles.
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r
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In other words, the total momentum of the system is the vector sum of all the individual 
momenta.

The time derivative of P
u

 tells us how the total momentum of the system changes 
with time:

 
dP

u

dt
= a

k

 
d p

u

k

dt
= a

k

F
u

k (9.15)

where we used Newton’s second law for each particle in the form F
u

k = d p
u

k /dt, which 
was Equation 9.4.

The net force acting on particle k can be divided into external forces, from outside 
the system, and interaction forces due to all the other particles in the system:

 F
u

k = a
j�k

F
u

j on k + F
u

ext on k (9.16)

The restriction j � k expresses the fact that particle k does not exert a force on itself. 
Using this in Equation 9.15 gives the rate of change of the total momentum P

u

 of the 
system:

 
dP

u

dt
= a

k
a
j�k

F
u

j on k + a
k

F
u

ext on k (9.17)

The double sum on F
u

j on k adds every interaction force within the system. But the 
interaction forces come in action/reaction pairs, with F

u

k on j = - F
u

j on k, so F
u

k on j +

F
u

j on k = 0
u

. Consequently, the sum of all the interaction forces is zero. As a result, 
Equation 9.17 becomes

 
dP

u

dt
= a

k

F
u

ext on k = F
u

net  (9.18)

where F
u

net is the net force exerted on the system by agents outside the system. But 
this is just Newton’s second law written for the system as a whole! That is, the rate 
of change of the total momentum of the system is equal to the net force applied 
to the system.

Equation 9.18 has two very important implications. First, we can analyze the mo-
tion of the system as a whole without needing to consider interaction forces between 
the particles that make up the system. In fact, we have been using this idea all along 
as an assumption of the particle model. When we treat cars and rocks and baseballs as 
particles, we assume that the internal forces between the atoms—the forces that hold 
the object together—do not affect the motion of the object as a whole. Now we have 
justified that assumption.

The second implication of Equation 9.18, and the more important one from the 
perspective of this chapter, applies to what we call an isolated system. An isolated sys-
tem is a system for which the net external force is zero: F

u

net = 0
u

. That is, an isolated 
system is one on which there are no external forces or for which the external forces are 
balanced and add to zero.

For an isolated system, Equation 9.18 is simply

 
dP

u

dt
= 0

u

  (isolated system) (9.19)

In other words, the total momentum of an isolated system does not change. The 
total momentum P

u

 remains constant, regardless of whatever interactions are going on 
inside the system. The importance of this result is sufficient to elevate it to a law of 
nature, alongside Newton’s laws.

Law of conservation of momentum The total momentum P
u

 of an isolated sys-
tem is a constant. Interactions within the system do not change the system’s total 
momentum.

The total momentum of the rocket +

gases system is conserved, so the rocket 
accelerates forward as the gases are 
expelled backward.



Mathematically, the law of conservation of momentum for an isolated system is

 P
u

f = P
u

i (9.20)

The total momentum after an interaction is equal to the total momentum before the 
interaction. Because Equation 9.20 is a vector equation, the equality is true for each of 
the components of the momentum vector. That is,

  (pfx)1 + (pfx)2 + (pfx)3 + g = (pix)1 + (pix)2 + (pix)3 + g

  (pfy)1 + (pfy)2 + (pfy)3 + g = (piy)1 + (piy)2 + (piy)3 + g 
(9.21)

The x-equation is an extension of Equation 9.13 to N interacting particles.

NoTE  It is worth emphasizing the critical role of Newton’s third law. The law 
of conservation of momentum is a direct consequence of the fact that interactions 
within an isolated system are action/reaction pairs. 

where, in the last step, we used (vix)2 = 0 for the 500 g glider. 
Solving for the heavier glider’s final velocity gives

 (vfx)2 =
m1

m2
 c (vix)1 - (vfx)1 d

From Chapter 2 kinematics, the velocities of the 250 g glider before 
and after the collision are the slopes of the position-versus-time 
graph. Referring to Figure 9.14, we see that (vix)1 = 0.75 m/s and 
(vfx)1 = -0.21 m/s. The latter is negative because the rebound 
motion is to the left. Thus

 (vfx)2 =
250 g

500 g
 c 0.75 m/s - (-0.21 m/s) d = 0.48 m/s

The 500 g glider moves away from the collision at 0.48 m/s.

ASSESS The 500 g glider has twice the mass of the glider that was 
pushed, so a somewhat smaller speed seems reasonable. Paying at-
tention to the signs—which are positive and which negative—was 
very important for reaching a correct answer. We didn’t convert 
the masses to kilograms because only the mass ratio of 0.50 was 
needed.

ExAMPLE 9.3  A glider collision
A 250 g air-track glider is pushed across a level track toward a 
500 g glider that is at rest. FIguRE 9.14 shows a position-versus-
time graph of the 250 g glider as recorded by a motion detector. 
Best-fit lines have been found. What is the speed of the 500 g 
glider after the collision?

FIguRE 9.14 Position graph of the 250 g glider.

1.5
t (s)

0.0 0.5

y � 0.75x � 0.20 y � �0.21x � 1.06

1.0 2.0
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0.4

0.2

0.0
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x (m)

(vix )1 (vix )2 � 0

(vfx )1 (vfx )2

Before:

System

After:

Find:  (vfx )2

m1 � 250 g m2 � 500 g

x

1

1 2

2

FIguRE 9.15 Before-and-after pictorial representation of a 
glider collision.

MoDEL The two gliders, modeled as particles, are the system. The 
gliders interact with each other, but the external forces (normal 
force and gravity) balance to make F

u

net = 0
u

. Thus the gliders form 
an isolated system and their total momentum is conserved.

VISuALIzE FIguRE 9.15 is a before-and-after pictorial representa-
tion. The graph of Figure 9.14 tells us that the 250 g glider initially 
moves to the right, collides at t = 1.0 s, then rebounds to the left 
(decreasing x).

SoLVE Conservation of momentum for this one-dimensional prob-
lem requires that the final momentum equal the initial momentum: 
Pfx = Pix. In terms of the individual components, conservation of 
momentum is

 (pfx)1 + (pfx)2 = (pix)1 + (pix)2

Each momentum is mvx, so conservation of momentum in terms 
of velocities is

 m1(vfx)1 + m2(vfx)2 = m1(vix)1 + m2(vix)2 = m1(vix)1

9.3 . Conservation of Momentum    229
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A Strategy for Conservation of Momentum Problems

PRoBLEM-SoLVINg
STRATEgy 9.1 Conservation of momentum

MoDEL Clearly define the system.

■	 If possible, choose a system that is isolated (F
u

net = 0
u

) or within which the 
interactions are sufficiently short and intense that you can ignore external 
forces for the duration of the interaction (the impulse approximation). Mo-
mentum is conserved.

■	 If it’s not possible to choose an isolated system, try to divide the problem into 
parts such that momentum is conserved during one segment of the motion. 
Other segments of the motion can be analyzed using Newton’s laws or, as 
you’ll learn in Chapters 10 and 11, conservation of energy.

VISuALIzE Draw a before-and-after pictorial representation. Define symbols that 
will be used in the problem, list known values, and identify what you’re trying 
to find.

SoLVE The mathematical representation is based on the law of conservation of 
momentum: P

u

f = P
u

i. In component form, this is

  (pfx)1 + (pfx)2 + (pfx)3 + g = (pix)1 + (pix)2 + (pix)3 + g
  (pfy)1 + (pfy)2 + (pfy)3 + g = (piy)1 + (piy)2 + (piy)3 + g 

ASSESS Check that your result has the correct units, is reasonable, and answers 
the question.

exercise 16 

isolated system during the brief interval of the “collision,” and 
thus the total momentum of Bob + cart is conserved during this 
interaction. But the system Bob + cart is not an isolated system 
for the entire problem because Bob’s initial acceleration has noth-
ing to do with the cart.

VISuALIzE Our strategy is to divide the problem into an accelera-
tion part, which we can analyze using kinematics, and a collision 
part, which we can analyze with momentum conservation. The 
pictorial representation of FIguRE 9.16 includes information about 
both parts. Notice that Bob’s velocity (v1x)B at the end of his run is 
his “before” velocity for the collision.

ExAMPLE 9.4  Rolling away
Bob sees a stationary cart 8.0 m in front of him. He decides to run 
to the cart as fast as he can, jump on, and roll down the street. Bob 
has a mass of 75 kg and the cart’s mass is 25 kg. If Bob acceler-
ates at a steady 1.0 m/s2, what is the cart’s speed just after Bob 
jumps on?

MoDEL This is a two-part problem. First Bob accelerates across 
the ground. Then Bob lands on and sticks to the cart, a “collision” 
between Bob and the cart. The interaction forces between Bob 
and the cart (i.e., friction) act only over the fraction of a second 
it takes Bob’s feet to become stuck to the cart. Using the impulse 
approximation allows the system Bob + cart to be treated as an 

FIguRE 9.16 Pictorial representation of Bob and the cart.

x

x0 � 0 m
(v0x )B � 0 m/s

x1 � 8.0 m
(v1x)B

(v1x )C � 0 m/s (v2x )B � (v2x )C � v2x

Find: v2x 

mC � 25 kg

mB � 75 kg

System

ax  � 1.0 m/s2

Before: After:

0 m 8 m



Notice how easy this was! No forces, no acceleration constraints, no simultaneous 
equations. Why didn’t we think of this before? Conservation laws are indeed power-
ful, but they can answer only certain questions. Had we wanted to know how far Bob 
slid across the cart before sticking to it, how long the slide took, or what the cart’s 
acceleration was during the collision, we would not have been able to answer such 
questions on the basis of the conservation law. There is a price to pay for finding a 
simple connection between before and after, and that price is the loss of information 
about the details of the interaction. If we are satisfied with knowing only about before 
and after, then conservation laws are a simple and straightforward way to proceed. But 
many problems do require us to understand the interaction, and for these there is no 
avoiding Newton’s laws.

It Depends on the System
The first step in the problem-solving strategy asks you to clearly define the system. 
This is worth emphasizing because many problem-solving errors arise from trying to 
apply momentum conservation to an inappropriate system. The goal is to choose a 
system whose momentum will be conserved. Even then, it is the total momentum 
of the system that is conserved, not the momenta of the individual particles within the 
system.

As an example, consider what happens if you drop a rubber ball and let it bounce 
off a hard floor. Is momentum conserved during the collision of the ball with the floor? 
You might be tempted to answer yes because the ball’s rebound speed is very nearly 
equal to its impact speed. But there are two errors in this reasoning.

First, momentum depends on velocity, not speed. The ball’s velocity and momen-
tum just before the collision are negative. They are positive after the collision. Even if 
their magnitudes are equal, the ball’s momentum after the collision is not equal to its 
momentum before the collision.

But more important, we haven’t defined the system. The momentum of what? 
Whether or not momentum is conserved depends on the system. FIguRE 9.17 shows 
two different choices of systems. In FIguRE 9.17a, where the ball itself is chosen as the 
system, the gravitational force of the earth on the ball is an external force. This force 
causes the ball to accelerate toward the earth, changing the ball’s momentum. The 
force of the floor on the ball is also an external force. The impulse of F

u

floor on ball chang-
es the ball’s momentum from “down” to “up” as the ball bounces. The momentum of 
this system is most definitely not conserved.

FIguRE 9.17b shows a different choice. Here the system is ball + earth. Now the 
gravitational forces and the impulsive forces of the collision are interactions within 
the system. This is an isolated system, so the total momentum P

u

= p
u

ball + p
u

earth is 
conserved.

In fact, the total momentum is P
u

= 0
u

. Before you release the ball, both the ball and 
the earth are at rest (in the earth’s reference frame). The total momentum is zero before 

SoLVE The first part of the mathematical representation is kine-
matics. We don’t know how long Bob accelerates, but we do know 
his acceleration and the distance. Thus

 (v1x)B 

2 = (v0x)B 

2 + 2ax  �x = 2ax  x1

His velocity after accelerating for 8.0 m is

 (v1x)B = 22ax  x1 = 4.0 m/s

The second part of the problem, the collision, uses conservation of 
momentum:   P2x = P1x. Equation 9.21 is

 mB (v2x)B + mC (v2x)C = mB (v1x)B + mC (v1x)C = mB (v1x)B

where we’ve used (v1x)C = 0 m/s because the cart starts at rest. 
In this problem, Bob and the cart move together at the end with 
a common velocity, so we can replace both (v2x)B and (v2x)C with 
simply v2x. Solving for v2x, we find

 v2x =
mB

mB + mC
 (v1x)B =

75 kg

100 kg
* 4.0 m/s = 3.0 m/s

The cart’s speed is 3.0 m/s immediately after Bob jumps on.

FIguRE 9.17 whether or not momentum 
is conserved as a ball falls to earth 
depends on your choice of the system.

System � ball(a)

External force.
Impulse changes the
ball’s momentum.

FE on B

r

FB on E

r

Interaction forces
within an isolated
system. The
system’s total
momentum
is conserved.

System � ball � earth(b)

FE on B

r

FB on E

r
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you release the ball, so it will always be zero. Just before the ball hits the floor with 
velocity vBy, it must be the case that mB  vBy + mE vEy = 0 and thus

 vEy = -  
mB

mE
 vBy

In other words, as the ball is pulled down toward the earth, the ball pulls up on the 
earth (action/reaction pair of forces) until the entire earth reaches velocity vEy  . The 
earth’s momentum is equal and opposite to the ball’s momentum.

Why don’t we notice the earth “leaping up” toward us each time we drop some-
thing? Because of the earth’s enormous mass relative to everyday objects. A typical 
rubber ball has a mass of 60 g and hits the ground with a velocity of about -5 m/s. The 
earth’s upward velocity is thus

 vEy � -  
6 * 10-2 kg

6 * 1024 kg
 (-5 m/s) = 5 * 10-26 m/s

The earth does, indeed, have a momentum equal and opposite to that of the ball, but 
the earth is so massive that it needs only an infinitesimal velocity to match the ball’s 
momentum. At this speed, it would take the earth 300 million years to move the di-
ameter of an atom!

Stop to think 9.3 
 Objects A and C are 

made of different materials, with different 
“springiness,” but they have the same mass 
and are initially at rest. When ball B collides 
with object A, the ball ends up at rest. When 
ball B is thrown with the same speed and col-
lides with object C, the ball rebounds to the 
left. Compare the velocities of A and C after 
the collisions. Is vA greater than, equal to, or 
less than vC  ?

9.4 Inelastic Collisions
Collisions can have different possible outcomes. A rubber ball dropped on the floor 
bounces, but a ball of clay sticks to the floor without bouncing. A golf club hitting a 
golf ball causes the ball to rebound away from the club, but a bullet striking a block of 
wood embeds itself in the block.

A collision in which the two objects stick together and move with a common final 
velocity is called a perfectly inelastic collision. The clay hitting the floor and the bul-
let embedding itself in the wood are examples of perfectly inelastic collisions. Other 
examples include railroad cars coupling together upon impact and darts hitting a dart 
board. FIguRE 9.18 emphasizes the fact that the two objects have a common final veloc-
ity after they collide.

In an elastic collision, by contrast, the two objects bounce apart. We’ve looked at 
some examples of elastic collisions, but a full analysis requires ideas about energy. We 
will return to elastic collisions in Chapter 10.

B

Before: After:

mA � mC

vA

vC

v � 0
A

B C C

A

FIguRE 9.18 An inelastic collision.

After:

Combined
mass m1 � m2

m1
m2

Common final
velocity

They stick and move together.

Two objects approach and collide.

Before:
(vix )1 (vix)2

vfx

1 2

1 2

stick together when they collide. The 200 g glider is pushed with 
an initial speed of 3.0 m/s. The collision causes it to reverse direc-
tion at 0.40 m/s. What was the initial speed of the 400 g glider?

ExAMPLE 9.5  An inelastic glider collision
In a laboratory experiment, a 200 g air-track glider and a 400 g 
air-track glider are pushed toward each other from opposite ends 
of the track. The gliders have Velcro tabs on the front and will 
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The negative sign indicates that the 400 g glider started out mov-
ing to the left. The initial speed of the glider, which we were asked 
to find, is 2.1 m/s.

FIguRE 9.19 The before-and-after pictorial 
representation of an inelastic collision.

(vix )1 � 3.0 m/s

vfx  � �0.40 m/s

(vix)2

m1 � m2

Before:

After:

System

Find:  (vix )2

m1 � 200 g m2 � 400 g

x

1 2

1 2

MoDEL Model the gliders as particles. Define the two gliders 
together as the system. This is an isolated system, so its total mo-
mentum is conserved in the collision. The gliders stick together, so 
this is a perfectly inelastic collision.

VISuALIzE FIguRE 9.19 shows a pictorial representation. We’ve 
chosen to let the 200 g glider (glider 1) start out moving to the right, 
so (vix)1 is a positive 3.0 m/s. The gliders move to the left after the 
collision, so their common final velocity is vfx = -0.40 m/s.

SoLVE The law of conservation of momentum, Pfx = Pix, is

 (m1 + m2)vfx = m1  (vix)1 + m2  (vix)2

where we made use of the fact that the combined mass m1 + m2 
moves together after the collision. We can easily solve for the 
initial velocity of the 400 g glider:

  (vix)2 =
(m1 + m2)vfx - m1  (vix)1

m2

  =
(0.60 kg)(-0.40 m/s) - (0.20 kg)(3.0 m/s)

0.40 kg
  = -2.1 m/s

VISuALIzE FIguRE 9.20a is a pictorial representation showing both 
the before and after of the collision and the more familiar picture 
for the dynamics of the skidding. We do not need to consider forc-
es during the collision because we will use the law of conservation 
of momentum, but we do need a free-body diagram of the cars 
during the subsequent skid. This is shown in FIguRE 9.20b.

The cars have a common velocity v1x just after the collision. 
This is the initial velocity for the dynamics problem. Our goal is to 
find (v0x)VW , the Volkswagen’s velocity at the moment of impact. 
The 50 km/h speed limit has been converted to 14 m/s.

SoLVE First, the inelastic collision. The law of conservation of 
momentum is

 (mVW + mC)v1x = mVW (v0x)VW + mC (v0x)C

Solving for the initial velocity of the Volkswagen, we find

 (v0x)VW =
(mVW + mC)v1x - mC (v0x)C

mVW

ExAMPLE 9.6  Momentum in a car crash
A 2000 kg Cadillac had just started forward from a stop sign 
when it was struck from behind by a 1000 kg Volkswagen. The 
bumpers became entangled, and the two cars skidded forward to-
gether until they came to rest. Officer Tom, responding to the 
accident, measured the skid marks to be 3.0 m long. He also took 
testimony from the driver that the Cadillac’s speed just before 
the impact was 5.0 m/s. Officer Tom charged the Volkswagen 
driver with reckless driving. Should the Volkswagen driver also 
be charged with exceeding the 50 km/h speed limit? The judge 
calls you as an “expert witness” to analyze the evidence. What is 
your conclusion?

MoDEL This is really two problems. First, there is an inelastic col-
lision. The two cars are not a perfectly isolated system because of 
external friction forces, but during the brief collision the external 
impulse delivered by friction will be negligible. Within the impulse 
approximation, the momentum of the Volkswagen + Cadillac 
system will be conserved in the collision. Then we have a second 
problem, a dynamics problem of the two cars sliding.

FIguRE 9.20 Pictorial representation and a free-body diagram of the cars as they skid.

(v0x )VW v1x(v0x)C � 5.0 m/s

x1 � 0 m x2 � 3 m

v2x � 0 m/smVW � 1000 kg mC � 2000 kg

Before:

Collision
Dynamics

(a) After:

x
0

Find:  (v0x )VW

mk � 0.80
Speed limit: 50 km/h � 14 m/s

(b)

x

y

FG

r

fk

r

nr

Continued
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To evaluate (v0x)VW, we need to know v1x, the velocity immediately 
after the collision as the cars begin to skid. This information will 
come out of the dynamics of the skid. Newton’s second law and 
the model of kinetic friction are

 aFx = - fk = (mVW + mC)ax

 aFy = n - (mVW + mC)g = 0

 fk = mk  n

where we have noted that f 
u

k points to the left (negative x-compo-
nent) and that the total mass is mVW + mC. From the y-equation 
and the friction equation,

 fk = mk  (mVW + mC)g

Using this in the x-equation gives

 ax =
- fk

mVW + mC
= -mkg = -7.84 m/s2

where the coefficient of kinetic friction for rubber on concrete is 
taken from Table 6.1. With the acceleration determined, we can 
move on to the kinematics. This is constant acceleration, so

 v2x 

2 = 0 = v1x 

2 + 2ax  (�x) = v1x 

2 + 2ax   x2

Hence the skid starts with velocity

 v1x = 2-2ax   x2 = 2-2(-7.84 m/s2)(3.0 m) = 6.9 m/s

As we have noted, this is the final velocity of the collision. 
Inserting v1x back into the momentum conservation equation, we 
finally determine that

 (v0x)VW =
(3000 kg)(6.9 m/s) - (2000 kg)(5.0 m/s)

1000 kg

 = 11 m/s

On the basis of your testimony, the Volkswagen driver is not 
charged with speeding!

NoTE  Momentum is conserved only for an isolated system. In this example, mo-
mentum was conserved during the collision (isolated system) but not during the 
skid (not an isolated system). In practice, it is not unusual for momentum to be 
conserved in one part or one aspect of a problem but not in others. 

Stop to think 9.4 
 The two particles are both moving to the right. Particle 1 catches up with 

particle 2 and collides with it. The particles stick together and continue on with velocity vf. 
Which of these statements is true?

 a. vf is greater than v1. b. vf = v1 c. vf is greater than v2 but less than v1.
 d. vf = v2 e. vf is less than v2. f. Can’t tell without knowing the masses.

AfterBefore

v1 v2 vf
21 1 2

9.5 Explosions
An explosion, where the particles of the system move apart from each other after a 
brief, intense interaction, is the opposite of a collision. The explosive forces, which 
could be from an expanding spring or from expanding hot gases, are internal forces. 
If the system is isolated, its total momentum during the explosion will be conserved.

ExAMPLE 9.7  Recoil
A 10 g bullet is fired from a 3.0 kg rifle with a speed of 500 m/s. 
What is the recoil speed of the rifle?

MoDEL The rifle causes a small mass of gunpowder to explode, and 
the expanding gas then exerts forces on both the bullet and the rifle. 
Let’s define the system to be bullet + gas + rifle. The forces due to 
the expanding gas during the explosion are internal forces, within 
the system. Any friction forces between the bullet and the rifle as the 
bullet travels down the barrel are also internal forces. Gravity, the 
only external force, is balanced by the normal forces of the barrel 
on the bullet and the person holding the rifle, so F

u

net = 0
u

. This is an 
isolated system and the law of conservation of momentum applies.

VISuALIzE FIguRE 9.21 shows a pictorial representation before and 
after the bullet is fired.

SoLVE The x-component of the total momentum is Px = ( px)B +
( px)R + ( px)gas. Everything is at rest before the trigger is pulled, 
so the initial momentum is zero. After the trigger is pulled, the 
momentum of the expanding gas is the sum of the momenta of 
all the molecules in the gas. For every molecule moving in the 
forward direction with velocity v and momentum mv there is, 
on average, another molecule moving in the opposite direction 
with velocity -v and thus momentum -mv. When summed over 
the enormous number of molecules in the gas, we will be left 
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We would not know where to begin to solve a problem such as this using Newton’s 
laws. But Example 9.7 is a simple problem when approached from the before-and-
after perspective of a conservation law. The selection of bullet + gas + rifle as “the 
system” was the critical step. For momentum conservation to be a useful principle, 
we had to select a system in which the complicated forces due to expanding gas and 
friction were all internal forces. The rifle by itself is not an isolated system, so its mo-
mentum is not conserved.

with pgas � 0. In addition, the mass of the gas is much less than 
that of the rifle or bullet. For both reasons, we can reasonably 
neglect the momentum of the gas. The law of conservation of 
momentum is thus

 Pfx = mB (vfx)B + mR (vfx)R = Pix = 0

Solving for the rifle’s velocity, we find

 (vfx)R = -  
mB

mR
 (vfx)B = -  

0.010 kg

3.0 kg
* 500 m/s = -1.7 m/s

The minus sign indicates that the rifle’s recoil is to the left. The 
recoil speed is 1.7 m/s.

FIguRE 9.21 Before-and-after pictorial 
representation of a rifle firing a bullet.

(vix)R � 0 m/s

(vfx)B � 500 m/s
(vfx )R

mR � 3.0 kg

(vix )B � 0 m/s
mB � 0.010 kg

System

Before:

After:

Find:  (vfx )R

pieces fly apart in opposite directions with momenta equal in mag-
nitude but opposite in sign. That is,

 Pfx = m1  (vfx)1 + m2  (vfx)2 = Pix = 0

Although we know both final velocities, this is not enough infor-
mation to find the two unknown masses. However, we also have 
another conservation law, conservation of mass, that requires

 m1 + m2 = 238 u

Combining these two conservation laws gives

 m1  (vfx)1 + (238 u - m1)(vfx)2 = 0

The mass of the daughter nucleus is

  m1 =
(vfx)2

(vfx)2 - (vfx)1
* 238 u

  =
1.50 * 107 m/s

(1.50 * 107 - (-2.56 * 105)) m/s
* 238 u = 234 u

With m1 known, the mass of the ejected fragment is m2 =

238 - m1 = 4 u.

ASSESS All we learn from a momentum analysis is the masses. 
Chemical analysis shows that the daughter nucleus is the element 
thorium, atomic number 90, with two fewer protons than uranium. 
The ejected fragment carried away two protons as part of its mass 
of 4 u, so it must be a particle with two protons and two neutrons. 
This is the nucleus of a helium atom, 4He, which in nuclear phys-
ics is called an alpha particle a. Thus the radioactive decay of 
238U can be written as 238U S 234Th + a.

ExAMPLE 9.8  Radioactivity

A 238U uranium nucleus is radioactive. It spontaneously disinte-
grates into a small fragment that is ejected with a measured speed 
of 1.50 * 107 m/s and a “daughter nucleus” that recoils with a 
measured speed of 2.56 * 105 m/s. What are the atomic masses of 
the ejected fragment and the daughter nucleus?

MoDEL The notation 238U indicates the isotope of uranium with an 
atomic mass of 238 u, where u is the abbreviation for the atomic 
mass unit. The nucleus contains 92 protons (uranium is atomic 
number 92) and 146 neutrons. The disintegration of a nucleus is, in 
essence, an explosion. Only internal nuclear forces are involved, 
so the total momentum is conserved in the decay.

VISuALIzE FIguRE 9.22 shows the pictorial representation. The 
mass of the daughter nucleus is m1 and that of the ejected fragment 
is m2  . Notice that we converted the speed information to velocity 
information, giving (vfx)1 and (vfx)2 opposite signs.

FIguRE 9.22 Before-and-after pictorial 
representation of the decay of a 238U nucleus.

Before:

After:

Find:

m1

m1 and m2

m2

(vfx )1 � �2.56 � 105 m/s

(vfx )2 � 1.50 � 107 m/s

vix � 0 m/s

m � 238 u
238U

1 2

SoLVE The nucleus was initially at rest, hence the total momen-
tum is zero. The momentum after the decay is still zero if the two 
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Much the same reasoning explains how a rocket or jet aircraft accelerates. FIguRE 9.23 
shows a rocket with a parcel of fuel on board. Burning converts the fuel to hot gases 
that are expelled from the rocket motor. If we choose rocket + gases to be the system, 
the burning and expulsion are both internal forces. There are no other forces, so the 
total momentum of the rocket + gases system must be conserved. The rocket gains 
forward velocity and momentum as the exhaust gases are shot out the back, but the 
total momentum of the system remains zero.

The details of rocket propulsion are more complex than we want to handle, because 
the mass of the rocket is changing, but you should be able to use the law of conser-
vation of momentum to understand the basic principle by which rocket propulsion 
occurs.

Stop to think 9.5  An explosion in a rigid pipe shoots out three pieces. A 6 g piece 
comes out the right end. A 4 g piece comes out the left end with twice the speed of the 
6 g piece. From which end, left or right, does the third piece emerge?

9.6 Momentum in Two Dimensions
Our examples thus far have been confined to motion along a one-dimensional axis. 
Many practical examples of momentum conservation involve motion in a plane. The 
total momentum P

u

 is a vector sum of the momenta p
u

= mv  

u
 of the individual particles. 

Consequently, as we found in Section 9.3, momentum is conserved only if each com-
ponent of P

u

 is conserved:

  (pfx)1 + (pfx)2 + (pfx)3 + g = (pix)1 + (pix)2 + (pix)3 + g

  (pfy)1 + (pfy)2 + (pfy)3 + g = (piy)1 + (piy)2 + (piy)3 + g 
(9.22)

In this section we’ll apply momentum conservation to motion in two dimensions.

FIguRE 9.23 rocket propulsion is an 
example of conservation of momentum.

Before:

After:

The total momentum is
zero, so the rocket goes
forward as the gases
are ejected backward.

Fuel on
board

Ejected
exhaust
gases

pR r

pG
r

Pf � pR � pG � 0
rr rr

Pi � 0
rr

Collisions and explosions often involve 
motion in two dimensions.

tum in two dimensions requires conservation of both the x- and 
y-components of momentum. This gives two conservation equations:

  (mF + mP)vfx = (mF + mP)vf cos f

  = mF(vix)F + mP(vix)P = mFvF cos u + mPvP

  (mF + mP)vfy = - (mF + mP)vf sin f

  = mF(viy)F + mP(viy)P = -mFvF sin u

ExAMPLE 9.9  A peregrine falcon strike
Peregrine falcons often grab their prey from above while both 
falcon and prey are in flight. A 0.80 kg falcon, flying at 18 m/s, 
swoops down at a 45� angle from behind a 0.36 kg pigeon flying 
horizontally at 9.0 m/s. What are the speed and direction of the 
falcon (now holding the pigeon) immediately after impact?

MoDEL The two birds, modeled as particles, are the system. This 
is a perfectly inelastic collision because after the collision the fal-
con and pigeon move at a common final velocity. The birds are 
not a perfectly isolated system because of external forces of the 
air, but during the brief collision the external impulse delivered 
by the air resistance will be negligible. Within this approximation, 
the total momentum of the falcon +  pigeon system is conserved 
during the collision.

VISuALIzE FIguRE 9.24 is a before-and-after pictorial representa-
tion. We’ve used angle f to label the post-collision direction.

SoLVE The initial velocity components of the falcon are 
(vix)F = vF  cos u and (viy)F = -vF  sin u. The pigeon’s initial 
velocity is entirely along the x-axis. After the collision, when the 
falcon and pigeon have the common velocity v

u

f, the components 
are vfx = vf cos f and vfy = -vf sin f. Conservation of momen-

FIguRE 9.24 Pictorial representation of a falcon 
catching a pigeon.
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The unknowns are vf and f. Dividing both equations by the total 
mass gives

  vf cos f =
mFvF cos u + mPvP

mF + mP
= 11.6 m/s

  vf sin f =
mFvF sin u

mF + mP
= 8.78 m/s

We can eliminate vf by dividing the second equation by the first to give

 
vf sin f

vf cos f
=  tan f =

8.78 m/s

11.6 m/s
= 0.757

 f =  tan -1(0.757) = 37�

Then vf = (11.6 m/s)/cos(37�) = 15 m/s. Immediately after im-
pact, the falcon, with its meal, is traveling at 15 m/s at an angle 
37� below the horizontal.

ASSESS It makes sense that the falcon would slow down after 
grabbing the slower-moving pigeon. And Figure 9.24 tells us 
that the total momentum is at an angle between 0� (the pigeon’s 
momentum) and 45� (the falcon’s momentum). Thus our answer 
seems reasonable.

  m1  (vfx)1 + m2  (vfx)2 + m3  (vfx)3 = MVix

  m1  (vfy)1 + m2  (vfy)2 + m3  (vfy)3 = MViy

Conservation of mass implies that

 m3 = M - m1 - m2 = 4.0 g

Neither the original object nor m2 has any momentum along the 
y-axis. We can use Figure 9.25 to write out the x- and y-compo-
nents of v  

u

1 and v  

u

3, leading to

 m1v1 cos 40� - m2v2 + m3v3 cos u = MV

 m1v1 sin 40� - m3v3 sin u = 0

where we used (vfx)2 = -v2 because m2 is moving in the negative 
x-direction. Inserting known values in these equations gives us

 -2.42 + 4v3 cos u = 20

 23.14 - 4v3 sin u = 0

We can leave the masses in grams in this situation because the 
conversion factor to kilograms appears on both sides of the equa-
tion and thus cancels out. To solve, first use the second equation to 
write v3 = 5.79/sin u. Substitute this result into the first equation, 
noting that cos u/sin u = 1/tan u, to get

 -2.42 + 415.79

sin u 2  cos u = -2.42 +
23.14

tan u
= 20

Now solve for u:

 tan u =
23.14

20 + 2.42
= 1.03

 u = tan-1(1.03) = 45.8�

Finally, use this result in the earlier expression for v3 to find

 v3 =
5.79

sin 45.8�
= 8.1 m/s

The third fragment, with a mass of 4.0 g, is shot 46° south of east 
at a speed of 8.1 m/s.

CHALLENgE ExAMPLE 9.10  A three-piece explosion
A 10.0 g projectile is traveling east at 2.0 m/s when it suddenly 
explodes into three pieces. A 3.0 g fragment is shot due west at 
10 m/s while another 3.0 g fragment travels 40° north of east at 
12 m/s. What are the speed and direction of the third fragment?

MoDEL Although many complex forces are involved in the ex-
plosion, they are all internal to the system. There are no exter-
nal forces, so this is an isolated system and its total momentum is 
conserved.

VISuALIzE FIguRE 9.25 shows a before-and-after pictorial repre-
sentation. We’ll use uppercase M and V to distinguish the initial 
object from the three pieces into which it explodes.

FIguRE 9.25 Before-and-after pictorial 
representation of the three-piece explosion.

SoLVE The system is the initial object and the subsequent three 
pieces. Conservation of momentum requires
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S u M M A R y
The goals of Chapter 9 have been to understand and apply the new concepts of impulse and momentum.

general Principles
Law of Conservation of Momentum
The total momentum P

u

= p
u

1 + p
u

2 + g  of an isolated system is 
a constant. Thus

P
u

f = P
u

i

Newton’s Second Law
In terms of momentum, Newton’s second law is

F
u

=
dp

u

dt

Solving Momentum Conservation Problems
MoDEL Choose an isolated system or a system that is isolated 
during at least part of the problem.

VISuALIzE Draw a pictorial representation of the system before 
and after the interaction.

SoLVE Write the law of conservation of momentum in terms of 
vector components:

(pfx)1 + (pfx)2 + g = (pix)1 + (pix)2 + g
(pfy)1 + (pfy)2 + g = (piy)1 + (piy)2 + g

ASSESS Is the result reasonable?

collision
impulsive force
momentum, p

u

impulse, Jx

impulse-momentum theorem
momentum bar chart
before-and-after pictorial  

representation

impulse approximation
total momentum, P

u

isolated system

law of conservation of mo-
mentum

perfectly inelastic collision
explosion

Terms and Notation

1

1

1

2

2

2

1 2

(vix)1 (vix)2

(vfx)1 (vfx)2

vf1
r

vf2
r

vi2
r

vi1
r

� �

� �pix Jx pfx

0

�

�

Applications
Collisions Two or more particles come together. 
In a perfectly inelastic collision, they stick  
together and move with a common final velocity.

Explosions Two or more particles move away 
from each other.

Two dimensions No new ideas, but both the x- 
and y-components of P

u

 must be conserved, giving 
two simultaneous equations.

Momentum bar charts display the impulse-
momentum theorem pfx = pix + Jx in graphical form.

m pr

vr

(vix)1

m1 m2

(vix)2

(vfx)1 (vfx)2

1 2

21

Before:

After:

Before-and-after pictorial representation

•	 Define the system.

•	 Use two drawings to show the system before 
and after the interaction.

•	 List known information and identify what you 
are trying to find.

Important Concepts
Momentum p

u
= mv  

u

Impulse Jx = 3
tf

ti

Fx (t) dt = area under force curve

Impulse and momentum 
are related by the impulse-
momentum theorem

�px = Jx

The impulse delivered to a 
particle causes the particle’s 
momentum to change. This is an alternative 
statement of Newton’s second law.

System A group of interacting particles.

Isolated system A system on which there are no external 
forces or the net external force is zero.

Fx

ti tf
t

Jx � area
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C o N C E P T u A L  Q u E S T I o N S

 1. Rank in order, from largest to smallest, the momenta (px)a to 
(px)e of the objects in FIguRE Q9.1.

“The bullet hitting the wood block transfers all its momentum 
and energy to the block, so the wood block should end up going 
faster than the steel block.” “I think the bounce is an important 
factor,” replies Carlos. “The steel block will be faster because 
the bullet bounces off it and goes back the other direction.” 
Which of these three do you agree with, and why?

 7. It feels better to catch a hard ball while wearing a padded glove 
than to catch it bare handed. Use the ideas of this chapter to ex-
plain why.

 8. Automobiles are designed with “crumple zones” intended to col-
lapse in a collision. Use the ideas of this chapter to explain why.

 9. A 2 kg object is moving to the right with a speed of 1 m/s when 
it experiences an impulse of 4 N s. What are the object’s speed 
and direction after the impulse?

 10. A 2 kg object is moving to the right with a speed of 1 m/s when 
it experiences an impulse of -4 N s. What are the object’s speed 
and direction after the impulse?

 11. A golf club continues forward after hitting the golf ball. Is mo-
mentum conserved in the collision? Explain, making sure you 
are careful to identify “the system."

 12. Suppose a rubber ball collides head-on with a steel ball of equal 
mass traveling in the opposite direction with equal speed. Which 
ball, if either, receives the larger impulse? Explain.

 13. Two particles collide, one of which was initially moving and the 
other initially at rest.

 a. Is it possible for both particles to be at rest after the collision? 
Give an example in which this happens, or explain why it 
can’t happen.

 b. Is it possible for one particle to be at rest after the collision? 
Give an example in which this happens, or explain why it 
can’t happen.

 14. Two ice skaters, Paula and Ricardo, push off from each other. 
Ricardo weighs more than Paula.

 a. Which skater, if either, has the greater momentum after the 
push-off? Explain.

 b. Which skater, if either, has the greater speed after the push-
off? Explain.

FIguRE Q9.1 

20 g

1 m/s

20 g

2 m/s

10 g

2 m/s

10 g

1 m/s

0.1 m/s

a b

c d

200 g

e

 2. Explain the concept of impulse in nonmathematical language. 
That is, don’t simply put the equation in words to say that “im-
pulse is the time integral of force.” Explain it in terms that would 
make sense to an educated person who had never heard of it.

 3. Explain the concept of isolated system in nonmathematical lan-
guage that would make sense to an educated person who had 
never heard of it.

 4. A 0.2 kg plastic cart and a 20 kg lead cart can both roll without 
friction on a horizontal surface. Equal forces are used to push 
both carts forward for a time of 1 s, starting from rest. After the 
force is removed at t = 1 s, is the momentum of the plastic cart 
greater than, less than, or equal to the momentum of the lead 
cart? Explain.

 5. A 0.2 kg plastic cart and a 20 kg lead cart can both roll without 
friction on a horizontal surface. Equal forces are used to push 
both carts forward for a distance of 1 m, starting from rest. After 
traveling 1 m, is the momentum of the plastic cart greater than, 
less than, or equal to the momentum of the lead cart? Explain.

 6. Angie, Brad, and Carlos are discussing a physics problem in 
which two identical bullets are fired with equal speeds at equal-
mass wood and steel blocks resting on a frictionless table. One 
bullet bounces off the steel block while the second becomes em-
bedded in the wood block. “All the masses and speeds are the 
same,” says Angie, “so I think the blocks will have equal speeds 
after the collisions.” “But what about momentum?” asks Brad. 

E x E R C I S E S  A N D  P R o B L E M S

Problems labeled  integrate material from earlier chapters.

Exercises

Section 9.1 Momentum and Impulse

 1. | What is the magnitude of the momentum of
 a. A 3000 kg truck traveling at 15 m/s?
 b. A 200 g baseball thrown at 40 m/s?
 2. | At what speed do a bicycle and its rider, with a combined mass 

of 100 kg, have the same momentum as a 1500 kg car traveling 
at 5.0 m/s?

 3. || What impulse does the force shown in FIguRE Ex9.3 exert on a 
250 g particle?

 4. || What is the impulse on a 3.0 kg particle that experiences the 
force shown in FIguRE Ex9.4?
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 5. || In FIguRE Ex9.5, what value of Fmax gives an impulse of 
6.0 N s?

 6. || FIguRE Ex9.6 is an incomplete momentum bar chart for a 50 g 
particle that experiences an impulse lasting 10 ms. What were 
the speed and direction of the particle before the impulse?

 7. || FIguRE Ex9.7 is an incomplete mo-
mentum bar chart for a collision that 
lasts 10 ms. What are the magnitude 
and direction of the average collision 
force exerted on the object?

Section 9.2 Solving Impulse and Momentum Problems

 8. | A 2.0 kg object is moving to the right with a speed of 1.0 m/s 
when it experiences the force shown in FIguRE Ex9.8. What are 
the object’s speed and direction after the force ends?

 9. | A 2.0 kg object is moving to the right with a speed of 1.0 m/s 
when it experiences the force shown in FIguRE Ex9.9. What are 
the object’s speed and direction after the force ends?

 10. | A sled slides along a horizontal surface on which the coeffi-
cient of kinetic friction is 0.25. Its velocity at point A is 8.0 m/s 
and at point B is 5.0 m/s. Use the impulse-momentum theorem 
to find how long the sled takes to travel from A to B.

 11. | Far in space, where gravity is 
negligible, a 425 kg rocket trav-
eling at 75 m/s fires its engines. 
FIguRE Ex9.11 shows the thrust 
force as a function of time. The 
mass lost by the rocket during 
these 30 s is negligible.

 a. What impulse does the en-
gine impart to the rocket?

 b. At what time does the rocket reach its maximum speed? What 
is the maximum speed?

 12. || A 250 g ball collides with a wall. FIguRE Ex9.12 shows the 
ball’s velocity and the force exerted on the ball by the wall. What 
is vfx, the ball’s rebound velocity?

 13. || A 600 g air-track glider collides with a spring at one end of 
the track. FIguRE Ex9.13 shows the glider’s velocity and the force 
exerted on the glider by the spring. How long is the glider in 
contact with the spring?

Section 9.3 Conservation of Momentum

 14. | A 10,000 kg railroad car is rolling at 2.0 m/s when a 4000 kg 
load of gravel is suddenly dropped in. What is the car’s speed 
just after the gravel is loaded?

 15. | A 5000 kg open train car is rolling on frictionless rails at 
22 m/s when it starts pouring rain. A few minutes later, the car’s 
speed is 20 m/s. What mass of water has collected in the car?

 16. || A 10-m-long glider with a mass of 680 kg (including the pas-
sengers) is gliding horizontally through the air at 30 m/s when 
a 60 kg skydiver drops out by releasing his grip on the glider. 
What is the glider’s velocity just after the skydiver lets go?

Section 9.4 Inelastic Collisions

 17. | A 300 g bird flying along at 6.0 m/s sees a 10 g insect head-
ing straight toward it with a speed of 30 m/s. The bird opens its 
mouth wide and enjoys a nice lunch. What is the bird’s speed 
immediately after swallowing?

 18. | The parking brake on a 2000 kg Cadillac has failed, and it is 
rolling slowly, at 1.0 mph, toward a group of small children. See-
ing the situation, you realize you have just enough time to drive 
your 1000 kg Volkswagen head-on into the Cadillac and save 
the children. With what speed should you impact the Cadillac to 
bring it to a halt?

 19. | A 1500 kg car is rolling at 2.0 m/s. You would like to stop the 
car by firing a 10 kg blob of sticky clay at it. How fast should you 
fire the clay?

Section 9.5 Explosions

 20. | A 50 kg archer, standing on frictionless ice, shoots a 100 g arrow 
at a speed of 100 m/s. What is the recoil speed of the archer?
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 21. || Dan is gliding on his skateboard at 4.0 m/s. He suddenly 
jumps backward off the skateboard, kicking the skateboard 
forward at 8.0 m/s. How fast is Dan going as his feet hit the 
ground? Dan’s mass is 50 kg and the skateboard’s mass is 
5.0 kg?

 22. || A 70.0 kg football player is gliding across very smooth ice at 
2.00 m/s. He throws a 0.450 kg football straight forward. What 
is the player’s speed afterward if the ball is thrown at

 a. 15.0 m/s relative to the ground?
 b. 15.0 m/s relative to the player?

Section 9.6 Momentum in Two Dimensions

 23. || Two particles collide 
and bounce apart. FIguRE 

Ex9.23 shows the initial 
momenta of both and the 
final momentum of par-
ticle 2. What is the final 
momentum of particle 1? 
Write your answer in com-
ponent form.

 24. || An object at rest 
explodes into three frag-
ments. FIguRE Ex9.24 
shows the momentum 
vectors of two of the frag-
ments. What are px and 
py of the third fragment?

 25. || A 20 g ball of clay traveling east at 3.0 m/s collides with a 
30 g ball of clay traveling north at 2.0 m/s. What are the speed 
and the direction of the resulting 50 g ball of clay?

Problems

 26. || A 60 g tennis ball with an 
initial speed of 32 m/s hits 
a wall and rebounds with 
the same speed. FIguRE P9.26 
shows the force of the wall on 
the ball during the collision. 
What is the value of Fmax, the 
maximum value of the con-
tact force during the collision?

 27. || A tennis player swings her 1000 g racket with a speed of 
10 m/s. She hits a 60 g tennis ball that was approaching her at a 
speed of 20 m/s. The ball rebounds at 40 m/s.

 a. How fast is her racket moving immediately after the impact? 
You can ignore the interaction of the racket with her hand for 
the brief duration of the collision.

 b. If the tennis ball and racket are in contact for 10 ms, what is 
the average force that the racket exerts on the ball? How does 
this compare to the gravitational force on the ball?

 28. ||| A 200 g ball is dropped from a height of 2.0 m, bounces on a 
hard floor, and rebounds to a height of 1.5 m. FIguRE P9.28 shows 
the impulse received from the floor. What maximum force does 
the floor exert on the ball?

 29. || A 500 g cart is released from rest 1.00 m from the bottom 
of a frictionless, 30.0° ramp. The cart rolls down the ramp and 
bounces off a rubber block at the bottom. FIguRE P9.29 shows the 
force during the collision. After the cart bounces, how far does it 
roll back up the ramp?

 30. || One week in lab, you’re given a spring-loaded bar that can be 
used to strike a metal ball. Your assignment is to measure what 
size impulse the bar delivers to the ball. You and your lab partner 
decide to place several balls of different mass on the edge of the 
lab table, use the striker to launch them horizontally, and mea-
sure the horizontal distance to where each ball hits the floor.

 a. Let the table height be h and the horizontal distance traveled 
by the ball be its range R. Find an expression for the range. 
The range depends on h, the ball’s mass m, and the impulse J.

 b. What should you graph the measured range against to get a 
linear graph whose slope is related to J?

 c. After measuring the table height to be 1.5 m, you and your 
partner acquire the following data:

Mass (g) Range (cm)

100 247

150 175

200 129

250  98

  Draw an appropriate graph of the data and, from the slope of 
the best-fit line, determine the impulse.

 31. | The flowers of the bunchberry plant open with astonishing 
force and speed, causing the pollen grains to be ejected out of the 
flower in a mere 0.30 ms at an acceleration of 2.5 * 104 m/s2. If 
the acceleration is constant, what impulse is delivered to a pollen 
grain with a mass of 1.0 * 10-7 g?

 32. || A particle of mass m is at rest at t = 0. Its momentum for t 7 0 
is given by px = 6t 2 kg m/s, where t is in s. Find an expression for 
Fx  (t), the force exerted on the particle as a function of time.

 33. || A small rocket to gather weather data is launched straight up. 
Several seconds into the flight, its velocity is 120 m/s and it is 
accelerating at 18 m/s2. At this instant, the rocket’s mass is 48 kg 
and it is losing mass at the rate of 0.50 kg/s as it burns fuel. What 
is the net force on the rocket? Hint: Newton’s second law was 
presented in a new form in this chapter.

 34. | Three identical train cars, coupled together, are rolling east at 
speed v0. A fourth car traveling east at 2v0 catches up with the 
three and couples to make a four-car train. A moment later, the 
train cars hit a fifth car that was at rest on the tracks, and it couples 
to make a five-car train. What is the speed of the five-car train?

BIO
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 35. || A clay blob of mass m1, initially at rest, is pushed across a 
frictionless surface with constant force F for a distance d. It then 
hits and sticks to a second clay blob of mass m2 that is at rest. 
Find an expression for their speed after the collision.

 36. || Air-track gliders with masses 300 g, 400 g, and 200 g are 
lined up and held in place with lightweight springs compressed 
between them. All three are released at once. The 200 g glider 
flies off to the right while the 300 g glider goes left. Their po-
sition-versus-time graphs, as measured by motion detectors, are 
shown in FIguRE P9.36. What are the direction (right or left) and 
speed of the 400 g glider that was in the middle?

 37. || Most geologists believe that the dinosaurs became extinct 
65 million years ago when a large comet or asteroid struck the 
earth, throwing up so much dust that the sun was blocked out for 
a period of many months. Suppose an asteroid with a diameter of 
2.0 km and a mass of 1.0 * 1013 kg hits the earth with an impact 
speed of 4.0 * 104 m/s.

 a. What is the earth’s recoil speed after such a collision? (Use a 
reference frame in which the earth was initially at rest.)

 b. What percentage is this of the earth’s speed around the sun? 
(Use the astronomical data inside the back cover.)

 38. || At the center of a 50-m-diameter circular ice rink, a 75 kg 
skater traveling north at 2.5 m/s collides with and holds onto a 
60 kg skater who had been heading west at 3.5 m/s.

 a. How long will it take them to glide to the edge of the rink?
 b. Where will they reach it? Give your answer as an angle north 

of west.
 39. || Squids rely on jet propulsion to move around. A 1.5 kg squid 

drifting at 0.40 m/s suddenly expels 0.10 kg of water backward 
to quickly get itself moving forward at 2.5 m/s. If drag is ignored 
over the small interval of time needed to expel the water (the 
impulse approximation), with what speed relative to itself does 
the squid eject the water?

 40. | Two ice skaters, with masses of 50 kg and 75 kg, are at the 
center of a 60-m-diameter circular rink. The skaters push off 
against each other and glide to opposite edges of the rink. If the 
heavier skater reaches the edge in 20 s, how long does the lighter 
skater take to reach the edge?

 41. || A firecracker in a coconut blows the coconut into three pieces. 
Two pieces of equal mass fly off south and west, perpendicular 
to each other, at speed v0. The third piece has twice the mass 
as the other two. What are the speed and direction of the third 
piece? Give the direction as an angle east of north.

 42. || One billiard ball is shot east at 2.0 m/s. A second, identical 
billiard ball is shot west at 1.0 m/s. The balls have a glancing 
collision, not a head-on collision, deflecting the second ball by 

BIO

90° and sending it north at 1.41 m/s. What are the speed and 
direction of the first ball after the collision? Give the direction as 
an angle south of east.

 43. || a.  A bullet of mass m is fired into a block of mass M that is at 
rest. The block, with the bullet embedded, slides distance d 
across a horizontal surface. The coefficient of kinetic fric-
tion is mk. Find an expression for the bullet’s speed vbullet.

   b.  What is the speed of a 10 g bullet that, when fired into 
a 10 kg stationary wood block, causes the block to slide 
5.0 cm across a wood table?

 44. || Fred (mass 60 kg) is running with the football at a speed of 
6.0 m/s when he is met head-on by Brutus (mass 120 kg), who is 
moving at 4.0 m/s. Brutus grabs Fred in a tight grip, and they fall to 
the ground. Which way do they slide, and how far? The coefficient 
of kinetic friction between football uniforms and Astroturf is 0.30.

 45. | You are part of a search-
and-rescue mission that has 
been called out to look for a 
lost explorer. You’ve found the 
missing explorer, but, as FIguRE 

P9.45 shows, you’re separated 
from him by a 200-m-high cliff 
and a 30-m-wide raging river. 
To save his life, you need to get 
a 5.0 kg package of emergency 
supplies across the river. Un-
fortunately, you can’t throw the 
package hard enough to make 
it across. Fortunately, you hap-
pen to have a 1.0 kg rocket in-
tended for launching flares. Improvising quickly, you attach a 
sharpened stick to the front of the rocket, so that it will impale 
itself into the package of supplies, then fire the rocket at ground 
level toward the supplies. What minimum speed must the rocket 
have just before impact in order to save the explorer’s life?

 46. || An object at rest on a flat, horizontal surface explodes into two 
fragments, one seven times as massive as the other. The heavier 
fragment slides 8.2 m before stopping. How far does the lighter 
fragment slide? Assume that both fragments have the same coef-
ficient of kinetic friction.

 47. || A 1500 kg weather rocket accelerates upward at 10 m/s2. It 
explodes 2.0 s after liftoff and breaks into two fragments, one 
twice as massive as the other. Photos reveal that the lighter frag-
ment traveled straight up and reached a maximum height of 
530 m. What were the speed and direction of the heavier frag-
ment just after the explosion?

 48. || In a ballistics test, a 25 g bullet traveling horizontally at 
1200 m/s goes through a 30-cm-thick 350 kg stationary target 
and emerges with a speed of 900 m/s. The target is free to slide 
on a smooth horizontal surface. What is the target’s speed just 
after the bullet emerges?

 49. | Two 500 g blocks of wood are 2.0 m apart on a frictionless 
table. A 10 g bullet is fired at 400 m/s toward the blocks. It 
passes all the way through the first block, then embeds itself in 
the second block. The speed of the first block immediately after-
ward is 6.0 m/s. What is the speed of the second block after the 
bullet stops in it?

 50. || The skiing duo of Brian (80 kg) and Ashley (50 kg) is always a 
crowd pleaser. In one routine, Brian, wearing wood skis, starts at 
the top of a 200-m-long, 20° slope. Ashley waits for him halfway 
down. As he skis past, she leaps into his arms and he carries her 
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the rest of the way down. What is their speed at the bottom of 
the slope?

 51. || The stoplight had just changed and a 2000 kg Cadillac had 
entered the intersection, heading north at 3.0 m/s, when it was 
struck by a 1000 kg eastbound Volkswagen. The cars stuck  
together and slid to a halt, leaving skid marks angled 35� north 
of east. How fast was the Volkswagen going just before the  
impact?

 52. || Ann (mass 50 kg) is standing at the left end of a 15-m-long, 
500 kg cart that has frictionless wheels and rolls on a frictionless 
track. Initially both Ann and the cart are at rest. Suddenly, Ann 
starts running along the cart at a speed of 5.0 m/s relative to the 
cart. How far will Ann have run relative to the ground when she 
reaches the right end of the cart?

 53. || A ball of mass m and another ball of mass 3m are placed in-
side a smooth metal tube with a massless spring compressed be-
tween them. When the spring is released, the heavier ball flies 
out of one end of the tube with speed v0. With what speed does 
the lighter ball emerge from the other end?

 54. ||| Force Fx = (10 N) sin(2pt/4.0 s) is exerted on a 250 g particle 
during the interval 0 s … t … 2.0 s. If the particle starts from 
rest, what is its speed at t = 2.0 s?

 55. ||| A 500 g particle has velocity vx = -5.0 m/s at t = -2 s. Force 
Fx = (4 - t 2) N is exerted on the particle between t = -2 s and 
t = 2 s. This force increases from 0 N at t = -2 s to 4 N at 
t = 0 s and then back to 0 N at t = 2 s. What is the particle’s 
velocity at t = 2 s?

 56. || A 30 ton rail car and a 90 ton rail car, initially at rest, are 
connected together with a giant but massless compressed spring 
between them. When released, the 30 ton car is pushed away at 
a speed of 4.0 m/s relative to the 90 ton car. What is the speed of 
the 30 ton car relative to the ground?

 57. || A 75 kg shell is fired with an initial speed of 125 m/s at an 
angle 55° above horizontal. Air resistance is negligible. At its 
highest point, the shell explodes into two fragments, one four 
times more massive than the other. The heavier fragment lands 
directly below the point of the explosion. If the explosion exerts 
forces only in the horizontal direction, how far from the launch 
point does the lighter fragment land?

 58. || A proton (mass 1 u) is shot at a speed of 5.0 * 107 m/s toward 
a gold target. The nucleus of a gold atom (mass 197 u) repels the 
proton and deflects it straight back toward the source with 90% 
of its initial speed. What is the recoil speed of the gold nucleus?

 59. || A proton (mass 1 u) is shot toward an unknown target nucleus 
at a speed of 2.50 * 106 m/s. The proton rebounds with its speed 
reduced by 25% while the target nucleus acquires a speed of 
3.12 * 105 m/s. What is the mass, in atomic mass units, of the 
target nucleus?

 60. || The nucleus of the polonium isotope 214Po (mass 214 u) is 
radioactive and decays by emitting an alpha particle (a helium 
nucleus with mass 4 u). Laboratory experiments measure the 
speed of the alpha particle to be 1.92 * 107 m/s. Assuming the 
polonium nucleus was initially at rest, what is the recoil speed of 
the nucleus that remains after the decay?

 61. || A neutron is an electrically neutral subatomic particle with 
a mass just slightly greater than that of a proton. A free neu-
tron is radioactive and decays after a few minutes into other 
subatomic particles. In one experiment, a neutron at rest was 
observed to decay into a proton (mass 1.67 * 10-27 kg) and an 
electron (mass 9.11 * 10-31 kg). The proton and electron were 
shot out back-to-back. The proton speed was measured to be 

1.0 * 105 m/s and the electron speed was 3.0 * 107 m/s. No 
other decay products were detected.

 a. Was momentum conserved in the decay of this neutron?

NoTE  Experiments such as this were first performed in the 
1930s and seemed to indicate a failure of the law of conservation 
of momentum. In 1933, Wolfgang Pauli postulated that the neu-
tron might have a third decay product that is virtually impossible 
to detect. Even so, it can carry away just enough momentum 
to keep the total momentum conserved. This proposed particle 
was named the neutrino, meaning “little neutral one.” Neutrinos 
were, indeed, discovered nearly 20 years later. 

 b. If a neutrino was emitted in the above neutron decay, in 
which direction did it travel? Explain your reasoning.

 c. How much momentum did this neutrino “carry away” with it?
 62. || A 20 g ball of clay traveling east at 2.0 m/s collides with a 

30 g ball of clay traveling 30° south of west at 1.0 m/s. What are 
the speed and direction of the resulting 50 g blob of clay?

 63. || FIguRE P9.63 shows a collision 
between three balls of clay. The 
three hit simultaneously and stick 
together. What are the speed and 
direction of the resulting blob of 
clay?

 64. || A 2100 kg truck is traveling east through an intersection at 
2.0 m/s when it is hit simultaneously from the side and the rear. 
(Some people have all the luck!) One car is a 1200 kg compact 
traveling north at 5.0 m/s. The other is a 1500 kg midsize trav-
eling east at 10 m/s. The three vehicles become entangled and 
slide as one body. What are their speed and direction just after 
the collision?

 65. || The carbon isotope 14C is used for carbon dating of archeo-
logical artifacts. 14C (mass 2.34 * 10-26 kg) decays by the pro-
cess known as beta decay in which the nucleus emits an electron 
(the beta particle) and a subatomic particle called a neutrino. In 
one such decay, the electron and the neutrino are emitted at right 
angles to each other. The electron (mass 9.11 * 10-31 kg) has 
a speed of 5.0 * 107 m/s and the neutrino has a momentum of 
8.0 * 10-24 kg m/s. What is the recoil speed of the nucleus?

In Problems 66 through 69 you are given the equation used to solve a 
problem. For each of these, you are to
 a. Write a realistic problem for which this is the correct equation.
 b. Finish the solution of the problem, including a pictorial 

representation.

 66. (0.10 kg)(40 m/s) - (0.10 kg)(-30 m/s) =
1
2 (1400 N) �t

 67. (600 g)(4.0 m/s) = (400 g)(3.0 m/s) + (200 g)(vix)2

 68. (3000 kg)vfx = (2000 kg)(5.0 m/s) + (1000 kg)(-4.0 m/s)

 69. (50 g)(vfx)1 + (100 g)(7.5 m/s) = (150 g)(1.0 m/s)

Challenge Problems

 70. A 1000 kg cart is rolling to the right at 5.0 m/s. A 70 kg man is 
standing on the right end of the cart. What is the speed of the 
cart if the man suddenly starts running to the left with a speed of 
10 m/s relative to the cart?

FIguRE P9.63 
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 71.  A  spaceship  of  mass  2.0 * 106 kg  is  cruising  at  a  speed  of 
5.0 * 106 m/s when the antimatter reactor fails, blowing the ship 
into three pieces. One section, having a mass of 5.0 * 105 kg, is 
blown straight backward with a speed of 2.0 * 106 m/s. A sec-
ond piece, with mass 8.0 * 105 kg, continues forward at 1.0 *

106 m/s. What are the direction and speed of the third piece?
 72.  A 20 kg wood ball  hangs  from a 2.0-m-long wire. The maxi-

mum tension the wire can withstand without breaking is 400 N. 
A 1.0 kg projectile traveling horizontally hits and embeds itself 
in the wood ball. What is the greatest speed this projectile can 
have without causing the cable to break?

 73.  A two-stage rocket is traveling at 1200 m/s with respect to the earth 
when the first stage runs out of fuel. Explosive bolts release the first 
stage and push it backward with a speed of 35 m/s relative to the 
second stage. The first stage is three times as massive as the second 
stage. What is the speed of the second stage after the separation?

 74.  You are the ground-control commander of a 2000 kg scientific 
rocket  that  is  approaching Mars  at  a  speed of  25,000 km/h.  It 
needs to quickly slow to 15,000 km/h to begin a controlled de-
scent to the surface. If the rocket enters the Martian atmosphere 
too fast it will burn up, and if it enters too slowly, it will use up 
its maneuvering fuel before reaching the surface and will crash. 
The rocket has a new braking system: Several 5.0 kg “bullets” 
on the front of the rocket can be fired straight ahead. Each has 
a high-explosive charge  that  fires  it at a speed of  139,000 m/s 
relative to the rocket. You need to send the rocket an instruction 
to tell it how many bullets to fire. Success will bring you fame 
and glory, but failure of this $500,000,000 mission will ruin your 
career. How many bullets will you tell the rocket to fire?

 75.  You  are  a  world-famous  physicist-lawyer  defending  a  client 
who has been charged with murder. It is alleged that your client, 

Mr. Smith, shot the victim, Mr. Wesson. The detective who in-
vestigated the scene of the crime found a second bullet, from a 
shot  that  missed  Mr.  Wesson,  that  had  embedded  itself  into  a 
chair. You arise to cross-examine the detective.

    You: In what type of chair did you find the bullet?
    Det: A wooden chair.
    You: How massive was this chair?
    Det: It had a mass of 20 kg.
    You: How did the chair respond to being struck with a bullet?
    Det: It slid across the floor.
    You: How far?
    Det:  A  good  three  centimeters.  The  slide  marks  on  the  dusty 

floor are quite distinct.
    You: What kind of floor was it?
    Det: A wood floor, very nice oak planks.
    You:  What  was  the  mass  of  the  bullet  you  retrieved  from  the 

chair?
    Det: Its mass was 10 g.
    You: And how far had it penetrated into the chair?
    Det: A distance of 1.5 cm.
    You:  Have  you  tested  the  gun  you  found  in  Mr.  Smith’s 

possession?
    Det: I have.
    You: What is the muzzle velocity of bullets fired from that gun?
    Det: The muzzle velocity is 450 m/s.
    You: And the barrel length?
    Det: The gun has a barrel length of 16 cm.

    With only a slight hesitation, you turn confidently to the jury and 
proclaim, “My client’s gun did not  fire  these  shots!” How are 
you going to convince the jury and the judge?

Stop to Think 9.1: f.  The  cart  is  initially  moving  in  the  negative 
x-direction, so  pix = -20 kg m/s. After  it bounces,  pfx = 10 kg m/s. 
Thus �p = (10 kg m/s) - (-20 kg m/s) = 30 kg m/s.

Stop to Think 9.2: b. The clay ball goes from vix = v to vfx = 0, so 
Jclay = �px = -mv. The rubber ball rebounds, going from vix = v to 
vfx = -v (same speed, opposite direction). Thus Jrubber = �px  = -2mv. 
The  rubber  ball  has  a  larger  momentum  change,  and  this  requires  a 
larger impulse.

Stop to Think 9.3: Less than.  The  ball’s  momentum  mBvB  is  the 
same in both cases. Momentum is conserved, so the total momentum 
is the same after both collisions. The ball that rebounds from C has 
negative momentum, so C must have a larger momentum than A.

Stop to Think 9.4: c. Momentum conservation requires (m1 + m2) * 
vf = m1v1 + m2v2.  Because  v1 7 v2,  it  must  be  that  (m1 + m2) * 
vf = m1v1 + m2v2 7 m1v2 + m2v2 = (m1 + m2)v2.  Thus  vf 7 v2. 
Similarly,  v2 6 v1  so  (m1 + m2)vf = m1v1 + m2v2 6  m1v1 + m2v1 = 
(m1 + m2)v1. Thus vf 6 v1. The collision causes m1 to slow down and 
m2 to speed up.

Stop to Think 9.5: Right end. The pieces started at rest, so the total 
momentum of the system is zero. It’s an isolated system, so the total 
momentum after the explosion is still zero. The 6 g piece has momen-
tum 6v. The 4 g piece, with velocity  -2v, has momentum  -8v. The 
combined momentum of these two pieces is -2v. In order for P to be 
zero, the third piece must have a positive momentum (+2v) and thus 
a positive velocity.

Stop to think AnSwerS
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These photovoltaic panels are 
transforming solar energy into 
electrical energy.

Energy

Energy Diagrams
You’ll learn how to interpret an energy 
diagram, a graphical representation for 
understanding how the speed of a par-
ticle changes as it moves through space.

As you’ll see, maxima and minima are 
points of unstable and stable equilibrium, 
respectively.

Elastic Collisions
A collision that conserves both mo-
mentum and mechanical energy is a 
perfectly elastic collision.

Collisions between two billiard balls or two 
steel balls come very close to being perfectly 
elastic.

Conservation of 
Mechanical Energy
Mechanical energy, the sum of kinetic 
and potential energies, is conserved in a 
system that is both isolated and friction-
less. As you learned with momentum, 
conservation means that

final value =  initial value

This will be the basis for a new problem- 
solving strategy.

 Looking Back
Sections 9.2–9.3 Before-and-after 
pictorial representations and conservation 
of momentum

E

0
0

x (m)

Total energy

Potential
energy

1 2 3 4 5 6 7 8

Forms of Energy
■	 Kinetic energy is energy associated 

with an object’s motion.
■	 Potential energy is stored energy. 

Potential energy is associated with an 
object’s position.

■	 Thermal energy is the energy of the 
random motions of atoms within an 
object. Thermal energy is associated 
with temperature.

You will learn about gravitational potential 
energy, the elastic potential energy of a 
stretched or compressed spring, and how 
these potential energies can be transformed 
into kinetic energy.

This chapter focuses on energy trans-
formations within the system as one 
kind of energy is converted to another. 
Chapter 11 will explore energy transfers 
to and from the system. For mechani-
cal systems, that transfer is called work. 
Part IV will expand our understanding of 
energy even further by incorporating the 
concepts of heat and thermodynamics.

System

Environment

Within the system, energy
can be transformed from one
form to another without loss.

Energy is transferred
between the system
and its environment.

Basic Energy Model
Energy is one of the most important 
concepts in physics. Chapters 10 and 11 
will develop the basic energy model, a 
powerful set of ideas for solving prob-
lems in mechanics.

 Looking Ahead  The goal of Chapter 10 is to introduce the concept of energy and the basic energy model.
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10.1 The Basic Energy Model
Energy. It’s a word you hear all the time. We use chemical energy to heat our homes, 
electrical energy to power our lights and computers, and solar energy to grow our 
crops and forests. We’re told to use energy wisely and not to waste it.

But just what is energy? The concept of energy has grown and changed with time, 
and it is not easy to define in a general way just what energy is. Rather than starting 
with a formal definition, we’re going to let the concept of energy expand slowly over 
the course of several chapters. This chapter introduces three of the most fundamental 
forms of energy: kinetic energy, potential energy, and thermal energy. Our goal is to 
understand the characteristics of energy, how energy is used, and, especially impor-
tant, how energy is transformed from one form to another.

Ultimately we will discover a very powerful conservation law for energy. Some 
scientists consider the law of conservation of energy to be the most important of all 
the laws of nature. But all that in due time; first we have to start with the basic ideas.

Energy Transfer and Transformation
This chapter focuses on the transformation of energy from one form to another. Much of 
modern technology is concerned with transforming energy, such as changing the chemi-
cal energy of oil molecules to electrical energy or to the kinetic energy of your car. In the 
pictures above, you can imagine that the gravitational potential energy of the roller coast-
er at the top of the hill will soon be transformed into kinetic energy. Then, as the brakes 
are applied and get hot, that kinetic energy will be transformed into thermal energy.

Remarkably, the total energy of the system—the sum of the various forms of 
energy—is not changed by these transformations. This law of conservation of energy 
was not recognized until the mid-19th century, long after Newton. The belated dis-
covery of such an important idea was because it took scientists a long time to realize 
how many types of energy there are and the various ways that energy can be converted 
from one form into another. As you’ll learn, energy ideas go well beyond Newto-
nian mechanics to include concepts about heat, about chemical energy, and about the 
energy of the individual atoms that make up a system. All of these forms of energy 
ultimately have to be included in the law of energy conservation.

Energy not only can be transformed from one kind to another but also can be trans-
ferred from one system to another. For example, the roller coaster at the top of the 
hill acquired its potential energy not through an energy transformation but because an 
outside force—a chain powered by a motor—dragged it up the hill and in the process 

Some important forms of energy

Kinetic energy K Potential energy U Thermal energy Eth

Kinetic energy is the energy of motion. 
All moving objects have kinetic energy. 
The more massive an object or the faster 
it moves, the larger its kinetic energy.

Potential energy is stored energy associ-
ated with an object’s position. The roller 
coaster’s gravitational potential energy 
depends on its height above the ground.

Thermal energy is the sum of the micro-
scopic kinetic and potential energies of 
all the atoms and bonds that make up the 
object. An object has more thermal energy 
when hot than when cold.
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transferred energy to the roller coaster. This mechanical transfer of energy to a system 
via forces is called work, a topic we’ll explore in detail in the next chapter.

As we use energy concepts, we will be “accounting” for energy that is transferred 
into or out of a system or that is transformed from one form to another within a system. 
FigurE 10.1 shows a basic energy model that illustrates these ideas. There are many 
details that must be added to this model, but it’s a good starting point. The fact that 
nature “balances the books” for energy, so that energy is never created or destroyed, is 
one of the most profound discoveries of science.

There’s a lot to say about energy, and energy is an abstract idea, so we’ll take it 
one step at a time. This chapter focuses on the transformations that take place inside 
the system, especially idealized transformations that don’t change the thermal energy. 
Then, after you’ve had some practice using the basic concepts of energy, Chapter 11 
will introduce energy transfers between the system and the environment and will 
establish a more rigorous way of defining potential energy. We will extend these ideas 
even further in Part IV when we reach the study of thermodynamics.

10.2  Kinetic Energy and gravitational 
Potential Energy

FigurE 10.2 is a before-and-after pictorial representation of an object in free fall, as 
you learned to draw in Chapter 9. We didn’t call attention to it in Chapter 2, but one 
of the free-fall equations also relates “before” and “after.” In particular, the free-fall 
kinematic equation with ay = -g

 vfy 

2 = viy 

2 + 2ay y = viy 

2 - 2g( yf - yi) (10.1)

can easily be rewritten as

 vfy 

2 + 2gyf = viy 

2 + 2gyi (10.2)

Equation 10.2 is a conservation law for free-fall motion. It tells us that the quantity 
vy 

2 + 2gy has the same value after free fall (regardless of whether the motion is upward 
or downward) that it had before free fall.

Let’s introduce a more general technique to arrive at the same result, but a tech-
nique that can be extended to other types of motion. Newton’s second law for one-
dimensional motion along the y-axis is

 (Fnet)y = may = m 
dvy

dt
 (10.3)

The net force on an object in free fall is (Fnet)y = -mg, so Equation 10.3 becomes

 m 
dvy

dt
= -mg (10.4)

Recall, from calculus, that we can use the chain rule to write

 
dvy

dt
=

dvy

dy
 
dy

dt
= vy 

dvy

dy
 (10.5)

where we used vy = dy/dt. Substituting this into Equation 10.4 gives

 mvy 
dvy

dy
= -mg (10.6)

The chain rule has allowed us to change from a derivative of vy with respect to time to 
a derivative of vy with respect to position.

We can rewrite Equation 10.6 as

 mvy dvy = -mg dy (10.7)

Now we can integrate both sides of the equation. However, we have to be careful to make 
sure the limits of integration match. We want to integrate from “before,” when the object 

FigurE 10.1 The basic energy model.
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System

Environment

Energy in Energy out

Energy is transferred to (and from) the
system by forces acting on the system.
The forces do work on the system.

Energy is transformed within the 
system without loss. The energy of
an isolated system is conserved.

FigurE 10.2 The before-and-after 
representation of an object in free fall.
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is at position yi and has velocity viy, to “after,” when the object is at position yf and has ve-
locity vfy. Figure 10.2 shows these points in the motion. With these limits, the integrals are

 3
vfy

viy

mvy dvy = - 3
yf

yi

mg dy (10.8)

Carrying out the integrations, with m and g as constants, we find

 
1

2
 mvy 

2 `
vfy

viy

=
1

2
 mvfy 

2 -
1

2
 mviy 

2 = -mgy `
yf

yi

= -mgyf + mgyi (10.9)

Because vy is squared wherever it appears in Equation 10.9, the sign of vy is not 
relevant. All we need to know are the initial and final speeds vi and vf. With this, 
Equation 10.9 can be written

 
1

2
 mvf 

2 + mgyf =
1

2
 mvi 

2 + mgyi (10.10)

You should recognize that Equation 10.10, other than a constant factor of 1
2 m, is 

the same as Equation 10.2. This seems like a lot of effort to get to a result we already 
knew. However, our purpose was not to get the answer but to introduce a procedure 
that will turn out to have other valuable applications.

Kinetic and Potential Energy
The quantity

 K =
1

2
 mv 2  (kinetic energy) (10.11)

is called the kinetic energy of the object. Kinetic energy is an energy of motion. It 
depends on the object’s speed but not its location. The quantity

 Ug = mgy  (gravitational potential energy) (10.12)

is the object’s gravitational potential energy. Potential energy is an energy of posi-
tion. It depends on the object’s position but not its speed.

The unit of kinetic energy is mass multiplied by velocity squared. In the SI system 
of units, this is kg m2/s2. The unit of energy is so important that it has been given its 
own name, the joule. We define:

 1 joule = 1 J K 1 kg m2/s2

The unit of potential energy, kg * m/s2 * m = kg m2/s2, is also the joule.
To give you an idea about the size of a joule, consider a 0.5 kg mass 

(weight on earth � 1 lb) moving at 4 m/s (�10 mph). Its kinetic energy is

 K =
1

2
 mv 2 =

1

2
 (0.5 kg)(4 m/s)2 = 4 J

Its gravitational potential energy at a height of 1 m (�  3 ft) is

 Ug = mgy = (0.5 kg)(9.8 m/s2)(1 m) � 5 J

This suggests that ordinary-sized objects moving at ordinary speeds will have energies 
of a fraction of a joule up to, perhaps, a few thousand joules (a running person has 
K � 1000 J) . A high-speed truck might have K � 106 J.

NoTE  You must have masses in kg and velocities in m/s before doing energy 
calculations. 

In terms of energy, Equation 10.10 says that for an object in free fall,

 Kf + Ugf = Ki + Ugi (10.13)

In other words, the sum K + Ug of kinetic energy and gravitational potential energy is not 
changed by free fall. Its value after free fall (regardless of whether the motion is upward 
or downward) is the same as before free fall. FigurE 10.3 illustrates this important idea.

FigurE 10.3 Kinetic energy and 
gravitational potential energy.
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essentially the same as the pictorial representation you learned 
in Chapter 9 for momentum problems. We’ll use numerical sub-
scripts 0 and 1 for the initial and final points.

SoLvE Equation 10.13,

 K1 + Ug1 = K0 + Ug0

tells us that the sum K + Ug is not changed by the motion. Using 
the definitions of K and Ug, we have

 
1

2
 mv1 

2 + mgy1 =
1

2
 mv0 

2 + mgy0

Here y0 = 0 m and v1 = 0 m/s, so the equation simplifies to

 mgy1 =
1

2
 mv0 

2

This is easily solved for the height y1:

 y1 =
v0 

2

2g
=

(25 m/s)2

2(9.80 m/s2)
= 32 m

ASSESS Notice that the mass canceled and wasn’t needed, a fact 
about free fall that you should remember from Chapter 2.

ExAMPLE 10.1  Launching a pebble
Bob uses a slingshot to shoot a 20 g pebble straight up with a speed 
of 25 m/s. How high does the pebble go?

MoDEL This is free-fall motion, so the sum of the kinetic and 
gravitational potential energy does not change as the pebble rises.

viSuALizE FigurE 10.4 shows a before-and-after pictorial rep-
resentation. The pictorial representation for energy problems is 

FigurE 10.4 Pictorial representation of a 
pebble shot upward from a slingshot.

0

y

After:
y1

v1 � 0 m/s

Before:
y0 � 0 m
v0 � 25 m/s
m � 0.020 kg

Find: y1

One of the most important characteristics of energy is that it is a scalar, not a vector. 
Kinetic energy depends on an object’s speed v but not on the direction of motion. The 
kinetic energy of a particle is the same whether it moves up or down or left or right. 
Consequently, the mathematics of using energy is often much easier than the vector 
mathematics required by force and acceleration.

NoTE  By its definition, kinetic energy can never be a negative number. If you 
find, in the course of solving a problem, that K is negative—stop! You have made 
an error somewhere. Don’t just “lose” the minus sign and hope that everything 
turns out OK. 

Energy Bar Charts
The pebble of Example 10.1 started with all kinetic energy, an energy of motion. As 
the pebble ascends, kinetic energy is converted into gravitational potential energy, but 
the sum of the two doesn’t change. At the top, the pebble’s energy is entirely potential 
energy. The simple bar chart in FigurE 10.5 shows graphically how kinetic energy is 
transformed into gravitational potential energy as a pebble rises. The potential energy 

FigurE 10.5 Simple energy bar chart for a pebble tossed into the air.

Ug � 0 Ug � 0

K � 0
As it falls, the pebble loses
potential energy and gains
kinetic energy.

As it rises, the pebble
loses kinetic energy and
gains potential energy.

K Ug K Ug K UgK UgK Ug

The sum K � Ug remains constant.
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FigurE 10.6 An energy bar chart suitable for problem solving.
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(a) Draw bars to show each energy
before and after the interaction.

0

�

�

Ki Ugi Ugf

�� �

�� �Kf

(b) The initial kinetic energy is transformed
entirely into potential energy.

is then transformed back into kinetic energy as the pebble falls. The sum K + Ug re-
mains constant throughout the motion.

FigurE 10.6a is an energy bar chart more suitable to problem solving. The chart is 
a graphical representation of the energy equation Kf + Ugf = Ki + Ugi. FigurE 10.6b 
applies this to the pebble of Example 10.1. The initial kinetic energy is transformed 
entirely into potential energy as the pebble reaches its highest point. There are no 
numerical scales on a bar chart, but you should draw the bar heights proportional to 
the amount of each type of energy.

Stop to think 10.1 
  Rank in order, from largest to small-

est, the gravitational potential energies of balls a to d.

The zero of Potential Energy
Our expression for the gravitational potential energy Ug = mgy seems straightfor-
ward. But you might notice, on further reflection, that the value of Ug depends on 
where you choose to put the origin of your coordinate system. Consider FigurE 10.7, 
where Amber and Bill are attempting to determine the potential energy of a 1 kg rock 
that is 1 m above the ground. Amber chooses to put the origin of her coordinate system 
on the ground, measures yrock = 1 m, and quickly computes Ug = mgy = 9.8 J. Bill, 
on the other hand, read Chapter 1 very carefully and recalls that it is entirely up to him 
where to locate the origin of his coordinate system. So he places his origin next to the 
rock, measures yrock = 0 m, and declares that Ug = mgy = 0 J!

How can the potential energy of one rock at one position in space have two dif-
ferent values? The source of this apparent difficulty comes from our interpretation of 
Equation 10.9. The integral of -mg dy resulted in the expression -mg( yf - yi), and 
this led us to propose that Ug = mgy. But all we are really justified in concluding 
is that the potential energy changes by U = -mg( yf - yi). To go beyond this and 
claim Ug = mgy is consistent with U = -mg( yf - yi), but so also would be a claim 
that Ug = mgy + C, where C is any constant.

No matter where the rock is located, Amber’s value of y will always equal Bill’s 
value plus 1 m. Consequently, her value of the potential energy will always equal 
Bill’s value plus 9.8 J. That is, their values of Ug differ by a constant. Nonetheless, 
both will calculate exactly the same value for U if the rock changes position.

a

b

c

d

v � 0

FigurE 10.7 Amber and Bill use 
coordinate systems with different 
origins to determine the potential 
energy of a rock.

Amber’s coordinate
system

1 kg
rock

1 m

Ug � 9.8 J Ug � 0 J 

0 m

0 m �1 m

Bill’s coordinate
system
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FigurE 10.9 shows energy bar charts for Amber and Bill. Despite their disagreement 
over the value of Ug, Amber and Bill arrive at the same value for vf and their Kf bars 
are the same height. The reason is that only U has physical significance, not Ug 
itself, and Amber and Bill found the same value for U. You can place the origin 
of your coordinate system, and thus the “zero of potential energy,” wherever you 
choose and be assured of getting the correct answer to a problem.

  

SoLvE The energy equation is Kf + Ugf = Ki + Ugi. Bill and 
Amber both agree that Ki = 0 because the rock was released from 
rest, so we have

 Kf =
1

2
 mvf 

2 = - (Ugf - Ugi) = - U

According to Amber, Ugi = mgyi = 9.8 J and Ugf = mgyf = 0 J. 
Thus

 UAmber = Ugf - Ugi = -9.8 J

The rock loses potential energy as it falls. According to Bill, 
Ugi = mgyi = 0 J and Ugf = mgyf = -9.8 J. Thus

 UBill = Ugf - Ugi = -9.8 J

Bill has different values for Ugi and Ugf but the same value for 
U. Thus they both agree that the rock hits the ground with speed

 vf = B -2 U

m
= B -2(-9.8 J)

1.0 kg
= 4.4 m/s

ExAMPLE 10.2  The speed of a falling rock
The 1.0 kg rock shown in Figure 10.7 is released from rest. Use 
both Amber’s and Bill’s perspectives to calculate its speed just 
before it hits the ground.

MoDEL This is free-fall motion, so the sum of the kinetic and 
gravitational potential energy does not change as the rock falls.

viSuALizE FigurE 10.8 shows a before-and-after pictorial represen-
tation using both Amber’s and Bill’s coordinate systems.

FigurE 10.8 The before-and-after pictorial 
representation of a falling rock.

Amber’s
measurements

yi � 1.0 m
vi � 0

yi � 0 m
vi � 0

yf � 0 m
vf 0

0

yf � �1.0 m
vf

y

Bill’s
measurements

y

FigurE 10.9 Amber’s and Bill’s energy bar charts for the falling rock.

0
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Ki Ugi Ugf

�� �

�� �Kf

Amber

Amber chose her zero of
potential energy to be on
the ground.

0

�

�

Ki Ugi Ugf

�� �

�� �Kf

Bill

Bill chose his zero of
potential energy to be
1 m above the ground.

NoTE  Gravitational potential energy can be negative, as Ugf is for Bill. A nega-
tive value for Ug means that the particle has less potential for motion at that 
point than it does at y � 0. But there’s nothing wrong with that. Contrast this with 
kinetic energy, which cannot be negative. 

10.3  A Closer Look at gravitational 
Potential Energy

The concept of energy would be of little interest or use if it applied only to free fall. 
Let’s begin to expand the idea. FigurE 10.10a on the next page shows an object of mass 
m sliding along a frictionless surface. The only forces acting on the object are gravity 
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and the normal force from the surface. If the surface is curved, you know from calcu-
lus that we can subdivide the surface into many small (perhaps infinitesimal) straight-
line segments. FigurE 10.10b shows a magnified segment of the surface that, over some 
small distance, is a straight line at angle u.

We can analyze the motion along this small segment using the procedure of 
Equations 10.3 through 10.10. We define an s-axis parallel to the direction of motion. 
Newton’s second law along this axis is

 (Fnet)s = mas = m 
dvs

dt
 (10.14)

Using the chain rule, we can write Equation 10.14 as

 (Fnet)s = m 
dvs

dt
= m 

dvs

ds
 
ds

dt
= mvs 

dvs

ds
 (10.15)

where, in the last step, we used ds/dt = vs.
You can see from Figure 10.10b that the net force along the s-axis is

 (Fnet)s = -FG sin u = -mg sin u (10.16)

Thus Newton’s second law becomes

 -mg sin u = mvs 
dvs

ds
 (10.17)

Multiplying both sides by ds gives

 mvs dvs = -mg sin u ds (10.18)

You can see from the figure that sin u ds is dy, so Equation 10.18 becomes

 mvs dvs = -mg dy (10.19)

This is identical to Equation 10.7, which we found for free fall. Consequently, inte-
grating this equation from “before” to “after” leads again to Equation 10.10:

 
1

2
 mvf 

2 + mgyf =
1

2
 mvi 

2 + mgyi (10.20)

where vi 

2 and vf 

2 are the squares of the speeds at the beginning and end of this segment 
of the motion.

We previously defined the kinetic energy K =
1
2 mv 2 and the gravitational potential 

energy Ug = mgy. Equation 10.20 shows that

 Kf + Ugf = Ki + Ugi (10.21)

for a particle moving along any frictionless surface, regardless of the shape.

NoTE  For energy calculations, the y-axis is specifically a vertical axis. Gravi-
tational potential energy depends on the height above the earth’s surface. A tilted 
coordinate system, such as we often used in dynamics problems, doesn’t work for 
problems with gravitational potential energy. 

Stop to think 10.2  A small child slides 
down the four frictionless slides a–d. Each 
has the same height. Rank in order, from 
largest to smallest, her speeds va to vd at the 
bottom. a b c d

h

FigurE 10.10 A particle moving along a 
frictionless surface of arbitrary shape.
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Notice that the normal force n
u

 doesn’t enter an energy analysis. The equation 
Kf + Ugf = Ki + Ugi is a statement about how the particle’s speed changes as it changes 
position. n

u
 does not have a component in the direction of motion, so it cannot change 

the particle’s speed.
The same is true for an object tied to a string and moving in a circle. The tension 

in the string causes the direction to change, but T 
u

 does not have a component in the 
direction of motion and does not change the speed of the object. Hence Equation 10.21 
also applies to a pendulum.

initial kinetic and potential energy being transformed into entirely 
kinetic energy as she goes down the slope.

SoLvE The quantity K + Ug is the same at the bottom of the hill as 
it was at the top. Thus

 
1

2
 mv1 

2 + mgy1 =
1

2
 mv0 

2 + mgy0

This is easily solved for Christine’s speed at the bottom:

 v1 = 2v0 

2 + 2g(y0 - y1) = 2v0 

2 + 2gh = 10 m/s

ASSESS We did not need the mass of either Christine or the sled.

ExAMPLE 10.3  The speed of a sled
Christine runs forward with her sled at 2.0 m/s. She hops onto the 
sled at the top of a 5.0-m-high, very slippery slope. What is her 
speed at the bottom?

MoDEL Model Christine and the sled as a particle. Assume the 
slope is frictionless. In that case, the sum of her kinetic and gravi-
tational potential energy does not change as she slides down.

viSuALizE FigurE 10.11a shows a before-and-after pictorial rep-
resentation. We are not told the angle of the slope, or even if it 
is a straight slope, but the change in potential energy depends 
only on the height Christine descends and not on the shape of 
the hill. FigurE 10.11b is an energy bar chart in which we see an 

(a) (b)

0

�

� Ki Ugi Kf

� ��

� � � Ugf

FigurE 10.11 Pictorial representation and energy bar chart of Christine sliding down the hill.

ExAMPLE 10.4  A ballistic pendulum
A 10 g bullet is fired into a 1200 g wood block hanging from a 
150-cm-long string. The bullet embeds itself into the block, and 
the block then swings out to an angle of 40. What was the speed 
of the bullet? (This is called a ballistic pendulum.)

MoDEL This is a two-part problem. The impact of the bullet with 
the block is an inelastic collision. We haven’t done any analysis 
to let us know what happens to energy during a collision, but you 
learned in Chapter 9 that momentum is conserved in an inelastic 
collision. After the collision is over, the block swings out as a pen-
dulum. The sum of the kinetic and gravitational potential energy 
does not change as the block swings to its largest angle.

viSuALizE FigurE 10.12 is a pictorial representation in which we’ve 
identified before-and-after quantities for both the collision and the 
swing.

SoLvE The momentum conservation equation Pf = Pi applied to 
the inelastic collision gives

 (mW + mB)v1x = mW (v0x)W + mB (v0x)B

FigurE 10.12 A ballistic pendulum is used to measure the 
speed of a bullet.

y2

u � 40�

y1 � 0 m
v2 � 0 m/s

L � 1.50 m L cos u

mB � 0.010 kg

mW � 1.20 kg
(v0x)W � 0 m/s

(v0x)B

Collision / Momentum

Swing / EnergyFind: (v0x)B

v1
r

Continued
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The wood block is initially at rest, with (v0x)W = 0, so the bullet’s 
velocity is

 (v0x)B =
mW + mB

mB
 v1x

where v1x is the velocity of the block + bullet immediately after the 
collision, as the pendulum begins to swing. If we can determine v1x 
from an analysis of the swing, then we will be able to calculate the 
speed of the bullet. Turning our attention to the swing, the energy  
equation Kf + Ugf = Ki + Ugi is

1

2
 (mW + mB)v2 

2 + (mW + mB)gy2

 =
1

2
 (mW + mB)v1 

2 + (mW + mB)gy1

We used the total mass (mW + mB) of the block and embedded bul-
let, but notice that it cancels out. We also dropped the x-subscript 
on v1 because for energy calculations we need only speed, not 
velocity. The speed is zero at the top of the swing (v2 = 0), and 
we’ve defined the y-axis such that y1 = 0 m. Thus

 v1 = 22gy2

The initial speed is found simply from the maximum height of the 
swing. You can see from the geometry of Figure 10.12 that

 y2 = L - L cos u = L(1 - cos u) = 0.351 m

With this, the initial velocity of the pendulum, immediately after 
the collision, is

 v1x = v1 = 22gy2 = 22(9.80 m/s2)(0.351 m) = 2.62 m/s

Having found v1x from an energy analysis of the swing, we can 
now calculate that the speed of the bullet was

 (v0x)B =
mW + mB

mB
 v1x =

1.210 kg

0.010 kg
* 2.62 m/s = 320 m/s

ASSESS It would have been very difficult to solve this problem 
using Newton’s laws, but it yielded to a straightforward analysis 
based on the concepts of momentum and energy.

Conservation of Mechanical Energy
The sum of the kinetic energy and the potential energy of a system is called the 
mechanical energy:

 Emech = K + U (10.22)

Here K is the total kinetic energy of all the particles in the system and U is the po-
tential energy stored in the system. Our examples thus far suggest that a particle’s 
mechanical energy does not change as it moves under the influence of only gravity. 
The kinetic energy and the potential energy change, as they are transformed back and 
forth into each other, but their sum remains constant. We can express the unchanging 
value of Emech as

 Kf + Uf = Ki + Ui (10.23)

This statement is called the law of conservation of mechanical energy.
But is this really a law of nature? Consider shoving a box that then slides along 

the floor until it stops. The box gains kinetic energy, but it comes from the shove, 
an outside force, rather than from a transformation of potential energy. The box 
then loses kinetic energy as it slows down, but in this case kinetic energy is trans-
formed into thermal energy (the box and the floor get hotter) rather than into po-
tential energy. Mechanical energy is conserved neither as the box speeds up nor as 
it slows down.

In Chapter 9 you learned that momentum is conserved only for an isolated system. 
Similarly, mechanical energy is conserved only if two requirements are satisfied:

 1. The system is isolated, meaning that no external forces transfer energy into or 
out of the system.

 2. There is no friction or drag that would transform kinetic or potential energy into 
thermal energy.

Fortunately, enough realistic situations satisfy the restrictions, or come very close, that 
the law of conservation of mechanical energy is an important problem-solving strategy.



10.4 . Restoring Forces and Hooke’s Law    255

Stop to think 10.3  A box slides along the 
frictionless surface shown in the figure. It 
is released from rest at the position shown. 
Is the highest point the box reaches on the 
other side at level a, level b, or level c?

10.4 restoring Forces and Hooke’s Law
If you stretch a rubber band, a force tries to pull the rubber band back to its equilibrium, 
or unstretched, length. A force that restores a system to an equilibrium position is called 
a restoring force. Systems that exhibit restoring forces are called elastic. The most basic 
examples of elasticity are things like springs and rubber bands. If you stretch a spring, 
a tension-like force pulls back. Similarly, a compressed spring tries to re-expand to its 
equilibrium length. Other examples of elasticity and restoring forces abound. The steel 
beams bend slightly as you drive your car over a bridge, but they are restored to equi-
librium after your car passes by. Nearly everything that stretches, compresses, flexes, 
bends, or twists exhibits a restoring force and can be called elastic.

We’re going to use a simple spring as a prototype of elasticity. Suppose you have 
a spring whose equilibrium length is L 0. This is the length of the spring when it is 
neither pushing nor pulling. If you now stretch the spring to length L, how hard does it 
pull back? One way to find out is to attach the spring to a bar, as shown in FigurE 10.13, 
then to hang a mass m from the spring. The mass stretches the spring to length L. 
Lengths L 0 and L are easily measured with a meter stick.

The mass hangs in static equilibrium, so the upward spring force F
u

sp exactly bal-
ances the downward gravitational force F

u

G to give F
u

net = 0
u

. That is,

 Fsp = FG = mg (10.24)

By using different masses to stretch the spring to different lengths, we can determine 
how Fsp, the magnitude of the spring’s restoring force, depends on the length L.

FigurE 10.14 shows measured data for the restoring force of a real spring. Notice 
that the quantity graphed along the horizontal axis is s = L - L 0. This is the dis-
tance that the end of the spring has moved, which we call the displacement from 
equilibrium. The graph shows that the restoring force is proportional to the displace-
ment. That is, the data fall along the straight line

 Fsp = k s (10.25)

The proportionality constant k, the slope of the force-versus-displacement graph, is 
called the spring constant. The units of the spring constant are N/m.

ProBLEM-SoLviNg
STrATEgy 10.1  Conservation of mechanical energy

MoDEL Choose a system that is isolated and has no friction or other losses of 
mechanical energy.

viSuALizE Draw a before-and-after pictorial representation. Define symbols, list 
known values, and identify what you’re trying to find.

SoLvE The mathematical representation is based on the law of conservation of 
mechanical energy:

 Kf + Uf = Ki + Ui

ASSESS Check that your result has the correct units, is reasonable, and answers 
the question.

Exercise 8 

b
c

a

FigurE 10.13 A hanging mass stretches 
a spring of equilibrium length L 0 to 
length L.

The relaxed
spring has
length L0.

Displacement
�s � L � L0

L

A block of mass m
stretches the spring
to length L.

The spring’s
restoring force
exactly balances
the pull of gravity.

L0

FG

r

Fsp

r

FigurE 10.14 Measured data for the 
restoring force of a real spring.
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The restoring force is proportional
to the displacement of the spring
from equilibrium.

Fsp (N)

�s � L � L0 (m)

Slope � k � 3.5 N/m
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NoTE  The force does not depend on the spring’s physical length L but, instead, on 
the displacement s of the end of the spring. 

The spring constant k is a property that characterizes a spring, just as mass m char-
acterizes a particle. If k is large, it takes a large pull to cause a significant stretch, 
and we call the spring a “stiff  ” spring. A spring with small k can be stretched with 
very little force, and we call it a “soft” spring. The spring constant for the spring in 
Figure 10.14 can be determined from the slope of the straight line to be k = 3.5 N/m.

NoTE  Just as we used massless strings, we will adopt the idealization of a mass-
less spring. While not a perfect description, it is a good approximation if the mass 
attached to a spring is much larger than the mass of the spring itself. 

Hooke’s Law
FigurE 10.15 shows a spring along a generic s-axis. The equilibrium position of the end 
of the spring is denoted se. This is the position, or coordinate, of the free end of the 
spring, not the spring’s equilibrium length L 0.

When the spring is stretched, the displacement from equilibrium s = s - se is 
positive while (Fsp)s, the s-component of the restoring force pointing to the left, is neg-
ative. If the spring is compressed, the displacement from equilibrium s is negative 
while the s-component of F

u

sp, which now points to the right, is positive. Either way, 
the sign of the force component (Fsp)s is always opposite to the sign of the displace-
ment s. We can write this mathematically as

 (Fsp)s = -k s  (Hooke>s law) (10.26)

where s = s - se is the displacement of the end of the spring from equilibrium. The 
minus sign is the mathematical indication of a restoring force.

Equation 10.26 for the restoring force of a spring is called Hooke’s law. This “law” 
was first suggested by Robert Hooke, a contemporary (and sometimes bitter rival) of 
Newton. Hooke’s law is not a true “law of nature,” in the sense that Newton’s laws 
are, but is actually just a model of a restoring force. It works extremely well for some 
springs, as in Figure 10.14, but less well for others. Hooke’s law will fail for any 
spring that is compressed or stretched too far.

NoTE  Some of you, in an earlier physics course, may have learned Hooke’s law as 
Fsp = -kx (for a spring along the x-axis), rather than as -k x. This can be mislead-
ing, and it is a common source of errors. The restoring force will be -kx only if the 
coordinate system in the problem is chosen such that the origin is at the equilibrium 
position of the free end of the spring. That is, x = x only if xe = 0. This is often 
done, but in some problems it will be more convenient to locate the origin of the coor-
dinate system elsewhere. So make sure you learn Hooke’s law as (Fsp)s = -k s. 

FigurE 10.15 The direction of F
u

sp is 
always opposite the displacement s

u
.

s
se

Unstretched

Stretched

Compressed

(Fsp)s � 0

(Fsp)s � 0

(Fsp)s

(Fsp)s � 0

The sign of (Fsp)s is
always opposite the
sign of �s.

(Fsp)s � �k�s

�s

�s � 0

�s � 0

L0

MoDEL Model the block as a par-
ticle and the spring as an ideal 
spring obeying Hooke’s law.

viSuALizE FigurE 10.17 is a free-
body diagram for the block.

SoLvE Recall that the tension in 
a massless string pulls equally at 
both ends of the string. The same 
is true for the spring force: It pulls (or pushes) equally at both 
ends. This is the key to solving the problem. As the right end of 
the spring moves, stretching the spring, the spring pulls backward 
on the train and forward on the block with equal strength. As the 
spring stretches, the static friction force on the block increases in 

ExAMPLE 10.5  Pull until it slips
FigurE 10.16 shows a spring attached to a 2.0 kg block. The other 
end of the spring is pulled by a motorized toy train that moves 
forward at 5.0 cm/s. The spring constant is 50 N/m, and the coef-
ficient of static friction between the block and the surface is 0.60. 
The spring is at its equilibrium length at t = 0 s when the train 
starts to move. When does the block slip?

FigurE 10.16 A toy train stretches the 
spring until the block slips.

5.0 cm/s

2.0 kg

FigurE 10.17 The free-body 
diagram.
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This example illustrates a class of motion called stick-slip motion. Once the block 
slips, it will shoot forward some distance, then stop and stick again. As the train con-
tinues, there will be a recurring sequence of stick, slip, stick, slip, stick. . . .

Earthquakes are an important example of stick-slip motion. The large tectonic 
plates making up the earth’s crust are attempting to slide past each other, but friction 
causes the edges of the plates to stick together. You may think of rocks as rigid and 
brittle, but large masses of rock are somewhat elastic and can be “stretched.” Even-
tually the elastic force of the deformed rocks exceeds the friction force between the 
plates. An earthquake occurs as the plates slip and lurch forward. Once the tension is 
released, the plates stick together again and the process starts all over.

Stop to think 10.4  The graph shows force versus dis-
placement for three springs. Rank in order, from larg-
est to smallest, the spring constants ka, kb, and kc.

10.5 Elastic Potential Energy
The forces we have worked with thus far—gravity, friction, tension—have been con-
stant forces. That is, their magnitudes do not change as an object moves. That feature 
has been important because the kinematic equations we developed in Chapter 2 are for 
motion with constant acceleration. But a spring exerts a variable force. The force is 
zero if s = 0 (no displacement), and it steadily increases as the stretching increases. 
The “natural motion” of a mass on a spring—think of pulling down on a spring and 
then releasing it—is an oscillation. This is not constant-acceleration motion, and we 
haven’t yet developed the kinematics to handle oscillatory motion.

But suppose we’re interested not in the time dependence of motion, only in before-
and-after situations. For example, FigurE 10.18 shows a before-and-after situation in 
which a spring launches a ball. Asking how the compression of the spring (the “be-
fore”) affects the speed of the ball (the “after”) is very different from wanting to know 
the ball’s position as a function of time as the spring expands.

You certainly have a sense that a compressed spring has “stored energy,” and 
Figure 10.18 shows clearly that the stored energy is transformed into the kinetic 
energy of the ball. Let’s analyze this process with the same method we developed for 
motion under the influence of gravity. Newton’s second law for the ball is

 (Fnet)s = mas = m 
dvs

dt
 (10.27)

magnitude to keep the block at rest. The block is in static equilib-
rium, so

 a (Fnet)x = (Fsp)x + (  fs 

)x = Fsp - fs = 0

where Fsp is the magnitude of the spring force. The magnitude is 
Fsp = k x, where x = vx  t is the distance the train has moved. 
Thus

 fs = Fsp = k x

The block slips when the static friction force reaches its maximum 

value fs max = ms  n = ms  mg. This occurs when the train has moved

  x =
fs max

k
=

ms  mg

k
=

(0.60)(2.0 kg)(9.80 m/s2)

50 N/m

  = 0.235 m = 23.5 cm

The time at which the block slips is

 t =
x

vx
=

23.5 cm

5.0 cm/s
= 4.7 s

The slip can range from a few centimeters 
in a relatively small earthquake to several 
meters in a very large earthquake.
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a

FigurE 10.18 Before and after a spring 
launches a ball.
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The net force on the ball is given by Hooke’s law, (Fnet)s = -k(s - se). Thus

 m 
dvs

dt
= -k(s - se) (10.28)

We’ll use a generic s-axis, although it is better in actual problem solving to use x or y, 
depending on whether the motion is horizontal or vertical.

As before, we use the chain rule to write

 
dvs

dt
=

dvs

ds
 
ds

dt
= vs 

dvs

ds
 (10.29)

We substitute this into Equation 10.28 and then multiply both sides by ds to get

 mvs dvs = -k(s - se) ds (10.30)

We can integrate both sides of the equation from the initial conditions i to the final 
conditions f—that is, integrate “from before to after”—to give

 3
vf

vi

mvs dvs =
1

2
 mvf 

2 -
1

2
 mvi 

2 = -k3
sf

si

(s - se) ds (10.31)

The integral on the right is not difficult, but many of you are new to calculus so 
we’ll proceed step by step. The easiest way to get the answer in the most useful form 
is to make a change of variables. Define u = (s - se), in which case ds = du. This 
changes the integrand from (s - se) ds to u du.

When we change variables, we also must change the limits of integration. In par-
ticular, s = si at the lower integration limit makes u = si - se = si, where si is 
the initial displacement of the spring from equilibrium. Likewise, s = sf makes u =
sf - se = sf at the upper limit. FigurE 10.19 clarifies the meanings of si and sf.

With this change of variables, the integral is

  -k3
sf

si

(s - se) ds = -k3
sf

si

u du = -  
1

2
 ku2 `

sf

si

  = -  
1

2
 k(sf)

2 +
1

2
 k(si)

2  

(10.32)

Using this result makes Equation 10.31 become
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1
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1
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 k(si)

2 (10.33)

which can be rewritten as
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 mvf 

2 +
1

2
 k(sf)

2 =
1
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 mvi 

2 +
1

2
 k(si)

2 (10.34)

We’ve succeeded in our goal of relating before and after. In particular, the quantity

 
1

2
 mv 2 +

1

2
 k(s)2 (10.35)

does not change as the spring compresses or expands. You recognize 1
2 mv 2 as the 

kinetic energy K. Let’s define the elastic potential energy Us of a spring to be

 Us =
1

2
 k(s)2  (elastic potential energy) (10.36)

Then Equation 10.34 tells us that an object moving on a spring obeys

 Kf + Usf = Ki + Usi (10.37)

In other words, the mechanical energy Emech = K + Us is conserved for an object mov-
ing without friction on an ideal spring.

NoTE  Because s is squared, the elastic potential energy is positive for a spring 
that is either stretched or compressed. Us is zero when the spring is at its equilib-
rium length L 0 and s = 0. 

Springs and rubber bands store energy—
potential energy—that can be transformed 
into kinetic energy.

FigurE 10.19 The initial and final 
displacements of the spring.
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It is now straightforward to solve for the ball’s speed:

 v2 = Bkx1 

2

m
= B(10 N/m)(-0.10 m)2

0.010 kg
= 3.2 m/s

ASSESS This is a problem that we could not have solved with 
Newton’s laws. The acceleration is not constant, and we have not 
learned how to handle the kinematics of nonconstant acceleration. 
But with conservation of energy—it’s easy! The result, 3.2 m/s, 
seems reasonable for a toy gun.

ExAMPLE 10.6  A spring-launched plastic ball
A spring-loaded toy gun launches a 10 g plastic ball. The spring, 
with spring constant 10 N/m, is compressed by 10 cm as the ball 
is pushed into the barrel. When the trigger is pulled, the spring is 
released and shoots the ball back out. What is the ball’s speed as it 
leaves the barrel? Assume friction is negligible.

MoDEL Assume an ideal spring that obeys Hooke’s law. Also as-
sume that the gun is held firmly enough to prevent recoil. There’s 
no friction; hence the mechanical energy K + Us is conserved.

viSuALizE FigurE 10.20a shows a before-and-after pictorial represen-
tation. We have chosen to put the origin of the coordinate system at 
the equilibrium position of the free end of the spring. The bar chart 
of FigurE 10.20b shows the potential energy stored in the compressed 
spring being entirely transformed into the kinetic energy of the ball.

SoLvE The energy conservation equation is K2 + Us2 = K1+  
Us1. We can use the elastic potential energy of the spring, 
Equation 10.36, to write this as

 
1

2
 mv2 

2 +
1

2
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1

2
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1

2
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2

Notice that we used x, rather than the generic s, and that we explic-
itly wrote out the meaning of x1 and x2. Using x2 = xe = 0 m 
and v1 = 0 m/s simplifies this to
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FigurE 10.20 Pictorial representation and energy bar chart of 
a ball being shot from a spring-loaded toy gun.
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the spring is not ye = 0. The projectile reaches height y2 = h, at 
which point v2 = 0 m/s.

SoLvE Mechanical energy is now K + Ug + Us, so the conserva-
tion equation is

 
1

2
 mv2 

2 + mgy2 +
1

2
 k(y2)

2 =
1

2
 mv1 
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1

2
 k(y1)

2

It is important to distinguish between the position of the projectile 
and the compression of the spring. While the projectile moves to 
position y2, the end of the spring stops at ye. Thus y2 = 0, not 
y2 = y2. The initial and final speeds are zero, as is the initial 
position, so the equation simplifies to

 mgh =
1

2
 k(y1)

2

ExAMPLE 10.7  A spring-launched projectile
Your lab assignment for the week is to devise a method to de-
termine the spring constant of a spring. You notice several small 
blocks of different mass lying around, so you decide to measure 
how high the compressed spring will launch each of the blocks. 
You and your lab partners quickly realize that you need to com-
press the spring the same amount each time, so that only the 
mass is varying, and you choose to use a compression of 4.0 cm. 
Measuring the height from where you place the mass on the com-
pressed spring generates the following data:

Mass (g) Height (m)

 50 2.07

100 1.11

150 0.65

200 0.51

What value will you report for the spring constant?

MoDEL Assume an ideal spring that obeys Hooke’s law. There’s 
no friction, and we’ll assume no drag; hence the mechanical 
energy K + U is conserved. However, this system has both elastic 
and gravitational potential energy—two distinct ways of storing 
energy—and we need to include them both. Thus U = Ug + Us.

viSuALizE FigurE 10.21 is a before-and-after pictorial representa-
tion. We’ve chosen to place the origin of the coordinate system at 
the point of launch, so in this problem the equilibrium position of 

FigurE 10.21 Pictorial representation of a spring-launched 
projectile.

Continued
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This equation tells us that the net effect of the launch is to trans-
form the potential energy initially stored in the spring entirely into 
gravitational potential energy. Kinetic energy is zero at the begin-
ning and again zero at the highest point. The projectile does have 
kinetic energy as it comes off the spring, but we don’t need to 
know that. Solving for the height, we find

 h =
k(y1)

2

2mg
=

k(y1)
2

2g
# 1
m

The first expression for h is correct as an algebraic expression, but 
here we want to use the result to analyze an experiment in which 
we measure h as m is varied. By isolating the mass term, we see 
that plotting h versus 1/m (that is, using 1/m as the x-variable) 
should yield a straight line with slope k(y1)

2/2g. Thus we can use 
the experimentally determined slope to find k.

FigurE 10.22 is a graph of h versus 1/m, with masses first con-
verted to kg. The graph is linear and the best-fit line has a y-inter-
cept very near zero, confirming our analysis of the situation. The 
experimentally determined slope is 0.105 m kg, with the units 
determined by rise over run. Thus the experimental value of the 
spring constant is

 k =
2g

(y1)
2 * slope = 1290 N/m

ASSESS A spring with spring constant 1290 N/m has potential 
energy Us =

1
2 k(y)2 = 1.0 J when compressed 4 cm. A 100 g 

mass has potential energy Ug = mgy = 1.1 J at a height of 1.1 m. 
That these energies are very nearly equal (perfect equality isn’t 
expected with experimental data) gives us confidence in our value 
for the spring constant.
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1/m (kg�1)0.0

h (m)

0

Best-fit line0.5
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FigurE 10.22 Graph of the projectile height versus the 
inverse of its mass.

Notice that both blocks contribute to the kinetic energy. The en-
ergy equation has two unknowns, (vf)1 and (vf)2, and one equation 
is not enough to solve the problem. Fortunately, momentum is also 
conserved. The initial momentum is zero because both blocks are 
at rest, so the momentum equation is

 m1  (vfx)1 + m2  (vfx)2 = 0

which can be solved to give

 (vfx)1 = -  
m2

m1
 (vfx)2

The minus sign indicates that the blocks move in opposite direc-
tions. The speed (vf)1 = (m2/m1)(vf)2 is all we need to calculate the 
kinetic energy. Substituting (vf)1 into the energy equation gives
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2
 m1  1m2

m1
 (vf)22 2

+
1

2
 m2  (vf)2 

2 =
1

2
 k(xi)

2

which simplifies to

 m2  11 +
m2

m1
2 (vf)2 

2 = k(xi)
2

Solving for (vf)2, we find

 (vf)2 = B k(xi)
2

m2  (1 + m2/m1)
= 1.8 m/s

Finally, we can go back to find

 (vfx)1 = -  
m2

m1
 (vfx)2 = -3.6 m/s

The 2.0 kg block moves to the right at 1.8 m/s while the 1.0 kg 
block goes left at 3.6 m/s.

ASSESS Speeds of a few m/s seem reasonable.

ExAMPLE 10.8  Pushing apart
A spring with spring constant 2000 N/m is sandwiched between 
a 1.0 kg block and a 2.0 kg block on a frictionless table. The 
blocks are pushed together to compress the spring by 10 cm, then 
released. What are the velocities of the blocks as they fly apart?

MoDEL Assume an ideal spring that obeys Hooke’s law. There’s 
no friction; hence the mechanical energy K + Us is conserved. 
Here K is the total kinetic energy of both blocks. In addition, be-
cause the blocks and spring form an isolated system, their total 
momentum is conserved.

viSuALizE FigurE 10.23 is a pictorial representation.

FigurE 10.23 Pictorial representation of the blocks and spring.
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Before:
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Find: (vfx)1 and (vfx)2

SoLvE The initial energy, with the spring compressed, is entirely 
potential. The final energy is entirely kinetic. The energy conser-
vation equation Kf + Usf = Ki + Usi is
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Stop to think 10.5 
  A spring-loaded gun shoots a plastic ball with a speed of 4 m/s. 

If the spring is compressed twice as far, the ball’s speed will be

 a. 2 m/s. b. 4 m/s.

 c. 8 m/s. d. 16 m/s.

10.6 Energy Diagrams
Potential energy is an energy of position. The gravitational potential energy depends on 
the height of an object, and the elastic potential energy depends on a spring’s displace-
ment. Other potential energies you will meet in the future will depend in some way on 
position. Functions of position are easy to represent as graphs. A graph showing a sys-
tem’s potential energy and total energy as a function of position is called an energy dia-
gram. Energy diagrams allow you to visualize motion based on energy considerations.

FigurE 10.24 is the energy diagram of a particle in free fall. The gravitational po-
tential energy Ug = mgy is graphed as a line through the origin with slope mg. The 
potential-energy curve is labeled PE. The line labeled TE is the total energy line, 
E = K + Ug. It is horizontal because mechanical energy is conserved, meaning that 
the object’s mechanical energy E has the same value at every position.

Suppose the particle is at position y1. By definition, the distance from the axis to the 
potential-energy curve is the particle’s potential energy Ug1 at that position. Because 
K1 = E - Ug1, the distance between the potential-energy curve and the total energy 
line is the particle’s kinetic energy.

The four-frame “movie” of FigurE 10.25 illustrates how an energy diagram is used 
to visualize motion. The first frame shows a particle projected upward from ya = 0 
with kinetic energy Ka. Initially the energy is entirely kinetic, with Uga = 0. A picto-
rial representation and an energy bar chart help to illustrate what the energy diagram 
is showing.

FigurE 10.24 The energy diagram of a 
particle in free fall.
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FigurE 10.25 A four-frame movie of a particle in free fall.
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In the second frame, the particle has gained height but lost speed. The potential 
energy Ugb is larger, and the distance Kb between the potential-energy curve and the 
total energy line is less. The particle continues rising and slowing until, in the third 
frame, it reaches the y-value where the total energy line crosses the potential-energy 
curve. This point, where K = 0 and the energy is entirely potential, is a turning point 
where the particle reverses direction. Finally, we see the particle speeding up as it falls.

A particle with this amount of total energy would need negative kinetic energy to 
be to the right of the point, at yc , where the total energy line crosses the potential-
energy curve. Negative K is not physically possible, so the particle cannot be at 
positions with U + E. Now, it’s certainly true that you could make the particle reach 
a larger value of y simply by throwing it harder. But that would increase E and move 
the total energy line higher.

NoTE  The TE line is under your control. You can move the TE line as far up or 
down as you wish by changing the initial conditions, such as projecting the particle 
upward with a different speed or dropping it from a different height. Once you’ve 
determined the initial conditions, you can use the energy diagram to analyze the 
motion for that amount of total energy. 

FigurE 10.26 shows the energy diagram of a mass on a horizontal spring. The poten-
tial-energy curve Us =

1
2 k(x - xe)

2 is a parabola centered at the equilibrium position 
xe. The PE curve is determined by the spring constant; you can’t change it. But you can 
set the TE to any height you wish simply by stretching the spring to the proper length. 
The figure shows one possible TE line.

Suppose you pull the mass out to position xR and release it. FigurE 10.27 is a four-
frame movie of the subsequent motion. Initially, the energy is entirely potential. The 
restoring force of the spring pulls the mass toward xe, increasing the kinetic energy 
as the potential energy decreases. The mass has maximum speed at position xe, where 
Us = 0, and then it slows down as the spring starts to compress.

If the movie were to continue, you should be able to visualize that position xL is 
a turning point. The mass will instantaneously have vL = 0 and KL = 0, then reverse 
direction as the spring starts to expand. The mass will speed up until xe, then slow 

FigurE 10.26 The energy diagram of a 
mass on a horizontal spring.
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FigurE 10.27 A four-frame movie of a mass oscillating on a spring.

Energy
PE

TE

xa � xR

va � 0

x

xexL xR

x

Energy
PE

TE

x

Energy
PE

TE

xc � xe

x

Energy
PE

TE

x

vb vc vd

x x x

Ka Usa Kb Usb Kc Usc Kd Usd

The mass is released 
from rest. The energy is 
entirely potential.

The particle has gained 
kinetic energy as the spring 
loses potential energy.

This is the point of 
maximum speed. The 
energy is entirely kinetic.

The particle loses kinetic 
energy as it compresses 
the spring.

xexL

xL xL xe xb xR xL xR xexL xRxdxe

xR xexL xR xexL xR



down until reaching xR  , where it started. This is another turning point. It will reverse 
direction again and start the process over. In other words, the mass will oscillate back 
and forth between the left and right turning points at xL and xR where the TE line 
crosses the PE curve.

FigurE 10.28 applies these ideas to a more general energy diagram. We don’t know 
how this potential energy was created, but we can visualize the motion of a particle 
that has this potential energy. Suppose the particle is released from rest at position x1. 
How will it then move?

The particle’s kinetic energy at x1 is zero; hence the TE line must cross the PE curve 
at this point. The particle cannot move to the left because U 7 E, so it begins to move 
toward the right. The particle speeds up from x1 to x2 as U decreases and K increases, 
then slows down from x2 to x3 as it goes up the “potential-energy hill.” The particle 
doesn’t stop at x3 because it still has kinetic energy. It speeds up from x3 to x4, reaching 
its maximum speed at x4, then slows down between x4 and x5. Position x5 is a turning 
point, a point where the TE line crosses the PE curve. The particle is instantaneously at 
rest, then reverses direction. The particle will oscillate back and forth between x1 and x5, 
following the pattern of slowing down and speeding up that we’ve outlined.

Equilibrium Positions
Positions x2, x3, and x4   in Figure 10.28, where the potential energy has a local mini-
mum or maximum, are special positions. Consider a particle with the total energy E2 
shown in FigurE 10.29. The particle can be at rest at x2, with K = 0, but it cannot move 
away from x2. In other words, a particle with energy E2 is in static equilibrium at x2. If 
you disturb the particle, giving it a small kinetic energy and a total energy just slightly 
larger than E2, the particle will undergo a very small oscillation centered on x2, like 
a marble in the bottom of a bowl. An equilibrium for which small disturbances cause 
small oscillations is called a point of stable equilibrium. You should recognize that 
any minimum in the PE curve is a point of stable equilibrium. Position x4 is also a 
point of stable equilibrium, in this case for a particle with E = 0.

Figure 10.29 also shows a particle with energy E3 that is tangent to the curve at x3. If 
a particle is placed exactly at x3, it will stay there at rest (K = 0). But if you disturb the 
particle at x3, giving it an energy only slightly more than E3, it will speed up as it moves 
away from x3. This is like trying to balance a marble on top of a hill. The slightest dis-
placement will cause the marble to roll down the hill. A point of equilibrium for which 
a small disturbance causes the particle to move away is called a point of unstable equi-
librium. Any maximum in the PE curve, such as x3, is a point of unstable equilibrium.

We can summarize these lessons as follows:

FigurE 10.28 A more general energy 
diagram.
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 interpreting an energy diagram

 ●1 The distance from the axis to the PE curve is the particle’s potential energy. 
The distance from the PE curve to the TE line is its kinetic energy. These are 
transformed as the position changes, causing the particle to speed up or slow 
down, but the sum K + U doesn’t change.

 ●2 A point where the TE line crosses the PE curve is a turning point. The particle 
reverses direction.

 ●3 The particle cannot be at a point where the PE curve is above the TE line.
 ●4 The PE curve is determined by the properties of the system—mass, spring 

constant, and the like. You cannot change the PE curve. However, you can 
raise or lower the TE line simply by changing the initial conditions to give the 
particle more or less total energy.

 ●5 A minimum in the PE curve is a point of stable equilibrium. A maximum in 
the PE curve is a point of unstable equilibrium.

Exercises 18–20 
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Stop to think 10.6  A particle with the potential 
energy shown in the graph is moving to the 
right. It has 1 J of kinetic energy at x = 1 m. 
Where is the particle’s turning point?

Molecular Bonds
Molecular bonds cause the “springiness” in our atomic models of tension, the normal 
force, and collisions. A molecular bond that holds two atoms together is an electric 
interaction between the charged electrons and nuclei. FigurE 10.31 shows the potential-
energy diagram for the diatomic molecule HCl (hydrogen chloride) as it has been 
experimentally determined. Distance x is the atomic separation, the distance between 
the hydrogen and the chlorine atoms. Note the very tiny distances: 1 nm = 10-9 m.

Although the potential energy is an electric energy, we can interpret the diagram 
using the steps in Tactics Box 10.1. The molecule has a stable equilibrium at an atomic 
separation of xeq = 0.13 nm. This is the bond length of HCl, and you can find this 
value listed in chemistry books. If we try to push the atoms closer together (smaller x), 

The equilibrium position (the minimum of Utot) has shifted from 
L 0 to a smaller value of y, closer to the ground. We can find the 
equilibrium by locating the position of the minimum in the PE 
curve. You know from calculus that the minimum of a function is 
at the point where the derivative (or slope) is zero. The derivative 
of Utot is

 
dUtot

dy
= mg + k ( y - L 0)

The derivative is zero at the point yeq  , so we can easily find

  mg + k ( yeq - L 0) = 0

  yeq = L 0 -
mg

k

The block compresses the spring by the length mg/k from its origi-
nal length L 0, giving it a new equilibrium length L 0 - mg/k.

ExAMPLE 10.9  Balancing a mass on a spring
A spring of length L 0 and spring constant k is standing on one end. 
A block of mass m is placed on the spring, compressing it. What is 
the length of the compressed spring?

MoDEL Assume an ideal spring obeying Hooke’s law. The 
block + spring system has both gravitational potential energy Ug 
and elastic potential energy Us. The block sitting on top of the 
spring is at a point of stable equilibrium (small disturbances cause 
the block to oscillate slightly around the equilibrium position), so 
we can solve this problem by looking at the energy diagram.

viSuALizE FigurE 10.30a is a pictorial representation. We’ve used 
a coordinate system with the origin at ground level, so the equilib-
rium position of the uncompressed spring is ye = L 0.

SoLvE FigurE 10.30b shows the two potential energies separately 
and also shows the total potential energy:

 Utot = Ug + Us = mgy +
1

2
 k ( y - L 0)

2

FigurE 10.30 The block 1 spring system has both gravitational and elastic potential energy.
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FigurE 10.31 The energy diagram of the 
diatomic molecule HCl.
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the potential energy rises very rapidly. Physically, this is the repulsive electric force 
between the electrons orbiting each atom, preventing the atoms from getting too close.

There is also an attractive force between the atoms, called the polarization force. It 
is similar to the static electricity force by which a comb that has been brushed through 
your hair attracts small pieces of paper. If you try to pull the atoms apart (larger x), 
the attractive polarization force resists and is responsible for the increasing potential 
energy for x 7 xeq. The equilibrium position is where the repulsive force between the 
electrons and the attractive polarization force are exactly balanced.

The repulsive force keeps getting stronger as you push the atoms together, and thus 
the potential-energy curve keeps getting steeper on the left. But the attractive polariza-
tion force gets weaker as the atoms get farther apart. This is why the potential-energy 
curve becomes less steep as the atomic separation increases. This difference between 
the repulsive and attractive forces leads to an asymmetric curve.

It turns out that, for quantum physics reasons, a molecule cannot have E = 0 and thus 
cannot simply rest at the equilibrium position. By requiring the molecule to have some 
energy, such as E1, we see that the atoms oscillate back and forth between two turning 
points. This is a molecular vibration, and atoms held together by molecular bonds are 
constantly vibrating. For a molecule having an energy E1 = 0.35 * 10-18 J, as illustrated 
in Figure 10.31, the bond oscillates in length between roughly 0.10 nm and 0.18 nm.

Suppose we increase the molecule’s energy to E2 = 1.25 * 10-18 J. This could hap-
pen if the molecule absorbs some light. You can see from the energy diagram that 
atoms with this energy are not bound together at large values of x. There is no turning 
point on the right, so the atoms will keep moving apart. By raising the molecule’s 
energy to E2 we have broken the molecular bond. The breaking of molecular bonds 
through the absorption of light is called photodissociation. It is an important process 
in making integrated circuits.

10.7 Elastic Collisions
Figure 9.1 showed a molecular-level view of a collision. Billions of spring-like mo-
lecular bonds are compressed as two objects collide, then the bonds expand and push 
the objects apart. In the language of energy, the kinetic energy of the objects is trans-
formed into the elastic potential energy of molecular bonds, then back into kinetic 
energy as the two objects spring apart.

In some cases, such as the inelastic collisions of Chapter 9, some of the mechanical 
energy is dissipated inside the objects as thermal energy and not all of the kinetic en-
ergy is recovered. We’re now interested in collisions in which all of the kinetic energy 
is stored as elastic potential energy in the bonds, and then all of the stored energy is 
transformed back into the post-collision kinetic energy of the objects. A collision in 
which mechanical energy is conserved is called a perfectly elastic collision. Colli-
sions between two very hard objects, such as two billiard balls or two steel balls, come 
close to being perfectly elastic.

FigurE 10.32 shows a head-on, perfectly elastic collision of a ball of mass m1, having 
initial velocity (vix)1, with a ball of mass m2 that is initially at rest. The balls’ velocities 
after the collision are (vfx)1 and (vfx)2. These are velocities, not speeds, and have signs. 
Ball 1, in particular, might bounce backward and have a negative value for (vfx)1.

The collision must obey two conservation laws: conservation of momentum 
(obeyed in any collision) and conservation of mechanical energy (because the col-
lision is perfectly elastic). Although the energy is transformed into potential energy 
during the collision, the mechanical energy before and after the collision is purely 
kinetic energy. Thus

  momentum conservation:  m1  (vfx)1 + m2  (vfx)2 = m1  (vix)1 (10.38)

  energy conservation:  
1

2
 m1  (vfx)1 

2 +
1

2
 m2  (vfx)2 

2 =
1

2
 m1  (vix)1 

2 (10.39)

A perfectly elastic collision conserves both 
momentum and mechanical energy.

FigurE 10.32 A perfectly elastic collision.

1 KiBefore: 2

1During: 2

1After: 2 Kf � Ki

(vix)1

(vfx)1 (vfx)2

Energy is stored in
compressed bonds,
then released as the
bonds re-expand.
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Momentum conservation alone is not sufficient to analyze the collision because there 
are two unknowns: the two final velocities. That is why we did not consider perfectly 
elastic collisions in Chapter 9. Energy conservation gives us another condition. Isolat-
ing (vfx)1 in Equation 10.38 gives

 (vfx)1 = (vix)1 -
m2

m1
 (vfx)2 (10.40)

We substitute this into Equation 10.39:

 
1

2
 m1  1(vix)1 -

m2

m1
 (vfx)22 2

+
1

2
 m2  (vfx)2 

2 =
1

2
 m1  (vix)1 

2

With a bit of algebra, this can be rearranged to give

 (vfx)2 c 11 +
m2

m1
2(vfx)2 - 2(vix)1 d = 0 (10.41)

One possible solution to this equation is seen to be (vfx)2 = 0. However, this solu-
tion is of no interest; it is the case where ball 1 misses ball 2. The other solution is

 (vfx)2 =
2m1

m1 + m2
 (vix)1

which, finally, can be substituted back into Equation 10.40 to yield (vfx)1. The com-
plete solution is

 

(vfx)1 =
m1 - m2

m1 + m2
 (vix)1

(vfx)2 =
2m1

m1 + m2
 (vix)1

 (perfectly elastic collision
 with ball 2 initially at rest)

 (10.42)

Equations 10.42 allow us to compute the final velocity of each ball. These equa-
tions are a little difficult to interpret, so let us look at the three special cases shown in  
FigurE 10.33.

Case 1: m1 = m2. This is the case of one billiard ball striking another of equal 
mass. For this case, Equations 10.42 give

  vf1 = 0
  vf2 = vi1

Case 2: m1 W m2. This is the case of a bowling ball running into a Ping-Pong 
ball. We do not want an exact solution here, but an approximate solution for the 
limiting case that m1 S . Equations 10.42 in this limit give

  vf1 � vi1

  vf2 � 2vi1

Case 3: m1 V m2. Now we have the reverse case of a Ping-Pong ball collid-
ing with a bowling ball. Here we are interested in the limit m1 S 0, in which case 
Equations 10.42 become

  vf1 � -vi1

  vf2 � 0

These cases agree well with our expectations and give us confidence that Equations 10.42 
accurately describe a perfectly elastic collision.

FigurE 10.33 Three special elastic 
collisions.
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m1 � m2

m1 W m2

m1 V m2

Ball 1 stops. Ball 2 goes forward with vf2 � vi1.

Ball 1 hardly slows down. Ball 2 is knocked
forward at vf2 � 2vi1.

Ball 1 bounces off ball 2 with almost no loss
of speed. Ball 2 hardly moves.



using reference Frames
Equations 10.42 assumed that ball 2 was at rest prior to the collision. Suppose, how-
ever, you need to analyze the perfectly elastic collision that is just about to take place 
in FigurE 10.34. What are the direction and speed of each ball after the collision? You 
could solve the simultaneous momentum and energy equations, but the mathematics 
becomes quite messy when both balls have an initial velocity. Fortunately, there’s an 
easier way.

You already know the answer—Equations 10.42—when ball 2 is initially at rest. 
And in Chapter 4 you learned the Galilean transformation of velocity. This transfor-
mation relates an object’s velocity as measured in one reference frame to its veloc-
ity in a different reference frame that moves with respect to the first. The Galilean 
transformation provides an elegant and straightforward way to analyze the collision 
of Figure 10.34.

FigurE 10.34 A perfectly elastic collision 
in which both balls have an initial 
velocity.

m1 � 200 g

2.0 m/s
1 2

3.0 m/s

m2 � 100 g

TACTiCS
B o x  1 0 . 2 

 Analyzing elastic collisions

 ●1 Use the Galilean transformation to transform the initial velocities of balls 1 
and 2 from the “lab frame” to a reference frame in which ball 2 is at rest.

 ●2 Use Equations 10.42 to determine the outcome of the collision in the frame 
where ball 2 is initially at rest.

 ●3 Transform the final velocities back to the “lab frame.”

FigurE 10.35a shows the situation, just before the collision, in the lab frame L. Ball 1 
has initial velocity (vix)1L = 2.0 m/s. Recall from Chapter 4 that the subscript notation 
means “velocity of ball 1 relative to the lab frame L.” Because ball 2 is moving to the 
left, it has (vix)2L = -3.0 m/s. We would like to observe the collision from a reference 
frame in which ball 2 is at rest. That will be true if we choose a moving reference 
frame M that travels alongside ball 2 with the same velocity: (vx)ML = -3.0 m/s.

FigurE 10.35 The collision seen in two reference frames: the lab frame L and a moving 
frame M in which ball 2 is initially at rest.

(a)
y

x

1 2

y

x
(vx)ML � �3.0 m/s

The collision seen
in the lab frame L.

Frame M moves
with ball 2.

(vix)1L � 2.0 m/s

(vix)2L � �3.0 m/s

L
M

(b)
y

x

1 2

The collision seen
in moving frame M.

(vix)1  M � 5.0 m/s (vix)2  M � 0 m/s

Ball 2 is at
rest in M.

M

We first need to transform the balls’ velocities from the lab frame to the moving refer-
ence frame. From Chapter 4, the Galilean transformation of velocity for an object O is

 (vx)OM = (vx)OL + (vx)LM (10.43)

That is, O’s velocity in reference frame M is its velocity in reference frame L plus 
the velocity of frame L relative to frame M. Because reference frame M is moving to 
the left relative to L with (vx)ML = -3.0 m/s, reference frame L is moving to the right 
relative to M with (vx)LM = +3.0 m/s. Applying the transformation to the two initial 
velocities gives

 (vix)1M = (vix)1L + (vx)LM = 2.0 m/s +  3.0 m/s =  5.0 m/s

 (vix)2M = (vix)2L + (vx)LM = -3.0 m/s +  3.0 m/s =  0 m/s 
(10.44)
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(vix)2M = 0 m/s, as expected, because we chose a moving reference frame in which 
ball 2 would be at rest.

FigurE 10.35b now shows a situation—with ball 2 initially at rest—in which we can 
use Equations 10.42 to find the post-collision velocities in frame M:

 (vfx)1M =
m1 - m2

m1 + m2
 (vix)1M = 1.7 m/s

 (vfx)2M =
2m1

m1 + m2
 (vix)1M = 6.7 m/s 

(10.45)

Reference frame M hasn’t changed—it’s still moving to the left in the lab frame at 
3.0 m/s—but the collision has changed both balls’ velocities in frame M.

To finish, we need to transform the post-collision velocities in frame M back to the 
lab frame L. We can do so with another application of the Galilean transformation:

 (vfx)1L = (vfx)1M + (vx)ML = 1.7 m/s +  (-3.0 m/s) = -1.3 m/s

 (vfx)2L = (vfx)2M + (vx)ML = 6.7 m/s + (-3.0 m/s) = 3.7 m/s  
(10.46)

FigurE 10.36 shows the outcome of the collision in the lab frame. It’s not hard to confirm 
that these final velocities do, indeed, conserve both momentum and energy.

FigurE 10.36 The post-collision velocities 
in the lab frame.

(vfx)1L � �1.3 m/s (vfx)2L � 3.7 m/s

1 2

we will assume that the collision is perfectly elastic. Third, the 
ball, after it bounces off the paperweight, swings back up as a 
pendulum.

viSuALizE FigurE 10.37 shows four distinct moments of time: as the 
ball is released, an instant before the collision, an instant after the 
collision but before the ball and paperweight have had time to move, 
and as the ball reaches its highest point on the rebound. Call the ball 
A and the paperweight B, so mA = 0.20 kg and mB = 0.50 kg.

CHALLENgE ExAMPLE 10.10   A rebounding pendulum
A 200 g steel ball hangs on a 1.0-m-long string. The ball is pulled 
sideways so that the string is at a 45 angle, then released. At the 
very bottom of its swing the ball strikes a 500 g steel paperweight 
that is resting on a frictionless table. To what angle does the ball 
rebound?

MoDEL We can divide this problem into three parts. First the ball 
swings down as a pendulum. Second, the ball and paperweight 
have a collision. Steel balls bounce off each other very well, so 

FigurE 10.37 Four moments in the collision of a pendulum with a paperweight.

Find: u3 

0

L � 1.0 m

mB � 500 g

u0 � 45�

mA � 200 g
A

y

(v0)A � 0 m/s
(y0)A � L(1 � cos u0)

(v3)A � 0 m/s
(y3)A � L(1 � cos u3)

(v1)A � (v1x)A

(y1)A � 0

(v1x)B � 0 m/s

A
(v2x)B(v2x)A

A B
A

BB

Part 1: Conservation of energy

Part 2: Conservation of momentum

Part 3: Conservation of energy

u3



SoLvE Part 1: The first part involves the ball only. Its initial height is

 ( y0)A = L - L cos u0 = L(1 - cos u0) = 0.293 m

We can use conservation of mechanical energy to find the ball’s 
velocity at the bottom, just before impact on the paperweight:

 
1

2
 mA (v1)A 

2 + mA g( y1)A =
1

2
 mA (v0)A 

2 + mA g( y0)A

We know (v0)A = 0. Solving for the velocity at the bottom, where 
( y1)A = 0, gives

 (v1)A = 22g(y0)A = 2.40 m/s

Part 2: The ball and paperweight undergo a perfectly elastic col-
lision in which the paperweight is initially at rest. These are the 
conditions for which Equations 10.42 were derived. The velocities 
immediately after the collision, prior to any further motion, are

  (v2x)A =
mA - mB

mA + mB
 (v1x)A = -1.03 m/s

  (v2x)B =
2mA

mA + mB
 (v1x)A = +1.37 m/s

The ball rebounds toward the left with a speed of 1.03 m/s while 
the paperweight moves to the right at 1.37 m/s. Kinetic energy 

has been conserved (you might want to check this), but it is now 
shared between the ball and the paperweight.

Part 3: Now the ball is a pendulum with an initial speed of 
1.03 m/s. Mechanical energy is again conserved, so we can find 
its maximum height at the point where (v3)A = 0:

 
1

2
 mA (v3)A 

2 + mA g( y3)A =
1

2
 mA (v2)A 

2 + mA g(y2)A

Solving for the maximum height gives

 ( y3)A =
(v2)A 

2

2g
= 0.0541 m

The height (y3)A is related to angle u3 by (y3)A = L(1 - cos u3). 
This can be solved to find the angle of rebound:

 u3 = cos-111 -
(y3)A

L 2 = 19

The paperweight speeds away at 1.37 m/s and the ball rebounds 
to an angle of 19.

ASSESS The ball and the paperweight aren’t hugely different in 
mass, so we expect the ball to transfer a significant fraction of its 
energy to the paperweight when they collide. Thus a rebound to 
roughly half the initial angle seems reasonable.
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S u M M A r y
The goals of Chapter 10 have been to introduce the concept of energy and the basic energy model.

general Principles
Law of Conservation of Mechanical Energy
If a system is isolated and frictionless, then the mechanical en-
ergy Emech = K + U of the system is conserved. Thus

Kf + Uf = Ki + Ui

•	 K is the sum of the kinetic energies of all particles.

•	 U is the sum of all potential energies.

Solving Energy Conservation Problems
MoDEL Choose an isolated system without friction or other 
losses of mechanical energy.

viSuALizE Draw a before-and-after pictorial representation.

SoLvE Use the law of conservation of energy:

Kf + Uf = Ki + Ui

ASSESS Is the result reasonable?

energy
basic energy model
kinetic energy, K
gravitational potential energy, Ug

joule, J
mechanical energy
law of conservation of mechanical energy

restoring force
elastic
equilibrium length, L 0

displacement from equilibrium, s
spring constant, k
Hooke’s law

elastic potential energy, Us

energy diagram
stable equilibrium
unstable equilibrium
perfectly elastic collision

Terms and Notation

important Concepts

Kinetic energy is an energy of motion: K =
1
2 mv 2.

Potential energy is an energy of position.

•	 Gravitational: Ug = mgy

•	 Elastic: Us =
1
2 k(s)2

Thermal energy is due to atomic motions. Hotter 
objects have more thermal energy.

Basic Energy Model

Eth

K U

System

Environment

Energy in Energy out

Energy is transferred to the
system by forces acting on
the system.

Energy is transformed within
the system without loss.

Energy diagrams

These diagrams show the  
potential-energy curve PE and the  
total mechanical energy line TE.

Energy

x

PE

TE

U

K

•	 The distance from the axis to the curve is PE.

•	 The distance from the curve to the TE line is KE.

•	 A point where the TE line crosses the PE curve is a turning point.

•	 Minima in the PE curve are points of stable equilibrium. 
Maxima are points of unstable equilibrium.

•	 Regions where PE is greater than TE are forbidden.

Applications
Hooke’s law

The restoring force of an ideal 
spring is

(Fsp)s = -k s

where k is the spring constant 
and s = s - se is the 
displacement from equilibrium.

Perfectly elastic collisions

Both mechanical energy  
and momentum are conserved.

(vfx)1 =
m1 - m2

m1 + m2
 (vix)1  (vfx)2 =

2m1

m1 + m2
 (vix)1

If ball 2 is moving, transform to a reference frame in which  
ball 2 is at rest.

Fsp
r

�sr

(vix)1

1 2
At
rest
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C o N C E P T u A L  Q u E S T i o N S

 1. Upon what basic quantity does kinetic energy depend? Upon 
what basic quantity does potential energy depend?

 2. Can kinetic energy ever be negative? Can gravitational potential 
energy ever be negative? For each, give a plausible reason for 
your answer without making use of any equations.

 3. If a particle’s speed increases by a factor of 3, by what factor 
does its kinetic energy change?

 4. Particle A has half the mass and eight times the kinetic energy of 
particle B. What is the speed ratio vA/vB ?

 5. A roller-coaster car rolls down a frictionless track, reaching speed 
v0 at the bottom. If you want the car to go twice as fast at the bottom, 
by what factor must you increase the height of the track? Explain.

 6. The three balls in FigurE Q10.6, which have equal masses, are 
fired with equal speeds from the same height above the ground. 
Rank in order, from largest to smallest, their speeds va, vb, and vc 
as they hit the ground. Explain.

 7. The three balls in FigurE Q10.7, which have equal masses, are 
fired with equal speeds at the angles shown. Rank in order, from 
largest to smallest, their speeds va, vb, and vc as they cross the 
dashed horizontal line. Explain. (All three are fired with suffi-
cient speed to reach the line.)

 8. A spring has an unstretched length of 10 cm. It exerts a restoring 
force F when stretched to a length of 11 cm.

 a. For what length of the spring is its restoring force 3F?
 b. At what compressed length is the restoring force 2F?
 9. The left end of a spring is attached to a wall. When Bob pulls 

on the right end with a 200 N force, he stretches the spring by 
20 cm. The same spring is then used for a tug-of-war between 
Bob and Carlos. Each pulls on his end of the spring with a 200 N 
force. How far does the spring stretch? Explain.

 10. Rank in order, from most to least, the elastic potential energy 
(Us)a to (Us)d stored in the springs of FigurE Q10.10. Explain.

 11. A spring is compressed 1.0 cm. How far must you compress a 
spring with twice the spring constant to store the same amount of 
energy?

 12. A spring gun shoots out a plastic ball at speed v0. The spring is 
then compressed twice the distance it was on the first shot. By 
what factor is the ball’s speed increased? Explain.

 13. A particle with the potential energy shown in FigurE Q10.13 is 
moving to the right at x = 5 m with total energy E.

 a. At what value or values of x is this particle’s speed a 
maximum?

 b. Does this particle have a turning point or points in the range 
of x covered by the graph? If so, where?

 c. If E is changed appropriately, could the particle remain at rest 
at any point or points in the range of x covered by the graph? 
If so, where?

 14. Two balls of clay of known masses hang from the ceiling on mass-
less strings of equal length. They barely touch when both hang at 
rest. One ball is pulled back until its string is at 45°, then released. It 
swings down, collides with the second ball, and they stick together. 
To determine the angle to which the balls swing on the opposite 
side, would you invoke (a) conservation of momentum, (b) con-
servation of mechanical energy, (c) both, (d) either but not both, or 
(e) these laws alone are not sufficient to find the angle? Explain.

FigurE Q10.7 FigurE Q10.6 

Ball a

Ball c

Ball b

Ball a

45� 60�

Ball b Ball c

FigurE Q10.10 

a

k

Compressed d

b

k

Stretched d

c

2k

Stretched d

d

k

Stretched 2d

FigurE Q10.13 

E

0
0
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PE
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Problems labeled  integrate material from earlier chapters.

Exercises

Section 10.2 Kinetic Energy and Gravitational Potential Energy

 1. | Which has the larger kinetic energy, a 10 g bullet fired at 
500 m/s or a 75 kg student running at 5.5 m/s?

 2. | The lowest point in Death Valley is 85 m below sea level. 
The summit of nearby Mt. Whitney has an elevation of 4420 m. 
What is the change in potential energy of an energetic 65 kg 
hiker who makes it from the floor of Death Valley to the top of 
Mt. Whitney?

 3. | At what speed does a 1000 kg compact car have the same 
kinetic energy as a 20,000 kg truck going 25 km/h?

http://www.meetyourbrain.com/bookChapters.php?book=Physics-for-Scientists-and-Engineers-A-Strategic-Approach-with-Modern-Physics-3rd-Edition-Solutions&title=0
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 4. | a.  What is the kinetic energy of a 1500 kg car traveling at a 
speed of 30 m/s (�  65 mph)?

   b.  From what height would the car have to be dropped to have 
this same amount of kinetic energy just before impact?

   c. Does your answer to part b depend on the car’s mass?
 5. | A boy reaches out of a window and tosses a ball straight up 

with a speed of 10 m/s. The ball is 20 m above the ground as he 
releases it. Use energy to find

 a. The ball’s maximum height above the ground.
 b. The ball’s speed as it passes the window on its way down.
 c. The speed of impact on the ground.
 6. | a.  With what minimum speed must you toss a 100 g ball 

straight up to just touch the 10-m-high roof of the gymna-
sium if you release the ball 1.5 m above the ground? Solve 
this problem using energy.

   b.  With what speed does the ball hit the ground?
 7. || A mother has four times the mass of her young son. Both are 

running with the same kinetic energy. What is the ratio vson/vmother 
of their speeds?

Section 10.3 A Closer Look at Gravitational Potential Energy

 8. | A 55 kg skateboarder wants to just make it to the upper edge 
of a “quarter pipe,” a track that is one-quarter of a circle with a 
radius of 3.0 m. What speed does he need at the bottom?

 9. || What minimum speed does a 100 g puck need to make it to the 
top of a 3.0-m-long, 20 frictionless ramp?

 10. || A pendulum is made by tying a 500 g ball to a 75-cm-long 
string. The pendulum is pulled 30 to one side, then released.

 a. What is the ball’s speed at the lowest point of its trajectory?
 b. To what angle does the pendulum swing on the other side?
 11. || A 20 kg child is on a swing that hangs from 3.0-m-long 

chains. What is her maximum speed if she swings out to a 45 angle?
 12. || A 1500 kg car traveling at 10 m/s suddenly runs out of gas 

while approaching the valley shown in FigurE Ex10.12. The alert 
driver immediately puts the car in neutral so that it will roll. 
What will be the car’s speed as it coasts into the gas station on 
the other side of the valley?

Section 10.4 Restoring Forces and Hooke’s Law

 13. | You need to make a spring scale for measuring mass. You want 
each 1.0 cm length along the scale to correspond to a mass differ-
ence of 100 g. What should be the value of the spring constant?

 14. || A 10-cm-long spring is attached to the ceiling. When a 2.0 kg 
mass is hung from it, the spring stretches to a length of 15 cm.

 a. What is the spring constant k?
 b. How long is the spring when a 3.0 kg mass is suspended from it?
 15. || A 60 kg student is standing atop a spring in an elevator as it ac-

celerates upward at 3.0 m/s2. The spring constant is 2500 N/m. 
By how much is the spring compressed?

 16. || A spring hanging from the ceiling has equilibrium length L 0. 
Hanging mass m from the spring stretches its length to L 1. Find 
an expression for the spring’s length L 3 when mass 3m hangs 
from it.

 17. || A 5.0 kg mass hanging from a spring scale 
is slowly lowered onto a vertical spring, as 
shown in FigurE Ex10.17. The scale reads in 
newtons.

 a. What does the spring scale read just be-
fore the mass touches the lower spring?

 b. The scale reads 20 N when the lower 
spring has been compressed by 2.0 cm. 
What is the value of the spring constant 
for the lower spring?

 c. At what compression length will the 
scale read zero?

Section 10.5 Elastic Potential Energy

 18. | How far must you stretch a spring with k = 1000 N/m to store 
200 J of energy?

 19. | A stretched spring stores 2.0 J of energy. How much energy 
will be stored if the spring is stretched three times as far?

 20. || A student places her 500 g physics book on a frictionless table. 
She pushes the book against a spring, compressing the spring by 
4.0 cm, then releases the book. What is the book’s speed as it 
slides away? The spring constant is 1250 N/m.

 21. | A block sliding along a horizontal frictionless surface with 
speed v collides with a spring and compresses it by 2.0 cm. 
What will be the compression if the same block collides with the 
spring at a speed of 2v?

 22. || A 10 kg runaway grocery cart runs into a spring with spring 
constant 250 N/m and compresses it by 60 cm. What was the 
speed of the cart just before it hit the spring?

 23. | The desperate contestants on a TV survival show are very 
hungry. The only food they can see is some fruit hanging on a 
branch high in a tree. Fortunately, they have a spring they can 
use to launch a rock. The spring constant is 1000 N/m, and they 
can compress the spring a maximum of 30 cm. All the rocks on 
the island seem to have a mass of 400 g.

 a. With what speed does the rock leave the spring?
 b. If the fruit hangs 15 m above the ground, will they feast or go 

hungry?
 24. || As a 15,000 kg jet plane lands on an aircraft carrier, its tail 

hook snags a cable to slow it down. The cable is attached to a 
spring with spring constant 60,000 N/m. If the spring stretches 
30 m to stop the plane, what was the plane’s landing speed?

Section 10.6 Energy Diagrams

 25. | FigurE Ex10.25 is the poten-
tial-energy diagram for a 20 g 
particle that is released from 
rest at x = 1.0 m.

 a. Will the particle move to 
the right or to the left? How 
can you tell?

 b. What is the particle’s 
maximum speed? At what 
position does it have this 
speed?

 c. Where are the turning points of the motion?
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 26. || FigurE Ex10.26 is the potential-
energy diagram for a 500 g par-
ticle that is released from rest at 
A. What are the particle’s speeds 
at B, C, and D?

 27. | a.  In FigurE Ex10.27, what minimum speed does a 100 g par-
ticle need at point A to reach point B?

   b.  What minimum speed does a 100 g particle need at point B 
to reach point A?

 28. || In FigurE Ex10.28, what is the maximum speed of a 2.0 g par-
ticle that oscillates between x = 2.0 mm and x = 8.0 mm?

Section 10.7 Elastic Collisions

 29. | A 50 g marble moving at 2.0 m/s strikes a 20 g marble at rest. 
What is the speed of each marble immediately after the collision?

 30. | A proton is traveling to the right at 2.0 * 107 m/s. It has a 
head-on perfectly elastic collision with a carbon atom. The mass 
of the carbon atom is 12 times the mass of the proton. What are 
the speed and direction of each after the collision?

 31. | Ball 1, with a mass of 100 g and traveling at 10 m/s, collides 
head-on with ball 2, which has a mass of 300 g and is initially 
at rest. What is the final velocity of each ball if the collision is 
(a) perfectly elastic? (b) perfectly inelastic?

 32. || A 50 g ball of clay traveling at speed v0 hits and sticks to a 
1.0 kg brick sitting at rest on a frictionless surface.

 a. What is the speed of the brick after the collision?
 b. What percentage of the mechanical energy is lost in this 

collision?

Problems

 33. | The maximum energy a bone can absorb without breaking is 
surprisingly small. Experimental data show that the leg bones of 
a healthy, 60 kg human can absorb about 200 J.

 a. From what maximum height could a 60 kg person jump and 
land rigidly upright on both feet without breaking his legs? 
Assume that all energy is absorbed by the leg bones in a rigid 
landing.

 b. People jump safely from much greater heights than this. 
Explain how this is possible.

 34. | You’re driving at 35 km/h when the road suddenly 
descends 15 m into a valley. You take your foot off the accelera-
tor and coast down the hill. Just as you reach the bottom you 
see the policeman hiding behind the speed limit sign that reads 
;70 km/h.< Are you going to get a speeding ticket?
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 35. || A cannon tilted up at a 30 angle fires a cannon ball at 80 m/s 
from atop a 10-m-high fortress wall. What is the ball’s impact 
speed on the ground below?

 36. || You have a ball of unknown mass, a spring with spring con-
stant 950 N/m, and a meter stick. You use various compressions 
of the spring to launch the ball vertically, then use the meter stick 
to measure the ball’s maximum height above the launch point. 
Your data are as follows:

Compression (cm) Height (cm)

2.0  32

3.0  65

4.0 115

5.0 189

  Use an appropriate graph of the data to determine the ball’s mass.
 37. || A very slippery ice cube slides in a vertical plane around the 

inside of a smooth, 20-cm-diameter horizontal pipe. The ice 
cube’s speed at the bottom of the circle is 3.0 m/s.

 a. What is the ice cube’s speed at the top?
 b. Find an algebraic expression for the ice cube’s speed when it 

is at angle u, where the angle is measured counterclockwise 
from the bottom of the circle. Your expression should give 
3.0 m/s for u = 0 and your answer to part a for u = 180.

 38. | A 50 g rock is placed in a slingshot and the rubber band is 
stretched. The force of the rubber band on the rock is shown by 
the graph in FigurE P10.38.

 a. Is the rubber band stretched to the right or to the left? How 
can you tell?

 b. Does this rubber band obey Hooke’s law? Explain.
 c. What is the rubber band’s spring constant k?
 d. The rubber band is stretched 30 cm and then released. What 

is the speed of the rock?

 39. | The elastic energy stored in your tendons can contribute up to 
35% of your energy needs when running. Sports scientists find 
that (on average) the knee extensor tendons in sprinters stretch 
41 mm while those of nonathletes stretch only 33 mm. The 
spring constant of the tendon is the same for both groups, 
33 N/mm. What is the difference in maximum stored energy be-
tween the sprinters and the nonathletes?

 40. || The spring in FigurE P10.40a is compressed by x. It 
launches the block across a frictionless surface with speed v0. 
The two springs in FigurE P10.40b are identical to the spring of 
Figure P10.40a. They are compressed by the same x and used 
to launch the same block. What is the block’s speed now?
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 41. ||| The spring in FigurE P10.41a is compressed by x. It 
launches the block across a frictionless surface with speed v0. 
The two springs in FigurE P10.41b are identical to the spring 
of Figure P10.41a. They are compressed the same total x 
and used to launch the same block. What is the block’s 
speed now?

 42. || a.  A block of mass m can slide up and down a frictionless 
slope tilted at angle u. The block is pressed against a 
spring at the bottom of the slope, compressing the spring 
(with spring constant k) by x, then released. Find an ex-
pression for the block’s maximum height h above its start-
ing point.

   b.  A 50 g ice cube can slide up and down a frictionless 30 
slope. At the bottom, a spring with spring constant 25 N/m 
is compressed 10 cm and used to launch the ice cube up the 
slope. How high does it go?

 43. || A package of mass m is released from rest at a warehouse 
loading dock and slides down the 3.0-m-high, frictionless chute 
of FigurE P10.43 to a waiting truck. Unfortunately, the truck 
driver went on a break without having removed the previous 
package, of mass 2m, from the bottom of the chute.

 a. Suppose the packages stick together. What is their common 
speed after the collision?

 b. Suppose the collision between the packages is perfectly elas-
tic. To what height does the package of mass m rebound?

 44. ||| A 100 g granite cube slides down a 40° frictionless ramp. 
At the bottom, just as it exits onto a horizontal table, it collides 
with a 200 g steel cube at rest. How high above the table should 
the granite cube be released to give the steel cube a speed of 
150 cm/s?

 45. || A 1000 kg safe is 2.0 m above a heavy-duty spring when the 
rope holding the safe breaks. The safe hits the spring and com-
presses it 50 cm. What is the spring constant of the spring?

 46. || A vertical spring with k = 490 N/m is standing on the ground. 
You are holding a 5.0 kg block just above the spring, not quite 
touching it.

 a. How far does the spring compress if you let go of the block 
suddenly?

 b. How far does the spring compress if you slowly lower the 
block to the point where you can remove your hand without 
disturbing it?

 c. Why are your two answers different?
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 47. || You have been hired to design a spring-launched roller 
coaster that will carry two passengers per car. The car goes up a 
10-m-high hill, then descends 15 m to the track’s lowest point. 
You’ve determined that the spring can be compressed a maxi-
mum of 2.0 m and that a loaded car will have a maximum mass 
of 400 kg. For safety reasons, the spring constant should be 
10% larger than the minimum needed for the car to just make it 
over the top.

 a. What spring constant should you specify?
 b. What is the maximum speed of a 350 kg car if the spring is 

compressed the full amount?
 48. || It’s been a great day of new, frictionless snow. Julie starts at 

the top of the 60 slope shown in FigurE P10.48. At the bottom, a 
circular arc carries her through a 90 turn, and she then launches 
off a 3.0-m-high ramp. How far horizontally is her touchdown 
point from the end of the ramp?

 49. || A 100 g block on a frictionless table is firmly attached to one 
end of a spring with k = 20 N/m. The other end of the spring is 
anchored to the wall. A 20 g ball is thrown horizontally toward 
the block with a speed of 5.0 m/s.

 a. If the collision is perfectly elastic, what is the ball’s speed 
immediately after the collision?

 b. What is the maximum compression of the spring?
 c. Repeat parts a and b for the case of a perfectly inelastic 

collision.
 50. || You have been asked to design a “ballistic spring system” to 

measure the speed of bullets. A bullet of mass m is fired into 
a block of mass M. The block, with the embedded bullet, then 
slides across a frictionless table and collides with a horizontal 
spring whose spring constant is k. The opposite end of the spring 
is anchored to a wall. The spring’s maximum compression d is 
measured.

 a. Find an expression for the bullet’s speed vB in terms of m, M, 
k, and d.

 b. What was the speed of a 5.0 g bullet if the block’s mass is 
2.0 kg and if the spring, with k = 50 N/m, was compressed 
by 10 cm?

 c. What fraction of the bullet’s energy is “lost”? Where did it go?
 51. ||| You have been asked to design a “ballistic spring system” to 

measure the speed of bullets. A spring whose spring constant is k 
is suspended from the ceiling. A block of mass M hangs from the 
spring. A bullet of mass m is fired vertically upward into the bot-
tom of the block and stops in the block. The spring’s maximum 
compression d is measured.

 a. Find an expression for the bullet’s speed vB in terms of m, M, 
k, and d.

 b. What was the speed of a 10 g bullet if the block’s mass is 
2.0 kg and if the spring, with k = 50 N/m, was compressed 
by 45 cm?



 52. || In FigurE P10.52, a block of mass m slides along a frictionless 
track with speed vm. It collides with a stationary block of mass M. 
Find an expression for the minimum value of vm that will allow 
the second block to circle the loop-the-loop without falling off if 
the collision is (a) perfectly inelastic or (b) perfectly elastic.

 53. || A block of mass m slides down a frictionless track, then 
around the inside of a circular loop-the-loop of radius R. From 
what minimum height h must the block start to make it around 
without falling off? Give your answer as a multiple of R.

 54. || A new event has been proposed for the Winter Olympics. As 
seen in FigurE P10.54, an athlete will sprint 100 m, starting from 
rest, then leap onto a 20 kg bobsled. The person and bobsled will 
then slide down a 50-m-long ice-covered ramp, sloped at 20, 
and into a spring with a carefully calibrated spring constant of 
2000 N/m. The athlete who compresses the spring the farthest 
wins the gold medal. Lisa, whose mass is 40 kg, has been train-
ing for this event. She can reach a maximum speed of 12 m/s in 
the 100 m dash.

 a. How far will Lisa compress the spring?
 b. The Olympic committee has very exact specifications about 

the shape and angle of the ramp. Is this necessary? What fac-
tors about the ramp are important?

 55. ||| A 20 g ball is fired horizontally with speed v0   toward a 100 g 
ball hanging motionless from a 1.0-m-long string. The balls un-
dergo a head-on, perfectly elastic collision, after which the 100 g 
ball swings out to a maximum angle umax = 50. What was v0  ?

 56. || A 100 g ball moving to the right at 4.0 m/s collides head-on 
with a 200 g ball that is moving to the left at 3.0 m/s.

 a. If the collision is perfectly elastic, what are the speed and 
direction of each ball after the collision?

 b. If the collision is perfectly inelastic, what are the speed and 
direction of the combined balls after the collision?

 57. || A 100 g ball moving to the right at 4.0 m/s catches up and 
collides with a 400 g ball that is moving to the right at 1.0 m/s. If 
the collision is perfectly elastic, what are the speed and direction 
of each ball after the collision?

 58. || FigurE P10.58 shows the potential energy of a 500 g particle 
as it moves along the x-axis. Suppose the particle’s mechanical 
energy is 12 J.

 a. Where are the particle’s turning points?
 b. What is the particle’s speed when it is at x = 6.0 m?
 c. What is the particle’s maximum speed? At what position or 

positions does this occur?
 d. Write a description of the motion of the particle as it moves 

from the left turning point to the right turning point.
 e. Suppose the particle’s energy is lowered to 4.0 J. Describe 

the possible motions.
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 59. || A particle has potential energy

 U(x) = x + sin((2 rad/m)x)

   over the range 0 m … x … p m.
 a. Where are the equilibrium positions in this range?
 b. For each, is it a point of stable or unstable equilibrium?
 60. ||| Protons and neutrons (together called nucleons) are held to-

gether in the nucleus of an atom by a force called the strong 
force. At very small separations, the strong force between two 
nucleons is larger than the repulsive electrical force between two 
protons—hence its name. But the strong force quickly weakens 
as the distance between the protons increases. A well-established 
model for the potential energy of two nucleons interacting via 
the strong force is

 U = U0[1 - e-x/x0]

  where x is the distance between the centers of the two nucle-
ons, x0   is a constant having the value x0  = 2.0 * 10-15 m, and 
U0  = 6.0 * 10-11 J.

 a. Calculate and draw an accurate potential-energy curve from 
x = 0 m to x = 10 * 10-15 m. Either use your calculator to 
compute the value at several points or use computer software.

 b. Quantum effects are essential for a proper understanding of 
how nucleons behave. Nonetheless, let us innocently consider 
two neutrons as if they were small, hard, electrically neutral 
spheres of mass 1.67 * 10-27 kg and diameter 1.0* 10-15 m. 
(We will consider neutrons rather than protons so as to avoid 
complications from the electric forces between protons.) You 
are going to hold two neutrons 5.0 * 10-15 m apart, measured 
between their centers, then release them. Draw the total en-
ergy line for this situation on your diagram of part a.

 c. What is the speed of each neutron as they crash together? 
Keep in mind that both neutrons are moving.

 61. ||| A 50 g air-track glider is repelled by a post fixed at one end 
of the track. It is hypothesized that the glider’s potential energy 
is U = c/x, where x is the distance from the post and c is an 
unknown constant. To test this hypothesis, you launch the glider 
with the same speed at various distances from the post and then 
use a motion detector to measure its speed when it is 1.0 m from 
the post. Your data are as follows:

Initial distance (cm) Speed at 1.0 m (m/s)

2.0 1.40

4.0 0.98

6.0 0.79

8.0 0.68

 a. Do the data support the hypothesis? To find out, you’ll need 
to compare the shape of an appropriate graph to a theoretical 
prediction.

 b. Find an experimental value for c. Don’t forget to determine 
the appropriate units.

  Hint: Both the slope and the y-intercept of the graph are 
important.
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 62. Write a realistic problem for which the energy bar chart shown 
in FigurE P10.62 correctly shows the energy at the beginning and 
end of the problem.

In Problems 63 through 66 you are given the equation used to solve a 
problem. For each of these, you are to
 a. Write a realistic problem for which this is the correct equation.
 b. Draw the before-and-after pictorial representation.
 c. Finish the solution of the problem.

 63. 
1

2
 (1500 kg)(5.0 m/s)2 + (1500 kg)(9.80 m/s2)(10 m)

  =
1

2
 (1500 kg)(vi)

2 + (1500 kg)(9.80 m/s2)(0 m)

 64. 
1

2
 (0.20 kg)(2.0 m/s)2 +

1

2
 k(0 m)2

  =
1

2
 (0.20 kg)(0 m/s)2 +

1

2
 k(-0.15 m)2

 65. (0.10 kg + 0.20 kg)v1x = (0.10 kg)(3.0 m/s)

  
1

2
 (0.30 kg)(0 m/s)2 +

1

2
 (3.0 N/m)(x2)

2

  =
1

2
 (0.30 kg)(v1x)

2 +
1

2
 (3.0 N/m)(0 m)2

 66. 
1

2
 (0.50 kg)(vf)

2 + (0.50 kg)(9.80 m/s2)(0 m)

  +
1

2
 (400 N/m)(0 m)2 =

1

2
 (0.50 kg)(0 m/s)2

  + (0.50 kg)(9.80 m/s2)((-0.10 m) sin 30)

  +
1

2
 (400 N/m)(-0.10 m)2

Challenge Problems

 67. A massless pan hangs from a spring that is suspended from the 
ceiling. When empty, the pan is 50 cm below the ceiling. If a 
100 g clay ball is placed gently on the pan, the pan hangs 60 cm 
below the ceiling. Suppose the clay ball is dropped from the 
ceiling onto an empty pan. What is the pan’s distance from the 
ceiling when the spring reaches its maximum length?

 68. A pendulum is formed from a 
small ball of mass m on a string 
of length L. As FigurE CP10.68 
shows, a peg is height h = L /3 
above the pendulum’s lowest 
point. From what minimum 
angle u must the pendulum be 
released in order for the ball to 
go over the top of the peg with-
out the string going slack?

 69. In a physics lab experiment, a compressed spring launches a 20 g 
metal ball at a 30° angle. Compressing the spring 20 cm causes 
the ball to hit the floor 1.5 m below the point at which it leaves 
the spring after traveling 5.0 m horizontally. What is the spring 
constant?

 70. It’s your birthday, and to celebrate you’re going to make your first 
bungee jump. You stand on a bridge 100 m above a raging river 
and attach a 30-m-long bungee cord to your harness. A bungee 
cord, for practical purposes, is just a long spring, and this cord 
has a spring constant of 40 N/m. Assume that your mass is 80 kg. 
After a long hesitation, you dive off the bridge. How far are you 
above the water when the cord reaches its maximum elongation?

 71. A 10 kg box slides 4.0 m down the frictionless ramp shown in 
FigurE CP10.71, then collides with a spring whose spring constant 
is 250 N/m.

 a. What is the maximum compression of the spring?
 b. At what compression of the spring does the box have its max-

imum speed?

 72. Old naval ships fired 10 kg cannon balls from a 200 kg can-
non. It was very important to stop the recoil of the cannon, since 
otherwise the heavy cannon would go careening across the deck 
of the ship. In one design, a large spring with spring constant 
20,000 N/m was placed behind the cannon. The other end of 
the spring braced against a post that was firmly anchored to the 
ship’s frame. What was the speed of the cannon ball if the spring 
compressed 50 cm when the cannon was fired?

 73. A 2.0 kg cart has a spring with k = 5000 N/m attached to its 
front, parallel to the ground. This cart rolls at 4.0 m/s toward a 
stationary 1.0 kg cart.

 a. What is the maximum compression of the spring during the 
collision?

 b. What is the speed of each cart after the collision?
 74. The air-track carts in FigurE CP10.74 are sliding to the right 

at 1.0 m/s. The spring between them has a spring constant of 
120 N/m and is compressed 4.0 cm. The carts slide past a flame 
that burns through the string holding them together. Afterward, 
what are the speed and direction of each cart?

 75. A 100 g steel ball and a 200 g steel ball each hang from 1.0-m-long 
strings. At rest, the balls hang side by side, barely touching. The 
100 g ball is pulled to the left until the angle between its string and 
vertical is 45°. The 200 g ball is pulled to a 45 angle on the right. 
The balls are released so as to collide at the very bottom of their 
swings. To what angle does each ball rebound?FigurE CP10.68 
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	76.	 A	sled	starts	from	rest	at	the	top	of	the	frictionless,	hemispheri-
cal,	snow-covered	hill	shown	in	Figure CP10.76.

	 a.	 Find	an	expression	for	the	sled’s	speed	when	it	is	at	angle	f.
	 b.	 Use	Newton’s	laws	to	find	the	maximum	speed	the	sled	can	

have	at	angle	f	without	leaving	the	surface.
	 c.	 At	what	angle	fmax 	 	does	the	sled	“fly	off”	the	hill?

Figure CP10.76 

Rf

Stop to Think 10.1:	(Ug)c + (Ug)b � (Ug)d + (Ug)a.	Gravitational	
potential	energy	depends	only	on	height,	not	on	speed.

Stop to Think 10.2:	va � vb � vc � vd.	Her	increase	in	kinetic	en-
ergy	depends	only	on	the	vertical	height	through	which	she	falls,	not	
the	shape	of	the	slide.

Stop to Think 10.3:	b.	Mechanical	energy	is	conserved	on	a	friction-
less	surface.	Because	Ki = 0	and	Kf = 0,	it	must	be	true	that	Uf = Ui	
and	thus	yf = yi.	The	final	height	matches	the	initial	height.

Stop to Think 10.4:	ka + kb + kc.	The	spring	constant	is	the	slope	
of	the	force-versus-displacement	graph.

Stop to Think 10.5:	c.	Us	depends	on	(�s)2,	so	doubling	the	compres-
sion	increases	Us	by	a	factor	of	4.	All	the	potential	energy	is	converted	
to	kinetic	energy,	so	K	increases	by	a	factor	of	4.	But	K	depends	on	v 2,	
so	v	increases	by	only	a	factor	of	(4)1/2 = 2.

Stop to Think 10.6:	 x � 6 m.	 From	 the	 graph,	 the	 particle’s	
potential	 energy	 at	 x = 1	m	 is	 U = 3	J.	 Its	 total	 energy	 is	 thus	
E = K + U = 4	J.	A	TE	line	at	4	J	crosses	the	PE	curve	at	x = 6	m.

StoP to think AnSwerS
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The bow may be very 
contemporary, but it’s still  
the bow string doing work on the 
arrow that makes the arrow fly.

Work

Work and Potential 
Energy
You’ll learn that only certain kinds of 
forces, called conservative forces, can 
be associated with a potential energy. 
For these forces, the work W  done by 
the force changes the potential energy 
by �U = W.

Gravity is a conservative 
force. Lifting an object 
increases its gravitational 
potential energy.

Work
When a force pushes or pulls a particle 
through a distance, we say that the force 
does work on the particle. The work W  
changes the particle’s kinetic energy by 
�K = W. One of the most important 
ways to change a system’s energy is to 
do work on the system.

�r

F
r

F
r

Ki
Before:

After:
Kf

r

You’ll learn a simple relationship among 
work, the force, and the displacement.

A 100 W lightbulb 
transforms electrical 
energy into light 
and thermal energy 
at a rate of 100 J/s.

Power
Power is the rate at which energy is 
transferred or transformed. Power is 
measured in watts, where 1 watt is a rate 
of 1 joule per second.

The Energy Equation
The ideas of the basic energy model—
transfer and transformation—are cap-
tured in the energy equation:

�Esys = �K + �U + �Eth = Wext

■	 An isolated system has Wext = 0. The 
total energy Esys is conserved.

■	 An isolated system with no friction 
also has �Eth = 0, so the mechanical 
energy Emech = K + U is conserved.

The Basic Energy Model
We’ll expand our basic energy model 
to include
■	 Work as an energy transfer between 

the system and the environment, and

■	 Energy transformations within the 
system.

Eth

Esys � K � U � Eth

K U

System

Energy
in

Work

Energy
out

Work

Environment

Unanswered Questions
Chapter 10 introduced energy but left 
many questions unanswered:
■	 How does a system gain or lose 

energy?
■	 When is a system’s energy conserved?
■	 What role does friction play?

In Chapter 11 we’ll answer these 
questions and introduce powerful new 
problem-solving tools.

 Looking Back
Chapter 10 Kinetic energy, potential 
energy, and energy diagrams

 Looking Ahead  The goal of Chapter 11 is to develop a more complete understanding of energy and its conservation.



11.1 . The Basic Energy Model Revisited    279

11.1 The Basic Energy Model Revisited
Chapter 10 introduced the basic energy model of FigURE 11.1 but then focused on iso-
lated systems. We found that kinetic and potential energy could be transformed back 
and forth without loss in an isolated, frictionless system, which led to the law of con-
servation of mechanical energy: The mechanical energy Emech = K + U is conserved 
in an isolated, frictionless system.

That was a good start, with many applications, but we need to expand our under-
standing of energy beyond ideal, isolated systems. Consider the following:

	■	 A speeding car skids to a halt.
	■	 A hand places a book on a high shelf.

Neither of these situations conserves mechanical energy. In the first, kinetic energy is 
transformed not into potential energy but into thermal energy Eth, the energy of the 
random, microscopic motions of the atoms inside the tires, the brakes, and the road. 
We’ll use an arrow S  as a shorthand way to indicate an energy transformation, writ-
ing the energy transformation of the skidding car as K S Eth.

Thermal energy is associated with the system’s temperature. Friction raises the 
temperature—think of rubbing your hands together briskly—so a system with friction 
transforms kinetic or potential energy into thermal energy. This is usually a one-way 
process, as we’ll discuss when we get to thermodynamics. That is, you can’t get your car 
moving again by transforming the thermal energy of the hot brakes back into the car’s 
kinetic energy. Thus the transformation arrows in Figure 11.1 point only to, not from, Eth.

Nonetheless, the energy remains inside the system if we define the system to be all 
objects that interact—the car and the road in this case. System energy Esys is defined 
to be the sum of the mechanical energy of the objects plus the thermal energy of the 
atoms inside the objects. That is,

 Esys = Emech + Eth = K + U + Eth (11.1)

Energy transformations within the system do not change the value of Esys, so we can 
say that the total energy of an isolated system is conserved. This generalizes the law 
of conservation of mechanical energy to include thermal energy.

In the second situation above, an external force—the hand—acts on the book to 
increase the book’s gravitational potential energy. The book is not an isolated system 
but, instead, is surrounded by a larger environment with which it can exchange en-
ergy. Such an exchange is called an energy transfer. There are two energy-transfer 
processes. The first is due to forces—pushes and pulls—exerted on the system by 
the environment. In this case, the hand gives the book potential energy by lifting it 
upward. This mechanical transfer of energy to or from the system is called work. The 
symbol for work is W.

The second means of transferring energy between a system and its environment 
is a nonmechanical process called heat. Heat is a crucial idea that we will add to the 
energy model when we study thermodynamics, but for now we want to concentrate on 
the mechanical transfer of energy via work.

As the arrows in Figure 11.1 show, energy can both enter and leave the system. 
We’ll distinguish between the two directions of energy flow by allowing the work W 
to be either positive or negative. The sign of W is interpreted as follows:

W + 0   The environment does work on the system and the system’s 
energy increases.

W * 0   The system does work on the environment and the system’s 
energy decreases.

What is the relationship among the quantities of the basic energy model? Our 
hypothesis, which is confirmed by experiment, is that

 �Esys = �K + �U + �Eth = W  (11.2)

FigURE 11.1 The basic energy model of a 
system interacting with its environment.

Eth

K U

System

Environment

Work done
by system
W � 0

Work done
on system
W � 0

Energy in Energy out

Energy is 
transferred
to (and from) 
the system.

Energy is 
transformed
within the 
system.
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The two essential ideas of the basic energy model and Equation 11.2 are:

 1. Energy can be transferred to or from a system by doing work on the system. 
This process changes the energy of the system: �Esys = W.

 2. Energy can be transformed within the system among K, U, and Eth. These pro-
cesses don’t change the energy of the system: �Esys = 0.

This is the essence of the basic energy model. The rest of Chapter 11 will substantiate 
Equation 11.2 and look at its many implications.

Stop to think 11.1 
 A child slides down a playground slide at constant speed. The 

energy transformation is

 a. U S K  b. K S U
 c. There is no transformation because energy is conserved.
 d. U S Eth e. K S Eth

11.2 Work and Kinetic Energy
“Work” is a common word in the English language, with many meanings. When you 
first think of work, you probably think of the first two definitions in this list. After all, 
we talk about “working out,” or we say, “I just got home from work.” But that is not 
what work means in physics.

The basic energy model uses “work” in the sense of definition 7: energy transferred 
to or from a body or system by the application of force. The critical question we must 
answer is: How much energy does a force transfer?

We can answer this question by following the procedure we used in Chapter 10 
to find the potential energy of gravity and of a spring. We’ll begin, in FigURE 11.2, with 
a force F

u

 acting on a particle of mass m as the particle moves along an s-axis from an 
initial position si, with kinetic energy Ki, to a final position sf where the kinetic energy 
is Kf.

The force component Fs parallel to the s-axis causes the particle to speed up or slow 
down, thus transferring energy to or from the particle. We say that force F

u

 does work 
on the particle. Our goal is to find a relationship between Fs and �K. The s-component 
of Newton’s second law is

 Fs = mas = m 
dvs

dt
 (11.3)

where the vs is the s-component of v  

u
. As we did in Chapter 10, we can use the chain 

rule to write

 m 
dvs

dt
= m 

dvs

ds
 
ds

dt
= mvs 

dvs

ds
 (11.4)

where ds/dt = vs. Substituting Equation 11.4 into Equation 11.3 gives

 Fs = mvs 
dvs

ds
 (11.5)

The crucial step here, as it was in Chapter 10, was changing from a derivative with 
respect to time to a derivative with respect to position. We’re going to want to inte-
grate, so we first multiply through by ds to get

 mvs   dvs = Fs   ds (11.6)

Now we can integrate both sides from “before,” where the position is si and the speed 
is vi, to “after,” giving

 3
vf

vi

mvs dvs =
1

2
 mvs 

2 `
vf

vi

=
1

2
 mvf 

2 -
1

2
 mvi 

2 = 3
sf

si

Fs ds (11.7)

One dictionary defines “work” as:

 1. Physical or mental effort; labor.
	2. The activity by which one makes a 

living.
	3. A task or duty.
	4. Something produced as a result of 

effort, such as a work of art.
	5. Plural works: A factory or plant where 

industry is carried on, such as steel 
works.

 6. Plural works: The essential or 
operating parts of a mechanism.

 7. The transfer of energy to a body by 
application of a force.

FigURE 11.2 Force F
u

 does work as the 
particle moves from si to sf.

r
F

r
F

r
F r

F

The force may vary in magnitude 
and/or direction.

si

Fs

sf

s-axis

After:
Kinetic
energy
Kf

Before:
Kinetic
energy
Ki

Fs is the component of F parallel to 
the motion.  This component 
changes the particle’s speed and 
thus its kinetic energy.

r
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The left side of Equation 11.7 is �K, the change in the particle’s kinetic energy 
as it moves from si to sf. The integral on the right apparently specifies the extent to 
which the applied force changes the particle’s kinetic energy. We define the work done 
by force F

u

 as the particle moves from si to sf as

 W = 3
sf

si

Fs ds (11.8)

The unit of work, that of force multiplied by distance, is the N m. Using the definition 
of the newton gives

 1 N m = 1 (kg m/s2) m = 1 kg m2/s2 = 1 J

Thus the unit of work is really the unit of energy. This is consistent with the idea that 
work is a transfer of energy. Rather than use N m, we will measure work in joules.

Using Equation 11.8 as the definition of work, we can write Equation 11.7 as

 �K = W  (11.9)

Equation 11.9 tells us that a force transfers kinetic energy to a particle by pushing or 
pulling on it. Furthermore, Equation 11.8 gives us a specific method to calculate 
how much energy is transferred by the push or pull. This energy transfer, by me-
chanical means, is what we mean by the term “work.”

Notice that no work is done if there is no displacement (sf = si) because an integral 
that spans no interval is zero. A force does work on a particle only if the particle is 
displaced. If you were to hold a 200 lb weight over your head, you might break out in 
a sweat and your arms would tire. You might “feel” that you had done a lot of work, 
but you would have done zero work in the physics sense because the weight was not 
displaced while you were holding it and thus you transferred no energy to it.

The Work-Kinetic Energy Theorem
Equation 11.8 is the work done by one force. Because F

u

net = gF
u

i, it’s easy to see that 
the net work done on a particle by several forces is Wnet = gWi, where Wi is the work 
done by force F

u

i. In that case, Equation 11.9 becomes

 �K = Wnet (11.10)

This basic idea—that the net work done on a particle causes the particle’s kinetic en-
ergy to change—is a general principle, one worth giving a name:

The work-kinetic energy theorem When one or more forces act on a particle 
as it is displaced from an initial position to a final position, the net work done 
on the particle by these forces causes the particle’s kinetic energy to change by 
�K = Wnet.

An Analogy with the impulse-Momentum Theorem
You might have noticed that there is a similarity between the work-kinetic energy 
theorem and the impulse-momentum theorem of Chapter 9:

 Work@kinetic energy theorem:  �K = W = 3
sf

si

Fs ds

 Impulse@momentum theorem:       �ps = Js = 3
tf

ti

Fs dt 

(11.11)

In both cases, a force acting on a particle changes the state of the system. If the force 
acts over a time interval from ti to tf, it creates an impulse that changes the particle’s 
momentum. If the force acts over the spatial interval from si to sf, it does work that 

This pitcher is increasing the ball’s kinetic 
energy by doing work on it.
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changes the particle’s kinetic energy. FigURE 11.3 shows that the geometric interpreta-
tion of impulse as the area under the F-versus-t graph applies equally well to an inter-
pretation of work as the area under the F-versus-s graph.

This does not mean that a force either creates an impulse or does work but does 
not do both. Quite the contrary. A force acting on a particle both creates an impulse 
and does work, changing both the momentum and the kinetic energy of the particle. 
Whether you use the work-kinetic energy theorem or the impulse-momentum theorem 
depends on the question you are trying to answer.

We can, in fact, express the kinetic energy in terms of the momentum as

 K =
1

2
 mv 2 =

(mv)2

2m
=

p2

2m
 (11.12)

You cannot change a particle’s kinetic energy without also changing its momentum.

Stop to think 11.2 
 A particle moving along the x-axis 

experiences the force shown in the graph. If the particle 
has 2.0 J of kinetic energy as it passes x = 0 m, what is 
its kinetic energy when it reaches x = 4 m?

11.3 Calculating and Using Work
In this section we’ll practice calculating work and using the work-kinetic energy theo-
rem. We’ll also introduce a new mathematical idea, the dot product of two vectors, 
that will allow us to write the work in a compact notation.

Constant Force
We’ll begin by calculating the work done by a force F

u

 that acts with a constant 
strength and in a constant direction as a particle moves along a straight line through a 
displacement �r 

u
. FigURE 11.4 shows the force acting on the particle as it moves along 

the s-axis. The force vector F
u

 makes an angle u with respect to the displacement �r 
u

, 
so the component of the force vector along the direction of motion is Fs = F cos u. 
According to Equation 11.8, the work done on the particle by this force is

 W = 3
sf

si

Fs ds = 3
sf

si

F cos u ds

Both F and u are constant, so they can be taken outside the integral. Thus

 W = F cos u3
sf

si

ds = F cos u(sf - si) = F(�r) cos u (11.13)

where we used sf - si = �r, the magnitude of the particle’s displacement. We can use 
Equation 11.13 to calculate the work done by a constant force if we know the magni-
tude F of the force, the angle u of the force from the line of motion, and the distance 
�r through which the particle is displaced.

NoTE  You may have learned in an earlier physics course that work is “force 
times distance.” This is not the definition of work, merely a special case. Work is 
“force times distance” only if the force is constant and parallel to the displacement 
(i.e., u = 0�). 

x (m)

Fx (N)

10

1

0
2 3 4

2

FigURE 11.4 Work being done by a 
constant force as a particle moves 
through displacement �r 

u
.

�rr

r
F

r
F

r

u

u

Fs

Fs

A constant force acts on
the particle as it moves.

s

si

sf

Fs is the component of F in the 
direction of motion. It causes the 
particle to speed up or slow down.

FigURE 11.3 Impulse and work are 
both the area under a force graph, but 
it’s very important to know what the 
horizontal axis is.

s (m)

F (N) Work W is the area under a
force-versus-position graph.

t (s)

F (N) Impulse Js is the area under a
force-versus-time graph.
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According to the basic energy model, work can be either positive or negative to 
indicate energy transfer into or out of the system. The quantities F and �r are always 
positive, so the sign of W is determined entirely by the angle u between the force 
F
u

 and the displacement �r 
u.

ASSESS Because a person pulls the rope, we would say informally 
that the person does 1400 J of work on the suitcase.

ExAMPLE 11.1  Pulling a suitcase
A rope inclined upward at a 45� angle pulls a suitcase through the 
airport. The tension in the rope is 20 N. How much work does the 
tension do if the suitcase is pulled 100 m?

ModEL Model the suitcase as a particle.

ViSUALizE FigURE 11.5 shows a pictorial representation.

SoLVE The motion is along the x-axis, so in this case �r = �x. 
We can use Equation 11.13 to find that the tension does work:

 W = T(�x)cos u = (20 N)(100 m)cos 45� = 1400 J

FigURE 11.5 Pictorial representation of a 
suitcase pulled by a rope.
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r
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x
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 Calculating the work done by a constant force

Force and displacement u Work W Sign Energy transfer

0� F(�r) +

Energy is transferred into the system. 

The particle speeds up. K increases.

690� F(�r)cos u +

90� 0 0
No energy is transferred.

Speed and K are constant.

790� F(�r)cos u -

Energy is transferred out of the system.

The particle slows down. K decreases.

180� -F(�r) -

Exercises 3–10 
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r
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r
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�rr

vi
r vf

r

r
F

r
F u

�rr

vi
r vf

r

r
F

r
F u

�rr

vi
r vf

r

r
F

r
F

u

NoTE  The sign of W  depends on the angle between the force vector and the 
displacement vector, not on the coordinate axes. A force to the left does positive 
work if it pushes a particle to the left (the force and the displacement are in the 
same direction, so this is a u = 0� situation) even though the force component Fx 
is negative. Think about whether the force is trying to increase the particle’s speed 
(W 7 0) or decrease the particle’s speed (W 6 0). 
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Force Perpendicular to the direction of Motion
FigURE 11.7 shows a particle moving in uniform circular motion. As you learned in 
Chapter 8, uniform circular motion requires a force pointing toward the center of the 
circle. How much work does this force do?

Zero! You can see that the force is everywhere perpendicular to the small dis-
placement ds

u
. Thus F

 s, the component of the force parallel to the displacement, is 
everywhere zero. The force does no work on the particle. This shouldn’t be surprising. 
The particle’s speed, and hence its kinetic energy, doesn’t change in uniform circular 
motion, so the work-kinetic energy theorem says W = �K = 0.

A force everywhere perpendicular to the motion does no work. The friction 
force on a car turning a corner does no work. Neither does the tension force when a 
mass on a string is in circular motion.

Stop to think 11.3 
 A crane lowers a steel girder into place. The girder moves with 

constant speed. Consider the work WG done by gravity and the work WT done by the 
tension in the cable. Which of the following is correct?

 a. WG is positive and WT is positive. b. WG is positive and WT is negative.
 c. WG is negative and WT is positive. d. WG is negative and WT is negative.
 e. WG and WT are both zero.

The dot Product of Two Vectors
There’s something different about the quantity F(�r)cos u in Equation 11.13. We’ve 
spent many chapters adding vectors, but this is the first time we’ve multiplied two vec-
tors. Multiplying vectors is not like multiplying scalars. In fact, there is more than one 
way to multiply vectors. We will introduce one way now, the dot product.

SoLVE We can solve this problem with the work-kinetic energy 
theorem �K = Wnet. Both forces do work on the rocket. The thrust 
is in the direction of motion, with u = 0�, and thus

Wthrust = Fthrust  (�r) = (4.0 * 106 N)(500 m) = 2.00 * 109 J

The gravitational force points downward, opposite the displace-
ment �r 

u
, so u = 180�. Thus the work done by gravity is

  Wgrav = -FG(�r) = -mg(�r)

  = - (1.5 * 105 kg)(9.8 m/s2)(500 m) = -0.74 * 109 J

The work done by the thrust is positive. By itself, the thrust would 
cause the rocket to speed up. The work done by gravity is nega-
tive, not because F

u

G points down but because F
u

G is opposite the 
displacement. By itself, gravity would cause the rocket to slow 
down. The work-kinetic energy theorem, using v0 = 0 m/s, is

 �K =
1

2
 mv1 

2 - 0 = Wnet = Wthrust + Wgrav = 1.26 * 109 J

This is easily solved for the speed:

 v1 = B 2Wnet

m
= 130 m/s

ASSESS The net work is positive, meaning that energy is trans-
ferred to the rocket. In response, the rocket speeds up.

ExAMPLE 11.2  Work during a rocket launch
A 150,000 kg rocket is launched straight up. The rocket motor 
generates a thrust of 4.0 * 106 N. What is the rocket’s speed at 
a height of 500 m? Ignore air resistance and any slight mass loss.

ModEL Model the rocket as a particle. Thrust and gravity are con-
stant forces that do work on the rocket.

ViSUALizE FigURE 11.6 shows a pictorial representation and a free-
body diagram.

FigURE 11.6 Pictorial representation and 
free-body diagram of a rocket launch.
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FigURE 11.7 A perpendicular force does 
no work.
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FigURE 11.8 shows two vectors, A
u

 and B
u

, with angle a between them. We define the 
dot product of A

u

 and B
u

 as

 A
u # B

u

= AB cos a (11.14)

A dot product must have the dot symbol # between the vectors. The notation A
u

B
u

, with-
out the dot, is not the same thing as A

u # B
u

. The dot product is also called the scalar 
product because the value is a scalar. Later, when we need it, we’ll introduce a differ-
ent way to multiply vectors called the cross product.

The dot product of two vectors depends on the orientation of the vectors. FigURE 11.9 
shows five different situations, including the three “special cases” where a = 0�, 90�, 
and 180�.

NoTE  The dot product of a vector with itself is well defined. If B
u

= A
u

 (i.e., B
u

 is a 
copy of A

u

), then a = 0�. Thus A
u # A

u

= A2. 

FigURE 11.8 Vectors A
u

 and B
u

, with angle 
a between them.
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FigURE 11.9 The dot product A
u # B

u

 as a ranges from 0� to 180�.
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ExAMPLE 11.3  Calculating a dot product
Compute the dot product of the two vectors in FigURE 11.10

SoLVE The angle between the vectors is a = 30�, so

 A
u # B

u

= AB cos a = (3)(4)cos 30� = 10.4

FigURE 11.10 Vectors A
u

 and B
u

 of Example 11.3.

r
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r
B

30�

3

4

Like vector addition and subtraction, calculating the dot product of two vectors is 
often performed most easily using vector components. FigURE 11.11 reminds you of the 
unit vectors in and jn that point in the positive x-direction and positive y-direction. The 
two unit vectors are perpendicular to each other, so their dot product is in # jn = 0. Fur-
thermore, because the magnitudes of in and jn are 1, in # in = 1 and jn # jn = 1.

In terms of components, we can write the dot product of vectors A
u

 and B
u

 as

 A
u # B

u

= (Ax  in + Ay  jn) # (Bx  in + By  jn)

Multiplying this out, and using the results for the dot products of the unit vectors:

  A
u # B

u

= Ax  Bx  in # in + (Ax   By + Ay   Bx) in # jn + Ay   By  jn # jn
  = Ax   Bx + Ay   By  

(11.15)

That is, the dot product is the sum of the products of the components.

FigURE 11.11 The unit vectors in and jn.
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ExAMPLE 11.4   Calculating a dot product using components FigURE 11.12 Vectors A
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Compute the dot product of A
u

= 3 in + 3jn and B
u

= 4 in - jn.

SoLVE FigURE 11.12 shows vectors A
u

 and B
u

. We could calculate 
the dot product by first doing the geometry needed to find the 
angle between the vectors and then using Equation 11.14. But 
calculating the dot product from the vector components is much 
easier. It is

 A
u # B

u

= Ax   Bx + Ay    By = (3) (4) + (3) (-1) = 9
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Looking at Equation 11.13, the work done by a constant force, you should recog-
nize that it is the dot product of the force vector and the displacement vector:

 W = F
u # �r 

u
 (work done by a constant force) (11.16)

This definition of work is valid for a constant force.

NoTE  While in the midst of the mathematics of calculating work, do not lose sight 
of what the work-kinetic energy theorem is all about. It is a statement about energy 
transfer: Work causes a particle’s kinetic energy to either increase or decrease. 

Stop to think 11.4 
 Which force does the most work as a particle undergoes displace-

ment �r 
u

?

 a. The 10 N force.
 b. The 8 N force.
 c. The 6 N force.
 d. They all do the same amount of work.

11.4 The Work done by a Variable Force
We’ve learned how to calculate the work done on an object by a constant force, but 
what about a force that changes in either magnitude or direction as the object moves? 
Equation 11.8, the definition of work, is all we need:

 W = 3
sf

si

Fs ds = area under the force@versus@position graph (11.17)

The integral sums up the small amounts of work Fs ds done in each step along the 
trajectory. The only new feature, because Fs now varies with position, is that we can-
not take Fs outside the integral. We must evaluate the integral either geometrically, by 
finding the area under the curve, or by actually doing the integration.

�rr �rr �rr

60�

10 N

6 N
8 N

SoLVE The only forces on the skier are F
u

G and n
u
. The normal 

force is perpendicular to the motion and thus does no work. The 
work done by gravity is easily calculated as a dot product:

  W = F
u

G
# �r 

u
= mg(�r)cos a

  = (70 kg) (9.8 m/s2) (50 m) cos 80� = 5960 J

Notice that the angle between the vectors is 80�, not 10�. Then, 
from the work-kinetic energy theorem, we find

  �K =
1

2
 mv1 

2 -
1

2
 mv0 

2 = W

  v1 = Bv0 

2 +
2W

m
= B (2.0 m/s)2 +

2(5960 J)

70 kg
= 13 m/s

FigURE 11.13 Pictorial representation of the skier.
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x
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x1 � 50 m
v1FG

r

nr

a � 80�

ExAMPLE 11.5  Calculating work using the dot product
A 70 kg skier is gliding at 2.0 m/s when he starts down a very 
slippery 50-m-long, 10� slope. What is his speed at the bottom?

ModEL Model the skier as a particle and interpret “very slippery” 
to mean frictionless. Use the work-kinetic energy theorem to find 
his final speed.

ViSUALizE FigURE 11.13 shows a pictorial representation.
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constant-acceleration kinematics. Instead, we can use the work-
kinetic energy theorem. Because vi = 0 m/s, we have

 �K =
1

2
 mvf 

2 - 0 = Wnet

Starting from xi = 0 m, the work is

  Wnet = 3
xf

0 m

(Fnet)x dx

  = area under the (Fnet)x@versus@x graph from 0 m to xf

The area under the curve of Figure 11.14 is that of a triangle of 
width 200 m. Thus

 Wnet = area =
1

2
 (5000 N)(200 m) = 500,000 J

The work-kinetic energy theorem then gives

 vf = B 2Wnet

m
= B 2(500,000 J)

1500 kg
= 26 m/s

ASSESS 26 m/s � 55 mph is a reasonable speed after accelerating 
for 200 m, so we can have confidence in our answer.

ExAMPLE 11.6  Using work to find the speed of a car
A 1500 kg car accelerates from rest. FigURE 11.14 shows the net 
force on the car (propulsion force minus any drag forces) as it 
travels from x = 0 m to x = 200 m. What is the car’s speed after 
traveling 200 m?

FigURE 11.14 Force-versus-position 
graph for a car.

x (m)

(Fnet)x (N)

0
0

100 200

2500

5000

SoLVE The acceleration ax = (Fnet)x>m is high as the car starts 
but decreases as the car picks up speed because of increasing 
drag. Figure 11.14 is a realistic portrayal of the net force on a 
car. But a variable force means that we cannot use the familiar 

SoLVE The normal force and gravity are perpendicular to the mo-
tion and do no work. We can use the work-kinetic energy theorem, 
with v0 = 0 m/s, to find the launch speed:

 �K =
1

2
 mv1 

2 - 0 = Wsp

The spring force is a variable force: (Fsp)x = -k�x = -kx, 
where �x = x - xe = x because we chose a coordinate system 
with xe = 0 m. Despite the minus sign, (Fsp)x is a positive quantity 
(force pointing to the right) because x is negative throughout the 
motion. The spring force points in the direction of motion, so Wsp 
is positive. We can use Equation 11.17 to evaluate Wsp:

  Wsp = 3
x1

x0

(Fsp)x dx = -k3
x1

x0

x dx = -  
1

2
 kx2 `

x1

x0

  = - 11

2
 kx1 

2 -
1

2
 kx0 

22
Evaluating Wsp for x0 = -0.20 m and x1 = 0 m gives

 Wsp =
1

2
 (20 N/m)(-0.20 m)2 = 0.400 J

We can now solve for the launch speed, finding

 v1 = B2Wsp 

m
= B 2(0.400 J)

0.100 kg
= 2.8 m/s

ASSESS You might have noticed that the work done by the spring 
looks a lot like the spring’s potential energy Usp =

1
2 k(�x)2. The next 

section will find a connection between work and potential energy.

ExAMPLE 11.7   Using the work-kinetic energy theorem for a spring

FigURE 11.15 Pictorial representation and 
free-body diagram for Example 11.7.
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r
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r

nr

�rr
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x

�r � 20 cm

m � 0.10 kg

Before: x0 � �0.20 m
v0 � 0 m/s

After: x1 � 0 m Find: v1

v1

Equilibrium 
position of spring

0

The “pincube machine” was an ill-fated predecessor of the pin-
ball machine. A 100 g cube is launched by pulling a spring back 
20 cm and releasing it. What is the cube’s launch speed, as it 
leaves the spring, if the spring constant is 20 N/m and the surface 
is frictionless?

ModEL Model the spring as an ideal spring obeying Hooke’s law. 
Use the work-kinetic energy theorem to find the launch speed.

ViSUALizE FigURE 11.15 shows a before-and-after pictorial repre-
sentation and a free-body diagram. We’ve placed the origin of the 
x-axis at the equilibrium position of the spring.
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11.5 Work and Potential Energy
It’s time to look more closely at the concept of potential energy. In Chapter 10, the 
new concept of gravitational potential energy was associated with the gravitational 
force. Then, after introducing Hooke’s law, we used the spring force to “discover” 
elastic potential energy. In both cases, a force was associated with a potential energy, 
and we found that it is often easier to solve problems with energy laws rather than 
force laws.

But that raises the question: Is there a potential energy associated with every force? 
Is there a “tension potential energy” and a “friction potential energy”? If not, what’s 
special about the gravitational force and the spring force? What conditions must a 
force meet in order to have an associated potential energy?

Conservative and Nonconservative Forces
FigURE 11.16 shows a particle that can move from point A to point B along two possible 
paths while a force F

u

 is exerted on it. The force may vary from point to point in space, 
so the force experienced along path 1 may not be the same as the force experienced 
along path 2. The force changes the particle’s speed, as well as its direction, so the 
particle’s speed and kinetic energy when it arrives at B will differ from the speed and 
kinetic energy it had when it left A.

Let’s assume that there is a potential energy associated with force F
u

, just as the 
gravitational potential energy Ug = mgy is associated with the gravitational force 
F
u

G
= -mgjn. What restrictions does this assumption place on F

u

? There are three steps 
in the logic:

 1. Potential energy is an energy of position. The system has one value of potential 
energy when the particle is at A, a different value when the particle is at B. Thus 
the overall change in potential energy �U = UB - UA is the same whether the 
particle moves along path 1 or path 2.

 2. Potential energy is transformed into kinetic energy, with �K = - �U. If �U 
is independent of the path, then �K  is also independent of the path. The trans-
formation of energy causes the particle to have the same kinetic energy at B no 
matter which path it follows.

 3. The change in a particle’s kinetic energy is related to the work done on the particle 
by force F

u

. According to the work-kinetic energy theorem, �K = W. Because 
�K  is independent of the path, it must be the case that the work done by force 
F
u

 as the particle moves from A to B is independent of the path followed.

A force for which the work done on a particle as it moves from an initial to a 
final position is independent of the path followed is called a conservative force. (The 
name, as you’ll soon see, is related to the conditions under which mechanical energy 
is conserved.) The importance of conservative forces is that a potential energy can be 
associated with any conservative force.

To establish a general connection between work and potential energy, suppose an 
object moves from initial position i to final position f under the influence of a con-
servative force F

u

. We’ll denote the work done by the force as Wc (i S f ), where the 
notation i S f means “as the object moves from position i to position f.” Because 
�K = W  and �K = - �U, the potential energy difference between these two points 
must be

 �U = Uf - Ui = -Wc (i S f ) (11.18)

Equation 11.18 is a general definition of the potential energy associated with a con-
servative force.

NoTE  Equation 11.18 defines only the change in potential energy �U. We can 
add a constant to both Uf and Ui without changing �U. This was the basis for our 
discussion in Chapter 10 about the zero of potential energy. 

FigURE 11.16 A particle can move from 
A to B along either path 1 or path 2.
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r
F

Path 1

B

A

Path 2

Potential energy UB

Potential energy UA

The particle can move
along either path from
A to B.

The force does work on the particle
as it moves from A to B, changing
the particle’s kinetic energy.
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For example, Chapter 10 showed that the kinetic energy gained by an object slid-
ing down a frictionless slope depends only on the vertical distance change �y and is 
independent of the shape of the slope. It follows, because W = �K, that the work done 
by gravity does not depend on the path followed from initial height yi to final height yf. 
That is, the gravitational force is a conservative force, and that is why we were able to 
establish a gravitational potential energy. (If you look back, you’ll see that the analysis 
of Chapter 10 that led to Ug = mgy was really a calculation of the work done by the 
gravitational force, although we didn’t call it that at the time.)

What about springs? A homework problem will let you show that Hooke’s law is 
also a conservative force. In Example 11.7 we showed that the work done by a spring is

 Wsp(i S f ) = 3
xf

xi

Fsp dx = - 11

2
 kxf 

2 -
1

2
 kxi 

22
from which it follows that Us =

1
2 kx2. Example 11.7 was a “special case” in that we 

defined the coordinate system to make xe = 0. A more general analysis would give 
Us =

1
2 k(�s)2, as you learned in Chapter 10.

Not all forces are conservative forces. For example, FigURE 11.17 is a bird’s-eye view 
of two particles sliding across a surface. The friction force always points opposite 
the direction of motion, 180� from ds

u
, hence the small amount of work done during 

displacement ds
u
 is dWfric = f 

u

k
# ds

u
= -mkmg ds. Summed over the entire path, the 

work done by friction as a particle travels total distance �s is Wfric = -mkmg�s. We 
see that the work done by friction depends on �s, the distance traveled. More work 
is done on the particle traveling the longer path, so the work done by friction is not 
independent of the path followed.

NoTE  This analysis applies only to the motion of a particle, which has no inter-
nal structure and thus no thermal energy. These ideas will be applied to extended 
objects—such as a car skidding to a halt—in Section 11.7 on thermal energy. The 
particle equation Wfric = -mkmg�s should not be used in problem solving. 

A force for which the work is not independent of the path is called a nonconserva-
tive force. It is not possible to define a potential energy for a nonconservative force. 
Friction is a nonconservative force, so we cannot define a potential energy of friction.

This makes sense. If you toss a ball straight up, kinetic energy is transformed into 
gravitational potential energy. The ball has the potential to transform this energy back 
into kinetic energy, and it does so as the ball falls. But you cannot recover the kinetic 
energy lost to friction as a box slides to a halt. There’s no “potential” that can be trans-
formed back into kinetic energy.

Mechanical Energy
Consider a system of objects interacting via both conservative forces and nonconser-
vative forces. The conservative forces do work Wc as the particles move from initial 
positions i to final positions f. The nonconservative forces do work Wnc. The total 
work done by all forces is Wnet = Wc + Wnc. The change in the system’s kinetic energy 
�K, as determined by the work-kinetic energy theorem, is

 �K = Wnet = Wc (i S f ) + Wnc (i S f ) (11.19)

The work done by the conservative forces can now be associated with a poten-
tial energy U. According to Equation 11.18, Wc (i S f ) = - �U. With this definition, 
Equation 11.19 becomes

 �K + �U = �Emech = Wnc (11.20)

where, as in Chapter 10, the mechanical energy is Emech = K + U.
Now we can see that mechanical energy is conserved if there are no nonconser-

vative forces. That is,

 �Emech = 0 if Wnc = 0 (11.21)

FigURE 11.17 Top view of two particles 
sliding across a surface.
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This important conclusion is what we called the law of conservation of mechanical 
energy in Chapter 10. There we saw that friction prevents Emech from being conserved, 
but we really didn’t know why. Equation 11.20 tells us that the work done by any 
nonconservative force causes the mechanical energy to change. Friction and other 
“dissipative forces” lead to a loss of mechanical energy. Other outside forces, such as 
the pull of a rope, might increase the mechanical energy.

Equally important, Equation 11.20 tells us what to do if the mechanical energy isn’t 
conserved. You can still use energy concepts to analyze the motion if you compute the 
work done by the nonconservative forces.

The gravitational potential energy is Ug = mgy. Because the 
wind force is opposite the skier’s motion, with u = 180�, it does 
work Wwind =  F

u

wind
# �r

u
= -Fwind �r. Thus the energy equation 

becomes

 
1

2
 mv1 

2 -
1

2
 mv0 

2 +  mgy1 - mgy0 = -Fwind �r

Using the values given, we find

 v1 = 2v0 

2 + 2gy0 - 2Fwind �r/m = 10 m/s

ASSESS What appeared to be a difficult problem, with both gravity 
and a retarding force, turned out to be straightforward when ana-
lyzed with energy and work. The skier’s final speed is about 25% 
slower when the wind is blowing.

ExAMPLE 11.8  Using work and potential energy
The skier from Example 11.5 repeats his run after the wind comes 
up. Recall that the 70 kg skier was gliding at 2.0 m/s when he start-
ed down a 50-m-long, 10�, frictionless slope. What is his speed 
at the bottom if the wind exerts a steady 50 N retarding force op-
posite his motion?

ModEL This time let the system be the skier and the earth.

ViSUALizE Figure 11.13 showed the pictorial representation and 
free-body diagram.

SoLVE In solving this problem with the work-kinetic energy theo-
rem, we had to explicitly calculate the work done by gravity. Now 
let’s use Equation 11.20. Gravity is a conservative force that we 
can associate with the gravitational potential energy Ug. The re-
tarding force of the wind is nonconservative. Thus

 �K + �Ug = Wnc = Wwind

Example 11.8 illustrates an important idea. When we associate a potential energy 
with a conservative force, we

	■	 Enlarge the system to include all objects that interact via conservative forces.
	■	 “Precompute” the work. We can do this because we don’t need to know what paths 

the objects are going to follow. This precomputed work becomes a potential energy 
and moves from the right side of �K = W  to the left side of Equation 11.20.

NoTE  When you use a potential energy, you’ve already taken the work of that 
force into account. Don’t compute the work explicitly, or you’ll double count it! 

In Example 11.5, the system consisted of just the skier. We treated the gravitational 
force as a force from the environment doing work on the system. In Example 11.8, 
where we revisited the same problem, we brought the earth into the system and repre-
sented the conservative earth-skier interaction with a potential energy.

In summary, to analyze a problem using work and energy, you can either

 1. Use the work-kinetic energy theorem �K = W  and explicitly compute the work 
done by every force. This was the method of Example 11.5. Or

 2. Represent the work done by conservative forces as potential energies, then use 
�K + �U = Wnc. The only work that must be computed is the work of any non-
conservative forces. This was the method of Example 11.8.

In practice, method 2 is always easier and is the preferred method.

11.6 Finding Force from Potential Energy
We now know how to find the potential energy due to a conservative force. Can we 
reverse the procedure and find the force from the potential energy?



11.6 . Finding Force from Potential Energy    291

FigURE 11.18a shows an object moving through a small displacement �s while being 
acted on by a conservative force F

u

. If �s is sufficiently small, the force component Fs 
in the direction of motion is essentially constant during the displacement. The work 
done on the object as it moves from s to s + �s is

 W(s S s + �s) = Fs   �s (11.22)

Because F
u

 is a conservative force, the object’s potential energy as it moves through 
�s changes by

 �U = -W(s S s + �s) = -Fs   �s

which we can rewrite as

 Fs = -  
�U

�s
 (11.23)

In the limit �s S 0, we find that the force at position s is

 Fs = lim
�sS0

 1-
�U

�s 2 = -
dU

ds
 (11.24)

We see that the force on the object is the negative of the derivative of the potential 
energy with respect to position. FigURE 11.18b shows that we can interpret this result 
graphically by saying

 Fs = the negative of the slope of the U@versus@s graph at s (11.25)

In practice, of course, we will usually use either Fx = -dU/dx or Fy = -dU/dy.
As an example, consider the gravitational potential energy Ug = mgy. FigURE 11.19a 

shows the potential-energy diagram Ug versus y. It is simply a straight-line graph 
passing through the origin. The force on the object at position y, according to Equa- 
tions 11.24 and 11.25, is simply

 (FG)y = -  
dUg

dy
= -(slope of Ug) = -mg

The negative sign, as always, indicates that the force points in the negative y-direction. 
FigURE 11.19b shows the corresponding F-versus-y graph. At each point, the value of 
F is equal to the negative of the slope of the U-versus-y graph. This is similar to posi-
tion and velocity graphs, where the value of vx at any time t is equal to the slope of the 
x-versus-t graph.

We already knew that (FG)y = -mg, of course, so the point of this particular ex-
ample was to illustrate the meaning of Equation 11.25 rather than to find out anything 
new. Had we not known the gravitational force, we see that it is possible to find it from 
the potential energy.

FigURE 11.20a is a more interesting example. The slope of the potential-energy graph 
is negative between x1 and x2. This means that the force on the object, which is the 
negative of the slope of U, is positive. An object between x1 and x2 experiences a force 
toward the right. The force decreases as the magnitude of the slope decreases until, 
at x2, Fx = 0. This is consistent with our prior identification of x2 as a point of stable 
equilibrium. The slope is positive (force negative and thus to the left) between x2 and 
x3, zero (zero force) at the unstable equilibrium point x3, and so on. Point x4, where the 
slope is most negative, is the point of maximum force.

FigURE 11.20b is a plausible graph of F versus x. We don’t know the exact shape 
because we don’t have an exact expression for U, but the force graph must look very 
much like this.

FigURE 11.18 Relating force and 
potential energy.
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Stop to think 11.5 
  A particle moves along the x-axis 

with the potential energy shown. The x-component of the 
force on the particle when it is at x = 4 m is

 a. 4 N. b. 2 N.
 c. 1 N. d.  -4 N.
 e. -2 N. f. -1 N.

11.7 Thermal Energy
All of the objects we handle and use every day consist of vast numbers of particle-like 
atoms. We will use the terms macrophysics to refer to the motion and dynamics of 
the object as a whole and microphysics to refer to the motion of atoms. You recognize 
the prefix micro, meaning “small.” You may not be familiar with macro, which means 
“large” or “large-scale.”

Kinetic and Potential Energy at the Microscopic Level
Figure 11.21 shows two different perspectives of an object. In the macrophysics per-
spective of FigURE 11.21a you see an object of mass M moving as a whole with veloc-
ity vobj. As a consequence of its motion, the object has macroscopic kinetic energy 
Kmacro =

1
2 Mvobj 

2.
FigURE 11.21b is a microphysics view of the same object, where now we see a system 

of particles. Each of these atoms is moving about, and in doing so they stretch and 
compress the spring-like bonds between them. Consequently, there is a microscopic 
kinetic and potential energy associated with the motion of atoms and bonds.

The kinetic energy of one atom is exceedingly small, but there are enormous num-
bers of atoms in a macroscopic object. The total kinetic energy of all the atoms is 
what we call the microscopic kinetic energy Kmicro. The total potential energy of all the 
bonds is the microscopic potential energy Umicro. These microscopic energies are quite 
distinct from the energies Kmacro and Umacro   of the object as a whole.

Is the microscopic energy worth worrying about? To see, consider a 500 g (�1 lb) 
iron ball moving at the respectable speed of 20 m/s (�45 mph). Its macroscopic ki-
netic energy is

 Kmacro =
1

2
 Mvobj 

2 = 100 J

A periodic table of the elements shows that iron has atomic mass 56. Recall from 
chemistry that 56 g of iron is 1 gram-molecular weight and has Avogadro’s number 
(NA = 6.02 * 1023) of atoms. Thus 500 g of iron is �9 gram-molecular weights and 
contains N � 9NA � 5.4 * 1024 iron atoms. The mass of each atom is

 m =
M

N
�

0.50 kg

5.4 * 1024 � 9 * 10-26 kg

How fast do atoms move? In Part IV you’ll learn that v � 500 m/s is a reasonable 
estimate. The kinetic energy of one iron atom at this speed is

 Katom =
1

2
 mv 2 � 1.1 * 10-20 J

This is very tiny, but there are a great many atoms. If all atoms move at roughly this 
speed, the microscopic kinetic energy is

 Kmicro � NKatom � 60,000 J
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FigURE 11.21 Two perspectives of 
motion and energy.
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(a)  The macroscopic motion of
the system as a whole
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Atoms in motion;
each has kinetic energy.

Molecular bonds stretch
and compress; each has
potential energy.

(b)  The microscopic motion of
the atoms inside
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We’ll later see that, on average, Umicro for a solid is equal to Kmicro, so the total micro-
scopic energy is �120,000 J. The microscopic energy is much larger than the macro-
scopic kinetic energy of the object as a whole!

The combined microscopic kinetic and potential energy of the atoms is called the 
thermal energy of the system:

 Eth = Kmicro + Umicro (11.26)

This energy is usually hidden from view in our macrophysics perspective, but it is quite 
real. We will discover later, when we reach thermodynamics, that the thermal energy 
is related to the temperature of the system. Raising the temperature causes the atoms 
to move faster and the bonds to stretch more, giving the system more thermal energy.

NoTE  The microscopic energy of atoms is not called “heat.” The word “heat,” 
like the word “work,” has a narrow and precise meaning in physics that is much 
more restricted than its use in everyday language.We will introduce the concept 
of heat later, when we need it. For the time being we want to use the correct term 
“thermal energy” to describe the random, thermal motion of the particles in a sys-
tem. If the temperature of a system goes up (i.e., it gets hotter), it is because the 
system’s thermal energy has increased. 

dissipative Forces
If you shove a book across the table, it gradually slows down and stops. Where did the 
energy go? The common answer “It went into heat” isn’t quite right.

FigURE 11.22, the atomic model of friction from Chapter 6, shows why. As two ob-
jects slide against each other, atomic interactions at the boundary transform the kinetic 
energy Kmacro of the moving object—it’s slowing down—into microscopic kinetic and 
potential energy of vibrating atoms and stretched bonds. The energy transformation 
is K S Eth, and we perceive this as an increased temperature of both objects. Thus 
the correct answer to What happens to the energy? is “It is transformed into thermal 
energy.”

Forces such as friction and drag cause the macroscopic kinetic energy of a system 
to be “dissipated” as thermal energy. Hence these are called dissipative forces. Dis-
sipative forces are always nonconservative forces. The energy analysis of dissipative 
forces is a bit subtle. Because friction causes both objects to get warmer, we must 
define the system to include both objects—both the book and the table, or both the car 
and the road.

FigURE 11.23 shows a box being pulled at constant speed across a horizontal surface 
with friction. As you can imagine, both the surface and the box are getting warmer—
increasing thermal energy. But neither the kinetic nor the potential energy of the box is 
changing, so where is the thermal energy coming from? Recall, from the basic energy 
model, that work is energy transferred to a system by forces from the environment. If 
we define the system to be box + surface, then the increasing thermal energy of the 
system is entirely due to the work being done on the system by tension in the rope: 
�Eth = Wtension.

The work done by tension in pulling the box a distance �s is simply Wtension = T�s; 
thus �Eth  = T�s. Because the box is moving with constant velocity, Newton’s first 
law F

u

net = 0
u

 requires the tension to exactly balance the friction force: T = fk. Conse-
quently, the increase in thermal energy due to the dissipative force of friction is

 �Eth = fk �s (increased thermal energy due to friction) (11.27)

Notice that the increase in thermal energy is directly proportional to the total dis-
tance of sliding. Dissipative forces always increase the thermal energy; they never 
decrease it.

You might wonder why we didn’t simply calculate the work done by friction. 
The rather subtle reason is that work is defined only for forces acting on a particle. 

FigURE 11.22 The atomic-level view 
of friction.
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upper object slides past.
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FigURE 11.23 Work done by tension is 
dissipated as increased thermal energy.

fk

r

m
�s

Constant velocity

m

Work done by tension increases 
the thermal energy of the box 
and the surface.

r
T



294    c h a p t e r  11 . Work

A particle has no internal structure and thus cannot have thermal energy. Thermal en-
ergy appears when we have to deal with extended objects, nonrigid systems of many 
particle-like atoms.

There is work being done on individual atoms at the boundary as they are pulled 
this way and that, but we would need a detailed knowledge of atomic-level friction 
forces to calculate this work. The friction force f

u

k is an average force on the object 
as a whole; it is not a force on any particular particle, so we cannot use it to calculate 
work. Further, increasing thermal energy is not an energy transfer from the book to 
the surface or from the surface to the book. Both book and surface are gaining thermal 
energy at the expense of the macroscopic kinetic energy.

NoTE  The analysis of thermal energy is rather subtle, as we noted above. The 
considerations that led to Equation 11.27 do allow us to calculate the total increase 
in thermal energy of the entire system, but we cannot determine what fraction of 
�Eth goes to the book and what fraction goes to the surface. 

given by Equation 11.27, is

  �Eth = fk �s = mkmg�s

  = (0.20)(10 kg)(9.80 m/s2)(3.0 m) = 59 J

ASSESS The thermal energy of the crate and floor increases by 
59 J. We cannot determine �Eth for the crate (or floor) alone.

ExAMPLE 11.9   Calculating the increase in thermal energy

11.8 Conservation of Energy
Let’s return to the basic energy model and start pulling together the many ideas intro-
duced in this chapter. FigURE 11.24 shows a general system consisting of several mac-
roscopic objects. These objects interact with each other, and they may be acted on 
by external forces from the environment. Both the interaction forces and the external 
forces do work on the objects. The change in the system’s kinetic energy is given by 
the work-kinetic energy theorem, �K = Wnet.

We previously divided Wnet into the work Wc done by conservative forces and the 
work Wnc done by nonconservative forces. The work done by the conservative forces 
can be represented by a potential energy U. Let’s now make a further distinction by 
dividing the nonconservative forces into dissipative forces and external forces. That is,

 Wnc = Wdiss + Wext (11.28)

To illustrate what we mean by an external force, suppose you pick up a box at rest 
on the floor and place it at rest on a table. The box gains gravitational potential energy, 
but �K = 0. Or consider pulling the box across the table with a string. The box gains 
kinetic energy, but not by transforming potential energy. The force of your hand and 
the tension of the string are forces that “reach in” from the environment to change the 
system. Thus they are external forces.

We have to be careful choosing the system if we want this distinction to be valid. 
As you can imagine, we’re going to associate Wdiss with �Eth. We want the thermal 
energy Eth to be an energy of the system. Otherwise, it wouldn’t make sense to talk 
about transforming kinetic energy into thermal energy. But for Eth to be an energy 
of the system, both objects involved in a dissipative interaction must be part of the 
system. The book sliding across the table raises the temperature of both the book and 
the table. Consequently, we must include both the book and the table in the system. 
The dissipative forces, like the conservative forces, are atomic-level interaction forces 
inside the system.

FigURE 11.24 A system with both internal 
interaction forces and external forces.

r

r

Work done by
forces from the
environment is
external work Wext.

Interaction forces can
be either conservative 
or dissipative. These
do work Wc and Wdiss.

Environment

SystemFext

Fext

A rope pulls a 10 kg wooden crate 3.0 m across a wood floor. 
What is the change in thermal energy? The coefficient of kinetic 
friction is 0.20.

ModEL Let the system be crate + floor. Assume the floor is 
horizontal.

SoLVE The friction force on an object moving on a horizontal 
surface is Fk = mkn = mkmg. Thus the change in thermal energy, 
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With this distinction, the work-kinetic energy theorem is

 �K = Wc + Wdiss + Wext (11.29)

As before, we define the potential energy U such that �U = -Wc. Remember that 
potential energy is really just the precomputed work of a conservative force. We’ve 
also seen that the work done by dissipative forces—the forces stretching the bonds 
at the boundary—increases the system’s thermal energy: �Eth = -Wdiss. With these 
substitutions, the work-kinetic energy theorem becomes

 �K = - �U - �Eth + Wext

We can write this more profitably as

 �K + �U + �Eth = �Emech + �Eth = �Esys = Wext (11.30)

where Esys = Emech + Eth is the total energy of the system. Equation 11.30 is the 
energy equation of the system.

Equation 11.30 is our most general statement about how the energy of a system 
changes, but we still need to give a clear interpretation as to what it says. In Chapter 9 
we defined an isolated system as a system for which the net external force is zero. 
It follows that no external work is done on an isolated system: Wext = 0. Thus one 
conclusion from Equation 11.30 is that the total energy Esys of an isolated system 
is conserved. That is, �Esys = 0 for an isolated system. If, in addition, the system is 
nondissipative (i.e., no friction forces), then �Eth = 0. In that case, the mechanical 
energy Emech is conserved.

These conclusions about energy can be summarized as the law of conservation 
of energy:

FigURE 11.25 The basic energy model is 
a pictorial representation of the energy 
equation.

Eth

�Esys � Wext

K U

SystemWork done
on system
Wext � 0

Energy in Energy out

Work done
by system
Wext � 0

Energy is
transferred
to (and from)
the system.

Energy is
transformed
within the system.

Environment

(a) A system interacting with
its environment

Eth

�Esys � 0

K U

System

The system’s
total energy Esys

is conserved.

Energy can still
be transformed
within the system.

The system
is isolated
from the
environment.

(b) An isolated system

Law of conservation of energy The total energy Esys = Emech + Eth of an isolated 
system is a constant. The kinetic, potential, and thermal energy within the sys-
tem can be transformed into each other, but their sum cannot change. Further, the 
mechanical energy Emech = K + U is conserved if the system is both isolated and 
nondissipative.

The law of conservation of energy is one of the most powerful statements in physics.
FigURE 11.25a redraws the basic energy model of Figure 11.1 Now you can see that 

this is a pictorial representation of Equation 11.30. Esys, the total energy of the system, 
changes only if external forces transfer energy into or out of the system by doing work 
on the system. The kinetic, potential, and thermal energy within the system can be 
transformed into each other by interaction forces within the system. As FigURE 11.25b 
shows, Esys = K + U + Eth remains constant if the system is isolated. The transfer and 
transformation of energy are what the basic energy model is all about.

Energy Bar Charts
The energy bar charts of Chapter 10 can now be expanded to include the thermal en-
ergy and the work done by external forces. The energy equation, Equation 11.30, can 
be written

 Ki + Ui + Wext = Kf + Uf + �Eth (11.31)

The left side is the “before” condition (Ki + Ui) plus any energy that is added to or 
removed from the system. The right side is the “after” situation. The “energy accounting” 
of Equation 11.31 can be represented by the bar chart of FigURE 11.26 on the next page.

NoTE  We don’t have any way to determine (Eth)i or (Eth)f  , but �Eth is always 
positive whenever the system contains dissipative forces. 
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Let’s look at a few examples.

FigURE 11.26 An energy bar chart shows how all the energy is accounted for.

Bar heights represent
the energies.

This is the general
energy equation.

0

�

� �

�

Ki Ui

�

Wext

�

Uf

�

� �� � � �EthKf

ExAMPLE 11.10  Energy bar chart i
A speeding car skids to a halt. Show the energy transfers and trans-
formations on an energy bar chart.

SoLVE The car has an initial kinetic energy Ki. That energy is 
transformed into the thermal energy of the car and the road. The 
potential energy doesn’t change and no work is done by external 
forces, so the process is an energy transformation Ki S Eth. This is 
shown in FigURE 11.27. Esys is conserved but Emech is not.

FigURE 11.27 Energy bar chart for Example 11.10.
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ExAMPLE 11.11  Energy bar chart ii
A rope lifts a box at constant speed. Show the energy transfers and 
transformations on an energy bar chart.

SoLVE The tension in the rope is an external force that does work 
on the box, increasing the potential energy of the box. The kinetic 
energy is unchanged because the speed is constant. The process is 
an energy transfer Wext S Uf, as FigURE 11.28 shows. This is not an 
isolated system, so Esys is not conserved.

FigURE 11.28 Energy bar chart for Example 11.11.

0

�

� �

�

Ki Ui

�

Wext

�

Uf

�

� �� � ��EthKf

ExAMPLE 11.12  Energy bar chart iii
The box that was lifted in Example 11.11 falls at a steady speed 
as the rope spins a generator and causes a lightbulb to glow. Air 
resistance is negligible. Show the energy transfers and transforma-
tions on an energy bar chart.

SoLVE The initial potential energy decreases, but K does not 
change and �Eth = 0. The tension in the rope is an external force 
that does work, but Wext is negative in this case because T 

u

 points 
up while the displacement �r 

u
 is down. Negative work means that 

energy is transferred from the system to the environment or, in 
more informal terms, that the system does work on the environ-
ment. The falling box does work on the generator to spin it and 
light the bulb. Energy is transferred out of the system and eventu-
ally ends up in the lightbulb as electrical energy. The process is 
Ui S Wext. This is shown in FigURE 11.29.

FigURE 11.29 Energy bar chart for Example 11.12.
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Strategy for Energy Problems
This is a good place to summarize the strategy we have been developing for using the 
concept of energy.

PRoBLEM-SoLViNg
STRATEgy 11.1  Solving energy problems

ModEL Identify which objects are part of the system and which are in the envi-
ronment. When possible, choose a system without friction or other dissipative 
forces. Some problems may need to be subdivided into two or more parts.

ViSUALizE Draw a before-and-after pictorial representation and an energy bar 
chart. A free-body diagram is helpful if you’re going to calculate work.

SoLVE If the system is both isolated and nondissipative, then the mechanical 
energy is conserved:

 Kf + Uf = Ki + Ui

If there are external or dissipative forces, calculate Wext and �Eth. Then use the 
more general energy equation

 Kf + Uf + �Eth = Ki + Ui + Wext

Kinematics and/or other conservation laws may be needed for some problems.

ASSESS Check that your result has the correct units, is reasonable, and answers 
the question.

Stop to think 11.6  A child at the playground slides down a pole at constant speed. 
This is a situation in which

 a. U S K. Emech is not conserved but Esys is.
 b. U S Eth. Emech is conserved.
 c. U S Eth. Emech is not conserved but Esys is.
 d. K S Eth. Emech is not conserved but Esys is.
 e. U S Wext. Neither Emech nor Esys is conserved.

11.9 Power
Work is a transfer of energy between the environment and a system. In many situa-
tions we would like to know how quickly the energy is transferred. Does the force act 
quickly and transfer the energy very rapidly, or is it a slow and lazy transfer of energy? 
If you need to buy a motor to lift 2000 lb of bricks up 50 ft, it makes a big difference 
whether the motor has to do this in 30 s or 30 min!

The question How quickly? implies that we are talking about a rate. For example, 
the velocity of an object—how quickly it is moving—is the rate of change of position. 
So when we raise the issue of how quickly the energy is transferred, we are talking 
about the rate of transfer of energy. The rate at which energy is transferred or trans-
formed is called the power P, and it is defined as

 P K
dEsys

dt
  (11.32)

The unit of power is the watt, which is defined as 1 watt = 1 W K 1 J/s.

The English unit of power is the 
horsepower. The conversion factor to 
watts is

1 horsepower = 1 hp = 746 W

Many common appliances, such as 
motors, are rated in hp.
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A force that is doing work (i.e., transferring energy) at a rate of 3 J/s has an “output 
power” of 3 W. The system gaining energy at the rate of 3 J/s is said to “consume” 3 W 
of power. Common prefixes used with power are mW (milliwatts), kW (kilowatts), 
and MW (megawatts).

The power required to give the system this much energy in a time 
interval �t is

 P =
�Esys

�t
=

T �y

�t

But �y = v�t, so

  P = Tv = (19,600 N) (3.0 m/s) = 58,800 W

  = 79 hp

ExAMPLE 11.13  Choosing a motor
What power motor is needed to lift a 2000 kg elevator at a steady 
3.0 m/s?

SoLVE The tension in the cable does work on the elevator to 
lift it. Because the cable is pulled by the motor, we say that 
the motor does the work of lifting the elevator. The net force 
is zero because the elevator moves at constant velocity, so the 
tension is simply T = mg = 19,600 N. The energy gained by 
the elevator is

 �Esys = Wext = T �y

The idea of power as a rate of energy transfer applies no matter what the form of 
energy. FigURE 11.30 shows three examples of the idea of power. For now, we want 
to focus primarily on work as the source of energy transfer. Within this more lim-
ited scope, power is simply the rate of doing work: P = dW/dt. If a particle moves 
through a small displacement d r 

u
 while acted on by force F

u

, the force does a small 
amount of work dW given by

 dW = F
u # d  r 

u

Dividing both sides by dt, to give a rate of change, yields

 
dW

dt
= F

u # d r 
u

dt

But d r 
u

/dt is the velocity v  

u
, so we can write the power as

 P = F
u # v  

u
= Fv cos u (11.33)

In other words, the power delivered to a particle by a force acting on it is the dot 
product of the force and the particle’s velocity. These ideas will become clearer with 
some examples.

Highly trained athletes have a tremendous 
power output.

FigURE 11.30 Examples of power.

Electrical energy          light 
and thermal energy at 100 J/s

Light
bulb

100 W

Athlete

 hp

Chemical energy of glucose
and fat          mechanical
energy at �350 J/s �    hp

1
2

1
2

Gas
furnace

Chemical energy of gas         
thermal energy at 20,000 J/s

20 kW



motion is at constant velocity, hence the tension in the rope bal-
ances the friction and is

 T = fk = mk  mg

The motor’s power output is

 P = Tv = mk  mgv = 882 W

ExAMPLE 11.14  Power output of a motor
A factory uses a motor and a cable to drag a 300 kg machine to 
the proper place on the factory floor. What power must the motor 
supply to drag the machine at a speed of 0.50 m/s? The coefficient 
of friction between the machine and the floor is 0.60.

SoLVE The force applied by the motor, through the cable, is the 
tension force T 

u

. This force does work on the machine with power 
P = Tv. The machine is in dynamic equilibrium because the 

ExAMPLE 11.15  Power output of a car engine
A 1500 kg car has a front profile that is 1.6 m wide and 1.4 m high and a drag coefficient 
of 0.50. The coefficient of rolling friction is 0.02. What power must the engine provide 
to drive at a steady 30 m/s (�65 mph) if 25% of the power is “lost” before reaching the 
drive wheels?

SoLVE The net force on a car moving at a steady speed is zero. The motion is opposed 
both by rolling friction and by air resistance. The forward force on the car F

u

car (recall that 

this is really F
u

ground on car, a reaction to the drive wheels pushing backward on the ground 
with F

u

car on ground) exactly balances the two opposing forces:

Fcar = fr + D

where D
u

 is the drag due to the air. Using the results of Chapter 6, where both rolling fric-
tion and drag were introduced, this becomes

Fcar = mr  mg +
1

2
 Cr Av 2 = 294 N + 605 N = 899 N

Here A = (1.6 m) * (1.4 m) is the front cross-section area of the car, and we used 
1.2 kg/m3 as the density of air. The power required to push the car forward at 30 m/s is

Pcar = Fcar  v = (899 N) (30 m/s) = 27,000 W = 36 hp

This is the power needed at the drive wheels to push the car against the dissipative forces of 
friction and air resistance. The power output of the engine is larger because some energy is 
used to run the water pump, the power steering, and other accessories. In addition, energy 
is lost to friction in the drive train. If 25% of the power is lost (a typical value), leading to 
Pcar = 0.75Pengine, the engine’s power output is

Pengine =
Pcar

0.75
= 31,900 W = 48 hp

ASSESS Automobile engines are typically rated at �200 hp. Most of that power is re-
served for fast acceleration and climbing hills.

Stop to think 11.7 
 Four students run up the stairs in the time shown. Rank in order, 

from largest to smallest, their power outputs Pa to Pd.

10 m

(a)

�t � 10 s

80 kg

(b)

80 kg

�t � 8 s

64 kg

�t � 8 s

(c)

20 m
80 kg

�t � 25 s

(d)
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FigURE 11.31 Pictorial representation and energy bar chart for Challenge Example 11.16.

(a) (b)

We know that x0 = 0 m and v0 = 0 m/s, so the energy equation 
simplifies to

 
1

2
 mv1 

2 = Wext - �Eth -
1

2
 kx1 

2

The external work done by the rope’s tension is

 Wext = T 
u # �r 

u
= T(�x)cos 0� = (100 N)(0.50 m) = 50.0 J

The increase in thermal energy is given by Equation 11.27:

  �Eth = fk �x = mk  mg�x

  = (0.30)(5.0 kg)(9.80 m/s2)(0.50 m) = 7.4 J

Solving for the speed v1 at x1 = 50 cm = 0.50 m gives

 v1 = B2(Wext - �Eth -
1
2 kx1 

2)  

m
= 3.6 m/s

The power being supplied at this instant is

 P1 = Tv1 = (100 N)(3.6 m/s) = 360 W

ASSESS The work done by the rope’s tension is energy transferred 
to the system. Part of the energy increases the speed of the box, part 
increases the potential energy stored in the spring, and part is trans-
formed into increased thermal energy, increasing the temperature. 
We had to bring all the energy ideas together to solve this problem.

ChALLENgE ExAMPLE 11.16  Stretching a spring
A 5.0 kg box is attached to one end of a spring with spring constant 
80 N/m. The other end of the spring is anchored to a wall. Initially 
the box is at rest at the spring’s equilibrium position. A rope with 
a constant tension of 100 N then pulls the box away from the wall. 
The coefficient of friction between the box and the floor is 0.30. 
How much power is being supplied by the hand or motor pulling 
the rope when the box has moved 50 cm?

ModEL This is a complex situation, but one that we can analyze. 
First, identify the box, the spring, and the floor as the system.  
We need the floor inside the system because friction increases  
the temperature of the box and the floor. The tension in the rope 
is an external force. The work Wext done by the rope’s tension 
transfers energy into the system, causing K, Us, and Eth all to in-
crease.

ViSUALizE FigURE 11.31a is a before-and-after pictorial representa-
tion. The energy transfers and transformations are shown in the 
energy bar chart of FigURE 11.31b.

SoLVE The power supplied by the rope’s tension—the rate at 
which energy is being delivered to the system—is P =  Tv. We 
know the rope’s tension, so we need to use energy considerations 
to find the speed v1 after the box has moved to x1 =  50 cm.
The energy equation Kf + Uf + �Eth = Ki + Ui + Wext is

 
1

2
 mv1 

2 +
1

2
 kx1 

2 + �Eth =
1

2
 mv0 

2 +
1

2
 kx0 

2 + Wext
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S U M M A R y
The goal of Chapter 11 has been to develop a more complete understanding of energy and its conservation.

Law of Conservation of Energy
•	 Isolated system: Wext = 0. The total energy Esys = Emech + Eth is conserved. �Esys = 0.

•	 Isolated, nondissipative system: Wext = 0 and Wdiss = 0. The mechanical energy Emech is conserved.

�Emech = 0 or Kf + Uf = Ki + Ui

general Principles
Basic Energy Model
•	 Energy is transferred to or from the 

system by work.

•	 Energy is transformed within the system.

Two versions of the energy equation are

 �Esys = �K + �U + �Eth = Wext

 Kf + Uf + �Eth = Ki + Ui + Wext

Solving Energy Problems
ModEL Identify objects in the system.

ViSUALizE Draw a before-and-after pictorial 
representation and an energy bar chart.

SoLVE Use the energy equation

 Kf + Uf + �Eth = Ki + Ui + Wext

ASSESS Is the result reasonable?

Eth

Esys � K � U � Eth

K U

System

Energy
in

Work
Wext � 0

Energy
out

Work
Wext � 0

Environment

Power is the rate at which energy is transferred or transformed:

P =
dEsys

dt

For a particle moving with velocity v  

u
, the power delivered to the 

particle by force F
u

 is P = F
u # v  

u
= Fv cos u.

Dot product

 A
u # B

u

= AB  cos a = Ax 

Bx + Ay 

By

Energy bar charts display the energy equation 

Kf + Uf + �Eth = Ki + Ui + Wext in graphical form.

Applications

a

r
A

r
B

0

�

� �

�
Ki Ui

�

Wext Kf Uf

� �

� �� � ��Eth

important Concepts
The work-kinetic energy theorem is

�K = Wnet = Wc + Wdiss + Wext

With Wc = - �U for conservative forces and Wdiss = - �Eth for 
dissipative forces, this becomes the energy equation.

The work done by a force on a particle as it moves from si to sf is

  W = 3
sf

si

 Fs  ds = area under the force curve

  = F
u # �r 

u
 if F

u

 is a constant force

Dissipative forces transform macroscopic 
energy into thermal energy, which is the 
microscopic energy of the atoms and 
molecules. For friction:

�Eth = fk�s

Conservative forces are forces for which the work is independent 
of the path followed. The work done by a conservative force can 
be represented as a potential energy:

 �U = Uf - Ui = -Wc(i S f )

A conservative force is found from the potential energy by

 Fs = -dU/ds = negative of the slope of the PE curve

U(x)

x

Fx � �slope
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thermal energy, Eth

system energy, Esys

energy transformation
energy transfer
work, W
work-kinetic energy theorem

dot product
scalar product
conservative force
nonconservative force
macrophysics
microphysics

dissipative force
energy equation
law of conservation of energy
power, P
watt, W

Terms and Notation

C o N C E P T U A L  Q U E S T i o N S

 1. A process occurs in which a system’s potential energy decreases 
while the system does work on the environment. Does the sys-
tem’s kinetic energy increase, decrease, or stay the same? Or is 
there not enough information to tell? Explain.

 2. A process occurs in which a system’s potential energy increases 
while the environment does work on the system. Does the sys-
tem’s kinetic energy increase, decrease, or stay the same? Or is 
there not enough information to tell? Explain.

 3. The kinetic energy of a system decreases while its potential en-
ergy and thermal energy are unchanged. Does the environment 
do work on the system, or does the system do work on the envi-
ronment? Explain.

 4. You drop a ball from a high balcony and it falls freely. Does the 
ball’s kinetic energy increase by equal amounts in equal time 
intervals, or by equal amounts in equal distances? Explain.

 5. A particle moves in a vertical plane along the closed path seen in 
FigURE Q11.5, starting at A and eventually returning to its start-
ing point. How much work is done on the particle by gravity? 
Explain.

 6. A 0.2 kg plastic cart and a 20 kg lead cart both roll without fric-
tion on a horizontal surface. Equal forces are used to push both 
carts forward a distance of 1 m, starting from rest. After travel-
ing 1 m, is the kinetic energy of the plastic cart greater than, less 
than, or equal to the kinetic energy of the lead cart? Explain.

 7. You need to raise a heavy block by pulling it with a massless 
rope. You can either (a) pull the block straight up height h, or 
(b) pull it up a long, frictionless plane inclined at a 15� angle 
until its height has increased by h. Assume you will move the 
block at constant speed either way. Will you do more work in 
case a or case b? Or is the work the same in both cases? Explain.

 8. a.  If the force on a particle at some point in space is zero, must 
its potential energy also be zero at that point? Explain.

  b.  If the potential energy of a particle at some point in space is 
zero, must the force on it also be zero at that point? Explain.

 9. A car traveling at 60 mph slams on its brakes and skids to a 
halt. What happened to the kinetic energy the car had just before 
stopping?

 10. What energy transformations occur as a skier glides down a gen-
tle slope at constant speed?

 11. Give a specific example of a situation in which
 a. Wext S K  with �U = 0 and �Eth = 0.
 b. Wext S Eth with �K = 0 and �U = 0.
 12. The motor of a crane uses power P to lift a steel beam. By what 

factor must the motor’s power increase to lift the beam twice as 
high in half the time?

FigURE Q11.5 

Up

A

E x E R C i S E S  A N d  P R o B L E M S

Problems labeled  integrate material from earlier chapters.

Exercises

Section 11.2 Work and Kinetic Energy

Section 11.3 Calculating and Using Work

 1. | Evaluate the dot product A
u # B

u

 if

 a. A
u

= 3 in + 4jn and B
u

= 2 in - 6jn.
 b. A

u

= 3 in - 2jn and B
u

= 6 in + 4jn.

 2. | Evaluate the dot product A
u # B

u

 if

 a. A
u

= 4 in - 2jn and B
u

= -2 in - 3jn.
 b. A

u

= -4 in + 2jn and B
u

= 2 in + 4jn.
 3. || What is the angle u between vectors A

u

 and B
u

 in each part of 
Exercise 1?

 4. || What is the angle u between vectors A
u

 and B
u

 in each part of 
Exercise 2?

http://www.meetyourbrain.com/bookChapters.php?book=Physics-for-Scientists-and-Engineers-A-Strategic-Approach-with-Modern-Physics-3rd-Edition-Solutions&title=0
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 5. | Evaluate the dot product of the three pairs of vectors in 
FigURE Ex11.5.

 6. | Evaluate the dot product of the three pairs of vectors in 
FigURE Ex11.6.

 7. | How much work is done by the force F
u

= (-3.0 in + 6.0jn) N 
on a particle that moves through displacement (a) �r 

u
= 2.0 in m 

and (b) �r 
u

= 2.0jn m?
 8. | How much work is done by the force F

u

= (-4.0 in - 6.0jn) N 
on a particle that moves through displacement (a) �r 

u
= -3.0 in m 

and (b) �r
u

= (3.0 in - 2.0jn) m?
 9. || A 20 g particle is moving to the left at 30 m/s. How much net 

work must be done on the particle to cause it to move to the right 
at 30 m/s?

 10. | A 2.0 kg book is lying on a 0.75-m-high table. You pick it up 
and place it on a bookshelf 2.25 m above the floor.

 a. How much work does gravity do on the book?
 b. How much work does your hand do on the book?
 11. || The two ropes seen in FigURE Ex11.11 are used to lower a 

255 kg piano 5.00 m from a second-story window to the ground. 
How much work is done by each of the three forces?

 12. || The three ropes shown in the bird’s-eye view of FigURE Ex11.12 
are used to drag a crate 3.0 m across the floor. How much work is 
done by each of the three forces?

 13. || FigURE Ex11.13 is the velocity-
versus-time graph for a 2.0 kg object 
moving along the x-axis. Determine 
the work done on the object during 
each of the four intervals AB, BC, 
CD, and DE.

Section 11.4 The Work Done by a Variable Force

 14. | FigURE Ex11.14 is the force-versus-position graph for a particle 
moving along the x-axis. Determine the work done on the par-
ticle during each of the three intervals 0–1 m, 1–2 m, and 2–3 m.

 15. || A 500 g particle moving along the x-axis experiences the force 
shown in FigURE Ex11.15. The particle’s velocity is 2.0 m/s at 
x = 0 m. What is its velocity at x = 1 m, 2 m, and 3 m?

 16. || A 2.0 kg particle moving along the x-axis experiences the 
force shown in FigURE Ex11.16. The particle’s velocity is 4.0 m/s 
at x = 0 m. What is its velocity at x = 2 m and 4 m?

 17. || A 500 g particle moving along the x-axis experiences the force 
shown in FigURE Ex11.17. The particle goes from vx = 2.0 m/s at 
x = 0 m to vx = 6.0 m/s at x = 2 m. What is Fmax?

Section 11.5 Work and Potential Energy

Section 11.6 Finding Force from Potential Energy

 18. || A particle has the potential energy shown in FigURE Ex11.18. 
What is the x-component of the force on the particle at x = 5, 
15, 25, and 35 cm?

 19. || A particle has the potential energy shown in FigURE Ex11.19. What 
is the y-component of the force on the particle at y = 0.5 m and 4 m?

 20. || A particle moving along the y-axis has the potential energy 
U = 4y3 J, where y is in m. What is the y-component of the force 
on the particle at y = 0 m, 1 m, and 2 m?

 21. || A particle moving along the x-axis has the potential energy 
U = 10/x J, where x is in m. What is the x-component of the 
force on the particle at x = 2 m, 5 m, and 8 m?

Section 11.7 Thermal Energy

 22. || The mass of a carbon atom is 2.0 * 10-26 kg.
 a. What is the kinetic energy of a carbon atom moving with a 

speed of 500 m/s?

FigURE Ex11.5 

r
A

r
B

5

(a)

3
40�

D
r

C
r

2

(b)

3

140�
3

(c)

4

90�

r
E

F
r

FigURE Ex11.6 

r
A

r
B

(a)

2

4

110� D
r

C
r

(b)

5

4

r
E

F
r

(c)

4

3
30�

FigURE Ex11.11 

r

60� 45�

1295 N1830 N

2500 N

r
T1 r

T2

FG

FigURE Ex11.12 

vr

r

r

r 20�660 N

600 N

410 N

30�

T1

T3

T2

FigURE Ex11.13 

BA C D E
t

vx (m/s)

0

�2

2

FigURE Ex11.14 

x (m)

Fx (N)

0

�4

�2

2

4

1 2 3

FigURE Ex11.15 

x (m)

Fx (N)

10

5

2 3
0

10

15

FigURE Ex11.16 

x (m)

Fx (N)

0

�10

10

1 2 3 4

FigURE Ex11.17 

x (m)

Fx (N)

10 2
0

Fmax

FigURE Ex11.18 FigURE Ex11.19 

x (cm)

U (J)

100 20 30 40
0

10

y (m)

U (J)

10 2 3 4 5
0

60

http://www.meetyourbrain.com/bookChapters.php?book=Physics-for-Scientists-and-Engineers-A-Strategic-Approach-with-Modern-Physics-3rd-Edition-Solutions&title=0


304    c h a p t e r  11 . Work

 b. Two carbon atoms are joined by a spring-like carbon-carbon 
bond. The potential energy stored in the bond has the value 
you calculated in part a if the bond is stretched 0.050 nm. 
What is the bond’s spring constant?

 23. || In Part IV you’ll learn to calculate that 1 mole (6.02 *
1023 atoms) of helium atoms in the gas phase has 3700 J of mi-
croscopic kinetic energy at room temperature. If we assume that 
all atoms move with the same speed, what is that speed? The 
mass of a helium atom is 6.68 * 10-27 kg.

 24. || A 20 kg child slides down a 3.0-m-high playground slide. She 
starts from rest, and her speed at the bottom is 2.0 m/s.

 a. Describe the energy transfers and transformations occurring 
during the slide.

 b. What is the change in the combined thermal energy of the 
slide and the seat of her pants?

Section 11.8 Conservation of Energy

 25. || A system loses 400 J of potential energy. In the process, it 
does 400 J of work on the environment and the thermal energy 
increases by 100 J. Show this process on an energy bar chart.

 26. || A system loses 500 J of kinetic energy while gaining 200 J of 
potential energy. The thermal energy increases 100 J. Show this 
process on an energy bar chart.

 27. | How much work is done 
by the environment in the 
process shown in FigURE 

Ex11.27? Is energy trans-
ferred from the environment 
to the system or from the 
system to the environment?

 28. || A cable with 20.0 N of tension pulls straight up on a 1.02 kg 
block that is initially at rest. What is the block’s speed after being 
lifted 2.00 m? Solve this problem using work and energy.

Section 11.9 Power

 29. | a.  How much work does an elevator motor do to lift a 1000 kg 
elevator a height of 100 m?

   b.  How much power must the motor supply to do this in 50 s 
at constant speed?

 30. | a.  How much work must you do to push a 10 kg block of steel 
across a steel table at a steady speed of 1.0 m/s for 3.0 s?

   b.  What is your power output while doing so?
 31. || At midday, solar energy strikes the earth with an intensity of 

about 1 kW/m2. What is the area of a solar collector that could 
collect 150 MJ of energy in 1 h? This is roughly the energy con-
tent of 1 gallon of gasoline.

 32. || Which consumes more energy, a 1.2 kW hair dryer used for 
10 min or a 10 W night light left on for 24 h?

 33. | A 2.0 hp electric motor on a water well pumps water from 
10 m below the surface. The density of water is 1.0 kg per liter. 
How many liters of water does the motor pump in 1 h?

 34. || A 50 kg sprinter, starting from rest, runs 50 m in 7.0 s at con-
stant acceleration.

 a. What is the magnitude of the horizontal force acting on the 
sprinter?

 b. What is the sprinter’s power output at 2.0 s, 4.0 s, and 6.0 s?

 35. | a.  Estimate the height in meters of the two flights of stairs that 
go from the first to the third floor of a building.

   b.  Estimate how long it takes you to run up these two flights 
of stairs.

   c.  Estimate your power output in both watts and horsepower 
while running up the stairs.

 36. | A 70 kg human sprinter can accelerate from rest to 10 m/s in 
3.0 s. During the same time interval, a 30 kg greyhound can go 
from rest to 20 m/s. What is the average power output of each? 
Average power over a time interval �t is �E / �t.

Problems

 37. | A particle moves from A to D in FigURE P11.37 while experi-
encing force F

u

= (6 in + 8jn) N. How much work does the force 
do if the particle follows path (a) ABD, (b) ACD, and (c) AD? Is 
this a conservative force? Explain.

 38. || A 100 g particle experiences the one-dimensional, conserva-
tive force Fx shown in FigURE P11.38.

 a. Draw a graph of the potential energy U from x = 0 m to 
x = 5 m. Let the zero of the potential energy be at x = 0 m.

  Hint: Think about the definition of potential energy and 
the geometric interpretation of the work done by a varying 
force.

 b. The particle is shot toward the right from x = 1.0 m with a 
speed of 25 m/s. What is the particle’s mechanical energy?

 c. Draw the particle’s total energy line on your graph of part a.
 d. Where is the particle’s turning point?
 39. || A 10 g particle has the 

potential energy shown in 
FigURE P11.39.

 a. Draw a force-versus-position 
graph from x = 0 cm to 
x = 8 cm.

 b. How much work does the 
force do as the particle 
moves from x = 2 cm to 
x = 6 cm?

 c. What speed does the particle need at x = 2 cm to arrive at 
x = 6 cm with a speed of 10 m/s?

 40. ||| a.  FigURE P11.40a shows the force Fx exerted on a particle that 
moves along the x-axis. Draw a graph of the particle’s po-
tential energy as a function of position x. Let U be zero at 
x = 0 m.

   b.  FigURE P11.40b shows the potential energy U of a particle 
that moves along the x-axis. Draw a graph of the force Fx 
as a function of position x.
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 41. || FigURE P11.41 is the velocity-versus-time graph of a 500 g particle 
that starts at x = 0 m and moves along the x-axis. Draw graphs of 
the following by calculating and plotting numerical values at t = 0, 
1, 2, 3, and 4 s. Then sketch lines 
or curves of the appropriate shape 
between the points. Make sure you 
include appropriate scales on both 
axes of each graph.

 a. Acceleration versus time.
 b. Position versus time.
 c. Kinetic energy versus time.
 d. Force versus time.
 e. Use your Fx@versus@t graph to determine the impulse deliv-

ered to the particle during the time interval 0-2 s and also 
the interval 2-4 s.

 f. Use the impulse-momentum theorem to determine the par-
ticle’s velocity at t = 2 s and at t = 4 s. Do your results agree 
with the velocity graph?

 g. Now draw a graph of force versus position. This requires no 
calculations; just think carefully about what you learned in 
parts a to d.

 h. Use your Fx@versus@x graph to determine the work done on 
the par ticle during the time interval 0-2 s and also the inter-
val 2-4 s.

 i. Use the work-kinetic energy theorem to determine the par-
ticle’s velocity at t = 2 s and at t = 4 s. Do your results agree 
with the velocity graph?

 42. || A 1000 kg elevator accelerates upward at 1.0 m/s2 for 10 m, 
starting from rest.

 a. How much work does gravity do on the elevator?
 b. How much work does the tension in the elevator cable do on 

the elevator?
 c. Use the work-kinetic energy theorem to find the kinetic en-

ergy of the elevator as it reaches 10 m.
 d. What is the speed of the elevator as it reaches 10 m?
 43. | Bob can throw a 500 g rock with a speed of 30 m/s. He moves 

his hand forward 1.0 m while doing so.
 a. How much work does Bob do on the rock?
 b. How much force, assumed to be constant, does Bob apply to 

the rock?
 c. What is Bob’s maximum power output as he throws the rock?
 44. || a.  Starting from rest, a crate of mass m is pushed up a friction-

less slope of angle u by a horizontal force of magnitude F. 
Use work and energy to find an expression for the crate’s 
speed v when it is at height h above the bottom of the slope.

   b.  Doug uses a 25 N horizontal force to push a 5.0 kg crate 
up a 2.0@m@high, 20� frictionless slope. What is the speed 
of the crate at the top of the slope?

 45. || Sam, whose mass is 75 kg, straps on his skis and starts down 
a 50-m-high, 20� frictionless slope. A strong headwind exerts 
a horizontal force of 200 N on him as he skies. Use work and 
energy to find Sam’s speed at the bottom.

 46. ||| Susan’s 10 kg baby brother Paul sits on a mat. Susan pulls the 
mat across the floor using a rope that is angled 30� above the 
floor. The tension is a constant 30 N and the coefficient of fric-
tion is 0.20. Use work and energy to find Paul’s speed after being 
pulled 3.0 m.

 47. || A horizontal spring with spring constant 100 N/m is com-
pressed 20 cm and used to launch a 2.5 kg box across a fric-
tionless, horizontal surface. After the box travels some dis-
tance, the surface becomes rough. The coefficient of kinetic 
friction of the box on the surface is 0.15. Use work and energy 
to find how far the box slides across the rough surface before 
stopping.

 48. || a.  A box of mass m and initial speed v0 slides distance d 
across a horizontal floor before coming to rest. Use work 
and energy to find an expression for the coefficient of ki-
netic friction.

   b.  A baggage handler throws a 15 kg suitcase along the 
floor of an airplane luggage compartment with a speed 
of 1.2 m/s. The suitcase slides 2.0 m before stopping. 
What is the suitcase’s coefficient of kinetic friction on 
the floor?

 49. || Truck brakes can fail if they get too hot. In some mountain-
ous areas, ramps of loose gravel are constructed to stop runaway 
trucks that have lost their brakes. The combination of a slight 
upward slope and a large coefficient of rolling resistance as the 
truck tires sink into the gravel brings the truck safely to a halt. 
Suppose a gravel ramp slopes upward at 6.0� and the coefficient 
of rolling friction is 0.40. Use work and energy to find the length 
of a ramp that will stop a 15,000 kg truck that enters the ramp at 
35 m/s (�75 mph).

 50. || A freight company uses a compressed spring to shoot 2.0 kg 
packages up a 1.0-m-high frictionless ramp into a truck, as 
FigURE P11.50 shows. The spring constant is 500 N/m and the 
spring is compressed 30 cm.

 a. What is the speed of the package when it reaches the truck?
 b. A careless worker spills his soda on the ramp. This creates a 

50-cm-long sticky spot with a coefficient of kinetic friction 
0.30. Will the next package make it into the truck?

 51. ||| Use work and energy to find an expression for the speed of 
the block in FigURE P11.51 just before it hits the floor if (a) the 
coefficient of kinetic friction for the block on the table is mk and 
(b) the table is frictionless.

 52. ||| An 8.0 kg crate is pulled 5.0 m up a 30� incline by a rope angled 
18� above the incline. The tension in the rope is 120 N, and the 
crate’s coefficient of kinetic friction on the incline is 0.25.

 a. How much work is done by tension, by gravity, and by the 
normal force?

 b. What is the increase in thermal energy of the crate and 
incline?
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 53. || You’ve taken a summer job 
at a water park. In one stunt, 
a water skier is going to glide 
up the 2.0-m-high frictionless 
ramp shown in FigURE P11.53, 
then sail over a 5.0-m-wide tank 
filled with hungry sharks. You 
will be driving the boat that pulls her to the ramp. She’ll drop 
the tow rope at the base of the ramp just as you veer away. What 
minimum speed must you have as you reach the ramp in order 
for her to live to do this again tomorrow?

 54. || A 50 kg ice skater is gliding along the ice, heading due north 
at 4.0 m/s. The ice has a small coefficient of static friction, to 
prevent the skater from slipping sideways, but mk = 0. Suddenly, 
a wind from the northeast exerts a force of 4.0 N on the skater.

 a. Use work and energy to find the skater’s speed after gliding 
100 m in this wind.

 b. What is the minimum value of ms that allows her to continue 
moving straight north?

 55. || a.  A 50 g ice cube can slide without friction up and down a 30� 
slope. The ice cube is pressed against a spring at the bot-
tom of the slope, compressing the spring 10 cm. The spring 
constant is 25 N/m. When the ice cube is released, what total 
distance will it travel up the slope before reversing direction?

   b.  The ice cube is replaced by a 50 g plastic cube whose coef-
ficient of kinetic friction is 0.20. How far will the plastic 
cube travel up the slope? Use work and energy.

 56. || A 5.0 kg box slides down a 5.0-m-high frictionless hill, start-
ing from rest, across a 2.0-m-wide horizontal surface, then hits a 
horizontal spring with spring constant 500 N/m. The other end of 
the spring is anchored against a wall. The ground under the spring 
is frictionless, but the 2.0-m-wide horizontal surface is rough. The 
coefficient of kinetic friction of the box on this surface is 0.25.

 a. What is the speed of the box just before reaching the rough 
surface?

 b. What is the speed of the box just before hitting the spring?
 c. How far is the spring compressed?
 d. Including the first crossing, how many complete trips will the 

box make across the rough surface before coming to rest?
 57. || The spring shown in FigURE P11.57 is compressed 50 cm and 

used to launch a 100 kg physics student. The track is frictionless 
until it starts up the incline. The student’s coefficient of kinetic 
friction on the 30� incline is 0.15.

 a. What is the student’s speed just after losing contact with the 
spring?

 b. How far up the in cline does the student go?

 58. || A block of mass m starts from rest at height h. It slides down a 
frictionless incline, across a rough horizontal surface of length L, 
then up a frictionless incline. The coefficient of kinetic friction 
on the rough surface is mk  .

 a. What is the block’s speed at the bottom of the first incline?
 b. How high does the block go on the second incline?
  Give your answers in terms of m, h, L, mk  , and g.

 59. || Show that Hooke’s law for an ideal spring is a conservative 
force. To do so, first calculate the work done by the spring as it 
expands from A to B. Then calculate the work done by the spring 
as it expands from A to point C, which is beyond B, then returns 
from C to B.

 60. || A clever engineer designs a “sprong” that obeys the force law 
Fx = -q(x - xe)

3, where xe is the equilibrium position of the end 
of the sprong and q is the sprong constant. For simplicity, we’ll 
let xe = 0 m. Then Fx = -qx3.

 a. What are the units of q ?
 b. Find an expression for the potential energy of a stretched or 

compressed sprong.
 c. A sprong-loaded toy gun shoots a 20 g plastic ball. What 

is the launch speed if the sprong constant is 40,000, with 
the units you found in part a, and the sprong is compressed 
10 cm? Assume the barrel is frictionless.

 61. || A particle of mass m starts from x0 = 0 m with v0 7 0 m/s. 
The particle experiences the variable force Fx = F0 sin(cx) 
as it moves to the right along the x-axis, where F0 and c are 
constants.

 a. What are the units of F0  ?
 b. What are the units of c ?
 c. At what position xmax does the force first reach a maximum 

value? Your answer will be in terms of the constants F0 and c 
and perhaps other numerical constants.

 d. Sketch a graph of F versus x from x0 to xmax.
 e. What is the particle’s velocity as it reaches xmax? Give your 

answer in terms of m, v0, F0, and c.
 62. || A 5.0 kg cat leaps from the floor to the top of a 95-cm-high 

table. If the cat pushes against the floor for 0.20 s to accomplish 
this feat, what was her average power output during the pushoff 
period?

 63. || The human heart pumps the average adult’s 6.0 L (6000 cm3) 
of blood through the body every minute. The heart must do work 
to overcome frictional forces that resist blood flow. The average 
adult blood pressure is 1.3 * 104 N/m2.

 a. How much work does the heart do to move the 6.0 L of blood 
completely through the body?

 b. What power output must the heart have to do this task once a 
minute?

Hint: When the heart contracts, it applies force to the blood. 
Pressure is force/area. Model the circulatory system as a 
single closed tube, with cross-section area A and volume 
V = 6.0 L, filled with blood to which the heart applies a 
force.

 64. || When you ride a bicycle at constant speed, nearly all the en-
ergy you expend goes into the work you do against the drag force 
of the air. Model a cyclist as having cross-section area 0.45 m2 
and, because the human body is not aerodynamically shaped, a 
drag coefficient of 0.90.

 a. What is the cyclist’s power output while riding at a steady 
7.3 m/s (16 mph)?

 b. Metabolic power is the rate at which your body “burns” fuel 
to power your activities. For many activities, your body is 
roughly 25% efficient at converting the chemical energy of 
food into mechanical energy. What is the cyclist’s metabolic 
power while cycling at 7.3 m/s?

 c. The food calorie is equivalent to 4190 J. How many calories 
does the cyclist burn if he rides over level ground at 7.3 m/s 
for 1 h?

 65. || In a hydroelectric dam, water falls 25 m and then spins a tur-
bine to generate electricity.
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 a. What is �U of 1.0 kg of water?
 b. Suppose the dam is 80% efficient at converting the water’s 

potential energy to electrical energy. How many kilograms 
of water must pass through the turbines each second to gener-
ate 50 MW of electricity? This is a typical value for a small 
hydroelectric dam.

 66. || The force required to tow a water skier at speed v is propor-
tional to the speed. That is, Ftow = Av, where A is a proportion-
ality constant. If a speed of 2.5 mph requires 2 hp, how much 
power is required to tow a water skier at 7.5 mph?

 67. || A Porsche 944 Turbo has a rated engine power of 217 hp. 
30% of the power is lost in the drive train, and 70% reaches the 
wheels. The total mass of the car and driver is 1480 kg, and two-
thirds of the weight is over the drive wheels.

 a. What is the maximum acceleration of the Porsche on a con-
crete surface where ms = 1.00?

  Hint: What force pushes the car forward?
 b. If the Porsche accelerates at amax, what is its speed when it 

reaches maximum power output?
 c. How long does it take the Porsche to reach the maximum 

power output?

In Problems 68 through 71 you are given the equation(s) used to solve 
a problem. For each of these, you are to
 a. Write a realistic problem for which this is the correct equation(s).
 b. Draw a pictorial representation.
 c. Finish the solution of the problem.

 68.  12 (2.0 kg) (4.0 m/s)2 + 0

 + (0.15) (2.0 kg) (9.8 m/s2) (2.0 m) = 0 + 0 + T(2.0 m)

 69. 1
2 (20 kg)v1 

2 + 0

+ (0.15) (20 kg) (9.8 m/s2) cos 40�((2.5 m)/sin 40�)

  = 0 + (20 kg) (9.8 m/s2) (2.5 m) + 0

 70. Fpush - (0.20) (30 kg) (9.8 m/s2) = 0

  75 W = Fpush  v

 71. T - (1500 kg) (9.8 m/s2) = (1500 kg) (1.0 m/s2)

  P = T(2.0 m/s)

Challenge Problems

 72. A 10.2 kg weather rocket generates a thrust of 200 N. The rocket, 
pointing upward, is clamped to the top of a vertical spring. The 
bottom of the spring, whose spring constant is 500 N/m, is an-
chored to the ground.

 a. Initially, before the engine is ignited, the rocket sits at rest on 
top of the spring. How much is the spring compressed?

 b. After the engine is ignited, what is the rocket’s speed when 
the spring has stretched 40 cm? For comparison, what would 
be the rocket’s speed after traveling this distance if it weren’t 
attached to the spring?

 73. The spring in FigURE CP11.73 has a spring constant of 1000 N/m. 
It is compressed 15 cm, then launches a 200 g block. The hori-
zontal surface is frictionless, but the block’s coefficient of ki-
netic friction on the incline is 0.20. What distance d does the 
block sail through the air?

 74. The equation mgy for gravitational potential energy is valid 
only for objects near the surface of a planet. Consider two very 
large objects of mass m1 and m2, such as stars or planets, whose 
centers are separated by the large distance r. These two large 
objects exert gravitational forces on each other. You’ll learn in 
Chapter 13 that the gravitational potential energy is

U = -  
Gm1  m2

r

  where G = 6.67 * 10-11 N m2/kg2 is the gravitational constant.
 a. Sketch a graph of U versus r. The mathematical difficulty 

at r = 0 is not a physically significant difficulty because the 
masses will collide before they get that close together.

 b. What separation r has been chosen as the point of zero poten-
tial energy? Does this make sense? Explain.

 c. Two stars are at rest 1.0 * 1014 m apart. This is about 10 
times the diameter of the solar system. The first star is the 
size of our sun, with a mass of 2.0 * 1030 kg and a radius 
of 7.0 * 108 m. The second star has mass 8.0 * 1030 kg and 
radius of 11.0 * 108 m. Gravitational forces pull the two stars 
together. What is the speed of each star at the moment of 
impact?

 75. A gardener pushes a 12 kg lawnmower whose handle is tilted 
up 37� above horizontal. The lawnmower’s coefficient of roll-
ing friction is 0.15. How much power does the gardener have to 
supply to push the lawnmower at a constant speed of 1.2 m/s? 
Assume his push is parallel to the handle.

SToP To ThiNK ANSWERS

Stop to Think 11.1: d. Constant speed means �K = 0. Gravitational po-
tential energy is lost, and friction heats up the slide and the child’s pants.

Stop to Think 11.2: 6.0 J. Kf = Ki + W. W is the area under the 
curve, which is 4.0 J.

Stop to Think 11.3: b. The gravitational force F
u

G is in the same di-
rection as the displacement. It does positive work. The tension force 
T 
u

 is opposite the displacement. It does negative work.

Stop to Think 11.4: c. W = F(�r)cos u. The 10 N force at 90� does 
no work at all. cos 60� =

1
2 , so the 8 N force does less work than the 

6 N force.

Stop to Think 11.5: e. Force is the negative of the slope of the 
potential-energy diagram. At x = 4 m the potential energy has risen 
by 4 J over a distance of 2 m, so the slope is 2 J/m = 2 N.

Stop to Think 11.6: c. Constant speed means �K = 0. Gravitational 
potential energy is lost, and friction heats up the pole and the child’s 
hands.

Stop to Think 11.7: Pb + Pa � Pc + Pd. The work done is mg�y, 
so the power is mg�y/�t. Runner b does the same work as a but in 
less time. The ratio m/�t is the same for a and c. Runner d does twice 
the work of a but takes more than twice as long.
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200 g
2.0 m

d

45�

FigURE CP11.73 



in Part ii we have discovered that we don’t need to know all 
the details of an interaction to relate the properties of a system 
“before” an interaction to the system’s properties “after” the 
interaction. Along the way, we found two important quantities, 
momentum and energy, that characterize a system of particles.

Momentum and energy have specific conditions under 
which they are conserved. In particular, the total momentum P

u

 
and the total energy Esys are conserved for an isolated system, 
one on which the net external force is zero. Further, the sys-
tem’s mechanical energy is conserved if the system is both iso-
lated and nondissipative (i.e., no friction forces). These ideas 
are captured in the two most important conservation laws, the 
law of conservation of momentum and the law of conservation 
of energy.

Of course, not all systems are isolated. For both momen-
tum and energy, it was useful to develop a model of a system 
interacting with its environment. Interactions between the sys-

tem and the environment change the system’s momentum and 
energy. In particular,

■	 Impulse is the transfer of momentum to or from the sys-
tem: �P

u

= J
u

.

■	 Work is the transfer of energy to or from the system: 
�Esys = Wext.

Interactions within the system do not change P
u

 or Esys. The 
kinetic, potential, and thermal energy within the system can be 
transformed without changing Esys  . The basic energy model is 
built around the twin ideas of the transfer and the transforma-
tion of energy.

The table below is a knowledge structure of conservation 
laws. You should compare this with the knowledge struc-
ture of Newtonian mechanics in the Part I Summary. Add the 
problem-solving strategies, and you now have a very powerful 
set of tools for understanding motion.

Conservation LawsII
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suMMARYP a r t 

ESSENTiAL CoNCEPTS Impulse, momentum, work, energy
BASiC goALS How is the system “after” an interaction related to the system “before”?
 What quantities are conserved, and under what conditions?

gENERAL PRiNCiPLES Impulse-momentum theorem  �ps = Js

 Work-kinetic energy theorem �K = Wnet = Wc + Wdiss + Wext

 Energy equation  �Esys = �K + �U + �Eth = Wext

CoNSERVATioN LAWS For an isolated system, with F
u

net = 0
u

 and Wnet = 0
 •	 The total momentum P

u

 is conserved.
 •	 The total energy Esys = Emech + Eth is conserved.

 For an isolated and nondissipative system, with Wdiss = 0
 •	 The mechanical energy Emech = K + U is conserved.

KNoWLEdgE STRUCTURE ii Conservation Laws

BASiC PRoBLEM-SoLViNg STRATEgy Draw a before-and-after pictorial representation, then use the momentum or energy equations to relate 
“before” to “after.” Where possible, choose a system for which momentum and/or energy are conserved. If necessary, calculate impulse 
and/or work.

Basic model of momentum and energy

Impulse and momentum Work and energy

 p
u

= mv  

u

 Js = 3
tf

ti

 Fs(t) dt

K =
1
2 mv 2

W = 3
sf

si

 Fs ds

     = F
u # �r 

u

Ug = mgy

Us =
1
2 k(�s)2

Eth

K U

System

Environment

ImpulseImpulse

Energy in Energy out

Work Work

Momentum P

Energy 

Energy is transformed 
within the system.

Energy and momentum 
are transferred to and 
from the system.

r
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OnE sTEP BEYOnd

Thermal energy is rarely “useful” energy. A room full of 
moving air molecules has a huge thermal energy, but you 
can’t run your lights or your air conditioner with it. You 
can’t turn the thermal energy of your hot brakes back into 
the kinetic energy of the car. Energy may be conserved, but 
there’s a one-way characteristic of the transformations.

The energy stored in fuels and the energy of the sun are 
“high-quality energy” because of their potential to be trans-
formed into such useful forms of energy as moving your 
car and heating your house. But as FigURE PSii.1 shows, high-
quality energy becomes “degraded” into thermal energy, 
where it is no longer useful. Thus the phrase “conserve en-
ergy” isn’t used literally. Instead, it means to conserve or 
preserve the earth’s sources of high-quality energy.

Conserving high-quality energy is important because 
fossil fuels are a finite resource. Experts may disagree as 
to how long fossil fuels will last, but all agree that it won’t 
be forever. Oil and natural gas will likely become scarce 
during your lifetime. In addition, burning fossil fuel gener-
ates carbon dioxide, a major contributor to global warming. 
Energy conservation helps fuels last longer and minimizes 
their side effects.

There are two paths to conserving energy. One is to use 
less high-quality energy. Turning off lights and bicycling 
rather than driving are actions that preserve high-quality en-
ergy. A second path is to use energy more efficiently. That 
is, get more of the useful activity (miles driven, rooms lit) 
for the same amount of high-quality energy.

Lightbulbs offer a good example. A 100 W incandescent 
lightbulb actually produces only about 10 W of light en-
ergy. Ninety watts of the high-quality electric energy is im-
mediately degraded as thermal energy without doing any-
thing useful. By contrast, a 25 W compact fluorescent bulb 
generates the same 10 W of light but only 15 W of thermal 
energy. The same amount of high-quality energy can light 
four times as many rooms if 100 W incandescent bulbs are 
replaced by 25 W compact fluorescent bulbs.

So why conserve energy if energy is already conserved? 
Because technological society needs a dependable and sus-
tainable supply of high-quality energy. Both technology 
improvement and lifestyle choices will help us achieve a 
sustainable energy future.

you hear it all the time. Turn off lights. Buy a more fuel-
efficient car. Conserve energy. But why conserve energy if 
energy is already conserved? Consider the earth as a whole. 
No work is done on the earth. And while heat energy flows 
from the sun to the earth, the earth radiates an equal amount 
of heat back into space. With no work and no net heat flow, 
the earth’s total energy Eearth is conserved.

Pumping oil, driving your car, running a nuclear reac-
tor, and turning on the lights are all interactions within the 
earth system. They transform energy from one type to an-
other, but they don’t affect the value of Eearth. Consider two 
examples.

■	 Crude oil, stored in the earth, has chemical energy Echem. 
Chemical energy, a form of microscopic potential energy, 
is released when chemical reactions rearrange the bonds. 
As you burn gasoline in your car engine, the chemical 
energy is transformed into the kinetic energy of the mov-
ing pistons. This kinetic energy, in turn, is transformed 
into the car’s kinetic energy. The car’s kinetic energy is 
ultimately dissipated as thermal energy in the brakes, air, 
tires, and road because of friction and drag. Overall, the 
energy process of driving looks like

	 Echem S Kpiston S Kcar S Eth

■	 Water stored behind a dam has gravitational potential 
energy Ug. Potential energy is transformed into kinetic 
energy as the water falls, then into the spinning turbine’s 
kinetic energy. The turbine converts mechanical energy 
into electric energy Eelec. The electric energy reaches a 
lightbulb where it is transformed partly into thermal en-
ergy (lightbulbs are hot!) and partly into light energy. The 
light is absorbed by surfaces, heating them slightly and 
thus transforming the light energy into thermal energy. 
The overall energy process is

	 Ug S Kwater S Kturbine S Eelec S Elight S Eth  

Do you notice a trend? Stored energy (fossil fuel, water 
behind a dam) is transformed through a series of steps, 
some of which are considered “useful,” until the energy is 
ultimately dissipated as thermal energy. The total energy 
has not changed, but its “usefulness” has.

Energy Conservation

FigURE PSii.1 “using” energy transforms high-quality energy into thermal 
energy.

High-Quality Energy

• Fuel
• Sunlight

Useful Action

• Electricity
• Transportation
• Heating

Degraded Energy

• Thermal energy
• Waste heat
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Applications of 
Newtonian 
Mechanics

III
P A R T

Hurricane Ivan 
approaches the 
United States in 

2004. A hurricane 
is a fluid—the 

air—moving 
on a rotating 
sphere—the 

earth—under 
the influence 

of gravity. 
Understanding 

hurricanes is 
very much an 

application 
of Newtonian 

mechanics.
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Overview

Power Over Our Environment
Early humans had to endure whatever nature provided. Only within the last few thou-
sand years have agriculture and technology provided some level of control over the 
environment. And it has been a mere couple of centuries since machines, and later 
electronics, began to do much of our work and provide us with “creature comforts.”

It’s no coincidence that machines began to appear about a century after Galileo, 
Newton, and others ignited what we now call the scientific revolution. The machines 
and other devices we take for granted today are direct consequences of scientific 
knowledge and the scientific method.

Parts I and II have established Newton’s theory of motion, the foundation of mod-
ern science. Most of the applications will be developed in other science and engineer-
ing courses, but we’re now in a good position to examine a few of the more practical 
aspects of Newtonian mechanics.

Our goal for Part III is to apply our newfound theory to four important topics:

	■	 Rotation. Rotation is a very important form of motion, but to understand rotational 
motion we’ll need to introduce a new model—the rigid-body model. We’ll then be 
able to study rolling wheels and spinning space stations. Rotation will also lead to 
the law of conservation of angular momentum.

	■	 Gravity. By adding one more law, Newton’s law of gravity, we’ll be able to un-
derstand much about the physics of the space shuttle, communication satellites, the 
solar system, and interplanetary travel.

	■	 Oscillations. Oscillations are seen in systems ranging from the pendulum in a 
grandfather clock to the quartz crystal oscillator providing the timing signals in 
sophisticated electronic circuits. The physics and mathematics of oscillations will 
later be the starting point for our study of waves.

	■	 Fluids. Liquids and gases flow. Surprisingly, it takes no new physics to understand 
the basic mechanical properties of fluids. By applying our understanding of force, 
we’ll be able to understand what pressure is, how a steel ship can float, and how 
fluids flow through pipes.

Newton’s laws of motion and the conservation laws, especially conservation of en-
ergy, will be the tools that allow us to analyze and understand a variety of interesting 
and practical applications.

Science has given us the power to control our environment, but science and engi-
neering are a two-edged sword. Much of the progress of the last two hundred years 
has come at the expense of the environment. We humans have deforested much of the 
world, polluted our air and water, and driven many of our fellow travelers on Space-
ship Earth to extinction. Now, at the beginning of the 21st century, the evidence is 
increasingly clear that humans are altering the earth’s climate and causing other global 
changes.

Fortunately, science also gives us the ability to understand the consequences of our 
actions and to develop better techniques and procedures. It is more important than ever 
that scientists and engineers in the 21st century distinguish control that is beneficial 
from control that is harmful. We’ll return to some of these ideas in the Summary to 
Part III.



Newton’s Second Law
Torque is to rotation what force is to 
linear motion. Torque t causes an object 
with moment of inertia I to undergo 
angular acceleration a = t/I.

Conservation Laws
Kinetic energy and linear momentum 
have their rotational equivalents. A rotat-
ing object’s rotational kinetic energy 
and angular momentum depend on 
its moment of inertia and its angular 
velocity.

You’ll learn to solve problems using
■	 Conservation of energy for friction-

less, rotating systems, and
■	 Conservation of angular momentum 

for isolated systems.

Torque
Torque is the tendency or ability of a 
force to rotate an object around a pivot 
point.

You will learn to calculate torque and will 
find that the torque depends not only on the 
magnitude of the force but also on where 
the force is applied relative to the pivot 
point. A longer wrench gives a larger torque.

You’ll learn to use Newton’s 
second law to solve prob-
lems of rotational dynamics.

We’ll also consider the 
conditions under which 
an extended object is 
in static equilibrium, 
neither translating 
nor rotating. Static 
equilibrium has many 
important applications.

Properties of Rigid Bodies
An extended object’s motion and stabili-
ty depend on how its mass is distributed. 
You’ll learn how to calculate an object’s 
center of mass and its moment of iner-
tia. Moment of inertia is the rotational 
equivalent of mass.

Rigid Bodies
A rigid body is an object whose size and 
shape don’t change as it moves.

This chapter focuses 
primarily on the rotation 
of rigid bodies. We’ll 
emphasize two types of 
rotation:
■	 Rotation about a 

fixed axle.
■	 Rolling without 

slipping.
The mathematics of circular motion— 
angular velocity and angular accelera-
tion— will be very important. A review 
is highly recommended.

rotation of a rigid  
Body

12

Not all motion can be described 
as that of a particle. Rotation 
requires the idea of an extended 
object.

 Looking Back
Section 9.3  Momentum conservation

 Looking Ahead The goal of Chapter 12 is to understand the physics of rotating objects.

 Looking Back
Section 6.2 Newton’s second law

 Looking Back
Section 6.1  equilibrium

 Looking Back
Sections 4.5–4.7  Kinematics of circular 
motion

The center of mass of this 
lopsided barbell is closer 
to the heavier end.

rotating it about the small 
end is harder than rotating it 
about the large end because 
the moment of inertia about 
the small end is larger.

a

�
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12.1 Rotational Motion
Thus far, our study of physics has focused almost exclusively on the particle model in 
which an object is represented as a mass at a single point in space. The particle model 
is a perfectly good description of the physics in a vast number of situations, but there 
are other situations for which we need to consider an extended object—a system of 
particles for which the size and shape do make a difference and cannot be neglected.

A rigid body is an extended object whose size and shape do not change as it moves. 
For example, a bicycle wheel can be thought of as a rigid body. FiguRE 12.1 shows a 
rigid body as a collection of atoms held together by the rigid “massless rods” of mo-
lecular bonds.

Real molecular bonds are, of course, not perfectly rigid. That’s why an object 
seemingly as rigid as a bicycle wheel can flex and bend. Thus Figure 12.1 is really a 
simplified model of an extended object, the rigid-body model. The rigid-body model 
is a very good approximation of many real objects of practical interest, such as wheels 
and axles. Even nonrigid objects can often be modeled as rigid bodies during parts 
of their motion. For example, a diver is well described as a rotating rigid body while 
she’s in the tuck position.

FiguRE 12.2 illustrates the three basic types of motion of a rigid body: translational 
motion, rotational motion, and combination motion.

Brief Review of Rotational Kinematics
Rotation is an extension of circular motion, so we begin with a brief summary of 
Chapter 4. A review of Sections 4.5–4.7 is highly recommended. FiguRE 12.3 shows a 
wheel rotating on an axle. Its angular velocity

 v =
du

dt
 (12.1)

is the rate at which the wheel rotates. The SI units of v are radians per second (rad/s), 
but revolutions per second (rev/s) and revolutions per minute (rpm) are frequently 
used. Notice that all points have equal angular velocities, so we can refer to the angular 
velocity v of the wheel.

If the wheel is speeding up or slowing down, its angular acceleration is

 a =
dv

dt
 (12.2)

The units of angular acceleration are rad/s2. Angular acceleration is the rate at which 
the angular velocity v changes, just as the linear acceleration is the rate at which the 
linear velocity v changes. Table 12.1 on the next page summarizes the kinematic equa-
tions for rotation with constant angular acceleration.

Molecular bonds
are modeled as
rigid, massless
rods.

Atoms are
modeled as
particles.

Size and shape
do not change as 
the object moves.A rigid body

FiguRE 12.1 The rigid-body model.

Translational motion:
The object as a whole
moves along a trajectory
but does not rotate.

Rotational motion:
The object rotates about a
fixed point. Every point on
the object moves in a circle.

Combination motion:
An object rotates as it 
moves along a trajectory.

Parabolic trajectory

FiguRE 12.2 Three basic types of motion of a rigid body.

v

1

2

r1

r2
ar

at
vt

Same angles

Different
radii

Axle

Every point on the wheel turns through
the same angle and thus undergoes circular
motion with the same angular velocity v.

All points on the wheel have a tangential
velocity and a radial (centripetal) acceleration.
They also have a tangential acceleration if the
wheel has angular acceleration.

�u1 �u2

FiguRE 12.3 Two points on a wheel 
rotate with the same angular velocity.
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FiguRE 12.4 reminds you of the sign conventions for angular velocity and accelera-
tion. They will be especially important in the present chapter. Be careful with the sign 
of a. Just as with linear acceleration, positive and negative values of a can’t be inter-
preted as simply “speeding up” and “slowing down.”

TABLE 12.1 rotational kinematics for 
constant angular acceleration

vf = vi + a �t

uf = ui + vi �t +
1
2 a(�t)2

vf 

2 = vi 

2 + 2a �u FiguRE 12.4 The signs of angular velocity and angular acceleration.

v � 0

a � 0

Speeding up ccw

v � 0

a � 0

Slowing down ccw

v � 0

a � 0

Slowing down cw

v � 0

a � 0

Speeding up cw

Initial angular velocity

A point at distance r from the rotation axis has instantaneous velocity and accelera-
tion, shown in Figure 12.3, given by

  vr = 0  ar =
vt 

2

r
= v2r

  vt = rv    at = ra  
(12.3)

The sign convention for v implies that vt  and at  are positive if they point in the coun-
terclockwise (ccw) direction, negative if they point in the clockwise (cw) direction.

12.2 Rotation About the Center of Mass
Imagine yourself floating in a space capsule deep in space. Suppose you take an object 
like that shown in FiguRE 12.5a, spin it, then let go. The object will rotate, but it will have 
no translational motion as it floats beside you. About what point does it rotate? That is 
the question we need to answer.

An unconstrained object (i.e., one not on an axle or a pivot) on which there is no net 
force rotates about a point called the center of mass. The center of mass remains mo-
tionless while every other point in the object undergoes circular motion around it. You 
need not go deep into space to demonstrate rotation about the center of mass. If you 
have an air table, a flat object rotating on the air table rotates about its center of mass.

To locate the center of mass, FiguRE 12.5b models the object as if it were constructed 
from particles numbered i = 1, 2, 3, p . Particle i has mass mi  and is located at position 
(xi , yi ). We’ll prove later in this section that the center of mass is located at position

  xcm =
1

M
 a

i

mi xi =
m1x1 + m2  x2 + m3  x3 + g

m1 + m2 + m3 + g

  ycm =
1

M
 a

i

mi  yi =
m1  y1 + m2  y2 + m3  y3 + g

m1 + m2 + m3 + g
 

(12.4)

where M = m1 + m2 + m3 + g is the object’s total mass.
Let’s see if Equations 12.4 make sense. Suppose you have an object consisting of 

N particles, all with the same mass m. That is, m1 = m2 = g = mN = m. We can 
factor the m out of the numerator, and the denominator becomes simply Nm. The m 
cancels, and the x-coordinate of the center of mass is

 xcm =
x1 + x2 + g + xN

N
= xaverage

In this case, xcm is simply the average x-coordinate of all the particles. Likewise, ycm 
will be the average of all the y-coordinates.

FiguRE 12.5 rotation about the center 
of mass.

�

The object rotates about
this point, which is the
center of mass.

(a)

�

x

Center of mass

Particle i with
mass mi

y

ycm
yi

0
0 xcm xi

(b)
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This does make sense! If the particle masses are all the same, the center of mass 
should be at the center of the object. And the “center of the object” is the average 
position of all the particles. To allow for unequal masses, Equations 12.4 are called 
weighted averages. Particles of higher mass count more than particles of lower mass, 
but the basic idea remains the same. The center of mass is the mass-weighted center 
of the object.

 b. Each ball rotates about the center of mass. The radii of the cir-
cles are r1 = 0.10 m and r2 = 0.40 m. The tangential veloci-
ties are (vi)t = riv, but this equation requires v to be in rad/s. 
The conversion is

 v = 40 
rev

 min
 *

1 min

 60 s
 *

2p rad

 1 rev
= 4.19 rad/s

Consequently,

  (v1)t = r1v = (0.10 m)(4.19 rad/s) = 0.42 m/s

  (v2)t = r2v = (0.40 m)(4.19 rad/s) = 1.68 m/s

ASSESS The center of mass is closer to the heavier ball than to 
the lighter ball. We expected this because xcm is a mass-weighted 
average of the positions. But the lighter mass moves faster because 
it is farther from the rotation axis.

ExAMPLE 12.1  The center of mass
A 500 g ball and a 2.0 kg ball are connected by a massless 50-cm-
long rod.

 a. Where is the center of mass?
 b. What is the speed of each ball if they rotate about the center of 

mass at 40 rpm?

MOdEL Model each ball as a particle.

ViSuALizE FiguRE 12.6 shows the two masses. We’ve chosen a co-
ordinate system in which the masses are on the x-axis with the 
2.0 kg mass at the origin.

SOLVE a We can use Equations 12.4 to calculate that the center 
of mass is

  xcm =
m1x1 + m2x2

m1 + m2

  =
(2.0 kg)(0.0 m) + (0.50 kg)(0.50 m)

2.0 kg + 0.50 kg
= 0.10 m

ycm = 0 because all the masses are on the x-axis. The center 
of mass is 20% of the way from the 2.0 kg ball to the 
0.50 kg ball.

FiguRE 12.6 Finding the center of mass.

For any realistic object, carrying out the summations of Equations 12.4 over all 
the atoms in the object is not practical. Instead, as FiguRE 12.7 shows, we can divide an 
extended object into many small cells or boxes, each with the very small mass �m. 
We will number the cells 1, 2, 3, . . . , just as we did the particles. Cell i has coordinates 
(xi, yi) and mass mi = �m. The center-of-mass coordinates are then

 xcm =
1

M
 a

i

xi �m  and  ycm =
1

M
 a

i

 yi �m

Now, as you might expect, we’ll let the cells become smaller and smaller, with the 
total number increasing. As each cell becomes infinitesimally small, we can replace 
�m with dm and the sum by an integral. Then

 xcm =
1

M
 3x dm  and  ycm =

1

M
 3y dm (12.5)

Equations 12.5 are a formal definition of the center of mass, but they are not ready 
to integrate in this form. First, integrals are carried out over coordinates, not over 
masses. Before we can integrate, we must replace dm by an equivalent expression 
involving a coordinate differential such as dx or dy. Second, no limits of integration 
have been specified. The procedure for using Equations 12.5 is best shown with an 
example.

Divide the extended object
into many small cells of
mass �m.y

yi

xi

x

Cell i

FiguRE 12.7 Calculating the center of 
mass of an extended object.
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Consequently, we can express dm in terms of the coordinate dif-
ferential dx as

 dm =
M

L
 dx

NOTE  The change of variables from dm to the differential of a 
coordinate is the key step in calculating the center of mass. 

With this expression for dm, Equation 12.5 for xcm becomes

 xcm =
1

M
 1M

L
 3x dx2 =

1

L
 3

L

0

x dx

where in the last step we’ve noted that summing “all the mass in 
the rod” means integrating from x = 0 to x = L. This is a straight-
forward integral to carry out, giving

 xcm =
1

L
 c x2

2
d

L

0
=

1

L
 c L2

2
- 0 d =

1

2
 L

The center of mass is at the center of the rod. For a 1.60-m-long 
rod, each tip of the rod rotates in a circle with r =

1
2 L = 0.80 m. 

The tangential acceleration, the rate at which the tip is speeding 
up, is

 at = ra = (0.80 m)(6.0 rad/s2 ) = 4.8 m/s2 

ASSESS You could have guessed that the center of mass is at the 
center of the rod, but now we’ve shown it rigorously.

ExAMPLE 12.2  The center of mass of a rod
Find the center of mass of a thin, uniform rod of length L and mass 
M. Use this result to find the tangential acceleration of one tip of 
a 1.60-m-long rod that rotates about its center of mass with an 
angular acceleration of 6.0 rad/s2.

ViSuALizE FiguRE 12.8 shows the rod. We’ve chosen a coordinate 
system such that the rod lies along the x-axis from 0 to L. Because 
the rod is “thin,” we’ll assume that ycm = 0.

y

x

x
0

Rod
Ldx

A small cell of width dx at position 
x has mass dm � (M/L)dx.

FiguRE 12.8 Finding the center of mass of a long, thin rod.

SOLVE Our first task is to find xcm, which lies somewhere on the 
x-axis. To do this, we divide the rod into many small cells of mass 
dm. One such cell, at position x, is shown. The cell’s width is dx. 
Because the rod is uniform, the mass of this little cell is the same 
fraction of the total mass M that dx is of the total length L. That is,

 
dm

M
=

dx

L

NOTE  For any symmetrical object of uniform density, the center of mass is at the 
physical center of the object. 

To see where the center-of-mass equations come from, FiguRE 12.9 shows an object 
rotating about its center of mass. Particle i is moving in a circle, so it must have a cen-
tripetal acceleration. Acceleration requires a force, and this force is due to tension in 
the molecular bonds that hold the object together. Force T

u

i on particle i has magnitude

 Ti = mi(ai)r = miriv
2 (12.6)

where ri is the distance of particle i from the center of mass and we used Equation 12.3 
for ar. All points in a rigid rotating object have the same angular velocity, so v doesn’t 
need a subscript.

At every instant of time, the internal tension forces are all paired as action/reaction 
forces, equal in magnitude but opposite in direction, so the sum of all the tension 
forces must be zero. That is, g T

u

i = 0
u

. The x-component of this sum is

 a
i

(Ti)x = a
i

Ti cos ui = a
i

(miriv
2) cos ui = 0 (12.7)

You can see from Figure 12.9 that cos ui = (xcm - xi)/ri. Thus

 a
i

(Ti)x = a
i

(miriv
2) 

xcm - xi

ri
= 1a

i

mixcm - a
i

mixi2v2 = 0 (12.8)

This equation will be true if the term in parentheses is zero. xcm is a constant, so we can 
bring it outside the summation to write

 a
i

mixcm - a
i

mixi = 1a
i

mi2 xcm - a
i

mixi = Mxcm - a
i

mixi = 0 (12.9)

v

v

x

y

xi

ycm

yi

Particle i

xcm

�

Ti

r

mi

ri

Center of mass. 
The object 
rotates around 
this point.

Force causing 
the centripetal 
acceleration of 
particle i

ui

FiguRE 12.9 Finding the center of mass.
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where we used the fact that gmi is simply the object’s total mass M. Solving for xcm, 
we find the x-coordinate of the object’s center of mass to be

 xcm =
1

M
 a

i

mixi =
m1x1 + m2x2 + m3x3 + g

m1 + m2 + m3 + g
 (12.10)

This was Equation 12.4. The y-equation is found similarly.

12.3 Rotational Energy
A rotating rigid body has kinetic energy because all atoms in the object are in motion. 
The kinetic energy due to rotation is called rotational kinetic energy.

FiguRE 12.10 shows a few of the particles making up a solid object that rotates with 
angular velocity v. Particle i, which rotates in a circle of radius ri, moves with speed 
vi = riv. The object’s rotational kinetic energy is the sum of the kinetic energies of 
each of the particles:

  Krot =
1

2
 m1v1 

2 +
1

2
 m2v2 

2 + g
  (12.11)

  =
1

2
 m1r1 

2v2 +
1

2
 m2r2 

2v2 + g =
1

2
 1a

i

miri 

22v2

The quantity gmiri 

2 is called the object’s moment of inertia I:

 I = m1r1 

2 + m2r2 

2 + m3r3 

2 + g = a
i

miri 

2 (12.12)

The units of moment of inertia are kg m2. An object’s moment of inertia depends on 
the axis of rotation. Once the axis is specified, allowing the values of ri to be deter-
mined, the moment of inertia about that axis can be calculated from Equation 12.12.

Written using the moment of inertia I, the rotational kinetic energy is

 Krot =
1

2
 Iv2 (12.13)

Rotational kinetic energy is not a new form of energy. This is the familiar kinetic 
energy of motion, only now expressed in a form that is especially convenient for rota-
tional motion. Notice the analogy with the familiar 12 mv 2.

v

v2
r

v1
r

3

2

Axle
1

r1
r2

m2

m3

m1

r3

Each particle in the object
has kinetic energy as the
object rotates.

v3
r

FiguRE 12.10 rotational kinetic energy is 
due to the motion of the particles.

SOLVE Rotational energy is K =
1
2 Iv2. The moment of inertia is 

measured about the rotation axis, thus

  I = a
i

miri 

2 = (0.25 kg)(0.080 m)2 + (0.15 kg)(0.060 m)2

  +  (0.30 kg)(0 m)2

  = 2.14 * 10-3 kg m2

The largest mass makes no contribution to I because it is right on 
the rotation axis with r = 0. With I known, the desired angular 
velocity is

  v = B 2K

I
= B 2(0.10 J)

2.14 * 10-3 kg m2

  = 9.67 rad/s *
1 rev

2p rad
= 1.54 rev/s = 92 rpm

ASSESS The moment of inertia depends on the distance of each 
mass from the rotation axis. The moment of inertia would be dif-
ferent for an axle passing through either of the other two masses, 
and thus the required angular velocity would be different.

ExAMPLE 12.3  A rotating widget
Students participating in an engineering project design the trian-
gular widget seen in FiguRE 12.11. The three masses, held together 
by lightweight plastic rods, rotate in the plane of the page about 
an axle passing through the right-angle corner. At what angular 
velocity does the widget have 100 mJ of rotational energy?

v

250 g 300 g

150 g

Axle

8.0 cm

6.0 cm

FiguRE 12.11 The rotating widget.

MOdEL The widget can be modeled as three particles connected 
by massless rods.
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Before rushing to calculate moments of inertia, let’s get a better understanding of the 
meaning. First, notice that moment of inertia is the rotational equivalent of mass. It 
plays the same role in Equation 12.13 as mass m in the now-familiar K =

1
2 mv 2. Recall 

that the quantity we call mass was actually defined as the inertial mass. Objects with 
larger mass have a larger inertia, meaning that they’re harder to accelerate. Similarly, 
an object with a larger moment of inertia is harder to rotate. The fact that moment of 
inertia retains the word “inertia” reminds us of this.

But why does the moment of inertia depend on the distances ri from the rotation 
axis? Think about the two wheels shown in FiguRE 12.12. They have the same total mass 
M and the same radius R. As you probably know from experience, it’s much easier to 
spin the wheel whose mass is concentrated at the center than to spin the one whose 
mass is concentrated around the rim. This is because having the mass near the center 
(smaller values of ri) lowers the moment of inertia.

Moments of inertia for many solid objects are tabulated and found in various sci-
ence and engineering handbooks. You would need to compute I yourself only for an 
object of unusual shape. Table 12.2 is a short list of common moments of inertia. We’ll 
see in the next section where these come from, but do notice how I depends on the 
rotation axis.

If the rotation axis is not through the center of mass, then rotation may cause the 
center of mass to move up or down. In that case, the object’s gravitational potential 
energy Ug = Mgycm will change. If there are no dissipative forces (i.e., if the axle 
is frictionless) and if no work is done by external forces, then the mechanical 
energy

 Emech = Krot + Ug =
1

2
 Iv2 + Mgycm (12.14)

is a conserved quantity.

Equal
mass

Axis Axis

Smaller moment
of inertia, easier
to spin

Larger moment
of inertia, harder
to spin

Mass concentrated
at the center

Mass concentrated
around the rim

R R

FiguRE 12.12 Moment of inertia depends 
on both the mass and how the mass is 
distributed.

TABLE 12.2 Moments of inertia of objects with uniform density

Object and axis Picture I Object and axis Picture I

Thin rod, 
about center

1
12 ML2 Cylinder or disk, 

about center

1
2 MR2

Thin rod, 
about end

1
3 ML2 Cylindrical hoop, 

about center
MR2

Plane or slab, 
about center

1
12 Ma2 Solid sphere, 

about diameter

2
5 MR2

Plane or slab, 
about edge

1
3 Ma2 Spherical shell, 

about diameter

2
3 MR2

L

L

a

b

a

b

R

R

R

R
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ViSuALizE FiguRE 12.13 is a familiar before-and-after pictorial rep-
resentation of the rod. We’ve placed the origin of the coordinate 
system at the pivot point.

SOLVE Mechanical energy is conserved, so we can equate the 
rod’s final mechanical energy to its initial mechanical energy:

 
1

2
 Iv1 

2 + Mgycm1 =
1

2
 Iv0 

2 + Mgycm0

The initial conditions are v0 = 0 and ycm0 = 0. The center of 
mass moves to ycm1 = -

1
2 L as the rod hits the wall. From Table 12.2 

we find I =
1
3 ML2 for a rod rotating about one end. Thus

 
1

2
 Iv1 

2 + Mgycm1 =
1

6
 ML2v1 

2 -
1

2
 MgL = 0

We can solve this for the rod’s angular velocity as it hits the wall:

 v1 = B 3g

L

The tip of the rod is moving in a circle with radius r = L. Its final 
speed is

 vtip = v1L = 23gL = 5.4 m/s

ASSESS Energy conservation is a powerful tool for rotational mo-
tion, just as it was for translational motion.

ExAMPLE 12.4  The speed of a rotating rod
A 1.0-m-long, 200 g rod is hinged at one end and connected to a 
wall. It is held out horizontally, then released. What is the speed of 
the tip of the rod as it hits the wall?

MOdEL The mechanical energy is conserved if we assume the 
hinge is frictionless. The rod’s gravitational potential energy is 
transformed into rotational kinetic energy as it “falls.”

�

�

Hinge
x

y

L � 1.0 m

Before:
v0 � 0 rad/s
ycm 0 � 0 m

m � 0.20 kg

After: ycm1 � �1
2L

Find: vtip � v1L
vtip
r

FiguRE 12.13 A before-and-after pictorial representation of the rod.

12.4 Calculating Moment of inertia
The equation for rotational energy is easy to write, but we can’t make use of it without 
knowing an object’s moment of inertia. Unlike mass, we can’t measure moment of 
inertia by putting an object on a scale. And while we can guess that the center of mass 
of a symmetrical object is at the physical center of the object, we can not guess the 
moment of inertia of even a simple object. To find I, we really must carry through the 
calculation.

Equation 12.12 defines the moment of inertia as a sum over all the particles in the 
system. As we did for the center of mass, we can replace the individual particles with 
cells 1, 2, 3, . . . of mass �m. Then the moment of inertia summation can be converted 
to an integration:

 I = a
i

ri 

2 �m 
�mS0

"  I = 3r2 dm (12.15)

where r is the distance from the rotation axis. If we let the rotation axis be the z-axis, 
then we can write the moment of inertia as

 I = 3 (x2 + y2) dm (12.16)

NOTE  You must replace dm by an equivalent expression involving a coor-
dinate differential such as dx or dy before you can carry out the integration of 
Equation 12.16. 

You can use any coordinate system to calculate the coordinates xcm and ycm of the 
center of mass. But the moment of inertia is defined for rotation about a particular axis, 
and r is measured from that axis. Thus the coordinate system used for moment-of-
inertia calculations must have its origin at the pivot point. Two examples will illustrate 
these ideas.
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If a complex object can be divided into simpler pieces 1, 2, 3, p whose moments 
of inertia I1, I2, I3 p are already known, the moment of inertia of the entire object is

 Iobject = I1 + I2 + I3 + g (12.17)

This follows from the fact that the sum I = gmiri 

2 can be broken into smaller sums 
over the simpler objects. Equation 12.17 is useful for solving many problems.

SOLVE Because the rod is thin, we can assume that y � 0 for all 
points on the rod. Thus

 I = 3x2 dm

The small amount of mass dm in the small length dx is dm =
(M/L) dx, as we found in Example 12.2. The rod extends from 
x = 0 to x = L, so the moment of inertia for a rod about one end is

 Iend =
M

L
 3

L

0

x2 dx =
M

L
  c x3

3
d

L

0
=

1

3
 ML2

ASSESS The moment of inertia involves a product of the total mass 
M with the square of a length, in this case L. All moments of in-
ertia have a similar form, although the fraction in front will vary. 
This is the result shown earlier in Table 12.2.

ExAMPLE 12.5  Moment of inertia of a rod about a pivot at one end
Find the moment of inertia of a thin, uniform rod of length L and 
mass M that rotates about a pivot at one end.

MOdEL An object’s moment of inertia depends on the axis of rota-
tion. In this case, the rotation axis is at the end of the rod.

ViSuALizE FiguRE 12.14 defines an x-axis with the origin at the 
pivot point.

x
x

0 L

dx

A small cell of width dx at position 
x has mass dm � (M/L)dx.

Pivot
point

FiguRE 12.14 Finding the moment of inertia about one end 
of a long, thin rod.

represent the area of this ring. The mass dm in this ring is the same 
fraction of the total mass M as dA is of the total area A. That is,

 
dm

M
=

dA

A

Thus the mass in the small area dA is

 dm =
M

A
 dA

This is the reasoning we used to find the center of mass of the rod 
in Example 12.2, only now we’re using it in two dimensions.

The total area of the disk is A = pR2, but what is dA? If we 
imagine unrolling the little ring, it would form a long, thin rect-
angle of length 2pr and height dr. Thus the area of this little ring 
is dA = 2pr dr. With this information we can write

 dm =
M

pR2 (2pr dr) =
2M

R2  r dr

Now we have an expression for dm in terms of a coordinate 
differential dr, so we can proceed to carry out the integration for I. 
Using Equation 12.15, we find

 Idisk = 3r2 dm = 3r212M

R2  r dr2 =
2M

R2 3
R

0

 r3 dr

where in the last step we have used the fact that the disk extends 
from r = 0 to r = R. Performing the integration gives

 Idisk =
2M

 R2  c r4

4
d

R

0
=

1

2
 MR2

ASSESS Once again, the moment of inertia involves a product of 
the total mass M with the square of a length, in this case R.

Find the moment of inertia of a circular disk of radius R and mass 
M that rotates on an axis passing through its center.

ViSuALizE FiguRE 12.15 shows the disk and defines distance r from 
the axis.

ExAMPLE 12.6  Moment of inertia of a circular disk about an axis through the center

A narrow ring of width dr has mass dm � (M/A)dA.
Its area is dA � width � circumference � 2pr dr.

FiguRE 12.15 Finding the moment of inertia 
of a disk about an axis through the center.

SOLVE This is a situation of great practical importance. To solve 
this problem, we need to use a two-dimensional integration 
scheme that you learned in calculus. Rather than dividing the 
disk into little boxes, let’s divide it into narrow rings of mass dm. 
Figure 12.15 shows one such ring, of radius r and width dr. Let dA 
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The Parallel-Axis Theorem
The moment of inertia depends on the rotation axis. Suppose you need to know the 
moment of inertia for rotation about the off-center axis in FiguRE 12.16. You can find 
this quite easily if you know the moment of inertia for rotation around a parallel axis 
through the center of mass.

If the axis of interest is distance d from a parallel axis through the center of mass, 
the moment of inertia is

 I = Icm + Md 2 (12.18)

Equation 12.18 is called the parallel-axis theorem. We’ll give a proof for the one-
dimensional object shown in FiguRE 12.17.

The x-axis has its origin at the rotation axis, and the x�@axis has its origin at the 
center of mass. You can see that the coordinates of dm along these two axes are related 
by x = x� + d. By definition, the moment of inertia about the rotation axis is

I = 3x2 dm = 3 (x� + d  )2 dm = 3 (x�)2 dm + 2d3x� dm + d 2
3dm (12.19)

The first of the three integrals on the right, by definition, is the moment of inertia Icm 
about the center of mass. The third is simply Md 2 because adding up (integrating) all 
the dm gives the total mass M.

If you refer back to Equations 12.5, the definition of the center of mass, you’ll see 
that the middle integral on the right is equal to Mx =

cm. But x =
cm = 0 because we specifi-

cally chose the x�-axis to have its origin at the center of mass. Thus the second integral 
is zero and we end up with Equation 12.18. The proof in two dimensions is similar.

An off-center
rotation axis

Axis through the
center of mass

The moment of inertia about
this axis is I � Icm � Md 2.

�

Mass M
d

FiguRE 12.16 rotation about an off-
center axis.

x

x�

x � x� � d

0

dm
Pivot

0

d x�

Use this axis for calculating
I about the pivot.

Use this axis for calculating Icm.

� cm

FiguRE 12.17 Proving the parallel-axis 
theorem.

rod. An axis 1
3 L from one end is d =

1
6 L from the center of mass. 

Using the parallel-axis theorem, we have

 I = Icm + Md 2 =
1

12
 ML2 + M11

6
 L2 2

=
1

9
 ML2

ExAMPLE 12.7  The moment of inertia of a thin rod
Find the moment of inertia of a thin rod with mass M and length L 
about an axis one-third of the length from one end.

SOLVE From Table 12.2 we know the moment of inertia about the 
center of mass is 1

12 ML2. The center of mass is at the center of the 

Stop to think 12.1  Four Ts are made from two identical rods of equal mass and 
length. Rank in order, from largest to smallest, the moments of inertia Ia  to Id  for rota-
tion about the dashed line.

12.5 Torque
Consider the common experience of pushing open a door. FiguRE 12.18 is a top view of 
a door hinged on the left. Four pushing forces are shown, all of equal strength. Which 
of these will be most effective at opening the door?

Force F
u

1 will open the door, but force F
u

2, which pushes straight at the hinge, will 
not. Force F

u

3 will open the door, but not as easily as F
u

1. What about F
u

4? It is perpen-
dicular to the door, it has the same magnitude as F

u

1, but you know from experience that 
pushing close to the hinge is not as effective as pushing at the outer edge of the door.

(a) (b) (c) (d)

F2

r

F1

r
F4

Hinge

Top view of door

r F3

r

FiguRE 12.18 The four forces have 
different effects on the swinging door.
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The ability of a force to cause a rotation depends on three factors:

 1. The magnitude F of the force.
 2. The distance r from the point of application to the pivot.
 3. The angle at which the force is applied.

To make these ideas specific, FiguRE 12.19 shows a force F
u

 applied at one point on a 
rigid body. For example, a string might be pulling on the object at that point, in which 
case the force would be a tension force.

NOTE  Angle f is measured counterclockwise from the dashed line that extends 
outward along the radial line. This is consistent with our sign convention for the 
angular position u. 

Let’s define a new quantity called the torque T (Greek tau) as

 t K rF sin f (12.20)

Torque depends on the three properties we just listed: the magnitude of the force, its 
distance from the pivot, and its angle. Loosely speaking, t measures the “effective-
ness” of the force at causing an object to rotate about a pivot. Torque is the rotational 
equivalent of force.

The SI units of torque are newton-meters, abbreviated N m. Although we defined 
1 N m = 1 J during our study of energy, torque is not an energy-related quantity and 
so we do not use joules as a measure of torque.

Torque, like force, has a sign. A torque that tries to rotate the object in a ccw direc-
tion is positive while a negative torque gives a cw rotation. FiguRE 12.20 summarizes the 
signs. Notice that a force pushing straight toward the pivot or pulling straight out from 
the pivot exerts no torque.

Torque is to rotational motion as force is 
to linear motion.

r

Pivot
point

Point 
where
force is
applied

Rigid body

y

x

Angle f is measured 
ccw from the radial line.

f

u

r
F

F exerts a torque 
about the pivot point.

r

r is measured from the pivot to the
point where the force is applied.

FiguRE 12.19 Force F
u

 exerts a torque 
about the pivot point.

NOTE  Torque differs from force in a very important way. Torque is calculated 
or measured about a pivot point. To say that a torque is 20 N m is meaningless. 
You need to say that the torque is 20 N m about a particular point. Torque can 
be calculated about any pivot point, but its value depends on the point chosen. 
In practice, we measure or calculate torques about the same point from which 
we measure an object’s angular position u (and thus its angular velocity v and 
angular acceleration a ) . This assumption is built into the equations of rotational 
dynamics. 

Returning to the door of Figure 12.18, you can see that F
u

1 is most effective at 
opening the door because F

u

1 exerts the largest torque about the pivot point. F
u

3 has 
equal magnitude, but it is applied at an angle less than 90� and thus exerts less torque. 
F
u

2, pushing straight at the hinge with f = 0�, exerts no torque at all. And F
u

4, with a 
smaller value for r, exerts less torque than F

u

1.

Pivot point

Radial line

Maximum positive 
torque for a force 
perpendicular to the 
radial line

Pushing straight 
at the pivot exerts 
zero torque.

A positive torque tries to rotate the 
object ccw about the pivot.

Pulling straight out from the 
pivot exerts zero torque.

A negative torque tries to rotate 
the object cw about the pivot.

Maximum negative torque for a force 
perpendicular to the radial line

FiguRE 12.20 Signs and strengths of the torque.



interpreting Torque
Torque can be interpreted from two perspectives. First, FiguRE 12.21a shows that the 
quantity F sin f is the tangential force component Ft. Consequently, the torque is

 t = rFt (12.21)

In other words, torque is the product of r with the force component Ft that is 
perpendicular to the radial line. This interpretation makes sense because the radial 
component of F

u

 points straight at the pivot point and cannot exert a torque.

A second perspective, widely used in applications, is based on the idea of a mo-
ment arm. FiguRE 12.21b shows the line of action, the line along which the force acts. 
The minimum distance between the pivot point and the line of action—the length of 
a line drawn perpendicular to the line of action—is called the moment arm (or the 
lever arm) d. Because sin(180� - u) = sin f, it is easy to see that d = r sin f. Thus the 
torque rF sin u can also be written

 0 t 0 = dF (12.22)

NOTE  Equation 12.22 gives only 0 t 0 , the magnitude of the torque; the sign has to 
be supplied by observing the direction in which the torque acts. 

r

y

x

(a)

F
r

Ft � F f

f

t � rFt

(b)

r
d

y

x

Torque is the force 
multiplied by the 
moment arm: 0t 0 � dF.

fr
F

The line of action is
the line along which
the force acts.

The moment arm
is the distance
between the pivot
point and the line
of action.

FiguRE 12.21 Two useful interpretations of the torque.

SOLVE The tangential component of the force is

 Ft = F sin f = -86.6 N

According to our sign convention, Ft is negative because it points 
in a cw direction. The torque, from Equation 12.21, is

 t = rFt = (0.20 m)(-86.6 N) = -17 N m

Alternatively, Figure 12.22 has drawn the line of action by ex-
tending the force vector forward and backward. The moment arm, 
the distance between the pivot point and the line of action, is

 d = r sin(60�) = 0.17 m

Inserting the moment arm in Equation 12.22 gives

 0 t 0 = dF = (0.17 m)(100 N) = 17 N m

The torque acts to give a cw rotation, so we insert a minus sign to 
end up with

 t = -17 N m

ASSESS Luis could increase the torque by changing the angle so 
that his pull is perpendicular to the wrench (f = -90�).

ExAMPLE 12.8  Applying a torque
Luis uses a 20-cm-long wrench to turn a nut. The wrench handle 
is tilted 30� above the horizontal, and Luis pulls straight down on 
the end with a force of 100 N. How much torque does Luis exert 
on the nut?

ViSuALizE FiguRE 12.22 shows the situation. The angle is a nega-
tive f = -120� because it is clockwise from the radial line.

20 cm

Moment arm d

30�
100 N

Luis’s pull

Line of action

f � �120�

FiguRE 12.22 A wrench being used to turn a nut.
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Net Torque
FiguRE 12.23 shows forces F

u

1, F
u

2, F
u

3, p applied to an extended object. The object is free 
to rotate about the axle, but the axle prevents the object from having any translational 
motion. It does so by exerting force F

u

axle on the object to balance the other forces and 
keep F

u

net = 0
u

.
Forces F

u

1, F
u

2, F
u

3, p  exert torques t1, t2, t3, p on the object, but F
u

axle does not 
exert a torque because it is applied at the pivot point and has zero moment arm. Thus 
the net torque about the axle is the sum of the torques due to the applied forces:

 tnet = t1 + t2 + t3 + g = a
i

 ti (12.23)

gravitational Torque
Gravity exerts a torque on many objects. If the object in FiguRE 12.24 is released, a 
torque due to gravity will cause it to rotate around the axle. To calculate the torque 
about the axle, we start with the fact that gravity acts on every particle in the object, 
exerting a downward force of magnitude Fi = mig on particle i. The magnitude of the 
gravitational torque on particle i is 0 ti 0 = dimig, where di is the moment arm. But we 
need to be careful with signs.

A moment arm must be a positive number because it’s a distance. If we establish a 
coordinate system with the origin at the axle, then you can see from FiguRE 12.24a that 
the moment arm di of particle i is 0 xi 0 . A particle to the right of the axle (positive xi)  
experiences a negative torque because gravity tries to rotate this particle in a clockwise 
direction. Similarly, a particle to the left of the axle (negative xi) has a positive torque. 
The torque is opposite in sign to xi, so we can get the sign right by writing

 ti = -ximig = -(mixi)g (12.24)

The net torque due to gravity is found by summing Equation 12.24 over all particles:

 tgrav = a
i

 ti = a
i

(-mixig) = - 1a
i

 mixi 2g (12.25)

But according to the definition of center of mass, Equations 12.4, gmixi = Mxcm. 
Thus the torque due to gravity is

 tgrav = -Mgxcm (12.26)

where xcm is the position of the center of mass relative to the axis of rotation.
Equation 12.26 has the simple interpretation shown in FiguRE 12.24b. Mg is the net 

gravitational force on the entire object, and xcm is the moment arm between the rota-
tion axis and the center of mass. The gravitational torque on an extended object of 
mass M is equivalent to the torque of a single force vector F

u

grav = -Mg jn  acting at the 
object’s center of mass.

In other words, the gravitational torque is found by treating the object as if all its 
mass were concentrated at the center of mass. This is the basis for the well-known 

Stop to think 12.2  Rank in order, from largest to smallest, the five torques ta  to te. The rods all have 
the same length and are pivoted at the dot.

2 N 2 N
4 N

2 N

4 N
45�

(a) (b) (c) (d) (e)

r

r

r

r

Axle

F2

r
F3

F4

F1

Faxle

r r
The axle exerts a force on the
object to keep Fnet � 0. This
force does not exert a torque.

FiguRE 12.23 The forces exert a net 
torque about the pivot point.

x1 xcm x20
x

xcm0
x

Gravity exerts a
positive torque
on particle 1.

d2d1

Moment arms

Axle

Axle

Moment arm of the net
gravitational force

m1g

m2g

The net torque due to gravity is
found by pretending the object’s
entire mass is at the center of mass.

Mg

(b)

(a) Gravity exerts a
negative torque
on particle 2.

cm�

cm�

FiguRE 12.24 Gravitational torque.
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technique of finding an object’s center of mass by balancing it. An object will balance 
on a pivot, as shown in FiguRE 12.25, only if the center of mass is directly above the pivot 
point. If the pivot is not under the center of mass, the gravitational torque will cause 
the object to rotate.

NOTE  The point at which gravity acts is also called the center of gravity. As long 
as gravity is uniform over the object—always true for earthbound objects—there’s 
no difference between center of mass and center of gravity. 

The line of action passes
through the pivot.

Pivot

Mg

�

FiguRE 12.25 An object balances on a pivot 
that is directly under the center of mass.

MOdEL The center of mass of the beam is at the midpoint. 
xcm = -0.80 m is measured from the pivot point.

SOLVE This is a straightforward application of Equation 12.26. 
The gravitational torque is

  tgrav = -Mgxcm = - (500 kg)(9.80 m/s2)(-0.80 m)

  = 3920 N m

ASSESS The torque is positive because gravity tries to rotate the 
beam ccw around the point of support. Notice that the beam in 
Figure 12.26 is not in equilibrium. It will fall over unless other 
forces, not shown, are supporting it.

ExAMPLE 12.9  The gravitational torque on a beam
The 4.00-m-long, 500 kg steel beam shown in FiguRE 12.26 is sup-
ported 1.20 m from the right end. What is the gravitational torque 
about the support?

�

Mg 0.80 m 1.20 m

4.00 m
cm

FiguRE 12.26 A steel beam supported 
at one point.

12.6 Rotational dynamics
What does a torque do? A torque causes an angular acceleration. To see why, FiguRE 12.27 
shows a rigid body undergoing pure rotational motion about a fixed and unmoving axis. 
This might be an unconstrained rotation about the object’s center of mass, such as we 
considered in Section 12.2. Or it might be an object, such as a pulley or a turbine, rotating 
on an axle.

The forces F
u

1, F
u

2, F
u

3, p in Figure 12.27 are external forces acting on particles of 
masses m1, m2, m3, p  that are part of the rigid body. These forces exert torques t1, t2, 
t3, p about the rotation axis. The net torque on the object is the sum of the torques on 
all the individual particles in the object:

 tnet = a
i

 ti (12.27)

Focus on particle i, which is acted on by force F
u

i and undergoes circular motion 
with radius ri. In Chapter 8, we found that the radial component of F

u

i is responsible 
for the centripetal acceleration of circular motion, while the tangential component 
(Fi)t causes the particle to speed up or slow down with a tangential acceleration (ai)t. 
Newton’s second law is

 (Fi)t = mi(ai)t = miria (12.28)

where in the last step we used the relationship between tangential and angular ac-
celeration: at = ra. The angular acceleration a does not have a subscript because all 
particles in the object have the same angular acceleration. That is, a is the angular 
acceleration of the entire object. 

Multiplying both sides by ri gives

 ri(Fi)t = miri 

2a (12.29)

But ri(Fi)t is the torque ti on particle i; hence Newton’s second law for a single particle 
in the object is

 ti = miri 

2a (12.30)

Returning now to Equation 12.27, we see that the net torque on the object in 
Figure 12.27 is

 tnet = a
i

 ti = a
i

 miri 

2a = 1a
i

 miri 

2 2a (12.31)

Rotation
axis

Particle 1 is at radius r1

and has mass m1.

These forces exert a net
torque about the rotation
axis and cause the object
to have an angular
acceleration.

r1

F3

rF1

r

F2

r

FiguRE 12.27 The external forces on 
a rigid body exert a torque about the 
rotation axis and thus cause an angular 
acceleration.
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In the last step, we factored out a by using the key idea that every particle in a rotating 
rigid body has the same angular acceleration.

You’ll recognize the quantity in parentheses as the moment of inertia I. Substitut-
ing the moment of inertia into Equation 12.31 puts the final piece of the puzzle into 
place. An object that experiences a net torque tnet about the axis of rotation undergoes 
an angular acceleration

 a =
tnet

I
  (Newton>s second law for rotational motion) (12.32)

where I is the object’s moment of inertia about the rotation axis. This result, Newton’s 
second law for rotation, is the fundamental equation of rigid-body dynamics.

In practice we often write tnet = Ia, but Equation 12.32 better conveys the idea that 
torque is the cause of angular acceleration. In the absence of a net torque (tnet = 0), 
the object either does not rotate (v = 0) or rotates with constant angular velocity 
(v = constant).

Table 12.3 summarizes the analogies between linear and rotational dynamics.

TABLE 12.3 rotational and linear dynamics

Rotational dynamics Linear dynamics

torque tnet force F
u

net

moment of inertia I mass m

angular acceleration a acceleration a
u

second law a = tnet/I second law a
u

= F
u

net/m

SOLVE Our strategy will be to use Newton’s second law to find 
the angular acceleration, followed by rotational kinematics to 
find v. We’ll need to determine the moment of inertia, and that 
requires knowing the distances of the two rockets from the rota-
tion axis. As we did in Example 12.1, we choose a coordinate 
system in which the masses are on the x-axis and in which m1 is 
at the origin. Then

  xcm =
m1x1 + m2x2

m1 + m2

  =
(100,000 kg)(0 m) + (200,000 kg)(90 m)

100,000 kg + 200,000 kg
= 60 m

The structure’s center of mass is r1 = 60 m from the 100,000 kg 
rocket and r2 = 30 m from the 200,000 kg rocket. The moment of 
inertia about the center of mass is

 I = m1r1 

2 + m2r2 

2 = 540,000,000 kg m2

The two rocket thrusts exert net torque

  tnet = r1F1 + r2F2 = (60 m)(50,000 N) + (30 m)(50,000 N)

  = 4,500,000 N m

With I and tnet now known, we can use Newton’s second law 
to find the angular acceleration:

 a =
t

I
=

4,500,000 N m

540,000,000 kg m2 
= 0.00833 rad/s2

ExAMPLE 12.10  Rotating rockets
Far out in space, a 100,000 kg rocket and a 200,000 kg rocket 
are docked at opposite ends of a motionless 90-m-long connecting 
tunnel. The tunnel is rigid and its mass is much less than that of 
either rocket. The rockets start their engines simultaneously, each 
generating 50,000 N of thrust in opposite directions. What is the 
structure’s angular velocity after 30 s?

MOdEL The entire structure can be modeled as two masses at the 
ends of a massless, rigid rod. There’s no net force, so the structure 
does not undergo translational motion, but the thrusts do create 
torques that will give the structure angular acceleration and cause 
it to rotate. We’ll assume the thrust forces are perpendicular to the 
connecting tunnel. This is an unconstrained rotation, so the struc-
ture will rotate about its center of mass.

ViSuALizE FiguRE 12.28 shows the rockets and defines distances r1 
and r2 from the center of mass.

xcm

x2 � 90 m

x

x1 � 0

F2 � 50,000 N
m2 � 200,000 kg

F1 � 50,000 N
m1 � 100,000 kg

r2

r1

F2

90 m

tunnel

�

cm

r

F1

r

FiguRE 12.28 The thrusts exert a torque on the structure.
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Stop to think 12.3  Rank in order, from largest to smallest, the angular accelerations 
aa to ae.

12.7 Rotation About a Fixed Axis
In this section we’ll look at rigid bodies that rotate about a fixed axis. The problem-
solving strategy for rotational dynamics is very similar to that for linear dynamics.

ASSESS Few of us have the experience to judge whether or not 
0.25 rad/s is a reasonable answer to this problem. The significance 
of the example is to demonstrate the approach to a rotational dy-
namics problem.

After 30 seconds, the structure’s angular velocity is

 v = a�t = 0.25 rad/s

4 m

2 m2 m2 m

4 m

2 kg

2 kg2 kg

(e)(d)

(c)(b)(a)

2 kg

4 kg2 kg2 kg

2 kg

1 N 1 N

1 N

2 N

1 N 1 N

1 N

2 N

2 kg 4 kg

2 N

2 N

30�
30�

PROBLEM-SOLViNg
STRATEgy 12.1  Rotational dynamics problems

MOdEL Model the object as a simple shape.

ViSuALizE Draw a pictorial representation to clarify the situation, define coordi-
nates and symbols, and list known information.

 ■	 Identify the axis about which the object rotates.
 ■	 Identify forces and determine their distances from the axis. For most prob-

lems it will be useful to draw a free-body diagram.
 ■	 Identify any torques caused by the forces and the signs of the torques.

SOLVE The mathematical representation is based on Newton’s second law for 
rotational motion:

 tnet = Ia  or  a =
tnet 

I

 ■	 Find the moment of inertia in Table 12.2 or, if needed, calculate it as an inte-
gral or by using the parallel-axis theorem.

 ■	 Use rotational kinematics to find angles and angular velocities.

ASSESS Check that your result has the correct units, is reasonable, and answers 
the question.

exercise 26 
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SOLVE The moment of inertia of a rod rotating about its center is 
found from Table 12.2:

 I =
1

12
 ML2 =

1

12
 (40 kg)(2.0 m)2 = 13.33 kg m2

The 60 N m torque of the engine causes an angular acceleration

 a =
t

I
=

60 N m

13.33 kg m2 
= 4.50 rad/s2

The time needed to reach vf = 200 rpm = 3.33 rev/s =  
20.9 rad/s  is

 �t =
�v

a
=

vf - vi

a
=

20.9 rad/s - 0 rad/s

4.5 rad/s2 = 4.6 s

ASSESS We’ve assumed a constant angular acceleration, which is 
reasonable for the first few seconds while the propeller is still turn-
ing slowly. Eventually, air resistance and friction will cause op-
posing torques and the angular acceleration will decrease. At full 
speed, the negative torque due to air resistance and friction cancels 
the torque of the engine. Then tnet = 0 and the propeller turns at 
constant angular velocity with no angular acceleration.

ExAMPLE 12.11  Starting an airplane engine
The engine in a small airplane is specified to have a torque of 
60 N m. This engine drives a 2.0-m-long, 40 kg propeller. On 
start-up, how long does it take the propeller to reach 200 rpm?

MOdEL The propeller can be modeled as a rod that rotates about 
its center. The engine exerts a torque on the propeller.

ViSuALizE FiguRE 12.29 shows the propeller and the rotation axis.

tion. The center of mass is to the left of the axle, at xcm = -  12 R; 
thus the gravitational torque is

 tgrav = -Mgxcm =
1

2
 MgR

This is a positive torque, as expected. The net torque, including 
the cable tension, is

 tnet = tgrav + tcable =
1

2
 MgR +

1

2
 RT = 3.73 N m

To find the angular acceleration, we need to know the moment of 
inertia about the axle. This is where the parallel-axis theorem is 
useful. We know the moment of inertia about an axis through the 
center from Table 12.2. The axle is offset by d =

1
2 R. Thus

  I = Icm + Md 2 =
1

2
 MR2 + M11

2
 R2 2

=
3

4
 MR2

  = 9.38 * 10-3 kg m2

The torque causes an angular acceleration

 a =
tnet 

I
=

3.73 N m

9.38 * 10-3 kg m2 = 400 rad/s2

The angular acceleration is positive, indicating that the disk begins 
rotating in a ccw direction.

ASSESS As the disk rotates, tnet  will change as the moment arms 
change. Consequently, the disk will not have constant angular 
acceleration. This is simply the initial value of a.

ExAMPLE 12.12  An off-center disk
FiguRE 12.30 shows a piece of a large machine. A 10.0-cm-
diameter, 5.0 kg disk turns on an axle. A vertical cable attached to 
the edge of the disk exerts a 100 N force but, initially, a pin keeps 
the disk from rotating. What is the initial angular acceleration of 
the disk when the pin is removed?

Axis

L � 2.0 m

M � 40 kgThe torque from
the engine rotates
the propeller.

FiguRE 12.29 A rotating airplane propeller.

M � 5.0 kg

Cable
10.0 cm

�

100 N

Pin

Axle

2.5 cm 2.5 cm

Mg

r
Faxle

r
T

FiguRE 12.30 A disk rotates on an off-
center axle after the pin is removed.

MOdEL The disk has an off-center axle. Gravity and tension exert 
torques about the axle.

ViSuALizE Both the cable tension and gravity rotate the disk ccw, 
so their torques are positive.

SOLVE After the pin is removed, the forces on the disk are a down-
ward gravitational force, an upward force from the cable, and a 
force exerted by the axle. The axle force, which is exerted at the 
pivot, does not contribute to the torque and doesn’t affect the rota-



Constraints due to Ropes and Pulleys
Many important applications of rotational dynamics involve objects, such as pulleys, 
that are connected via ropes or belts to other objects. FiguRE 12.31 shows a rope passing 
over a pulley and connected to an object in linear motion. If the rope does not slip as the 
pulley rotates, then the rope’s speed vrope must exactly match the speed of the rim of the 
pulley, which is vrim = 0v 0R. If the pulley has an angular acceleration, the rope’s accel-
eration arope must match the tangential acceleration of the rim of the pulley, at = 0a 0R.

The object attached to the other end of the rope has the same speed and acceleration 
as the rope. Consequently, an object connected to a pulley of radius R by a rope that 
does not slip must obey the constraints

 vobj = 0v 0R
 (motion constraints for a nonslipping rope) (12.33)
 aobj = 0a 0R

These constraints are very similar to the acceleration constraints introduced in 
Chapter 7 for two objects connected by a string or rope.

NOTE  The constraints are given as magnitudes. Specific problems will need to 
introduce signs that depend on the direction of motion and on the choice of coor-
dinate system. 

R

The motion of the object must
match the motion of the rim.

Rim acceleration � 0a 0R
Rim speed � 0v 0R

aobj � 0a 0R  
vobj � 0v 0R

Nonslipping rope

v

FiguRE 12.31 The rope’s motion must 
match the motion of the rim of the 
pulley.

arm for the tension is d = R, and the torque is positive because 
the string turns the cylinder ccw. Thus tstring = TR and Newton’s 
second law for the rotational motion is

 a =
tnet 

I
=

TR
1
2 MR2

=
2T

MR

The moment of inertia of a cylinder rotating about a center axis 
was taken from Table 12.2.

The last piece of information we need is the constraint due to 
the fact that the string doesn’t slip. Equation 12.33 relates only the 
absolute values, but in this problem a is positive (ccw accelera-
tion) while ay is negative (downward acceleration). Hence

 ay = -aR

Using a from the cylinder’s equation in the constraint, we find

 ay = -aR = -  
2T

MR
 R = -  

2T

M

Thus the tension is T = -
1
2 May. If we use this value of the tension 

in the bucket’s equation, we can solve for the acceleration:

 may = -  
1

2
 May - mg

 ay = -  
g

(1 + M/2m)
= -7.84 m/s2

The time to fall through �y = -1.0 m is found from kinematics:

  �y =
1

2
 ay  (�t)2

 �t = B 2�y

ay
= B 2(-1.0 m)

-7.84 m/s2 = 0.50 s

ASSESS The expression for the acceleration gives ay = -g if 
M = 0. This makes sense because the bucket would be in free fall 
if there were no cylinder. When the cylinder has mass, the down-
ward force of gravity on the bucket has to accelerate the bucket 
and spin the cylinder. Consequently, the acceleration is reduced 
and the bucket takes longer to fall.

ExAMPLE 12.13  Lowering a bucket
A 2.0 kg bucket is attached to a massless string that is wrapped 
around a 1.0 kg, 4.0-cm-diameter cylinder, as shown in Fig-

uRE 12.32a. The cylinder rotates on an axle through the center. The 
bucket is released from rest 1.0 m above the floor. How long does 
it take to reach the floor?

(a) (b)

FiguRE 12.32 The falling bucket turns the cylinder.

MOdEL Assume the string does not slip.

ViSuALizE FiguRE 12.32b shows the free-body diagram for the cyl-
inder and the bucket. The string tension exerts an upward force on 
the bucket and a downward force on the outer edge of the cylinder. 
The string is massless, so these two tension forces act as if they are 
an action/reaction pair: Tb = Tc = T.

SOLVE Newton’s second law applied to the linear motion of the 
bucket is

 may = T - mg

where, as usual, the y-axis points upward. What about the cylin-
der? The only torque comes from the string tension. The moment 
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12.8 Static Equilibrium
We now have two versions of Newton’s second law: F

u

net = Ma
u
 for translational mo-

tion and tnet = Ia for rotational motion. The condition for a rigid body to be in static 
equilibrium is both F

u

net = 0
u

 and tnet = 0. That is, no net force and no net torque. An 
important branch of engineering called statics analyzes buildings, dams, bridges, and 
other structures in total static equilibrium.

No matter which pivot point you choose, an object that is not rotating is not rotat-
ing about that point. This would seem to be a trivial statement, but it has an important 
implication: For a rigid body in total equilibrium, there is no net torque about any 
point. This is the basis of a problem-solving strategy.

Structures such as bridges are analyzed in 
engineering statics.

PROBLEM-SOLViNg
STRATEgy 12.2  Static equilibrium problems

MOdEL Model the object as a simple shape.

ViSuALizE Draw a pictorial representation showing all forces and distances. List 
known information.

 ■	 Pick any point you wish as a pivot point. The net torque about this point 
is zero.

 ■	 Determine the moment arms of all forces about this pivot point.
 ■	 Determine the sign of each torque about this pivot point.

SOLVE The mathematical representation is based on the fact that an object in 
total equilibrium has no net force and no net torque:

 F
u

net = 0
u

  and  tnet = 0

 ■	 Write equations for gFx = 0, gFy = 0, and gt = 0.
 ■	 Solve the three simultaneous equations.

ASSESS Check that your result is reasonable and answers the question.

Although you can pick any point you wish as a pivot point, some choices make the 
problem easier than others. Often the best choice is a point at which several forces act 
because the torques exerted by those forces will be zero.

ExAMPLE 12.14  Lifting weights
Weightlifting can exert extremely large forces on the body’s 
joints and tendons. In the strict curl event, a standing athlete uses 
both arms to lift a barbell by moving only his forearms, which 
pivot at the elbows. The record weight lifted in the strict curl is 
over 200 pounds (about 900 N). FiguRE 12.33 shows the arm bones 
and the biceps, the main lifting muscle when the forearm is hori-
zontal. What is the tension in the tendon connecting the biceps 
muscle to the bone while a 900 N barbell is held stationary in this 
position?

MOdEL Model the arm as two rigid rods connected by a hinge. 
We’ll ignore the arm’s weight because it is so much less than that 
of the barbell. Although the tendon pulls at a slight angle, it is 
close enough to vertical that we’ll treat it as such.

Lifting muscle
(biceps)

Elbow joint

4.0 cm

35 cm

FiguRE 12.33 An arm holding a barbell.
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ViSuALizE FiguRE 12.34 shows the forces acting on our simplified 
model of the forearm. The biceps pulls the forearm up against the 
upper arm at the elbow, so the force F

u

elbow on the forearm at the 
elbow—a force due to the upper arm—is a downward force.

Fbarbell

r

These forces cause
torques about the elbow.

darm

dtendon

Known
dtendon � 4.0 cm
darm    � 35 cm
Fbarbell � 450 N

Find
Ftendon

Ftendon

r

Felbow

r

FiguRE 12.34 A pictorial representation 
of the forces involved.

SOLVE Static equilibrium requires both the net force and the net 
torque on the forearm to be zero. Only the y-component of force is 
relevant, and setting it to zero gives a first equation:

 aFy = Ftendon - Felbow - Fbarbell = 0

Because each arm supports half the weight of the barbell, Fbarbell =  
450 N. We don’t know either Ftendon or Felbow, nor does the force 
equation give us enough information to find them. But the fact that 
the net torque also must be zero gives us that extra information. 
The torque is zero about every point, so we can choose any point 
we wish to calculate the torque. The elbow joint is a convenient 
point because force F

u

elbow exerts no torque about this point; its mo-
ment arm is zero. Thus the torque equation is

 tnet = dtendonFtendon - darmFbarbell = 0

The tension in the tendon tries to rotate the arm ccw, so it produces 
a positive torque. Similarly, the torque due to the barbell is nega-
tive. We can solve the torque equation for Ftendon to find

 Ftendon = Fbarbell 
darm

dtendon
= (450 N) 

35 cm

4.0 cm
= 3900 N

ASSESS The short distance dtendon from the tendon to the elbow 
joint means that the force supplied by the biceps has to be very 
large to counter the torque generated by a force applied at the op-
posite end of the forearm. Although we ended up not needing the 
force equation in this problem, we could now use it to calculate 
that the force exerted at the elbow is Felbow = 3450 N. These large 
forces can easily damage the tendon or the elbow.

ExAMPLE 12.15  Walking the plank
Adrienne (50 kg) and Bo (90 kg) are playing on a 100 kg rigid 
plank resting on the supports seen in FiguRE 12.35. If Adrienne 
stands on the left end, can Bo walk all the way to the right end 
without the plank tipping over? If not, how far can he get past the 
support on the right?

here.) Force n
u

1 will decrease as Bo moves to the right, and the tip-
ping point occurs when n1 = 0. The plank remains in static equi-
librium right up to the tipping point, so both the net force and the 
net torque on it are zero. The force equation is

  aFy = n1 + n2 - nA - nB - Mg

  = n1 + n2 - mAg - mBg - Mg = 0

2.0 m 3.0 m 4.0 m

FiguRE 12.35 Adrienne and Bo on the plank.

MOdEL Model Adrienne and Bo as particles. Assume the plank is 
uniform, with its center of mass at the center.

ViSuALizE FiguRE 12.36 shows the forces acting on the plank. Both 
supports exert upward forces. n

u

A and n
u

B are the normal forces of 
Adrienne’s and Bo’s feet pushing down on the board.

SOLVE Because the plank is resting on the supports, not held 
down, forces n

u

1 and n
u

2 must point upward. (The supports could 
pull down if the plank were nailed to them, but that’s not the case 

Physics for Scientists and Engineers 3e
Knight
Benjamin Cummings
Pearson Education
7409012054
Fig 12_36
Pickup: 3273612054
Rolin Graphics
lm    3/3/11    18p0 x 13p4
bj     5/5/11

Calculate torques
about this point.

FiguRE 12.36 A pictorial representation of the forces on 
the plank.

Continued
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Adrienne is at rest, with zero net force, so her downward force on 
the board, an action/reaction pair with the upward normal force 
of the board on her, equals her weight: nA = mAg. Bo’s center of 
mass oscillates up and down as he walks, so he’s not in equilibrium 
and, strictly speaking, nB � mBg. But we’ll assume that he edges 
out onto the board slowly, with minimal bouncing, in which case 
nB = mBg is a reasonable approximation.

We can again choose any point we wish for calculating torque. 
Let’s use the support on the left. Adrienne and the support on the 
right exert positive torques about this point; the other forces exert 
negative torques. Force n

u

1 exerts no torque, since it acts at the 
pivot point. Thus the torque equation is

 tnet = dAmAg - dBmBg - dMMg + d2n2 = 0

At the tipping point, where n1 = 0, the force equation gives n2 = 
(mA + mB + M)g. Substituting this into the torque equation and 
then solving for Bo’s position give

 dB =
dAmA - dMM + d2(mA + mB + M)

mB 
= 6.3 m

Bo doesn’t quite make it to the end. The plank tips when he’s 
6.3 m past the left support, our pivot point, and thus 3.3 m past the 
support on the right.

ASSESS We could have solved this problem somewhat more sim-
ply had we chosen the support on the right for calculating the 
torques. However, you might not recognize the “best” point for 
calculating the torques in a problem. The point of this example is 
that it doesn’t matter which point you choose.

The net torque is zero about any point, so which should we 
choose? The bottom corner of the ladder is a good choice because 
two forces pass through this point and have no torque about it. The 
torque about the bottom corner is

 tnet = d1FG - d2n2 =
1

2
 (L cos 60�)Mg - (L sin 60�)n2 = 0

The signs are based on the observation that F
u

G would cause the 
ladder to rotate ccw while n

u

2 would cause it to rotate cw. All 
together, we have three equations in the three unknowns n1, n2, 
and fs. If we solve the third for n2,

 n2 =

1
2 (L cos 60�)Mg

L sin 60�
=

Mg

2 tan 60�

we can then substitute this into the first to find

 fs =
Mg

2 tan 60�

Our model of friction is fs … fs max = msn1. We can find n1 from 
the second equation: n1 = Mg. Using this, the model of static fric-
tion tells us that

 fs … msMg

Comparing these two expressions for fs, we see that ms must obey

 ms Ú
1

2 tan 60�
= 0.29

Thus the minimum value of the coefficient of static friction is 0.29.

ASSESS You know from experience that you can lean a ladder or 
other object against a wall if the ground is “rough,” but it slips if 
the surface is too smooth. 0.29 is a “medium” value for the coef-
ficient of static friction, which is reasonable.

ExAMPLE 12.16  Will the ladder slip?
A 3.0-m-long ladder leans against a frictionless wall at an angle 
of 60�. What is the minimum value of ms  , the coefficient of static 
friction with the ground, that prevents the ladder from slipping?

MOdEL The ladder is a rigid rod of length L. To not slip, it must 
be in both translational equilibrium (F

u

net = 0
u

) and rotational equi-
librium (tnet = 0).

ViSuALizE FiguRE 12.37 shows the ladder and the forces acting on it.

�Center
of mass

Static friction
prevents slipping.

Gravity acts at
the center of mass.

fs

r

n1
r

r

n2
r

d2

FG

d1

L � 3.0 m

60� �net � 0 about
this point.

FiguRE 12.37 A ladder in total equilibrium.

SOLVE The x- and y-components of F
u

net = 0
u

 are

  aFx = n2 - fs = 0

  aFy = n1 - Mg = 0

Balance and Stability
If you tilt a box up on one edge by a small amount and let go, it falls back down. If you 
tilt it too much, it falls over. And if you tilt “just right,” you can get the box to balance 
on its edge. What determines these three possible outcomes?

FiguRE 12.38 illustrates the idea with a car, but the results are general and apply 
in many situations. As long as the object’s center of mass remains over the base of 



support, torque due to gravity will rotate the object back toward its stable equilibrium 
position. But if the center of mass gets outside the base of support, the torque due to 
gravity causes a rotation in the opposite direction. Now the box falls over or the car 
rolls over.

A critical angle uc is reached when the center of mass is directly over the pivot 
point. This is the point of balance, with no net torque. For vehicles, the distance be-
tween the tires is called the track width t. If the height of the center of mass is h, you 
can see from FiguRE 12.38b that the critical angle is

 uc = tan-11 t

2h 2
For passenger cars with h � 0.33t, the critical angle is uc � 57�. But for a sport 

utility vehicle (SUV) with h � 0.47t, a higher center of mass, the critical angle is 
only uc � 47�. Loading an SUV with cargo further raises the center of gravity, espe-
cially if the roof rack is used, thus reducing uc even more. Various automobile safety 
groups have determined that a vehicle with uc 7 50� is unlikely to roll over in an 
accident. A rollover becomes increasingly likely when uc is reduced below 50�. The 
general rule is that a wider base of support and/or a lower center of mass improve 
stability.

The torque due to gravity
will bring the car back down
as long as the center of mass
is above the base of support.

The vehicle is at the critical
angle uc when its center of
mass is exactly over the pivot.

Base of
support

Base of
support

h

t/2

(a) (b) (c)

uc

ucPivot

�
�

Now the center of mass is
outside the base of support.
Torque due to gravity will
cause the car to roll over.

�

FiguRE 12.38 Stability depends on the position of the center of mass.

This dancer balances en pointe by having 
her center of mass directly over her toes, 
her base of support.

ViSuALizE FiguRE 12.39 shows a can at the critical angle. This is 
the tallest possible can. A shorter can would have its center of 
mass inside the base of support and would be stable; a taller can 
would have its center of mass outside the base of support and 
would fall over.

SOLVE For a can whose height puts it at the critical angle, the line 
of action is a diagonal through the can. If the height is hmax and the 
diameter of the base b, we see from the figure that tan 30� = b/hmax 
and thus

 hmax =
b

tan 30�
=

7.5 cm

tan 30�
= 13 cm

ASSESS A typical can of soup is just under 13 cm tall. It will stand 
on a 30� incline—try it!—but anything taller will fall over.

ExAMPLE 12.17  Tilting cans
A typical can of food is 7.5 cm in diameter. What is the tallest can 
of food that can rest on a 30� incline without falling over?

MOdEL Assume the food inside is uniformly distributed so that 
the center of mass is at the center of the can.

The tallest possible can
has its center of mass
directly over the pivot
point.

b

30�

Line of action

30�

FG

hmax

� r

FiguRE 12.39 A can balanced at the critical angle.
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Stop to think 12.4  A student holds a meter stick straight out with one or more masses 
dangling from it. Rank in order, from most difficult to least difficult, how hard it will 
be for the student to keep the meter stick from rotating.

12.9 Rolling Motion
Rolling is a combination motion in which an object rotates about an axis that is moving 
along a straight-line trajectory. For example, FiguRE 12.40 is a time-exposure photo of a roll-
ing wheel with one lightbulb on the axis and a second lightbulb at the edge. The axis light 
moves straight ahead, but the edge light follows a curve called a cycloid. Let’s see if we can 
understand this interesting motion. We’ll consider only objects that roll without slipping.

FiguRE 12.41 shows a round object—a wheel or a sphere—that rolls forward exactly 
one revolution. The point that had been on the bottom follows the cycloid, the curve 
you saw in Figure 12.40, to the top and back to the bottom. Because the object doesn’t 
slip, the center of mass moves forward exactly one circumference: �xcm = 2pR.

1000 g

50 cm

500 g 500 g 500 g
1000 g

50 cm
(a) (b) (c) (d)

Path of wheel rim

Path of center of wheel

FiguRE 12.40 The trajectories of the 
center of a wheel and of a point on 
the rim are seen in a time-exposure 
photograph.

R R

Cycloid path followed
by the point on the rim Object rolls one revolution

without slipping.

�xcm � vcm�t � 2pR

vcm
r vcm

r vcm
r

FiguRE 12.41 An object rolling through one revolution.

We can also write the distance traveled in terms of the velocity of the center of 
mass: �xcm = vcm �t. But �t, the time it takes the object to make one complete revolu-
tion, is nothing other than the rotation period T. In other words, �xcm = vcmT.

These two expressions for �xcm come from two perspectives on the motion: one 
looking at the rotation and the other looking at the translation of the center of mass. 
But it’s the same distance no matter how you look at it, so these two expressions must 
be equal. Consequently,

 �xcm = 2pR = vcmT  (12.34)

If we divide by T, we can write the center-of-mass velocity as

 vcm =
2p

T
 R (12.35)

But 2p/T  is the angular velocity v, as you learned in Chapter 4, leading to

 vcm = Rv (12.36)

Equation 12.36 is the rolling constraint, the basic link between translation and rota-
tion for objects that roll without slipping.

NOTE  The rolling constraint is equivalent to Equation 12.33 for the speed of a 
rope that doesn’t slip as it passes over a pulley. 



Let’s look carefully at a particle in the rolling object. As FiguRE 12.42a shows, the 
position vector r 

u

i for particle i is the vector sum r 
u

i = r 
u

cm + r 
u

i, rel. Taking the time de-
rivative of this equation, we can write the velocity of particle i as

 v  

u

i = v  

u

cm + v  

u

i, rel (12.37)

In other words, the velocity of particle i can be divided into two parts: the velocity v  

u

cm 
of the object as a whole plus the velocity v  

u

i, rel of particle i relative to the center of mass 
(i.e., the velocity that particle i would have if the object were only rotating and had no 
translational motion).

FiguRE 12.42b applies this idea to point P at the very bottom of the rolling object, the 
point of contact between the object and the surface. This point is moving around the 
center of the object at angular velocity v, so vi, rel = -Rv. The negative sign indicates 
that the motion is cw. At the same time, the center-of-mass velocity, Equation 12.36, 
is vcm = Rv. Adding these, we find that the velocity of point P, the lowest point, is 
vi = 0. In other words, the point on the bottom of a rolling object is instantaneously 
at rest.

Although this seems surprising, it is really what we mean by “rolling without slip-
ping.” If the bottom point had a velocity, it would be moving horizontally relative to 
the surface. In other words, it would be slipping or sliding across the surface. To roll 
without slipping, the bottom point, the point touching the surface, must be at rest.

FiguRE 12.43 shows how the velocity vectors at the top, center, and bottom of a rotat-
ing wheel are found by adding the rotational velocity vectors to the center-of-mass 
velocity. You can see that vbottom = 0 and that vtop = 2Rv = 2vcm.

ri
r

rcm
r

ri,rel
r

Particle i

(a)

cm

Position of particle
i relative to the
center of mass

Center-of- 
mass position

�

x

y

R

Point P

(b)

Translational velocity
of point P

Rotational velocity
of point P

The sum of the two
velocities is zero. Point P
is instantaneously at rest.

�

x

y

vcm � Rv

vi,rel � �Rv

v

FiguRE 12.42 The motion of a particle in 
the rolling object.

Translation Rotation�

�

�

�

Rolling

�
vcm

vcm

vcm �Rv

� 0 �
v � vcm � Rv

v � 2vcm � 2Rv

v � 0

Rv

FiguRE 12.43 rolling without slipping is a combination of translation and rotation.

Kinetic Energy of a Rolling Object
We found earlier that the rotational kinetic energy of a rigid body in pure rotational 
motion is Krot =

1
2 Iv2. Now we would like to find the kinetic energy of an object that 

rolls without slipping, a combination of rotational and translation motion.
We begin with the observation that the bottom point in FiguRE 12.44 is instanta-

neously at rest. Consequently, we can think of an axis through P as an instanta-
neous axis of rotation. The idea of an instantaneous axis of rotation seems a little 
far-fetched, but it is confirmed by looking at the instantaneous velocities of the center 
point and the top point. We found these in Figure 12.43 and they are shown again 
in Figure 12.44. They are exactly what you would expect as the tangential velocity 
vt = rv for rotation about P at distances R and 2R.

From this perspective, the object’s motion is pure rotation about point P. Thus the 
kinetic energy is that of pure rotation:

 K = Krotation about P =
1

2
 IPv

2 (12.38)

IP is the moment of inertia for rotation about point P. We can use the parallel-axis 
theorem to write IP in terms of the moment of inertia Icm about the center of mass. 
Point P is displaced by distance d = R; thus

 IP = Icm + MR2

v

Instantaneous rotation
about point P

�
v � Rv

v � 2Rv

P
Point P, which is instantaneously
at rest, is the pivot point for the
entire object.

FiguRE 12.44 rolling motion is an 
instantaneous rotation about point P.
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Using this expression in Equation 12.38 gives us the kinetic energy:

 K =
1

2
 Icmv

2 +
1

2
 M(Rv)2 (12.39)

We know from the rolling constraint that Rv is the center-of-mass velocity vcm. 
Thus the kinetic energy of a rolling object is

 Krolling =
1

2
 Icmv

2 +
1

2
 Mvcm 

2 = Krot + Kcm (12.40)

In other words, the rolling motion of a rigid body can be described as a translation 
of the center of mass (with kinetic energy Kcm) plus a rotation about the center of 
mass (with kinetic energy Krot).

The great downhill Race
FiguRE 12.45 shows a contest in which a sphere, a cylinder, and a circular hoop, all of 
mass M and radius R, are placed at height h on a slope of angle u. All three are released 
from rest at the same instant of time and roll down the ramp without slipping. To make 
things more interesting, they are joined by a particle of mass M that slides down the 
ramp without friction. Which one will win the race to the bottom of the hill? Does 
rotation affect the outcome?

An object’s initial gravitational potential energy is transformed into kinetic energy 
as it rolls (or slides, in the case of the particle). The kinetic energy, as we just dis-
covered, is a combination of translational and rotational kinetic energy. If we choose 
the bottom of the ramp as the zero point of potential energy, the statement of energy 
conservation Kf = Ui can be written

 
1

2
 Icmv

2 +
1

2
 Mvcm 

2 = Mgh (12.41)

The translational and rotational velocities are related by v = vcm/R. In addition, 
notice from Table 12.2 that the moments of inertia of all the objects can be written in 
the form

 Icm = cMR2 (12.42)

where c is a constant that depends on the object’s geometry. For example, c =
2
5 for a 

sphere but c = 1 for a circular hoop. Even the particle can be represented by c = 0, 
which eliminates the rotational kinetic energy.

With this information, Equation 12.41 becomes

 
1

2
 (cMR2)1vcm

R 2 2

+
1

2
 Mvcm 

2 =
1

2
 M(1 + c)vcm 

2 = Mgh

Thus the finishing speed of an object with I = cMR2 is

 vcm = B 2gh

1 + c
 (12.43)

The final speed is independent of both M and R, but it does depend on the shape of 
the rolling object. The particle, with the smallest value of c, will finish with the highest 
speed, while the circular hoop, with the largest c, will be the slowest. In other words, 
the rolling aspect of the motion does matter!

We can use Equation 12.43 to find the acceleration acm of the center of mass. The 
objects move through distance �x = h/sin u, so we can use constant-acceleration ki-
nematics to find

  vcm 

2 = 2acm �x

  acm =
vcm 

2

2�x
=

2gh/(1 + c)

2h/sin u
=

g sin u

1 + c
 

(12.44)

Particle

Sphere

Cylinder

All mass M

Radius R

h

Hoop

u

FiguRE 12.45 which will win the 
downhill race?
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Recall, from Chapter 2, that aparticle = g sin u is the acceleration of a particle sliding 
down a frictionless incline. We can use this fact to write Equation 12.44 in an interest-
ing form:

 acm =
aparticle

1 + c
 (12.45)

This analysis leads us to the conclusion that the acceleration of a rolling object 
is less—in some cases significantly less—than the acceleration of a particle. The 
reason is that the energy has to be shared between translational kinetic energy and ro-
tational kinetic energy. A particle, by contrast, can put all its energy into translational 
kinetic energy.

FiguRE 12.46 shows the results of the race. The simple particle wins by a fairly wide 
margin. Of the solid objects, the sphere has the largest acceleration. Even so, its ac-
celeration is only 71% the acceleration of a particle. The acceleration of the circular 
hoop, which comes in last, is a mere 50% that of a particle.

NOTE  The objects having the largest acceleration are those whose mass is most 
concentrated near the center. Placing the mass far from the center, as in the hoop, 
increases the moment of inertia. Thus it requires a larger effort to get a hoop rolling 
than to get a sphere of equal mass rolling. 

12.10  The Vector description 
of Rotational Motion

Rotation about a fixed axis, such as an axle, can be described in terms of a scalar 
angular velocity v and a scalar torque t, using a plus or minus sign to indicate the 
direction of rotation. This is very much analogous to the one-dimensional kinemat-
ics of Chapter 2. For more general rotational motion, angular velocity, torque, and 
other quantities must be treated as vectors. We won’t go into much detail because 
the subject rapidly gets very complicated, but we will sketch some important basic 
ideas.

The Angular Velocity Vector
FiguRE 12.47 shows a rotating rigid body. We can define an angular velocity vector v

u
 

as follows:

	■	 The magnitude of v
u

 is the object’s angular velocity v.
	■	 v

u
 points along the axis of rotation in the direction given by the right-hand rule 

illustrated in Figure 12.47.

If the object rotates in the xy-plane, the vector v
u

 points along the z-axis. The scalar 
angular velocity v = vt/r that we’ve been using is now seen to be vz, the z-component 
of the vector v

u
. You should convince yourself that the sign convention for v (positive 

for ccw rotation, negative for cw rotation) is equivalent to having the vector v
u

 pointing 
in the positive z-direction or the negative z-direction.

The Cross Product of Two Vectors
We defined the torque exerted by force F

u

 to be t = rF sin f. The quantity F is the mag-
nitude of the force vector F

u

, and the distance r is really the magnitude of the position 
vector r 

u
. Hence torque looks very much like a product of the two vectors r 

u
 and F

u

. 
Previously, in conjunction with the definition of work, we introduced the dot product of 
two vectors: A

u # B
u

= AB cos a, where a is the angle between the vectors. t =  rF sin f  
is a different way of multiplying vectors that depends on the sine of the angle between 
them.

Particle

Solid sphere

2
5� c 

5
7� acm aparticle

� 0.71aparticle

1
2� c 

2
3� acm aparticle

� 0.67aparticle

� 1c 
1
2� acm aparticle

� 0.50aparticle

� 0c 

� aparticlea 
1

2

Solid cylinder

Circular hoop

3

4

FiguRE 12.46 And the winner is . . .

v

Rotation axis

2. Your thumb is
    then pointing in
    the direction of v.

1. Using your right hand,
    curl your fingers in the
    direction of rotation
    with your thumb along
    the rotation axis. r

r

FiguRE 12.47 The angular velocity vector 
v
u  is found using the right-hand rule.
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FiguRE 12.48 shows two vectors, A
u

 and B
u

, with angle a between them. We define the 
cross product of A

u

 and B
u

 as the vector

A
u

* B
u

K (AB sin a, in the direction given by the right@hand rule) (12.46)

The symbol *  between the vectors is required to indicate a cross product. The cross 
product is also called the vector product because the result is a vector.

The right-hand rule, which specifies the direction of A
u

* B
u

, can be stated in three 
different but equivalent ways:

The cross product is perpendicular to the plane.

a

A � B
r r

r
B

r
A Plane of A and B

r r

FiguRE 12.48 The cross product A
u

* B
u

, 
is a vector perpendicular to the plane of 
vectors A

u

 and B
u

. 

Using the right-hand rule

Spread your right thumb and index finger 
apart by angle a. Bend your middle finger 
so that it is perpendicular to your thumb 
and index finger. Orient your hand so that 
your thumb points in the direction of A

u

 
and your index finger in the direction of B

u

. 
Your middle finger now points in the direc-
tion of A

u

* B
u

.

Make a loose fist with your right hand with 
your thumb extended outward. Orient your 
hand so that your thumb is perpendicular 
to the plane of A

u

 and B
u

 and your fingers 
are curling from the line of vector A

u

 toward 
the line of vector B

u

. Your thumb now 
points in the direction of A

u

* B
u

.

Imagine using a screwdriver to turn the slot 
in the head of a screw from the direction of 
A
u

 to the direction of B
u

. The screw will move 
either “in” or “out.” The direction in which 
the screw moves is the direction of A

u

* B
u

.

r
B

r
A

A � B
r r

r
A

r
B

A � B
r r

r
A

r
B

A � B
r r

These methods are easier to demonstrate than to describe in words! Your instructor 
will show you how they work. Some individuals find one method of thinking about the 
direction of the cross product easier than the others, but they all work, and you’ll soon 
find the method that works best for you.

Referring back to Figure 12.48, you should use the right-hand rule to convince 
yourself that the cross product A

u

* B
u

 is a vector that points upward, perpendicular to 
the plane of A

u

 and B
u

. FiguRE 12.49 shows that the cross product, like the dot product, de-
pends on the angle between the two vectors. Notice the two special cases: A

u

* B
u

= 0
u

 
when a = 0� (parallel vectors) and A

u

* B
u

 has its maximum magnitude AB when 
a = 90� (perpendicular vectors).

r

r
A

r
B

The cross product is
always perpendicular
to the plane of A and B.

r r

As a increases from 
0� to 90�, the length 
of A � B increases.

r r

The cross product is zero 
when A and B are parallel.

r r

A � B
r r

r r
A � B � 0

a � 0�
a � 90�

Length � AB

Length �    AB1
2

a � 30�

r
B

r
A

A � B
r r

r
B

r
A

The cross product is 
maximum when A and 
B are perpendicular.
r

r

FiguRE 12.49 The magnitude of the cross-product vector increases from 0 to AB as a 
increases from 0� to 90�.



The cross product has three important properties:

 1. The product A
u

* B
u

 is not equal to the product B
u

* A
u

. That is, the cross product 
does not obey the commutative rule ab = ba that you know from arithmetic. 
In fact, you can see from the right-hand rule that the product B

u

* A
u

 points in 
exactly the opposite direction from A

u

* B
u

. Thus, as FiguRE 12.51a shows,

 B
u

* A
u

= -A
u

* B
u

 2. In a right-handed coordinate system, which is the standard coordinate system 
of science and engineering, the z-axis is oriented relative to the xy-plane such 
that the unit vectors obey in * jn = kn. This is shown in FiguRE 12.51b. You can 
also see from this figure that jn * kn = in  and kn * in = jn.

 3. The derivative of a cross product is

 
d

dt
 (A

u

* B
u

) =
dA

u

dt
* B

u

+ A
u

*
dB

u

dt
 (12.47)

Torque
Now let’s return to torque. As a concrete example, FiguRE 12.52 shows a long wrench 
being used to loosen the nuts holding a car wheel on. Force F

u

 exerts a torque about the 
origin. Let’s define a torque vector

 t
u

K r 
u

* F
u

 (12.48)

If we place the vector tails together in order to use the right-hand rule, we see that the 
torque vector is perpendicular to the plane of r 

u
 and F

u

. The angle between the vectors 
is f, so the magnitude of the torque is t = rF 0 sin f 0 .

SOLVE The angle between the two vectors is a = 110�. Conse-
quently, the magnitude of the cross product is

 E = CD sin a = (2 m)(1 m) sin(110�) = 1.88 m2

The direction of E
u

 is given by the right-hand rule. To curl your 
right fingers from C

u

 to D
u

, you have to point your thumb into the 
page. Alternatively, if you turned a screwdriver from C

u

 to D
u

 you 
would be driving a screw into the page. Thus

 E
u

= (1.88 m2, into page)

ASSESS Notice that E
u

 has units of m2.

ExAMPLE 12.18  Calculating a cross product
FiguRE 12.50 shows vectors C

u

 and D
u

 in the plane of the page. What 
is the cross product E

u

= C
u

* D
u

?

r
D

C
r

20�

2 m

1 m

FiguRE 12.50 vectors C
u

 and D
u

.

B � A � �A � BA � B
r rr r

A � B
r r

rr

(a)

r
A

r
B

B � A

(b)

y

x

z

î

k̂

ĵ

î � j � k
j � k � i
k � i � j

^ ^

^ ^^

^ ^^

FiguRE 12.51 Properties of the cross 
product.

t � r � Fr r r

rr

r
F

The force vector is redrawn
with its tail on the tail of r.r

Force F exerts
a torque.

r

r

This is a right-handed
coordinate system.

The torque vector is perpendicular
to the plane of r and F.

f

f

F

x

z

y

r

r

FiguRE 12.52 The torque vector.
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You can see that the scalar torque t = rF sin f we’ve been using is really the com-
ponent along the rotation axis—in this case tx—of the vector t

u
. This is the basis for 

our earlier sign convention for t. In Figure 12.52, where the force causes a ccw rota-
tion, the torque vector points in the positive x-direction, and thus tx is positive.

also redraws the force vector F
u

 at the pivot point, not because 
force is applied there but because it’s easiest to use the right-hand 
rule if the vectors are drawn with their tails together.

SOLVE We already know the magnitude of the torque, 17 N m, 
from Example 12.8. Now we need to apply the right-hand rule. If 
you place your right thumb along r 

u
 and your index finger along 

F
u

, which is somewhat awkward, you’ll see that your middle finger 
points into the page. Alternatively, make a loose fist of your right 
hand, then orient your fist so that your fingers curl from r 

u
 toward 

F
u

. Doing so requires your thumb to point into the page. Using 
either method, we conclude that

 t
u

= (17 N m, into page)

ExAMPLE 12.19  Wrench torque revisited
Example 12.8 found the torque that Luis exerts on a nut by pulling 
on the end of a wrench. What is the torque vector?

ViSuALizE FiguRE 12.53 shows the position vector r 
u
, drawn from 

the pivot point to the point where the force is applied. The figure 

F
r

F
r

rr

The torque vector
points into the page.

The force vector is redrawn
at the pivot point in order to
use the right-hand rule.

f

FiguRE 12.53 Calculating the torque vector.

12.11 Angular Momentum
FiguRE 12.54 shows a particle that, at this instant, is located at position r 

u
 and is moving 

with momentum p
u

= mv  

u
. Together, r 

u
 and p

u
 define the plane of motion. We define the 

particle’s angular momentum L
u

 relative to the origin to be the vector

 L
u

K r 
u

* p
u

= (mrv sin b, direction of right@hand rule) (12.49)

Because of the cross product, the angular momentum vector is perpendicular to the 
plane of motion. The units of angular momentum are kg m2/s.

p � mvr r

r

y

Particle of mass m

Vectors r and p define the plane of motion.
x

z

The momentum at this
instant makes angle b with r.r

rr

r

b

L � r � p
r r r

Plane of motion

The vector tails are placed together
to determine the cross product.

The angular momentum
vector is perpendicular
to the plane of motion.

y

x

z

b
pr

rr

FiguRE 12.54  The angular momentum vector L
u

.

NOTE  Angular momentum is the rotational equivalent of linear momentum in 
much the same way that torque is the rotational equivalent of force. Notice that the 
vector definitions are parallel: t

u
K r 

u
* F

u

 and L
u

K r 
u

* p
u
. 

Angular momentum, like torque, is about the point from which r 
u

 is measured. A 
different origin would yield a different angular momentum. Angular momentum is espe-
cially simple for a particle in circular motion. As FiguRE 12.55 shows, the angle b between 
p
u
 (or v  

u
)  and r 

u
 is always 90� if we make the obvious choice of measuring r 

u
 from the 



12.11 . Angular Momentum    341

center of the circle. For motion in the xy-plane, the angular momentum vector L
u

 —which 
must be perpendicular to the plane of motion—is entirely along the z-axis:

 Lz = mrvt   (particle in circular motion) (12.50)

where vt is the tangential component of velocity. Our sign convention for vt makes Lz, 
like v, positive for a ccw rotation, negative for a cw rotation.

In Chapter 9, we found that Newton’s second law for a particle can be written 
F
u

net = dp
u

/dt. There’s a similar connection between torque and angular momentum. To 
show this, we take the time derivative of L

u

 :

  
dL

u

dt
=

d

dt
 (r 

u
* p

u
) =

dr 
u

dt
* p

u
+ r 

u
*

dp
u

dt

  = v  

u
* p

u
+ r 

u
* F

u

net  
(12.51)

where we used Equation 12.47 for the derivative of a cross product. We also used the 
definitions v  

u
= dr 

u
/dt and F

u

net = dp
u

/dt.
Vectors v  

u
 and p

u
 are parallel, and the cross product of two parallel vectors is 0

u

. Thus 
the first term in Equation 12.51 vanishes. The second term r 

u
* F

u

net is the net torque, 
t
u

net = t
u

1 + t
u

2 + g, so we arrive at

 
dL

u

dt
= t

u

net (12.52)

Equation 12.52, which says a net torque causes the particle’s angular momentum 
to change, is the rotational equivalent of dp

u
/dt = F

u

net.

Angular Momentum of a Rigid Body
Equation 12.52 is the angular momentum of a single particle. The angular momentum 
of a rigid body composed of particles with individual angular momenta L

u

1, L
u

2, L
u

3, p 
is the vector sum

 L
u

= L
u

1 + L
u

2 + L
u

3 + g = a
i

 L
u

i (12.53)

We can combine Equations 12.52 and 12.53 to find the rate of change of the sys-
tem’s angular momentum:

 
dL

u

dt
= a

i

 
dL

u

i

dt
= a

i

 t
u

i = t
u

net (12.54)

Because any internal forces are action/reaction pairs of forces, acting with the same 
strength in opposite directions, the net torque due to internal forces is zero. Thus the 
only forces that contribute to the net torque are external forces exerted on the system 
by the environment.

For a system of particles, the rate of change of the system’s angular momentum 
is the net torque on the system. Equation 12.54 is analogous to the Chapter 9 result 
dP

u

/dt = F
u

net, which says that the rate of change of a system’s total linear momentum 
is the net force on the system. Table 12.4 summarizes the analogies between linear and 
angular momentum and energy.

rr

rv

x

y

Vector L points out
of the page.

90�

r

FiguRE 12.55 Angular momentum of 
circular motion.

The spin of an ice skater is determined by 
her angular momentum.

TABLE 12.4 Angular and linear momentum and energy

Angular motion Linear motion

Krot =
1
2 Iv2 Kcm =

1
2 Mvcm 

2

L
u

= Iv
u * P

u

= M v  

u

cm

dL
u

 /dt = t
u

net dP
u

/dt = F
u

net

The angular momentum of a system is  
conserved if there is no net torque.

The linear momentum of a system is  
conserved if there is no net force.

*Rotation about an axis of symmetry.
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Conservation of Angular Momentum
A net torque on a rigid body causes its angular momentum to change. Conversely, 
the angular momentum does not change—it is conserved—for a system with no net 
torque. This is the basis of the law of conservation of angular momentum.

Law of conservation of angular momentum The angular momentum L
u

 of an 
isolated system (t

u

net = 0
u

 ) is conserved. The final angular momentum L
u

f is equal 
to the initial angular momentum L

u

i. Both the magnitude and the direction of L
u

 are 
unchanged.

 L i =
1

4
 mli 

2vi +
1

4
 mli 

2vi =
1

2
 mli 

2vi

Similarly, the angular momentum after the expansion is L f =  
1
2 mlf 

2vf. Angular momentum is conserved as the rod expands, thus

 
1

2
 mlf 

2vf =
1

2
 mli 

2vi

Solving for vf, we find

 vf = 1 li

lf
2 2

 vi = 1 50 cm

160 cm 2 2

 (2.0 rev/s) = 0.20 rev/s

ASSESS The values of the masses weren’t needed. All that matters 
is the ratio of the lengths.

ExAMPLE 12.20  An expanding rod
Two equal masses are at the ends of a massless 50-cm-long rod. 
The rod spins at 2.0 rev/s about an axis through its midpoint. Sud-
denly, a compressed gas expands the rod out to a length of 160 cm. 
What is the rotation frequency after the expansion?

MOdEL The forces push outward from the pivot and exert no 
torques. Thus the system’s angular momentum is conserved.

ViSuALizE FiguRE 12.56 is a before-and-after pictorial representa-
tion. The angular momentum vectors L

u

i and L
u

f are perpendicular 
to the plane of motion.

SOLVE The particles are moving in circles, so each has angular 
momentum L = mrvt = mr2v =

1
4 ml 2v, where we used r =

1
2 l. 

Thus the initial angular momentum of the system is

Li � L1i � L2i

r r r

p2i
r

p2f
r

1

2

vi � 2 rev/s vf

li � 50 cm

Before:

2

1

lf � 160 cm

After:

Rotation axis

p1i
r

p1f
r

Lf

r

FiguRE 12.56 The system before and after the rod expands.

The expansion of the rod in Example 12.20 causes a dramatic slowing of the 
rotation. Similarly, the rotation would speed up if the weights were pulled in. This 
is how an ice skater controls her speed as she does a spin. Pulling in her arms 
decreases her moment of inertia and causes her angular velocity to increase. Simi-
larly, extending her arms increases her moment of inertia, and her angular velocity 
drops until she can skate out of the spin. It’s all a matter of conserving angular 
momentum.

Angular Momentum and Angular Velocity
The analogy between linear and rotational motion has been so consistent that you 
might expect one more. The Chapter 9 result P

u

= Mv  

u

cm might give us reason to 
anticipate that angular momentum and angular velocity are related by L

u

= Iv
u

. 
Unfortunately, the analogy breaks down here. For an arbitrarily shaped object, the 



angular momentum vector and the angular velocity vector don’t necessarily point in 
the same direction. The general relationship between L

u

 and v
u

 is beyond the scope 
of this text.

The good news is that the analogy does continue to hold in two important situa-
tions: the rotation of a symmetrical object about the symmetry axis and the rotation 
of any object about a fixed axle. For example, the axis of a cylinder or disk is a 
symmetry axis, as is any diameter through a sphere. In these two situations—which 
are all this textbook will consider—the angular momentum and angular velocity are 
related by

 L
u

= I v
u
  (rotation about a fixed axle or axis of symmetry) (12.55)

This relationship is shown for a spinning disk in FiguRE 12.57. Equation 12.55 is particu-
larly important for applying the law of conservation of angular momentum.

Symmetry
 axis

Angular velocity and angular 
momentum vectors point along 
the rotation axis in the direction 
determined by the right-hand rule.

rv

L � Ivr
r

FiguRE 12.57 The angular momentum 
vector of a rigid body rotating about an 
axis of symmetry.

ExAMPLE 12.21  Two interacting disks
A 20-cm-diameter, 2.0 kg solid disk is rotating at 200 rpm. A 
20-cm-diameter, 1.0 kg circular loop is dropped straight down 
onto the rotating disk. Friction causes the loop to accelerate until 
it is “riding” on the disk. What is the final angular velocity of the 
combined system?

MOdEL The friction between the two objects creates torques that 
speed up the loop and slow down the disk. But these torques are 
internal to the combined disk +  loop system, so tnet = 0 and the 
total angular momentum of the disk +  loop system is conserved.

ViSuALizE FiguRE 12.58 is a before-and-after pictorial representa-
tion. Initially only the disk is rotating, at angular velocity v

u

i. The rota-
tion is about an axis of symmetry, so the angular momentum L

u

= Iv
u

 
is parallel to v

u
. At the end of the problem, v

u

disk = v
u

loop = v
u

f.

SOLVE Both angular momentum vectors point along the rotation 
axis. Conservation of angular momentum tells us that the magni-
tude of L

u

 is unchanged. Thus

 L f = Idiskvf + Iloopvf = L i = Idiskvi

Solving for vf gives

 vf =
Idisk

Idisk + Iloop
 vi

The moments of inertia for a disk and a loop can be found in 
Table 12.2, leading to

 vf =

1
2 MdiskR2

1
2 MdiskR2 + MloopR2

 vi = 100 rpm

ASSESS What appeared to be a difficult problem turns out to be 
fairly easy once you recognize that the total angular momentum 
is conserved.

Li

Mloop � 1.0 kg

Mdisk � 2.0 kg

Symmetry axis

Before:
vi � 200 rpm

20 cm
r

After:
vf

Lf

r

FiguRE 12.58 The circular loop drops onto the rotating disk.

When angular momentum—a vector—is conserved, its direction—the direction of 
the rotation axis—must remain unchanged. This is often shown with the lecture dem-
onstration illustrated in FiguRE 12.59 on the next page. A bicycle wheel with two handles 
is given a spin, then handed to an unsuspecting student. The student is asked to turn the 
wheel 90�. Surprisingly, this is very hard to do.

12.11 . Angular Momentum    343
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The reason is that the wheel’s angular momentum vector, which points straight up, is 
highly resistant to change. If the wheel is spinning fast, a large torque must be supplied 
to change L

u

. This directional stability of a rapidly spinning object is why gyroscopes 
are used as navigational devices on ships and planes. Once the axis of a spinning gyro-
scope is pointed north, it will maintain that direction as the ship or plane moves.

FiguRE 12.59 The vector nature of 
angular momentum makes it difficult to 
turn a rapidly spinning wheel.

r
L

v

Handles

Stop to think 12.5 
 Two buckets spin around in a 

horizontal circle on frictionless bearings. Suddenly, 
it starts to rain. As a result,

 a. The buckets continue to rotate at constant angular velocity because the rain is fall-
ing vertically while the buckets move in a horizontal plane.

 b. The buckets continue to rotate at constant angular velocity because the total me-
chanical energy of the bucket + rain system is conserved.

 c. The buckets speed up because the potential energy of the rain is transformed into 
kinetic energy.

 d. The buckets slow down because the angular momentum of the bucket + rain sys-
tem is conserved.

 e. Both a and b.
 f. None of the above.

SOLVE This is a ballistic pendulum. Example 10.4 considered a 
simpler ballistic pendulum with a mass on a string, rather than on 
a rod, and a review of that example is highly recommended. The 
key to both is that a different conservation law applies to each part 
of the problem.

Angular momentum is conserved in the collision, thus L 1 = L 0. 
Before the collision, the angular momentum—which we’ll mea-
sure about the pendulum’s pivot point—is entirely that of the 
bullet. The angular momentum of a particle is L = mr  v sin b. An 
instant before the collision, just as the bullet reaches the block, 
r = d and, because v 

u
 is perpendicular to r 

u
 at that instant, b = 90�. 

Thus L 0 = mbdv0b. (This is the magnitude of the angular momen-
tum; from the right-hand rule, the angular momentum vector 
points out of the page.)

An instant after the collision, but before the pendulum has had 
time to move, the rod has angular velocity v1 and the block, with the 
embedded bullet, is moving in a circle with speed v1 = v1r = v1d. 
The angular momentum of the block +  bullet system is that of 
a particle, still with b = 90�, while that of the rod—an object 
rotating on a fixed axle—is Irod v1. Thus the post-collision angular 
momentum is

 L 1 = (mB +  mb)v1r +  Irodv1 = (mB +  mb) d 2v1 +  
1

3
 mRd 2v1

The moment of inertia of the rod was taken from Table 12.2.
Equating the before-and-after angular momenta, then solving 

for v0b, gives

 mb 

dv0b = (mB +  mb) d 2v1 +  
1

3
 mRd 2v1

 v0b =
mB + mb +

1
3 mR

mb
 dv1 = 251dv1

Once we know v1, which we’ll find from energy conservation in 
the swing, we’ll be able to compute the bullet’s speed.

ChALLENgE ExAMPLE 12.22  The ballistic pendulum revisited

FiguRE 12.60 Pictorial representation of the bullet hitting the 
pendulum.

�

�

y2

v2 � 0 rad/s
v2 � 0 m/s

u � 30�

�y

�ycm

y1

d � 1.0 m
mR � 1.5 kg

v1 � dv1

v1

d cos u

mb � 0.010 kg
v0b

mB � 2.0 kg
v0B � 0 m/s

Collision: Angular momentum

Swing: Mechanical energy

Find: v0b

A 2.0 kg block hangs from the end of a 1.5 kg,1.0@m@long rod, 
together forming a pendulum that swings from a frictionless pivot 
at the top end of the rod. A 10 g bullet is fired horizontally into the 
block, where it sticks, causing the pendulum to swing out to a 30� 
angle. What was the speed of the bullet?

MOdEL Model the rod as a uniform rod that can rotate around one 
end, and assume the block is small enough to model as a particle. 
There are no external torques on the bullet +  block +  rod system, 
so angular momentum is conserved in the inelastic collision. Fur-
ther, the mechanical energy of the system is conserved after (but 
not during) the collision as the pendulum swings outward.

ViSuALizE FiguRE 12.60 is a pictorial representation. This is a two-
part problem, so we’ve separated the collision’s before-and-after 
from the pendulum swing’s before-and-after. The end of the colli-
sion is the beginning of the swing.



Mechanical energy is conserved during the swing, but you must 
be careful to include all the energies. The kinetic energy has two 
components: the translational kinetic energy of the block +  bullet 
system and the rotational kinetic energy of the rod. The gravita-
tional potential energy also has two components: the potential en-
ergy of the block +  bullet system and the potential energy of the 
rod. The latter changes because the center of mass moves upward 
as the rod swings. Thus the energy conservation statement is

1

2
 (mB +  mb)v2 

2 +  
1

2
 Irodv2 

2 +  (mB +  mb)gy2 +  mRgycm2 =

 
1

2
 (mB +  mb)v1 

2 +  
1

2
 Irodv1 

2 +  (mB +  mb)gy1 +  mRgycm1

Although this looks very complicated, you should convince your-
self that we’ve done nothing more than add up two kinetic ener-
gies and two potential energies before and after the swing.

We know that v2 = 0 and v2 = 0 at the end of the swing, and 
that v1 = dv1 at the beginning. We also know the moment of in-
ertia of a rod pivoted at one end. Combining the potential energy 
terms and using �y = yf - yi, we thus have

 
1

21mB + mb +
1

3
 mR2d 2v1 

2 = (mB + mb)g�y + mRg�ycm

We see from Figure 12.60 that the block, at its highest point, is dis-
tance d cos u below the pivot. It started distance d below the pivot, 
so the bullet +  block system gained height �y = d -  d cos u =  
d(1-  cos u). The rod’s center of mass started distance d/2 
below the pivot and rises only half as much as the block, so 
�ycm =

1
2 d(1-  cos u). With these, the energy equation becomes

 
1

21mB + mb +
1

3
 mR2d 2v1

2 = (mB + mb +
1

2
 mR)gd(1 - cos u)

We can now solve for v1:

 v1 = CmB + mb +
1
2 mR

mB + mb +
1
3 mR

  
2 g(1 -  cos u)

d
= 1.70 rad/s

and with that

 v0b = 251dv1 = 430 m/s

ASSESS 430 m/s seems a reasonable speed for a bullet. This was 
a challenging problem, but one that you can solve if you focus on 
the problem-solving strategies—drawing a careful pictorial repre-
sentation, defining the system, and thinking about which conser-
vation laws apply—rather than hunting for the “right” equation.

Challenge Example    345
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rigid body
rigid-body model
translational motion
rotational motion
combination motion

center of mass
rotational kinetic energy, Krot

moment of inertia, I
parallel-axis theorem
torque, t

line of action
moment arm, d
rolling constraint
cross product
vector product

right-hand rule
angular momentum, L

u

law of conservation of 
angular momentum

Terms and Notation

general Principles
Rotational dynamics
Every point on a rigid body rotating about a fixed axis has the same 
angular velocity v and angular acceleration a.

Newton’s second law for rotational motion is

a =
tnet

I

Use rotational kinematics to find angles and angular velocities.

Conservation Laws
Energy is conserved for an isolated system.

•	 Pure rotation E = Krot + Ug =
1
2 Iv2 + Mgycm

•	 Rolling E = Krot + Kcm + Ug =
1
2 Iv2 +

1
2 Mvcm 

2 + Mgycm

Angular momentum is conserved if t
u

net = 0
u

.

•	 Particle L
u

= r 
u
 * p

u

•	 Rotation about a symmetry axis or fixed axle L
u

= I v
u

S u M M A R y
The goal of Chapter 12 has been to understand the physics of rotating objects.

important Concepts

The moment of inertia

I = a
i

miri 

2 = 3r2 dm

is the rotational equivalent of mass. The moment of inertia 
depends on how the mass is distributed around the axis. If Icm 
is known, I about a parallel axis distance d away is given by 
the parallel-axis theorem: I = Icm + Md 2.

Torque is the rotational 
equivalent of force:

t = rF sin f = rFt = dF

The vector description 
of torque is

t
u

= r 
u

* F
u

Vector description of rotation

Angular velocity v
u

 points along the rotation 
axis in the direction of the right-hand rule.

For a rigid body rotating about a fixed 
axle or an axis of symmetry, the angular 
momentum is L

u

= I v
u

.

Newton’s second law is 
dL

u

dt
= t

u

net.

A system of particles on which there is no net force undergoes 
unconstrained rotation about the center of mass:

 xcm =
1

M3x dm   ycm =
1

M3y dm

The gravitational torque on a body can be found by treating the body 
as a particle with all the mass M concentrated at the center of mass.

f

x

Line of
action

Moment arm

r

d

y
F
r

F
r

rr tr

r
L

Axis

vr

Applications
Rotational kinematics

vf = vi + a �t

uf = ui + vi �t +
1
2 a(�t)2

vt = rv  at = ra

Rigid-body equilibrium

An object is in total  
equilibrium only  
if both F

u

net = 0
u

 and 
t
u

net = 0
u

.

Rolling motion

For an object that rolls 
without slipping

vcm = Rv

K = Krot + Kcm

No rotational
or translational
motion

vcm
r

v

R
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C O N C E P T u A L  Q u E S T i O N S

 1. Is the center of mass of the dumbbell in FiguRE Q12.1 at point a, 
b, or c? Explain.

 9. A student gives a quick push 
to a ball at the end of a mass-
less, rigid rod, as shown in 
FiguRE Q12.9, causing the ball 
to rotate clockwise in a hori-
zontal circle. The rod’s pivot 
is frictionless.

 a. As the student is pushing, 
is the torque about the 
pivot positive, negative, 
or zero?

 b. After the push has ended, 
does the ball’s angular velocity (i) steadily increase; (ii) increase 
for awhile, then hold steady; (iii) hold steady; (iv) decrease for 
awhile, then hold steady; or (v) steadily decrease? Explain.

 c. Right after the push has ended, is the torque positive, nega-
tive, or zero?

 10. Rank in order, from largest to smallest, the angular accelerations 
aa to ad in FiguRE Q12.10. Explain.

 11. The solid cylinder and cylindrical 
shell in FiguRE Q12.11 have the 
same mass, same radius, and turn 
on frictionless, horizontal axles. 
(The cylindrical shell has light-
weight spokes connecting the 
shell to the axle.) A rope is wrap-
ped around each cylinder and tied 
to a block. The blocks have the same mass and are held the same 
height above the ground. Both blocks are released simultane-
ously. Which hits the ground first? Or is it a tie? Explain.

 12. A diver in the pike position (legs straight, hands on ankles) usu-
ally makes only one or one-and-a-half rotations. To make two or 
three rotations, the diver goes into a tuck position (knees bent, 
body curled up tight). Why?

 13. Is the angular momentum of disk a in FiguRE Q12.13 larger than, 
smaller than, or equal to the angular momentum of disk b? Explain.

 4. Must an object be rotating to have a moment of inertia? Explain.
 5. The moment of inertia of a uniform rod about an axis through its 

center is 1
12 mL2. The moment of inertia about an axis at one end 

is 1
3 mL2. Explain why the moment of inertia is larger about the 

end than about the center.
 6. You have two steel spheres. Sphere 2 has twice the radius of 

sphere 1. By what factor does the moment of inertia I2 of sphere 
2 exceed the moment of inertia I1 of sphere 1?

 7. The professor hands you two spheres. They have the same mass, 
the same radius, and the same exterior surface. The professor 
claims that one is a solid sphere and the other is hollow. Can 
you determine which is which without cutting them open? If so, 
how? If not, why not?

 8. Six forces are applied to the door in FiguRE Q12.8. Rank in order, 
from largest to smallest, the six torques ta to tf about the hinge. 
Explain.

 2. If the angular velocity v is held constant, by what factor must R 
change to double the rotational kinetic energy of the dumbbell in 
FiguRE Q12.2?

 3. FiguRE Q12.3 shows three rotating disks, all of equal mass. Rank 
in order, from largest to smallest, their rotational kinetic energies 
Ka to Kc.

a b c
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E x E R C i S E S  A N d  P R O B L E M S

Problems labeled  integrate material from earlier chapters.

Exercises

Section 12.1 Rotational Motion

 1. || A skater holds her arms outstretched as she spins at 180 rpm. 
What is the speed of her hands if they are 140 cm apart?

 2. || A high-speed drill reaches 2000 rpm in 0.50 s.
 a. What is the drill’s angular acceleration?
 b. Through how many revolutions does it turn during this first 

0.50 s?
 3. || A ceiling fan with 80-cm-diameter blades is turning at 60 rpm. 

Suppose the fan coasts to a stop 25 s after being turned off.
 a. What is the speed of the tip of a blade 10 s after the fan is 

turned off?
 b. Through how many revolutions does the fan turn while  

stopping?
 4. ||| An 18-cm-long bicycle crank arm, with a pedal at one end, is 

attached to a 20-cm-diameter sprocket, the toothed disk around 
which the chain moves. A cyclist riding this bike increases her 
pedaling rate from 60 rpm to 90 rpm in 10 s.

 a. What is the tangential acceleration of the pedal?
 b. What length of chain passes over the top of the sprocket dur-

ing this interval?

Section 12.2 Rotation About the Center of Mass

 5. || How far from the center of the earth is the center of mass of 
the earth + moon system? Data for the earth and moon can be 
found inside the back cover of the book.

 6. | The three masses shown in FiguRE Ex12.6 are connected by mass-
less, rigid rods. What are the coordinates of the center of mass?

 11. ||| The three 200 g masses in Fig -

uRE Ex12.11 are connected by mass-
less, rigid rods. 

 a. What is the triangle’s moment of 
inertia about the axis through the 
center?

 b. What is the triangle’s kinetic en-
ergy if it rotates about the axis at 
5.0 rev/s?

 12. ||| A drum major twirls a 96-cm-long, 400 g baton about its cen-
ter of mass at 100 rpm. What is the baton’s rotational kinetic 
energy?

Section 12.4 Calculating Moment of Inertia

 13. || The four masses shown in 
FiguRE Ex12.13 are connected by 
massless, rigid rods.

 a. Find the coordinates of the 
center of mass.

 b. Find the moment of inertia 
about an axis that passes 
through mass A and is perpen-
dicular to the page.

 14. || The four masses shown in FiguRE Ex12.13 are connected by 
massless, rigid rods.

 a. Find the coordinates of the center of mass.
 b. Find the moment of inertia about a diagonal axis that passes 

through masses B and D.
 15. | The three masses shown in 

FiguRE Ex12.15 are connected by 
massless, rigid rods.

 a. Find the coordinates of the 
center of mass.

 b. Find the moment of inertia 
about an axis that passes 
through mass A and is per-
pendicular to the page.

 b. Find the moment of inertia 
about an axis that passes 
through masses B and C.

 16. || A 25 kg solid door is 220 cm tall, 91 cm wide. What is the 
door’s moment of inertia for (a) rotation on its hinges and (b) rota-
tion about a vertical axis inside the door, 15 cm from one edge?

 17. || A 12-cm-diameter CD has a mass of 21 g. What is the CD’s 
moment of inertia for rotation about a perpendicular axis 
(a) through its center and (b) through the edge of the disk?

Section 12.5 Torque

 18. | In FiguRE Ex12.18, what 
is the net torque about the 
axle?

 7. | The three masses shown in FiguRE Ex12.7 are connected by mass-
less, rigid rods. What are the coordinates of the center of mass?

 8. || A 100 g ball and a 200 g ball are connected by a 30-cm-long, 
massless, rigid rod. The balls rotate about their center of mass at 
120 rpm. What is the speed of the 100 g ball?

Section 12.3 Rotational Energy

 9. || What is the rotational kinetic energy of the earth? Assume the 
earth is a uniform sphere. Data for the earth can be found inside 
the back cover of the book.

 10. || A thin, 100 g disk with a diameter of 8.0 cm rotates about an 
axis through its center with 0.15 J of kinetic energy. What is the 
speed of a point on the rim?
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 19. || In FiguRE Ex12.19, what is the net torque about the axle?

 20. || The 20-cm-diameter disk in FiguRE Ex12.20 can rotate on an 
axle through its center. What is the net torque about the axle?

 21. || A 4.0-m-long, 500 kg steel beam extends horizontally from 
the point where it has been bolted to the framework of a new 
building under construction. A 70 kg construction worker stands 
at the far end of the beam. What is the magnitude of the torque 
about the point where the beam is bolted into place?

 22. || An athlete at the gym holds a 3.0 kg steel ball in his hand. His 
arm is 70 cm long and has a mass of 4.0 kg. What is the magni-
tude of the torque about his shoulder if he holds his arm

 a. Straight out to his side, parallel to the floor?
 b. Straight, but 45� below horizontal?

Section 12.6 Rotational Dynamics

Section 12.7 Rotation About a Fixed Axis

 23. | An object’s moment of inertia is 2.0 kg m2. Its angular veloc-
ity is increasing at the rate of 4.0 rad/s per second. What is the 
torque on the object?

 24. || An object whose moment of inertia 
is 4.0 kg m2 experiences the torque 
shown in FiguRE Ex12.24. What is the 
object’s angular velocity at t = 3.0 s? 
Assume it starts from rest.

 25. || A 1.0 kg ball and a 2.0 kg ball are connected by a 1.0-m-long 
rigid, massless rod. The rod is rotating cw about its center of mass 
at 20 rpm. What torque will bring the balls to a halt in 5.0 s?

 26. || Starting from rest, a 12-cm-diameter compact disk takes 3.0 s 
to reach its operating angular velocity of 2000 rpm. Assume that 
the angular acceleration is constant. The disk’s moment of iner-
tia is 2.5 * 10-5 kg m2.

 a. How much torque is applied to the disk?
 b. How many revolutions does it make before reaching full speed?
 27. || A 750 g, 50-cm-long metal rod is free to rotate about a fric-

tionless axle at one end. While at rest, the rod is given a short but 
sharp 1000 N hammer blow at the center of the rod, aimed in a 
direction that causes the rod to rotate on the axle. The blow lasts 
a mere 2.0 ms. What is the rod’s angular velocity immediately 
after the blow?

Section 12.8 Static Equilibrium

 28. || How much torque must the pin exert to keep the rod in Fig -

uRE Ex12.28 from rotating?

BIO

 29. || Is the object in FiguRE Ex12.29 in equilibrium? Explain.
 30. || The two objects in FiguRE Ex12.30 are balanced on the pivot. 

What is distance d?

 31. || A 5.0 kg cat and a 2.0 kg bowl of tuna fish are at opposite ends 
of the 4.0-m-long seesaw of FiguRE Ex12.31. How far to the left of 
the pivot must a 4.0 kg cat stand to keep the seesaw balanced?

Section 12.9 Rolling Motion

 32. || A car tire is 60 cm in diameter. The car is traveling at a speed 
of 20 m/s.

 a. What is the tire’s angular velocity, in rpm?
 b. What is the speed of a point at the top edge of the tire?
 c. What is the speed of a point at the bottom edge of the tire?
 33. || A 500 g, 8.0-cm-diameter can is filled with uniform, dense 

food. It rolls across the floor at 1.0 m/s. What is the can’s kinetic 
energy?

 34. || An 8.0-cm-diameter, 400 g solid sphere is released from rest 
at the top of a 2.1-m-long, 25� incline. It rolls, without slipping, 
to the bottom.

 a. What is the sphere’s angular velocity at the bottom of the 
incline?

 b. What fraction of its kinetic energy is rotational?
 35. | A solid sphere of radius R is placed at a height of 30 cm on a 

15� slope. It is released and rolls, without slipping, to the bottom. 
From what height should a circular hoop of radius R be released on 
the same slope in order to equal the sphere’s speed at the bottom?

Section 12.10 The Vector Description of Rotational Motion

 36. | Evaluate the cross products A
u
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u

* D
u

.

10 cm

10 cm
50 N

50 N

FiguRE Ex12.19 FiguRE Ex12.20
20 N

30 N

20 N

30 N

y

x

5.0
cm

5.0
cm

45�

FiguRE Ex12.24 

2 3
t (s)

0

t (N m)

1
0

2

1

FiguRE Ex12.28 

80 cm

Pin

2.0 kg

500 g

2.0 m 1.0 m

Massless40 N
60 N

100 N

FiguRE Ex12.29 

FiguRE Ex12.30 

2.0 m

1.0 m

1.0 kg
d

4.0 kg

FiguRE Ex12.31 

2.0 m

d

2.0 m

FiguRE Ex12.36 

r
A

r
B

D
r

C
r

135�

6

4

(a)

6

4

(b)



350    c h a p t e r  1 2  . Rotation of a Rigid Body
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 37. | Evaluate the cross products A
u

* B
u

 and C
u

* D
u

.

 38. || a. What is ( in * jn ) * in?
   b. What is in * ( jn * in )?

 39. || a. What is in * ( in * jn )?

   b. What is ( in * jn ) * kn?
 40. || Vector A

u

= 3 in + jn  and vector B
u

= 3 in - 2 jn + 2 kn. What is 
the cross product A

u

* B
u

?

 41. | Consider the vector C
u

= 3 in.
 a. What is a vector D

u

 such that C
u

* D
u

= 0
u

?
 b. What is a vector E

u

 such that C
u

* E
u

= 6 kn?
 c. What is a vector F

u

 such that C
u

* F
u

= -3 jn?

 42. || Force F
u

= -10 jn  N is exerted on a particle at r 
u
 = (5 in +

5 jn) m.  What is the torque on the particle about the origin?
 43. || What are the magnitude and direction of the angular momen-

tum relative to the origin of the 100 g particle in FiguRE Ex12.43?

 44. || What are the magnitude and direction of the angular momen-
tum relative to the origin of the 200 g particle in FiguRE Ex12.44?

Section 12.11 Angular Momentum

 45. || What is the angular momentum of the 500 g rotating bar in 
FiguRE Ex12.45?

 46. || What is the angular momentum of the 2.0 kg, 4.0-cm-diameter 
rotating disk in FiguRE Ex12.46?

 47. || How fast, in rpm, would a 5.0 kg, 22-cm-diameter bowling 
ball have to spin to have an angular momentum of 0.23 kg m2/s?

 48. || A 2.0 kg, 20-cm-diameter turntable rotates at 100 rpm on fric-
tionless bearings. Two 500 g blocks fall from above, hit the turnta-
ble simultaneously at opposite ends of a diameter, and stick. What 
is the turntable’s angular velocity, in rpm, just after this event?

Problems

 49. || A 70 kg man’s arm, including the hand, can be modeled as a 
75-cm-long uniform rod with a mass of 3.5 kg. When the man 
raises both his arms, from hanging down to straight up, by how 
much does he raise his center of mass?

 50. ||| A 300 g ball and a 600 g ball are connected by a 40-cm-long 
massless, rigid rod. The structure rotates about its center of mass 
at 100 rpm. What is its rotational kinetic energy?

 51. ||| A 60-cm-diameter wheel is rolling along at 20 m/s. What is 
the speed of a point at the forward edge of the wheel?

 52. || An 800 g steel plate has the shape of the isosceles triangle 
shown in FiguRE P12.52. What are the x- and y-coordinates of the 
center of mass?

  Hint: Divide the triangle into vertical strips of width dx, then 
relate the mass dm of a strip at position x to the values of x and dx.

 53. || What is the moment of inertia of a 2.0 kg, 20-cm-diameter disk 
for rotation about an axis (a) through the center, and (b) through 
the edge of the disk?

 54. || Determine the moment of inertia about the axis of the object 
shown in FiguRE P12.54.

 55. || Calculate by direct integration the moment of inertia for a thin 
rod of mass M and length L about an axis located distance d from 
one end. Confirm that your answer agrees with Table 12.2 when 
d = 0 and when d = L/2.

 56. || a.  A disk of mass M and radius R has a hole of radius r cen-
tered on the axis. Calculate the moment of inertia of the 
disk.

   b.  Confirm that your answer agrees with Table 12.2 when 
r = 0 and when r = R.

   c.  A 4.0-cm-diameter disk with a 3.0-cm-diameter hole rolls 
down a 50-cm-long, 20� ramp. What is its speed at the bot-
tom? What percent is this of the speed of a particle sliding 
down a frictionless ramp?

 57. || Calculate the moment of inertia of the rectangular plate in Fig -

uRE P12.57 for rotation about a perpendicular axis through the 
center.
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 58. ||| Calculate the moment of inertia of the steel plate in Fig -

uRE P12.52 for rotation about a perpendicular axis passing through 
the origin.

 59. || A person’s center of mass is easily found by having the person 
lie on a reaction board. A horizontal, 2.5-m-long, 6.1 kg reaction 
board is supported only at the ends, with one end resting on a 
scale and the other on a pivot. A 60 kg woman lies on the reaction 
board with her feet over the pivot. The scale reads 25 kg. What is 
the distance from the woman’s feet to her center of mass?

 60. || A 3.0-m-long ladder, as shown in Figure 12.37, leans against 
a frictionless wall. The coefficient of static friction between the 
ladder and the floor is 0.40. What is the minimum angle the lad-
der can make with the floor without slipping?

 61. || The 3.0-m-long, 100 kg rigid beam of FiguRE P12.61 is supported 
at each end. An 80 kg student stands 2.0 m from support 1. How 
much upward force does each support exert on the beam?

 62. || In  FiguRE P12.62, an 80 kg construction worker sits down 
2.0 m from the end of a 1450 kg steel beam to eat his lunch. 
The cable supporting the beam is rated at 15,000 N. Should the 
worker be worried?

 63. ||| A 40 kg, 5.0-m-long beam is supported by, but not attached to, 
the two posts in FiguRE P12.63. A 20 kg boy starts walking along 
the beam. How close can he get to the right end of the beam 
without it falling over?

 64. || Your task in a science contest is to stack four identical uni-
form bricks, each of length L, so that the top brick is as far to the 
right as possible without the stack falling over. Is it possible, as 
FiguRE P12.64 shows, to stack the bricks such that no part of the 
top brick is over the table? Answer this question by determining 
the maximum possible value of d.
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 65. || A 120-cm-wide sign hangs from a 
5.0 kg, 200-cm-long pole. A cable of 
negligible mass supports the end of the 
rod as shown in FiguRE P12.65. What is 
the maximum mass of the sign if the 
maximum tension in the cable without 
breaking is 300 N?

 66. || The bunchberry flower has the fastest-moving parts ever ob-
served in a plant. Initially, the stamens are held by the petals in a 
bent position, storing elastic energy like a coiled spring. When the 
petals release, the tips of the stamen act like medieval catapults, 
flipping through a 60� angle in just 0.30 ms to launch pollen from 
anther sacs at their ends. The human eye just sees a burst of pollen; 
only high-speed photography reveals the details. As FiguRE P12.66 
shows, we can model the stamen tip as a 1.0@mm@long, 10 mg 
rigid rod with a 10 mg anther sac at the end. Although oversimpli-
fying, we’ll assume a constant angular acceleration.

 a. How large is the “straightening torque”?
 b. What is the speed of the anther sac as it releases its pollen?

 67. || A 60-cm-long, 500 g bar rotates in a horizontal plane on an 
axle that passes through the center of the bar. Compressed air 
is fed in through the axle, passes through a small hole down the 
length of the bar, and escapes as air jets from holes at the ends of 
the bar. The jets are perpendicular to the bar’s axis. Starting from 
rest, the bar spins up to an angular velocity of 150 rpm at the end 
of 10 s.

 a. How much force does each jet of escaping air exert on the bar?
 b. If the axle is moved to one end of the bar while the air jets are 

unchanged, what will be the bar’s angular velocity at the end 
of 10 seconds?

 68. ||| Flywheels are large, massive wheels used to store energy. 
They can be spun up slowly, then the wheel’s energy can be 
released quickly to accomplish a task that demands high power. 
An industrial flywheel has a 1.5 m diameter and a mass of 
250 kg. Its maximum angular velocity is 1200 rpm.

 a. A motor spins up the flywheel with a constant torque of 
50 N m. How long does it take the flywheel to reach top 
speed?

 b. How much energy is stored in the flywheel?
 c. The flywheel is disconnected from the motor and connected 

to a machine to which it will deliver energy. Half the energy 
stored in the flywheel is delivered in 2.0 s. What is the aver-
age power delivered to the machine?

 d. How much torque does the flywheel exert on the machine?
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 69. ||| The two blocks in FiguRE P12.69 are connected by a massless 
rope that passes over a pulley. The pulley is 12 cm in diameter and 
has a mass of 2.0 kg. As the pulley turns, friction at the axle exerts 
a torque of magnitude 0.50 N m. If the blocks are released from 
rest, how long does it take the 4.0 kg block to reach the floor?

 70. || Blocks of mass m1 and m2 are connected by a massless string 
that passes over the pulley in FiguRE P12.70. The pulley turns on 
frictionless bearings. Mass m1 slides on a horizontal, frictionless 
surface. Mass m2 is released while the blocks are at rest.

 a. Assume the pulley is massless. Find the acceleration of m1 and 
the tension in the string. This is a Chapter 7 review problem.

 b. Suppose the pulley has mass mp and radius R. Find the accel-
eration of m1 and the tensions in the upper and lower portions 
of the string. Verify that your answers agree with part a if you 
set mp = 0.

 71. || The 2.0 kg, 30-cm-diameter disk in FiguRE P12.71 is spinning 
at 300 rpm. How much friction force must the brake apply to the 
rim to bring the disk to a halt in 3.0 s?

 72. || Your engineering team has been assigned the task of mea-
suring the properties of a new jet-engine turbine. You’ve 
previously determined that the turbine’s moment of inertia is 
2.6 kg m2. The next job is to measure the frictional torque of 
the bearings. Your plan is to run the turbine up to a predeter-
mined rotation speed, cut the power, and time how long it takes 
the turbine to reduce its rotation speed by 50%. Your data are 
as follows:

Rotation (rpm) Time (s)

1500 19

1800 22

2100 25

2400 30

2700 34

  Draw an appropriate graph of the data and, from the slope of the 
best-fit line, determine the frictional torque.

 73. || A hollow sphere is rolling along a horizontal floor at 5.0 m/s 
when it comes to a 30� incline. How far up the incline does it roll 
before reversing direction?

 74. || The 5.0 kg, 60-cm-diameter disk in 
FiguRE P12.74 rotates on an axle passing 
through one edge. The axle is parallel to 
the floor. The cylinder is held with the 
center of mass at the same height as the 
axle, then released.

 a. What is the cylinder’s initial angular 
acceleration?

 b. What is the cylinder’s angular veloc-
ity when it is directly below the axle?

 75. || FiguRE P12.75 shows a hoop of mass M 
and radius R rotating about an axle at the 
edge of the hoop. The hoop starts at its high-
est position and is given a very small push 
to start it rotating. At its lowest position, 
what are (a) the angular velocity and (b) the 
speed of the lowest point on the hoop?

 76. || A long, thin rod of mass M and length L is standing straight 
up on a table. Its lower end rotates on a frictionless pivot. A very 
slight push causes the rod to fall over. As it hits the table, what 
are (a) the angular velocity and (b) the speed of the tip of the rod?

 77. || The sphere of mass M and radius R 
in FiguRE P12.77 is rigidly attached to a 
thin rod of radius r that passes through 
the sphere at distance 12 R from the center. 
A string wrapped around the rod pulls 
with tension T. Find an expression for the 
sphere’s angular acceleration. The rod’s 
moment of inertia is negligible.

 78. || A satellite follows the elliptical orbit shown in FiguRE P12.78. 
The only force on the satellite is the gravitational attraction of 
the planet. The satellite’s speed at point a is 8000 m/s.

 a. Does the satellite experience any torque about the center of 
the planet? Explain.

 b. What is the satellite’s speed at point b?
 c. What is the satellite’s speed at point c?

 79. || A 10 g bullet traveling at 400 m/s strikes a 10 kg, 1.0-m-wide 
door at the edge opposite the hinge. The bullet embeds itself in 
the door, causing the door to swing open. What is the angular 
velocity of the door just after impact?

 80. || A 200 g, 40-cm-diameter turntable rotates on frictionless bear-
ings at 60 rpm. A 20 g block sits at the center of the turntable. 
A compressed spring shoots the block radially outward along a 
frictionless groove in the surface of the turntable. What is the 
turntable’s rotation angular velocity when the block reaches the 
outer edge?
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 86. FiguRE CP12.86 shows a cube of mass m sliding without friction at 
speed v0. It undergoes a perfectly elastic collision with the bot-
tom tip of a rod of length d and mass M = 2m. The rod is pivoted 
about a frictionless axle through its center, and initially it hangs 
straight down and is at rest. What is the cube’s velocity—both 
speed and direction—after the collision?

 87. A 75 g, 30-cm-long rod hangs vertically on a frictionless, hori-
zontal axle passing through its center. A 10 g ball of clay travel-
ing horizontally at 2.5 m/s hits and sticks to the very bottom tip 
of the rod. To what maximum angle, measured from vertical, 
does the rod (with the attached ball of clay) rotate?

 88. During most of its lifetime, a star maintains an equilibrium size 
in which the inward force of gravity on each atom is balanced by 
an outward pressure force due to the heat of the nuclear reactions 
in the core. But after all the hydrogen “fuel” is consumed by 
nuclear fusion, the pressure force drops and the star undergoes a 
gravitational collapse until it becomes a neutron star. In a neu-
tron star, the electrons and protons of the atoms are squeezed to-
gether by gravity until they fuse into neutrons. Neutron stars spin 
very rapidly and emit intense pulses of radio and light waves, 
one pulse per rotation. These “pulsing stars” were discovered in 
the 1960s and are called pulsars.

 a. A star with the mass (M = 2.0 * 1030 kg) and size (R =
7.0 * 108 m) of our sun rotates once every 30 days. After 
undergoing gravitational collapse, the star forms a pulsar 
that is observed by astronomers to emit radio pulses every 
0.10 s. By treating the neutron star as a solid sphere, deduce 
its radius.

 b. What is the speed of a point on the equator of the neutron 
star?

  Your answers will be somewhat too large because a star can-
not be accurately modeled as a solid sphere. Even so, you will 
be able to show that a star, whose mass is 106 larger than the 
earth’s, can be compressed by gravitational forces to a size 
smaller than a typical state in the United States!

 81. || A merry-go-round is a common piece of playground equip-
ment. A 3.0-m-diameter merry-go-round with a mass of 250 kg 
is spinning at 20 rpm. John runs tangent to the merry-go-round 
at 5.0 m/s, in the same direction that it is turning, and jumps 
onto the outer edge. John’s mass is 30 kg. What is the merry-go-
round’s angular velocity, in rpm, after John jumps on?

 82. || A 45 kg figure skater is spinning on the toes of her skates at 
1.0 rev/s. Her arms are outstretched as far as they will go. In 
this orientation, the skater can be modeled as a cylindrical torso 
(40 kg, 20 cm average diameter, 160 cm tall) plus two rod-like 
arms (2.5 kg each, 66 cm long) attached to the outside of the 
torso. The skater then raises her arms straight above her head, 
where she appears to be a 45 kg, 20-cm-diameter, 200-cm-tall 
cylinder. What is her new angular velocity, in rev/s?

Challenge Problems

 83. In FiguRE CP12.83, a 200 g toy car is placed on a narrow 60-cm-
diameter track with wheel grooves that keep the car going in a 
circle. The 1.0 kg track is free to turn on a frictionless, vertical 
axis. The spokes have negligible mass. After the car’s switch is 
turned on, it soon reaches a steady speed of 0.75 m/s relative to 
the track. What then is the track’s angular velocity, in rpm?

 84. The marble rolls down the track shown in FiguRE CP12.84 and 
around a loop-the-loop of radius R. The marble has mass m 
and radius r. What minimum height h must the track have 
for the marble to make it around the loop-the-loop without 
falling off?

 85. FiguRE CP12.85 shows a triangular block of Swiss cheese sitting 
on a cheese board. You and your friends start to wonder what 
will happen if you slowly tilt the board, increasing angle u. Em-
ily thinks the cheese will start to slide before it topples over. Fred 
thinks it will topple before starting to slide. Some quick Internet 
research on your part reveals that the coefficient of static friction 
of Swiss cheese on wood is 0.90. Who is right?

FiguRE CP12.83 FiguRE CP12.84 

h

R

Mass m, radius r

FiguRE CP12.85 

12 cm

8.0 cm

u

FiguRE CP12.86 

m

M

d

v0
r
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STOP TO ThiNK ANSWERS

Stop to Think 12.1: Ia + Id + Ib + Ic. The moment of inertia is 
smaller when the mass is more concentrated near the rotation axis.

Stop to Think 12.2: Te + Ta � Td + Tb + Tc. The tangential com-
ponent in e is larger than 2 N.

Stop to Think 12.3: Ab + Aa + Ac � Ad � Ae. Angular accel-
eration is proportional to torque and inversely proportional to the mo-
ment of inertia. The moment of inertia depends on the square of the 
radius. The tangential force component in e is the same as in d.

Stop to Think 12.4: c + d + a � b. To keep the meter stick in 
equilibrium, the student must supply a torque equal and opposite to 
the torque due to the hanging masses. Torque depends on the mass 
and on how far the mass is from the pivot point.

Stop to Think 12.5: d. There is no net torque on the bucket + rain 
system, so the angular momentum is conserved. The addition of mass 
on the outer edge of the circle increases I, so v must decrease. Me-
chanical energy is not conserved because the raindrop collisions are 
inelastic.



Orbits
We’ll use Newton’s theory to derive 
Kepler’s three laws, providing strong 
evidence in favor of Newton’s theory.

 Looking Back
Sections 8.2–8.3 Uniform circular motion 
and orbital motion

Communications satel-
lites are in geosyn-
chronous orbits around 
the earth. You’ll learn 
how to calculate the 
height of these satellites.

Gravitational Energy
The gravitational potential energy of  
Chapter 10, Ug = mgy, is valid only very 
near the surface of a planet. We’ll find a 
more general gravitational potential energy 
that applies to satellites and planets.

You’ll learn to use 
energy conservation to 
solve orbit problems, 
such as how a satellite 
is transferred from one 
orbit to another.

 Looking Back
Chapter 10 Potential energy and energy 
conservation 

In addition, Newton proposed that his 
three laws of motion applied to the plan-
ets, not just to earthly objects.

We’ll use Newton’s theory to
■	 Understand the value of g, and
■	 Weigh the earth.

Kepler’s Laws
Before Galileo and the telescope, Kepler 
used naked-eye measurements of the 
planets to make three major discoveries:
■	 The planets move in elliptical orbits.
■	 The planets “sweep out” equal areas 

in equal times.
■	 The square of the period is propor-

tional to the cube of the orbit’s radius.

Newton’s Theory
Newton proposed that any two masses 
are attracted toward each other by a 
gravitational force

FM on m = Fm on M =
GMm

r2

This is an inverse-square force law 
because the force depends inversely on 
the square of the distance between the 
masses.

Copernicus and Galileo
In many ways, modern science began 
with Copernicus’s assertion in 1543 that 
the planets orbit the sun rather than the 
sun and planets revolving around the 
earth.

Copernicus’s ideas were confirmed a 
century later when Galileo, using one of 
the earliest telescopes, made the first de-
tailed observations of the solar system.

In this chapter you’ll learn how Newton’s 
theory of gravity explains the motions 
of satellites, planets, and even the entire 
solar system as it revolves around the 
galactic center.

Newton’s Theory 
of Gravity

13

This beautiful galaxy consists of 
billions of stars orbiting the ga-
lactic center exactly as predicted 
by Newton’s theory of gravity.

 Looking Ahead   The goal of Chapter 13 is to use Newton’s theory of gravity to understand the motion of satellites and planets.

A planet’s orbit is 
an ellipse with the 
sun at one focus.

m

M

r

Fm on M
r

FM on m
r

Newton’s theory 
explains the 
orbits of the dust 
and ice particles 
that form  
Saturn’s rings.
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13.1 A Little History
The study of the structure of the universe is called cosmology. The ancient Greeks de-
veloped a cosmological model, with the earth at the center of the universe while the 
moon, the sun, the planets, and the stars were points of light turning about the earth on 
large “celestial spheres.” This viewpoint was further expanded by the second-century 
Egyptian astronomer Ptolemy (the P is silent). He developed an elaborate mathematical 
model of the solar system that quite accurately predicted the complex planetary motions.

Then, in 1543, the medieval world was turned on its head with the publication of 
Nicholas Copernicus’s De Revolutionibus. Copernicus argued that it is not the earth at 
rest in the center of the universe—it is the sun! Furthermore, Copernicus asserted that 
all of the planets revolve about the sun (hence his title) in circular orbits.

Tycho and Kepler
The greatest medieval astronomer was Tycho Brahe. For 30 years, from 1570 to 1600, 
Tycho compiled the most accurate astronomical observations the world had known. 
The invention of the telescope was still to come, but Tycho developed ingenious me-
chanical sighting devices that allowed him to determine the positions of stars and 
planets in the sky with unprecedented accuracy.

Tycho had a young mathematical assistant named Johannes Kepler. Kepler had 
become one of the first outspoken defenders of Copernicus, and his goal was to find 
evidence for circular planetary orbits in Tycho’s records. To appreciate the difficulty 
of this task, keep in mind that Kepler was working before the development of graphs 
or of calculus—and certainly before calculators! His mathematical tools were alge-
bra, geometry, and trigonometry, and he was faced with thousands upon thousands of 
individual observations of planetary positions measured as angles above the horizon.

Many years of work led Kepler to discover that the orbits are not circles, as Co-
pernicus claimed, but ellipses. Furthermore, the speed of a planet is not constant but 
varies as it moves around the ellipse.

Kepler’s laws, as we call them today, state that

	 1.	Planets move in elliptical orbits, with the sun at one focus of the ellipse.
	 2.	A line drawn between the sun and a planet sweeps out equal areas during equal 

intervals of time.
	 3.	The square of a planet’s orbital period is proportional to the cube of the semima-

jor-axis length.

FiGurE 13.1a shows that an ellipse has two foci (plural of focus), and the sun occupies 
one of these. The long axis of the ellipse is the major axis, and half the length of this 
axis is called the semimajor-axis length. As the planet moves, a line drawn from the 
sun to the planet “sweeps out” an area. FiGurE 13.1b shows two such areas. Kepler’s 
 discovery that the areas are equal for equal �t implies that the planet moves faster 
when near the sun, slower when farther away.

All the planets except Mercury have elliptical orbits that are only very slightly 
distorted circles. As FiGurE 13.2 shows, a circle is an ellipse in which the two foci move 
to the center, effectively making one focus, and the semimajor-axis length becomes 
the radius. Because the mathematics of ellipses is difficult, this chapter will focus on 
circular orbits.

Kepler made an additional contribution that was essential to prepare the way for 
Newton. For Ptolemy and, later, Copernicus, the role of the sun was merely to light 
and warm the earth and planets. Kepler was the first to suggest that the sun was a cen-
ter of force that somehow caused the planetary motions. Now, Kepler was working 
before Galileo and Newton, so he did not speak in terms of forces and centripetal ac-
celerations. The value of his contribution was not the specific mechanism he proposed 
but his introduction of the idea that the sun somehow exerts forces on the planets to 
determine their motion.

FiGurE 13.1 The elliptical orbit of a 
planet about the sun.

Minor axis

Semimajor-axis length

Semiminor-
axis
length

Sun

Foci
Major axis

The planet moves in an
elliptical orbit with the
sun at one focus.

Planet

(a)

The line between the sun
and the planet sweeps out
equal areas during equal
intervals of time.

Slower

Faster

(b)

FiGurE 13.2 A circular orbit is a special 
case of an elliptical orbit.

Kepler’s second law:
Equal areas in equal times
imply the speed is constant.
The motion is uniform
circular motion.

Kepler’s third law: The
square of the period is
proportional to r3.

Kepler’s first law:
The sun is at
the center.

Sun

Circular orbit

r
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Kepler published the first two of his laws in 1609, the same year in which Galileo 
first turned a telescope to the heavens. Through his telescope Galileo could see moons 
orbiting Jupiter, just as Copernicus had suggested the planets orbit the sun. He could 
see that Venus has phases, like the moon, which implied its orbital motion about the 
sun. By the time of Galileo’s death in 1642, the Copernican revolution was complete.

13.2 isaac Newton
A popular image has Newton thinking of the idea of gravity after an apple fell on his 
head. This amusing story is at least close to the truth. Newton himself said that the “no-
tion of gravitation” came to him as he “sat in a contemplative mood” and “was occa-
sioned by the fall of an apple.” It occurred to him that, perhaps, the apple was attracted 
to the center of the earth but was prevented from getting there by the earth’s surface. 
And if the apple was so attracted, why not the moon? In other words, perhaps gravita-
tion is a universal force between all objects in the universe! This is not shocking today, 
but no one before Newton had ever thought that the mundane motion of objects on earth 
had any connection at all with the stately motion of the planets through the heavens.

Newton reasoned along the following lines. Suppose the moon’s circular motion 
around the earth is due to the pull of the earth’s gravity. Then, as you learned in 
Chapter 8 and is shown in FiGurE 13.3, the moon must be in free fall with the free-fall 
acceleration gat moon.

NOTE  We need to be careful with notation. The symbol gmoon is the free-fall ac-
celeration caused by the moon’s gravity—that is, the acceleration of a falling object 
on the moon. Here we’re interested in the acceleration of the moon by the earth’s 
gravity, which we’ll call gat moon  . 

The centripetal acceleration of an object in uniform circular motion is

 ar = gat moon =
vm 

2

rm
 (13.1)

The moon’s speed is related to the radius rm and period Tm of its orbit by vm =
circumference/period = 2prm/Tm . Combining these, Newton found

 gat moon =
4p2rm

Tm 

2 =
4p2 (3.84 * 108 m)

(2.36 * 106 s)2 = 0.00272 m/s2

Astronomical measurements had established a reasonably good value for rm by the 
time of Newton, and the period Tm = 27.3 days was quite well known.

The moon’s centripetal acceleration is significantly less than the free-fall accelera-
tion on the earth’s surface. In fact,

 
gat moon

gon earth
=

0.00272 m/s2

9.80 m/s2 =
1

3600

This is an interesting result, but it was Newton’s next step that was critical. He com-
pared the radius of the moon’s orbit to the radius of the earth:

 
rm

Re
=

3.84 * 108 m

6.37 * 106 m
= 60.2

NOTE  We’ll use a lowercase r, as in rm, to indicate the radius of an orbit. We’ll 
use an uppercase R, as in Re , to indicate the radius of a star or planet. 

Newton recognized that (60.2)2 is almost exactly 3600. Thus, he reasoned:

	■ If g has the value 9.80 at the earth’s surface, and
	■ If the force of gravity and g decrease in size depending inversely on the square of 

the distance from the center of the earth,
	■ Then g will have exactly the value it needs at the distance of the moon to cause the 

moon to orbit the earth with a period of 27.3 days.

Isaac Newton, 1642–1727.

FiGurE 13.3 The moon is in free fall 
around the earth.

rv

ram � (gat moon, toward earth)Moon

Centripetal
acceleration

Earth

I deduced that the forces which keep the 
planets in their orbs must be reciprocally 
as the squares of their distances from the 
centers about which they revolve; and 
thereby compared the force requisite to 
keep the Moon in her orb with the force 
of gravity at the surface of the Earth; and 
found them answer pretty nearly.

Isaac Newton
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His two ratios were not identical (because the earth isn’t a perfect sphere and the 
moon’s orbit isn’t a perfect circle), but he found them to “answer pretty nearly” and 
knew that he had to be on the right track.

Stop to think 13.1 
 A satellite orbits the earth with constant speed at a height above 

the surface equal to the earth’s radius. The magnitude of the satellite’s acceleration is

 a. 4gon earth b. 2gon earth c. gon earth

 d. 1
2 gon earth e. 14 gon earth f. 0

 

13.3 Newton’s Law of Gravity
Newton proposed that every object in the universe attracts every other object with a 
force that is

	 1.	 Inversely proportional to the square of the distance between the objects.
	 2.	Directly proportional to the product of the masses of the two objects.

To make these ideas more specific, FiGurE 13.4 shows masses m1 and m2 separated 
by distance r. Each mass exerts an attractive force on the other, a force that we call the 
gravitational force. These two forces form an action/reaction pair, so F

u

1 on 2 is equal 
and opposite to F

u

2 on 1. The magnitude of the forces is given by Newton’s law of gravity.

Newton’s law of gravity If two objects with masses m1 and m2 are a distance r 
apart, the objects exert attractive forces on each other of magnitude

 F1 on 2 = F2 on 1 =
Gm1  m2

r2  (13.2)

The forces are directed along the straight line joining the two objects.

The constant G, called the gravitational constant, is a proportionality constant neces-
sary to relate the masses, measured in kilograms, to the force, measured in newtons. In 
the SI system of units, G has the value

 G = 6.67 * 10-11 N m2/kg2

FiGurE 13.5 is a graph of the gravitational force as a function of the distance between 
the two masses. As you can see, an inverse-square force decreases rapidly.

Strictly speaking, Equation 13.2 is valid only for particles. However, Newton was 
able to show that this equation also applies to spherical objects, such as planets, if r 
is the distance between their centers. Our intuition and common sense suggest this to 
us, as they did to Newton. The rather difficult proof is not essential, so we will omit it.

Gravitational Force and Weight
Knowing G, we can calculate the size of the gravitational force. Consider two 1.0 kg 
masses that are 1.0 m apart. According to Newton’s law of gravity, these two masses 
exert an attractive gravitational force on each other of magnitude

  F1 on 2 = F2 on 1 =
Gm1  m2

r2

  =
(6.67 * 10-11 N m2/kg2)(1.0 kg)(1.0 kg)

(1.0 m)2 = 6.67 * 10-11 N

This is an exceptionally tiny force, especially when compared to the gravitational 
force of the entire earth on each mass: FG = mg = 9.8 N.

FiGurE 13.4 The gravitational forces on 
masses m1 and m2.

r

r is the distance
between the
centers.

The forces are an
action/reaction pair.

m1

m2

F1 on 2

r

F2 on 1

r

FiGurE 13.5 The gravitational force is an 
inverse-square force.

1r

F

F/4

F/9

Gravitational
force

Separation
of masses2r 3r

Doubling the distance 
between the masses 
causes the force to 
decrease by a factor of 4.



358    c h a p t e r  13 . Newton’s Theory of Gravity

The fact that the gravitational force between two ordinary-size objects is so small 
is the reason we are not aware of it. As you sit there reading, you are being attracted 
to this book, to the person sitting next to you, and to every object around you, but the 
forces are so tiny in comparison to the normal forces and friction forces acting on you 
that they are completely undetectable. Only when one (or both) of the masses is excep-
tionally large—planet-size—does the force of gravity become important.

We find a more respectable result if we calculate the force of the earth on a 1.0 kg 
mass at the earth’s surface:

  Fearth on 1 kg =
GMe m1 kg

Re 

2

  =
(6.67 * 10-11 N m2/kg2)(5.98 * 1024 kg)(1.0 kg)

(6.37 * 106 m)2 = 9.8 N

where the distance between the mass and the center of the earth is the earth’s radius. 
The earth’s mass Me and radius Re were taken from Table 13.2 in Section 13.6. This 
table, which is also printed inside the back cover of the book, contains astronomical 
data that will be used for examples and homework.

The force Fearth on 1 kg = 9.8 N is exactly the weight of a stationary 1.0 kg mass: 
FG = mg = 9.8 N. Is this a coincidence? Of course not. Weight—the upward force 
of a spring scale—exactly balances the downward gravitational force, so numerically 
they must be equal.

Although weak, gravity is a long-range force. No matter how far apart two objects 
may be, there is a gravitational attraction between them given by Equation 13.2. Conse-
quently, gravity is the most ubiquitous force in the universe. It not only keeps your feet 
on the ground, it also keeps the earth orbiting the sun, the solar system orbiting the center 
of the Milky Way galaxy, and the entire Milky Way galaxy performing an intricate or-
bital dance with other galaxies making up what is called the “local cluster” of galaxies.

The Principle of Equivalence
Newton’s law of gravity depends on a rather curious assumption. The concept of mass 
was introduced in Chapter 5 by considering the relationship between force and ac-
celeration. The inertial mass of an object, which is the mass that appears in Newton’s 
second law, is found by measuring the object’s acceleration a in response to force F:

 minert = inertial mass =
F
a

 (13.3)

Gravity plays no role in this definition of mass.
The quantities m1 and m2 in Newton’s law of gravity are being used in a very differ-

ent way. Masses m1 and m2 govern the strength of the gravitational attraction between 
two objects. The mass used in Newton’s law of gravity is called the gravitational 
mass. The gravitational mass of an object can be determined by measuring the attrac-
tive force exerted on it by another mass M a distance r away:

 mgrav = gravitational mass =
r2FM on m

GM
 (13.4)

Acceleration does not enter into the definition of the gravitational mass.
These are two very different concepts of mass. Yet Newton, in his theory of grav-

ity, asserts that the inertial mass in his second law is the very same mass that gov-
erns the strength of the gravitational attraction between two objects. The assertion 
that mgrav = minert is called the principle of equivalence. It says that inertial mass is 
equivalent to gravitational mass.

As a hypothesis about nature, the principle of equivalence is subject to experimen-
tal verification or disproof. Many exceptionally clever experiments have looked for 
any difference between the gravitational mass and the inertial mass, and they have 
shown that any difference, if it exists at all, is less than 10 parts in a trillion! As far as 
we know today, the gravitational mass and the inertial mass are exactly the same thing.

A galaxy of �  1011 stars spanning a 
distance greater than 100,000 light years.

The dynamics of stellar motions, spanning
many thousands of light years, are governed 
by Newton’s law of gravity.
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But why should a quantity associated with the dynamics of motion, relating force to 
acceleration, have anything at all to do with the gravitational attraction? This is a ques-
tion that intrigued Einstein and eventually led to his general theory of relativity, the 
theory about curved spacetime and black holes. General relativity is beyond the scope 
of this textbook, but it explains the principle of equivalence as a property of space itself.

Newton’s Theory of Gravity
Newton’s theory of gravity is more than just Equation 13.2. The theory of gravity 
 consists of:

	 1.	A specific force law for gravity, given by Equation 13.2, and
	 2.	The principle of equivalence, and
	 3.	An assertion that Newton’s three laws of motion are universally applicable. 

These laws are as valid for heavenly bodies, the planets and stars, as for earthly 
objects.

Consequently, everything we have learned about forces, motion, and energy is rele-
vant to the dynamics of satellites, planets, and galaxies.

Stop to think 13.2 
 The figure shows a binary star 

system. The mass of star 2 is twice the mass of star 1. 
Compared to F

u

1 on 2  , the magnitude of the force 
F
u

2 on 1 is

 a. Four times as big.
 b. Twice as big.
 c. The same size.
 d. Half as big.
 e. One-quarter as big.

13.4 Little g and Big G
The familiar equation FG = mg works well when an object is on the surface of a 
planet, but mg will not help us find the force exerted on the same object if it is in orbit 
around the planet. Neither can we use mg to find the force of attraction between the 
earth and the moon. Newton’s law of gravity provides a more fundamental starting 
point because it describes a universal force that exists between all objects.

To illustrate the connection between Newton’s law of gravity and the familiar 
FG = mg, FiGurE 13.6 shows an object of mass m on the surface of Planet X. Planet X 
inhabitant Mr. Xhzt, standing on the surface, finds that the downward gravitational 
force is FG = mgX, where gX is the free-fall acceleration on Planet X.

We, taking a more cosmic perspective, reply, “Yes, that is the force because of a 
universal force of attraction between your planet and the object. The size of the force 
is determined by Newton’s law of gravity.”

We and Mr. Xhzt are both correct. Whether you think locally or globally, we and 
Mr. Xhzt must arrive at the same numerical value for the magnitude of the force. Sup-
pose an object of mass m is on the surface of a planet of mass M and radius R. The 
local gravitational force is

 FG = mgsurface (13.5)

where gsurface is the acceleration due to gravity at the planet’s surface. The force of 
gravitational attraction for an object on the surface (r = R), as given by Newton’s law 
of gravity, is

 FM on m =
GMm

R2  (13.6)

m2

m1

F2 on 1

r

FiGurE 13.6 Weighing an object of mass 
m on Planet X.

RX

Planet X

MX

m

Planetary perspective:
F � mgX

RX

Planet X

MX

Universal perspective:

F � 
GMXm

RX
2

m
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Because these are two names and two expressions for the same force, we can equate 
the right-hand sides to find that

 gsurface =
GM

R2  (13.7)

We have used Newton’s law of gravity to predict the value of g at the surface of a 
planet. The value depends on the mass and radius of the planet as well as on the value 
of G, which establishes the overall strength of the gravitational force.

The expression for gsurface in Equation 13.7 is valid for any planet or star. Using the 
mass and radius of Mars, we can predict the Martian value of g:

 gMars =
GMMars

RMars 

2 =
(6.67 * 10-11 N m2/kg2)(6.42 * 1023 kg)

(3.37 * 106 m)2 = 3.8 m/s2

NOTE  We noted in Chapter 6 that measured values of g are very slightly smaller 
on a rotating planet. We’ll ignore rotation in this chapter. 

Decrease of g with Distance
Equation 13.7 gives gsurface at the surface of a planet. More generally, imagine an object 
of mass m at distance r 7 R from the center of a planet. Further, suppose that gravity 
from the planet is the only force acting on the object. Then its acceleration, the free-
fall acceleration, is given by Newton’s second law:

 g =
FM on m

m
=

GM

r2  (13.8)

This more general result agrees with Equation 13.7 if r = R, but it allows us to de-
termine the “local” free-fall acceleration at distances r 7 R. Equation 13.8 expresses 
Newton’s discovery, with regard to the moon, that g decreases inversely with the 
square of the distance.

FiGurE 13.7 shows a satellite orbiting at height h above the earth’s surface. Its dis-
tance from the center of the earth is r = Re + h. Most people have a mental image that 
satellites orbit “far” from the earth, but in reality h is typically 200 miles� 3 * 105 m, 
while Re = 6.37 * 106 m. Thus the satellite is barely “skimming” the earth at a height 
only about 5% of the earth’s radius!

The value of g at height h above the earth (i.e., above sea level) is

 g =
GMe

(Re + h)2 =
GMe

Re 

2(1 + h/Re)
2 =

gearth

(1 + h/Re)
2 (13.9)

where gearth = 9.83 m/s2 is the value calculated from Equation 13.7 for h = 0 on a 
nonrotating earth. Table 13.1 shows the value of g evaluated at several values of h.

NOTE  The free-fall acceleration of a satellite such as the space shuttle is only 
slightly less than the ground-level value. An object in orbit is not “weightless” 
because there is no gravity in space but because it is in free fall, as you learned in 
Chapter 8. 

FiGurE 13.7 A satellite orbits the earth 
at height h.

Earth

Satellite

Re

r
h

Me

h is typically very
small compared
with Re. 

TABLE 13.1 Variation of g with height above the ground

Height h Example g (m/s2)

0 m ground 9.83

4500 m Mt. Whitney 9.82

10,000 m jet airplane 9.80

300,000 m space shuttle 8.90

35,900,000 m communications satellite 0.22
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Weighing the Earth
We can predict g if we know the earth’s mass. But how do we know the value of Me ? 
We cannot place the earth on a giant pan balance, so how is its mass known? Further-
more, how do we know the value of G?

Newton did not know the value of G. He could say that the gravitational force 
is proportional to the product m1  m2 and inversely proportional to r2, but he had no 
means of knowing the value of the proportionality constant.

Determining G requires a direct measurement of the gravitational force between 
two known masses at a known separation. The small size of the gravitational force 
between ordinary-size objects makes this quite a feat. Yet the English scientist Henry 
Cavendish came up with an ingenious way of doing so with a device called a torsion 
balance. Two fairly small masses m, typically about 10 g, are placed on the ends of a 
lightweight rod. The rod is hung from a thin fiber, as shown in FiGurE 13.8a, and allowed 
to reach equilibrium.

If the rod is then rotated slightly and released, a restoring force will return it to 
equilibrium. This is analogous to displacing a spring from equilibrium, and in fact 
the restoring force and the angle of displacement obey a version of Hooke’s law: 
Frestore = k�u. The “torsion constant” k can be determined by timing the period of 
oscillations. Once k is known, a force that twists the rod slightly away from equilib-
rium can be measured by the product k�u. It is possible to measure very small angular 
deflections, so this device can be used to determine very small forces.

Two larger masses M (typically lead spheres with M � 10 kg)  are then brought 
close to the torsion balance, as shown in FiGurE 13.8b. The gravitational attraction that 
they exert on the smaller hanging masses causes a very small but measurable twisting 
of the balance, enough to measure FM on m. Because m, M, and r are all known, Caven-
dish was able to determine G from

 G =
FM on m r2

Mm
 (13.10)

His first results were not highly accurate, but improvements over the years in this and 
similar experiments have produced the value of G accepted today.

With an independently determined value of G, we can return to Equation 13.7 to find

 Me =
gearthRe 

2

G
 (13.11)

We have weighed the earth! The value of gearth at the earth’s surface is known with 
great accuracy from kinematics experiments. The earth’s radius Re is determined by 
surveying techniques. Combining our knowledge from these very different measure-
ments has given us a way to determine the mass of the earth.

The gravitational constant G is what we call a universal constant. Its value estab-
lishes the strength of one of the fundamental forces of nature. As far as we know, the 
gravitational force between two masses would be the same anywhere in the universe. 
Universal constants tell us something about the most basic and fundamental properties 
of nature. You will soon meet other universal constants.

Stop to think 13.3 
 A planet has four times the mass of the earth, but the acceleration 

due to gravity on the planet’s surface is the same as on the earth’s surface. The planet’s 
radius is

 a. 4Re   b. 2Re   c. Re   d. 12Re   e. 14Re

FiGurE 13.8 Cavendish’s experiment to 
measure G.

The force needed to rotate
the rod by �u is k �u.

The gravitational
force causes the
fiber to twist.

Fiber

Rod with small masses

(a)

(b)

Lead sphere
Gravitational
forces

r m

mM
M

�u

The free-fall acceleration varies slightly 
due to mountains and to variation in the 
density of the earth’s crust. This map 
shows the gravitational anomaly, with red 
regions of slightly stronger gravity and 
blue regions of slightly weaker gravity. The 
variation is tiny, less than 0.001 m/s2 .
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13.5 Gravitational Potential Energy
Gravitational problems are ideal for the conservation-law tools we developed in Chap-
ters 9 through 11. Because gravity is the only force, and it is a conservative force, both 
the momentum and the mechanical energy of the system m1 + m2 are conserved. To 
employ conservation of energy, however, we need to determine an appropriate form 
for the gravitational potential energy for two interacting masses.

The definition of potential energy that we developed in Chapter 11 is

 �U = Uf - Ui = -Wc (i S f ) (13.12)

where Wc (i S f ) is the work done by a conservative force as a particle moves from 
position i to position f. For a flat earth, we used F = -mg and the choice that U = 0 at 
the surface (y = 0) to arrive at the now-familiar Ug = mgy. This result for Ug is valid 
only for y V Re, when the earth’s curvature and size are not apparent. We now need 
to find an expression for the gravitational potential energy of masses that interact over 
large distances.

FiGurE 13.9 shows two particles of mass m1 and m2. Let’s calculate the work done on 
mass m2 by the conservative force F

u

1 on 2 as m2 moves from an initial position at dis-
tance r to a final position very far away. The force, which points to the left, is opposite 
the displacement; hence this force does negative work. Consequently, due to the minus 
sign in Equation 13.12, �U is positive. A pair of masses gains potential energy as the 
masses move farther apart, just as a particle near the earth’s surface gains potential 
energy as it moves to a higher altitude.

We can establish a coordinate system with m1 at the origin and m2 moving along the 
x-axis. The gravitational force is a variable force, so we need the full definition of work:

 W(i S f ) = 3
xf 

xi

Fx dx (13.13)

F
u

1 on 2 points toward the left, so its x-component is (F1 on 2)x = -Gm1  m2/x
2. As mass 

m2 moves from xi = r to xf = �, the potential energy changes by

 �U = Uat � - Uat r = - 3
�

r

(F1 on 2)x dx = - 3
�

r

 1 -Gm1  m2

x2 2dx

 = +Gm1  m2  3
�

r

 

dx

x2 = -  
Gm1  m2

x
 `

�

r

=
Gm1  m2

r
 

(13.14)

NOTE  We chose to integrate along the x-axis, but the fact that gravity is a con-
servative force means that �U will have this value if m2 moves from r to � along 
any path. 

To proceed further, we need to choose the point where U = 0. We would like our 
choice to be valid for any star or planet, regardless of its mass and radius. This will 
be the case if we set U = 0 at the point where the interaction between the masses 
vanishes. According to Newton’s law of gravity, the strength of the interaction is zero 
only when r = �. Two masses infinitely far apart will have no tendency, or potential, 
to move together, so we will choose to place the zero point of potential energy at 
r = �. That is, Uat � = 0.

This choice gives us the gravitational potential energy of masses m1 and m2:

 Ug = -  
Gm1  m2

r
 (13.15)

This is the potential energy of masses m1 and m2 when their centers are separated 
by distance r. FiGurE 13.10 is a graph of Ug as a function of the distance r between the 
masses. Notice that it asymptotically approaches 0 as r S �.

FiGurE 13.9 Calculating the work done 
by the gravitational force as mass m2 
moves from r to �.

Work is done on m2 as
it moves away from m1.

x

m1 m2

xf  � �xi � r0

Before: After:
F1 on 2

F1 on 2 is opposite �r, so
the work is negative.

rr

r

�rr

U approaches �� as r S 0,
but this is not physically
significant because two
objects can’t occupy the
same point.

r

U approaches 0
as r S �.

0

Ug

FiGurE 13.10 The gravitational potential-
energy curve.
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NOTE  Although Equation 13.15 looks rather similar to Newton’s law of gravity, 
it depends only on 1/r, not on 1/r2. 

It may seem disturbing that the potential energy is negative, but we encountered 
similar situations in Chapter 10. All a negative potential energy means is that the 
potential energy of the two masses at separation r is less than their potential energy 
at infinite separation. Only the change in U has physical significance, and the change 
will be the same no matter where we place the zero of potential energy.

To illustrate, suppose two masses a distance r1 apart are released from rest. How 
will they move? From a force perspective, you would note that each mass experi-
ences an attractive force and accelerates toward the other. The energy perspective of 
FiGurE 13.11 tells the same thing. By moving toward smaller r (that is, r1 S r2 ) , the 
system loses potential energy and gains kinetic energy while conserving Emech  . The 
system is “falling downhill,” although in a more general sense than we think about 
on a flat earth.

FiGurE 13.11 Two masses gain kinetic 
energy as their separation decreases.

The kinetic energy K is
the distance from the
potential-energy curve
to the total energy line. 

The system loses potential energy
and gains kinetic energy.

r0

PE

TE

Energy

Before

After

K

r2 r1

SOLvE Strictly speaking, the kinetic energy is the sum 
K = Kearth + Ksun  . However, the sun is so much more massive 
than the earth that the lightweight earth does almost all of the 
moving. It is a reasonable approximation to consider the sun as 
remaining at rest. In that case, the energy conservation equation 
K2 + U2 = K1 + U1 is

 
1

2
 Me v2 

2 -
GMs  Me

Rs + Re
= 0 -

GMs  Me

r1

This is easily solved for the earth’s speed at impact. Using data 
from Table 13.2, we find

 v2 = B2GMs  1 1

Rs + Re
-

1
r1

2 = 6.13 * 105 m/s

ASSESS The earth would be really flying along at over 1 mil-
lion miles per hour as it crashed into the sun! It is worth noting 
that we do not have the mathematical tools to solve this problem 
using Newton’s second law because the acceleration is not con-
stant. But the solution is straightforward when we use energy 
conservation.

ExAmPLE 13.1  Crashing into the sun
Suppose the earth suddenly came to a halt and ceased revolving 
around the sun. The gravitational force would then pull it directly 
into the sun. What would be the earth’s speed as it crashed?

mODEL Model the earth and the sun as spherical masses. This is an 
isolated system, so its mechanical energy is conserved.

viSuALizE FiGurE 13.12 is a before-and-after pictorial representa-
tion for this gruesome cosmic event. The “crash” occurs as the 
earth touches the sun, at which point the distance between their 
centers is r2 = Rs + Re . The initial separation r1 is the radius of the 
earth’s orbit about the sun, not the radius of the earth.

FiGurE 13.12 Before-and-after pictorial representation 
of the earth crashing into the sun (not to scale).

v1 � 0 m/s
v2

Rs
Re

r1 � 1.50 � 1011 m

r2 � Rs � Re � 7.02 � 108 m

Before: After:

Earth Sun

statement like this means that we want the rocket’s speed to ap-
proach v = 0 asymptotically as r S �.

viSuALizE FiGurE 13.13 is a before-and-after pictorial represen- 
tation.

ExAmPLE 13.2  Escape speed
A 1000 kg rocket is fired straight away from the surface of the earth. 
What speed does the rocket need to “escape” from the gravitational 
pull of the earth and never return? Assume a nonrotating earth.

mODEL In a simple universe, consisting of only the earth and the 
rocket, an insufficient launch speed will cause the rocket eventu-
ally to fall back to earth. Once the rocket finally slows to a halt, 
gravity will ever so slowly pull it back. The only way the rocket 
can escape is to never stop (v = 0) and thus never have a turn-
ing point! That is, the rocket must continue moving away from 
the earth forever. The minimum launch speed for escape, which 
is called the escape speed, will cause the rocket to stop (v = 0) 
only as it reaches r = �. Now �, of course, is not a “place,” so a 

Continued

FiGurE 13.13 Pictorial representation of a rocket launched 
with sufficient speed to escape the earth’s gravity.
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The Flat-Earth Approximation
How does Equation 13.15 for the gravitational potential energy relate to our previous 
use of Ug = mgy on a flat earth? FiGurE 13.14 shows an object of mass m located at 
height y above the surface of the earth. The object’s distance from the earth’s center is 
r = Re + y and its gravitational potential energy is

 Ug = -  
GMe m

r
= -  

GMe m

Re + y
= -  

GMe m

Re (1 + y/Re)
 (13.16)

where, in the last step, we factored Re out of the denominator.
Suppose the object is very close to the earth’s surface (y V Re). In that case, the 

ratio y/Re V 1. There is an approximation you will learn about in calculus, called the 
binomial approximation, that says

 (1 + x)n � 1 + nx  if x V 1 (13.17)

As an illustration, you can easily use your calculator to find that 1/1.01 = 0.9901, to 
four significant figures. But suppose you wrote 1.01 = 1 + 0.01. You could then use 
the binomial approximation to calculate

 
1

1.01
=

1

1 + 0.01
= (1 + 0.01)-1 � 1 + (-1)(0.01) = 0.9900

You can see that the approximate answer is off by only 0.01%.
If we call y/Re = x in Equation 13.16 and use the binomial approximation, with 

n = -1, we find

 Ug  (if y V Re) � -  
GMe m

Re
 11 -

y

Re
2 = -  

GMe m

Re
+ m1GMe

Re 

2 2y (13.18)

Now the first term is just the gravitational potential energy U0 when the object is at 
ground level (y = 0). In the second term, you can recognize GMe/Re 

2 = gearth from the 
definition of g in Equation 13.7. Thus we can write Equation 13.18 as

 Ug  (if y V Re) = U0 + mgearth  y (13.19)

Although we chose Ug to be zero when r = �, we are always free to change our 
minds. If we change the zero point of potential energy to be U0 = 0 at the surface, 
which is the choice we made in Chapter 10, then Equation 13.19 becomes

 Ug  (if y V Re) = mgearth  y (13.20)

We can sleep easier knowing that Equation 13.15 for the gravitational potential energy 
is consistent with our earlier “flat-earth” expression for the potential energy.

ASSESS The problem was mathematically easy; the difficulty was 
deciding how to interpret it. That is why—as you have now seen 
many times—the “physics” of a problem consists of thinking, in-
terpreting, and modeling. We will see variations on this problem 
in the future, with both gravity and electricity, so you might want 
to review the reasoning involved. Notice that the answer does 
not depend on the rocket’s mass, so this is the escape speed for 
any object.

SOLvE Energy conservation K2 + U2 = K1 + U1 is

 0 + 0 =
1

2
 mv1 

2 -
GMe m

Re

where we used the fact that both the kinetic and potential energy 
are zero at r = �. Thus the escape speed is

 vescape = v1 = B 2GMe

Re
= 11,200 m/s � 25,000 mph

FiGurE 13.14 We can treat the earth as 
flat if y V Re  .

Re

Ug � � Ug � mgy

y

m

y V Re

r � Re � y

Earth

For a spherical earth: We can treat the earth
as flat if y V Re:GMem

Re � y

m
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Stop to think 13.4 
 Rank in order, from largest to smallest, 

the absolute values of the gravitational potential energies of 
these pairs of masses. The numbers give the relative masses 
and distances.

earth’s spherical shape. The energy conservation equation 
K2 + U2 = K1 + U1 is

 
1

2
 mv2 

2 -
GMe m

Re + y2
=

1

2
 mv1 

2 -
GMe m

Re + y1

where we’ve written the distance between the satellite and the 
earth’s center as r = Re + y. The initial height is y1 = 0. Notice 
that the satellite mass m cancels and is not needed. Solving for the 
launch speed, we have

 v1 = Bv2 

2 + 2GMe1 1

Re
-

1

Re + y2
2 = 2770 m/s

This is about 6000 mph, much less than the escape speed.
 b. The calculation is the same in the flat-earth approximation 

except that we use Ug = mgy. Thus

 
1

2
 mv2 

2 + mgy2 =
1

2
 mv1 

2 + mgy1

 v1 = 2v2 

2 + 2gy2 = 2840 m/s

The flat-earth value of 2840 m/s is 70 m/s too big. The error, as a 
percentage of the correct 2770 m/s, is

 error =
70

2770
* 100 = 2.5%

ASSESS The true speed is less than the flat-earth approximation 
because the force of gravity decreases with height. Launching a 
rocket against a decreasing force takes less effort than it would 
with the flat-earth force of mg at all heights.

ExAmPLE 13.3  The speed of a satellite
A less-than-successful inventor wants to launch small satellites 
into orbit by launching them straight up from the surface of the 
earth at very high speed.

 a. With what speed should he launch the satellite if it is to have a 
speed of 500 m/s at a height of 400 km? Ignore air resistance.

 b. By what percentage would your answer be in error if you used 
a flat-earth approximation?

mODEL Mechanical energy is conserved if we ignore drag.

viSuALizE FiGurE 13.15 shows a pictorial representation.

SOLvE a. Although the height is exaggerated in the figure, 
400 km = 400,000 m is high enough that we cannot ignore the 

FiGurE 13.15 Pictorial representation of 
a satellite launched straight up.

Re

y2 � 400 km
v2 � 500 m/s

y1 � 0 km
v1

r2 � Re � y2

r1 � Re

Earth

Before:

After:

y

0

m1 � 4 m2 � 4

r � 4

r �1

r � 2

r � 4

r � 8(e)

m1 � 1 m2 � 4(d)

m1 � 1 m2 � 1(c)

m1 � 1 m2 � 1(b)

m1 � 2 m2 � 2(a)

13.6 Satellite Orbits and Energies
Solving Newton’s second law to find the trajectory of a mass moving under the influ-
ence of gravity is mathematically beyond this textbook. It turns out that the solution is 
a set of elliptical orbits, which is Kepler’s first law. Kepler had no reason why orbits 
should be ellipses rather than some other shape. Newton was able to show that ellipses 
are a consequence of his theory of gravity.

The mathematics of ellipses is rather difficult, so we will restrict most of our 
analysis to the limiting case in which an ellipse becomes a circle. Most planetary 
orbits differ only very slightly from being circular. The earth’s orbit, for exam-
ple has a (semiminor axis/semimajor axis) ratio of 0.99986—very close to a true 
circle!

FiGurE 13.16 shows a massive body M, such as the earth or the sun, with a lighter 
body m orbiting it. The lighter body is called a satellite, even though it may be a planet 

FiGurE 13.16 The orbital motion of a 
satellite due to the force of gravity.

Radius r

M

m

The satellite must have
speed !GM/r to maintain
a circular orbit of radius r.

rv

FM on m

r
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orbiting the sun. For circular motion, the gravitational force must provide the centrip-
etal acceleration v 2/r. Thus Newton’s second law for the satellite is

 FM on m =
GMm

r2 = mar =
mv 2

r
 (13.21)

Thus the speed of a satellite in a circular orbit is

 v = BGM
r

 (13.22)

A satellite must have this specific speed in order to have a circular orbit of radius r 
about the larger mass M. If the velocity differs from this value, the orbit will become 
elliptical rather than circular. Notice that the orbital speed does not depend on the 
satellite’s mass m. This is consistent with our previous discovery, for motion on a flat 
earth, that motion due to gravity is independent of the mass.

The International Space Station appears 
to be floating, but it’s actually traveling at 
nearly 8000 m/s as it orbits the earth.

  v = B  

(6.67 * 10-11 N m2/kg2)(5.98 * 1024 kg) 

6.67 * 106 m

  = 7730 m/s � 17,000 mph

ASSESS The answer depends on the mass of the earth but not on 
the mass of the satellite.

ExAmPLE 13.4  The speed of the space shuttle
The space shuttle in a 300-km-high orbit (�  180 mi) wants to cap-
ture a smaller satellite for repairs. What are the speeds of the shuttle 
and the satellite in this orbit?

SOLvE Despite their different masses, the shuttle, the satellite, and 
the astronaut working in space to make the repairs all travel side by 
side with the same speed. They are simply in free fall together. Using 
r = Re + h with h = 300 km = 3.00 * 105 m, we find the speed

Kepler’s Third Law
An important parameter of circular motion is the period. Recall that the period T is the 
time to complete one full orbit. The relationship among speed, radius, and period is

 v =
circumference

period
=

2pr

T
 (13.23)

We can find a relationship between a satellite’s period and the radius of its orbit by 
using Equation 13.22 for v:

 v =
2pr

T
= BGM

r
 (13.24)

Squaring both sides and solving for T give

 T 2 = 14p2

GM 2r3 (13.25)

In other words, the square of the period is proportional to the cube of the radius. This 
is Kepler’s third law. You can see that Kepler’s third law is a direct consequence of 
Newton’s law of gravity.

Table 13.2 contains astronomical information about the solar system. We can use 
these data to check the validity of Equation 13.25. FiGurE 13.17 is a graph of log T versus 
log r for all the planets in Table 13.2 except Mercury. Notice that the scales on each 
axis are increasing logarithmically—by factors of 10—rather than linearly. (Also, the 
vertical axis has converted T to the SI units of s.) As you can see, the graph is a straight 
line with a best-fit equation

 log T = 1.500 log r - 9.264
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Taking the logarithm of both sides of Equation 13.25, and using the logarithm proper-
ties log an = n log a and log(ab) = log a +  log b, we have

 log T =
3

2
 log r +

1

2
 log 14p2

GM 2
In other words, theory predicts that the slope of a log T @versus@ log r graph should be 
exactly 3

2. As Figure 13.17 shows, the solar-system data agree to an impressive four 
significant figures. A homework problem will let you use the y-intercept of the graph 
to determine the mass of the sun.

A particularly interesting application of Equation 13.25 is to communications satel-
lites that are in geosynchronous orbits above the earth. These satellites have a period of 
24 h = 86,400 s, making their orbital motion synchronous with the earth’s rotation. As a 
result, a satellite in such an orbit appears to remain stationary over one point on the earth’s 
equator. Equation 13.25 allows us to compute the radius of an orbit with this period:

  rgeo = Re + hgeo = c 1GM

4p2 2T 2 d
1/3

  = c 1(6.67 * 10-11 N m2/kg2)(5.98 * 1024 kg)

4p2 2(86,400 s)2 d
1/3

  = 4.225 * 107 m

The height of the orbit is

 hgeo = rgeo - Re = 3.59 * 107 m = 35,900 km � 22,300 mi

NOTE  When you use Equation 13.25, the period must be in SI units of s. 

FiGurE 13.17 The graph of log T  versus 
log r for the planetary data of Table 13.2.

Neptune

The best-fit straight line is
log T � 1.500 log r � 9.264.

Uranus

Saturn

Mars

Jupiter

Earth
Venus

Distance from sun r (m)

Period T (s)

1011
107

1012 1013

108

109

1010

TABLE 13.2 Useful astronomical data

Planetary  
 body

Mean distance 
from sun (m)

Period 
(years)

Mass  
(kg)

Mean radius  
(m)

Sun — — 1.99 * 1030 6.96 * 108

Moon 3.84 * 108* 27.3 days 7.36 * 1022 1.74 * 106

Mercury 5.79 * 1010 0.241 3.18 * 1023 2.43 * 106

Venus 1.08 * 1011 0.615 4.88 * 1024 6.06 * 106

Earth 1.50 * 1011 1.00 5.98 * 1024 6.37 * 106

Mars 2.28 * 1011 1.88 6.42 * 1023 3.37 * 106

Jupiter 7.78 * 1011 11.9 1.90 * 1027 6.99 * 107

Saturn 1.43 * 1012 29.5 5.68 * 1026 5.85 * 107

Uranus 2.87 * 1012 84.0 8.68 * 1025 2.33 * 107

Neptune 4.50 * 1012 165 1.03 * 1026 2.21 * 107

*Distance from earth.

Geosynchronous orbits are much higher than the low-earth orbits used by the space 
shuttle and remote-sensing satellites, where h � 300 km. Communications satellites 
in geosynchronous orbits were first proposed in 1948 by science fiction writer Arthur 
C. Clarke, 10 years before the first artificial satellite of any type!



368    c h a p t e r  13 . Newton’s Theory of Gravity

Stop to think 13.5 
 Two planets orbit a star. Planet 1 has orbital radius r1 and planet 2 

has r2 = 4r1. Planet 1 orbits with period T1. Planet 2 orbits with period

 a. T2 = 8T1     b. T2 = 4T1     c. T2 = 2T1

 d. T2 =
1
2 T1     e. T2 =

1
4 T1     f. T2 =

1
8 T1

Kepler’s Second Law
FiGurE 13.18a shows a planet moving in an elliptical orbit. In Chapter 12 we defined a 
particle’s angular momentum to be

 L = mrv sin b (13.26)

where b is the angle between r 
u

 and v  

u
. For a circular orbit, where b is always 90�, this 

reduces to simply L = mrv.
The only force on the satellite, the gravitational force, points directly toward the 

star or planet that the satellite is orbiting and exerts no torque; thus the	satellite’s	an-
gular	momentum	is	conserved	as	it	orbits.

The satellite moves forward a small distance �s = v�t during the small interval of 
time �t. This motion defines the triangle of area �A shown in FiGurE 13.18b. �A is the 
area “swept out” by the satellite during �t. You can see that the height of the triangle 
is h = �s sin b, so the triangle’s area is

 �A =
1

2
 * base * height =

1

2
* r * �s sin b =

1

2
 rv sin b �t (13.27)

The rate at which the area is swept out by the satellite as it moves is

 
�A

�t
=

1

2
 rv sin b =

mrv sin b

2m
=

L

2m
 (13.28)

The angular momentum L is conserved, so it has the same value at every point in the 
orbit. Consequently, the rate at which the area is swept out by the satellite is constant. 
This is Kepler’s second law, which says that a line drawn between the sun and a planet 
sweeps out equal areas during equal intervals of time. We see that Kepler’s second law 
is a consequence of the conservation of angular momentum.

Another consequence of angular momentum is that the orbital speed is constant 
only for a circular orbit. Consider the “ends” of an elliptical orbit, where r is a mini-
mum or maximum. At these points, b = 90� and thus L = mrv. Because L is constant, 
the satellite’s speed at the farthest point must be less than its speed at the nearest point. 
In general, a satellite slows as r increases, then speeds up as r decreases, to keep its 
angular momentum constant.

Kepler’s laws summarize observational data about the motions of the planets. They 
were an outstanding achievement, but they did not form a theory. Newton put forward 
a theory, a specific set of relationships between force and motion that allows any mo-
tion to be understood and calculated. Newton’s theory of gravity has allowed us to 
deduce Kepler’s laws and, thus, to understand them at a more fundamental level.

T = 1200 days = 1.037 * 108 s. The orbital radius is that of 
Jupiter, which we can find in Table 13.2 to be r = 7.78 * 1011 m. 
Solving Equation 13.25 for the mass of the star gives

  M =
4p2r3

GT 2 = 2.59 * 1031 kg *
1 solar mass

1.99 * 1030 kg
 

  = 13 solar masses

ASSESS This is a large, but not extraordinary, star.

ExAmPLE 13.5  Extrasolar planets
Astronomers have only recently seen evidence of planets orbit-
ing nearby stars. These are called extrasolar planets. Suppose a 
planet is observed to have a 1200 day period as it orbits a star at 
the same distance that Jupiter is from the sun. What is the mass of 
the star in solar masses? (1 solar mass is defined to be the mass 
of the sun.)

SOLvE Here “day” means earth days, as used by astronomers 
to measure the period. Thus the planet’s period in SI units is 

FiGurE 13.18 Angular momentum is 
conserved for a planet in an elliptical 
orbit.

F

Sun

(a)

r

vr
b

The gravitational force points straight 
at the sun and exerts no torque.

Height h � �s sin b

�s � v�t

r

Area � A is swept out
during �t.

(b)

Sun

b
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Orbital Energetics
Let us conclude this chapter by thinking about the energetics of orbital motion. We 
found, with Equation 13.24, that a satellite in a circular orbit must have v 2 = GM/r. 
A satellite’s speed is determined entirely by the size of its orbit. The satellite’s kinetic 
energy is thus

 K =
1

2
 mv 2 =

GMm

2r
 (13.29)

But -GMm/r is the potential energy, Ug , so

 K = -  
1

2
 Ug (13.30)

This is an interesting result. In all our earlier examples, the kinetic and potential 
energy were two independent parameters. In contrast, a satellite can move in a circular 
orbit only if there is a very specific relationship between K and U. It is not that K and U 
have to have this relationship, but if they do not, the trajectory will be elliptical rather 
than circular.

Equation 13.30 gives us the mechanical energy of a satellite in a circular orbit:

 Emech = K + Ug =
1

2
 Ug (13.31)

The gravitational potential energy is negative, hence the total mechanical energy is 
also negative. Negative total energy is characteristic of a bound system, a system in 
which the satellite is bound to the central mass by the gravitational force and cannot 
get away. The total energy of an unbound system must be Ú  0 because the satellite 
can reach infinity, where U = 0, while still having kinetic energy. A negative value of 
Emech tells us that the satellite is unable to escape the central mass.

FiGurE 13.19 shows the energies of a satellite in a circular orbit as a function of the 
orbit’s radius. Notice how Emech =

1
2 Ug  . This figure can help us understand the ener-

getics of transferring a satellite from one orbit to another. Suppose a satellite is in an 
orbit of radius r1 and we’d like it to be in a larger orbit of radius r2. The kinetic energy 
at r2 is less than at r1 (the satellite moves more slowly in the larger orbit), but you can 
see that the total energy increases as r increases. Consequently, transferring a satellite 
to a larger orbit requires a net energy increase �E 7 0. Where does this increase of 
energy come from?

Artificial satellites are raised to higher orbits by firing their rocket motors to cre-
ate a forward thrust. This force does work on the satellite, and the energy equation of 
Chapter 11 tells us that this work increases the satellite’s energy by �Emech = Wext  . 
Thus the energy to “lift” a satellite into a higher orbit comes from the chemical energy 
stored in the rocket fuel.

FiGurE 13.19 The kinetic, potential, and 
total energy of a satellite in a circular 
orbit.

Potential energy Ug

Kinetic energy K

�E
Total energy
E � K � Ug �    Ug

1
2

r0

Energy

r1 r2

Energy �E must be added to move 
a satellite from an orbit with radius 
r1 to radius r2.

ExAmPLE 13.6  raising a satellite
How much work must be done to boost a 1000 kg communications satellite from a low 
earth orbit with h = 300 km, where it is released by the space shuttle, to a geosynchro-
nous orbit?

SOLvE The required work is Wext = �Emech  , and from Equation 13.31 we see that 
�Emech =

1
2 �Ug  . The initial orbit has radius rshuttle = Re + h = 6.67 * 106 m. We earlier 

found the radius of a geosynchronous orbit to be 4.22 * 107 m. Thus

 Wext = �Emech =
1

2
 �Ug =

1

2
 (-GMe m)1 1

rgeo
-

1
rshuttle

2 = 2.52 * 1010 J

ASSESS It takes a lot of energy to boost satellites to high orbits!
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You might think that the way to get a satellite into a larger orbit would be to point 
the thrusters toward the earth and blast outward. That would work fine if the satellite 
were initially at rest and moved straight out along a linear trajectory. But an orbiting 
satellite is already moving and has significant inertia. A force directed straight out-
ward would change the satellite’s velocity vector in that direction but would not cause 
it to move along that line. (Remember all those earlier motion diagrams for motion 
along curved trajectories.) In addition, a force directed outward would be almost at 
right angles to the motion and would do essentially zero work. Navigating in space is 
not as easy as it appears in Star Wars!

To move the satellite in FiGurE 13.20 from the orbit with radius r1 to the larger cir-
cular orbit of radius r2 , the thrusters are turned on at point 1 to apply a brief forward 
thrust force in the direction of motion, tangent to the circle. This force does a signifi-
cant amount of work because the force is parallel to the displacement, so the satellite 
quickly gains kinetic energy (�K 7 0). But �Ug = 0 because the satellite does not 
have time to change its distance from the earth during a thrust of short duration. With 
the kinetic energy increased, but not the potential energy, the satellite no longer meets 
the requirement K = -  12 Ug for a circular orbit. Instead, it goes into an elliptical orbit.

In the elliptical orbit, the satellite moves “uphill” toward point 2 by transforming 
kinetic energy into potential energy. At point 2, the satellite has arrived at the desired 
distance from earth and has the “right” value of the potential energy, but its kinetic 
energy is now less than needed for a circular orbit. (The analysis is more complex 
than we want to pursue here. It will be left for a homework Challenge Problem.) If no  
action is taken, the satellite will continue on its elliptical orbit and “fall” back to point 1.  
But another forward thrust at point 2 increases its kinetic energy, without changing 
Ug  , until the kinetic energy reaches the value K = -  12 Ug required for a circular orbit. 
Presto! The second burn kicks the satellite into the desired circular orbit of radius r2. 
The work Wext = �Emech is the total work done in both burns. It takes a more extended 
analysis to see how the work has to be divided between the two burns, but even with-
out those details you now have enough knowledge about orbits and energy to under-
stand the ideas that are involved.

FiGurE 13.20 Transferring a satellite to a 
larger circular orbit.

Elliptical
transfer
orbit

Desired orbit

Initial orbit

2

1

r1

r2

Kinetic energy is
transformed into
potential energy
as the rocket
moves “uphill.”

Firing the rocket tangentially
to the circle here moves the
satellite into the elliptical orbit.

A second firing here transfers
it to the larger circular orbit.

Fthrust

r

Fthrust

r

SOLvE Star 2 has only one force acting on it F
u

1 on 2 , and that force 
has to provide the centripetal acceleration v 2/r of circular motion. 
Newton’s second law for star 2 is

 F1 on 2 =
GM1  M2

d 2 =
GM 2

4r2 = Mar =
Mv 2

r

where we used M1 = M2 = M. The equation for star 1 is identical. 
The star’s speed is related to the period and the circumference of 
its orbit by v = 2pr/ T. With this, the force equation becomes

 
GM 2

4r2 =
4p2 Mr

T 2

Solving for r gives

CHALLENGE ExAmPLE 13.7  A binary star system
Astronomers discover a binary star system with a period of 
90 days. Both stars have a mass twice that of the sun. How far 
apart are the two stars?

mODEL Model the stars as spherical masses exerting gravitational 
forces on each other.

viSuALizE An isolated system rotates around its center of mass. 
FiGurE 13.21 shows the orbits and the forces. If r is the distance of 
each star to the center of mass—the radius of that star’s orbit—
then the distance between the stars is d = 2r.

 r = cGMT 2

16p2  d
1/3

    = c (6.67 * 10-11 N m2/kg2)(2 * 1.99 * 1030 kg)(7.78 * 106 s)2

16p2 d
1/3

      = 4.67*1010 m

The distance between the stars is d = 2r = 9.3 * 1010  m.

ASSESS The result is in the range of solar-system distances and 
thus is reasonable.

FiGurE 13.21 The binary star system.

The distance between the stars is 2r.

Both stars revolve around
the center of mass in an
orbit with radius r.
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General Principles
Newton’s Theory of Gravity

1.	Two objects with masses M and m a distance r apart exert attractive 
 gravitational	forces on each other of magnitude

  FM on m = Fm on M =
GMm

r2

 where the gravitational	constant is G = 6.67 * 10-11 N m2/kg2.

2.	Gravitational mass and inertial mass are equivalent.

3.	Newton’s three laws of motion apply to all objects in the universe.

m

M

r

Fm on M
r

FM on m
r

The forces are an
action/reaction pair.

Orbital motion of a planet (or satellite) is described by Kepler’s	laws:

1.	Orbits are ellipses with the sun 
(or planet) at one focus.

2.	A line between the sun and the 
planet sweeps out equal areas 
during equal intervals of time.

3.	The square of the planet’s 
period T is proportional to the 
cube of the orbit’s semimajor axis.

Circular	orbits are a special case of an ellipse. For a circular orbit 
around a mass M,

v = BGM

r
   and  T 2 = 14p2

GM 2r3

Conservation of angular momentum

The angular momentum L = mrv sin b remains constant 
throughout the orbit. Kepler’s second law is a conse-
quence of this law.

Orbital energetics

A satellite’s mechanical energy Emech = K + Ug is con-
served, where the gravitational potential energy is

Ug = -  
GMm

r

For circular orbits, K = -
1
2 Ug and Emech =

1
2 Ug.

Negative total energy is characteristic of a bound	
system.

important Concepts

vr

r

M

mSwept-out
area

Semimajor axis

b

S u m m A r y

The goal of Chapter 13 has been to use Newton’s theory of gravity to understand the motion of satellites and planets.

Terms and Notation
cosmology
Kepler’s laws
gravitational force

Newton’s law of gravity
gravitational constant, G
gravitational mass

principle of equivalence
Newton’s theory of gravity
escape speed

satellite
geosynchronous orbit
bound system

vr R

M

rgeo

Applications
For a planet of mass M and radius R,

•	 The free-fall acceleration on the surface is gsurface =
GM

R2

•	 The escape speed is vescape = B 2GM

R

•	 The radius of a geosynchronous orbit is rgeo = 1GM

4p2 T 22 1/3
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C O N C E P T u A L  Q u E S T i O N S

 1. Is the earth’s gravitational force on the sun larger than, smaller 
than, or equal to the sun’s gravitational force on the earth? 
Explain.

 2. The gravitational force of a star on orbiting planet 1 is F1. Planet 
2, which is twice as massive as planet 1 and orbits at twice the 
distance from the star, experiences gravitational force F2. What 
is the ratio F1/F2?

 3. A 1000 kg satellite and a 2000 kg satellite follow exactly the 
same orbit around the earth.

 a. What is the ratio F1/F2 of the force on the first satellite to that 
on the second satellite?

 b. What is the ratio a1/a2 of the acceleration of the first satellite 
to that of the second satellite?

 4. How far away from the earth must an orbiting spacecraft be for 
the astronauts inside to be weightless? Explain.

 5. A space shuttle astronaut is working outside the shuttle as 
it orbits the earth. If he drops a hammer, will it fall to earth? 
Explain why or why not.

 6. The free-fall acceleration at the surface of planet 1 is 20 m/s2. 
The radius and the mass of planet 2 are twice those of planet 1. 
What is g on planet 2?

 7. Why is the gravitational potential energy of two masses nega-
tive? Note that saying “because that’s what the equation gives” 
is not an explanation.

 8. The escape speed from Planet X is 10,000 m/s. Planet Y has the 
same radius as Planet X but is twice as dense. What is the escape 
speed from Planet Y?

 9. The mass of Jupiter is 300 times the mass of the earth. 
Jupiter orbits the sun with TJupiter = 11.9 yr in an orbit with 
rJupiter = 5.2rearth. Suppose the earth could be moved to the dis-
tance of Jupiter and placed in a circular orbit around the sun. 
Which of the following describes the earth’s new period? 
Explain.

 a. 1 yr
 b. Between 1 yr and 11.9 yr
 c. 11.9 yr
 d. More than 11.9 yr
 e. It would depend on the earth’s speed.
 f. It’s impossible for a planet of earth’s mass to orbit at the dis-

tance of Jupiter.
 10. Satellites in near-earth orbit experience a very slight drag due to 

the extremely thin upper atmosphere. These satellites slowly but 
surely spiral inward, where they finally burn up as they reach the 
thicker lower levels of the atmosphere. The radius decreases so 
slowly that you can consider the satellite to have a circular orbit 
at all times. As a satellite spirals inward, does it speed up, slow 
down, or maintain the same speed? Explain.

E x E r C i S E S  A N D  P r O B L E m S

Problems labeled   integrate material from earlier chapters.

Exercises

Section	13.3	Newton’s	Law	of	Gravity

 1. || What is the ratio of the sun’s gravitational force on you to the 
earth’s gravitational force on you?

 2. || The centers of a 10 kg lead ball and a 100 g lead ball are sepa-
rated by 10 cm.

 a. What gravitational force does each exert on the other?
 b. What is the ratio of this gravitational force to the gravitational 

force of the earth on the 100 g ball?
 3. || What is the ratio of the sun’s gravitational force on the moon 

to the earth’s gravitational force on the moon?
 4. || A 1.0-m-diameter lead sphere has a mass of 5900 kg. A dust 

particle rests on the surface. What is the ratio of the gravitational 
force of the sphere on the dust particle to the gravitational force 
of the earth on the dust particle?

 5. | Estimate the force of attraction between a 50 kg woman and a 
70 kg man sitting 1.0 m apart.

 6. || The space shuttle orbits 300 km above the surface of the earth. 
What is the gravitational force on a 1.0 kg sphere inside the 
space shuttle?

Section	13.4	Little	g	and	Big	G

 7. | a. What is the free-fall acceleration at the surface of the sun?
   b.  What is the sun’s free-fall acceleration at the distance of 

the earth?
 8. || What is the free-fall acceleration at the surface of (a) the moon 

and (b) Jupiter?
 9. || A sensitive gravimeter at a mountain observatory finds that 

the free-fall acceleration is 0.0075 m/s2 less than that at sea lev-
el. What is the observatory’s altitude?

 10. || Suppose we could shrink the earth without changing its mass. 
At what fraction of its current radius would the free-fall accelera-
tion at the surface be three times its present value?

 11. || Planet Z is 10,000 km in diameter. The free-fall acceleration 
on Planet Z is 8.0 m/s2.

 a. What is the mass of Planet Z?
 b. What is the free-fall acceleration 10,000 km above Planet Z’s 

north pole?

Section	13.5	Gravitational	Potential	Energy

 12. | An astronaut on earth can throw a ball straight up to a height 
of 15 m. How high can he throw the ball on Mars?

 13. || What is the escape speed from Jupiter?

http://www.meetyourbrain.com/bookChapters.php?book=Physics-for-Scientists-and-Engineers-A-Strategic-Approach-with-Modern-Physics-3rd-Edition-Solutions&title=0
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 14. || A rocket is launched straight up from the earth’s surface at a 
speed of 15,000 m/s. What is its speed when it is very far away 
from the earth?

 15. | A space station orbits the sun at the same distance as the earth 
but on the opposite side of the sun. A small probe is fired away 
from the station. What minimum speed does the probe need to 
escape the solar system?

 16. || You have been visiting a distant planet. Your measurements 
have determined that the planet’s mass is twice that of earth but 
the free-fall acceleration at the surface is only one-fourth as large.

 a. What is the planet’s radius?
 b. To get back to earth, you need to escape the planet. What 

minimum speed does your rocket need?

Section	13.6	Satellite	Orbits	and	Energies

 17. | The asteroid belt circles the sun between the orbits of Mars 
and Jupiter. One asteroid has a period of 5.0 earth years. What 
are the asteroid’s orbital radius and speed?

 18. | Use information about the earth and its orbit to determine the 
mass of the sun.

 19. || Planet X orbits the star Omega with a “year” that is 200 earth 
days long. Planet Y circles Omega at four times the distance of 
Planet X. How long is a year on Planet Y?

 20. | You are the science officer on a visit to a distant solar sys-
tem. Prior to landing on a planet you measure its diameter to be 
1.8 * 107 m and its rotation period to be 22.3 hours. You have 
previously determined that the planet orbits 2.2 * 1011 m from 
its star with a period of 402 earth days. Once on the surface you 
find that the free-fall acceleration is 12.2 m/s2. What is the mass 
of (a) the planet and (b) the star?

 21. || Three satellites orbit a planet of radius R, as shown in 
FiGurE Ex13.21. Satellites S1 and S3 have mass m. Satellite S2 has 
mass 2m. Satellite S1 orbits in 250 minutes and the force on S1 is 
10,000 N.

 a. What are the periods of S2 and S3  ?
 b. What are the forces on S2 and S3  ?
 c. What is the kinetic-energy ratio K1/K3 for S1 and S3  ?

 22. || A satellite orbits the sun with a period of 1.0 day. What is the 
radius of its orbit?

 23. || An earth satellite moves in a circular orbit at a speed of 
5500 m/s. What is its orbital period?

 24. || What are the speed and altitude of a geosynchronous satellite 
orbiting Mars? Mars rotates on its axis once every 24.8 hours.

Problems

 25. || Two spherical objects have a combined mass of 150 kg. The 
gravitational attraction between them is 8.00 * 10-6 N when 
their centers are 20 cm apart. What is the mass of each?

 26. || FiGurE P13.26 shows three masses. What are the magnitude and 
the direction of the net gravitational force on (a) the 20.0 kg mass 
and (b) the 5.0 kg mass? Give the direction as an angle cw or ccw 
from the y-axis.

 27. || What are the magnitude and direction of the net gravitational 
force on the 20.0 kg mass in FiGurE P13.27?

 28. || What is the total gravitational potential energy of the three 
masses in FiGurE P13.26?

 29. || What is the total gravitational potential energy of the three 
masses in FiGurE P13.27?

 30. ||| Two 100 kg lead spheres are suspended from 100-m-long 
massless cables. The tops of the cables have been carefully an-
chored exactly 1 m apart. What is the distance between the cen-
ters of the spheres?

 31. ||| A 20 kg sphere is at the origin and a 10 kg sphere is at 
x = 20 cm. At what position on the x-axis could you place a 
small mass such that the net gravitational force on it due to the 
spheres is zero?

 32. || a.  At what height above the earth is the acceleration due to 
gravity 10% of its value at the surface?

   b.  What is the speed of a satellite orbiting at that height?
 33. || A 1.0 kg object is released from rest 500 km (�300 miles) 

above the earth.
 a. What is its impact speed as it hits the ground? Ignore air  

resistance.
 b. What would the impact speed be if the earth were flat?
 c. By what percentage is the flat-earth calculation in error?
 34. ||| An object of mass m is dropped from height h above a planet 

of mass M and radius R. Find an expression for the object’s 
speed as it hits the ground.

 35. ||| A projectile is shot straight up from the earth’s surface at a 
speed of 10,000 km/h. How high does it go?

 36. || Two meteoroids are heading for earth. Their speeds as they 
cross the moon’s orbit are 2.0 km/s.

 a. The first meteoroid is heading straight for earth. What is its 
speed of impact?

 b. The second misses the earth by 5000 km. What is its speed at 
its closest point?

 37. || A binary star system has two stars, each with the same mass 
as our sun, separated by 1.0 * 1012 m. A comet is very far away 
and essentially at rest. Slowly but surely, gravity pulls the comet 
toward the stars. Suppose the comet travels along a straight line 
that passes through the midpoint between the two stars. What is 
the comet’s speed at the midpoint?

 38. || Suppose that on earth you can jump straight up a distance of 
50 cm. Can you escape from a 4.0-km-diameter asteroid with a 
mass of 1.0 * 1014 kg?

FiGurE Ex13.21 

R
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S2

m

m

2m

FiGurE P13.26 
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FiGurE P13.27 
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y
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 39. ||| A projectile is fired straight away from the moon from a base 
on the far side of the moon, away from the earth. What is the 
projectile’s escape speed from the earth-moon system?

 40. ||| Two spherical asteroids have the same radius R. Asteroid 1 
has mass M and asteroid 2 has mass 2M. The two asteroids are 
released from rest with distance 10R between their centers. What 
is the speed of each asteroid just before they collide?

  Hint: You will need to use two conservation laws.
 41. ||| Two Jupiter-size planets are released from rest 1.0 * 1011 m 

apart. What are their speeds as they crash together?
 42. ||| A starship is circling a distant planet of radius R. The astro-

nauts find that the free-fall acceleration at their altitude is half 
the value at the planet’s surface. How far above the surface are 
they orbiting? Your answer will be a multiple of R.

 43. || Three stars, each with the mass and radius of our sun, form an 
equilateral triangle 5.0 * 109 m on a side. If all three are simul-
taneously released from rest, what are their speeds as they crash 
together in the center?

 44. ||| The two stars in a binary star system have masses 2.0 * 1030 kg 
and 6.0 * 1030 kg. They are separated by 2.0 * 1012 m. What are

 a. The system’s rotation period, in years?
 b. The speed of each star?
 45. ||| A 4000 kg lunar lander is in orbit 50 km above the surface of 

the moon. It needs to move out to a 300-km-high orbit in order to 
link up with the mother ship that will take the astronauts home. 
How much work must the thrusters do?

 46. ||| The space shuttle is in a 250-km-high circular orbit. It needs 
to reach a 610-km-high circular orbit to catch the Hubble Space 
Telescope for repairs. The shuttle’s mass is 75,000 kg. How 
much energy is required to boost it to the new orbit?

 47. || In 2000, NASA placed a satellite in orbit around an asteroid. 
Consider a spherical asteroid with a mass of 1.0 * 1016 kg and a 
radius of 8.8 km.

 a. What is the speed of a satellite orbiting 5.0 km above the 
surface?

 b. What is the escape speed from the asteroid?
 48. || NASA would like to place a satellite in orbit around the moon 

such that the satellite always remains in the same position over 
the lunar surface. What is the satellite’s altitude?

 49. || A satellite orbiting the earth is directly over a point on the 
equator at 12:00 midnight every two days. It is not over that 
point at any time in between. What is the radius of the satellite’s 
orbit?

 50. ||| FiGurE P13.50 shows two planets of 
mass m orbiting a star of mass M. The 
planets are in the same orbit, with radius r, 
but are always at opposite ends of a di-
ameter. Find an exact expression for the 
orbital period T.

  Hint: Each planet feels two forces.

 51. || Figure 13.17 showed a graph of log T  versus log r for the 
planetary data given in Table 13.2. Such a graph is called a log-
log graph. The scales in Figure 13.17 are logarithmic, not linear, 
meaning that each division along the axis corresponds to a factor 
of 10 increase in the value. Strictly speaking, the “correct” labels 
on the y-axis should be 7, 8, 9, and 10 because these are the loga-
rithms of 107, p ,1010.

 a. Consider two quantities u and v that are related by the expres-
sion v p = Cuq , where C is a constant. The exponents p and q 

are not necessarily integers. Define x = log u and y = log v. 
Find an expression for y in terms of x.

 b. What shape will a graph of y versus x have? Explain.
 c. What slope will a graph of y versus x have? Explain.
 d. Use the experimentally determined “best-fit” line in Fig- 

ure 13.17 to find the mass of the sun.
 52. || Large stars can explode as they finish burning their nuclear 

fuel, causing a supernova. The explosion blows away the outer 
layers of the star. According to Newton’s third law, the forces 
that push the outer layers away have reaction forces that are in-
wardly directed on the core of the star. These forces compress the 
core and can cause the core to undergo a gravitational collapse. 
The gravitational forces keep pulling all the matter together 
tighter and tighter, crushing atoms out of existence. Under these 
extreme conditions, a proton and an electron can be squeezed 
together to form a neutron. If the collapse is halted when the neu-
trons all come into contact with each other, the result is an object 
called a neutron star, an entire star consisting of solid nuclear 
matter. Many neutron stars rotate about their axis with a period 
of �1 s and, as they do so, send out a pulse of electromagnetic 
waves once a second. These stars were discovered in the 1960s 
and are called pulsars.

 a. Consider a neutron star with a mass equal to the sun, a radius 
of 10 km, and a rotation period of 1.0 s. What is the speed of 
a point on the equator of the star?

 b. What is g at the surface of this neutron star?
 c. A stationary 1.0 kg mass has a weight on earth of 9.8 N. What 

would be its weight on the star?
 d. How many revolutions per minute are made by a satellite or-

biting 1.0 km above the surface?
 e. What is the radius of a geosynchronous orbit about the neu-

tron star?
 53. || The solar system is 25,000 light years from the center of our 

Milky Way galaxy. One light year is the distance light travels in 
one year at a speed of 3.0 * 108 m/s. Astronomers have deter-
mined that the solar system is orbiting the center of the galaxy at 
a speed of 230 km/s.

 a. Assuming the orbit is circular, what is the period of the solar 
system’s orbit? Give your answer in years.

 b. Our solar system was formed roughly 5 billion years ago. 
How many orbits has it completed?

 c. The gravitational force on the solar system is the net force 
due to all the matter inside our orbit. Most of that matter is 
concentrated near the center of the galaxy. Assume that the 
matter has a spherical distribution, like a giant star. What is 
the approximate mass of the galactic center?

 d. Assume that the sun is a typical star with a typical mass. If 
galactic matter is made up of stars, approximately how many 
stars are in the center of the galaxy?

  Astronomers have spent many years trying to determine how 
many stars there are in the Milky Way. The number of stars 
seems to be only about 10% of what you found in part d. In other 
words, about 90% of the mass of the galaxy appears to be in 
some form other than stars. This is called the dark matter of the 
universe. No one knows what the dark matter is. This is one of 
the outstanding scientific questions of our day.

 54. || Three stars, each with the mass of our sun, form an equilateral 
triangle with sides 1.0 * 1012 m long. (This triangle would just 
about fit within the orbit of Jupiter.) The triangle has to rotate, 
because otherwise the stars would crash together in the center. 
What is the period of rotation? Give your answer in years.

FiGurE P13.50 
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 55. || Pluto moves in a fairly elliptical orbit around the sun. Pluto’s 
speed at its closest approach of 4.43 * 109 km is 6.12 km/s. 
What is Pluto’s speed at the most distant point in its orbit, where 
it is 7.30 * 109 km from the sun?

 56. || Mercury moves in a fairly elliptical orbit around the sun. Mer-
cury’s speed is 38.8 km/s when it is at its most distant point, 
6.99 * 1010 m from the sun. How far is Mercury from the sun at 
its closest point, where its speed is 59.0 km/s?

 57. || Comets move around the sun in very elliptical orbits. At its 
closet approach, in 1986, Comet Halley was 8.79 * 107 km from 
the sun and moving with a speed of 54.6 km/s. What was the 
comet’s speed when it crossed Neptune’s orbit in 2006?

 58. || A spaceship is in a circular orbit of radius r0 about a planet of 
mass M. A brief but intense firing of its engine in the forward 
direction decreases the spaceship’s speed by 50%. This causes 
the spaceship to move into an elliptical orbit.

 a. What is the spaceship’s new speed, just after the rocket burn 
is complete, in terms of M, G, and r0?

 b. In terms of r0, what are the spaceship’s maximum and mini-
mum distances from the planet in its new orbit?

In Problems 59 through 61 you are given the equation(s) used to solve 
a problem. For each of these, you are to
 a. Write a realistic problem for which this is the correct equation(s).
 b. Draw a pictorial representation.
 c. Finish the solution of the problem.

 59. 
(6.67 * 10-11 N m2/kg2)(5.68 * 1026 kg)

r2

  =
(6.67 * 10-11 N m2/kg2)(5.98 * 1024 kg)

(6.37 * 106 m)2

 60. 
(6.67 * 10-11 N m2/kg2)(5.98 * 1024 kg)(1000 kg)

r2

  =
(1000 kg)(1997 m/s)2

r

 61. 
1

2
 (100 kg)v2 

2

  -
(6.67 * 10-11 N m2/kg2)(7.36 * 1022 kg)(100 kg)

1.74 * 106 m

  = 0 -
(6.67 * 10-11 N m2/kg2)(7.36 * 1022 kg)(100 kg)

3.48 * 106 m

Challenge Problems

 62. A satellite in a circular orbit of radius r has period T. A satellite 
in a nearby orbit with radius r + �r, where �r V r, has the 
very slightly different period T + �T.

 a. Show that

 
�T

T
=

3

2
 
�r

r

 b. Two earth satellites are in parallel orbits with radii 6700 km 
and 6701 km. One day they pass each other, 1 km apart, along 
a line radially outward from the earth. How long will it be 
until they are again 1 km apart?

 63. In 1996, the Solar and Heliospheric Observatory (SOHO) was 
“parked” in an orbit slightly inside the earth’s orbit, as shown in 
FiGurE CP13.63. The satellite’s period in this orbit is exactly one 
year, so it remains fixed relative to the earth. At this point, called 

a Lagrange point, the light from the sun is never blocked by the 
earth, yet the satellite remains “nearby” so that data are easily 
transmitted to earth. What is SOHO’s distance from the earth?

  Hint: Use the binomial approximation. SOHO’s distance from 
the earth is much less than the earth’s distance from the sun.

 64. A projectile is fired from the earth in the direction of the earth’s 
motion around the sun. What minimum speed must the projectile 
have relative to the earth to escape the solar system? Ignore the 
earth’s rotation.

  Hint: This is a three-part problem. First find the speed a projectile 
at the earth’s distance needs to escape the sun. Transform that speed 
into the earth’s reference frame, then determine how fast the projec-
tile must be launched to have this speed when far from the earth.

 65. Your job with NASA is to monitor satellite orbits. One day, during 
a routine survey, you find that a 400 kg satellite in a 1000-km-
high circular orbit is going to collide with a smaller 100 kg sat-
ellite traveling in the same orbit but in the opposite direction. 
Knowing the construction of the two satellites, you expect they 
will become enmeshed into a single piece of space debris. When 
you notify your boss of this impending collision, he asks you to 
quickly determine whether the space debris will continue to orbit 
or crash into the earth. What will the outcome be?

 66. While visiting Planet Physics, you toss a rock straight up at 
11 m/s and catch it 2.5 s later. While you visit the surface, your 
cruise ship orbits at an altitude equal to the planet’s radius every 
230 min. What are the (a) mass and (b) radius of Planet Physics?

 67. A moon lander is orbiting the moon at an altitude of 1000 km. By 
what percentage must it decrease its speed so as to just graze the 
moon’s surface one-half period later?

 68. Let’s look in more detail at how a satellite is moved from one 
circular orbit to another. FiGurE CP13.68 shows two circular or-
bits, of radii r1 and r2 , and an elliptical orbit that connects them. 
Points 1 and 2 are at the ends of the semimajor axis of the ellipse.

 a. A satellite moving along the elliptical orbit has to satisfy two 
conservation laws. Use these two laws to prove that the ve-
locities at points 1 and 2 are

 v =
1 = B 2GM(r2/r1)

r1 + r2
   and  v =

2 = B 2GM(r1/r2)

r1 + r2

FiGurE CP13.63 

Earth

Satellite’s motion
is synchronized
with the earth’s.

SOHO

FiGurE CP13.68 

r2

r1

21

Transfer
ellipse

Outer
orbit

Inner
orbit
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       The prime indicates that these are the velocities on the ellipti-
cal orbit. Both reduce to Equation 13.22 if r1   = r2   = r.

  b.  Consider a 1000 kg communications satellite that needs to be 
boosted from an orbit 300 km above the earth to a geosyn-
chronous orbit 35,900 km above the earth. Find the velocity 
v1 on the inner circular orbit and the velocity v =

1 at  the low 
point on the elliptical orbit that spans the two circular orbits.

  c.  How much work must the rocket motor do to transfer the sat-
ellite from the circular orbit to the elliptical orbit?

  d.  Now  find  the velocity  v =
2  at  the high point  of  the  elliptical 

orbit and the velocity v2 of the outer circular orbit.
  e.  How much work must the rocket motor do to transfer the sat-

ellite from the elliptical orbit to the outer circular orbit?
  f.  Compute the total work done and compare your answer to the 

result of Example 13.6.
 69.  Figure CP13.69 shows a particle of mass m at distance x from the 

center of a very thin cylinder of mass M and length L. The par-
ticle is outside the cylinder, so x 7 L/2.

Figure CP13.69 

x

x
M

L

y

m

  a.  Calculate  the  gravitational  potential  energy  of  these  two 
masses.

  b.  Use what you know about the relationship between force and 
potential  energy  to  find  the  magnitude  of  the  gravitational 
force on m when it is at position x.

 70.  Figure CP13.70 shows a particle of mass m at distance x along the 
axis of a very thin ring of mass M and radius R.

  a.  Calculate  the  gravitational  potential  energy  of  these  two 
masses.

  b.  Use what you know about the relationship between force and 
potential  energy  to  find  the  magnitude  of  the  gravitational 
force on m when it is at position x.

Figure CP13.70 

x

z x

R

M

y

m

StoP to think AnSwerS

Stop to Think 13.1: e. The acceleration decreases inversely with the 
square of the distance. At height Re, the distance from the center of 
the earth is 2Re.

Stop to Think 13.2: c. Newton’s third law requires F1 on 2 = F2 on 1.

Stop to Think 13.3:  b.  gsurface = GM/R2.  Because  of  the  square,  a 
radius twice as large balances a mass four times as large.

Stop to Think 13.4: In absolute value, Ue + Ua � Ub � Ud + Uc. 
0Ug 0  is proportional to m1  m2/r.

Stop to Think 13.5: a. T 2 is proportional to r3, or T is proportional 
to r3/2. 43/2 = 8.
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This loudspeaker cone generates 
sound waves by oscillating back 
and forth at audio frequencies.

Oscillations

 Looking Ahead The goal of Chapter 14 is to understand systems that oscillate with simple harmonic motion.

In this chapter you will learn to:

■	 Represent simple harmonic motion 
both graphically and mathematically.

■	 Understand the dynamics of oscillat-
ing systems.

■	 Recognize the similarities among 
many types of oscillating systems.

Simple harmonic motion has a very 
close connection to uniform circular 
motion. You’ll learn that an edge-on 
view of uniform circular motion is none 
other than simple harmonic motion.

Simple Harmonic Motion
The most basic 
oscillation, with 
sinusoidal motion, 
is called simple 
harmonic motion.

The oscillating cart 
is an example of 
simple harmonic 
motion. You’ll learn 
how to use the 
mass and the spring 
constant to deter
mine the frequency 
of oscillation.

 Looking Back
Section 4.5 Uniform circular motion

Oscillation

Pendulums
A mass swinging at the end of a string or 
rod is a pendulum. Its motion is another 
example of simple harmonic motion.

The period of a pendu
lum is determined by 
the length of the string; 
neither the mass nor 
the amplitude matters. 
Consequently, the pen
dulum was the basis of 
time keeping for many 
centuries.

Damping and Resonance
If there’s drag or other dissipation, then 
the oscillation “runs down.” This is 
called a damped oscillation.

The amplitude of 
a damped oscil
lation undergoes 
exponential 
decay.

Oscillations can increase in amplitude, 
sometimes dramatically, when driven at 
their natural oscillation frequency. This 
is called resonance.

t

x

0

�A

A

Energy of Oscillations
If there is no friction or other dissipa-
tion, then the mechanical energy of an 
oscillator is conserved. Conservation of 
energy will be an important tool.

The system oscil
lates between all 
kinetic energy and 
all potential energy

 Looking Back
Section 10.5 Elastic potential energy
Section 10.6 Energy diagrams

0

All potential

All kinetic

A
x

�A

Springs
Simple harmonic motion occurs when 
there is a linear restoring force. The 
simplest example is 
a mass on a spring. 
You will learn how to 
determine the period 
of oscillation.

The “bounce” at the 
bottom of a bungee 
jump is an exhilarating 
example of a mass 
oscillating on a spring.

 Looking Back
Section 10.4 Restoring forces
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14.1 Simple Harmonic Motion
Objects or systems of objects that undergo oscillatory motion—a repetitive motion 
back and forth around an equilibrium position—are called oscillators. FiguRE 14.1 
shows position-versus-time graphs for three different oscillating systems. Although 
the shapes of the graphs are different, all these oscillators have two things in common:

 1. The oscillation takes place about an equilibrium position, and
 2. The motion is periodic, repeating at regular intervals of time.

The time to complete one full cycle, or one oscillation, is called the period of the 
motion. Period is represented by the symbol T.

A closely related piece of information is the number of cycles, or oscillations, com-
pleted per second. If the period is 1

10 s, then the oscillator can complete 10 cycles 
in one second. Conversely, an oscillation period of 10 s allows only 1

10 of a cycle to be 
completed per second. In general, T seconds per cycle implies that 1/T  cycles will be 
completed each second. The number of cycles per second is called the frequency f  of 
the oscillation. The relationship between frequency and period is

 f =
1

T
  or  T =

1

f
 (14.1)

The units of frequency are hertz, abbreviated Hz, named in honor of the German 
physicist Heinrich Hertz, who produced the first artificially generated radio waves in 
1887. By definition,

 1 Hz K 1 cycle per second = 1 s-1

We will frequently deal with very rapid oscillations and make use of the units shown 
in Table 14.1.

NOTE  Uppercase and lowercase letters are important. 1 MHz is 1 megahertz =  
106 Hz, but 1 mHz is 1 millihertz = 10-3 Hz! 

t

Position
T

The oscillation takes
place around an 
equilibrium position.

t

Position
T

The motion is periodic.
One cycle takes time T.

t

Position
T This oscillation

is sinusoidal.

FiguRE 14.1 Examples of positionversus
time graphs for oscillating systems.

TABLE 14.1 Units of frequency

Frequency Period

103 Hz = 1 kilohertz = 1 kHz 1 ms

106 Hz = 1 megahertz = 1 MHz 1 ms

109 Hz = 1 gigahertz = 1 GHz 1 ns

ExAMPLE 14.1  Frequency and period of a loudspeaker cone
What is the oscillation period of a loudspeaker cone that vibrates back and forth 5000 times 
per second?

SOLvE The oscillation frequency is f = 5000 cycles/s = 5000 Hz = 5.0 kHz. The period 
is the inverse of the frequency; hence

T =
1

f
=

1

5000 Hz
= 2.0 * 10-4 s = 200 ms

A system can oscillate in many ways, but we will be especially interested in 
the smooth sinusoidal oscillation (i.e., like a sine or cosine) of the third graph in 
Figure 14.1. This sinusoidal oscillation, the most basic of all oscillatory motions, is 
called simple harmonic motion, often abbreviated SHM. Let’s look at a graphical 
description before we dive into the mathematics of simple harmonic motion.

FiguRE 14.2a shows an air-track glider attached to a spring. If the glider is pulled out 
a few centimeters and released, it will oscillate back and forth on the nearly friction-
less air track. FiguRE 14.2b shows actual results from an experiment in which a com-
puter was used to measure the glider’s position 20 times every second. This is a 
position-versus-time graph that has been rotated 90� from its usual orientation in order 
for the x-axis to match the motion of the glider.

The object’s maximum displacement from equilibrium is called the amplitude A 
of the motion. The object’s position oscillates between x = -A and x = +A. When 
using a graph, notice that the amplitude is the distance from the axis to the maximum, 
not the distance from the minimum to the maximum.

Air track

Oscillation(a)

(b)

x

t

0�A A

A

A

x is measured from 
the equilibrium
position where 
the object would 
be at rest.Turning

point

The motion 
is sinusoidal, 
indicating
SHM.

The motion is symmetrical about the
equilibrium position. Maximum distance
to the left and to the right is A.

The point on the
object that is
measured

FiguRE 14.2 A prototype simple
harmonicmotion experiment.
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FiguRE 14.3a shows the data with the graph axes in their “normal” positions. You 
can see that the amplitude in this experiment was A = 0.17 m, or 17 cm. You can 
also measure the period to be T = 1.60 s. Thus the oscillation frequency was 
f = 1/T = 0.625 Hz.

FiguRE 14.3b is a velocity-versus-time graph that the computer produced by using 
�x/�t to find the slope of the position graph at each point. The velocity graph is also 
sinusoidal, oscillating between -vmax  (maximum speed to the left) and +vmax (maxi-
mum speed to the right). As the figure shows,

	■	 The instantaneous velocity is zero at the points where x = {A. These are the turn
ing points in the motion.

	■	 The maximum speed vmax is reached as the object passes through the equilibrium 
position at x = 0 m. The velocity is positive as the object moves to the right but 
negative as it moves to the left.

We can ask three important questions about this oscillating system:

 1. How is the maximum speed vmax related to the amplitude A?
 2. How are the period and frequency related to the object’s mass m, the spring 

constant k, and the amplitude A?
 3. Is the sinusoidal oscillation a consequence of Newton’s laws?

A mass oscillating on a spring is the prototype of simple harmonic motion. Our 
analysis, in which we answer these questions, will be of a spring-mass system. Even 
so, most of what we learn will be applicable to other types of SHM.

Kinematics of Simple Harmonic Motion
FiguRE 14.4 redraws the position-versus-time graph of Figure 14.3a as a smooth curve. 
Although these are empirical data (we don’t yet have any “theory” of oscillation) the 
graph for this particular motion is clearly a cosine function. The object’s position is

 x(t) = A cos12pt

T 2  (14.2)

where the notation x(t) indicates that the position x is a function of time t. Because 
cos(2p) = cos(0), it’s easy to see that the position at time t = T  is the same as the posi-
tion at t = 0. In other words, this is a cosine function with period T. Be sure to convince 
yourself that this function agrees with the five special points shown in Figure 14.4.

NOTE  The argument of the cosine function is in radians. That will be true through-
out this chapter. It’s especially important to remember to set your calculator to 
radian mode before working oscillation problems. Leaving it in degree mode will 
lead to errors. 

We can write Equation 14.2 in two alternative forms. Because the oscillation fre-
quency is f = 1/T, we can write

 x(t) = A cos(2pft) (14.3)

Recall from Chapter 4 that a particle in circular motion has an angular velocity v that 
is related to the period by v = 2p/T, where v is in rad/s. Now that we’ve defined the 
frequency f, you can see that v and f  are related by

 v (in rad/s) =
2p

T
= 2pf (in Hz) (14.4)

In this context, v is called the angular frequency. The position can be written in terms 
of v as

 x(t) = A cos vt (14.5)

Equations 14.2, 14.3, and 14.5 are equivalent ways to write the position of an object 
moving in simple harmonic motion.

t (s)

x (m)

0

�0.2

2.0 4.0 6.0

�0.1

0

0.1

0.2

(a) The speed is zero
when x � �A.

The speed is maximum
as the object passes
through x � 0.

x � �A � 0.17 m

T � 1.60 s

x � �A � �0.17 m

t (s)

vx (m/s)

0 2.0 4.0 6.0

�0.7

0

0.7

(b)

v � �vmax

v � �vmax

FiguRE 14.3 Position and velocity graphs 
of the experimental data.

t

x

0
T 2T

�A

A

1. Starts at x � A

5. Returns to
 x � A at t � T

3. Reaches x � �A at t �   T1
2

4. Passes through x � 0 at t �   T3
4

2. Passes through
 x � 0 at t �   T1

4

FiguRE 14.4 The positionversustime 
graph for simple harmonic motion.

TABLE 14.2 Derivatives of sine and 
cosine functions

d

dt
1a sin(bt + c)2 = +ab cos(bt + c)

d

dt
 1a cos(bt + c)2 = -ab sin(bt + c)
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Just as the position graph was clearly a cosine function, the velocity graph shown 
in FiguRE 14.5 is clearly an “upside-down” sine function with the same period T. The 
velocity vx, which is a function of time, can be written

 vx(t) = -vmax sin12pt

T 2 = -vmax sin(2pft) = -vmax sin vt (14.6)

NOTE  vmax is the maximum speed and thus is a positive number. 

We deduced Equation 14.6 from the experimental results, but we could equally well 
find it from the position function of Equation 14.2. After all, velocity is the time deriva-
tive of position. Table 14.2 on the previous page reminds you of the derivatives of the 
sine and cosine functions. Using the derivative of the position function, we find

 vx(t) =
dx

dt
= -  

2pA

T
 sin12pt

T 2 = -2pfA sin(2pft) = -vA sin vt (14.7)

Comparing Equation 14.7, the mathematical definition of velocity, to Equation 14.6, 
the empirical description, we see that the maximum speed of an oscillation is

 vmax =
2pA

T
= 2pfA = vA (14.8)

Equation 14.8 answers the first question we posed above, which was how the maximum 
speed vmax is related to the amplitude A. Not surprisingly, the object has a greater maxi-
mum speed if you stretch the spring farther and give the oscillation a larger amplitude.

t

Velocity vx

0
T 2T

�vmax

vmax

t

Position x

0
T 2T

�A

A

T

v(t) � �vmax sin vt

T

x(t) � A cos vt

FiguRE 14.5 Position and velocity graphs 
for simple harmonic motion.

 c. The object starts at x = +A at t = 0 s. This is exactly the 
oscillation described by Equations 14.2 and 14.6. The position 
at t = 0.800 s is

  x = A cos12pt

T 2 = (0.200 m) cos12p (0.800 s)

0.667 s 2
  = (0.200 m)cos(7.54 rad) = 0.0625 m = 6.25 cm

  The velocity at this instant of time is

  vx = -vmax sin12pt

T 2 = - (1.88 m/s) sin12p(0.800 s)

0.667 s 2
  = - (1.88 m/s) sin(7.54 rad) = -1.79 m/s = -179 cm/s

  At t = 0.800 s, which is slightly more than one period, the ob-
ject is 6.25 cm to the right of equilibrium and moving to the left 
at 179 cm/s. Notice the use of radians in the calculations.

ExAMPLE 14.2  A system in simple harmonic motion
An air-track glider is attached to a spring, pulled 20.0 cm to the 
right, and released at t = 0 s. It makes 15 oscillations in 10.0 s.

 a. What is the period of oscillation?
 b. What is the object’s maximum speed?
 c. What are the position and velocity at t = 0.800 s?

MODEL An object oscillating on a spring is in SHM.

SOLvE a. The oscillation frequency is

f =
15 oscillations

10.0 s
= 1.50 oscillations/s = 1.50 Hz

Thus the period is T = 1/f = 0.667 s.
 b. The oscillation amplitude is A = 0.200 m. Thus

vmax =
2pA

T
=

2p(0.200 m)

0.667 s
= 1.88 m/s

 x =
A

2
= A cos12pt

T 2
Then we solve for the time at which this position is reached:

 t =
T

2p
 cos-111

2 2 =
T

2p
 
p

3
=

1

6
 T

ASSESS The motion is slow at the beginning and then speeds up, 
so it takes longer to move from x = A to x =

1
2 A than it does to 

move from x =
1
2 A to x = 0. Notice that the answer is indepen-

dent of the amplitude A.

ExAMPLE 14.3  Finding the time
A mass oscillating in simple harmonic motion starts at x = A and 
has period T. At what time, as a fraction of T, does the object first 
pass through x =

1
2 A?

SOLvE Figure 14.4 showed that the object passes through the 
equilibrium position x = 0 at t =

1
4 T. This is one-quarter of the 

total distance in one-quarter of a period. You might expect it to 
take 1

8 T  to reach 1
2 A, but this is not the case because the SHM 

graph is not linear between x = A and x = 0. We need to use 
x (t) = A cos(2pt/T). First, we write the equation with x =

1
2 A:
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Stop to think 14.1  An object moves with simple harmonic motion. If the amplitude 
and the period are both doubled, the object’s maximum speed is

 a. Quadrupled. b. Doubled. c. Unchanged.
 d. Halved. e. Quartered.

14.2  Simple Harmonic Motion 
and Circular Motion

The graphs of Figure 14.5 and the position function x(t) = A cos vt are for an oscilla-
tion in which the object just happened to be at x0 = A at t = 0. But you will recall that 
t = 0 is an arbitrary choice, the instant of time when you or someone else starts a stop-
watch. What if you had started the stopwatch when the object was at x0 = -A, or when 
the object was somewhere in the middle of an oscillation? In other words, what if the 
oscillator had different initial conditions. The position graph would still show an oscil-
lation, but neither Figure 14.5 nor x(t) = A cos vt would describe the motion correctly.

To learn how to describe the oscillation for other initial conditions it will help to 
turn to a topic you studied in Chapter 4—circular motion. There’s a very close connec-
tion between simple harmonic motion and circular motion.

Imagine you have a turntable with a small ball glued to the edge. FiguRE 14.6a shows 
how to make a “shadow movie” of the ball by projecting a light past the ball and onto 
a screen. The ball’s shadow oscillates back and forth as the turntable rotates. This is 
certainly periodic motion, with the same period as the turntable, but is it simple har-
monic motion?

To find out, you could place a real object on a real spring directly below the shad-
ow, as shown in FiguRE 14.6b. If you did so, and if you adjusted the turntable to have the 
same period as the spring, you would find that the shadow’s motion exactly matches 
the simple harmonic motion of the object on the spring. Uniform circular motion 
projected onto one dimension is simple harmonic motion.

To understand this, consider the particle in FiguRE 14.7. It is in uniform circular 
motion, moving counterclockwise in a circle with radius A. As in Chapter 4, we can 
locate the particle by the angle f measured ccw from the x-axis. Projecting the ball’s 
shadow onto a screen in Figure 14.6 is equivalent to observing just the x-component 
of the particle’s motion. Figure 14.7 shows that the x-component, when the particle is 
at angle f, is

 x = A cos f (14.9)

Recall that the particle’s angular velocity, in rad/s, is

 v =
df

dt
 (14.10)

This is the rate at which the angle f is increasing. If the particle starts from f0 = 0 at 
t = 0, its angle at a later time t is simply

 f = vt (14.11)

As f increases, the particle’s x-component is

 x(t) = A cos vt (14.12)

This is identical to Equation 14.5 for the position of a mass on a spring! Thus the 
x-component of a particle in uniform circular motion is simple harmonic motion.

NOTE  When used to describe oscillatory motion, v is called the angular fre
quency rather than the angular velocity. The angular frequency of an oscillator has 
the same numerical value, in rad/s, as the angular velocity of the corresponding 
particle in circular motion. 

(a) Light from projector

Screen
Shadow

Oscillation of ball’s shadow

Ball

Circular
motion
of ball

Turntable

Simple harmonic motion of block(b)

FiguRE 14.6 A projection of the circular 
motion of a rotating ball matches the 
simple harmonic motion of an object on 
a spring.

x

y

�A A

A

v

v

The x-component of
the particle’s position
describes the position
of the ball’s shadow.

A cos f

A cos f

0

Particle in uniform
circular motion

f

x
0�A A

FiguRE 14.7 A particle in uniform 
circular motion with radius A and 
angular velocity v.
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The names and units can be a bit confusing until you get used to them. It may help 
to notice that cycle and oscillation are not true units. Unlike the “standard meter” or the 
“standard kilogram,” to which you could compare a length or a mass, there is no “stan-
dard cycle” to which you can compare an oscillation. Cycles and oscillations are sim ply 
counted events. Thus the frequency f  has units of hertz, where 1 Hz = 1 s-1. We may 
say “cycles per second” just to be clear, but the actual units are only “per second.”

The radian is the SI unit of angle. However, the radian is a defined unit. Further, its 
definition as a ratio of two lengths (u = s/r) makes it a pure number without dimen-
sions. As we noted in Chapter 4, the unit of angle, be it radians or degrees, is really just 
a name to remind us that we’re dealing with an angle. The 2p in the equation v = 2pf  
(and in similar situations), which is stated without units, means 2p rad/cycle. When 
multiplied by the frequency f  in cycles/s, it gives the frequency in rad/s. That is why, 
in this context, v is called the angular frequency.

NOTE  Hertz is specifically “cycles per second” or “oscillations per second.” It is 
used for f  but not for v. We’ll always be careful to use rad/s for v, but you should 
be aware that many books give the units of v as simply s-1. 

The Phase Constant
Now we’re ready to consider the issue of other initial conditions. The particle in 
Figure 14.7 started at f0 = 0. This was equivalent to an oscillator starting at the far 
right edge, x0 = A. FiguRE 14.8 shows a more general situation in which the initial angle 
f0 can have any value. The angle at a later time t is then

 f = vt + f0 (14.13)

In this case, the particle’s projection onto the x-axis at time t is

 x(t) = A cos(vt + f0) (14.14)

If Equation 14.14 describes the particle’s projection, then it must also be the posi-
tion of an oscillator in simple harmonic motion. The oscillator’s velocity vx is found 
by taking the derivative dx/dt. The resulting equations,

  x(t) = A cos(vt + f0)

  vx(t) = -vA sin(vt + f0) = -vmax sin(vt + f0) 
(14.15)

are the two primary kinematic equations of simple harmonic motion.
The quantity f = vt + f0, which steadily increases with time, is called the phase 

of the oscillation. The phase is simply the angle of the circular-motion particle whose 
shadow matches the oscillator. The constant f0 is called the phase constant. It speci-
fies the initial conditions of the oscillator.

To see what the phase constant means, set t = 0 in Equations 14.15:

  x0 = A cos f0

  v0x = -vA sin f0 
(14.16)

The position x0 and velocity v0x at t = 0 are the initial conditions. Different values of 
the phase constant correspond to different starting points on the circle and thus 
to different initial conditions.

The perfect cosine function of Figure 14.5 and the equation x(t) = A cos vt are for 
an oscillation with f0 = 0 rad. You can see from Equations 14.16 that f0 = 0 rad im-
plies x0 = A and v0 = 0. That is, the particle starts from rest at the point of maximum 
displacement.

FiguRE 14.9 illustrates these ideas by looking at three values of the phase constant: 
f0 = p/3 rad (60�), -p/3 rad (-60�), and p rad (180�). Notice that f0 = p/3 rad and 
f0 = -p/3 rad have the same starting position, x0 =

1
2 A. This is a property of the co-

sine function in Equation 14.16. But these are not the same initial conditions. In one case 
the oscillator starts at 12 A while moving to the right, in the other case it starts at 12 A while 
moving to the left. You can distinguish between the two by visualizing the motion.

A cup on the turntable in a microwave 
oven moves in a circle. But from the 
outside, you see the cup sliding back and 
forth—in simple harmonic motion!

x

y

�A A

A

v

v

A cos f
x0 � A cos f0

0

Initial position of 
particle at t � 0

The initial x-component of the 
particle’s position can be anywhere 
between �A and A, depending on f0.

Angle at time t is
f � vt � f0.

f0
f

FiguRE 14.8 A particle in uniform 
circular motion with initial angle f0.



All values of the phase constant f0 between 0 and p rad correspond to a particle in 
the upper half of the circle and moving to the left. Thus v0x is negative. All values of the 
phase constant f0 between p and 2p rad (or, as they are usually stated, between -p 
and 0 rad) have the particle in the lower half of the circle and moving to the right. Thus 
v0x is positive. If you’re told that the oscillator is at x =

1
2 A and moving to the right at 

t = 0, then the phase constant must be f0 = -p/3 rad, not +p/3 rad.
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The starting point of the oscillation is
shown on the circle and on the graph.

The graphs each have the same
amplitude and period. They are
shifted relative to the f0 � 0 rad
graphs of Figure 14.5 because they
have different initial conditions.

FiguRE 14.9 Oscillations described by the phase constants f0 = p/3 rad, -p/3 rad, and p rad.

Thus the object’s position at time t = 2.0 s is

  x (t) = A cos(vt + f0)

  = (10 cm) cos1 (7.85 rad/s) (2.0 s) +
2

3
 p2

  = (10 cm) cos(17.8 rad) = 5.0 cm

The object is now 5.0 cm to the right of equilibrium. But which 
way is it moving? There are two ways to find out. The direct way 
is to calculate the velocity at t = 2.0 s:

 vx = -vA sin(vt + f0) = +68 cm/s

The velocity is positive, so the motion is to the right. Alterna-
tively, we could note that the phase at t = 2.0 s is f = 17.8 rad. 
Dividing by p, you can see that

 f = 17.8 rad = 5.67p rad = (4p + 1.67p) rad

The 4p rad represents two complete revolutions. The “extra” 
phase of 1.67p rad falls between p and 2p rad, so the particle in 
the circular-motion diagram is in the lower half of the circle and 
moving to the right.

ExAMPLE 14.4  using the initial conditions
An object on a spring oscillates with a period of 0.80 s and an 
amplitude of 10 cm. At t = 0 s, it is 5.0 cm to the left of equilib-
rium and moving to the left. What are its position and direction of 
motion at t = 2.0 s?

MODEL An object oscillating on a spring is in simple harmonic 
motion.

SOLvE We can find the phase constant f0 from the initial condi-
tion x0 = -5.0 cm = A cos f0. This condition gives

 f0 = cos-11x0

A 2 = cos-11-  
1

2 2 = {  
2

3
 p rad = {120�

Because the oscillator is moving to the left at t = 0, it is in the 
upper half of the circular-motion diagram and must have a phase 
constant between 0 and p rad. Thus f0 is 2

3 p rad. The angular 
frequency is

 v =
2p

T
=

2p

0.80 s
= 7.85 rad/s

14.2 . Simple Harmonic Motion and Circular Motion    383
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NOTE  The inverse-cosine function cos-1 is a twovalued function. Your calculator 
returns a single value, an angle between 0 rad and p rad. But the negative of this 
angle is also a solution. As Example 14.4 demonstrates, you must use additional 
information to choose between them. 

Stop to think 14.2  The figure shows 
four oscillators at t = 0. Which one 
has the phase constant f0 =  p/4 rad?

14.3 Energy in Simple Harmonic Motion
We’ve begun to develop the mathematical language of simple harmonic motion, but 
thus far we haven’t included any physics. We’ve made no mention of the mass of 
the object or the spring constant of the spring. An energy analysis, using the tools of 
Chapters 10 and 11, is a good starting place.

FiguRE 14.10a shows an object oscillating on a spring, our prototype of simple 
harmonic motion. Now we’ll specify that the object has mass m, the spring has 
spring constant k, and the motion takes place on a frictionless surface. You learned 
in Chapter 10 that the elastic potential energy when the object is at position x is 
Us =

1
2 k(�x)2, where �x = x - xe is the displacement from the equilibrium position 

xe. In this chapter we’ll always use a coordinate system in which xe = 0, making 
�x = x. There’s no chance for confusion with gravitational potential energy, so we 
can omit the subscript s and write the elastic potential energy as

 U =
1

2
 kx2 (14.17)

Thus the mechanical energy of an object oscillating on a spring is

 E = K + U =
1

2
 mv 2 +

1

2
 kx2 (14.18)

FiguRE 14.10b is an energy diagram, showing the potential-energy curve U =
1
2 kx2 as 

a parabola. Recall that a particle oscillates between the turning points where the total 
energy line E crosses the potential-energy curve. The left turning point is at x = -A, 
and the right turning point is at x = +A. To go beyond these points would require a 
negative kinetic energy, which is physically impossible.

You can see that the particle has purely potential energy at x � tA and pure-
ly kinetic energy as it passes through the equilibrium point at x � 0. At maximum 
displacement, with x = {A and v = 0, the energy is

 E(at x = {A) = U =
1

2
 kA2 (14.19)

At x = 0, where v = {vmax, the energy is

 E(at x = 0) = K =
1

2
 m (vmax)

2 (14.20)
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(b)

(c)

(d)
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Energy is transformed between
kinetic and potential, but the total
mechanical energy E doesn’t change.

Energy here is
purely kinetic.

Energy here is purely potential.
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FiguRE 14.10 The energy is transformed 
between kinetic energy and potential 
energy as the object oscillates, but the 
mechanical energy E = K + U  doesn’t 
change.
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The system’s mechanical energy is conserved because the surface is frictionless 
and there are no external forces, so the energy at maximum displacement and the en-
ergy at maximum speed, Equations 14.19 and 14.20, must be equal. That is

 
1

2
 m(vmax)

2 =
1

2
 kA2 (14.21)

Thus the maximum speed is related to the amplitude by

 vmax = A k
m

 A (14.22)

This is a relationship based on the physics of the situation.
Earlier, using kinematics, we found that

 vmax =
2pA

T
= 2pfA = vA (14.23)

Comparing Equations 14.22 and 14.23, we see that frequency and period of an oscil-
lating spring are determined by the spring constant k and the object’s mass m:

 v = A k
m
  f =

1

2p
 A k

m
  T = 2p Am

k
 (14.24)

These three expressions are really only one equation. They say the same thing, but 
each expresses it in slightly different terms.

Equations 14.24 are the answer to the second question we posed at the beginning of 
the chapter, where we asked how the period and frequency are related to the object’s 
mass m, the spring constant k, and the amplitude A. It is perhaps surprising, but the 
period and frequency do not depend on the amplitude A. A small oscillation and a 
large oscillation have the same period.

Because energy is conserved, we can combine Equations 14.18, 14.19, and 14.20 
to write

E =
1

2
 mv 2 +

1

2
 kx2 =

1

2
 kA2 =

1

2
 m(vmax)

2 (conservation of energy) (14.25)

Any pair of these expressions may be useful, depending on the known information. 
For example, you can use the amplitude A to find the speed at any point x by combin-
ing the first and second expressions for E. The speed v at position x is

 v = B k
m

 (A2 - x2) = v 2A2 - x2 (14.26)

FiguRE 14.11 shows graphically how the kinetic and potential energy change with 
time. They both oscillate but remain positive because x and v are squared. Energy is 
continuously being transformed back and forth between the kinetic energy of the mov-
ing block and the stored potential energy of the spring, but their sum remains constant. 
Notice that K and U both oscillate twice each period; make sure you understand why.

The total mechanical
energy E is constant.

Kinetic energy

Potential energy

t

Energy

T

t

Position

0

0

FiguRE 14.11 Kinetic energy, potential 
energy, and the total mechanical energy 
for simple harmonic motion.

where we used k/m = v2 from Equation 14.24. The angular fre-
quency is easily found from the period: v = 2p/T = 7.85 rad/s. 
Thus

 x = B (0.20 m)2 - 1 1.0 m/s

7.85 rad/s 2 2

= {0.15 m = {15 cm

There are two positions because the block has this speed on 
either side of equilibrium.

 b. Although part a did not require that we know the spring con-
stant, it is straightforward to find from Equation 14.24:

 T = 2pAm

k

 k =
4p2 m

T 2 =
4p2 (0.50 kg)

(0.80 s)2 = 31 N/m

ExAMPLE 14.5  using conservation of energy
A 500 g block on a spring is pulled a distance of 20 cm and released. 
The subsequent oscillations are measured to have a period of 0.80 s. 

a. At what position or positions is the block’s speed 1.0 m/s? 
b. What is the spring constant?

MODEL The motion is SHM. Energy is conserved.

SOLvE a. The block starts from the point of maximum displace-
ment, where E = U =

1
2 kA2. At a later time, when the position is 

x and the speed is v, energy conservation requires
1

2
 mv 2 +

1

2
 kx2 =

1

2
 kA2

Solving for x, we find

x = BA2 -
mv 2

k
= BA2 - 1 v

v 2 2
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Stop to think 14.3  
The four springs shown here have been com-
pressed from their equilibrium position at 
x = 0 cm. When released, the attached mass 
will start to oscillate. Rank in order, from 
highest to lowest, the maximum speeds of 
the masses.

14.4  The Dynamics of Simple 
Harmonic Motion

Our analysis thus far has been based on the experimental observation that the oscilla-
tion of a spring “looks” sinusoidal. It’s time to show that Newton’s second law predicts 
sinusoidal motion.

A motion diagram will help us visualize the object’s acceleration. FiguRE 14.12 shows 
one cycle of the motion, separating motion to the left and motion to the right to make 
the diagram clear. As you can see, the object’s velocity is large as it passes through the 
equilibrium point at x = 0, but v  

u
 is not changing at that point. Acceleration measures 

the change of the velocity; hence a
u

= 0
u

 at x = 0.

(a)
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(c)

(d)
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FiguRE 14.12 Motion diagram of simple harmonic motion. The left and right motions are 
separated vertically for clarity but really occur along the same line.

In contrast, the velocity is changing rapidly at the turning points. At the right turn-
ing point, v  

u
 changes from a right-pointing vector to a left-pointing vector. Thus the 

acceleration a
u

 at the right turning point is large and to the left. In one-dimensional 
motion, the acceleration component ax has a large negative value at the right turning 
point. Similarly, the acceleration a

u
 at the left turning point is large and to the right. 

Consequently, ax has a large positive value at the left turning point.
Our motion-diagram analysis suggests that the acceleration ax is most positive 

when the displacement is most negative, most negative when the displacement is a 
maximum, and zero when x = 0. This is confirmed by taking the derivative of the 
velocity:

 ax =
dvx

dt
=

d

dt
( -vA sin vt) = -v2A cos vt (14.27)

then graphing it.
FiguRE 14.13 shows the position graph that we started with in Figure 14.4 and the cor-

responding acceleration graph. Comparing the two, you can see that the acceleration 

t
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0
T 2T

�amax

amax
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Position x
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A

amin � �v2A when x � �A

amax � v2A when x � �A

T

FiguRE 14.13 Position and acceleration 
graphs for an oscillating spring. We’ve 
chosen f0 = 0.
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graph looks like an upside-down position graph. In fact, because x = A cos vt, Equa-
tion 14.27 for the acceleration can be written

 ax = -v2x (14.28)

That is, the acceleration is proportional to the negative of the displacement. The 
acceleration is, indeed, most positive when the displacement is most negative and is 
most negative when the displacement is most positive.

Recall that the acceleration is related to the net force by Newton’s second law. Con-
sider again our prototype mass on a spring, shown in FiguRE 14.14. This is the simplest 
possible oscillation, with no distractions due to friction or gravitational forces. We will 
assume the spring itself to be massless.

As you learned in Chapter 10, the spring force is given by Hooke’s law:

 (Fsp)x = -k �x (14.29)

The minus sign indicates that the spring force is a restoring force, a force that al-
ways points back toward the equilibrium position. If we place the origin of the coor-
dinate system at the equilibrium position, as we’ve done throughout this chapter, then 
�x = x and Hooke’s law is simply (Fsp)x = -kx.

The x-component of Newton’s second law for the object attached to the spring is

 (Fnet)x = (Fsp)x = -kx = max (14.30)

Equation 14.30 is easily rearranged to read

 ax = -  
k
m

 x (14.31)

You can see that Equation 14.31 is identical to Equation 14.28 if the system oscillates 
with angular frequency v = 1k/m . We previously found this expression for v from 
an energy analysis. Our experimental observation that the acceleration is proportional 
to the negative of the displacement is exactly what Hooke’s law would lead us to ex-
pect. That’s the good news.

The bad news is that ax is not a constant. As the object’s position changes, so does 
the acceleration. Nearly all of our kinematic tools have been based on constant ac-
celeration. We can’t use those tools to analyze oscillations, so we must go back to the 
very definition of acceleration:

 ax =
dvx

dt
=

d 2x

dt2

Acceleration is the second derivative of position with respect to time. If we use this 
definition in Equation 14.31, it becomes

 
d 2x

dt2 = -  
k
m

 x (equation of motion for a mass on a spring) (14.32)

Equation 14.32, which is called the equation of motion, is a second-order differential 
equation. Unlike other equations we’ve dealt with, Equation 14.32 cannot be solved 
by direct integration. We’ll need to take a different approach.

Solving the Equation of Motion
The solution to an algebraic equation such as x2 = 4 is a number. The solution to a 
differential equation is a function. The x in Equation 14.32 is really x(t), the position 
as a function of time. The solution to this equation is a function x(t) whose second 
derivative is the function itself multiplied by ( -k/m).

One important property of differential equations that you will learn about in math 
is that the solutions are unique. That is, there is only one solution to Equation 14.32 
that satisfies the initial conditions. If we were able to guess a solution, the uniqueness 
property would tell us that we had found the only solution. That might seem a rather 

Spring
constant k

Oscillation

m

x
0 x2A A

Fsp

r

FiguRE 14.14 The prototype of simple 
harmonic motion: a mass oscillating on 
a horizontal spring without friction.
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strange way to solve equations, but in fact differential equations are frequently solved 
by using your knowledge of what the solution needs to look like to guess an appropri-
ate function. Let us give it a try!

We know from experimental evidence that the oscillatory motion of a spring ap-
pears to be sinusoidal. Let us guess that the solution to Equation 14.32 should have 
the functional form

 x(t) = A cos(vt + f0) (14.33)

where A, v, and f0 are unspecified constants that we can adjust to any values that 
might be necessary to satisfy the differential equation.

If you were to guess that a solution to the algebraic equation x2 = 4 is x = 2, you 
would verify your guess by substituting it into the original equation to see if it works. 
We need to do the same thing here: Substitute our guess for x(t) into Equation 14.32 
to see if, for an appropriate choice of the three constants, it works. To do so, we need 
the second derivative of x(t). That is straightforward:

 x(t) = A cos(vt + f0)

 
dx

dt
= -vA sin(vt + f0)  (14.34)

 
d 2x

dt2 = -v2A cos(vt + f0)

If we now substitute the first and third of Equations 14.34 into Equation 14.32, we find

 -v2A cos(vt + f0) = -  
k
m

 A cos(vt + f0) (14.35)

Equation 14.35 will be true at all instants of time if and only if v2 = k/m. There do not 
seem to be any restrictions on the two constants A and f0—they are determined by the 
initial conditions.

So we have found—by guessing!—that the solution to the equation of motion for a 
mass oscillating on a spring is

 x(t) = A cos(vt + f0) (14.36)

where the angular frequency

 v = 2pf = B k
m

 (14.37)

is determined by the mass and the spring constant.

NOTE  Once again we see that the oscillation frequency is independent of the 
amplitude A. 

Equations 14.36 and 14.37 seem somewhat anticlimactic because we’ve been  
using these results for the last several pages. But keep in mind that we had been 
assuming x = A cos vt simply because the experimental observations “looked” like a 
cosine function. We’ve now justified that assumption by showing that Equation 14.36 
really is the solution to Newton’s second law for a mass on a spring. The theory of 
oscillation, based on Hooke’s law for a spring and Newton’s second law, is in good 
agreement with the experimental observations. This conclusion gives an affirmative 
answer to the last of the three questions that we asked early in the chapter, which was 
whether the sinusoidal oscillation of SHM is a consequence of Newton’s laws.

An optical technique called  
interferometry reveals the belllike 
vibrations of a wine glass.

 a. Draw a position-versus-time graph for one cycle of the motion.
 b. At what times during the first cycle does the mass pass through 

x = 20 cm?

ExAMPLE 14.6  Analyzing an oscillator
At t = 0 s, a 500 g block oscillating on a spring is observed mov-
ing to the right at x = 15 cm. It reaches a maximum displacement 
of 25 cm at t = 0.30 s.



14.5 . Vertical Oscillations    389

Stop to think 14.4  This is the position graph of a mass on a spring. What can you 
say about the velocity and the force at the instant indicated by the dashed line?

 a. Velocity is positive; force is to the right.
 b. Velocity is negative; force is to the right.
 c. Velocity is zero; force is to the right.
 d. Velocity is positive; force is to the left.
 e. Velocity is negative; force is to the left.
 f. Velocity is zero; force is to the left.
 g. Velocity and force are both zero.

MODEL The motion is simple harmonic motion.

SOLvE a. The position equation of the block is x (t) = A cos(vt +  
f0). We know that the amplitude is A = 0.25 m and that 
x0 = 0.15 m. From these two pieces of information we obtain 
the phase constant:

 f0 =  cos-11x0

A 2 =  cos-1 (0.60) = {0.927 rad

The object is initially moving to the right, which tells us that 
the phase constant must be between -p and 0 rad. Thus f0 =
-0.927 rad. The block reaches its maximum displacement 
xmax = A at time t = 0.30 s. At that instant of time

 xmax = A = A cos(vt + f0)

This can be true only if  cos(vt + f0) = 1, which requires 
vt + f0 = 0. Thus

 v =
-f0

t
=

- ( -0.927 rad)

0.30 s
= 3.09 rad/s

Now that we know v, it is straightforward to compute the 
period:

 T =
2p
v

= 2.0 s

FiguRE 14.15 graphs x (t) = (25 cm) cos(3.09t - 0.927), where 
t is in s, from t = 0 s to t = 2.0 s.

 b. From x = A cos(vt + f0), the time at which the mass reaches 
position x = 20 cm is

  t =
1
v

 1cos-11 x

A 2 - f02
 =

1

3.09 rad/s1cos-1120 cm

25 cm 2 + 0.927 rad2 = 0.51 s

A calculator returns only one value of cos-1, in the range 0 to 
p rad, but we noted earlier that cos-1 actually has two values. 
Indeed, you can see in Figure 14.15 that there are two times at 
which the mass passes x = 20 cm. Because they are symmetri-
cal on either side of t = 0.30 s, when x = A, the first point is 
(0.51 s - 0.30 s) = 0.21 s before the maximum. Thus the mass 
passes through x = 20 cm at t = 0.09 s and again at t = 0.51 s.

t (s)

x (cm)

0.50.3 1.0 1.5 2.0

25
20
15
10
5
0
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�25

T � 2.0 s

FiguRE 14.15 Positionversustime graph 
for the oscillator of Example 14.6.
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14.5 vertical Oscillations
We have focused our analysis on a horizontally oscillating spring. But the typical 
demonstration you’ll see in class is a mass bobbing up and down on a spring hung 
vertically from a support. Is it safe to assume that a vertical oscillation has the same 
mathematical description as a horizontal oscillation? Or does the additional force of 
gravity change the motion? Let us look at this more carefully.

FiguRE 14.16 shows a block of mass m hanging from a spring of spring constant k. An 
important fact to notice is that the equilibrium position of the block is not where the 
spring is at its unstretched length. At the equilibrium position of the block, where it 
hangs motionless, the spring has stretched by �L.

Finding �L is a static-equilibrium problem in which the upward spring force bal-
ances the downward gravitational force on the block. The y-component of the spring 
force is given by Hooke’s law:

 (Fsp)y = -k �y = +k �L (14.38)

Unstretched
spring

�L

k

m

The block hanging
at rest has stretched
the spring by �L.

Fsp

r

FG

r

FiguRE 14.16 Gravity stretches the 
spring.
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Equation 14.38 makes a distinction between �L, which is simply a distance and is 
a positive number, and the displacement �y. The block is displaced downward, so 
�y = - �L. Newton’s first law for the block in equilibrium is

 (Fnet)y = (Fsp)y + (FG)y = k �L - mg = 0 (14.39)

from which we can find

 �L =
mg

k
 (14.40)

This is the distance the spring stretches when the block is attached to it.
Let the block oscillate around this equilibrium position, as shown in FiguRE 14.17. 

We’ve now placed the origin of the y-axis at the block’s equilibrium position in order to 
be consistent with our analyses of oscillations throughout this chapter. If the block moves 
upward, as the figure shows, the spring gets shorter compared to its equilibrium length, 
but the spring is still stretched compared to its unstretched length in Figure 14.16. When 
the block is at position y, the spring is stretched by an amount �L - y and hence exerts 
an upward spring force Fsp = k(�L - y). The net force on the block at this point is

(Fnet)y = (Fsp)y + (FG)y = k(�L - y) - mg = (k �L - mg) - ky (14.41)

But k �L - mg is zero, from Equation 14.40, so the net force on the block is simply

 (Fnet)y = -ky (14.42)

Equation 14.42 for vertical oscillations is exactly the same as Equation 14.30 for 
horizontal oscillations, where we found (Fnet)x = -kx. That is, the restoring force for 
vertical oscillations is identical to the restoring force for horizontal oscillations. The 
role of gravity is to determine where the equilibrium position is, but it doesn’t affect 
the oscillatory motion around the equilibrium position.

Because the net force is the same, Newton’s second law has exactly the same oscil-
latory solution:

 y(t) = A cos(vt + f0) (14.43)

with, again, v = 2k/m. The vertical oscillations of a mass on a spring are the 
same simple harmonic motion as those of a block on a horizontal spring. This is 
an important finding because it was not obvious that the motion would still be simple 
harmonic motion when gravity was included.

FG

r

Block’s
equilibrium
position

0

y

�A

A

m

m

Spring
stretched
by �L � y

Spring
stretched
by �L

Oscillation around the 
equilibrium position 
is symmetrical.

Fsp

r

Fnet

r

FiguRE 14.17 The block oscillates around 
the equilibrium position.

cord’s original end point. The student’s position as a function of 
time, as measured from the equilibrium position, is

 y (t) = (2.0 m) cos(vt + f0)

ExAMPLE 14.7  Bungee oscillations
An 83 kg student hangs from a bungee cord with spring constant 
270 N/m. The student is pulled down to a point where the cord is 
5.0 m longer than its unstretched length, then released. Where is 
the student, and what is his velocity 2.0 s later?

MODEL A bungee cord can be modeled as a spring. Vertical oscil-
lations on the bungee cord are SHM.

viSuALizE FiguRE 14.18 shows the situation.

SOLvE Although the cord is stretched by 5.0 m when the student 
is released, this is not the amplitude of the oscillation. Oscilla-
tions occur around the equilibrium position, so we have to begin 
by finding the equilibrium point where the student hangs motion-
less. The cord stretch at equilibrium is given by Equation 14.40:

 �L =
mg

k
= 3.0 m

Stretching the cord 5.0 m pulls the student 2.0 m below the equi-
librium point, so A = 2.0 m. That is, the student oscillates with 
amplitude A = 2.0 m about a point 3.0 m beneath the bungee 

The bungee cord is 
modeled as a spring.

FiguRE 14.18 A student on a bungee cord oscillates 
about the equilibrium position.
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14.6 The Pendulum
Now let’s look at another very common oscillator: a pendulum. FiguRE 14.19a shows a 
mass m attached to a string of length L and free to swing back and forth. The pendu-
lum’s position can be described by the arc of length s, which is zero when the pendu-
lum hangs straight down. Because angles are measured ccw, s and u are positive when 
the pendulum is to the right of center, negative when it is to the left.

Two forces are acting on the mass: the string tension T 
u

 and gravity F
u

G. It will be 
convenient to repeat what we did in our study of circular motion: Divide the forces 
into tangential components, parallel to the motion, and radial components parallel to 
the string. These are shown on the free-body diagram of FiguRE 14.19b.

Newton’s second law for the tangential component, parallel to the motion, is

 (Fnet)t = aFt = (FG)t = -mg sin u = mat (14.44)

Using at = d 2s/dt 2 for acceleration “around” the circle, and noting that the mass can-
cels, we can write Equation 14.44 as

 
d 2s

dt2 = -g sin u (14.45)

This is the equation of motion for an oscillating pendulum. The sine function makes 
this equation more complicated than the equation of motion for an oscillating 
spring.

The Small-Angle Approximation
Suppose we restrict the pendulum’s oscillations to small angles of less than about 
10�. This restriction allows us to make use of an interesting and important piece of 
geometry.

FiguRE 14.20 shows an angle u and a circular arc of length s = r u. A right triangle 
has been constructed by dropping a perpendicular from the top of the arc to the axis. 
The height of the triangle is h = r sin u. Suppose that the angle u is “small.” In that 
case there is very little difference between h and s. If h � s, then r sin u � r u. It fol-
lows that

 sin u � u (u in radians)

The result that sin u � u for small angles is called the small-angle approximation. 
We can similarly note that l � r for small angles. Because l = r cos u, it follows that 
cos u � 1. Finally, we can take the ratio of sine and cosine to find tan u �  sin u � u. 
Table 14.3 summarizes the small-angle approximation. We will have other occasions 
to use the small-angle approximation throughout the remainder of this text.

NOTE  The small-angle approximation is valid only if angle u is in radians! 

How small does u have to be to justify using the small-angle approximation? It’s 
easy to use your calculator to find that the small-angle approximation is good to three 

where v = 2k/m = 1.80 rad/s. The initial condition

 y0 = A cos f0 = -A

requires the phase constant to be f0 = p rad. At t = 2.0 s the stu-
dent’s position and velocity are

 y = (2.0 m) cos1 (1.80 rad/s) (2.0 s) + p rad2 = 1.8 m

 vy = -vA sin(vt + f0) = -1.6 m/s

The student is 1.8 m above the equilibrium position, or 1.2m be
low the original end of the cord. Because his velocity is negative, 
he’s passed through the highest point and is heading down.

0

u and s are
negative on
the left.

u and s are
positive on
the right.

Arc length

L

s
m

(a)

u

Center 
of circle

Tangential
axis

t

The tension has
only a radial
component.

The gravitational force
has a tangential 
component �mg sin u.

(b)

u

u

(FG)t

(FG)r

r
T

FG

r

FiguRE 14.19 The motion of a 
pendulum.

s � ruh � r sin u

l � r cos u

r

u

FiguRE 14.20 The geometrical basis of 
the smallangle approximation.

TABLE 14.3 Smallangle approximations. 
u must be in radians.

sin u � u tan u �  sin u � u

cos u � 1
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significant figures, an error of …  0.1%, up to angles of �  0.10 rad ( �  5�). In practice, 
we will use the approximation up to about 10�, but for angles any larger it rapidly loses 
validity and produces unacceptable results.

If we restrict the pendulum to u 6 10�, we can use sin u � u. In that case, Equa-
tion 14.44 for the net force on the mass is

 (Fnet)t = -mg sin u � -mgu = -
mg

L
 s

where, in the last step, we used the fact that angle u is related to the arc length by  
u = s/L. Then the equation of motion becomes 

 
d 2s

dt2 = -  
g

L
 s (14.46)

This is exactly the same as Equation 14.32 for a mass oscillating on a spring. The 
names are different, with x replaced by s and k/m by g/L, but that does not make it a 
different equation.

Because we know the solution to the spring problem, we can immediately write the 
solution to the pendulum problem just by changing variables and constants:

 s (t) = A cos(vt + f0)  or  u (t) = umax cos(vt + f0) (14.47)

The angular frequency

 v = 2pf = A g

L
 (14.48)

is determined by the length of the string. The pendulum is interesting in that the fre-
quency, and hence the period, is independent of the mass. It depends only on the 
length of the pendulum. The amplitude A and the phase constant f0 are determined by 
the initial conditions, just as they were for an oscillating spring.

The pendulum clock has been used 
for hundreds of years.

The speed at the lowest point is vmax = vA, so the amplitude is

 A = smax =
vmax

v
=

0.25 m/s

5.72 rad/s
= 0.0437 m

The maximum angle, at the maximum arc length smax, is

 umax =
smax 

L
=

0.0437 m

0.30 m
= 0.146 rad = 8.3�

ASSESS Because the maximum angle is less than 10�, our analysis 
based on the small-angle approximation is reasonable.

ExAMPLE 14.8  The maximum angle of a pendulum
A 300 g mass on a 30-cm-long string oscillates as a pendulum. It 
has a speed of 0.25 m/s as it passes through the lowest point. What 
maximum angle does the pendulum reach?

MODEL Assume that the angle remains small, in which case the 
motion is simple harmonic motion.

SOLvE The angular frequency of the pendulum is

 v = B g

L
= B 9.8 m/s2

0.30 m
 = 5.72 rad/s

Length (m) Time (s)

0.500 141.7

1.000 200.6

1.500 245.8

2.000 283.5

What is the local value of g?

ExAMPLE 14.9  The gravimeter
Deposits of minerals and ore can alter the local value of the free-
fall acceleration because they tend to be denser than surrounding 
rocks. Geologists use a gravimeter—an instrument that accurately 
measures the local free-fall acceleration—to search for ore depos-
its. One of the simplest gravimeters is a pendulum. To achieve 
the highest accuracy, a stopwatch is used to time 100 oscillations 
of a pendulum of different lengths. At one location in the field, a 
geologist makes the following measurements:



The Conditions for Simple Harmonic Motion
You can begin to see how, in a sense, we have solved all simple-harmonic-motion 
problems once we have solved the problem of the horizontal spring. The restoring 
force of a spring, Fsp = -kx, is directly proportional to the displacement x from equi-
librium. The pendulum’s restoring force, in the small-angle approximation, is directly 
proportional to the displacement s. A restoring force that is directly proportional to the 
displacement from equilibrium is called a linear restoring force. For any linear restor-
ing force, the equation of motion is identical to the spring equation (other than perhaps 
using different symbols). Consequently, any system with a linear restoring force will 
undergo simple harmonic motion around the equilibrium position.

This is why an oscillating spring is the prototype of SHM. Everything that we learn 
about an oscillating spring can be applied to the oscillations of any other linear restor-
ing force, ranging from the vibration of airplane wings to the motion of electrons in 
electric circuits. Let’s summarize this information with a Tactics Box.

case, we would have had to conclude either that our model of the 
pendulum as a simple, small-angle pendulum was not valid or that 
our measurements were bad. This is an important reason for hav-
ing multiple data points rather than using only one length.

Best-fit line

y � 4.021x � 0.001

2

0

4

6

8

T 2 (s2)

L (m)
0.50.0 1.0 1.5 2.0

FiguRE 14.21 Graph of the square of the pendulum’s 
period versus its length.

TACTiCS
B O x  1 4 . 1 

 identifying and analyzing simple harmonic motion

 ●1 If the net force acting on a particle is a linear restoring force, the motion will 
be simple harmonic motion around the equilibrium position.

 ●2 The position as a function of time is x(t) = A cos(vt + f0). The velocity 
as a function of time is vx(t) = -vA sin(vt + f0). The maximum speed is 
vmax = vA. The equations are given here in terms of x, but they can be written 
in terms of y, u, or some other parameter if the situation calls for it.

 ●3 The amplitude A and the phase constant f0 are determined by the initial con-
ditions through x0 = A cos f0 and v0x = -vA sin f0.

 ●4 The angular frequency v (and hence the period T = 2p/v)  depends on the 
physics of the particular situation. But v does not depend on A or f0.

 ●5 Mechanical energy is conserved. Thus 1
2 mvx 

2 +
1
2 kx2 =

1
2 kA2 =

1
2 m(vmax)2. 

Energy conservation provides a relationship between position and velocity 
that is independent of time.

Exercises 7–12, 15–19 

MODEL Assume the oscillation angle is small, in which case the 
motion is simple harmonic motion with a period independent of 
the mass of the pendulum. Because the data are known to four sig-
nificant figures ({1 mm on the length and {0.1 s on the timing, 
both of which are easily achievable), we expect to determine g to 
four significant figures.

SOLvE From Equation 14.48, using f = 1/T, we find

 T 2 = 12pAL

g 2 2

=
4p2

g
 L

That is, the square of a pendulum’s period is proportional to its 
length. Consequently, a graph of T 2 versus L should be a straight line 
passing through the origin with slope 4p2 /g. We can use the experi-
mentally measured slope to determine g. FiguRE 14.21 is a graph of 
the data, with the period found by dividing the measured time by 100.

As expected, the graph is a straight line passing through the 
origin. The slope of the best-fit line is 4.021 s2/m. Consequently,

 g =
4p2

slope
=

4p2

4.021 s2/m
= 9.818 m/s2

ASSESS The fact that the graph is linear and passes through the 
origin confirms our model of the situation. Had this not been the 
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The Physical Pendulum
A mass on a string is often called a simple pendulum. But you can also make a pendu-
lum from any solid object that swings back and forth on a pivot under the influence of 
gravity. This is called a physical pendulum.

FiguRE 14.22 shows a physical pendulum of mass M for which the distance between 
the pivot and the center of mass is l. The moment arm of the gravitational force acting 
at the center of mass is d = l sin u, so the gravitational torque is

 t = -Mgd = -Mgl sin u

The torque is negative because, for positive u, it’s causing a clockwise rotation. If we 
restrict the angle to being small (u 6 10�), as we did for the simple pendulum, we can 
use the small-angle approximation to write

 t = -Mglu (14.49)

Gravity causes a linear restoring torque on the pendulum—that is, the torque is direct-
ly proportional to the angular displacement u—so we expect the physical pendulum 
to undergo SHM.

From Chapter 12, Newton’s second law for rotational motion is

 a =
d 2u

dt2 =
t

I

where I is the object’s moment of inertia about the pivot point. Using Equation 14.49 
for the torque, we find

 
d 2u

dt2 =
-Mgl

I
 u (14.50)

Comparison with Equation 14.32 shows that this is again the SHM equation of motion, 
this time with angular frequency

 v = 2pf = BMgl

I
 (14.51)

It appears that the frequency depends on the mass of the pendulum, but recall that 
the moment of inertia is directly proportional to M. Thus M cancels and the frequency 
of a physical pendulum, like that of a simple pendulum, is independent of mass.

Mg

d

l

u
�

Distance from
pivot to center of
mass

Moment arm of
gravitational torque

FiguRE 14.22 A physical pendulum.

The corresponding period is T = 1/f = 1.6 s. Notice that we didn’t 
need to know the mass.

ASSESS As you walk, your legs do swing as physical pendulums 
as you bring them forward. The frequency is fixed by the length 
of your legs and their distribution of mass; it doesn’t depend on 
amplitude. Consequently, you don’t increase your walking speed 
by taking more rapid steps—changing the frequency is difficult. 
You simply take longer strides, changing the amplitude but not 
the frequency.

ExAMPLE 14.10  A swinging leg as a pendulum
A student in a biomechanics lab measures the length of his leg, 
from hip to heel, to be 0.90 m. What is the frequency of the pendu-
lum motion of the student’s leg? What is the period?

MODEL We can model a human leg reasonably well as a rod of 
uniform cross section, pivoted at one end (the hip) to form a physi-
cal pendulum. The center of mass of a uniform leg is at the mid-
point, so l = L/2.

SOLvE The moment of inertia of a rod pivoted about one end is 
I =

1
3 ML2, so the pendulum frequency is

 f =
1

2p
 BMgl

I
=

1

2p
 BMg(L/2)

ML2/3
=

1

2p
 B 3g

2L
= 0.64 Hz

Stop to think 14.5  One person swings on a swing and finds that the period is 3.0 s. A 
second person of equal mass joins him. With two people swinging, the period is

 a. 6.0 s b. 73.0 s but not necessarily 6.0 s
 c. 3.0 s d. 63.0 s but not necessarily 1.5 s
 e. 1.5 s f. Can’t tell without knowing the length
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14.7 Damped Oscillations
A pendulum left to itself gradually slows down and stops. The sound of a ringing bell 
gradually dies away. All real oscillators do run down—some very slowly but others 
quite quickly—as friction or other dissipative forces transform their mechanical en-
ergy into the thermal energy of the oscillator and its environment. An oscillation that 
runs down and stops is called a damped oscillation.

There are many possible reasons for the dissipation of energy, such as air resis-
tance, friction, and internal forces within a metal spring as it flexes. The forces in-
volved in dissipation are complex, but a simple linear drag model gives a quite ac-
curate description of most damped oscillations. That is, we’ll assume a drag force that 
depends linearly on the velocity as

 D
u

= -bv  

u
 (model of the drag force) (14.52)

where the minus sign is the mathematical statement that the force is always opposite 
in direction to the velocity in order to slow the object.

The damping constant b depends in a complicated way on the shape of the object 
and on the viscosity of the air or other medium in which the particle moves. The damp-
ing constant plays the same role in our model of air resistance that the coefficient of 
friction does in our model of friction.

The units of b need to be such that they will give units of force when multiplied by 
units of velocity. As you can confirm, these units are kg/s. A value b = 0 kg/s cor-
responds to the limiting case of no resistance, in which case the mechanical energy 
is conserved. A typical value of b for a spring or a pendulum in air is …0.10 kg/s. 
Objects moving in a liquid can have significantly larger values of b.

FiguRE 14.23 shows a mass oscillating on a spring in the presence of a drag force. 
With the drag included, Newton’s second law is

 (Fnet)x = (Fsp)x + Dx = -kx - bvx = max (14.53)

Using vx = dx/dt and ax = d 2x/dt2, we can write Equation 14.53 as

 
d 2x

dt2 +
b
m

 
dx

dt
+

k
m

 x = 0 (14.54)

Equation 14.54 is the equation of motion of a damped oscillator. If you compare it to 
Equation 14.32, the equation of motion for a block on a frictionless surface, you’ll see 
that it differs by the inclusion of the term involving dx/dt.

Equation 14.54 is another second-order differential equation. We will simply assert 
(and, as a homework problem, you can confirm) that the solution is

 x(t) = Ae-bt/2m cos(vt + f0)  (damped oscillator) (14.55)

where the angular frequency is given by

 v = B k
m

-
b2

4m2 = Bv0 

2 -
b2

4m2 (14.56)

Here v0 = 2k/m is the angular frequency of an undamped oscillator (b = 0). The 
constant e is the base of natural logarithms, so e-bt/2m is an exponential function.

Because e0 = 1, Equation 14.55 reduces to our previous solution, x(t) = A cos(vt +  
f0), when b = 0. This makes sense and gives us confidence in Equation 14.55. A 
lightly damped system, which oscillates many times before stopping, is one for which 
b/2m V v0. In that case, v � v0 is a good approximation. That is, light damping 
does not affect the oscillation frequency.

FiguRE 14.24 is a graph of the position x(t) for a lightly damped oscillator, as given 
by Equation 14.55. Notice that the term Ae-bt/2m, which is shown by the dashed line, 

The shock absorbers in cars and trucks 
are heavily damped springs. The vehicle’s 
vertical motion, after hitting a rock or a 
pothole, is a damped oscillation.

Spring
constant k

m
rv

Fsp

r

r
D

FiguRE 14.23 An oscillating mass in the 
presence of a drag force.
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x
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A is the initial amplitude.

The envelope of the
amplitude decays
exponentially:
xmax � Ae�bt/2m

FiguRE 14.24 Positionversustime graph 
for a damped oscillator.
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acts as a slowly varying amplitude:

 xmax(t) = Ae-bt/2m (14.57)

where A is the initial amplitude, at t = 0. The oscillation keeps bumping up against 
this line, slowly dying out with time.

A slowly changing line that provides a border to a rapid oscillation is called the 
 envelope of the oscillations. In this case, the oscillations have an exponentially 
 decaying envelope. Make sure you study Figure 14.24 long enough to see how both 
the oscillations and the decaying amplitude are related to Equation 14.55.

Changing the amount of damping, by changing the value of b, affects how quickly 
the oscillations decay. FiguRE 14.25 shows just the envelope xmax(t) for several oscil-
lators that are identical except for the value of the damping constant b. (You need 
to imagine a rapid oscillation within each envelope, as in Figure 14.24.) Increasing 
b causes the oscillations to damp more quickly, while decreasing b makes them last 
longer.

t (s)

Amplitude

0

A

0 20 40 60

A larger b causes the oscillations
to damp more quickly.

A smaller b causes
less damping.

Envelope from Figure 14.24

Energy is conserved
if there is no damping.

For mass
m � 1.0 kg

b � 0 kg/s

b � 0.03 kg/s

b � 0.1 kg/s

b � 0.3 kg/s

FiguRE 14.25 Several oscillation 
envelopes, corresponding to different 
values of the damping constant b.

mathematical aside Exponential decay
Exponential decay occurs in a vast number of physical systems of 
importance in science and engineering. Mechanical vibrations, elec-
tric circuits, and nuclear radioactivity all exhibit exponential decay.

The number e = 2.71828 p  is the base of natural logarithms 
in the same way that 10 is the base of ordinary logarithms. It arises 
naturally in calculus from the integral

 3
du

u
= ln u

This integral—which shows up in the analysis of many physical 
systems—frequently leads to solutions of the form

 u = Ae-v/v0 = A exp( -v/v0)

where exp is the exponential function.

A graph of u illustrates what we mean by exponential decay. 
It starts with u = A at v = 0 (because e0 = 1)  and then steadily 
decays, asymptotically approaching zero. The quantity v0 is called 
the decay constant. When v = v0, u = e-1A = 0.37A. When 
v = 2v0, u = e-2A = 0.13A.

Arguments of functions must be pure numbers, without units. 
That is, we can evaluate e-2, but e-2 kg makes no sense. If v/v0 
is a pure number, which it must be, then the decay constant v0 
must have the same units as v. If v represents position, then v0 is a 
length; if v represents time, then v0 is a time interval. In a specific 
situation, v0 is often called the decay length or the decay time. It 
is the length or time in which the quantity decays to 37% of its 
initial value.

No matter what the process is or what u represents, a quan-
tity that decays exponentially decays to 37% of its initial value 
when one decay constant has passed. Thus exponential decay 
is a universal behavior. Every time you meet a new system that 
exhibits exponential decay, its behavior will be exactly the same 
as every other exponential decay. The decay curve always looks 
exactly like the figure shown here. Once you’ve learned the prop-
erties of exponential decay, you’ll immediately know how to ap-
ply this knowledge to a new situation.

0
0

u starts at A.

u decays to 37% of
its initial value at v � v0.

u decays to 13% of its
initial value at v � 2v0.

e�2A

e�1A

A

v0

v

u

2v0

Energy in Damped Systems
When considering the oscillator’s mechanical energy, it is useful to define the time 
constant t (also called the decay time) to be

 t =
m

b
 (14.58)

Because b has units of kg/s, t has units of seconds. With this definition, we can write 
the oscillation amplitude as xmax(t) = Ae-t/2t.



Because of the drag force, the mechanical energy is no longer conserved. At any 
particular time we can compute the mechanical energy from

 E(t) =
1

2
 k(xmax)2 =

1

2
 k(Ae-t/2t)2 = 11

2
 kA22e-t/t = E0e-t/t (14.59)

where E0 =
1
2 kA2 is the initial energy at t = 0 and where we used (zm)2 = z 2m. In other 

words, the oscillator’s mechanical energy decays exponentially with time constant T.
As FiguRE 14.26 shows, the time constant is the amount of time needed for the energy 

to decay to e-1, or 37%, of its initial value. We say that the time constant t mea-
sures the “characteristic time” during which the energy of the oscillation is dissipated. 
Roughly two-thirds of the initial energy is gone after one time constant has elapsed, 
and nearly 90% has dissipated after two time constants have gone by.

For practical purposes, we can speak of the time constant as the lifetime of the 
oscillation—about how long it lasts. Mathematically, there is never a time when the 
oscillation is “over.” The decay approaches zero asymptotically, but it never gets there 
in any finite time. The best we can do is define a characteristic time when the motion 
is “almost over,” and that is what the time constant t does.

t

Energy

t � t

0.13E0

0
0

0.37E0

E0

t � 2t

The oscillator starts
with energy E0.

The energy has decreased to 
37% of its initial value at t � t.

The energy has 
decreased to 13% 
of its initial value 
at t � 2t.

FiguRE 14.26 Exponential decay of the 
mechanical energy of an oscillator.

 b. The energy at time t is given by

 E (t) = E0e-t/t

The time at which an exponential decay is reduced to 12 E0, half 
its initial value, has a special name. It is called the half-life 
and given the symbol t1/2. The concept of the half-life is widely 
used in applications such as radioactive decay. To relate t1/2 to 
t, we first write

 E (at t = t1/2) =
1

2
 E0 = E0e-t1/2 /t

The E0 cancels, giving

 
1

2
= e-t1/2 /t

Again, we take the natural logarithm of both sides:

 ln11

2 2 = - ln 2 = ln e-t1/2 /t = - t1/2/t

Finally, we solve for t1/2:

 t1/2 = t ln 2 = 0.693t

This result that t1/2 is 69% of t is valid for any exponential 
decay. In this particular problem, half the energy is gone at

 t1/2 = (0.693) (25.2 s) = 17.5 s

ASSESS The oscillator loses energy faster than it loses amplitude. 
This is what we should expect because the energy depends on the 
square of the amplitude.

ExAMPLE 14.11  A damped pendulum
A 500 g mass swings on a 60-cm-string as a pendulum. The am-
plitude is observed to decay to half its initial value after 35.0 s.

 a. What is the time constant for this oscillator?
 b. At what time will the energy have decayed to half its initial 

value?

MODEL The motion is a damped oscillation.

SOLvE a. The initial amplitude at t = 0 is xmax = A. At t = 35.0 s 
the amplitude is xmax =

1
2 A. The amplitude of oscillation at 

time t is given by Equation 14.57:

 xmax(t) = Ae-bt/2m = Ae-t/2t

In this case,

 
1

2
 A = Ae-(35.0 s)/2t

Notice that we do not need to know A itself because it cancels 
out. To solve for t, we take the natural logarithm of both sides 
of the equation:

 ln11

2 2 = - ln 2 = ln e-(35.0 s)/2t = -  
35.0 s

2t
 

This is easily rearranged to give

 t =
35.0 s

2 ln 2
= 25.2 s

If desired, we could now determine the damping constant to be 
b = m/t = 0.020 kg/s.

Stop to think 14.6  Rank in order, from largest to smallest, the time constants ta to td 
of the decays shown in the figure. All the graphs have the same scale.

t

E

t

E

t

E

t

E

(a) (b) (c) (d)
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14.8 Driven Oscillations and Resonance
Thus far we have focused on the free oscillations of an isolated system. Some initial 
disturbance displaces the system from equilibrium, and it then oscillates freely until its 
energy is dissipated. These are very important situations, but they do not exhaust the 
possibilities. Another important situation is an oscillator that is subjected to a periodic 
external force. Its motion is called a driven oscillation.

A simple example of a driven oscillation is pushing a child on a swing, where your 
push is a periodic external force applied to the swing. A more complex example is a 
car driving over a series of equally spaced bumps. Each bump causes a periodic up-
ward force on the car’s shock absorbers, which are big, heavily damped springs. The 
electromagnetic coil on the back of a loudspeaker cone provides a periodic magnetic 
force to drive the cone back and forth, causing it to send out sound waves. Air turbu-
lence moving across the wings of an aircraft can exert periodic forces on the wings and 
other aerodynamic surfaces, causing them to vibrate if they are not properly designed.

As these examples suggest, driven oscillations have many important applications. 
However, driven oscillations are a mathematically complex subject. We will simply 
hint at some of the results, saving the details for more advanced classes.

Consider an oscillating system that, when left to itself, oscillates at a frequency f0. 
We will call this the natural frequency of the oscillator. The natural frequency for 
a mass on a spring is 1k/m /2p, but it might be given by some other expression for 
another type of oscillator. Regardless of the expression, f0 is simply the frequency of 
the system if it is displaced from equilibrium and released.

Suppose that this system is subjected to a periodic external force of frequency fext. 
This frequency, which is called the driving frequency, is completely independent 
of the oscillator’s natural frequency f0. Somebody or something in the environment 
selects the frequency fext of the external force, causing the force to push on the system 
fext times every second.

Although it is possible to solve Newton’s second law with an external driving 
force, we will be content to look at a graphical representation of the solution. The 
most important result is that the oscillation amplitude depends very sensitively on the 
frequency fext of the driving force. The response to the driving frequency is shown 
in FiguRE 14.27 for a system with m = 1.0 kg, a natural frequency f0 = 2.0 Hz, and a 
damping constant b = 0.20 kg/s. This graph of amplitude versus driving frequency, 
called the response curve, occurs in many different applications.

When the driving frequency is substantially different from the oscillator’s natural 
frequency, at the right and left edges of Figure 14.27, the system oscillates but the am-
plitude is very small. The system simply does not respond well to a driving frequency 
that differs much from f0. As the driving frequency gets closer and closer to the natural 
frequency, the amplitude of the oscillation rises dramatically. After all, f0 is the fre-
quency at which the system “wants” to oscillate, so it is quite happy to respond to a 
driving frequency near f0. Hence the amplitude reaches a maximum when the driving 
frequency exactly matches the system’s natural frequency: fext = f0.

The amplitude can become exceedingly large when the frequencies match, espe-
cially if the damping constant is very small. FiguRE 14.28 shows the same oscillator 
with three different values of the damping constant. There’s very little response if the 
damping constant is increased to 0.80 kg/s, but the amplitude for fext = f0 becomes 
very large when the damping constant is reduced to 0.08 kg/s. This large-amplitude 
response to a driving force whose frequency matches the natural frequency of the sys-
tem is a phenomenon called resonance. The condition for resonance is

 fext = f0 (resonance condition) (14.60)

Within the context of driven oscillations, the natural frequency f0 is often called the 
resonance frequency.

An important feature of Figure 14.28 is how the amplitude and width of the reso-
nance depend on the damping constant. A heavily damped system responds fairly 

fext (Hz)

Amplitude

1 2 3

The oscillation has
maximum amplitude
when fext � f0. This
is resonance.

The oscillation has 
only a small amplitude 
when fext differs 
substantially from f0.

This is the natural
frequency.

FiguRE 14.27 The response curve shows 
the amplitude of a driven oscillator at 
frequencies near its natural frequency 
of 2.0 Hz.

fext (Hz)

Amplitude

1 2 3

b � 0.08 kg/s

b � 0.20 kg/s

b � 0.80 kg/s

f0 � 2.0 Hz A lightly damped system
has a very tall and very
narrow response curve.

A heavily damped 
system has little 
response.

FiguRE 14.28 The resonance amplitude 
becomes higher and narrower as the 
damping constant decreases.
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little, even at resonance, but it responds to a wide range of driving frequencies. Very 
lightly damped systems can reach exceptionally high amplitudes, but notice that the 
range of frequencies to which the system responds becomes narrower and narrower 
as b decreases.

This allows us to understand why a few singers can break crystal goblets but not 
inexpensive, everyday glasses. An inexpensive glass gives a “thud” when tapped, but a 
fine crystal goblet “rings” for several seconds. In physics terms, the goblet has a much 
longer time constant than the glass. That, in turn, implies that the goblet is very lightly 
damped while the ordinary glass is heavily damped (because the internal forces within 
the glass are not those of a high-quality crystal structure).

The singer causes a sound wave to impinge on the goblet, exerting a small driving 
force at the frequency of the note she is singing. If the singer’s frequency matches the 
natural frequency of the goblet—resonance! Only the lightly damped goblet, like the 
top curve in Figure 14.28, can reach amplitudes large enough to shatter. The restric-
tion, though, is that its natural frequency has to be matched very precisely. The sound 
also has to be very loud.

A singer or musical instrument can shatter 
a crystal goblet by matching the goblet’s 
natural oscillation frequency.

SOLvE The frequency of a simple pendulum is f = 1g/L /2p. 
We’re not given L, but we can find it by analyzing the pendulum’s 
swing down from an inverted position. Mechanical energy is con-
served, and the only potential energy is gravitational potential 
energy. Conservation of mechanical energy Kf + Ugf = Ki + Ugi, 
with Ug = mgy, is

 
1

2
 mvf 

2 + mgyf =
1

2
 mvi 

2 + mgyi

The mass cancels, which is good since we don’t know it, and two 
terms are zero. Thus

 
1

2
 vf 

2 = g(2L) = 2gL

Solving for L, we find

 L =
vf 

2

4g
=

(5.0 m/s)2

4(9.80 m/s2)
= 0.638 m

Now we can calculate the frequency:

 f =
1

2p
 B g

L
=

1

2p
 B 9.80 m/s2

0.638 m
= 0.62 Hz

ASSESS The frequency corresponds to a period of about 1.5 s, 
which seems reasonable.

CHALLENgE ExAMPLE 14.12  A swinging pendulum
A pendulum consists of a massless, rigid rod with a mass at one 
end. The other end is pivoted on a frictionless pivot so that the rod 
can rotate in a complete circle. The pendulum is inverted, with 
the mass directly above the pivot point, then released. The speed 
of the mass as it passes through the lowest point is 5.0 m/s. If the 
pendulum later undergoes small-amplitude oscillations at the bot-
tom of the arc, what will its frequency be?

MODEL This is a simple pendulum because the rod is massless. 
However, our analysis of a pendulum used the small-angle ap-
proximation. It applies only to the small-amplitude oscillations at 
the end, not to the pendulum swinging down from the inverted 
position. Fortunately, energy is conserved throughout, so we can 
analyze the big swing using conservation of mechanical energy.

viSuALizE FiguRE 14.29 is a pictorial representation of the pen-
dulum swinging down from the inverted position. The pendulum 
length is L, so the initial height is 2L.

FiguRE 14.29 Beforeandafter pictorial representation of the 
pendulum swinging down from an inverted position.
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S u M M A R y
The goal of Chapter 14 has been to understand systems that oscillate with simple harmonic motion.

Dynamics
SHM occurs when a linear restoring force acts to return a 
system to an equilibrium position.

Horizontal spring

(Fnet)x = -kx

Vertical spring 
The origin is at the equilibrium  
position �L = mg/k.

(Fnet)y = -ky

Both: v = B k

m
  T = 2p Bm

k

Pendulum

(Fnet)t = - 1mg

L 2s

v = B g

L
   T = 2p BL

g

Energy
If there is no friction 
or dissipation, kinetic 
and potential energy are 
alternately transformed 
into each other, but the 
total mechanical energy 
E = K + U is conserved.

  E =
1

2
 mv 2 +

1

2
 kx2

  =
1

2
 m(vmax)

2

  =
1

2
 kA2

In a damped system, the 
energy decays exponentially

E = E0e-t/t

where t is the time constant.

general Principles

Simple harmonic motion (SHM) is a sinusoidal oscillation with 
period T and amplitude A.

Frequency f =
1

T

Angular frequency

 v = 2pf =
2p

T

Position x (t) = A cos(vt + f0)

 = A cos12pt

T
+ f02

Velocity vx(t) = -vmax sin(vt + f0) with maximum speed 
vmax = vA

Acceleration  ax(t) = -v2x (t) = -v2Acos(vt + f0)

SHM is the projection 
onto the x-axis of 
uniform circular motion.

f = vt + f0  

is the phase

The position at time t is

  x (t) = A cos f
  = A cos(vt + f0)

The phase constant f0 
determines the initial condi-
tions:

 x0 = A cos f0  v0x = -vA sin f0

important Concepts

Resonance

When a system is driven by 
a periodic external force, it 
responds with a large-amplitude 
oscillation if fext � f0, where 
f0 is the system’s natural 
oscillation frequency, or 
resonant frequency.

Damping

If there is a drag force D
u

= -bv  

u
, 

where b is the damping constant, 
then (for lightly damped systems)

 x (t) = Ae-bt/2m cos(vt + f0)

The time constant for energy loss 
is t = m/b.

Applications

k
m

0 x

0

k

y m

0

L

s

0

All potential

All kinetic

A
x

�A

t

E

0
0

0.37E0

E0

t

t0

x T
A

�A

x

y

A

x � A cos f
x0 � A cos f0

0

f0

f

Amplitude

fext
f0

t

x

0

�A

A
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oscillatory motion
oscillator
period, T
frequency, f
hertz, Hz
simple harmonic motion, 

SHM

amplitude, A
angular frequency, v
phase, f
phase constant, f0

restoring force
equation of motion
small-angle approximation

linear restoring force
damped oscillation
damping constant, b
envelope
time constant, t
half-life, t1/2

driven oscillation

natural frequency, f0

driving frequency, fext

response curve
resonance
resonance frequency, f0

Terms and Notation

C O N C E P T u A L  Q u E S T i O N S

 1. A block oscillating on a spring has period T = 2 s. What is the 
period if:

 a. The block’s mass is doubled? Explain. Note that you do not 
know the value of either m or k, so do not assume any particu-
lar values for them. The required analysis involves thinking 
about ratios.

 b. The value of the spring constant is quadrupled?
 c. The oscillation amplitude is doubled while m and k are 

unchanged?
 2. A pendulum on Planet X, where the value of g is unknown, oscil-

lates with a period T = 2 s. What is the period of this pendulum if:
 a. Its mass is doubled? Explain. Note that you do not know the 

value of m, L, or g, so do not assume any specific values. The 
required analysis involves thinking about ratios.

 b. Its length is doubled?
 c. Its oscillation amplitude is doubled?
 3. FiguRE Q14.3 shows a position- 

versus-time graph for a particle in 
SHM. What are (a) the amplitude 
A, (b) the angular frequency v, and 
(c) the phase constant f0? Explain.

 4. Equation 14.25 states that 1
2 kA2 =

1
2 m (vmax)

2. What does this 
mean? Write a couple of sentences explaining how to interpret 
this equation.

 5. A block oscillating on a spring has an amplitude of 20 cm. What 
will the amplitude be if the total energy is doubled? Explain.

 6. A block oscillating on a spring has a maximum speed of 20 cm/s. 
What will the block’s maximum speed be if the total energy is 
doubled? Explain.

 7. FiguRE Q14.7 shows a position-versus-time graph for a particle in 
SHM.

 a. What is the phase constant f0? Explain.
 b. What is the phase of the particle at each of the three num-

bered points on the graph?

 8. FiguRE Q14.8 shows a velocity-versus-time graph for a particle in 
SHM.

 a. What is the phase constant f0? Explain.
 b. What is the phase of the particle at each of the three num-

bered points on the graph?

 9. FiguRE Q14.9 shows the potential-energy diagram and the total 
energy line of a particle oscillating on a spring.

 a. What is the spring’s equilibrium length?
 b. Where are the turning points of the motion? Explain.
 c. What is the particle’s maximum kinetic energy?
 d. What will be the turning points if the particle’s total energy is 

doubled?

 10. Suppose the damping constant b of an oscillator increases.
 a. Is the medium more resistive or less resistive?
 b. Do the oscillations damp out more quickly or less quickly?
 c. Is the time constant t increased or decreased?
 11. a.  Describe the difference between t and T. Don’t just name 

them; say what is different about the physical concepts they 
represent.

 b. Describe the difference between t and t1/2.
 12. What is the difference between the driving frequency and the 

natural frequency of an oscillator?
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E x E R C i S E S  A N D  P R O B L E M S

Problems labeled  integrate material from earlier chapters.

Exercises

Section 14.1 Simple Harmonic Motion

 1. | When a guitar string plays the note “A,” the string vibrates at 
440 Hz. What is the period of the vibration?

 2. | An air-track glider attached to a spring oscillates between the 
10 cm mark and the 60 cm mark on the track. The glider com-
pletes 10 oscillations in 33 s. What are the (a) period, (b) fre-
quency, (c) angular frequency, (d) amplitude, and (e) maximum 
speed of the glider?

 3. || An air-track glider is attached to a spring. The glider is pulled 
to the right and released from rest at t = 0 s. It then oscillates 
with a period of 2.0 s and a maximum speed of 40 cm/s.

 a. What is the amplitude of the oscillation?
 b. What is the glider’s position at t = 0.25 s?

Section 14.2 Simple Harmonic Motion and Circular Motion

 4. | What are the (a) amplitude, (b) frequency, and (c) phase con-
stant of the oscillation shown in FiguRE Ex14.4?

 5. || What are the (a) amplitude, (b) frequency, and (c) phase con-
stant of the oscillation shown in FiguRE Ex14.5?

 6. || An object in simple harmonic motion has an amplitude of 
4.0 cm, a frequency of 2.0 Hz, and a phase constant of 2p/3 rad. 
Draw a position graph showing two cycles of the motion.

 7. || An object in simple harmonic motion has an amplitude of 
8.0 cm, a frequency of 0.25 Hz, and a phase constant of -p/2 rad. 
Draw a position graph showing two cycles of the motion.

 8. | An object in simple harmonic motion has amplitude 4.0 cm 
and frequency 4.0 Hz, and at t = 0 s it passes through the equi-
librium point moving to the right. Write the function x (t) that 
describes the object’s position.

 9. | An object in simple harmonic motion has amplitude 8.0 cm 
and frequency 0.50 Hz. At t = 0 s it has its most negative posi-
tion. Write the function x (t) that describes the object’s position.

 10. || An air-track glider attached to a spring oscillates with a period 
of 1.5 s. At t = 0 s the glider is 5.00 cm left of the equilibrium 
position and moving to the right at 36.3 cm/s.

 a. What is the phase constant?
 b. What is the phase at t = 0 s, 0.5 s, 1.0 s, and 1.5 s?

Section 14.3 Energy in Simple Harmonic Motion

Section 14.4 The Dynamics of Simple Harmonic Motion

 11. | A block attached to a spring with unknown spring constant 
oscillates with a period of 2.0 s. What is the period if

 a. The mass is doubled?
 b. The mass is halved?
 c. The amplitude is doubled?
 d. The spring constant is doubled?
  Parts a to d are independent questions, each referring to the ini-

tial situation.
 12. || A 200 g air-track glider is attached to a spring. The glider is 

pushed in 10 cm and released. A student with a stopwatch finds 
that 10 oscillations take 12.0 s. What is the spring constant?

 13. || A 200 g mass attached to a horizontal spring oscillates at a 
frequency of 2.0 Hz. At t = 0 s, the mass is at x = 5.0 cm and 
has vx = -30 cm/s. Determine:

 a. The period. b. The angular frequency.
 c. The amplitude. d. The phase constant.
 e. The maximum speed. f. The maximum acceleration.
 g. The total energy. h. The position at t = 0.40 s.
 14. | The position of a 50 g oscillating mass is given by x (t) =  

(2.0 cm) cos(10t - p/4), where t is in s. Determine:
 a. The amplitude. b. The period.
 c. The spring constant. d. The phase constant.
 e. The initial conditions. f. The maximum speed.
 g. The total energy. h. The velocity at t = 0.40 s.
 15. || A 1.0 kg block is attached to a spring with spring constant 

16 N/m. While the block is sitting at rest, a student hits it with a 
hammer and almost instantaneously gives it a speed of 40 cm/s. 
What are

 a. The amplitude of the subsequent oscillations?
 b. The block’s speed at the point where x =

1
2 A?

Section 14.5 Vertical Oscillations

 16. | A spring is hanging from the ceiling. Attaching a 500 g 
physics book to the spring causes it to stretch 20 cm in order to 
come to equilibrium.

 a. What is the spring constant?
 b. From equilibrium, the book is pulled down 10 cm and re-

leased. What is the period of oscillation?
 c. What is the book’s maximum speed?
 17. || A spring with spring constant 15 N/m hangs from the ceiling. 

A ball is attached to the spring and allowed to come to rest. It is 
then pulled down 6.0 cm and released. If the ball makes 30 oscil-
lations in 20 s, what are its (a) mass and (b) maximum speed?

 18. || A spring is hung from the ceiling. When a block is attached 
to its end, it stretches 2.0 cm before reaching its new equilib-
rium length. The block is then pulled down slightly and released. 
What is the frequency of oscillation?

Section 14.6 The Pendulum

 19. | A mass on a string of unknown length oscillates as a pendu-
lum with a period of 4.0 s. What is the period if

 a. The mass is doubled?
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 b. The string length is doubled?
 c. The string length is halved?
 d. The amplitude is doubled?
  Parts a to d are independent questions, each referring to the ini-

tial situation.
 20. || A 200 g ball is tied to a string. It is pulled to an angle of 8.0� and 

released to swing as a pendulum. A student with a stopwatch 
finds that 10 oscillations take 12 s. How long is the string?

 21. | What is the period of a 1.0-m-long pendulum on (a) the earth 
and (b) Venus?

 22. | What is the length of a pendulum whose period on the moon 
matches the period of a 2.0-m-long pendulum on the earth?

 23. | Astronauts on the first trip to Mars take along a pendulum that 
has a period on earth of 1.50 s. The period on Mars turns out to 
be 2.45 s. What is the free-fall acceleration on Mars?

 24. || A uniform steel bar swings from a pivot at one end with a 
period of 1.2 s. How long is the bar?

Section 14.7 Damped Oscillations

Section 14.8 Driven Oscillations and Resonance

 25. | A 2.0 g spider is dangling at the end of a silk thread. You can 
make the spider bounce up and down on the thread by tapping 
lightly on his feet with a pencil. You soon discover that you can 
give the spider the largest amplitude on his little bungee cord if 
you tap exactly once every second. What is the spring constant 
of the silk thread?

 26. || The amplitude of an oscillator decreases to 36.8% of its initial 
value in 10.0 s. What is the value of the time constant?

 27. || Sketch a position graph from t = 0 s to t = 10 s of a damped 
oscillator having a frequency of 1.0 Hz and a time constant 
of 4.0 s.

 28. | In a science museum, a 110 kg brass pendulum bob swings 
at the end of a 15.0-m-long wire. The pendulum is started at ex-
actly 8:00 a.m. every morning by pulling it 1.5 m to the side and 
releasing it. Because of its compact shape and smooth surface, 
the pendulum’s damping constant is only 0.010 kg/s. At exactly 
12:00 noon, how many oscillations will the pendulum have com-
pleted and what is its amplitude?

 29. || Vision is blurred if the head is vibrated at 29 Hz because the 
vibrations are resonant with the natural frequency of the eyeball 
in its socket. If the mass of the eyeball is 7.5 g, a typical value, 
what is the effective spring constant of the musculature that 
holds the eyeball in the socket?

Problems

 30. || FiguRE P14.30 is the velocity-versus-time graph of a particle in 
simple harmonic motion.

 a. What is the amplitude of the oscillation?
 b. What is the phase constant?
 c. What is the position at t = 0 s?

BIO

 31. | FiguRE P14.31 is the position-versus-time graph of a particle in 
simple harmonic motion.

 a. What is the phase constant?
 b. What is the velocity at t = 0 s?
 c. What is vmax?

 32. || The two graphs in FiguRE P14.32 are for two different vertical 
mass-spring systems. If both systems have the same mass, what 
is the ratio kA/kB of their spring constants?

 33. ||| An object in SHM oscillates with a period of 4.0 s and an am-
plitude of 10 cm. How long does the object take to move from 
x = 0.0 cm to x = 6.0 cm?

 34. || A 1.0 kg block oscillates on a spring with spring constant 
20 N/m. At t = 0 s the block is 20 cm to the right of the equi-
librium position and moving to the left at a speed of 100 cm/s. 
Determine (a) the period and (b) the amplitude.

 35. || Astronauts in space cannot weigh themselves by standing on a 
bathroom scale. Instead, they determine their mass by oscillating 
on a large spring. Suppose an astronaut attaches one end of a 
large spring to her belt and the other end to a hook on the wall of 
the space capsule. A fellow astronaut then pulls her away from 
the wall and releases her. The spring’s length as a function of 
time is shown in FiguRE P14.35.

 a. What is her mass if the spring constant is 240 N/m?
 b. What is her speed when the spring’s length is 1.2 m?

 36. || The motion of a particle is given by x (t) = (25 cm)cos(10t), 
where t is in s. At what time is the kinetic energy twice the po-
tential energy?

 37. || a.  When the displacement of a mass on a spring is 1
2 A, what 

fraction of the energy is kinetic energy and what fraction is 
potential energy?

   b.  At what displacement, as a fraction of A, is the energy half 
kinetic and half potential?

 38. || For a particle in simple harmonic motion, show that vmax =  
(p/2)vavg where vavg is the average speed during one cycle of the 
motion.

 39. || A 100 g block attached to a spring with spring constant 
2.5 N/m oscillates horizontally on a frictionless table. Its veloc-
ity is 20 cm/s when x = -5.0 cm.

 a. What is the amplitude of oscillation?
 b. What is the block’s maximum acceleration?
 c. What is the block’s position when the acceleration is maxi-

mum?
 d. What is the speed of the block when x = 3.0 cm?
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 40. || A block on a spring is pulled to the right and released at 
t = 0 s. It passes x = 3.00 cm at t = 0.685 s, and it passes 
x = -3.00 cm at t = 0.886 s.

 a. What is the angular frequency?
 b. What is the amplitude?
  Hint: cos(p - u) = -cos u.
 41. ||| A 300 g oscillator has a speed of 95.4 cm/s when its displace-

ment is 3.0 cm and 71.4 cm/s when its displacement is 6.0 cm. 
What is the oscillator’s maximum speed?

 42. || An ultrasonic transducer, of the type used in medical ultra-
sound imaging, is a very thin disk (m = 0.10 g) driven back and 
forth in SHM at 1.0 MHz by an electromagnetic coil.

 a. The maximum restoring force that can be applied to the disk 
without breaking it is 40,000 N. What is the maximum oscil-
lation amplitude that won’t rupture the disk?

 b. What is the disk’s maximum speed at this amplitude?
 43. || A 5.0 kg block hangs from a spring with spring constant 

2000 N/m. The block is pulled down 5.0 cm from the equilibri-
um position and given an initial velocity of 1.0 m/s back toward 
equilibrium. What are the (a) frequency, (b) amplitude, and 
(c) total mechanical energy of the motion?

 44. || Your lab instructor has asked you to measure a spring constant 
using a dynamic method—letting it oscillate—rather than a stat-
ic method of stretching it. You and your lab partner suspend the 
spring from a hook, hang different masses on the lower end, and 
start them oscillating. One of you uses a meter stick to measure 
the amplitude, the other uses a stopwatch to time 10 oscillations. 
Your data are as follows:

Mass (g) Amplitude (cm) Time (s)

100 6.5  7.8

150 5.5  9.8

200 6.0 10.9

250 3.5 12.4

  Use the best-fit line of an appropriate graph to determine the 
spring constant.

 45. ||| A 200 g block hangs from a spring with spring constant 
10 N/m. At t = 0 s the block is 20 cm below the equilibrium 
point and moving upward with a speed of 100 cm/s. What are 
the block’s

 a. Oscillation frequency?
 b. Distance from equilibrium when the speed is 50 cm/s?
 c. Distance from equilibrium at t = 1.0 s?
 46. || A spring with spring constant k is suspended vertically from 

a support and a mass m is attached. The mass is held at the point 
where the spring is not stretched. Then the mass is released and 
begins to oscillate. The lowest point in the oscillation is 20 cm 
below the point where the mass was released. What is the oscil-
lation frequency?

 47. || While grocery shopping, you put several apples in the spring 
scale in the produce department. The scale reads 20 N, and you 
use your ruler (which you always carry with you) to discover 
that the pan goes down 9.0 cm when the apples are added. If you 
tap the bottom of the apple-filled pan to make it bounce up and 
down a little, what is its oscillation frequency? Ignore the mass 
of the pan.

 48. || A compact car has a mass of 1200 kg. Assume that the car has 
one spring on each wheel, that the springs are identical, and that 
the mass is equally distributed over the four springs.
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 a. What is the spring constant of each spring if the empty car 
bounces up and down 2.0 times each second?

 b. What will be the car’s oscillation frequency while carrying 
four 70 kg passengers?

 49. || The two blocks in FiguRE P14.49 oscillate on a frictionless sur-
face with a period of 1.5 s. The upper block just begins to slip 
when the amplitude is increased to 40 cm. What is the coefficient 
of static friction between the two blocks?

 50. ||| It has recently become possible to “weigh” DNA molecules 
by measuring the influence of their mass on a nano-oscillator. 
FiguRE P14.50 shows a thin rectangular cantilever etched out of 
silicon (density 2300 kg/m3)  with a small gold dot at the end. If 
pulled down and released, the end of the cantilever vibrates with 
simple harmonic motion, moving up and down like a diving 
board after a jump. When bathed with DNA molecules whose 
ends have been modified to bind with gold, one or more mole-
cules may attach to the gold dot. The addition of their mass 
causes a very slight—but measurable—decrease in the oscilla-
tion frequency.

   A vibrating cantilever of mass M can be modeled as a block of 
mass 13 M attached to a spring. (The factor of 13 arises from the mo-
ment of inertia of a bar pivoted at one end.) Neither the mass nor 
the spring constant can be determined very accurately— perhaps 
to only two significant figures—but the oscillation frequency can 
be measured with very high precision simply by counting the os-
cillations. In one experiment, the cantilever was initially vibrating 
at exactly 12 MHz. Attachment of a DNA molecule caused the 
frequency to decrease by 50 Hz. What was the mass of the DNA?

 51. || It is said that Galileo discovered a basic principle of the 
pendulum—that the period is independent of the amplitude—by 
using his pulse to time the period of swinging lamps in the cathe-
dral as they swayed in the breeze. Suppose that one oscillation of 
a swinging lamp takes 5.5 s.

 a. How long is the lamp chain?
 b. What maximum speed does the lamp have if its maximum 

angle from vertical is 3.0�?
 52. || A 100 g mass on a 1.0-m-long string is pulled 8.0� to one side 

and released. How long does it take for the pendulum to reach 
4.0� on the opposite side?

 53. || Orangutans can move by brachiation, swinging like a pendu-
lum beneath successive handholds. If an orangutan has arms that 
are 0.90 m long and repeatedly swings to a 20� angle, taking one 
swing after another, estimate its speed of forward motion in m/s. 
While this is somewhat beyond the range of validity of the small-
angle approximation, the standard results for a pendulum are 
adequate for making an estimate.
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 54. | Show that Equation 14.51 for the angular frequency of a phys-
ical pendulum gives Equation 14.48 when applied to a simple 
pendulum of a mass on a string.

 55. ||| A 15@cm@long, 200 g rod is pivoted at one end. A 20 g ball of 
clay is stuck on the other end. What is the period if the rod and 
clay swing as a pendulum?

 56. ||| A uniform rod of mass M and length L swings as a pendulum 
on a pivot at distance L/4 from one end of the rod. Find an ex-
pression for the frequency f  of small-angle oscillations.

 57. ||| A solid sphere of mass M and radius R is suspended from a 
thin rod, as shown in FiguRE P14.57. The sphere can swing back 
and forth at the bottom of the rod. Find an expression for the 
frequency f  of small-angle oscillations.

 58. || A geologist needs to determine the local value of g. Unfortu-
nately, his only tools are a meter stick, a saw, and a stopwatch. 
He starts by hanging the meter stick from one end and measuring 
its frequency as it swings. He then saws off 20 cm—using the 
centimeter markings—and measures the frequency again. After 
two more cuts, these are his data:

Length (cm) Frequency (Hz)

100 0.61

 80 0.67

 60 0.79

 40 0.96

  Use the best-fit line of an appropriate graph to determine the 
local value of g.

 59. || Interestingly, there have been several studies using cadavers 
to determine the moments of inertia of human body parts, infor-
mation that is important in biomechanics. In one study, the cen-
ter of mass of a 5.0 kg lower leg was found to be 18 cm from the 
knee. When the leg was allowed to pivot at the knee and swing 
freely as a pendulum, the oscillation frequency was 1.6 Hz. What 
was the moment of inertia of the lower leg about the knee joint?

 60. || A 500 g air-track glider attached to a spring with spring con-
stant 10 N/m is sitting at rest on a frictionless air track. A 250 g 
glider is pushed toward it from the far end of the track at a speed 
of 120 cm/s. It collides with and sticks to the 500 g glider. What 
are the amplitude and period of the subsequent oscillations?

 61. || A 200 g block attached to a horizontal spring is oscillating 
with an amplitude of 2.0 cm and a frequency of 2.0 Hz. Just as it 
passes through the equilibrium point, moving to the right, a sharp 
blow directed to the left exerts a 20 N force for 1.0 ms. What are 
the new (a) frequency and (b) amplitude?

 62. || FiguRE P14.62 is a top view of an object of mass m connected 
between two stretched rubber bands of length L. The object rests 
on a frictionless surface. At equilibrium, the tension in each rub-
ber band is T. Find an expression for the frequency of oscilla- 
tions perpendicular to the rubber bands. Assume the amplitude 
is sufficiently small that the magnitude of the tension in the rub-
ber bands is essentially unchanged as the mass oscillates.
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 63. || A molecular bond can be modeled as a spring between two 
atoms that vibrate with simple harmonic motion. FiguRE P14.63 
shows an SHM approximation for the potential energy of an 
HCl molecule. For E 6 4 * 10-19 J it is a good approximation to 
the more accurate HCl potential-energy curve that was shown in 
Figure 10.31. Because the chlorine atom is so much more mas-
sive than the hydrogen atom, it is reasonable to assume that the 
hydrogen atom (m = 1.67 * 10-27 kg) vibrates back and forth 
while the chlorine atom remains at rest. Use the graph to esti-
mate the vibrational frequency of the HCl molecule.

 64. || An ice cube can slide around the inside of a vertical circu-
lar hoop of radius R. It undergoes small-amplitude oscillations 
if displaced slightly from the equilibrium position at the lowest 
point. Find an expression for the period of these small-amplitude 
oscillations.

 65. || A penny rides on top of a piston as it undergoes vertical simple 
harmonic motion with an amplitude of 4.0 cm. If the frequency 
is low, the penny rides up and down without difficulty. If the 
frequency is steadily increased, there comes a point at which the 
penny leaves the surface.

 a. At what point in the cycle does the penny first lose contact 
with the piston?

 b. What is the maximum frequency for which the penny just 
barely remains in place for the full cycle?

 66. || On your first trip to Planet X you happen to take along a 
200 g mass, a 40-cm-long spring, a meter stick, and a stopwatch. 
You’re curious about the free-fall acceleration on Planet X, 
where ordinary tasks seem easier than on earth, but you can’t 
find this information in your Visitor’s Guide. One night you sus-
pend the spring from the ceiling in your room and hang the mass 
from it. You find that the mass stretches the spring by 31.2 cm. 
You then pull the mass down 10.0 cm and release it. With the 
stopwatch you find that 10 oscillations take 14.5 s. Based on this 
information, what is g?

 67. || The 15 g head of a bobble-head doll oscillates in SHM at a 
frequency of 4.0 Hz.

 a. What is the spring constant of the spring on which the head is 
mounted?

 b. The amplitude of the head’s oscillations decreases to 0.5 cm 
in 4.0 s. What is the head’s damping constant?

 68. || An oscillator with a mass of 500 g and a period of 0.50 s has 
an amplitude that decreases by 2.0% during each complete oscil-
lation. If the initial amplitude is 10 cm, what will be the ampli-
tude after 25 oscillations?

 69. || A spring with spring constant 15.0 N/m hangs from the ceiling. 
A 500 g ball is attached to the spring and allowed to come to rest. It 
is then pulled down 6.0 cm and released. What is the time constant 
if the ball’s amplitude has decreased to 3.0 cm after 30 oscillations?
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 70.  |||  A  250  g  air-track  glider  is  attached  to  a  spring  with  spring 
constant 4.0 N/m. The damping constant due to air resistance is 
0.015 kg/s. The glider is pulled out 20 cm from equilibrium and 
released. How many oscillations will it make during the time in 
which the amplitude decays to e-1 of its initial value?

 71.  ||  A 200 g oscillator  in a vacuum chamber has a frequency of 
2.0 Hz. When air is admitted, the oscillation decreases to 60% 
of its initial amplitude in 50 s. How many oscillations will have 
been completed when the amplitude is 30% of its initial value?

 72.  ||  Prove that the expression for x (t) in Equation 14.55 is a solu-
tion  to  the  equation  of  motion  for  a  damped  oscillator,  Equa-
tion 14.54, if and only if the angular frequency v is given by the 
expression in Equation 14.56.

 73.  ||  A block on a frictionless table is connected as shown in Fig

ure P14.73  to  two  springs  having  spring  constants  k1  and  k2. 
Show that the block’s oscillation frequency is given by

  f = 2f1 

2 + f2 

2

    where  f1 and  f2 are the frequencies at which it would oscillate if 
attached to spring 1 or spring 2 alone.

 74.  ||  A  block  on  a  frictionless  table  is  connected  as  shown  in 
Figure P14.74 to two springs having spring constants k1 and k2. 
Find  an  expression  for  the  block’s  oscillation  frequency  f   in 
terms of the frequencies  f1 and  f2 at which it would oscillate if 
attached to spring 1 or spring 2 alone.

Challenge Problems

 75.  A block hangs in equilibrium from a vertical spring. When a sec-
ond identical block is added, the original block sags by 5.0 cm. 
What is the oscillation frequency of the two-block system?

 76.  A 1.00 kg block  is attached  to a horizontal  spring with spring 
constant 2500 N/m. The block is at rest on a frictionless surface. 
A  10  g  bullet  is  fired  into  the  block,  in  the  face  opposite  the 
spring, and sticks. What was the bullet’s speed if the subsequent 
oscillations have an amplitude of 10.0 cm?

 77.  A spring is standing upright on a table with its bottom end fas-
tened to the table. A block is dropped from a height 3.0 cm above 
the top of the spring. The block sticks to the top end of the spring 
and then oscillates with an amplitude of 10 cm. What is the oscil-
lation frequency?

 78.  The  analysis of  a  simple pendulum assumed  that  the mass was 
a particle, with no size. A realistic pendulum is a small, uniform 
sphere of mass M and radius R at the end of a massless string, with 
L being the distance from the pivot to the center of the sphere.

  a.  Find an expression for the period of this pendulum.
  b.  Suppose M = 25 g, R = 1.0 cm, and L = 1.0 m, typical val-

ues for a real pendulum. What is the ratio Treal /Tsimple, where 
Treal is your expression from part a and Tsimple is the expres-
sion derived in this chapter?

 79.  a.   A  mass  m  oscillating  on  a  spring  has  period  T.  Suppose 
the  mass  changes  very  slightly  from  m  to  m + �m,  where 
�m V m. Find an expression for �T, the small change in the 
period. Your expression should involve T, m, and �m but not 
the spring constant.

  b.  Suppose the period is 2.000 s and the mass increases by 0.1%. 
What is the new period?

 80.  Figure CP14.80  shows a 200 g uniform rod pivoted at one end. 
The other end  is attached  to a horizontal spring. The spring  is 
neither  stretched  nor  compressed  when  the  rod  hangs  straight 
down. What is the rod’s oscillation period? You can assume that 
the rod’s angle from vertical is always small.

StoP to think AnSwerS

Stop to Think 14.1: c. vmax = 2pA/T. Doubling A and T leaves vmax 
unchanged.

Stop to Think 14.2: d. Think of circular motion. At 45�, the particle 
is in the first quadrant (positive x) and moving to the left (negative vx) .

Stop to Think 14.3: c + b + a � d. Energy conservation 12 kA2 =  
 12 m(vmax)2 gives  vmax = 1k/m  A. k  or m  has  to be  increased or de-
creased by a factor of 4 to have the same effect as increasing or de-
creasing A by a factor of 2.

Stop to Think 14.4: c. vx = 0 because the slope of the position graph 
is zero. The negative value of x shows that the particle is left of the 
equilibrium position, so the restoring force is to the right.

Stop to Think 14.5: c. The period of a pendulum does not depend 
on its mass.

Stop to Think 14.6: Td + Tb � Tc + Ta. The time constant is the 
time to decay to 37% of the initial height. The time constant is inde-
pendent of the initial height.
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This 20,000 pound boat floats 
while the 130 pound diver 
sinks. Why?

Fluids and Elasticity

 Looking Ahead  The goal of Chapter 15 is to understand macroscopic systems that flow or deform.

Measuring Pressure
Pressure is measured in many ways and 
in many different units. The SI unit of 
pressure is the pascal, but atmospheres 
(atm), mm of Hg, and pounds per square 
inch (psi) are all widely used.

Pressure
Fluids exert forces on the walls of their 
container and on other parts of the fluid. 
Pressure is the force-to-area ratio F/A.
■	 Pressure in a liquid is due to gravity 

and increases with depth.
■	 Pressure in a gas is primarily thermal. 

Pressure is constant in a laboratory- 
size container.

Fluid Flow
You’ll use Bernoulli’s equation, a state-
ment of energy conservation, to analyze 
the flow of an ideal fluid.

Bernoulli’s equation has a wide range 
of applications, from the flow of liquids 
through pipes to the generation of lift as 
air flows over an airplane wing.

Elasticity
Elasticity describes the deformation of 
solids and liquids under stress.
■	 Pulling a metal wire stretches it 

slightly.
■	 Structural concrete in buildings and 

bridges compresses slightly under the 
load.

The elastic properties of a material are 
characterized by a parameter called 
Young’s modulus.

Buoyancy
A ship floats because of buoyancy. 
You’ll learn to use Archimedes’ prin-
ciple to calculate the buoyant force as 
the weight of the displaced fluid.

 Looking Back
Section 6.1 Equilibrium

Fluids
A fluid is a substance that flows. Both 
gases and liquids are fluids.

You will learn to how to calculate 
pressure and flow in both gases and 
liquids.

A vacuum—the re
duction of pressure 
below atmospheric  
pressure—can have 
serious consequences.

A pressure 
gauge usually 
measures gauge 
pressure, which 
is the pressure 
in excess of 
atmospheric 
pressure.

Gas: Freely 
moving particles,  
compressible

Liquid: Loosely 
bound particles, 
incompressible

An object floats if  
the upward buoyant  
force is large enough 
to balance the down
ward gravitational 
force.

FB
r

mog

These stream-
lines show the 
fluid flow  
around the car.

 Looking Back
Section 10.4 Restoring forces



408    c h a p t e r  15 . Fluids and Elasticity

15.1 Fluids
Quite simply, a fluid is a substance that flows. Because they flow, fluids take the shape 
of their container rather than retaining a shape of their own. You may think that gases 
and liquids are quite different, but both are fluids, and their similarities are often more 
important than their differences.

A gas, shown in FigurE 15.1a, is a system in which each molecule moves through 
space as a free, noninteracting particle until, on occasion, it collides with another mol-
ecule or with the wall of the container. The gas you are most familiar with is air, a mix-
ture of mostly nitrogen and oxygen molecules. Gases are fairly simple macroscopic 
systems, and Part IV of this textbook will delve into the thermal properties of gases. 
For now, two properties of gases interest us:

 1. Gases are fluids. They flow, and they exert pressure on the walls of their con-
tainer.

 2. Gases are compressible. That is, the volume of a gas is easily increased or de-
creased, a consequence of the “empty space” between the molecules.

Liquids are more complicated than either gases or solids. Liquids, like solids, are 
nearly incompressible. This property tells us that the molecules in a liquid, as in a 
solid, are about as close together as they can get without coming into contact with each 
other. At the same time, a liquid flows and deforms to fit the shape of its container. 
The fluid nature of a liquid tells us that the molecules are free to move around. These 
observations suggest the model of a liquid shown in FigurE 15.1b.

Volume and Density
One important parameter that characterizes a macroscopic system is its volume V, the 
amount of space the system occupies. The SI unit of volume is m3. Nonetheless, both 
cm3 and, to some extent, liters (L) are widely used metric units of volume. In most 
cases, you must convert these to m3 before doing calculations.

While it is true that 1 m = 100 cm, it is not true that 1 m3 = 100 cm3. FigurE 15.2 
shows that the volume conversion factor is 1 m3 = 106 cm3. A liter is 1000 cm3, so 
1 m3 = 103 L. A milliliter (1 mL) is the same as 1 cm3.

A system is also characterized by its density. Suppose you have several blocks of 
copper, each of different size. Each block has a different mass m and a different vol-
ume V. Nonetheless, all the blocks are copper, so there should be some quantity that 
has the same value for all the blocks, telling us, “This is copper, not some other mate-
rial.” The most important such parameter is the ratio of mass to volume, which we call 
the mass density r (lowercase Greek rho):

 r =
m

V
 (mass density) (15.1)

Conversely, an object of density r has mass m = rV.
The SI units of mass density are kg/m3. Nonetheless, units of g/cm3 are widely 

used. You need to convert these to SI units before doing most calculations. You must 
convert both the grams to kilograms and the cubic centimeters to cubic meters. The net 
result is the conversion factor

 1 g/cm3 = 1000 kg/m3

The mass density is usually called simply “the density” if there is no danger of con-
fusion. However, we will meet other types of density as we go along, and sometimes 
it is important to be explicit about which density you are using. Table 15.1 on the next 
page provides a short list of mass densities of various fluids. Notice the enormous dif-
ference between the densities of gases and liquids. Gases have lower densities because 
the molecules in gases are farther apart than in liquids.

FigurE 15.1 Simple atomic models of 
gases and liquids.

Molecules are
far apart. This
makes a gas
compressible.

Gas molecule moving
freely through space

Gas molecules occasionally
collide with each other… …or the wall.

(a) A gas

A liquid has a
well-defined surface.

(b) A liquid

Molecules are
about as close
together as they
can get. This
makes a liquid
incompressible.

Molecules have weak bonds between them, 
keeping them close together. But the molecules 
can slide around each other, allowing the liquid 
to flow and conform to the shape of its container.

FigurE 15.2 There are 106 cm3 in 1 m3.

1 m

1 m

1 m
100 cm across

100 cm
deep

100 cm down

1 m3

1 cm3

Subdivide the 1 m � 1 m � 1 m cube into 
little cubes 1 cm on a side. You will get 
100 subdivisions along each edge.

There are 100 � 100 � 100 � 106 little 
1 cm3 cubes in the big 1 m3 cube.
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What does it mean to say that the density of gasoline is 680 kg/m3 or, equivalently, 
0.68 g/cm3 ? Density is a mass-to-volume ratio. It is often described as the “mass per 
unit volume,” but for this to make sense you have to know what is meant by “unit 
volume.” Regardless of which system of length units you use, a unit volume is one 
of those units cubed. For example, if you measure lengths in meters, a unit volume is 
1 m3. But 1 cm3 is a unit volume if you measure lengths in centimeters, and 1 mi3 is a 
unit volume if you measure lengths in miles.

Density is the mass of one unit of volume, whatever the units happen to be. To say 
that the density of gasoline is 680 kg/m3 is to say that the mass of 1 m3 of gasoline is 
680 kg. The mass of 1 cm3 of gasoline is 0.68 g, so the density of gasoline in those 
units is 0.68 g/cm3.

The mass density is independent of the object’s size. Mass and volume are param-
eters that characterize a specific piece of some substance—say copper—whereas the 
mass density characterizes the substance itself. All pieces of copper have the same 
mass density, which differs from the mass density of any other substance.

TABLE 15.1 Densities of fluids at standard 
temperature (0�C) and pressure (1 atm)

Substance R (kg ,m3)

Air 1.28

Ethyl alcohol 790

Gasoline 680

Glycerin 1260

Helium gas 0.18

Mercury 13,600

Oil (typical) 900

Seawater 1030

Water 1000

The mass of the air is

 m = rV = (1.28 kg/m3)(60 m3) = 77 kg

AssEss This is perhaps more mass than you might have expected 
from a substance that hardly seems to be there. For comparison, a 
swimming pool this size would contain 60,000 kg of water.

ExAMPLE 15.1  Weighing the air
What is the mass of air in a living room with dimensions 
4.0 m * 6.0 m * 2.5 m?

MoDEL Table 15.1 gives air density at a temperature of 0�C. The air 
density doesn’t vary significantly over a small range of temperatures 
(we’ll study this issue in the next chapter), so we’ll use this value even 
though most people keep their living room warmer than 0�C.

soLVE The room’s volume is

 V = (4.0 m) * (6.0 m) * (2.5 m) = 60 m3

Stop to think 15.1 
 A piece of glass is broken into two 

pieces of different size. Rank in order, from largest to 
smallest, the mass densities of pieces a, b, and c.

a

b

c

15.2 Pressure
“Pressure” is a word we all know and use. You probably have a commonsense idea of what 
pressure is. For example, you feel the effects of varying pressure against your eardrums 
when you swim underwater or take off in an airplane. Cans of whipped cream are “pressur-
ized” to make the contents squirt out when you press the nozzle. It’s hard to open a “vacuum 
sealed” jar of jelly the first time, but easy after the seal is broken.

You’ve probably seen water squirting out of a hole in the side of a container, as in 
FigurE 15.3. Notice that the water emerges at greater speed from a hole at greater depth. 
And you’ve probably felt the air squirting out of a hole in a bicycle tire or inflatable 
air mattress. These observations suggest that

	■ “Something” pushes the water or air sideways, out of the hole.
	■ In a liquid, the “something” is larger at greater depths. In a gas, the “something” 

appears to be the same everywhere.

Our goal is to turn these everyday observations into a precise definition of pressure.

FigurE 15.3 Water pressure pushes the 
water sideways, out of the holes.
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FigurE 15.4 shows a fluid—either a liquid or a gas—pressing against a small area A 
with force F

u

. This is the force that pushes the fluid out of a hole. In the absence of a 
hole, F

u

 pushes against the wall of the container. Let’s define the pressure at this point 
in the fluid to be the ratio of the force to the area on which the force is exerted:

 p =
F

A
 (15.2)

Notice that pressure is a scalar, not a vector. You can see, from Equation 15.2, that a 
fluid exerts a force of magnitude

 F = pA (15.3)

on a surface of area A. The force is perpendicular to the surface.

NoTE  Pressure itself is not a force, even though we sometimes talk informally 
about “the force exerted by the pressure.” The correct statement is that the fluid 
exerts a force on a surface. 

From its definition, pressure has units of N/m2. The SI unit of pressure is the pascal, 
defined as

 1 pascal = 1 Pa K 1 N/m2

This unit is named for the 17th-century French scientist Blaise Pascal, who was one 
of the first to study fluids. Large pressures are often given in kilopascals, where 
1 kPa = 1000 Pa.

Equation 15.2 is the basis for the simple pressure-measuring device shown in 
FigurE 15.5a. Because the spring constant k and the area A are known, we can determine 
the pressure by measuring the compression of the spring. Once we’ve built such a 
device, we can place it in various liquids and gases to learn about pressure. FigurE 15.5b 
shows what we can learn from a series of simple experiments.

FigurE 15.4 The fluid presses against 
area A with force F

u

.

A
A

The fluid pushes with 
force F against area A.

r
Fr

F

r

FigurE 15.5 Learning about pressure.

1.

2.

3.

There is pressure everywhere in a fluid, not 
just at the bottom or at the walls of the container.

The pressure at one point in the fluid is the 
same whether you point the pressure-measuring 
device up, down, or sideways. The fluid pushes 
up, down, and sideways with equal strength.

In a liquid, the pressure increases with depth 
below the surface. In a gas, the pressure is nearly 
the same at all points (at least in laboratory-size 
containers).

(b) Pressure-measuring device in fluid(a) Piston attached to spring

Vacuum; no fluid 
force is exerted on 
the piston from 
this side.

1.

2.

3.

The fluid exerts force F on a 
piston with surface area A.

The force compresses the spring. 
Because the spring constant k is 
known, we can use the spring’s 
compression to find F.

Because A is known, we can 
find the pressure from p � F/A.

r

The first statement in Figure 15.5b is especially important. Pressure exists at all 
points within a fluid, not just at the walls of the container. You may recall that tension 
exists at all points in a string, not only at its ends where it is tied to an object. We under-
stood tension as the different parts of the string pulling against each other. Pressure is an 
analogous idea, except that the different parts of a fluid are pushing against each other.

Causes of Pressure
Gases and liquids are both fluids, but they have some important differences. Liquids are 
nearly incompressible; gases are highly compressible. The molecules in a liquid attract each 
other via molecular bonds; the molecules in a gas do not interact other than through occa-
sional collisions. These differences affect how we think about pressure in gases and liquids.

Imagine that you have two sealed jars, each containing a small amount of mercury 
and nothing else. All the air has been removed from the jars. Suppose you take the two 

FigurE 15.6 A liquid and a gas in a 
weightless environment.

Nothing is touching
the wall. There is no
pressure.

Molecules are colliding
with the wall. There is
pressure.

Liquid Gas
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jars into orbit on the space shuttle, where they are weightless. One jar you keep cool, 
so that the mercury is a liquid. The other you heat until the mercury boils and becomes 
a gas. What can we say about the pressure in these two jars?

As FigurE 15.6 shows, molecular bonds hold the liquid mercury together. It might 
quiver like Jello, but it remains a cohesive drop floating in the center of the jar. The 
liquid drop exerts no forces on the walls, so there’s no pressure in the jar containing 
the liquid. (If we actually did this experiment, a very small fraction of the mercury 
would be in the vapor phase and create what is called vapor pressure.

The gas is different. Figure 15.1 introduced an atomic model of a gas in which a 
molecule moves freely until it collides with another molecule or with a wall of the 
container. FigurE 15.7 shows some of the gas molecules colliding with a wall. Recall, 
from our study of collisions in Chapter 9, that each molecule as it bounces exerts a tiny 
impulse on the wall. The impulse from any one collision is extremely small, but there 
are an extraordinarily large number of collisions every second. These collisions cause 
the gas to have a pressure. We will do the calculation in Chapter 18.

FigurE 15.8 shows the jars back on earth. Because of gravity, the liquid now fills the 
bottom of the jar and exerts a force on the bottom and the sides. Liquid mercury is 
incompressible, so the volume of liquid in Figure 15.8 is the same as in Figure 15.6. 
There is still no pressure on the top of the jar (other than the very small vapor pressure).

At first glance, the situation in the gas-filled jar seems unchanged from Figure 15.6. 
However, the earth’s gravitational pull causes the gas density to be slightly more at the 
bottom of the jar than at the top. Because the pressure due to collisions is proportional 
to the density, the pressure is slightly larger at the bottom of the jar than at the top.

Thus there appear to be two contributions to the pressure in a container of fluid:

 1. A gravitational contribution that arises from gravity pulling down on the fluid. 
Because a fluid can flow, forces are exerted on both the bottom and sides of the 
container. The gravitational contribution depends on the strength of the gravita-
tional force.

 2. A thermal contribution due to the collisions of freely moving gas molecules 
with the walls. The thermal contribution depends on the absolute temperature of 
the gas.

A detailed analysis finds that these two contributions are not entirely independent of 
each other, but the distinction is useful for a basic understanding of pressure. Let’s see 
how these two contributions apply to different situations.

Pressure in gases
The pressure in a laboratory-size container of gas is due almost entirely to the ther-
mal contribution. A container would have to be �  100 m tall for gravity to cause the 
pressure at the top to be even 1% less than the pressure at the bottom. Laboratory-size 
containers are much less than 100 m tall, so we can quite reasonably assume that p has 
the same value at all points in a laboratory-size container of gas.

Decreasing the number of molecules in a container decreases the gas pressure sim-
ply because there are fewer collisions with the walls. If a container is completely 
empty, with no atoms or molecules, then the pressure is p = 0 Pa. This is a perfect 
vacuum. No perfect vacuum exists in nature, not even in the most remote depths of 
outer space, because it is impossible to completely remove every atom from a region 
of space. In practice, a vacuum is an enclosed space in which p V 1 atm. Using 
p = 0 Pa is then a very good approximation.

Atmospheric Pressure
The earth’s atmosphere is not a laboratory-size container. The height of the atmos phere 
is such that the gravitational contribution to pressure is important. As FigurE 15.9 on 
the next page shows, the density of air slowly decreases with increasing height until 
approaching zero in the vacuum of space. Consequently, the pressure of the air, what 

FigurE 15.7 The pressure in a gas is due 
to the net force of the molecules colliding 
with the walls.

There are an
enormous number
of collisions of
gas molecules
against the wall
every second.

Each collision 
exerts a tiny force 
on the wall. The 
net force due to 
all the collisions
causes the gas to
have a pressure.

Gravity has little 
effect on the pressure 
of the gas.

Liquid Gas

As gravity pulls down,
the liquid exerts a force
on the bottom and 
sides of its container.

Slightly less density
and pressure at the top

FigurE 15.8 Gravity affects the pressure 
of the fluids.
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we call the atmospheric pressure patmos, decreases with height. The air pressure is less 
in Denver than in Miami.

The atmospheric pressure at sea level varies slightly with the weather, but the glob-
al average sea-level pressure is 101,300 Pa. Consequently, we define the standard 
atmosphere as

 1 standard atmosphere = 1 atm K 101,300 Pa = 101.3 kPa

The standard atmosphere, usually referred to simply as “atmospheres,” is a commonly 
used unit of pressure. But it is not an SI unit, so you must convert atmospheres to pas-
cals before doing most calculations with pressure.

NoTE  Unless you happen to live right at sea level, the atmospheric pressure 
around you is somewhat less than 1 atm. Pressure experiments use a barometer 
to determine the actual atmospheric pressure. For simplicity, this textbook 
will always assume that the pressure of the air is patmos = 1 atm unless stated 
otherwise. 

Given that the pressure of the air at sea level is 101.3 kPa, you might wonder why 
the weight of the air doesn’t crush your forearm when you rest it on a table. Your fore-
arm has a surface area of �  200 cm2 = 0.02 m2, so the force of the air pressing against 
it is �  2000 N (�  450 pounds). How can you even lift your arm?

The reason, as FigurE 15.10 shows, is that a fluid exerts pressure forces in all direc-
tions. There is a downward force of �  2000 N on your forearm, but the air under-
neath your arm exerts an upward force of the same magnitude. The net force is very 
close to zero. (To be accurate, there is a net upward force called the buoyant force. 
We’ll study buoyancy in Section 15.4. The buoyant force of the air is usually too 
small to notice.)

But, you say, there isn’t any air under my arm if I rest it on a table. Actually, there 
is. There would be a vacuum under your arm if there were no air. Imagine placing 
your arm on the top of a large vacuum cleaner suction tube. What happens? You feel 
a downward force as the vacuum cleaner “tries to suck your arm in.” However, the 
downward force you feel is not a pulling force from the vacuum cleaner. It is the push-
ing force of the air above your arm when the air beneath your arm is removed and 
cannot push back. Air molecules do not have hooks! They have no ability to “pull” on 
your arm. The air can only push.

Vacuum cleaners, suction cups, and other similar devices are powerful examples 
of how strong atmospheric pressure forces can be if the air is removed from one side 
of an object so as to produce an unbalanced force. The fact that we are surrounded by 
the fluid allows us to move around in the air, just as we swim underwater, oblivious 
of these strong forces.

FigurE 15.10 Pressure forces in a fluid 
push with equal strength in all directions.

The forces of a fluid
push in all directions.

FigurE 15.9 The pressure and density 
decrease with increasing height in the 
atmosphere.

Walls of an
imaginary
container

Air

Space

The density and
pressure approach
zero in outer space.

Because of gravity,
the density and 
pressure decrease 
with increasing height.

The air’s density and
pressure are greatest
at the earth’s surface.

3.

2.

1.

Earth

ExAMPLE 15.2  A suction cup
A 10.0-cm-diameter suction cup is pushed against a smooth ceil-
ing. What is the maximum mass of an object that can be suspended 
from the suction cup without pulling it off the ceiling? The mass of 
the suction cup is negligible.

MoDEL Pushing the suction cup against the ceiling pushes the air 
out. We’ll assume that the volume enclosed between the suction 
cup and the ceiling is a perfect vacuum with p = 0 Pa. We’ll also 
assume that the pressure in the room is 1 atm.

VisuALizE FigurE 15.11 shows a free-body diagram of the suction 
cup stuck to the ceiling. The downward normal force of the ceiling 
is distributed around the rim of the suction cup, but in the particle 
model we can show this as a single force vector.

x

y

Object Normal
force of
ceiling

Gravitational
force

nr

Fair

r

FG

r

Fnet � 0
r r

FigurE 15.11 A suction cup is held to 
the ceiling by air pressure pushing 
upward on the bottom.



15.2 . Pressure    413

Pressure in Liquids
Gravity causes a liquid to fill the bottom of a container. Thus it’s not surprising that the 
pressure in a liquid is due almost entirely to the gravitational contribution. We’d like 
to determine the pressure at depth d below the surface of the liquid. We will assume 
that the liquid is at rest; flowing liquids will be considered later in this chapter.

The shaded cylinder of liquid in FigurE 15.12 extends from the surface to depth d. This 
cylinder, like the rest of the liquid, is in static equilibrium with F

u

net = 0
u

. Three forces act 
on this cylinder: the gravitational force mg on the liquid in the cylinder, a downward force 
p0A due to the pressure p0 at the surface of the liquid, and an upward force pA due to the 
liquid beneath the cylinder pushing up on the bottom of the cylinder. This third force is a 
consequence of our earlier observation that different parts of a fluid push against each other. 
Pressure p, which is what we’re trying to find, is the pressure at the bottom of the cylinder.

The upward force balances the two downward forces, so

 pA = p0A + mg (15.4)

The liquid is a cylinder of cross-section area A and height d. Its volume is V = Ad and 
its mass is m = rV = rAd. Substituting this expression for the mass of the liquid into 
Equation 15.4, we find that the area A cancels from all terms. The pressure at depth d 
in a liquid is

 p = p0 + rgd  (hydrostatic pressure at depth d ) (15.5)

where r is the liquid’s density. Because the fluid is at rest, the pressure given by Equa-
tion 15.5 is called the hydrostatic pressure. The fact that g appears in Equation 15.5 
reminds us that this is a gravitational contribution to the pressure.

As expected, p = p0 at the surface, where d = 0. Pressure p0 is often due to the air 
or other gas above the liquid. p0 = 1 atm = 101.3 kPa for a liquid that is open to the 
air. However, p0 can also be the pressure due to a piston or a closed surface pushing 
down on the top of the liquid.

NoTE  Equation 15.5 assumes that the liquid is incompressible; that is, its density 
r doesn’t increase with depth. This is an excellent assumption for liquids, but not a 
good one for a gas, which is compressible. 

  (FG)max = mg = Fair = 796 N

  m =
796 N

g
= 81 kg

AssEss The suction cup can support a mass of up to 81 kg if all 
the air is pushed out, leaving a perfect vacuum inside. A real suc-
tion cup won’t achieve a perfect vacuum, but suction cups can 
hold substantial weight.

soLVE The suction cup remains stuck to the ceiling, in static equi-
librium, as long as Fair = n + FG  . The magnitude of the upward 
force exerted by the air is

 Fair = pA = ppr2 = (101,300 Pa)p(0.050 m)2 = 796 N

There is no downward force from the air in this case because there 
is no air inside the cup. Increasing the hanging mass decreases the 
normal force n by an equal amount. The maximum weight has 
been reached when n is reduced to zero. Thus

FigurE 15.12 Measuring the pressure at 
depth d in a liquid.

d

p0A
Pressure p0 
at the surface

pA

Whatever is above the liquid pushes 
down on the top of the cylinder.

The liquid beneath the cylinder pushes up 
on the cylinder. The pressure at depth d is p.

This cylinder 
of liquid 
(depth d, 
cross-section 
area A) is 
in static
equilibrium.
It has mass m.

Liquid of
density r

x

y

mg
p0A

pA

Fnet � 0
r r

Free-body diagram of the column of liquid

Converting the answer to atmospheres gives

 p = 3.13 * 106 Pa *
1 atm

1.013 * 105 Pa
= 30.9 atm

AssEss The pressure deep in the ocean is very large. Windows 
on submersibles must be very thick to withstand the large forces.

ExAMPLE 15.3  The pressure on a submarine
A submarine cruises at a depth of 300 m. What is the pressure at 
this depth? Give the answer in both pascals and atmospheres.

soLVE The density of seawater, from Table 15.1, is r =  
1030 kg/m3. The pressure at depth d = 300 m is found from 
Equation 15.5 to be

 p = p0 + rgd = 1.013 * 105 Pa

     + (1030 kg/m3)(9.80 m/s2)(300 m) = 3.13 * 106 Pa
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The hydrostatic pressure in a liquid depends only on the depth and the pressure at 
the surface. This observation has some important implications. FigurE 15.13a shows two 
connected tubes. It’s certainly true that the larger volume of liquid in the wide tube 
weighs more than the liquid in the narrow tube. You might think that this extra weight 
would push the liquid in the narrow tube higher than in the wide tube. But it doesn’t. If 
d1 were larger than d2, then, according to the hydrostatic pressure equation, the pres-
sure at the bottom of the narrow tube would be higher than the pressure at the bottom 
of the wide tube. This pressure difference would cause the liquid to flow from right to 
left until the heights were equal.

Thus a first conclusion: A connected liquid in hydrostatic equilibrium rises to 
the same height in all open regions of the container.

FigurE 15.13b shows two connected tubes of different shape. The conical tube holds 
more liquid above the dotted line, so you might think that p1 7 p2. But it isn’t. Both 
points are at the same depth, thus p1 = p2. If p1 were larger than p2, the pressure at the 
bottom of the left tube would be larger than the pressure at the bottom of the right tube. 
This would cause the liquid to flow until the pressures were equal.

Thus a second conclusion: The pressure is the same at all points on a horizontal 
line through a connected liquid in hydrostatic equilibrium.

NoTE  Both of these conclusions are restricted to liquids in hydrostatic equi-
librium. The situation is different for flowing fluids, as we’ll see later in the 
chapter. 

FigurE 15.13 Some properties of a liquid 
in hydrostatic equilibrium are not what 
you might expect.

d1 � d2
d2

Is this possible?

(a)

Is p1 � p2?

(b)

p1 p2

an equal height. Nevertheless, the pressure is still the same at all 
points on a horizontal line. In particular, the pressure at the top of 
the closed tube equals the pressure in the open tube at the height of 
the dashed line. Assume p0 = 1.00 atm.

soLVE A point 40 cm above the bottom of the open tube is at a 
depth of 60 cm. The pressure at this depth is

 p = p0 + rgd

 = 1.013 * 105 Pa + (1000 kg/m3)(9.80 m/s2)(0.60 m)

 = 1.072 * 105 Pa = 1.06 atm

This is the pressure at the top of the closed tube.

AssEss The water in the open tube pushes the water in the closed 
tube up against the top of the tube, which is why the pressure is 
greater than 1 atm.

ExAMPLE 15.4  Pressure in a closed tube
Water fills the tube shown in FigurE 15.14. What is the pressure at 
the top of the closed tube?

MoDEL This is a liquid in hydrostatic equilibrium. The closed tube 
is not an open region of the container, so the water cannot rise to 

FigurE 15.14 A waterfilled tube.

100 cm

40 cm

Closed

We can draw one more conclusion from the hydrostatic pressure equation 
p = p0 + rgd. If we change the pressure p0 at the surface to p1, the pressure at depth 
d becomes p� = p1 + rgd. The change in pressure �p = p1 - p0 is the same at all 
points in the fluid, independent of the size or shape of the container. This idea, that a 
change in the pressure at one point in an incompressible fluid appears undimin-
ished at all points in the fluid, was first recognized by Blaise Pascal and is called 
Pascal’s principle.

For example, if we compressed the air above the open tube in Example 15.4 to a 
pressure of 1.5 atm, an increase of 0.5 atm, the pressure at the top of the closed tube 
would increase to 1.56 atm. Pascal’s principle is the basis for hydraulic systems, as 
we’ll see in the next section.
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Stop to think 15.2 
 Water is slowly poured into the container until the water level has 

risen into tubes A, B, and C. The water doesn’t overflow from any of the tubes. How 
do the water depths in the three columns compare to each other?

 a. dA 7 dB 7 dC

 b. dA 6 dB 6 dC

 c. dA = dB = dC

 d. dA = dC 7 dB

 e. dA = dC 6 dB

15.3 Measuring and using Pressure
The pressure in a fluid is measured with a pressure gauge. The fluid pushes against 
some sort of spring, and the spring’s displacement is registered by a pointer on a dial.

Many pressure gauges, such as tire gauges and the gauges on air tanks, measure not 
the actual or absolute pressure p but what is called gauge pressure. The gauge pres-
sure, denoted pg, is the pressure in excess of 1 atm. That is,

 pg = p - 1 atm (15.6)

You must add 1 atm = 101.3 kPa to the reading of a pressure gauge to find the absolute 
pressure p that you need for doing most science or engineering calculations: p = pg + 1 atm.

Water

A B C

A tirepressure gauge reads the gauge 
pressure pg , not the absolute pressure p.

The term rgd is the pressure in excess of atmospheric pressure and 
thus is the gauge pressure. Solving for d, we find

 d =
60,000 Pa

(1000 kg/m3)(9.80 m/s2)
= 6.1 m

ExAMPLE 15.5  An underwater pressure gauge
An underwater pressure gauge reads 60 kPa. What is its depth?

MoDEL The gauge reads gauge pressure, not absolute pressure.

soLVE The hydrostatic pressure at depth d, with p0 = 1 atm, is 
p = 1 atm + rgd. Thus the gauge pressure is

 pg = p - 1 atm = (1 atm + rgd) - 1 atm = rgd

solving Hydrostatic Problems
We now have enough information to formulate a set of rules for thinking about hydro-
static problems.

TACTiCs
B o x  1 5 . 1 

 Hydrostatics

 ●1	 Draw a picture. Show open surfaces, pistons, boundaries, and other features 
that affect pressure. Include height and area measurements and fluid densi-
ties. Identify the points at which you need to find the pressure.

 ●2 Determine the pressure at surfaces.

■ Surface open to the air: p0 = patmos, usually 1 atm.

■ Surface covered by a gas: p0 = pgas.

■ Closed surface: p = F/A, where F is the force the surface, such as a pis-
ton, exerts on the fluid.

 ●3 Use horizontal lines. Pressure in a connected fluid is the same at any point 
along a horizontal line.

 ●4 Allow for gauge pressure. Pressure gauges read pg = p - 1 atm.
 ●5 Use the hydrostatic pressure equation. p = p0 + rgd.

Exercises 4–13 
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Manometers and Barometers
Gas pressure is sometimes measured with a device called a manometer. A manom-
eter, shown in FigurE 15.15, is a U-shaped tube connected to the gas at one end and 
open to the air at the other end. The tube is filled with a liquid—usually mercury—of 
density r. The liquid is in static equilibrium. A scale allows the user to measure the 
height h of the right side above the left side.

Steps 1–3 from Tactics Box 15.1 lead to the conclusion that the pressures p1 and 
p2 must be equal. Pressure p1, at the surface on the left, is simply the gas pressure: 
p1 = pgas  . Pressure p2 is the hydrostatic pressure at depth d = h in the liquid on the 
right: p2 = 1 atm + rgh. Equating these two pressures gives

 pgas = 1 atm + rgh (15.7)

Figure 15.15 assumed pgas 7 1 atm, so the right side of the liquid is higher than the 
left. Equation 15.7 is also valid for pgas 6 1 atm if the distance of the right side below 
the left side is considered to be a negative value of h.

FigurE 15.15 A manometer is used to 
measure gas pressure.

1 2

p1 p2

h

1 Draw a 
picture.

2 This is an open surface,
so p0 � 1 atm.
This is a surface
covered by a gas,
so p0 � pgas.

3 Points 1 and 2 are on a
horizontal line, so p1 � p2.

Gas cell,
pressure 
pgas

Liquid,
density r

We had to change 1 atm to 101,300 Pa before adding. Convert-
ing the result to atmospheres, we have pgas = 1.476 atm.

b. The pressure gauge reads gauge pressure: pg = p - 1 atm =  
0.476 atm or 48.2 kPa.

AssEss Manometers are useful over a pressure range from near 
vacuum up to �2 atm. For higher pressures, the mercury column 
would be too tall to be practical.

ExAMPLE 15.6  using a manometer
The pressure of a gas cell is measured with a mercury manometer. 
The mercury is 36.2 cm higher in the outside arm than in the arm 
connected to the gas cell.

 a. What is the gas pressure?
 b. What is the reading of a pressure gauge attached to the gas cell?

soLVE a. From Table 15.1, the density of mercury is r =  
13,600 kg/m3. Equation 15.7 with h = 0.362 m gives

 pgas = 1 atm + rgh = 149.5 kPa

Another important pressure-measuring instrument is the barometer, which is used 
to measure the atmospheric pressure patmos. FigurE 15.16a shows a glass tube, sealed at 
the bottom, that has been completely filled with a liquid. If we temporarily seal the 
top end, we can invert the tube and place it in a beaker of the same liquid. When the 
temporary seal is removed, some, but not all, of the liquid runs out, leaving a liquid 
column in the tube that is a height h above the surface of the liquid in the beaker. This 
device, shown in FigurE 15.16b, is a barometer. What does it measure? And why doesn’t 
all the liquid in the tube run out?

We can analyze the barometer much as we did the manometer. Points 1 and 2 in 
Figure 15.16b are on a horizontal line drawn even with the surface of the liquid. The 
liquid is in hydrostatic equilibrium, so the pressure at these two points must be equal. 
Liquid runs out of the tube only until a balance is reached between the pressure at the 
base of the tube and the pressure of the air.

You can think of a barometer as rather like a seesaw. If the pressure of the atmos-
phere increases, it presses down on the liquid in the beaker. This forces liquid up the 
tube until the pressures at points 1 and 2 are equal. If the atmospheric pressure falls, 
liquid has to flow out of the tube to keep the pressures equal at these two points.

The pressure at point 2 is the pressure due to the weight of the liquid in the tube 
plus the pressure of the gas above the liquid. But in this case there is no gas above the 
liquid! Because the tube had been completely full of liquid when it was inverted, the 
space left behind when the liquid ran out is a vacuum (ignoring a very slight vapor 
pressure of the liquid, negligible except in extremely precise measurements). Thus 
pressure p2 is simply p2 = rgh.

Equating p1 and p2 gives

 patmos = rgh (15.8)

Thus we can measure the atmosphere’s pressure by measuring the height of the liquid 
column in a barometer.

FigurE 15.16 A barometer.

(a) Seal and invert tube.

(b)

1

Vacuum
(zero pressure)

2

h

Liquid, density r
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p1 � patmos
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The average air pressure at sea level causes a column of mercury in a mercury 
barometer to stand 760 mm above the surface. Knowing that the density of mercury is 
13,600 kg/m3 (at 0�C), we can use Equation 15.8 to find that the average atmospheric 
pressure is

  patmos = rHg gh = (13,600 kg/m3)(9.80 m/s2)(0.760 m)

  = 1.013 * 105 Pa = 101.3 kPa

This is the value given earlier as “one standard atmosphere.”
The barometric pressure varies slightly from day to day as the weather changes. 

Weather systems are called high-pressure systems or low-pressure systems, depend-
ing on whether the local sea-level pressure is higher or lower than one standard atmo-
sphere. Higher pressure is usually associated with fair weather, while lower pressure 
portends rain.

Pressure units
In practice, pressure is measured in several different units. This plethora of units and 
abbreviations has arisen historically as scientists and engineers working on different 
subjects (liquids, high-pressure gases, low-pressure gases, weather, etc.) developed 
what seemed to them the most convenient units. These units continue in use through 
tradition, so it is necessary to become familiar with converting back and forth between 
them. Table 15.2 gives the basic conversions.

TABLE 15.2 Pressure units

Unit Abbreviation Conversion to 1 atm Uses

pascal Pa 101.3 kPa SI unit: 1 Pa = 1 N/m2

atmosphere atm 1 atm general
millimeters  
of mercury

mm of Hg 760 mm of Hg gases and barometric  
pressure

inches of  
mercury

in 29.92 in barometric pressure in U.S.  
weather forecasting

pounds per 
square inch

psi 14.7 psi engineering and industry

Blood Pressure
The last time you had a medical checkup, the doctor may have told you something like 
“Your blood pressure is 120 over 80.” What does that mean?

About every 0.8 s, assuming a pulse rate of 75 beats per minute, your heart “beats.” 
The heart muscles contract and push blood out into your aorta. This contraction, like 
squeezing a balloon, raises the pressure in your heart. The pressure increase, in accor-
dance with Pascal’s principle, is transmitted through all your arteries.

FigurE 15.17 is a pressure graph showing how blood pressure changes during one cy-
cle of the heartbeat. The medical condition of high blood pressure usually means that 
your systolic pressure is higher than necessary for blood circulation. The high pressure 
causes undue stress and strain on your entire circulatory system, often leading to seri-
ous medical problems. Low blood pressure can cause you to get dizzy if you stand up 
quickly because the pressure isn’t adequate to pump the blood up to your brain.

Blood pressure is measured with a cuff that goes around your arm. The doctor or 
nurse pressurizes the cuff, places a stethoscope over the artery in your arm, then slowly 
releases the pressure while watching a pressure gauge. Initially, the cuff squeezes the 
artery shut and cuts off the blood flow. When the cuff pressure drops below the systolic 
pressure, the pressure pulse during each beat of your heart forces the artery open briefly 

FigurE 15.17 Blood pressure during one 
cycle of a heartbeat.
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and a squirt of blood goes through. You can feel this, and the doctor or nurse records the 
pressure when she hears the blood start to flow. This is your systolic pressure.

This pulsing of the blood through your artery lasts until the cuff pressure reaches 
the diastolic pressure. Then the artery remains open continuously and the blood flows 
smoothly. This transition is easily heard in the stethoscope, and the doctor or nurse 
records your diastolic pressure.

Blood pressure is measured in millimeters of mercury. And it is a gauge pressure, 
the pressure in excess of 1 atm. A fairly typical blood pressure of a healthy young adult 
is 120/80, meaning that the systolic pressure is pg = 120 mm of Hg (absolute pressure 
p = 880 mm of Hg) and the diastolic pressure is 80 mm of Hg.

The Hydraulic Lift
The use of pressurized liquids to do useful work is a technology known as hydraulics. 
Pascal’s principle is the fundamental idea underlying hydraulic devices. If you increase 
the pressure at one point in a liquid by pushing a piston in, that pressure increase is 
transmitted to all points in the liquid. A second piston at some other point in the fluid 
can then push outward and do useful work.

The brake system in your car is a hydraulic system. Stepping on the brake pushes a 
piston into the master brake cylinder and increases the pressure in the brake fluid. The 
fluid itself hardly moves, but the pressure increase is transmitted to the four wheels 
where it pushes the brake pads against the spinning brake disk. You’ve used a pressur-
ized liquid to achieve the useful goal of stopping your car.

One advantage of hydraulic systems over simple mechanical linkages is the possi bility 
of force multiplication. To see how this works, we’ll analyze a hydraulic lift, such as the 
one that lifts your car at the repair shop. FigurE 15.18a shows force F

u

2, perhaps due to the 
weight of mass m, pressing down on a liquid via a piston of area A2. A much smaller force 
F
u

1 presses down on a piston of area A1. Can this system possibly be in equilibrium?
As you now know, the hydrostatic pressure is the same at all points along a horizon-

tal line through a fluid. Consider the line passing through the liquid/piston interface on 
the left in Figure 15.18a. Pressures p1 and p2 must be equal, thus

 p0 +
F1

A1
= p0 +

F2

A2
+ rgh (15.9)

The atmosphere presses equally on both sides, so p0 cancels. The system is in static 
equilibrium if

 F2 =
A2

A1
  F1 - rghA2 (15.10)

If the height h is very small, so that the term rghA2 is negligible, then F2 (the weight 
of the heavy object) is larger than F1 by the factor A2/A1. In other words, a small force 
applied to a small piston really can support a large car because both apply the same 
pressure to the fluid. The ratio A2/A1 is a force-multiplying factor.

NoTE  Force F
u

2 is the force of the heavy object pushing down on the liquid. Ac-
cording to Newton’s third law, the liquid pushes up on the object with a force of 
equal magnitude. Thus F2 in Equation 15.10 is the “lifting force.” 

Suppose we need to lift the car higher. If piston 1 is pushed down distance d1, as 
in FigurE 15.18b, it displaces volume V1 = A1  d1 of liquid. Because the liquid is in-
compressible, V1 must equal the volume V2 = A2  d2 added beneath piston 2 as it rises 
distance d2. That is,

 d2 =
d1

A2 /A1
 (15.11)

The distance is divided by the same factor as that by which force is multiplied. A small 
force may be able to support a heavy weight, but you have to push the small piston a 
large distance to raise the heavy weight by a small amount.

FigurE 15.18 A hydraulic lift.
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This conclusion is really just a statement of energy conservation. Work is done on 
the liquid by a small force pushing the liquid through a large displacement. Work is 
done by the liquid when it lifts the heavy weight through a small distance. A full analy-
sis must consider the fact that the gravitational potential energy of the liquid is also 
changing, so we can’t simply equate the output work to the input work, but you can see 
that energy considerations require piston 1 to move farther than piston 2.

ExAMPLE 15.7  Lifting a car
The hydraulic lift at a car repair shop is filled with oil. The car rests on a 25-cm-diameter 
piston. To lift the car, compressed air is used to push down on a 6.0-cm-diameter piston. 
What does the pressure gauge read when a 1300 kg car is 2.0 m above the compressed-
air piston?

MoDEL Assume that the oil is incompressible. Its density, from Table 15.1, is 900 kg/m3.

soLVE F2 is the weight of the car pressing down on the piston: F2 = mg = 12,700 N. The 
piston areas are A1 = p(0.030 m)2 = 0.00283 m2 and A2 = p(0.125 m)2 = 0.0491m2. 
The force required to hold the car at height h = 2.0 m is found by solving Equation 15.10 
for F1:

F1 =
A1

A2
 F2 + rghA1

 =
0.00283 m2

0.0491 m2
# 12,700 N + (900 kg/m3)(9.8 m/s2)(2.0 m)(0.00283 m2)

 = 782 N

The pressure applied to the fluid by the compressed-air piston is

p1 =
F1

A 1
=

782 N

0.00283 m2 = 2.76 * 105  Pa = 2.7 atm

This is the pressure in excess of atmospheric pressure, which is what a pressure gauge 
measures, so the gauge reads, depending on its units, 276 kPa or 2.7 atm.
AssEss 782 N is roughly the weight of an average adult man. The multiplication factor 
A2/A1 = 17 makes it quite easy for this much force to lift the car.

Stop to think 15.3 
 Rank in order, from largest to smallest, the magnitudes of the 

forces F
u

a, F
u

b, and F
u

c required to balance the masses. The masses are in kilograms.

15.4 Buoyancy
A rock, as you know, sinks like a rock. Wood floats on the surface of a lake. A penny 
with a mass of a few grams sinks, but a massive steel aircraft carrier floats. How can 
we understand these diverse phenomena?

An air mattress floats effortlessly on the surface of a swimming pool. But if you’ve ever 
tried to push an air mattress underwater, you know it is nearly impossible. As you push 
down, the water pushes up. This net upward force of a fluid is called the buoyant force.

The basic reason for the buoyant force is easy to understand. FigurE 15.19 shows a 
cylinder submerged in a liquid. The pressure in the liquid increases with depth, so the 
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FigurE 15.19 The buoyant force arises 
because the fluid pressure at the bottom 
of the cylinder is larger than at the top.
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pressure at the bottom of the cylinder is larger than at the top. Both cylinder ends have 
equal area, so force F

u

up  is larger than force F
u

down  . (Remember that pressure forces 
push in all directions.) Consequently, the pressure in the liquid exerts a net upward 
force on the cylinder of magnitude Fnet = Fup - Fdown  . This is the buoyant force.

The submerged cylinder illustrates the idea in a simple way, but the result is not 
limited to cylinders or to liquids. Suppose we isolate a parcel of fluid of arbitrary shape 
and volume by drawing an imaginary boundary around it, as shown in FigurE 15.20a. 
This parcel is in static equilibrium. Consequently, the gravitational force pulling down 
on the parcel must be balanced by an upward force. The upward force, which is ex-
erted on this parcel of fluid by the surrounding fluid, is the buoyant force F

u

B  . The 
buoyant force matches the weight of the fluid: FB = mg.

Imagine that we could somehow remove this parcel of fluid and instantaneously 
replace it with an object of exactly the same shape and size, as shown in FigurE 15.20b. 
Because the buoyant force is exerted by the surrounding fluid, and the surrounding 
fluid hasn’t changed, the buoyant force on this new object is exactly the same as the 
buoyant force on the parcel of fluid that we removed.

When an object (or a portion of an object) is immersed in a fluid, it displaces fluid 
that would otherwise fill that region of space. This fluid is called the displaced fluid. 
The displaced fluid’s volume is exactly the volume of the portion of the object that 
is immersed in the fluid. Figure 15.20 leads us to conclude that the magnitude of the 
upward buoyant force matches the weight of this displaced fluid.

This idea was first recognized by the ancient Greek mathematician and scientist 
Archimedes, perhaps the greatest scientist of antiquity, and today we know it as 
Archimedes’ principle.

Archimedes’ principle A fluid exerts an upward buoyant force F
u

B  on an object 
immersed in or floating on the fluid. The magnitude of the buoyant force equals the 
weight of the fluid displaced by the object.

Suppose the fluid has density rf  and the object displaces volume Vf  of fluid. The mass 
of the displaced fluid is mf = rf  Vf  and so its weight is mf  g = rf  Vf  g. Thus Archimedes’ 
principle in equation form is

 FB = rf  Vf  g (15.12)

NoTE  It is important to distinguish the density and volume of the displaced fluid 
from the density and volume of the object. To do so, we’ll use subscript f for the 
fluid and o for the object. 

FigurE 15.20 The buoyant force on an 
object is the same as the buoyant force 
on the fluid it displaces.
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FigurE 15.21 The forces acting on the 
submerged wood.
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ExAMPLE 15.8  Holding a block of wood underwater

A 10 cm * 10 cm * 10 cm block of wood with density 700 kg/m3 
is held underwater by a string tied to the bottom of the container. 
What is the tension in the string?

MoDEL The buoyant force is given by Archimedes’ principle.

VisuALizE FigurE 15.21 shows the forces acting on the wood.

soLVE The block is in static equilibrium, so

 aFy = FB - T - mo  g = 0

Thus the tension is T = FB - mo  g. The mass of the block is 
mo = ro  Vo  , and the buoyant force, given by Equation 15.12, is 
FB = rf  Vf  g. Thus

 T = rf  Vf  g - ro  Vo  g = (rf - ro)Vo  g
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Float or sink?
If you hold an object underwater and then release it, it floats to the surface, sinks, or 
remains “hanging” in the water. How can we predict which it will do? The net force 
on the object an instant after you release it is F

u

net = (FB - mo  g)kn. Whether it heads for 
the surface or the bottom depends on whether the buoyant force FB  is larger or smaller 
than the object’s weight mo  g.

The magnitude of the buoyant force is rf  Vf  g. The weight of a uniform object, 
such as a block of steel, is simply ro  Vo  g. But a compound object, such as a scuba 
diver, may have pieces of varying density. If we define the average density to be 
ravg = mo/Vo  , the weight of a compound object is ravg  Vo  g.

Comparing rf  Vf  g to ravg  Vo  g, and noting that Vf = Vo  for an object that is fully 
submerged, we see that an object floats or sinks depending on whether the fluid den-
sity rf  is larger or smaller than the object’s average density ravg  . If the densities are 
equal, the object is in static equilibrium and hangs motionless. This is called neutral 
buoyancy. These conditions are summarized in Tactics Box 15.2.

AssEss The tension depends on the difference in densities. The 
tension would vanish if the wood density matched the water 
density.

where we’ve used the fact that Vf = Vo  for a completely sub-
merged object. The volume is Vo = 1000 cm3 = 1.0 * 10-3 m3, 
and hence the tension in the string is

  T = 1(1000 kg/m3) - (700 kg/m3)2
         * (1.0 * 10-3 m3)(9.8 m/s2) = 2.9 N

TACTiCs
B o x  1 5 . 2

 Finding whether an object floats or sinks

FB

Object sinks
r

mo g

1

FB

r

Object floats2

mo g

FB

r

Neutral buoyancy3

mo g

An object sinks if it weighs more 
than the fluid it displaces—that is, if 
its average density is greater than the 
density of the fluid:

ravg 7 rf

An object floats on the surface if it  
weighs less than the fluid it dis-
places—that is, if its average density  
is less than the density of the fluid:

ravg 6 rf

An object hangs motionless if it 
weighs exactly the same as the fluid it  
displaces—that is, if its average den-
sity equals the density of the fluid:

ravg = rf

Exercises 14–18 

As an example, steel is denser than water, so a chunk of steel sinks. Oil is less dense 
than water, so oil floats on water. Fish use swim bladders filled with air and scuba 
divers use weighted belts to adjust their average density to match the density of water. 
Both are examples of neutral buoyancy.
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If you release a block of wood underwater, the net upward force causes the block to 
shoot to the surface. Then what? Let’s begin with a uniform object such as the block 
shown in FigurE 15.22. This object contains nothing tricky, like indentations or voids. 
Because it’s floating, it must be the case that ro 6 rf.

Now that the object is floating, it’s in static equilibrium. The upward buoyant force, 
given by Archimedes’ principle, exactly balances the downward weight of the object. 
That is,

 FB = rfVfg = mog = roVog (15.13)

In this case, the volume of the displaced fluid is not the same as the volume of the 
object. In fact, we can see from Equation 15.13 that the volume of fluid displaced by 
a floating object of uniform density is

 Vf =
ro

rf 
 Vo 6 Vo (15.14)

You’ve often heard it said that “90% of an iceberg is underwater.” Equation 15.14 is 
the basis for that statement. Most icebergs break off glaciers and are fresh-water ice 
with a density of 917 kg/m3. The density of seawater is 1030 kg/m3. Thus

 Vf =
917 kg/m3

1030 kg/m3 Vo = 0.89Vo

Vf  , the displaced water, is the volume of the iceberg that is underwater. You can see 
that, indeed, 89% of the volume of an iceberg is underwater.

NoTE  Equation 15.14 applies only to uniform objects. It does not apply to boats, 
hollow spheres, or other objects of nonuniform composition. 

FigurE 15.22 A floating object is in static 
equilibrium.

An object of density ro and
volume Vo is floating on a
fluid of density rf.

The submerged volume of
the object is equal to the
volume Vf of displaced fluid.

Fluid
density rf

FB

r

mo g

About 90% of an iceberg is underwater.

soLVE The block is floating, so Equation 15.14 applies. The block 
displaces volume Vu = Ahu of the unknown liquid. Thus

 Vu = Ahu =
ro

ru
 Vo

Similarly, the block displaces volume Vw = Ahw  of the water, 
leading to

 Vw = Ahw =
ro 

rw 
  Vo 

Because there are two fluids, we’ve used subscripts w for water 
and u for the unknown in place of the fluid subscript f. The prod-
uct roVo appears in both equations; hence

 ru  Ahu = rw  Ahw

The unknown area A cancels, and the density of the unknown liq-
uid is

 ru =
hw

hu
  rw =

5.8 cm

4.6 cm
# 1000 kg/m3 = 1260 kg/m3

AssEss Comparison with Table 15.1 shows that the unknown liq-
uid is likely to be glycerin.

ExAMPLE 15.9  Measuring the density of an unknown liquid
You need to determine the density of an unknown liquid. You 
notice that a block floats in this liquid with 4.6 cm of the side 
of the block submerged. When the block is placed in water, it 
also floats but with 5.8 cm submerged. What is the density of the 
unknown liquid?

MoDEL The block is an object of uniform composition.

VisuALizE FigurE 15.23 shows the block and defines the cross-
section area A and submerged lengths hu in the unknown liquid 
and hw in water.

FigurE 15.23 More of the block is submerged in water 
than in an unknown liquid.
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Boats
We’ll conclude by designing a boat. FigurE 15.24 is a physicist’s idea of a boat. Four 
massless but rigid walls are attached to a solid steel plate of mass mo and area A. As 
the steel plate settles down into the water, the sides allow the boat to displace a volume 
of water much larger than that displaced by the steel alone. The boat will float if the 
weight of the displaced water equals the weight of the boat.

In terms of density, the boat will float if ravg 6 rf  . If the sides of the boat are height 
h, the boat’s volume is Vo = Ah and its average density is ravg = mo/Vo = mo/Ah. The 
boat will float if

 ravg =
mo

Ah
6 rf (15.15)

Thus the minimum height of the sides, a height that would allow the boat to float 
(in perfectly still water!) with water right up to the rails, is

 hmin =
mo 

rf A
 (15.16)

As a quick example, a 5 m * 10 m steel “barge” with a 2-cm-thick floor has an area 
of 50 m2 and a mass of 7900 kg. The minimum height of the massless walls, as given 
by Equation 15.16, is 16 cm.

Real ships and boats are more complicated, but the same idea holds true. Whether 
it’s made of concrete, steel, or lead, a boat will float if its geometry allows it to dis-
place enough water to equal the weight of the boat.

Stop to think 15.4
 An ice cube is floating in a glass of water that is filled entirely to 

the brim. When the ice cube melts, the water level will

a. Fall.  b. Stay the same, right at the brim.  c. Rise, causing the water to spill.

15.5 Fluid Dynamics
The wind blowing through your hair, a white-water river, and oil gushing from an oil 
well are examples of fluids in motion. We’ve focused thus far on fluid statics, but it’s 
time to turn our attention to fluid dynamics.

Fluid flow is a complex subject. Many aspects, especially turbulence and the for-
mation of eddies, are still not well understood and are areas of current science and en-
gineering research. We will avoid these difficulties by using a simplified model. The 
ideal-fluid model provides a good, though not perfect, description of fluid flow in many 
situations. It captures the essence of fluid flow while eliminating unnecessary details.

The ideal-fluid model can be expressed in three assumptions about a fluid:

 1. The fluid is incompressible. This is a good assumption for liquids, less so for 
gases.

 2. The fluid is nonviscous. Water flows much more easily than pancake syrup be-
cause the syrup is a very viscous fluid. Viscosity, a resistance to flow, is analo-
gous to kinetic friction. Assuming that a fluid is nonviscous is equivalent to 
assuming there’s no friction. This is the weakest assumption for many liquids, 
but assuming a nonviscous liquid avoids major mathematical difficulties.

 3. The flow is steady. That is, the fluid velocity at each point in the fluid is con-
stant; it does not fluctuate or change with time. Flow under these conditions is 
called laminar flow, and it is distinguished from turbulent flow.

The rising smoke in the photograph of FigurE 15.25 begins as laminar flow, recog-
nizable by the smooth contours, but at some point undergoes a transition to turbulent 

FigurE 15.24 A physicist’s boat.

Solid bottom of
mass mo and area A

Sides of
height h

Massless, rigid walls

FigurE 15.25 Rising smoke changes 
from laminar flow to turbulent flow.

Turbulent
flow

Laminar
flow
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flow. A laminar-to-turbulent transition is not uncommon in fluid flow. The ideal-fluid 
model can be applied to the laminar flow, but not to the turbulent flow.

The Equation of Continuity
FigurE 15.26 shows smoke being used to help engineers visualize the airflow around a 
car in a wind tunnel. The smoothness of the flow tells us this is laminar flow. But no-
tice also how the individual smoke trails retain their identity. They don’t cross or get 
mixed together. Each smoke trail represents a streamline in the fluid.

FigurE 15.26 The laminar airflow 
around a car in a wind tunnel 
is made visible with smoke. 
Each smoke trail represents a 
streamline.

Streamline

Imagine that we could inject a colored drop of water into a stream of water flowing 
as an ideal fluid. Because the flow is steady and frictionless, and the water is incom-
pressible, this colored drop would maintain its identity as it flowed along. Its shape 
might change, becoming compressed or elongated, but it would not mix with the sur-
rounding water.

The path or trajectory followed by this “particle of fluid” is called a streamline. 
Smoke particles mixed with the air allow you to see the streamlines in the photograph 
of Figure 15.26. FigurE 15.27 illustrates three important properties of streamlines.

A bundle of neighboring streamlines, such as those shown in FigurE 15.28a, form a flow 
tube. Because streamlines never cross, all the streamlines that cross plane 1 within area 
A1 later cross plane 2 within area A2. A flow tube is like an invisible pipe that keeps this 
portion of the flowing fluid distinct from other portions. Real pipes are also flow tubes.

FigurE 15.27 Particles in an ideal fluid 
move along streamlines.

rv

1. Streamlines never cross.

2. Fluid particle velocity is
 tangent to the streamline.

3. The speed is higher where the
 streamlines are closer together.

FigurE 15.28 A flow tube.
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When you squeeze a toothpaste tube, the volume of toothpaste that emerges 
matches the amount by which you reduce the volume of the tube. An incompressible 
fluid in a flow tube acts the same way. Fluid is not created or destroyed within the 
flow tube, and it cannot be stored. If volume V enters the flow tube through area A1 
during some interval of time �t, then an equal volume V must leave the flow tube 
through area A2.

FigurE 15.28b shows the flow crossing A1 during a small interval of time �t. If the 
fluid speed at this point is v1, the fluid moves forward a small distance �x1 = v1 �t 
and fills the volume V1 = A1 �x1 = v1A1 �t. The same analysis for the fluid crossing 
A2 with fluid speed v2 would find V2 = v2A2 �t. These two volumes must be equal, 
leading to the conclusion that

 v1  A1 = v2  A2 (15.17)

Equation 15.17 is called the equation of continuity, and it is one of two important 
equations for the flow of an ideal fluid. The equation of continuity says that the vol-
ume of an incompressible fluid entering one part of a flow tube must be matched 
by an equal volume leaving downstream.

An important consequence of the equation of continuity is that flow is faster in 
narrower parts of a flow tube, slower in wider parts. You’re familiar with this con-
clusion from many everyday observations. For example, water flowing from the faucet 
shown in FigurE 15.29 picks up speed as it falls. As a result, the flow tube “necks down” 
to a smaller diameter.

The quantity

 Q = vA (15.18)

is called the volume flow rate. The SI units of Q are m3/s, although in practice Q may 
be measured in cm3/s, liters per minute, or, in the United States, gallons per minute. 
Another way to express the meaning of the equation of continuity is to say that the 
volume flow rate is constant at all points in a flow tube.

FigurE 15.29 The flow tube diameter 
changes as the speed increases. This 
is a consequence of the equation of 
continuity.

The total cross-section area of all the capillaries together must be

 Atotal =
Q

v
=

8.3 * 10-5 m3/s

10-3 m/s
= 0.083 m2

The cross-section area of one capillary is Acap = pr2 =  
p(3 * 10-6  m)2 = 2.8 * 10-11 m2, so the number of capillaries is

 N =
Atotal

Acap
=

0.083 m2

2.8 * 10-11 m2 = 3 * 109

Thus the total surface area is

 Asurface =  NA1 = (3 * 109)(2 * 10-8) = 60 m2

The question asked for an estimate and provided only approximate 
values, so only a one-significant figure answer is justified.

AssEss The total surface area is about the area of a two-car ga-
rage! Only by having such a large surface area can oxygen and 
nutrients slowly diffuse into cells. Notice that we had to deal with 
two types of areas—the cross-section area and the surface area. It 
is important not to get these confused.

ExAMPLE 15.10  Blood flow in capillaries
The heart of a resting adult pumps about 5 L of blood every min-
ute. All this blood must eventually pass through the smallest blood 
vessels, the capillaries, before returning to the heart. Microscope 
measurements show that a typical capillary is 6 mm in diameter 
and 1 mm long and has a blood flow speed of 1 mm/s. Estimate 
the total surface area of all the capillaries in the body.

MoDEL Treat the blood as an ideal fluid.

soLVE The surface area of one capillary is that of a cylinder:

 A1 = 2prL = 2p(3 * 10-6  m)(0.001 m) =  1.9 * 10-8 m2

The total surface area is Asurface =  NA1, where N is the number of 
capillaries. We can find N by using the equation of continuity: The 
volume flow rate of blood leaving the heart—Q = 5 L/min—must 
equal the volume flow rate through all N capillaries. In SI units, 
the volume flow rate is

 Q = 5 
L

min
 *

1 m3

1000 L
 *

1 min

60 s
= 8.3 * 10-5 m3 /s
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Stop to think 15.5
 The figure shows volume 

flow rates (in cm3/s)  for all but one tube. What 
is the volume flow rate through the unmarked 
tube? Is the flow direction in or out?

 
 
 
 
 
 ?

110

2

Flows in cm3/s

8

4

Bernoulli’s Equation
The equation of continuity is one of two important relationships for ideal fluids. The 
other is a statement of energy conservation. The general statement of energy conserva-
tion that you learned in Chapter 11 is

 �K + �U = Wext  (15.19)

where Wext  is the work done by any external forces.
Let’s see how this applies to the flow tube of FigurE 15.30. Our system for analysis 

is the volume of fluid within the flow tube. Work is done on this volume of fluid by 
the pressure forces of the surrounding fluid. At point 1, the fluid to the left of the flow 
tube exerts force F

u

1 on the system. This force points to the right. At the other end of 
the flow tube, at point 2, the fluid to the right of the flow tube exerts force F

u

2 to the 
left. The pressure inside the flow tube is not relevant because those forces are internal 
to the system. Only external forces change the total energy.

FigurE 15.30 Energy analysis of a flow tube.

The fluid inside
the flow tube is
the system.

y

y1

y2

0

F1 due to
pressure
at 1

r

Area A1

�x1

F2 due to
pressure
at 2

r

Volume A1 �x1

�x2

1

2

Volume A2 �x2

Area A2

Only forces external to the 
system do work on the system. 
The pressure inside the flow 
tube does not cause any work 
to be done on the system.

The volumes of the shaded 
cylinders are equal.

r�r1

r�r2

At point 1, force F
u

1 pushes the fluid through displacement �r 
u

1. F
u

1 and �r 
u

1 are 
parallel, so the work done on the fluid at this point is

 W1 = F
u

1
# �r 

u

1 = F1 �r1 = (p1A1)�x1 = p1V  (15.20)

The A1 and �x1 enter the equation from different terms, but they conveniently com-
bine to give the fluid volume V = A1 �x1.

The situation is much the same at point 2 except that F
u

2 points opposite the dis-
placement �r 

u

2. This introduces a cos(180�) = -1 into the dot product for the work, 
giving

 W2 = F
u

2
# �r 

u

2 = -F2  �r2 = -(p2  A2)�x2 = -p2V  (15.21)



15.5 . Fluid Dynamics    427

The pressure from the left at point 1 pushes the fluid ahead, a positive work. The pres-
sure from the right at point 2 tries to slow the fluid down, a negative work. Together, 
the work by external forces is

 Wext = W1 + W2 = p1  V - p2  V  (15.22)

Now let’s see how this work changes the kinetic and potential energy of the system. 
A small volume of fluid V = A1 �x1 passes point 1 and, at some later time, arrives at 
point 2, where the unchanged volume is V = A2 �x2. The change in gravitational po-
tential energy for this volume of fluid is

 �U = mgy2 - mgy1 = rVgy2 - rVgy1 (15.23)

where r is the fluid density. Similarly, the change in kinetic energy is

 �K =
1

2
 mv2 

2 -
1

2
 mv1 

2 =
1

2
 rVv2 

2 -
1

2
 rVv1 

2 (15.24)

Combining Equations 15.22, 15.23, and 15.24 gives us the energy equation for the 
fluid in the flow tube:

 
1

2
 rVv2 

2 -
1

2
 rVv1 

2 + rVgy2 - rVgy1 = p1  V - p2  V  (15.25)

The volume V cancels out of all the terms. If we regroup the terms, the energy equa-
tion becomes

 p1 +
1

2
 rv1 

2 + rgy1 = p2 +
1

2
 rv2 

2 + rgy2 (15.26)

Equation 15.26 is called Bernoulli’s equation. It is named for the 18th-century 
Swiss scientist Daniel Bernoulli, who made some of the earliest studies of fluid 
dynamics.

Bernoulli’s equation is really nothing more than a statement about work and en-
ergy. It is sometimes useful to express Bernoulli’s equation in the alternative form

 p +
1

2
 rv 2 + rgy = constant  (15.27)

This version of Bernoulli’s equation tells us that the quantity p +
1
2 rv 2 + rgy remains 

constant along a streamline.
One important implication of Bernoulli’s equation is easily demonstrated. Before 

reading the next paragraph, try the simple experiment illustrated in FigurE 15.31. Really, 
do try this!

What happened? You probably expected your breath to press the strip of paper 
down. Instead, the strip rose. In fact, the harder you blow, the more nearly the strip be-
comes parallel to the floor. This counterintuitive result is a consequence of Bernoulli’s 
equation. As the air speed above the strip of paper increases, the pressure has to de-
crease to keep the quantity p +

1
2 rv 2 + rgy constant. Consequently, the air pressure 

above the strip is less than the air pressure beneath the strip, resulting in a net upward 
force on the paper.

NoTE  Using Bernoulli’s equation is very much like using the law of conservation 
of energy. Rather than identifying a “before” and “after,” you want to identify two 
points on a streamline. As the following examples show, Bernoulli’s equation is 
often used in conjunction with the equation of continuity. 

FigurE 15.31 A simple demonstration of 
Bernoulli’s equation.

2. Pucker lips and
    blow hard straight
 out over the top of
 the strip.

1 inch � 8 inch
strip of notebook
paper

1. Hold strip at lower
    edge of bottom lip,
    just touching lip.
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soLVE Bernoulli’s equation, Equation 15.26, relates the pressure, 
fluid speed, and heights at points 1 and 2. It is easily solved for the 
pressure p2 at point 2:

  p2 = p1 +
1

2
 rv1 

2 -
1

2
 rv2 

2 + rgy1 - rgy2

  = p1 +
1

2
 r(v1 

2 - v2 

2) + rg(y1 - y2)

All quantities on the right are known except v2, and that is where 
the equation of continuity will be useful. The cross-section areas 
and water speeds at points 1 and 2 are related by

 v1  A1 = v2  A2

from which we find

 v2 =
A1

A2
 v1 =

r1 

2

r2 

2 v1 =
(0.030 m)2

(0.020 m)2  (5.0 m/s) = 11.25 m/s

The pressure at point 1 is p1 = 75 kPa + 1 atm = 176,300 Pa. 
We can now use the above expression for p2 to calculate 
p2 = 105,900 Pa. This is the absolute pressure; the pressure gauge 
on the upper pipe will read

 p2 = 105,900 Pa - 1 atm = 4.6 kPa

AssEss Reducing the pipe size decreases the pressure because it 
makes v2 7 v1. Gaining elevation also reduces the pressure.

ExAMPLE 15.11  An irrigation system
Water flows through the pipes shown in FigurE 15.32. The water’s 
speed through the lower pipe is 5.0 m/s and a pressure gauge reads 
75 kPa. What is the reading of the pressure gauge on the upper 
pipe?

FigurE 15.32 The water pipes of an irrigation system.

v2

75 kPa

1

2

2.0 m
4.0 cm

5.0 m/s
6.0 cm

?

MoDEL Treat the water as an ideal fluid obeying Bernoulli’s equa-
tion. Consider a streamline connecting point 1 in the lower pipe 
with point 2 in the upper pipe.

soLVE a. Bernoulli’s equation, with v1 = 0 m/s and y3 = 0 m, is

 patmos + rgy1 = patmos +
1

2
 rv3 

2

The power plant is in the mountains, where patmos 6 1 atm, but 
patmos  occurs on both sides of Bernoulli’s equation and can-
cels. Solving for v3 gives

 v3 = 22gy1 = 22(9.80 m/s2)(250 m) = 70 m/s

b. You might expect the pressure p2 at the intake to be the hydro-
static pressure patmos + rgd at depth d. But the water is flowing 
into the intake tube, so it’s not in static equilibrium. We can 
find the intake speed v2 from the equation of continuity:

 v2 =
A3

A2
 v3 =

r3 

2

r2 

2 22gy1

The intake is along the streamline between points 1 and 3, so 
we can apply Bernoulli’s equation to points 1 and 2:

 patmos + rgy1 = p2 +
1

2
 rv2 

2 + rgy2

Solving this equation for p2, and noting that y1 - y2 = d, we 
find

  p2 = patmos + rg(y1 - y2) -
1

2
 rv2 

2

  = patmos + rgd -
1

2
 r1r3

r2
2 4

 (2gy1)

  =  pstatic - rgy1  1r3

r2
2 4

ExAMPLE 15.12  Hydroelectric power
Small hydroelectric plants in the mountains sometimes bring the 
water from a reservoir down to the power plant through enclosed 
tubes. In one such plant, the 100-cm-diameter intake tube in the 
base of the dam is 50 m below the reservoir surface. The water 
drops 200 m through the tube before flowing into the turbine 
through a 50-cm-diameter nozzle.

a. What is the water speed into the turbine?
b. By how much does the inlet pressure differ from the hydro-

static pressure at that depth?

MoDEL Treat the water as an ideal fluid obeying Bernoulli’s equa-
tion. Consider a streamline that begins at the surface of the reser-
voir and ends at the exit of the nozzle. The pressure at the surface 
is p1 = patmos  and v1 � 0 m/s. The water discharges into air, so 
p3 = patmos  at the exit.

VisuALizE FigurE 15.33 is a pictorial representation of the situation.

FigurE 15.33 Pictorial representation of the 
water flow to a hydroelectric plant.
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Two Applications
The speed of a flowing gas is often measured with a device called a Venturi tube. 
Venturi tubes measure gas speeds in environments as different as chemistry laborato-
ries, wind tunnels, and jet engines.

FigurE 15.34 shows gas flowing through a tube that changes from cross-section area 
A1 to area A2. A U-shaped glass tube containing liquid of density rliq  connects the 
two segments of the flow tube. When gas flows through the horizontal tube, the liquid 
stands height h higher in the side of the U tube connected to the narrow segment of 
the flow tube.

Figure 15.34 shows how a Venturi tube works. We can make this analysis quantita-
tive and determine the gas-flow speed from the liquid height h. Two pieces of informa-
tion we have to work with are Bernoulli’s equation

 p1 +
1

2
 rv1 

2 + rgy1 = p2 +
1

2
 rv2 

2 + rgy2 (15.28)

and the equation of continuity

 v2  A2 = v1  A1 (15.29)

In addition, the hydrostatic equation for the liquid tells us that the pressure p2 above 
the right tube differs from the pressure p1 above the left tube by rliq  gh. That is,

 p2 = p1 - rliq  gh (15.30)

First we use Equations 15.29 and 15.30 to eliminate v2 and p2 in Bernoulli’s equation:

 p1 +
1

2
 rv1 

2 = (p1 - rliq  gh) +
1

2
 r1A1

A2
2 2

 v1 

2 (15.31)

The potential energy terms have disappeared because y1 = y2 for a horizontal tube. 
Equation 15.31 can now be solved for v1, then v2 is obtained from Equation 15.29. 
We’ll skip a few algebraic steps and go right to the result:

  v1 = A2 B 2rliq  gh

r(A1 

2 - A2 

2)

  v2 = A1 B 2rliq  gh

r(A1 

2 - A2 

2)
 

(15.32)

Equations 15.32 are reasonably accurate as long as the flow speeds are much less than 
the speed of sound, about 340 m/s. The Venturi tube is an example of the power of 
Bernoulli’s equation.

As a final example, we can use Bernoulli’s equation to understand, at least quali-
tatively, how airplane wings generate lift. FigurE 15.35 shows the cross section of an 
airplane wing. This shape is called an airfoil.

Although you usually think of an airplane moving through the air, in the airplane’s 
reference frame it is the air that flows across a stationary wing. As it does, the stream-
lines must separate. The bottom of the wing does not significantly alter the streamlines 
going under the wing. But the streamlines going over the top of the wing get bunched 
together. This bunching reduces the cross-section area of a flow tube of streamlines. 
Consequently, in accordance with the equation of continuity, the air speed must in-
crease as it flows across the top of the wing.

FigurE 15.34 A Venturi tube measures 
gasflow speeds.

h

Gas of density r

Liquid of
density rliq

Pressure p2

Area A2

Pressure p1

Area A1

v1
r

v2
r

2. The U tube acts like a manometer.
 The liquid level is higher on the side
 where the pressure is lower. 

1. As the gas flows into a smaller
 cross section, it speeds up
 (equation of continuity). As it
 speeds up, the pressure decreases
 (Bernoulli’s equation).

The intake pressure is less than hydrostatic pressure by the 
amount

 rgy1  1r3

r2
2 4

= 153,000 Pa = 1.5 atm

AssEss The water’s exit speed from the nozzle is the same as if 
it fell 250 m from the surface of the reservoir. This isn’t surpris-
ing because we’ve assumed a nonviscous (i.e., frictionless) liquid. 
“Real” water would have less speed but still flow very fast.

FigurE 15.35 Airflow over a wing 
generates lift by creating unequal 
pressures above and below.

r
Flift

p � patmos beneath wing

1. The streamlines in the flow
 tube are compressed,
 indicating that the air speeds
 up as it flows over the top of
 the wing. This lowers the
 pressure to p � patmos. 2. The pressure

 difference exerts
 an upward force
 on the wing.
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As you’ve seen several times, an increased air speed implies a decreased air pres-
sure. This is the lesson of Bernoulli’s equation. Because the air pressure above the 
wing is less than the air pressure below, the air exerts a net upward force on the wing, 
just as it did on the paper strip you blew across. The upward force of the air due to a 
pressure difference across the wing is called lift.

Stop to think 15.6
 Rank in order, from highest to lowest, the liquid heights ha to hd. 

The airflow is from left to right.

15.6 Elasticity
The final subject to explore in this chapter is elasticity. Although elasticity applies 
primarily to solids rather than fluids, you will see that similar ideas come into play.

Tensile stress and Young’s Modulus
Suppose you clamp one end of a solid rod while using a strong machine to pull on 
the other with force F

u

. FigurE 15.36a shows the experimental arrangement. We usually 
think of solids as being, well, solid. But any material, be it plastic, concrete, or steel, 
will stretch as the spring-like molecular bonds expand.

FigurE 15.36b shows graphically the amount of force needed to stretch the rod by the 
amount �L. This graph contains several regions of interest. First is the elastic region, 
ending at the elastic limit. As long as �L is less than the elastic limit, the rod will 
return to its initial length L when the force is removed. Just such a reversible stretch is 
what we mean when we say a material is elastic. A stretch beyond the elastic limit will 
permanently deform the object; it will not return to its initial length when the force is 
removed. And, not surprisingly, there comes a point when the rod breaks.

For most materials, the graph begins with a linear region, which is where we will 
focus our attention. If �L is within the linear region, the force needed to stretch the 
rod is

 F = k �L (15.33)

where k is the slope of the graph. You’ll recognize Equation 15.33 as none other than 
Hooke’s law.

The difficulty with Equation 15.33 is that the proportionality constant k depends 
both on the composition of the rod—whether it is, say, steel or aluminum—and on 
the rod’s length and cross-section area. It would be useful to characterize the elastic 
properties of steel in general, or aluminum in general, without needing to know the 
dimensions of a specific rod.

We can meet this goal by thinking about Hooke’s law at the atomic scale. The 
elasticity of a material is directly related to the spring constant of the molecular bonds 
between neighboring atoms. As FigurE 15.37 shows, the force pulling each bond is pro-
portional to the quantity F/A. This force causes each bond to stretch by an amount 

Direction of airflow

Air pump

ha hb hc hd

FigurE 15.36 Stretching a solid rod.
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proportional to �L/L. We don’t know what the proportionality constants are, but we 
don’t need to. Hooke’s law applied to a molecular bond tells us that the force pulling 
on a bond is proportional to the amount that the bond stretches. Thus F/A must be 
proportional to �L/L. We can write their proportionality as

 
F

A
= Y  

�L

L
 (15.34)

The proportionality constant Y is called Young’s modulus. It is directly related to 
the spring constant of the molecular bonds, so it depends on the material from which 
the object is made but not on the object’s geometry.

A comparison of Equations 15.33 and 15.34 shows that Young’s modulus can be 
written as Y = kL/A. This is not a definition of Young’s modulus but simply an ex-
pression for making an experimental determination of the value of Young’s modulus. 
This k is the spring constant of the rod seen in Figure 15.36. It is a quantity easily 
measured in the laboratory.

The quantity F/A, where A is the cross-section area, is called tensile stress. Notice 
that it is essentially the same definition as pressure. Even so, tensile stress differs in 
that the stress is applied in a particular direction whereas pressure forces are exerted 
in all directions. Another difference is that stress is measured in N/m2 rather than pas-
cals. The quantity �L/L, the fractional increase in the length, is called strain. Strain 
is dimensionless. The numerical values of strain are always very small because solids 
cannot be stretched very much before reaching the breaking point.

With these definitions, Equation 15.34 can be written

 stress = Y * strain (15.35)

Because strain is dimensionless, Young’s modulus Y has the same dimensions as 
stress, namely N/m2. Table 15.3 gives values of Young’s modulus for several common 
materials. Large values of Y characterize materials that are stiff and rigid. “Softer” 
materials, at least relatively speaking, have smaller values of Y. You can see that steel 
has a larger Young’s modulus than aluminum.

FigurE 15.37 A material’s elasticity is 
directly related to the spring constant of 
the molecular bonds.

Length L

Area A

The number of bonds is proportional
to area A. If the rod is pulled with
force F, the force pulling on each bond
is proportional to F/A.

The number of bonds along the rod 
is proportional to length L. If the 
rod stretches by �L, the stretch of 
each bond is proportional to �L /L.

TABLE 15.3 Elastic properties of various materials

Substance
Young’s modulus  

(N ,m2)
Bulk modulus  

(N ,m2)

Aluminum 7 * 1010 7 * 1010

Concrete 3 * 1010 –

Copper 11 * 1010 14 * 1010

Mercury – 3 * 1010

Plastic (polystyrene) 0.3 * 1010 –

Steel 20 * 1010 16 * 1010

Water – 0.2 * 1010

Wood (Douglas fir) 1 * 1010 –

We introduced Young’s modulus by considering how materials stretch. But 
Equation 15.35 and Young’s modulus also apply to the compression of materials. 
Compression is particularly important in engineering applications, where beams, 
columns, and support foundations are compressed by the load they bear. Concrete 
is often compressed, as in columns that support highway overpasses, but rarely 
stretched.

NoTE  Whether the rod is stretched or compressed, Equation 15.35 is valid only 
in the linear region of the graph in Figure 15.36b. The breaking point is usually 
well outside the linear region, so you can’t use Young’s modulus to compute the 
maximum possible stretch or compression. 

Concrete is a widely used building material 
because it is relatively inexpensive and, 
with its large Young’s modulus, it has 
tremendous compressional strength.
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The resulting stretch of 1.0 mm is a strain of �L/L =  
(1.0 mm)/(2000 mm) = 5.0 * 10-4. Thus Young’s modulus for 
the wire is

 Y =
F/A

�L/L
= 11 * 1010 N/m2

Referring to Table 15.3, we see that the wire is made of copper.

ExAMPLE 15.13  stretching a wire
A 2.0-m-long, 1.0-mm-diameter wire is suspended from the ceil-
ing. Hanging a 4.5 kg mass from the wire stretches the wire’s 
length by 1.0 mm. What is Young’s modulus for this wire? Can 
you identify the material?

MoDEL The hanging mass creates tensile stress in the wire.

soLVE The force pulling on the wire, which is simply the weight 
of the hanging mass, produces tensile stress

 
F

A
=

mg

pr2 =
(4.5 kg)(9.80 m/s2)

p(0.0005 m)2 = 5.6 * 107 N/m2

The volume of a sphere is V =
4
3 pr3. For a very small change, we 

can use calculus to relate the volume change to the change in radius:

 �V =
4p

3
�(r3) =

4p

3
# 3r2�r = 4pr2�r

Using this expression for �V  gives the volume strain:

 
�V

V
=

4pr2�r
4
3 pr3

=
3�r

r
= -6.3 * 10-4

Solving for �r gives �r = -1.05 * 10-4 m = -0.105 mm. The 
diameter changes by twice this, decreasing 0.21 mm.

AssEss The immense pressure of the deep ocean causes only a 
tiny change in the sphere’s diameter. You can see that treating 
solids and liquids as incompressible is an excellent approximation 
under nearly all circumstances.

ExAMPLE 15.14  Compressing a sphere
A 1.00-m-diameter solid steel sphere is lowered to a depth of 
10,000 m in a deep ocean trench. By how much does its diameter 
shrink?

MoDEL The water pressure applies a volume stress to the sphere.

soLVE The water pressure at d = 10,000 m is

 p = p0 + rgd = 1.01 * 108 Pa

where we used the density of seawater. The bulk modulus of steel, 
taken from Table 15.3, is 16 * 1010 N/m2. Thus the volume strain is

 
�V

V
= -  

p

B
= -  

1.01 * 108 Pa

16 * 1010 Pa
= -6.3 * 10-4

Volume stress and the Bulk Modulus
Young’s modulus characterizes the response of an object to being pulled in one direc-
tion. FigurE 15.38 shows an object being squeezed in all directions. For example, objects 
under water are squeezed from all sides by the water pressure. The force per unit area 
F/A applied to all surfaces of an object is called the volume stress. Because the force 
pushes equally on all sides, the volume stress (unlike the tensile stress) really is the 
same as pressure p.

No material is perfectly rigid. A volume stress applied to an object compresses its 
volume slightly. The volume strain is defined as �V/V. The volume strain is a nega-
tive number because the volume stress decreases the volume.

Volume stress, or pressure, is linearly proportional to the volume strain, much as 
the tensile stress is linearly proportional to the strain in a rod. That is,

 
F

A
= p = -B 

�V

V
 (15.36)

where B is called the bulk modulus. The negative sign in Equation 15.36 ensures 
that the pressure is a positive number. Table 15.3 gives values of the bulk modulus 
for several materials. Smaller values of B correspond to materials that are more easily 
compressed. Both solids and liquids can be compressed and thus have a bulk modulus, 
whereas Young’s modulus applies only to solids.

FigurE 15.38 An object is compressed 
by pressure forces pushing equally on 
all sides.
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Taking the time derivative, we find

 
dVwater 

dt
=

d

dt
cpR2

3H 2 y3 d =
pR2

H 2  y2 
dy

dt

This relates the rate at which the volume changes to the rate at 
which the height changes.

We can next relate v2 to the water height y by using Bernoulli’s 
equation to connect the conditions at the surface (point 1) to condi-
tions at the exit (point 2):

 p1 +
1

2
 rv1 

2 + rgy1 = p2 +
1

2
 rv2 

2 + rgy2

With  p1 = p2, v1 = 0, y1 = y, and y2 = 0 at the bottom, Bernoulli’s 
equation simplifies to rgy =

1
2 rv2 

2. Thus the exit speed of the water is

 v2 = 12gy

The exit speed decreases as the water height drops because the 
pressure at the bottom is less.

With this information, our equation for the rate at which the 
volume is changing becomes

 
dVwater 

dt
=

pR2

H2  y2 
dy

dt
= -pr2

 v2 = -pr2 22gy

In preparation for integration, we need to get all the y’s on one side 
of the equation and dt on the other. Rearranging gives

 dt = -
R2

r2H2 22g
  y3/2 dy

We need to integrate this from the beginning, with y = H at t = 0, 
to the moment the tank is empty, with y = 0 at t = T :

3
T

0

dt = T = -
R2

r2H2 22g
 3

0

H

y3/2 dy =
R2

r2H2 22g
 3

H

0

y3/2 dy

The minus sign was eliminated by reversing the integration limits. 
Performing the integration gives us the desired result for the time 
to drain the tank:

 T =
R2

r2H2 22g
 3

H

0

y3/2 dy =
R2

r2H2 22g
 c 2

5
 y5/2 d

0

H

  =
2

5
 
R2

r2  B H

2g

AssEss Making the tank larger by increasing R or H increases 
the time needed to drain. Making the hole at the bottom larger—a 
larger value of r—decreases the time. These are as we would have 
expected, giving us confidence in our result.

CHALLENgE ExAMPLE 15.15  Draining a cone
A conical tank of radius R and height H, pointed end down, is full 
of water. A small hole of radius r is opened at the bottom of the 
tank, with r V R so that the tank drains slowly. Find an expres-
sion for the time T it takes to drain the tank completely.

MoDEL Treat the water as an ideal fluid. We can use Bernoulli’s 
equation to relate the flow speed from the hole to the height of the 
water in the cone.

VisuALizE FigurE 15.39 is a pictorial representation. Because the 
tank drains slowly, we’ve assumed that the water velocity at the 
top surface is always very close to zero: v1 =  0. The pressure at 
the surface is p1 = patmos. The water discharges into air, so we also 
have p2 = patmos at the exit.

FigurE 15.39 Pictorial representation of water draining 
from a tank.

soLVE As the tank drains, the water height y decreases from H 
to 0. If we can find an expression for dy/dt, the rate at which the 
water height changes, we’ll be able to find T by integrating from 
“full tank” at t = 0 to “empty tank” at t = T. Our starting point is 
the rate at which water flows out of the hole at the bottom—the 
volume flow rate Q = v2 A2 = pr2 v2, where v2 is the exit speed. 
The volume of water inside the tank is changing at the rate

 
dVwater

dt
= -Q = -pr2v2

where the minus sign shows that the volume is decreasing with 
time.

We need to relate both Vwater and v2 to the height y of the water 
surface. The volume of a cone is V =

1
3 *  base *  height, so the 

cone of water has volume Vwater =
1
3 pr1 

2 y. Based on the similar 
triangles in Figure 15.39, r1/R = y/H. Thus r1 = (R/H)y and

 Vwater =
pR2

3H 2 y3
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s u M M A r Y
The goal of Chapter 15 has been to understand macroscopic systems that flow or deform.

fluid
gas
liquid
mass density, r
unit volume
pressure, p
pascal, Pa
vacuum
standard atmosphere, atm

hydrostatic pressure
Pascal’s principle
gauge pressure, pg 
hydraulics
buoyant force
displaced fluid
Archimedes’ principle
average density, ravg 
neutral buoyancy

ideal-fluid model
viscosity
laminar flow
streamline
flow tube
equation of continuity
volume flow rate, Q
Bernoulli’s equation

Venturi tube
lift
Young’s modulus, Y
tensile stress
strain
volume stress
volume strain
bulk modulus, B

Terms and Notation

general Principles
Fluid statics
Gases

• Freely moving particles

• Compressible

•	 Pressure primarily thermal

•	 Pressure is constant in a 
laboratory-size container

Liquids

•	 Loosely bound particles

•	 Incompressible

•	 Pressure primarily gravitational

•	 Hydrostatic pressure at depth d 
is p = p0 + rgd

Density r = m/V, where m is mass and V is volume.

Pressure p = F/A, where F is the magnitude of the fluid force and A 
is the area on which the force acts.

•	 Pressure exists at all points in a fluid.

•	 Pressure pushes equally in all directions.

•	 Pressure is constant along a horizontal line.

•	 Gauge pressure is pg = p - 1 atm.

important Concepts

Fluid Dynamics
Ideal-fluid model

•	 Incompressible

•	 Smooth, laminar flow

•	 Nonviscous

Equation of continuity

 v1  A1 = v2  A2

Bernoulli’s equation

 p1 +
1
2 rv1 

2 + rgy1 = p2 +
1
2 rv2 

2 + rgy2

Bernoulli’s equation is a statement of energy conservation.

Density r

Fluid particles move
along streamlines.

p1

v1

y1

p2

v2

y2

A1

A2

Applications
Buoyancy is the upward force of a fluid on an 
object.

Archimedes’ principle

The magnitude of the buoyant force equals the 
weight of the fluid displaced by the object.

Sink  ravg 7 rf  FB 6 mo  g

Rise to surface  ravg 6 rf  FB 7 mo  g

Neutrally buoyant  ravg = rf  FB = mo  g

FB
r

mog

rf

L

r
F

A

�L

Elasticity describes the deformation of
solids and liquids under stress.

Linear stretch and
compression

(F/A) � Y (�L/L) 

Tensile stress Young’s modulus
Strain

p � �B (�V/V ) 

Bulk modulus Volume strain

Volume compression
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C o N C E P T u A L  Q u E s T i o N s

 1. An object has density r.
 a. Suppose each of the object’s three dimensions is increased by a 

factor of 2 without changing the material of which the object is 
made. Will the density change? If so, by what factor? Explain.

 b. Suppose each of the object’s three dimensions is increased 
by a factor of 2 without changing the object’s mass. Will the 
density change? If so, by what factor? Explain.

 2. Rank in order, from largest to 
smallest, the pressures at a, b, and 
c in FigurE Q15.2. Explain.

 3. Rank in order, from largest to smallest, the pressures at d, e, and 
f in FigurE Q15.2. Explain.

 4. FigurE Q15.4 shows two rectangu-
lar tanks, A and B, full of water. 
They have equal depths and equal 
thicknesses (the dimension into 
the page) but different widths.

 a. Compare the forces the water 
exerts on the bottoms of the tanks. Is FA larger than, smaller 
than, or equal to FB? Explain.

 b. Compare the forces the water exerts on the sides of the tanks. 
Is FA larger than, smaller than, or equal to FB? Explain.

 5. In FigurE Q15.5, is pA larger than, smaller than, or equal to pB? 
Explain.

 6. Rank in order, from largest to smallest, the densities of blocks a, 
b, and c in FigurE Q15.6. Explain.

 7. Blocks a, b, and c in FigurE Q15.7 
have the same volume. Rank in 
order, from largest to smallest, 
the sizes of the buoyant forces 
Fa , Fb  , and Fc  on a, b, and c. 
Explain.

 8. Blocks a, b, and c in FigurE Q15.7 have the same density. Rank 
in order, from largest to smallest, the sizes of the buoyant forces 
Fa , Fb  , and Fc on a, b, and c. Explain.

 9. The two identical beakers in FigurE Q15.9 are filled to the same 
height with water. Beaker B has a plastic sphere floating in it. 
Which beaker, with all its contents, weighs more? Or are they 
equal? Explain.

 10. Gas flows through the pipe of FigurE Q15.10. You can’t see into 
the pipe to know how the inner diameter changes. Rank in order, 
from largest to smallest, the gas speeds va , vb  , and vc at points a, 
b, and c. Explain.

 11. Wind blows over the house in FigurE Q15.11. 
A window on the ground floor is open. Is 
there an airflow through the house? If so, 
does the air flow in the window and out the 
chimney, or in the chimney and out the win-
dow? Explain.

 12. A 2000 N force stretches a wire by 1 mm. A second wire of the 
same material is twice as long and has twice the diameter. How 
much force is needed to stretch it by 1 mm? Explain.

 13. A wire is stretched right to the breaking point by a 5000 N force. 
A longer wire made of the same material has the same diameter. 
Is the force that will stretch it right to the breaking point larger 
than, smaller than, or equal to 5000 N? Explain.

FigurE Q15.4 

A Sides B

FigurE Q15.5 

A B

a b c

FigurE Q15.6 

a
50 g

b
40 g

c
50 g

FigurE Q15.9 

A B
Liquid

a b c

FigurE Q15.10 

FigurE Q15.11 

Wind

E x E r C i s E s  A N D  P r o B L E M s

Problems labeled  integrate material from earlier chapters.

Exercises

Section 15.1 Fluids

 1. | What is the volume in mL of 55 g of a liquid with density 
1100 kg/m3?

 2. | Containers A and B have equal volumes. Container A holds 
helium gas at 1.0 atm pressure and 0�C. Container B is completely 

filled with a liquid whose mass is 7000 times the mass of helium 
gas in container A. Identify the liquid in container B.

 3. || A 6.0 m * 12.0 m swimming pool slopes linearly from a 
1.0 m depth at one end to a 3.0 m depth at the other. What is the 
mass of water in the pool?

 4. ||  a.  50 g of gasoline are mixed with 50 g of water. What is the 
average density of the mixture?

   b.  50 cm3 of gasoline are mixed with 50 cm3 of water. What 
is the average density of the mixture?

a

d

b

e

c

f

FigurE Q15.2

FigurE Q15.7 
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Section 15.2 Pressure

 5. | The deepest point in the ocean is 11 km below sea level, deeper 
than Mt. Everest is tall. What is the pressure in atmospheres at 
this depth?

 6. || A 1.0-m-diameter vat of liquid is 2.0 m deep. The pressure at 
the bottom of the vat is 1.3 atm. What is the mass of the liquid in 
the vat?

 7. || a.  What volume of water has the same mass as 8.0 m3 of ethyl 
alcohol?

   b.  If this volume of water is in a cubic tank, what is the pres-
sure at the bottom?

 8. || A 50-cm-thick layer of oil floats on a 120-cm-thick layer of 
water. What is the pressure at the bottom of the water layer?

 9. || A research submarine has a 20-cm-diameter window 8.0 cm 
thick. The manufacturer says the window can withstand forces up 
to 1.0 * 106 N. What is the submarine’s maximum safe depth? 
The pressure inside the submarine is maintained at 1.0 atm.

 10. || A 20-cm-diameter circular cover is placed over a 10-cm-
diameter hole that leads into an evacuated chamber. The pressure 
in the chamber is 20 kPa. How much force is required to pull the 
cover off?

Section 15.3 Measuring and Using Pressure

 11. | What is the height of a water barometer at atmospheric pres-
sure?

 12. | How far must a 2.0-cm-diameter piston be pushed down into 
one cylinder of a hydraulic lift to raise an 8.0-cm-diameter piston 
by 20 cm?

 13. || What is the minimum hose diameter of an ideal vacuum cleaner 
that could lift a 10 kg (22 lb) dog off the floor?

Section 15.4 Buoyancy

 14. | A 6.00-cm-diameter sphere with a mass of 89.3 g is neutrally 
buoyant in a liquid. Identify the liquid.

 15. | A 2.0 cm * 2.0 cm * 6.0 cm block floats in water with its 
long axis vertical. The length of the block above water is 2.0 cm. 
What is the block’s mass density?

 16. || A sphere completely submerged in water is tethered to the 
bottom with a string. The tension in the string is one-third the 
weight of the sphere. What is the density of the sphere?

 17. || A 5.0 kg rock whose density is 4800 kg/m3 is suspended by a 
string such that half of the rock’s volume is under water. What is 
the tension in the string?

 18. | What is the tension of the string in FigurE Ex15.18?

 19. || A 10-cm-diameter, 20-cm-tall steel cylinder (rsteel =  
7900 kg/m3) floats in mercury. The axis of the cylinder is perpen-
dicular to the surface. What length of steel is above the surface?

 20. || You and your friends are playing in the swimming pool with 
a 60-cm-diameter beach ball. How much force would be needed 
to push the ball completely under water?

 21. || Styrofoam has a density of 150 kg/m3. What is the maximum 
mass that can hang without sinking from a 50-cm-diameter Sty-
rofoam sphere in water? Assume the volume of the mass is neg-
ligible compared to that of the sphere.

Section 15.5 Fluid Dynamics

 22. || Water flowing through a hose at 4.0 m/s fills a 600 L child’s 
wading pool in 8.0 min. What is the diameter in cm of the hose?

 23. || A 1.0-cm-diameter pipe widens to 2.0 cm, then narrows to 
5.0 mm. Liquid flows through the first segment at a speed of 4.0 m/s.

 a. What is the speed in the second and third segments?
 b. What is the volume flow rate through the pipe?
 24. || A long horizontal tube has a square cross section with sides of 

width L. A fluid moves through the tube with speed v0. The tube 
then changes to a circular cross section with diameter L. What is 
the fluid’s speed in the circular part of the tube?

 25. || What does the top pressure gauge read in FigurE Ex15.25?

Section 15.6 Elasticity

 26. | An 80-cm-long, 1.0-mm-diameter steel guitar string must be 
tightened to a tension of 2000 N by turning the tuning screws. By 
how much is the string stretched?

 27. || A 70 kg mountain climber dangling in a crevasse stretches a 
50-m-long, 1.0-cm-diameter rope by 8.0 cm. What is Young’s 
modulus for the rope?

 28. || What hanging mass will increase the length of a 1.0-mm-
diameter aluminum wire by 1.0%?

 29. || A 3.0-m-tall, 50-cm-diameter concrete column supports a 
200,000 kg load. By how much is the column compressed?

 30. | a. What is the pressure at a depth of 5000 m in the ocean?
   b.  What is the fractional volume change �V/V  of seawater at 

this pressure?
   c. What is the density of seawater at this pressure?

Problems

 31. || A gymnasium is 16 m high. By what percent is the air pressure 
at the floor greater than the air pressure at the ceiling?

 32. | The two 60-cm-diameter cylinders in 
FigurE P15.32, closed at one end, open at 
the other, are joined to form a single cyl-
inder, then the air inside is removed.

 a. How much force does the atmosphere 
exert on the flat end of each cylinder?

 b. Suppose one cylinder is bolted to a 
sturdy ceiling. How many 100 kg 
football players would need to hang 
from the lower cylinder to pull the two 
cylinders apart?

FigurE Ex15.18 

100 cm3 of
aluminum, density
rAl � 2700 kg/m3

Ethyl alcohol

FigurE Ex15.25 
2.0 m/s

200 kPa 3.0 m/s

10 m
Oil

?

FigurE P15.32 

60 cm

http://www.meetyourbrain.com/bookChapters.php?book=Physics-for-Scientists-and-Engineers-A-Strategic-Approach-with-Modern-Physics-3rd-Edition-Solutions&title=0
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 33. || a.  In FigurE P15.33, how 
much force does the fluid 
exert on the end of the 
cylinder at A?

   b.  How much force does the 
fluid exert on the end of 
the cylinder at B?

 34. || Postural hypotension is the occurrence of low systolic blood 
pressure when a person stands up too quickly from a reclining 
position. A brain blood pressure lower than 90 mm of Hg can 
cause fainting or lightheadedness. In a healthy adult, the auto-
matic constriction and expansion of blood vessels keep the brain 
blood pressure constant while posture is changing, but disease or 
aging can weaken this response. If the blood pressure in your 
brain is 118 mm of Hg while lying down, what would it be when 
you stand up if this automatic response failed? Assume your 
brain is 40 cm from your heart and the density of blood is 
1060 kg/m3.

 35. || A friend asks you how much pressure is in your car tires. You 
know that the tire manufacturer recommends 30 psi, but it’s been 
a while since you’ve checked. You can’t find a tire gauge in the 
car, but you do find the owner’s manual and a ruler. Fortunately, 
you’ve just finished taking physics, so you tell your friend, “I 
don’t know, but I can figure it out.” From the owner’s manual 
you find that the car’s mass is 1500 kg. It seems reasonable to 
assume that each tire supports one-fourth of the weight. With 
the ruler you find that the tires are 15 cm wide and the flattened 
segment of the tire in contact with the road is 13 cm long. What 
answer will you give your friend?

 36. ||| A 2.0 mL syringe has an inner diameter of 6.0 mm, a needle 
inner diameter of 0.25 mm, and a plunger pad diameter (where 
you place your finger) of 1.2 cm. A nurse uses the syringe to 
inject medicine into a patient whose blood pressure is 140/100.

 a. What is the minimum force the nurse needs to apply to the 
syringe?

 b. The nurse empties the syringe in 2.0 s. What is the flow speed 
of the medicine through the needle?

 37. || What is the total mass of the earth’s atmosphere?
 38. || Suppose the density of the earth’s atmosphere were a constant 

1.3 kg/m3, independent of height, until reaching the top. How 
thick would the atmosphere be?

 39. || The container shown in 
FigurE P15.39 is filled with oil. It 
is open to the atmosphere on the 
left.

 a. What is the pressure at point 
A?

 b. What is the pressure differ-
ence between points A and 
B? Between points A and C?

BIO

BIO

 40. || a.  The 70 kg student in 
FigurE P15.40 balances 
a 1200 kg elephant on a 
hydraulic lift. What is the 
diameter of the piston the 
student is standing on?

   b.  When a second student 
joins the first, the piston 
sinks 35 cm. What is the 
second student’s mass?

 41. ||| A 55 kg cheerleader uses an oil-filled hydraulic lift to hold four 
110 kg football players at a height of 1.0 m. If her piston is 16 cm 
in diameter, what is the diameter of the football players’ piston?

 42. || A U-shaped tube, open to the air on both ends, contains mer-
cury. Water is poured into the left arm until the water column is 
10.0 cm deep. How far upward from its initial position does the 
mercury in the right arm rise?

 43. || Glycerin is poured into an open U-shaped tube until the height 
in both sides is 20 cm. Ethyl alcohol is then poured into one arm 
until the height of the alcohol column is 20 cm. The two liquids 
do not mix. What is the difference in height between the top 
surface of the glycerin and the top surface of the alcohol?

 44. || Geologists place tiltmeters on 
the sides of volcanoes to measure 
the displacement of the surface as 
magma moves inside the volcano. 
Although most tiltmeters today 
are electronic, the traditional tilt-
meter, used for decades, consisted 
of two or more water-filled metal cans placed some distance apart 
and connected by a hose. FigurE P15.44 shows two such cans, each 
having a window to measure the water height. Suppose the cans are 
placed so that the water level in both is initially at the 5.0 cm mark. A 
week later, the water level in can 2 is at the 6.5 cm mark.

 a. Did can 2 move up or down relative to can 1? By what distance?
 b. Where is the water level now in can 1?
 45. || An aquarium of length L, width (front to back) W, and depth 

D is filled to the top with liquid of density r.
 a. Find an expression for the force of the liquid on the bottom of 

the aquarium.
 b. Find an expression for the force of the liquid on the front 

window of the aquarium.
 c. Evaluate the forces for a 100-cm-long, 35-cm-wide, 40-cm-

deep aquarium filled with water.
  Hint: This problem requires an integration.
 46. || It’s possible to use the ideal-gas law to show that the density 

of the earth’s atmosphere decreases exponentially with height. 
That is, r = r0 exp(-z/z0), where z is the height above sea level, 
r0 is the density at sea level (you can use the Table 15.1 value), 
and z0 is called the scale height of the atmosphere.

 a. Determine the value of z0.
 b. What is the density of the air in Denver, at an elevation of 

1600 m? What percent of sea-level density is this?
  Hint: This problem requires an integration. What is the weight 

of a column of air?
 47. || The average density of the body of a fish is 1080 kg/m3. To 

keep from sinking, a fish increases its volume by inflating an 
internal air bladder, known as a swim bladder, with air. By what 
percent must the fish increase its volume to be neutrally buoyant 
in fresh water? The density of air at 20�C is 1.19 kg/m3.

BIO
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B
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FigurE P15.39 
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A

FigurE P15.40 
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Oil
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FigurE P15.44 

100 m

FigurE P15.33 
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 48. | You need to determine the density of a ceramic statue. If you 
suspend it from a spring scale, the scale reads 28.4 N. If you 
then lower the statue into a tub of water, so that it is completely 
submerged, the scale reads 17.0 N. What is the statue’s density?

 49. || A cylinder with cross-section area A floats with its long axis 
vertical in a liquid of density r.

 a. Pressing down on the cylinder pushes it deeper into the liq-
uid. Find an expression for the force needed to push the cyl-
inder distance x deeper into the liquid and hold it there.

 b. A 4.0-cm-diameter cylinder floats in water. How much work 
must be done to push the cylinder 10 cm deeper into the water?

  Hint: An integration is required.
 50. || A less-dense liquid of density r1 floats on top of a more-dense 

liquid of density r2. A uniform cylinder of length l and density r, 
with r1 6 r 6 r2, floats at the interface with its long axis verti-
cal. What fraction of the length is in the more-dense liquid?

 51. || A 30-cm-tall, 4.0-cm-diameter plastic tube has a sealed bot-
tom. 250 g of lead pellets are poured into the bottom of the tube, 
whose mass is 30 g, then the tube is lowered into a liquid. The 
tube floats with 5.0 cm extending above the surface. What is the 
density of the liquid?

 52. || One day when you come into physics lab you find several 
plastic hemispheres floating like boats in a tank of fresh water. 
Each lab group is challenged to determine the heaviest rock that 
can be placed in the bottom of a plastic boat without sinking it. 
You get one try. Sinking the boat gets you no points, and the 
maximum number of points goes to the group that can place the 
heaviest rock without sinking. You begin by measuring one of 
the hemispheres, finding that it has a mass of 21 g and a diameter 
of 8.0 cm. What is the mass of the heaviest rock that, in perfectly 
still water, won’t sink the plastic boat?

 53. ||| A spring with spring constant 35 N/m is attached to the ceil-
ing, and a 5.0-cm-diameter, 1.0 kg metal cylinder is attached to 
its lower end. The cylinder is held so that the spring is neither 
stretched nor compressed, then a tank of water is placed under-
neath with the surface of the water just touching the bottom of the 
cylinder. When released, the cylinder will oscillate a few times 
but, damped by the water, quickly reach an equilibrium position. 
When in equilibrium, what length of the cylinder is submerged?

 54. || A plastic “boat” with a 25 cm2 square cross section floats in 
a liquid. One by one, you place 50 g masses inside the boat and 
measure how far the boat extends below the surface. Your data 
are as follows:

  Draw an appropriate graph of the data and, from the slope and 
intercept of the best-fit line, determine the mass of the boat and 
the density of the liquid.

 55. ||| A 355 mL soda can is 6.2 cm in diameter and has a mass of 20 g. 
Such a soda can half full of water is floating upright in water. 
What length of the can is above the water level?

 56. ||| The bottom of a steel “boat” is a 5.0 m * 10 m * 2.0 cm piece 
of steel (rsteel = 7900 kg/m3). The sides are made of 0.50-cm-
thick steel. What minimum height must the sides have for this 
boat to float in perfectly calm water?

 57. || A nuclear power plant draws 3.0 * 106 L/min of cooling wa-
ter from the ocean. If the water is drawn in through two parallel, 
3.0-m-diameter pipes, what is the water speed in each pipe?

 58. || a.  A liquid of density r flows at speed n0 through a horizontal 
pipe that expands smoothly from diameter d0 to a larger di-
ameter d1. The pressure in the narrower section is p0. Find 
an expression for the pressure p1 in the wider section.

   b.  A pressure gauge reads 50 kPa as water flows at 10.0 m/s 
through a 16.8@cm@diameter horizontal pipe. What is the 
reading of a pressure gauge after the pipe has expanded to 
20.0 cm in diameter?

 59. || A tree loses water to the air by the process of transpiration at 
the rate of 110 g/h. This water is replaced by the upward flow of 
sap through vessels in the trunk. If the trunk contains 2000 ves-
sels, each 100 mm in diameter, what is the upward speed of the 
sap in each vessel? The density of tree sap is 1040 kg/m3.

 60. || Water flows from the 
pipe shown in FigurE P15.60 
with a speed of 4.0 m/s.

 a. What is the water pres-
sure as it exits into the 
air?

 b. What is the height h of 
the standing column of 
water?

 61. || Water flowing out of a 16-mm-diameter faucet fills a 2.0 L 
bottle in 10 s. At what distance below the faucet has the water 
stream narrowed to 10 mm diameter?

 62. || A hurricane wind blows across a 6.0 m * 15.0 m flat roof at a 
speed of 130 km/h.

 a. Is the air pressure above the roof higher or lower than the 
pressure inside the house? Explain.

 b. What is the pressure difference?
 c. How much force is exerted on the roof? If the roof cannot 

withstand this much force, will it “blow in” or “blow out”?
 63. || Air flows through the tube shown in FigurE P15.63 at a rate of 

1200 cm3 /s. Assume that air is an ideal fluid. What is the height 
h of mercury in the right side of the U-tube?

 64. || Air flows through the tube shown in FigurE P15.64. Assume 
that air is an ideal fluid.

 a. What are the air speeds v1 and v2 at points 1 and 2?
 b. What is the volume flow rate?
 65. || A water tank of height h has a small hole at height y. The wa-

ter is replenished to keep h from changing. The water squirting 
from the hole has range x. The range approaches zero as y S 0 
because the water squirts right onto the ground. The range also 
approaches zero as y S h because the horizontal velocity be-
comes zero. Thus there must be some height y between 0 and h 
for which the range is a maximum.

BIO

Mass added (g) Depth (cm)

  50 2.9

100 5.0

150 6.6

200 8.6

FigurE P15.60 
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 a. Find an algebraic expression for the flow speed v with which 
the water exits the hole at height y.

 b. Find an algebraic expression for the range of a particle shot 
horizontally from height y with speed v.

 c. Combine your expressions from parts a and b. Then find the 
maximum range xmax  and the height y of the hole. “Real” 
water won’t achieve quite this range because of viscosity, but 
it will be close.

 66. || a.  A cylindrical tank of radius R, filled to the top with a liq-
uid, has a small hole in the side, of radius r, at distance d 
below the surface. Find an expression for the volume flow 
rate through the hole.

   b.  A 4.0-mm-diameter hole is 1.0 m below the surface of a 
2.0-m-diameter tank of water. What is the rate, in mm/min, 
at which the water level will initially drop if the water is 
not replenished?

 67. || A large 10,000 L aquarium is supported by four wood 
posts (Douglas fir) at the corners. Each post has a square 
4.0 cm * 4.0 cm cross section and is 80 cm tall. By how much is 
each post compressed by the weight of the aquarium?

 68. || There is a disk of cartilage between each pair of vertebrae in 
your spine. Young’s modulus for cartilage is 1.0 * 106 N/m2. 
Suppose a relaxed disk is 4.0 cm in diameter and 5.0 mm thick. 
If a disk in the lower spine supports half the weight of a 66 kg 
person, by how many mm does the disk compress?

 69. || A cylindrical steel pressure vessel with volume 1.30 m3 is to 
be tested. The vessel is entirely filled with water, then a piston at 
one end of the cylinder is pushed in until the pressure inside the 
vessel has increased by 2000 kPa. Suddenly, a safety plug on the 
top bursts. How many liters of water come out?

Challenge Problems

 70. The 1.0-m-tall cylinder in 
Fig urE  CP15.70 contains air at a 
pressure of 1 atm. A very thin, 
frictionless piston of negligible 
mass is placed at the top of the 
cylinder, to prevent any air from 
escaping, then mercury is slowly 
poured into the cylinder until no 
more can be added without the 
cylinder overflowing. What is the 
height h of the column of compressed air?

  Hint: Boyle’s law, which you learned in chemistry, says 
p1V1 = p2V2 for a gas compressed at constant temperature, 
which we will assume to be the case.
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 71. In FigurE CP15.71, a cone of density ro and total height l floats 
in a liquid of density rf  . The height of the cone above the liquid 
is h. What is the ratio h/l of the exposed height to the total 
height?

 72. Disk brakes, such as those in your car, operate by using pressur-
ized oil to push outward on a piston. The piston, in turn, presses 
brake pads against a spinning rotor or wheel, as seen in Fig -

urE CP15.72. Consider a 15 kg industrial grinding wheel, 26 cm 
in diameter, spinning at 900 rpm. The brake pads are actuated by 
2.0-cm-diameter pistons, and they contact the wheel an average 
distance 12 cm from the axis. If the coefficient of kinetic friction 
between the brake pad and the wheel is 0.60, what oil pressure is 
needed to stop the wheel in 5.0 s?

 73. A cylinder of density ro  , length l, and cross-section area A floats in a 
liquid of density rf  with its axis perpendicular to the surface. Length 
h of the cylinder is submerged when the cylinder floats at rest.

 a. Show that h = (ro /rf)l.
 b. Suppose the cylinder is distance y above its equilibrium posi-

tion. Find an expression for (Fnet)y, the y-component of the 
net force on the cylinder. Use what you know to cancel terms 
and write this expression as simply as possible.

 c. You should recognize your result of part b as a version of 
Hooke’s law. What is the “spring constant” k?

 d. If you push a floating object down and release it, it bobs up 
and down. So it is like a spring in the sense that it oscillates if 
displaced from equilibrium. Use your “spring constant” and 
what you know about simple harmonic motion to show that 
the cylinder’s oscillation period is

T = 2p Ah

g

 e. What is the oscillation period for a 100-m-tall iceberg 
(rice = 917 kg/m3) in seawater?

 74. A cylindrical tank of diameter 2R contains water to a depth d. 
A small hole of diameter 2r is opened in the bottom of the tank. 
r V R, so the tank drains slowly. Find an expression for the 
time it takes to drain the tank completely.

FigurE CP15.70 

1.0 m

hAir

Hg

Thin piston of
negligible mass

FigurE CP15.71 

hl
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Oil Oil
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Piston

Rotating
disk

sToP To THiNk ANsWErs

Stop to Think 15.1: Ra � Rb � Rc. Density depends only on what 
the object is made of, not how big the pieces are.

Stop to Think 15.2: c. These are all open tubes, so the liquid rises to 
the same height in all three despite their different shapes.

Stop to Think 15.3: Fb + Fa � Fc . The masses in c do not add. 
The pressure underneath each of the two large pistons is mg/A2, and 
the pressure under the small piston must be the same.

Stop to Think 15.4: b. The weight of the displaced water equals the 
weight of the ice cube. When the ice cube melts and turns into water, 

that amount of water will exactly fill the volume that the ice cube is 
now displacing.

Stop to Think 15.5: 1 cm3/s out. The fluid is incompressible, so the 
sum of what flows in must match the sum of what flows out. 13 cm3/s 
is known to be flowing in, while 12 cm3/s flows out. An additional 
1 cm3/s must flow out to achieve balance.

Stop to Think 15.6: hb + hd + hc + ha . The liquid level is higher 
where the pressure is lower. The pressure is lower where the flow speed is 
higher. The flow speed is highest in the narrowest tube, zero in the open air.



rotation of a rigid Body

A rigid body is a system of particles.
Rotational motion is analogous to linear motion.

Rotational motion Linear motion

Angular acceleration a Acceleration a

Torque t Force F

Moment of inertia I Mass m

Angular momentum L Momentum p

• Newton’s second law tnet = Ia

• Rotational kinetic energy K =
1
2 Iv2

oscillations

Systems with a linear restoring force exhibit simple 
harmonic oscillation.

• The kinematic equations of SHM are

 x(t) = A cos(vt + f0)

 v(t) = -vmax sin(vt + f0)

   where vmax = vA and the phase constant f0 
describes the initial conditions.

• Energy is transformed between kinetic and 
potential as the system oscillates. In an undamped 
system, the total mechanical energy

E =
1
2 mv2 +

1
2 kx2 =

1
2 m(vmax)

2 =
1
2 kA2

is conserved.

Fluids and Elasticity

Fluids are systems that flow. Gases and liquids are 
fluids. Fluids are better characterized by density and 
pressure than by mass and force.

•  Liquids Pressure is primarily gravitational. The 
hydrostatic pressure is

p = p0 + rgd

•  Gases Pressure is primarily thermal. Pressure in a 
container is constant.

•  Archimedes’ principle The buoyant force is 
equal to the weight of the displaced fluid.

For fluid flow, Bernoulli’s equation

p1 +
1
2 rv1 

2 + rgy1 = p2 +
1
2 rv2 

2 + rgy2

is really a statement of energy conservation.

Newton’s Theory of gravity

Any two masses exert attractive gravitational forces 
on each other.

Newton’s law of gravity is

Fm on M = FM on m =
GMm

r2

•  Kepler’s laws describe the elliptical orbits of satel-
lites and planets.

• The gravitational potential energy is

Ug = -  
GMm

r

We have developed two parallel perspectives of motion, each 
with its own concepts and techniques. We focused on the first 
of these in Part I, where we dealt with the relationship between 
force and motion. Newton’s second law is the principle most 
central to the force/motion perspective. Then, in Part II, we 
developed a before-and-after perspective based on the idea of 
conservation laws. Newton’s laws were essential in the devel-
opment of conservation laws, but they remain hidden in the 
background when the conservation laws are applied. Together, 
these two perspectives form the heart of Newtonian mechanics.

Our goal in Part III has been to see how Newtonian me-
chanics is applied to several diverse but important topics. We 
added only one new law of physics in Part III, Newton’s law of 
gravity, and we introduced few completely new concepts. In-
stead, we’ve broadened our understanding of the force/motion 

perspective and the conservation-law perspective through our 
investigations of rotational motion, gravity, oscillations, and 
fluids. In reviewing Part III, pay close attention to the inter-
play between these two perspectives. Recognizing which is the 
best tool in a particular situation will help you improve your 
problem-solving ability.

Our knowledge of mechanics is now essentially complete. 
We will add a few additional ideas as we need them, but our 
journey into physics will be taking us in entirely new directions 
as we continue on. Hence this is an opportune moment to step 
back a bit to take a look at the “big picture.” Newtonian me-
chanics may seem all very factual and straightforward to us to-
day, but keep in mind that these ideas are all human inventions. 
There was a time when they did not exist and when our con-
cepts of nature were quite different from what they are today.

Applications of Newtonian 
Mechanics

III
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mover.” But once the universe was started, it went along 
perfectly well just by obeying Newton’s laws. No divine in-
tervention or guidance was needed. This is certainly a very 
different view of our relationship to God and the universe 
than was contained in the medieval worldview.

Newton also influenced the way people think about them-
selves and their society. His theories clearly demonstrated 
that the universe is not random or capricious but, instead, 
follows natural laws. Others soon began to apply the con-
cept of natural law to human nature, human behavior, and 
human institutions. The main protagonist in this school of 
thought was the English philosopher and political scientist 
John Locke, a contemporary of Newton. Locke developed 
a theory of human behavior from the ideas of natural laws 
and empirical evidence. We cannot go into Locke’s theories 
here, but Newton’s success helped to propel Locke’s ideas 
into the mainstream of 18th-century political thought.

Locke’s writings had a great influence on a young 
American named Thomas Jefferson. The concept of natu-
ral laws, as they apply to individuals, is very much behind 
Jefferson’s enunciation of “unalienable rights” in the Dec-
laration of Independence. In fact, the first sentence of the 
Declaration refers explicitly to “the Laws of Nature and 
of Nature’s God.” The idea of checks and balances, built 
into the Constitution of the United States, is very much a 
mechanical and clock-like model of how political institu-
tions function.

Just as medieval feudalism mirrored the medieval un-
derstanding of the universe, contemporary constitutional 
democracy mirrors, in many ways, the Newtonian cosmol-
ogy. Hierarchy and authority have been replaced by equal-
ity and law because they now seem to us the “natural order” 
of things. Having grown up with this modern worldview, 
we find it difficult to imagine any other. Nonetheless, it is 
important to realize that vastly different worldviews have 
existed at other times and in other cultures.

Science has changed dramatically in the last hundred-
odd years. Newton’s clockwork universe has been super-
seded by relativity and quantum physics. Entirely new 
theories and sciences, such as evolution, ecology, and psy-
chology, have appeared. These new ideas are slowly work-
ing their way into other areas of thought and human activ-
ity, and bit by bit they are changing the ways in which we 
see ourselves, our society, and our relationship to nature. A 
future worldview is in the making.

Newton’s achievements, praised by no less than Einstein 
as “perhaps the greatest advance in thought that a single 
individual was ever privileged to make,” are often called 
the Newtonian synthesis. “Synthesis” means “the uniting or 
combining of separate elements to form a coherent whole.” 
It is often said of Newton that he “united the heavens and 
the earth.” In doing so, he changed forever the way we view 
ourselves and our relationship to the universe.

Medieval cosmology considered the heavenly bodies to 
be perfect, unchanging objects quite unrelated to imperfect 
and changeable earthly matter. Their perfection and im-
mortality symbolized the perfection of God above, while 
the material bodies of humans were imperfect and mor-
tal. This cosmology was mirrored in medieval feudal so-
ciety. The king—ordained by God and whose symbol was 
the sun—was surrounded by a small circle of nobles and 
a larger circle of serfs and peasants. Taken together, the 
ideas and institutions of science, religion, and society of 
this time form what we call the medieval worldview. Their 
worldview, in its many facets, was hierarchical and author-
itarian, reflecting their understanding of “natural order” in 
the universe.

Copernicus weakened medieval cosmology by question-
ing the position of the earth in the universe. Galileo, with 
his telescope, found that the heavens are not perfect and un-
changing. Now, at the end of the 17th century, the success 
of Newton’s theories implied that the sun and the planets 
were merely ordinary matter, obeying the same natural laws 
as earthly matter. This uniting of earthly motions and heav-
enly motions—the synthesis in the Newtonian synthesis—
dealt the final blow to the medieval worldview.

Newton’s success changed the way we see and think about 
the universe. Rather than seeing whirling celestial spheres, 
people began to think of the universe in terms of the motion of 
material particles following rigid laws. This Newtonian con-
ception of the cosmos is often called a “clockwork universe.” 
The technology of clocks was progressing rapidly in the 18th 
century, and people everywhere admired the consistency and 
predictability of these little machines. The Newtonian uni-
verse is a very large machine, but one that is consistent, pre-
dictable, and law-abiding. In other words, a perfect clock.

Major thinkers of the 17th and 18th centuries soon con-
cluded that God had created the world by placing all the 
particles in their original positions, then giving them a push 
to get them going. God, in this role, was called the “prime 

The Newtonian Synthesis
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A modern jet 
engine is a marvel 

of technical 
ingenuity. 

Understanding 
how a jet engine 

works requires 
understanding the 

thermodynamics 
of gases and heat 

engines.



443

Overview

It’s All About Energy
Thermodynamics—the science of energy in its broadest context—arose hand in 
hand with the industrial revolution as the systematic study of converting heat energy 
into mechanical motion and work. Hence the name thermo + dynamics. Indeed, the 
analysis of engines and generators of various kinds remains the focus of engineering 
thermodynamics. But thermodynamics, as a science, now extends to all forms of en-
ergy conversions, including those involving living organisms. For example:

	■	 Engines convert the energy of a fuel into the mechanical energy of moving pistons, 
gears, and wheels.

	■	 Fuel cells convert chemical energy into electrical energy.
	■	 Photovoltaic cells convert the electromagnetic energy of light into electrical 

energy.
	■	 Lasers convert electrical energy into the electromagnetic energy of light.
	■	 Organisms convert the chemical energy of food into a variety of other forms of 

energy, including kinetic energy, sound energy, and thermal energy.

The major goals of Part IV are to understand both how energy transformations such 
as these take place and how efficient they are. We’ll discover that the laws of thermo-
dynamics place limits on the efficiency of energy transformations, and understanding 
these limits is essential for analyzing the very real energy needs of society in the 21st 
century.

Our ultimate destination in Part IV is an understanding of the thermodynamics of 
heat engines. A heat engine is a device, such as a power plant or an internal combus-
tion engine, that transforms heat energy into useful work. These are the devices that 
power our modern society.

Understanding how to transform heat into work will be a significant achievement, 
but we first have many steps to take along the way. We need to understand the con-
cepts of temperature and pressure. We need to learn about the properties of solids, 
liquids, and gases. Most important, we need to expand our view of energy to include 
heat, the energy that is transferred between two systems at different temperatures.

At a deeper level, we need to see how these concepts are connected to the under-
lying microphysics of randomly moving molecules. We will find that the familiar 
concepts of thermodynamics, such as temperature and pressure, have their roots in 
atomic-level motion and collisions. We will also find it possible to learn a great deal 
about the properties of molecules, such as their speeds, on the basis of purely mac-
roscopic measurements. This micro/macro connection will lead to the second law of 
thermodynamics, one of the most subtle but also one of the most profound and far-
reaching statements in physics.

Only after all these steps have been taken will we be able to analyze a real heat 
engine. It is an ambitious goal, but one we can achieve.



Phase Changes
Melting, freezing, boiling, and condensing 
are phase changes, where a macroscopic 
system changes from one phase to another. 
You’ll learn to represent phase changes in 
terms of a phase diagram.

These melting ice 
cubes are under-
going a phase 
change from 
solid to liquid.

Ideal-Gas Processes
Heating or compressing a gas changes 
the state of the gas. We’ll study three 
basic ideal-gas processes:
■	 Constant-pressure process
■	 Constant-volume process
■	 Constant-temperature process

Ideal Gases
We’ll model a gas as consisting of tiny, 
hard spheres that occasionally collide 
with each other or the walls of their 
container but otherwise do not interact. 
You’ll learn to use the ideal-gas law to 
understand the bulk properties of a gas.

The Cat’s eye Nebula 
is a huge ball of hot 
gas ejected by the 
star in the center.

You’ll learn to 
represent ideal-gas 
processes on a pV 
diagram.

Temperature
You’re familiar with temperature, but 
what does it actually measure?

we’ll start with the 
sim ple idea that 
temperature mea-
sures “hotness” and 
“coldness,” but we’ll 
eventually recognize 
that temperature 
measures a system’s 
thermal energy.

You’ll learn to use temperatures in 
kelvins, an absolute temperature scale 
with absolute zero at 0 K.

A Macroscopic 
Description of Matter

16

The phrase “solid as a rock” is 
cast in doubt when rocks melt, 
as they do in this flowing lava.

 Looking Ahead The goal of Chapter 16 is to learn the characteristics of macroscopic systems.

p

V

1

2

Before After

Macroscopic Systems
The properties of a macroscopic system 
are called its bulk properties. Examples 
include a system’s volume, density, pres-
sure, and temperature.

 Looking Back
Sections 15.1–15.3 Fluids and pressure

Macroscopic systems can be characterized 
as solid, liquid, or gas—the three most 
common phases of matter.

Starting with this chapter and continuing 
throughout Part IV, you’ll learn to under-
stand the bulk properties of mac roscopic 
systems in terms of the microscopic  
motion of their atoms and molecules. 
This micro/macro connection is an im-
portant part of our modern understand-
ing of matter.

In this chapter, you will learn to describe 
the amount of substance in a macro-
scopic system using moles, mass, and 
the number of atoms.
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16.1 Solids, Liquids, and Gases
Each of the elements and most compounds can exist as a solid, liquid, or gas—the 
three most common phases of matter. The change between liquid and solid (freez-
ing or melting) or between liquid and gas (boiling or condensing) is called a phase 
change. We’re familiar with only one, or perhaps two, of the phases of most substan-
ces because their melting point and/or boiling point are far outside the range of normal 
human experience. Water is the only substance for which all three phases—ice, liquid, 
and steam—are everyday occurrences.

NoTE  This use of the word “phase” has no relationship at all to the phase or phase 
constant of simple harmonic motion and waves. 

Solids, liquids, and gases

A solid is a rigid macroscopic system 
consisting of particle-like atoms connected 
by spring-like molecular bonds. Each atom 
vibrates around an equilibrium position but 
otherwise has a fixed position. Solids are 
nearly incompressible, which tells us that 
the atoms in a solid are just about as close 
together as they can get.

The solid shown here is a crystal, meaning 
that the atoms are arranged in a periodic 
array. The elements and many compounds 
have a crystal structure when in their solid 
phase. In other solids, such as glass, the 
atoms are frozen into random positions. 
These are called amorphous solids.

A liquid is more complicated than either a 
solid or a gas. Like a solid, a liquid is nearly 
incompressible. This tells us that the mole-
cules in a liquid are about as close together 
as they can get. Like a gas, a liquid flows 
and deforms to fit the shape of its container. 
The fluid nature of a liquid tells us that the 
molecules are free to move around.

Together, these observations suggest a model 
in which the molecules of the liquid are 
loosely held together by weak molecular 
bonds. The bonds are strong enough that the 
molecules never get far apart but not strong 
enough to prevent the molecules from sliding 
around each other.

A gas is a system in which each molecule 
moves through space as a free, noninteracting 
particle until, on occasion, it collides with 
another molecule or with the wall of the con-
tainer. A gas is a fluid. A gas is also highly 
compressible, which tells us that there is lots 
of space between the molecules.

Gases are fairly simple macroscopic systems; 
hence many of our examples in Part IV will 
be based on gases.

Atoms vibrate around
equilibrium positions.

Atoms are held close together
by weak molecular bonds, but
they can slide around each other.

Atoms are far apart and travel
freely through space except for
occasional collisions.

Freeze

Melt

Condense

BoilLiquidSolid Gas

State Variables
The parameters used to characterize or describe a macroscopic system are known as 
state variables because, taken all together, they describe the state of the macroscopic 
system. You met some state variables in earlier chapters: volume, pressure, mass, 
mass density, and thermal energy. We’ll soon introduce several new state variables: 
moles, number density, and, most important, the temperature T.

One important state variable, the mass density, is defined as the ratio of two other 
state variables:

 r =
M

V
  (mass density) (16.1)

In this chapter we’ll use an uppercase M for the system mass and a lowercase m for the 
mass of an atom. Table 16.1 is a short list of mass densities.

TABLE 16.1 Densities of materials

Substance R (kg/m3)

Air at STP* 1.28

Ethyl alcohol 790

Water (solid) 920

Water (liquid) 1000

Aluminum 2700

Copper 8920

Gold 19,300

Iron 7870

Lead 11,300

Mercury 13,600

Silicon 2330

*T = 0�C, p = 1 atm
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If we change the value of any of the state variables, then we change the state of the 
system. For example, to compress a gas means to decrease its volume. The symbol � 
represents a change in the value of a state variable. That is, �T  is a change of tempera-
ture and �p is a change of pressure. For any quantity X, �X is always Xf � Xi, the 
final value minus the initial value.

A system is said to be in thermal equilibrium if its state variables are constant and 
not changing. As an example, a gas is in thermal equilibrium if it has been left undis-
turbed long enough for p, V, and T to reach steady values.

the volume of air in the inner cylinder, of radius r1. The volume 
of the pipe is

 V = pr2 

2l - pr1 

2l = p(r2 

2 - r1 

2)l = 1.47 * 10-4 m3

Hence the pipe’s mass is

 M = rleadV = 1.7 kg

ExAMPLE 16.1  The mass of a lead pipe
A project on which you are working uses a cylindrical lead pipe 
with outer and inner diameters of 4.0 cm and 3.5 cm, respectively, 
and a length of 50 cm. What is its mass?

SoLVE The mass density of lead is rlead = 11,300 kg/m3. The vol-
ume of a circular cylinder of length l is V = pr2l. In this case we 
need to find the volume of the outer cylinder, of radius r2, minus 

Stop to think 16.1  The pressure in a system is measured to be 60 kPa. At a later time 
the pressure is 40 kPa. The value of �p is

 a. 60 kPa b. 40 kPa c. 20 kPa d. -20 kPa

16.2 Atoms and Moles
The mass of a macroscopic system is directly related to the total number of atoms or 
molecules in the system, denoted N. Because N is determined simply by counting, 
it is a number with no units. A typical macroscopic system has N � 1025 atoms, an 
incredibly large number.

The symbol � , if you are not familiar with it, stands for “has the order of magni-
tude.” It means that the number is known only to within a factor of 10 or so. The state-
ment N � 1025, which is read “N is of order 1025,” implies that N is somewhere in 
the range 1024 to 1026. It is far less precise than the “approximately equal” symbol � . 
Saying N � 1025 gives us a rough idea of how large N is and allows us to know that 
it differs significantly from 105 or even 1015.

It is often useful to know the number of atoms or molecules per cubic meter in a 
system. We call this quantity the number density. It characterizes how densely the 
atoms are packed together within the system. In an N-atom system that fills volume V, 
the number density is

 
N

V
  (number density) (16.2)

The SI units of number density are m-3. The number density of atoms in a solid is 
(N/V)solid � 1029 m-3. The number density of a gas depends on the pressure, but is 
usually less than 1027 m-3. As FIGurE 16.1 shows, the value of N/V  in a uniform sys-
tem is independent of the volume V. That is, the number density is the same whether 
you look at the whole system or just a portion of it.

NoTE  While we might say “There are 100 tennis balls per cubic meter,” or “There 
are 1029 atoms per cubic meter,” tennis balls and atoms are not units. The units of 
N/V  are simply m-3. 

If we look at only half the room, we 
would find 5000 balls in 50 m3, again 
giving N/V � 5000/50 m3 � 100 m�3.

In one-tenth of the room, we would 
find 1000 balls in 10 m3, again giving
N/V � 1000/10 m3 � 100 m�3.

A 100 m3 room has 10,000 tennis balls bouncing 
around. The number density of tennis balls in 
the room is N/V � 10,000/100 m3 � 100 m�3.

FIGurE 16.1 The number density of a 
uniform system is independent of the 
volume.
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Atomic Mass and Atomic Mass Number
You will recall from chemistry that atoms of different elements have different masses. 
The mass of an atom is determined primarily by its most massive constituents, the 
protons and neutrons in its nucleus. The sum of the number of protons and neutrons is 
called the atomic mass number A:

 A = number of protons + number of neutrons

A, which by definition is an integer, is written as a leading superscript on the atomic 
symbol. For example, the common isotope of hydrogen, with one proton and no neu-
trons, is 1H. The “heavy hydrogen” isotope called deuterium, which includes one neu-
tron, is 2H. The primary isotope of carbon, with six protons (which makes it carbon) 
and six neutrons, is 12C. The radioactive isotope 14C, used for carbon dating of archeo-
logical finds, contains six protons and eight neutrons.

The atomic mass scale is established by defining the mass of 12C to be exactly 12 u, 
where u is the symbol for the atomic mass unit. That is, m(12C) = 12 u. The atomic 
mass of any other atom is its mass relative to 12C. For example, careful experiments 
with hydrogen find that the mass ratio m(1H)/m(12C) is 1.0078/12. Thus the atomic 
mass of hydrogen is m(1H) = 1.0078 u.

The numerical value of the atomic mass of 1H is close to, but not exactly, its atomic 
mass number A = 1. For our purposes, it will be sufficient to overlook the slight dif-
ference and use the integer atomic mass numbers as the values of the atomic mass. 
That is, we’ll use m(1H) = 1 u, m(4He) = 4 u, and m(16O) =16 u. For molecules, the 
molecular mass is the sum of the atomic masses of the atoms forming the molecule. 
Thus the molecular mass of O2, the constituent of oxygen gas, is m(O2) = 32 u.

NoTE  An element’s atomic mass number is not the same as its atomic number. 
The atomic number, the element’s position in the periodic table, is the number of 
protons in the nucleus. 

Table 16.2 shows the atomic mass numbers of some of the elements that we’ll use 
for examples and homework problems. A complete periodic table of the elements, 
including atomic masses, is found in Appendix B.

Moles and Molar Mass
One way to specify the amount of substance in a macroscopic system is to give its 
mass. Another is to measure the amount of substance in moles. By definition, one 
mole of matter, be it solid, liquid, or gas, is the amount of substance containing as 
many basic particles as there are atoms in 0.012 kg (12 g) of 12C. Many ingenious 
experiments have determined that there are 6.02 * 1023 atoms in 0.012 kg of 12C, so 
we can say that 1 mole of substance, abbreviated 1 mol, is 6.02 * 1023 basic particles.

The basic particle depends on the substance. Helium is a monatomic gas, meaning 
that the basic particle is the helium atom. Thus 6.02 * 1023 helium atoms are 1 mol of 
helium. But oxygen gas is a diatomic gas because the basic particle is the two-atom 
diatomic molecule O2. 1 mol of oxygen gas contains 6.02 * 1023 molecules of O2 
and thus 2 * 6.02 * 1023 oxygen atoms. Table 16.3 lists the monatomic and diatomic 
gases that we will use for examples and homework problems.

The number of basic particles per mole of substance is called Avogadro’s number, 
NA. The value of Avogadro’s number is

 NA = 6.02 * 1023 mol-1

Despite its name, Avogadro’s number is not simply “a number”; it has units. Because 
there are NA particles per mole, the number of moles in a substance containing N basic 
particles is

 n =
N

NA
  (moles of substance) (16.3)

One mole of helium, sulfur, copper, and 
mercury.

TABLE 16.3 Monatomic and diatomic 
gases

Monatomic Diatomic

He Helium H2 Hydrogen

Ne Neon N2 Nitrogen

Ar Argon O2 Oxygen

TABLE 16.2 Some atomic mass numbers

Element A
1H Hydrogen   1
4He Helium   4
12C Carbon  12
14N Nitrogen  14
16O Oxygen  16
20Ne Neon  20
27Al Aluminum  27
40Ar Argon  40
207Pb Lead 207
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Avogadro’s number allows us to determine atomic masses in kilograms. Knowing that 
NA 12C atoms have a mass of 0.012 kg, the mass of one 12C atom must be

 m(12C) =
0.012 kg

6.02 * 1023 = 1.993 * 10-26 kg

We defined the atomic mass scale such that m(12C) = 12 u. Thus the conversion factor 
between atomic mass units and kilograms is

 1 u =
m(12C)

12
= 1.66 * 10-27 kg

This conversion factor allows us to calculate the mass in kg of any atom. For example, 
a 20Ne atom has atomic mass m(20Ne) = 20 u. Multiplying by 1.66 * 10-27 kg/u gives 
m(20Ne) = 3.32 * 10-26 kg. If the atomic mass is specified in kilograms, the number 
of atoms in a system of mass M can be found from

 N =
M
m

 (16.4)

The molar mass of a substance is the mass of 1 mol of substance. The molar 
mass, which we’ll designate Mmol, has units kg/mol. By definition, the molar mass 
of 12C is 0.012 kg/mol. For other substances, whose atomic or molecular masses are 
given relative to 12C, the numerical value of the molar mass is the numerical value 
of the atomic or molecular mass divided by 1000. For example, the molar mass of 
He, with m = 4 u, is Mmol(He) = 0.004 kg/mol and the molar mass of diatomic O2 is 
Mmol(O2) = 0.032 kg/mol.

Equation 16. 4 uses the atomic mass to find the number of atoms in a system. Simi-
larly, you can use the molar mass to determine the number of moles. For a system of 
mass M consisting of atoms or molecules with molar mass Mmol,

 n =
M

Mmol
 (16.5)

 N =
M

m
=

0.100 kg

5.31 * 10-26 kg
= 1.88 * 1024

Knowing the number of molecules gives us the number of moles:

 n =
N

NA
= 3.13 mol

Alternatively, we can use Equation 16.5 to find

 n =
M

Mmol
=

0.100 kg

0.032 kg/mol
= 3.13 mol

ExAMPLE 16.2  Moles of oxygen
100 g of oxygen gas is how many moles of oxygen?

SoLVE We can do the calculation two ways. First, let’s determine 
the number of molecules in 100 g of oxygen. The diatomic oxygen 
molecule O2 has molecular mass m = 32 u. Converting this to kg, 
we get the mass of one molecule:

 m = 32 u *
1.66 * 10-27 kg

1 u
= 5.31 * 10-26 kg

Thus the number of molecules in 100 g = 0.100 kg is

Stop to think 16.2  Which system contains more atoms: 5 mol of helium (A = 4) or 
1 mol of neon (A = 20)?

 a. Helium. b. Neon. c. They have the same number of atoms.
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16.3 Temperature
We are all familiar with the idea of temperature. Mass is a measure of the amount of 
substance in a system. Velocity is a measure of how fast a system moves. What physi-
cal property of the system have you determined if you measure its temperature?

We will begin with the commonsense idea that temperature is a measure of how 
“hot” or “cold” a system is. As we develop these ideas, we’ll find that temperature T 
is related to a system’s thermal energy. We defined thermal energy in Chapter 10 as 
the kinetic and potential energy of the atoms and molecules in a system as they vibrate 
(a solid) or move around (a gas). A system has more thermal energy when it is “hot” 
than when it is “cold.” In Chapter 18, we’ll replace these vague notions of hot and cold 
with a precise relationship between temperature and thermal energy.

To start, we need a means to measure the temperature of a system. This is what a 
thermometer does. A thermometer can be any small macroscopic system that under-
goes a measurable change as it exchanges thermal energy with its surroundings. It is 
placed in contact with a larger system whose temperature it will measure. In a com-
mon glass-tube thermometer, for example, a small volume of mercury or alcohol ex-
pands or contracts when placed in contact with a “hot” or “cold” object. The object’s 
temperature is determined by the length of the column of liquid.

A thermometer needs a temperature scale to be a useful measuring device. In 1742, 
the Swedish astronomer Anders Celsius sealed mercury into a small capillary tube and 
observed how it moved up and down the tube as the temperature changed. He selected 
two temperatures that anyone could reproduce, the freezing and boiling points of pure 
water, and labeled them 0 and 100. He then marked off the glass tube into one hundred 
equal intervals between these two reference points. By doing so, he invented the tem-
perature scale that we today call the Celsius scale. The units of the Celsius temperature 
scale are “degrees Celsius,” which we abbreviate �C. Note that the degree symbol � is 
part of the unit, not part of the number.

The Fahrenheit scale, still widely used in the United States, is related to the Celsius 
scale by

 TF =
9

5
 TC + 32� (16.6)

Table 16.4 lists several temperatures measured on the Celsius and Fahrenheit scales 
and also on the Kelvin scale.

Thermal expansion of the liquid in the 
thermometer tube pushes it higher in the 
hot water than in the ice water.

TABLE 16.4 Temperatures measured with different scales

Temperature T (°C) T (K) T (°F)

Melting point of iron 1538 1811 2800

Boiling point of water  100  373  212

Normal body temperature   37  310   99

Room temperature   20  293   68

Freezing point of water    0  273   32

Boiling point of nitrogen -196   77 -321

Absolute zero -273    0 -460

Absolute Zero and Absolute Temperature
Any physical property that changes with temperature can be used as a thermometer. In 
practice, the most useful thermometers have a physical property that changes linearly 
with temperature. One of the most important scientific thermometers is the constant-
volume gas thermometer shown in FIGurE 16.2a on the next page. This thermometer 
depends on the fact that the absolute pressure (not the gauge pressure) of a gas in a 
sealed container increases linearly as the temperature increases.
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A gas thermometer is first calibrated by recording the pressure at two reference 
temperatures, such as the boiling and freezing points of water. These two points are 
plotted on a pressure-versus-temperature graph and a straight line is drawn through 
them. The gas bulb is then brought into contact with the system whose temperature is 
to be measured. The pressure is measured, then the corresponding temperature is read 
off the graph.

FIGurE 16.2b shows the pressure-temperature relationship for three different gases. 
Notice two important things about this graph.

 1. There is a linear relationship between temperature and pressure.
 2. All gases extrapolate to zero pressure at the same temperature: T0 = -273�C. 

No gas actually gets that cold without condensing, although helium comes very 
close, but it is surprising that you get the same zero-pressure temperature for any 
gas and any starting pressure.

The pressure in a gas is due to collisions of the molecules with each other and 
the walls of the container. A pressure of zero would mean that all motion, and thus 
all collisions, had ceased. If there were no atomic motion, the system’s thermal en-
ergy would be zero. The temperature at which all motion would cease, and at which 

th = 0, is called absolute zero. Because temperature is related to thermal energy, 
absolute zero is the lowest temperature that has physical meaning. We see from the 
gas-thermometer data that T0 = -273�C.

It is useful to have a temperature scale with the zero point at absolute zero. Such a 
temperature scale is called an absolute temperature scale. Any system whose tem-
perature is measured on an absolute scale will have T 7 0. The absolute temperature 
scale having the same unit size as the Celsius scale is called the Kelvin scale. It is the 
SI scale of temperature. The units of the Kelvin scale are kelvins, abbreviated as K. 
The conversion between the Celsius scale and the Kelvin scale is

 TK = TC + 273 (16.7)

On the Kelvin scale, absolute zero is 0 K, the freezing point of water is 273 K, and the 
boiling point of water is 373 K.

NoTE  The units are simply “kelvins,” not “degrees Kelvin.” 

Stop to think 16.3  The temperature of a glass of water increases from 20�C to 30�C. 
What is �T?

 a. 10 K b. 283 K c. 293 K d. 303 K

16.4 Phase Changes
The temperature inside the freezer compartment of a refrigerator is typically about 
-20�C. Suppose you were to remove a few ice cubes from the freezer, place them in 
a sealed container with a thermometer, then heat them, as FIGurE 16.3a shows. We’ll 
assume that the heating is done so slowly that the inside of the container always has a 
single, well-defined temperature.

FIGurE 16.3b shows the temperature as a function of time. After steadily rising from 
the initial -20�C, the temperature remains fixed at 0�C for an extended period of time. 
This is the interval of time during which the ice melts. As it’s melting, the ice tempera-
ture is 0�C and the liquid water temperature is 0�C. Even though the system is being 
heated, the liquid water temperature doesn’t begin to rise until all the ice has melted. 
If you were to turn off the flame at any point, the system would remain a mixture of 
ice and liquid water at 0�C.
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absolute pressure
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gas-filled 
sphere

T
System whose
temperature is
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Condensation
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100�100�200�300

T0 � �273�C

0

Each gas thermometer
is calibrated at 0�C 
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FIGurE 16.2 The pressure in a constant-
volume gas thermometer extrapolates 
to zero at T0 = -273�C. This is the basis 
for the concept of absolute zero.
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NoTE  In everyday language, the three phases of water are called ice, water, and 
steam. That is, the term water implies the liquid phase. Scientifically, these are the 
solid, liquid, and gas phases of the compound called water. To be clear, we’ll use 
the term water in the scientific sense of a collection of H2O molecules. We’ll say 
either liquid or liquid water to denote the liquid phase. 

The thermal energy of a solid is the kinetic energy of the vibrating atoms plus the 
potential energy of the stretched and compressed molecular bonds. Melting occurs 
when the thermal energy gets so large that molecular bonds begin to break, allowing 
the atoms to move around. The temperature at which a solid becomes a liquid or, if the 
thermal energy is reduced, a liquid becomes a solid is called the melting point or the 
freezing point. Melting and freezing are phase changes.

A system at the melting point is in phase equilibrium, meaning that any amount 
of solid can coexist with any amount of liquid. Raise the temperature ever so slightly 
and the entire system becomes liquid. Lower it slightly and it all becomes solid. But 
exactly at the melting point the system has no tendency to move one way or the other. 
That is why the temperature remains constant at the melting point until the phase 
change is complete.

You can see the same thing happening in Figure 16.3b at 100�C, the boiling point. 
This is a phase equilibrium between the liquid phase and the gas phase, and any 
amount of liquid can coexist with any amount of gas at this temperature. Above this 
temperature, the thermal energy is too large for bonds to be established between mol-
ecules, so the system is a gas. If the thermal energy is reduced, the molecules begin 
to bond with each other and stick together. In other words, the gas condenses into a 
liquid. The temperature at which a gas becomes a liquid or, if the thermal energy is 
increased, a liquid becomes a gas is called the condensation point or the boiling 
point.

NoTE  Liquid water becomes solid ice at 0�C, but that doesn’t mean the tempera-
ture of ice is always 0�C. Ice reaches the temperature of its surroundings. If the air 
temperature in a freezer is -20�C, then the ice temperature is -20�C. Likewise, 
steam can be heated to temperatures above 100�C. That doesn’t happen when you 
boil water on the stove because the steam escapes, but steam can be heated far 
above 100�C in a sealed container. 

A phase diagram is used to show how the phases and phase changes of a substance 
vary with both temperature and pressure. FIGurE 16.4 shows the phase diagrams for 
water and carbon dioxide. You can see that each diagram is divided into three regions 
corresponding to the solid, liquid, and gas phases. The boundary lines separating the 
regions indicate the phase transitions. The system is in phase equilibrium at a pressure-
temperature point that falls on one of these lines.

Phase diagrams contain a great deal of information. Notice on the water phase 
diagram that the dashed line at p = 1 atm crosses the solid-liquid boundary at 0�C 
and the liquid-gas boundary at 100�C. These well-known melting and boiling point 
temperatures of water apply only at standard atmospheric pressure. You can see that 
in Denver, where patmos 6 1 atm, water melts at slightly above 0�C and boils at a tem-
perature below 100�C. A pressure cooker works by allowing the pressure inside to 
exceed 1 atm. This raises the boiling point, so foods that are in boiling water are at a 
temperature above 100�C and cook faster.

Crossing the solid-liquid boundary corresponds to melting or freezing while cross-
ing the liquid-gas boundary corresponds to boiling or condensing. But there’s another 
possibility—crossing the solid-gas boundary. The phase change in which a solid be-
comes a gas is called sublimation. It is not an everyday experience with water, but you 
probably are familiar with the sublimation of dry ice. Dry ice is solid carbon dioxide. 
You can see on the carbon dioxide phase diagram that the dashed line at p = 1 atm 
crosses the solid-gas boundary, rather than the solid-liquid boundary, at T = -78�C. 
This is the sublimation temperature of dry ice.
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Liquid carbon dioxide does exist, but only at pressures greater than 5 atm and 
temperatures greater than -56�C. A CO2 fire extinguisher contains liquid carbon di-
oxide under high pressure. (You can hear the liquid slosh if you shake a CO2 fire 
extinguisher.)

One important difference between the water and carbon dioxide phase diagrams is the 
slope of the solid-liquid boundary. For most substances, the solid phase is denser than 
the liquid phase and the liquid is denser than the gas. Pressurizing the substance com-
presses it and increases the density. If you start compressing CO2 gas at room tempera-
ture, thus moving upward through the phase diagram along a vertical line, you’ll first 
condense it to a liquid and eventually, if you keep compressing, change it into a solid.

Water is a very unusual substance in that the density of ice is less than the density of 
liquid water. That is why ice floats. If you compress ice, making it denser, you eventu-
ally cause a phase transition in which the ice turns to liquid water! Consequently, the 
solid-liquid boundary for water slopes to the left.

The liquid-gas boundary ends at a point called the critical point. Below the critical 
point, liquid and gas are clearly distinct and there is a phase change if you go from 
one to the other. But there is no clear distinction between liquid and gas at pressures 
or temperatures above the critical point. The system is a fluid, but it can be varied con-
tinuously between high density and low density without a phase change.

The final point of interest on the phase diagram is the triple point where the phase 
boundaries meet. Two phases are in phase equilibrium along the boundaries. The triple 
point is the one value of temperature and pressure for which all three phases can coexist 
in phase equilibrium. That is, any amounts of solid, liquid, and gas can happily coexist 
at the triple point. For water, the triple point occurs at T3 = 0.01�C and p3 = 0.006 atm.

The significance of the triple point of water is its connection to the Kelvin tempera-
ture scale. The Celsius scale required two reference points, the boiling and melting 
points of water. We can now see that these are not very satisfactory reference points 
because their values vary as the pressure changes. In contrast, there’s only one tem-
perature at which ice, liquid water, and water vapor will coexist in equilibrium. If you 
produce this equilibrium in the laboratory, then you know the system is at the triple-
point temperature.

The triple-point temperature of water is an ideal reference point, hence the Kelvin 
temperature scale is defined to be a linear temperature scale starting from 0 K at 
absolute zero and passing through 273.16 K at the triple point of water. Because 
T3 = 0.01�C, absolute zero on the Celsius scale is T0 = -273.15�C.

NoTE  To be consistent with our use of significant figures, T0 = -273 K is the 
appropriate value to use in calculations unless you know other temperatures with 
an accuracy of better than 1�C. 

Stop to think 16.4  For which is there a sublimation temperature that is higher than a 
melting temperature?

 a. Water b. Carbon dioxide c. Both d. Neither

16.5 Ideal Gases
We noted earlier in the chapter that solids and liquids are nearly incompressible, an 
observation suggesting that atoms are fairly hard and cannot be pressed together once 
they come into contact with each other. Based on this observation, suppose we were to 
model atoms as “hard spheres” that do not interact except for occasional elastic colli-
sions when two atoms come into contact and bounce apart.

This is a model of an atom—what we might call the ideal atom—because it ignores 
the weak attractive interactions that hold liquids and solids together. A gas of these 

Food takes longer to cook at high altitudes 
because the boiling point of water is less 
than 100�C.
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noninteracting atoms is called an ideal gas. It is a gas of small, hard, randomly moving 
atoms that bounce off each other and the walls of their container but otherwise do not 
interact. The ideal gas is a somewhat simplified description of a real gas, but experiments 
show that the ideal-gas model is quite good for real gases if two conditions are met:

 1. The density is low (i.e., the atoms occupy a volume much smaller than that of 
the container), and

 2. The temperature is well above the condensation point.

If the density gets too high, or the temperature too low, then the attractive forces 
between the atoms begin to play an important role and our model, which ignores those 
attractive forces, fails. These are the forces that are responsible, under the right condi-
tions, for the gas condensing into a liquid.

We’ve been using the term “atoms,” but many gases, as you know, consist of mol-
ecules rather than atoms. Only helium, neon, argon, and the other inert elements in the 
far-right column of the periodic table of the elements form monatomic gases. Hydro-
gen (H2), nitrogen (N2), and oxygen (O2) are diatomic gases. As far as translational 
motion is concerned, the ideal-gas model does not distinguish between a monatomic 
gas and a diatomic gas; both are considered as simply small, hard spheres. Hence the 
terms “atoms” and “molecules” can be used interchangeably to mean the basic con-
stituents of the gas.

The Ideal-Gas Law
Section 16.1 introduced the idea of state variables, those parameters that describe the 
state of a macroscopic system. The state variables for an ideal gas are the volume V of 
its container, the number of moles n of the gas present in the container, the temperature 
T of the gas and its container, and the pressure p that the gas exerts on the walls of the 
container. These four state parameters are not independent of each other. If you change 
the value of one—by, say, raising the temperature—then one or more of the others 
will change as well. Each change of the parameters is a change of state of the system.

Experiments during the 17th and 18th centuries found a very specific relationship 
between the four state variables. Suppose you change the state of a gas, by heating it 
or compressing it or doing something else to it, and measure p, V, n, and T. Repeat this 
many times, changing the state of the gas each time, until you have a large table of p, 
V, n, and T values.

Then make a graph on which you plot pV, the product of the pressure and volume, 
on the vertical axis and nT, the product of the number of moles and temperature (in 
kelvins), on the horizontal axis. The very surprising result is that for any gas, whether 
it is hydrogen or helium or oxygen or methane, you get exactly the same graph, the 
linear graph shown in FIGurE 16.5. In other words, nothing about the graph indicates 
what gas was used because all gases give the same result.

NoTE  No real gas could extend to nT = 0 because it would condense. But an 
ideal gas never condenses because the only interactions among the molecules are 
hard-sphere collisions. 

As you can see, there is a very clear proportionality between the quantity pV and 
the quantity nT. If we designate the slope of the line in this graph as R, then we can 
write the relationship as

 pV = R * (nT)

It is customary to write this relationship in a slightly different form, namely

 pV = nRT  (ideal@gas law) (16.8)

Equation 16.8 is the ideal-gas law. The ideal-gas law is a relationship among the four 
state variables—p, V, n, and T—that characterize a gas in thermal equilibrium.
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pV (J)
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8.31

0
2

16.62

The graph of pV versus nT
is a straight line with slope
R � 8.31 J/mol K.

FIGurE 16.5 A graph of pV versus nT for 
an ideal gas.
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The constant R, which is determined experimentally as the slope of the graph in 
Figure 16.5, is called the universal gas constant. Its value, in SI units, is

 R = 8.31 J/mol K

The units of R seem puzzling. The denominator mol K is clear because R multiplies 
nT. But what about the joules? The left side of the ideal-gas law, pV, has units

 Pa m3 =
N

m2 m3 = N m = joules

The product pV has units of joules, as shown on the vertical axis in Figure 16.5.

NoTE  You perhaps learned in chemistry to work gas problems using units of at-
mospheres and liters. To do so, you had a different numerical value of R expressed 
in those units. In physics, however, we always work gas problems in SI units. Pres-
sures must be in Pa, volumes in m3, and temperatures in K. 

The surprising fact, and one worth commenting upon, is that all gases have the 
same graph and the same value of R. There is no obvious reason a very simple atomic 
gas such as helium should have the same slope as a more complex gas such as methane 
(CH4). Nonetheless, both turn out to have the same value for R. The ideal-gas law, 
within its limits of validity, describes all gases with a single value of the constant R.

  V = (600 cm3)1 1 m

100 cm 2 3

= 6.00 * 10-4 m3

  T = (150 + 273) K = 423 K

With this information, the pressure is

  p =
nRT

V
=

(3.13 mol)(8.31 J/mol K)(423 K)

6.00 * 10-4 m3

  = 1.83 * 107 Pa = 181 atm

ExAMPLE 16.3  Calculating a gas pressure
100 g of oxygen gas is distilled into an evacuated 600 cm3 con-
tainer. What is the gas pressure at a temperature of 150�C?

ModEL The gas can be treated as an ideal gas. Oxygen is a di-
atomic gas of O2 molecules.

SoLVE From the ideal-gas law, the pressure is p = nRT/V. In 
Example 16.2 we calculated the number of moles in 100 g of O2 and 
found n = 3.13 mol. Gas problems typically involve several con-
versions to get quantities into the proper units, and this example is no 
exception. The SI units of V and T are m3 and K, respectively, thus

In this text we will consider only gases in sealed containers. The number of moles 
(and number of molecules) will not change during a problem. In that case,

 
pV

T
= nR = constant (16.9)

If the gas is initially in state i, characterized by the state variables pi, Vi, and Ti, and at 
some later time in a final state f, the state variables for these two states are related by

 
pfVf

Tf
=

piVi

Ti
  (ideal gas in a sealed container) (16.10)

This before-and-after relationship between the two states, reminiscent of a conserva-
tion law, will be valuable for many problems.

In this problem, the compression of the gas results in V2 /V1 =
1
2 

and p2 /p1 = 3. The initial temperature is T1 = 0�C = 273 K. 
With this information,

 T2 = 273 K * 3 *
1

2
= 409 K = 136�C

ASSESS We did not need to know actual values of the pressure and 
volume, just the ratios by which they change.

ExAMPLE 16.4  Calculating a gas temperature
A cylinder of gas is at 0�C. A piston compresses the gas to half its 
original volume and three times its original pressure. What is the 
final gas temperature?

ModEL Treat the gas as an ideal gas in a sealed container.

SoLVE The before-and-after relationship of Equation 16.10 can be 
written

 T2 = T1 
p2

p1
 
V2

V1



We will often want to refer to the number of molecules N in a gas rather than the 
number of moles n. This is an easy change to make. Because n = N/NA, the ideal-gas 
law in terms of N is

 pV = nRT =
N

NA
 RT = N 

R

NA
 T  (16.11)

R/NA, the ratio of two known constants, is known as Boltzmann’s constant kB:

 kB =
R

NA
= 1.38 * 10-23 J/K

The subscript B distinguishes Boltzmann’s constant from a spring constant or other 
uses of the symbol k.

Ludwig Boltzmann was an Austrian physicist who did some of the pioneering work 
in statistical physics during the mid-19th century. Boltzmann’s constant kB can be 
thought of as the “gas constant per molecule,” whereas R is the “gas constant per 
mole.” With this definition, the ideal-gas law in terms of N is

 pV = NkBT  (ideal@gas law) (16.12)

Equations 16.8 and 16.12 are both the ideal-gas law, just expressed in terms of differ-
ent state variables.

Recall that the number density (molecules per m3) was defined as N/V. A re-
arrangement of Equation 16.12 gives the number density as

 
N

V
=

p

kBT
 (16.13)

This is a useful consequence of the ideal-gas law, but keep in mind that the pressure 
must be in SI units of pascals and the temperature must be in SI units of kelvins.

  
N

V
=

p

kB T
=

1.01 * 105 Pa

(1.38 * 10-23 J/K)(273 K)

  = 2.69 * 1025 molecules/m3

where we used the definition of STP in SI units. Thus the average 
volume per molecule is

 vavg =
1

N/V
= 3.72 * 10-26 m3

The volume of a sphere is 43pr3, so the average radius of a sphere is

 ravg = 1 3

4p
 vavg2 1/3

= 2.1 * 10-9 m = 2.1 nm

The average distance between two molecules, with their spheres 
touching, is twice ravg. Thus

 average distance = 2ravg � 4 nm

This is a simple estimate, so we’ve given the answer with only one 
significant figure.

ASSESS One of the assumptions of the ideal-gas model is that at-
oms or molecules are “far apart” in comparison to the sizes of 
atoms and molecules. Chemistry experiments find that small mol-
ecules, such as N2 and O2, are roughly 0.3 nm in diameter. For a 
gas at STP, we see that the average distance between molecules 
is more than 10 times the size of a molecule. Thus the ideal-gas 
model works very well for a gas at STP.

ExAMPLE 16.5  The distance between molecules
“Standard temperature and pressure,” abbreviated STP, are 
T = 0�C and p = 1 atm. Estimate the average distance between 
gas molecules at STP.

ModEL Consider the gas to be an ideal gas.

SoLVE Suppose a container of volume V  holds N  molecules at 
STP. How do we estimate the distance between them? Imagine 
placing an imaginary sphere around each molecule, separating it 
from its neighbors. This divides the total volume V  into N  little 
spheres of volume vi, where i = 1 to N. The spheres of two neigh-
boring molecules touch each other, like a crate full of Ping-Pong 
balls of somewhat different sizes all touching their neighbors, so 
the distance between two molecules is the sum of the radii of their 
two spheres. Each of these spheres is somewhat different, but a 
reasonable estimate of the distance between molecules would be 
twice the average radius of a sphere.

The average volume of one of these little spheres is

 vavg =
V

N
=

1

N/V

That is, the average volume per molecule (m3 per molecule) is the 
inverse of the number density, the number of molecules per m3. 
This is not the volume of the molecule itself, which is much small-
er, but the average volume of space that each molecule can claim 
as its own. We can use Equation 16.13 to calculate the number 
density:
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Stop to think 16.5  You have two containers of equal volume. One is full of helium 
gas. The other holds an equal mass of nitrogen gas. Both gases have the same pressure. 
How does the temperature of the helium compare to the temperature of the nitrogen?

 a. Thelium 7 Tnitrogen b. Thelium = Tnitrogen c. Thelium 6 Tnitrogen

16.6 Ideal-Gas Processes
The ideal-gas law is the connection between the state variables pressure, temperature, 
and volume. If the state variables change, as they would from heating or compressing 
the gas, the state of the gas changes. An ideal-gas process is the means by which the 
gas changes from one state to another.

NoTE  Even in a sealed container, the ideal-gas law is a relationship among three 
variables. In general, all three change during an ideal-gas process. As a result, think-
ing about cause and effect can be rather tricky. Don’t make the mistake of thinking 
that one variable is constant unless you’re sure, beyond a doubt, that it is. 

The pV diagram
It will be very useful to represent ideal-gas processes on a graph called a pV diagram. 
This is nothing more than a graph of pressure versus volume. The important idea 
behind the pV diagram is that each point on the graph represents a single, unique 
state of the gas. That seems surprising at first, because a point on the graph only 
directly specifies the values of p and V. But knowing p and V, and assuming that n 
is known for a sealed container, we can find the temperature by using the ideal-gas 
law. Thus each point actually represents a triplet of values (p, V, T) specifying the 
state of the gas.

For example, FIGurE 16.6a is a pV diagram showing three states of a system consist-
ing of 1 mol of gas. The values of p and V can be read from the axes for each point, 
then the temperature at that point determined from the ideal-gas law. An ideal-gas 
process can be represented as a “trajectory” in the pV diagram. The trajectory shows 
all the intermediate states through which the gas passes. FIGurE 16.6b shows two differ-
ent processes by which the gas of Figure 16.6a can be changed from state 1 to state 3.

There are infinitely many ways to change the gas from state 1 to state 3. Although 
the initial and final states are the same for each of them, the particular process by 
which the gas changes—that is, the particular trajectory—will turn out to have very 
real consequences. For example, you will soon learn that the work done by an expand-
ing gas, a quantity of very practical importance in various devices, depends on the 
trajectory followed. The pV diagram is an important graphical representation of the 
process.

Quasi-Static Processes
Strictly speaking, the ideal-gas law applies only to gases in thermal equilibrium, 
meaning that the state variables are constant and not changing. But, by definition, 
an ideal-gas process causes some of the state variables to change. The gas is not in 
thermal equilibrium while the process of changing from state 1 to state 2 is under way.

To use the ideal-gas law throughout, we will assume that the process occurs so 
slowly that the system is never far from equilibrium. In other words, the values of p, 
V, and T at any point in the process are essentially the same as the equilibrium values 
they would assume if we stopped the process at that point. A process that is essentially 
in thermal equilibrium at all times is called a quasi-static process. It is an idealiza-
tion, like a frictionless surface, but one that is a very good approximation in many real 
situations.

V (m3)

p (kPa)

10
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0
2 3
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(b)

1
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5
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(a)

1

2

2

3

T1 � 900 K

n � 1 mol

T3 � 600 K

T2 � 3600 K

Each state of an ideal gas is represented 
as a point on a pV diagram.

Two different processes that change
the gas from state 1 to state 3.

FIGurE 16.6 The state of the gas and 
ideal-gas processes can be shown on a 
pV diagram.
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An important characteristic of a quasi-static process is that the trajectory through 
the pV diagram can be reversed. If you quasi-statically expand a gas by slowly pulling 
a piston out, as shown in FIGurE 16.7a, you can reverse the process by slowly pushing 
the piston in. The gas retraces its pV trajectory until it has returned to its initial state. 
Contrast this with what happens when the membrane bursts in FIGurE 16.7b. That is a 
sudden process, not at all quasi-static. The irreversible process of Figure 16.7b cannot 
be represented on a pV diagram.

The critical question is: How slow must a process be to qualify as quasi-static? That 
is a difficult question to answer. This textbook will always assume that processes 
are quasi-static. It turns out to be a reasonable assumption for the types of examples 
and homework problems we will look at. Irreversible processes will be left to more 
advanced courses.

Constant-Volume Process
Many important gas processes take place in a container of constant, unchanging vol-
ume. A constant-volume process is called an isochoric process, where iso is a prefix 
meaning “constant” or “equal” while choric is from a Greek root meaning “volume.” 
An isochoric process is one for which

 Vf = Vi (16.14)

For example, suppose that you have a gas in the closed, rigid container shown in 
FIGurE 16.8a. Warming the gas with a Bunsen burner will raise its pressure without 
changing its volume. This process is shown as the vertical line 1 S 2 on the pV dia-
gram of FIGurE 16.8b. A constant-volume cooling, by placing the container on a block of 
ice, would lower the pressure and be represented as the vertical line from 2 to 1. Any 
isochoric process appears on a pV diagram as a vertical line.

(a)

(b)

Quasi-static process

Membrane 
suddenly bursts.

Piston moves
very slowly.

Irreversible process

FIGurE 16.7 The slow motion of the 
piston is a quasi-static process. The 
bursting of the membrane is not.

(a) p1

V1

Before

Constant-
volume
container

p2

After

V2 � V1

Don't confuse volume V
with the amount of gas n.
Volume is the physical
size of the container.
Any amount of gas can
fit inside the container.

(b)

V

p

p1

V

p2

1

2
An isochoric
process appears
on a pV diagram
as a vertical line.

FIGurE 16.8 A constant-volume (isochoric) process.

is p2V2 /T2 = p1V1/T1. The volume doesn’t change, so V2/V1 = 1. 
Thus

  T2 = T1 
V2

V1
 
p2

p1
= T1 

p2

p1
= (273.16 K) 

65.12 kPa

55.78 kPa

  = 318.90 K = 45.75�C

The temperature must be in kelvins to do this calculation, although 
it is common to convert the final answer to �C. The fact that the 
pressures were given to four significant figures justified using 
TK = TC + 273.15 rather than the usual TC + 273.

ASSESS T2 7 T1, which we expected from the increase in pressure.

ExAMPLE 16.6  A constant-volume gas thermometer
A constant-volume gas thermometer is placed in contact with a 
reference cell containing water at the triple point. After reach-
ing equilibrium, the gas pressure is recorded as 55.78 kPa. The 
thermometer is then placed in contact with a sample of unknown 
temperature. After the thermometer reaches a new equilibrium, 
the gas pressure is 65.12 kPa. What is the temperature of this 
sample?

ModEL The thermometer’s volume doesn’t change, so this is an 
isochoric process.

SoLVE The temperature at the triple point of water is 
T1 = 0.01�C = 273.16 K. The ideal-gas law for a closed system 
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Constant-Pressure Process
Other gas processes take place at a constant, unchanging pressure. A constant-pressure 
process is called an isobaric process, where baric is from the same root as “barom-
eter” and means “pressure.” An isobaric process is one for which

 pf = pi (16.15)

FIGurE 16.9a shows one method of changing the state of a gas while keeping the pres-
sure constant. A cylinder of gas has a tight-fitting piston of mass M that can slide up 
and down but seals the container so that no atoms enter or escape. As the free-body di-
agram of FIGurE 16.9b shows, the piston and the air press down with force patmosA + Mg 
while the gas inside pushes up with force pgas A. In equilibrium, the gas pressure inside 
the cylinder is

 pgas = patmos +
Mg

A
 (16.16)

In other words, the gas pressure is determined by the requirement that the gas must 
support both the mass of the piston and the air pressing inward. This pressure is 
independent of the temperature of the gas or the height of the piston, so it stays 
constant as long as M is unchanged.

If the cylinder is warmed, the gas will expand and push the piston up. But the pres-
sure, determined by mass M, will not change. This process is shown on the pV diagram 
of FIGurE 16.9c as the horizontal line 1 S 2. We call this an isobaric expansion. An 
isobaric compression occurs if the gas is cooled, lowering the piston. Any isobaric 
process appears on a pV diagram as a horizontal line.

(a)

Before After

The piston’s mass maintains a
constant pressure in the cylinder.

V1
V2

M

M

Area A

(b) pgasA

patmosA Mg

Piston

(c)

V

p

p

V1 V2

1 2

An isobaric process appears on 
a pV diagram as a horizontal line.

FIGurE 16.9 A constant-pressure 
(isobaric) process.

ModEL Treat the gases as ideal gases.

SoLVE a. The pressure in the gas is determined by the require-
ment that the piston be in mechanical equilibrium. The pres-
sure of the gas inside pushes up on the piston; the air pres-
sure and the weight of the piston press down. The gas pressure 
p = patmos + Mg/A depends on the mass of the piston, but not 
at all on how high the piston is or what type of gas is inside the 
cylinder. Thus both pressures are the same.

 b. Neither does the pressure depend on temperature. Warming the 
gas increases the temperature, but the pressure—determined 
by the mass and area of the piston—is unchanged. Because 
pV/T = constant, and p is constant, it must be true that 
V/T = constant. As T increases, the volume V also must increase 
to keep V/T  unchanged. In other words, increasing the gas tem-
perature causes the volume to expand—the piston goes up—but 
with no change in pressure. This is an isobaric process.

ExAMPLE 16.7  Comparing pressure
The two cylinders in FIGurE 16.10 contain ideal gases at 20�C. 
Each cylinder is sealed by a frictionless piston of mass M.

 a. How does the pressure of gas 2 compare to that of gas 1? Is it 
larger, smaller, or the same?

 b. Suppose gas 2 is warmed to 80�C. Describe what happens to 
the pressure and volume.

M

M

Gas 1
20�C Gas 2

20�C

FIGurE 16.10 Compare the pressures of the two gases.

Temperature (�C) Volume (L)

-50 11.6
0 14.0

50 16.2
100 19.4
150 21.8

ExAMPLE 16.8  Identifying a gas
Your lab assistant distilled 50 g of a gas into a cylinder, but he 
left without writing down what kind of gas it is. The cylinder has 
a pressure regulator that adjusts a piston to keep the pressure at a 
constant 2.00 atm. To identify the gas, you measure the cylinder 
volume at several different temperatures, acquiring the data shown 
at the right. What is the gas?



Stop to think 16.6  Two cylinders of equal diameter contain the same number of 
moles of the same ideal gas. Each cylinder is sealed by a frictionless piston. To have 
the same pressure in both cylinders, which piston would you use in cylinder 2?

Constant-Temperature Process
The last process we wish to look at for now is one that takes place at a constant temper-
ature. A constant-temperature process is called an isothermal process. An isothermal 
process is one for which Tf = Ti. Because pV = nRT, a constant-temperature process 
in a closed system (constant n) is one for which the product pV doesn’t change. Thus

 pfVf = piVi (16.17)

in an isothermal process.
One possible isothermal process is illustrated in FIGurE 16.12a, where a piston is be-

ing pushed down to compress a gas. If the piston is pushed slowly, then heat energy 
transfer through the walls of the cylinder keeps the gas at the same temperature as the 
surrounding liquid. This is an isothermal compression. The reverse process, with the 
piston slowly pulled out, would be an isothermal expansion.

Representing an isothermal process on the pV diagram is a little more complicated 
than the two previous processes because both p and V change. As long as T remains 
fixed, we have the relationship

 p =
nRT

V
=

constant

V
 (16.18)

The inverse relationship between p and V causes the graph of an isothermal pro-
cess to be a hyperbola. As one state variable goes up, the other goes down.

 M =
0.050 kg

1.26 mol
= 0.040 kg/mol

Thus the atomic mass is 40 u, identifying the gas as argon.

ASSESS The atomic mass is that of a well-known gas, which gives 
us confidence in the result.

ModEL The pressure doesn’t change, so heating the gas is an iso-
baric process.

SoLVE The ideal-gas law is pV = nRT. Writing this as

 V =
nR

p
 T

we see that a graph of V  versus T  should be a straight line pass-
ing through the origin. Further, we can use the slope of the graph, 
nR/p, to measure the number of moles of gas, and from that we can 
identify the gas by determining its molar mass.

FIGurE 16.11 is a graph of the data, with the volumes and tem-
peratures converted to SI units of m3 (1 m3 = 1000 L) and kelvins. 
The y-intercept of the graph is essentially zero, confirming the 
behavior of the gas as ideal, and the slope of the best-fit line is 
5.16 * 10-5 m3/K. The number of moles of gas is

n =
p

R
* slope =

2 * 101,300 Pa

8.31 J/mol K
* 5.16 * 10-5 m3/K = 1.26 mol

From this, the molar mass is

y � 5.16 � 10�5x � 6.68 � 10�5

T (K)

Best-fit line

0

V (m3)

0.005

0.010

0.015

0.020
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0
100 200 300 400 500

FIGurE 16.11 A graph of the gas volume versus its 
temperature.
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M
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Ma � M
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Mb � M
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Mc � M

Cylinder 1

Piston not
shown

(a) Push

Constant-temperature surroundings

V1

V2

(b)

V

p

p1

V2 V1

p2

1

2

An isothermal process 
appears on a pV diagram
as a hyperbola.

Increasing
temperature

Isotherms

(c)

V

p
T1 T2 T3 T4

FIGurE 16.12 A constant-temperature 
(isothermal) process.
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The process shown as 1 S 2 in FIGurE 16.12b represents the isothermal compression 
shown in Figure 16.12a. An isothermal expansion would move in the opposite direc-
tion along the hyperbola.

The location of the hyperbola depends on the value of T. A lower-temperature 
process is represented by a hyperbola closer to the origin than a higher-temperature 
process. FIGurE 16.12c shows four hyperbolas representing the temperatures T1 to T4, 
where T4 7 T3 7 T2 7 T1. These are called isotherms. A gas undergoing an isother-
mal process moves along the isotherm of the appropriate temperature.

ExAMPLE 16.9  Compressing air in the lungs
An ocean snorkeler takes a deep breath at the surface, filling his lungs with 4.0 L of 
air. He then descends to a depth of 5.0 m. At this depth, what is the volume of air in the 
snorkeler’s lungs?

ModEL At the surface, the pressure in the lungs is 1.00 atm. Because the body cannot 
sustain large pressure differences between inside and outside, the air pressure in the 
lungs rises—and the volume decreases—to match the surrounding water pressure as he 
descends.

SoLVE The ideal-gas law for a sealed container is

V2 =
p1

p2
 
T2

T1
 V1

Air is quickly warmed to body temperature as it enters through the nose and mouth, 
and it remains at body temperature as the snorkeler dives, so T2/T1 = 1. We know 
p1 = 1.00 atm =  101,300 Pa at the surface. We can find p2 from the hydrostatic 
pressure equation, using the density of seawater:

 p2 = p1 + rgd = 101,300 Pa + (1030 kg/m3)(9.80 m/s2)(5.0 m)

 = 151,800 Pa

With this, the volume of the lungs at a depth of 5.0 m is

V2 =
101,300 Pa

151,800 Pa
 * 1 * 4.0 L = 2.7 L

ASSESS The air inside your lungs does compress—significantly—as you dive below the 
surface.

 T3 = T2 
p3

p2
 
V3

V2
= T2 

1
2 V2

V2
=

1

2
 T2 = 236.5 K = -36.5�C

where we converted T2 to 473 K before doing calculations and then 
converted T3 back to �C. The final state, with T3 = -36.5�C and 
p3 = 1.0 atm, is one in which both the pressure and the absolute 
temperature are half their original values.

ExAMPLE 16.10  A multistep process
A gas at 2.0 atm pressure and a temperature of 200�C is first ex-
panded isothermally until its volume has doubled. It then under-
goes an isobaric compression until it returns to its original volume. 
First show this process on a pV diagram. Then find the final tem-
perature (in �C) and pressure.

ModEL The final state of the isothermal expansion is the initial 
state for an isobaric compression.

VISuALIZE FIGurE 16.13 shows the process. As the gas expands 
isothermally, it moves downward along an isotherm until it 
reaches volume V2 = 2V1. The gas is then compressed at constant 
pressure p2 until its final volume V3 equals its original volume 
V1. State 3 is on an isotherm closer to the origin, so we expect to 
find T3 6 T1.

SoLVE T2/T1 = 1 during the isothermal expansion and V2 = 2V1, 
so the pressure at point 2 is

 p2 = p1 
T2

T1
 
V1

V2
= p1 

V1

2V1
=

1

2
 p1 = 1.0 atm

We have p3/p2 = 1 during the isobaric compression and 
V3 = V1 =

1
2 V2, so

V

p (atm)

V1 � V3

T3 T1

0

1

0
V2 � 2V1

2

23

1

Isotherms

The gas expands isothermally
from 1 to 2 . . .

 . . . then is compressed
isobarically from 2 to 3.

FIGurE 16.13 A pV diagram for the process of 
example 16.10.



Stop to think 16.7  What is the ratio Tf/Ti for this process?

 a. 1
4

 b. 1
2

 c. 1 (no change)
 d. 2
 e. 4
 f. There’s not enough information to tell.

V

p

10

2

0
2

4

1

3

i

f

 h2 =
1.023 * 105 Pa

1.063 * 105 Pa
 * 100.0 cm = 96.2 cm

The question, however, was by how much the piston is depressed. 
This is h1 - h2 = 3.8 cm.

ASSESS Neither the piston nor the student increases the gas pres-
sure to much above 1 atm, so it’s not surprising that the added 
weight of the student doesn’t push the piston down very far.

ChALLENGE ExAMPLE 16.11  depressing a piston
A large, 50.0-cm-diameter metal cylinder filled with air supports 
a 20.0 kg piston that can slide up and down without friction. The 
piston is 100.0 cm above the bottom when the temperature is 20�C. 
An 80.0 kg student then stands on the piston. After several minutes 
have elapsed, by how much has the piston been depressed?

ModEL The metal walls of the cylinder are a good thermal con-
ductor, so after several minutes the gas temperature—even if it 
initially changed—will return to room temperature. The final tem-
perature matches the initial temperature. Assume that the atmo-
spheric pressure is 1 atm.

VISuALIZE FIGurE 16.14 shows the cylinder before and after the 
student stands on it. The volume of the cylinder is V = Ah, and 
only h changes.

SoLVE The ideal-gas law for a sealed container is

 
p2Ah2

T2
=

p1Ah1

T1

Because T2 = T1, the final height of the piston is

 h2 =
p1

p2
 h1

The pressure of the gas is determined by the mass of the piston 
(and anything on the piston) and the pressure of the air above. In 
equilibrium,

 p = patmos +
Mg

A
= e 1.023 * 105 Pa   piston only

1.063 * 105 Pa   piston and student

where we used patmos = 1 atm = 1.013 * 105 Pa and A = pr2 =  
0.196 m2. The final height of the piston is

FIGurE 16.14 The student compresses the gas.
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S u M M A r y
The goal of Chapter 16 has been to learn the characteristics of macroscopic systems.

General Principles
Three Common Phases of Matter
Solid  Rigid, definite shape. 

Nearly incompressible.

Liquid  Molecules loosely held 
together by molecular bonds,  
but able to move around.  
Nearly incompressible.

Gas  Molecules moving freely 
through space.  
Compressible.

The different phases exist  
for different conditions of  
temperature T and pressure p. 
The boundaries separating the  
regions of a phase diagram are 
lines of phase equilibrium. Any  
amounts of the two phases can  
coexist in equilibrium. The  
triple point is the one value 
of temperature and pressure  
at which all three phases can  
coexist in equilibrium.

T

p

SOLID LIQUID

GAS

Triple point

Boiling/
condensation
point

Melting/
freezing
point

Important Concepts
Ideal-Gas Model
•	 Atoms and molecules are small, hard 

spheres that travel freely through space 
except for occasional collisions with 
each other or the walls.

•	 The model is valid when the density is low and the 
temperature well above the condensation point.

Ideal-Gas Law
The state variables of an ideal gas are related by the ideal-gas law

pV = nRT or pV = NkBT

where R = 8.31 J/mol K is the universal gas constant and 
kB = 1.38 * 10-23 J/K is Boltzmann’s constant. p, V, and T must 
be in SI units of Pa, m3, and K.

For a gas in a sealed container, with constant n:

p2V2

T2
=

p1V1

T1

Counting atoms and moles

A macroscopic sample of matter consists of N atoms (or 
molecules), each of mass m (the atomic or molecular mass):

N =
M

m

Alternatively, we can state that 
the sample consists of n moles:

n =
N

NA
 or 

M

Mmol

where NA = 6.02 * 1023 mol-1 is Avogadro’s number.

The molar mass Mmol, in kg/mol, is the numerical value of the 
atomic or molecular mass in u divided by 1000. The atomic or 
molecular mass, in atomic mass units u, is well approximated  
by the atomic mass number A. The atomic mass unit is

1 u = 1.66 * 10-27 kg

The number density of the sample is 
N

V
.

Volume V

Mass M

Applications
Temperature scales

 TF =
9

5
 TC + 32�   TK = TC + 273

The Kelvin temperature scale is based on:

•	 Absolute zero at T0 = 0 K

•	 The triple point of water at T3 = 273.16 K

Three basic gas processes

1. Isochoric, or constant volume

2. Isobaric, or constant pressure

3. Isothermal, or constant temperature

1

2

3

p

V

pV diagram
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bulk properties
micro/macro connection
phase
phase change
solid
crystal
amorphous solid
liquid
gas
state variable
thermal equilibrium
number density, N/V

atomic mass number, A
atomic mass
atomic mass unit, u
molecular mass
mole, n
monatomic gas
diatomic gas
Avogadro’s number, NA 
molar mass, Mmol

temperature, T
constant-volume gas 

thermometer

absolute zero, T0

absolute temperature scale
melting point
freezing point
phase equilibrium
condensation point
boiling point
phase diagram
sublimation
critical point
triple point
ideal gas

ideal-gas law
universal gas constant, R
Boltzmann’s constant, kB 
STP
ideal-gas process
pV diagram
quasi-static process
isochoric process
isobaric process
isothermal process
isotherm

Terms and Notation

C o N C E P T u A L  Q u E S T I o N S

 1. Rank in order, from highest to lowest, the temperatures 
T1 = 0 K, T2 = 0�C, and T3 = 0�F.

 2. The sample in an experiment is initially at 10�C. If the sample’s 
temperature is doubled, what is the new temperature in �C?

 3. a.  Is there a highest temperature at which ice can exist? If so, 
what is it? If not, why not?

 b. Is there a lowest temperature at which water vapor can exist? 
If so, what is it? If not, why not?

 4. The cylinder in FIGurE Q16.4 is divided into two compartments 
by a frictionless piston that can slide back and forth. Is the pres-
sure on the left side greater than, less than, or equal to the pres-
sure on the right? Explain.

 5. A gas is in a sealed container. By what factor does the gas tem-
perature change if:

 a. The volume is doubled and the pressure is tripled?
 b. The volume is halved and the pressure is tripled?
 6. A gas is in a sealed container. The gas pressure is tripled and the 

temperature is doubled.
 a. What happens to the number of moles of gas in the container?
 b. What happens to the number density of the gas in the 

container?
 7. An aquanaut lives in an underwater apartment 100 m beneath the 

surface of the ocean. Compare the freezing and boiling points of 
water in the aquanaut’s apartment to their values at the surface. 
Are they higher, lower, or the same? Explain.

 8. a.  A sample of water vapor in an enclosed cylinder has an initial 
pressure of 500 Pa at an initial temperature of -0.01�C. A 
piston squeezes the sample smaller and smaller, without 
limit. Describe what happens to the water as the squeezing 
progresses.

 b. Repeat part a if the initial temperature is 0.03�C warmer.

 9. A gas is in a sealed container. By what factor does the gas pres-
sure change if:

 a. The volume is doubled and the temperature is tripled?
 b. The volume is halved and the temperature is tripled?
 10. A gas undergoes the process shown in FIGurE Q16.10. By what 

factor does the temperature change?

 11. The temperature increases from 300 K to 1200 K as a gas un-
dergoes the process shown in FIGurE Q16.11. What is the final 
pressure?

 12. A student is asked to sketch a pV diagram for a gas that goes 
through a cycle consisting of (a) an isobaric expansion, (b) a 
constant-volume reduction in temperature, and (c) an isothermal 
process that returns the gas to its initial state. The student draws 
the diagram shown in FIGurE Q16.12. What, if anything, is wrong 
with the student’s diagram?
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E x E r C I S E S  A N d  P r o B L E M S

Problems labeled  integrate material from earlier chapters.

Exercises

Section 16.1 Solids, Liquids, and Gases

 1. | What volume of water has the same mass as 100 cm3 of gold?
 2. || The nucleus of a uranium atom has a diameter of 1.5 * 10-14 m 

and a mass of 4.0 * 10-25 kg. What is the density of the nucleus?
 3. || A hollow aluminum sphere with outer diameter 10.0 cm has a 

mass of 690 g. What is the sphere’s inner diameter?
 4. || What is the diameter of a copper sphere that has the same 

mass as a 10 cm * 10 cm * 10 cm cube of aluminum?

Section 16.2 Atoms and Moles

 5. || How many atoms are in a 2.0 cm * 2.0 cm * 2.0 cm cube of 
aluminum?

 6. || How many moles are in a 2.0 cm * 2.0 cm * 2.0 cm cube of 
copper?

 7. || What is the number density of (a) aluminum and (b) lead?
 8. || An element in its solid phase has mass density 1750 kg/m3 

and number density 4.39 * 1028 atoms/m3. What is the ele-
ment’s atomic mass number?

 9. || What volume of aluminum has the same number of atoms as 
10 cm3 of mercury?

 10. || 1.0 mol of gold is shaped into a sphere. What is the sphere’s 
diameter?

Section 16.3 Temperature

Section 16.4 Phase Changes

 11. | The lowest and highest natural temperatures ever recorded on 
earth are -127�F in Antarctica and 136�F in Libya. What are 
these temperatures in �C and in K?

 12. | At what temperature does the numerical value in �F match the 
numerical value in �C?

 13. || A demented scientist creates a new temperature scale, the “Z 
scale.” He decides to call the boiling point of nitrogen 0�Z and 
the melting point of iron 1000�Z.

 a. What is the boiling point of water on the Z scale?
 b. Convert 500�Z to degrees Celsius and to kelvins.
 14. || What is the temperature in �F and the pressure in Pa at the 

triple point of (a) water and (b) carbon dioxide?

Section 16.5 Ideal Gases

 15. | A cylinder contains nitrogen gas. A piston compresses the gas 
to half its initial volume. Afterward,

 a. Has the mass density of the gas changed? If so, by what fac-
tor? If not, why not?

 b. Has the number of moles of gas changed? If so, by what fac-
tor? If not, why not?

 16. || 3.0 mol of gas at a temperature of -120�C fills a 2.0 L con-
tainer. What is the gas pressure?

 17. || A gas at 100�C fills volume V0. If the pressure is held constant, 
what is the volume if (a) the Celsius temperature is doubled and 
(b) the Kelvin temperature is doubled?

 18. || A rigid container holds 2.0 mol of gas at a pressure of 1.0 atm 
and a temperature of 30�C.

 a. What is the container’s volume?
 b. What is the pressure if the temperature is raised to 130�C?
 19. || The total lung capacity of a typical adult is 5.0 L. Approxi-

mately 20% of the air is oxygen. At sea level and at a body tem-
perature of 37�C, how many oxygen molecules do the lungs 
contain at the end of a strong inhalation?

 20. || A 20-cm-diameter cylinder that is 40 cm long contains 50 g of 
oxygen gas at 20�C.

 a. How many moles of oxygen are in the cylinder?
 b. How many oxygen molecules are in the cylinder?
 c. What is the number density of the oxygen?
 d. What is the reading of a pressure gauge attached to the tank?
 21. || A 10-cm-diameter cylinder of neon gas is 30 cm long and at 

30�C. The pressure gauge reads 120 psi. What is the mass den-
sity of the gas?

Section 16.6 Ideal-Gas Processes

 22. | A gas with initial state variables p1, V1, and T1 expands iso-
thermally until V2 = 2V1. What are (a) T2 and (b) p2?

 23. | A gas with initial state variables p1, V1, and T1 is cooled in an 
isochoric process until p2 =  

1
3 p1. What are (a) V2 and (b) T2?

 24. | A rigid sphere is submerged in boiling water in a room where 
the air pressure is 1.0 atm. The sphere has an open valve with its 
inlet just above the water level. After a long period of time has 
elapsed, the valve is closed. What will be the pressure inside the 
sphere if it is then placed in (a) a mixture of ice and water and 
(b) an insulated box filled with dry ice?

 25. || A rigid container holds hydrogen gas at a pressure of 3.0 atm 
and a temperature of 20�C. What will the pressure be if the tem-
perature is lowered to -20�C?

 26. || A 24-cm-diameter vertical cylinder is sealed at the top by a 
frictionless 20 kg piston. The piston is 84 cm above the bottom 
when the gas temperature is 303�C. The air above the piston is at 
1.00 atm pressure.

 a. What is the gas pressure inside the cylinder?
 b. What will the height of the piston be if the temperature is 

lowered to 15�C?
 27. || 0.10 mol of argon gas is admitted to an evacuated 50 cm3 con-

tainer at 20�C. The gas then undergoes an isochoric heating to a 
temperature of 300�C.

 a. What is the final pressure of the gas?
 b. Show the process on a pV diagram. Include a proper scale on 

both axes.
 28. | 0.10 mol of argon gas is admitted to an evacuated 50 cm3 con-

tainer at 20�C. The gas then undergoes an isobaric heating to a 
temperature of 300�C.

 a. What is the final volume of the gas?
 b. Show the process on a pV diagram. Include a proper scale on 

both axes.
 29. || 0.10 mol of argon gas is admitted to an evacuated 50 cm3 con-

tainer at 20�C. The gas then undergoes an isothermal expansion 
to a volume of 200 cm3.

 a. What is the final pressure of the gas?
 b. Show the process on a pV diagram. Include a proper scale on 

both axes.
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 30. | 0.0040 mol of gas undergoes the process shown in FIG -

urE Ex16.30.
 a. What type of process is this?
 b. What are the initial and final temperatures in �C?

 31. || A gas with an initial temperature of 900�C undergoes the 
process shown in FIGurE Ex16.31.

 a. What type of process is this?
 b. What is the final temperature in �C?
 c. How many moles of gas are there?
 32. | 0.020 mol of gas undergoes the process shown in FIG -

urE Ex16.32.
 a. What type of process is this?
 b. What is the final temperature in �C?
 c. What is the final volume V2?

Problems

 33. || The atomic mass number of copper is A = 64. Assume that 
atoms in solid copper form a cubic crystal lattice. To envision 
this, imagine that you place atoms at the centers of tiny sugar 
cubes, then stack the little sugar cubes to form a big cube. If 
you dissolve the sugar, the atoms left behind are in a cubic 
crystal lattice. What is the smallest distance between two 
copper atoms?

 34. || An element in its solid phase forms a cubic crystal lattice (see 
Problem 33) with mass density 7950 kg/m3. The smallest spac-
ing between two adjacent atoms is 0.227 nm. What is the ele-
ment’s atomic mass number?

 35. || The molecular mass of water (H2O) is A = 18. How many 
protons are there in 1.0 L of liquid water?

 36. || Estimate the number density of gas molecules in the earth’s 
atmosphere at sea level.

 37. | The solar corona is a very hot atmosphere surrounding the vis-
ible surface of the sun. X-ray emissions from the corona show 
that its temperature is about 2 * 106 K. The gas pressure in the 
corona is about 0.03 Pa. Estimate the number density of particles 
in the solar corona.

 38. || The semiconductor industry manufactures integrated circuits 
in large vacuum chambers where the pressure is 1.0 * 10-10 mm 
of Hg.

 a. What fraction is this of atmospheric pressure?
 b. At T = 20�C, how many molecules are in a cylindrical cham-

ber 40 cm in diameter and 30 cm tall?
 39. || A 6.0-cm-diameter, 10-cm-long cylinder contains 100 mg of 

oxygen (O2) at a pressure less than 1 atm. The cap on one end of 
the cylinder is held in place only by the pressure of the air. One 
day when the atmospheric pressure is 100 kPa, it takes a 184 N 
force to pull the cap off. What is the temperature of the gas?

 40. || A nebula—a region of the galaxy where new stars are 
forming—contains a very tenuous gas with 100 atoms/cm3. This 
gas is heated to 7500 K by ultraviolet radiation from nearby 
stars. What is the gas pressure in atm?

 41. ||| An inflated bicycle inner tube is 2.2 cm in diameter and 
200 cm in circumference. A small leak causes the gauge pres-
sure to decrease from 110 psi to 80 psi on a day when the tem-
perature is 20�C. What mass of air is lost? Assume the air is pure 
nitrogen.

 42. || On average, each person in the industrialized world is respon-
sible for the emission of 10,000 kg of carbon dioxide (CO2) 
every year. This includes CO2 that you generate directly, by 
burning fossil fuels to operate your car or your furnace, as well 
as CO2 generated on your behalf by electric generating stations 
and manufacturing plants. CO2 is a greenhouse gas that contrib-
utes to global warming. If you were to store your yearly CO2 
emissions in a cube at STP, how long would each edge of the 
cube be?

 43. || A gas at temperature T0 and atmospheric pressure fills a cyl-
inder. The gas is transferred to a new cylinder with three times 
the volume, after which the pressure is half the original pressure. 
What is the new temperature of the gas?

 44. || To determine the mass of neon contained in a rigid, 2.0 L cyl-
inder, you vary the cylinder’s temperature while recording the 
reading of a pressure gauge. Your data are as follows:

Temperature (�C) Pressure gauge (atm)

100 6.52

150 7.80

200 8.83

250 9.59

  Use the best-fit line of an appropriate graph to determine the 
mass of the neon.

 45. || The 3.0-m-long pipe in FIGurE P16.45 is closed at the top end. 
It is slowly pushed straight down into the water until the top end 
of the pipe is level with the water’s surface. What is the length L 
of the trapped volume of air?
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 46. || An electric generating plant boils water to produce high- 
pressure steam. The steam spins a turbine that is connected to 
the generator.

 a. How many liters of water must be boiled to fill a 5.0 m3 boil-
er with 50 atm of steam at 400�C?

 b. The steam has dropped to 2.0 atm pressure at 150�C as it exits 
the turbine. How much volume does it now occupy?

 47. ||| On a cool morning, when the temperature is 15�C, you mea-
sure the pressure in your car tires to be 30 psi. After driving 
20 mi on the freeway, the temperature of your tires is 45�C. 
What pressure will your tire gauge now show?

 48. || The air temperature and pressure in a laboratory are 20�C and 
1.0 atm. A 1.0 L container is open to the air. The container is 
then sealed and placed in a bath of boiling water. After reaching 
thermal equilibrium, the container is opened. How many moles 
of air escape?

 49. || A gas cylinder with a tight-fitting, movable piston contains 
200 cm3 of air at 1.0 atm. It floats on the surface of a swimming 
pool filled with 15�C water. The cylinder is then pulled slowly 
underwater to a depth of 3.0 m. What is the volume of gas at this 
depth?

 50. || The mercury manometer shown in FIGurE P16.50 is attached 
to a gas cell. The mercury height h is 120 mm when the cell 
is placed in an ice-water mixture. The mercury height drops to 
30 mm when the device is carried into an industrial freezer. What 
is the freezer temperature?
Hint: The right tube of the manometer is much narrower than 
the left tube. What reasonable assumption can you make about 
the gas volume?

 51. || The U-shaped tube in FIGurE P16.51 has a total length of 1.0 m. 
It is open at one end, closed at the other, and is initially filled with 
air at 20�C and 1.0 atm pressure. Mercury is poured slowly into the 
open end without letting any air escape, thus compressing the air. 
This is continued until the open side of the tube is completely filled 
with mercury. What is the length L of the column of mercury?

 52. || A diver 50 m deep in 10�C fresh water exhales a 1.0-cm-
diameter bubble. What is the bubble’s diameter just as it reaches 
the surface of the lake, where the water temperature is 20�C?
Hint: Assume that the air bubble is always in thermal equilib-
rium with the surrounding water.

 53. || A compressed-air cylinder is known to fail if the pressure 
exceeds 110 atm. A cylinder that was filled to 25 atm at 20�C is 
stored in a warehouse. Unfortunately, the warehouse catches fire 
and the temperature reaches 950�C. Does the cylinder blow?

 54. || Reproduce FIGurE P16.54 on a piece of paper. A gas starts with 
pressure p1 and volume V1. Show on the figure the process in 

which the gas undergoes an isochoric process that doubles the 
pressure, then an isobaric process that doubles the volume, fol-
lowed by an isothermal process that doubles the volume again. 
Label each of the three processes.

 55. || Reproduce FIGurE P16.55 on a piece of paper. A gas starts with 
pressure p1 and volume V1. Show on the figure the process in 
which the gas undergoes an isothermal process during which the 
volume is halved, then an isochoric process during which the 
pressure is halved, followed by an isobaric process during which 
the volume is doubled. Label each of the three processes.

 56. | 8.0 g of helium gas follows the process 1 S 2 S 3 shown in 
FIGurE P16.56. Find the values of V1, V3, p2, and T3.

 57. || FIGurE P16.57 shows two different processes by which 1.0 g of 
nitrogen gas moves from state 1 to state 2. The temperature of 
state 1 is 25�C. What are (a) pressure p1 and (b) temperatures (in 
�C) T2, T3, and T4?

 58. || FIGurE P16.58 shows two different processes by which 80 mol of 
gas move from state 1 to state 2. The dashed line is an isotherm.

 a. What is the temperature of the isothermal process?
 b. What maximum temperature is reached along the straight-

line process?

 59. || 0.10 mol of gas undergoes the process 1 S 2 shown in FIG-

urE P16.59.
 a. What are temperatures T1 and T2 (in �C)?
 b. What type of process is this?
 c. The gas undergoes an isothermal compression from point 2 

until the volume is restored to the value it had at point 1. 
What is the final pressure of the gas?
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 60. | 0.0050 mol of gas undergoes the process 1 S 2 S 3 shown in 
FIGurE P16.60. What are (a) temperature T1, (b) pressure p2, and 
(c) volume V3?

 61. || 4.0 g of oxygen gas, starting at 20�C, follow the process 
1 S 2 shown in FIGurE P16.61. What is temperature T2 (in �C)?

 62. || 10 g of dry ice (solid CO2) is placed in a 10,000 cm3 con-
tainer, then all the air is quickly pumped out and the container 
sealed. The container is warmed to 0�C, a temperature at which 
CO2 is a gas.

 a. What is the gas pressure? Give your answer in atm. 
The gas then undergoes an isothermal compression until the 
pressure is 3.0 atm, immediately followed by an isobaric com-
pression until the volume is 1000 cm3.

 b. What is the final temperature of the gas (in �C)?
 c. Show the process on a pV diagram.
 63. || A container of gas at 2.0 atm pressure and 127�C is compressed 

at constant temperature until the volume is halved. It is then further 
compressed at constant pressure until the volume is halved again.

 a. What are the final pressure and temperature of the gas?
 b. Show this process on a pV diagram.
 64. || Five grams of nitrogen gas at an initial pressure of 3.0 atm 

and at 20�C undergo an isobaric expansion until the volume has 
tripled.

 a. What is the gas volume after the expansion?
 b. What is the gas temperature after the expansion (in �C)?

The gas pressure is then decreased at constant volume until the 
original temperature is reached.

 c. What is the gas pressure after the decrease?
Finally, the gas is isothermally compressed until it returns to its 
initial volume.

 d. What is the final gas pressure?
 e. Show the full three-step process on a pV diagram. Use ap-

propriate scales on both axes.

In Problems 65 through 68 you are given the equation(s) used to solve 
a problem. For each of these, you are to
 a. Write a realistic problem for which this is the correct equation(s).
 b. Draw a pV diagram.
 c. Finish the solution of the problem.

 65. p2 =
300 cm3

100 cm3 * 1 * 2 atm

 66. (T2 + 273) K =
200 kPa

500 kPa
 * 1 * (400 + 273) K

 67. V2 =
(400 + 273) K

(50 + 273) K
* 1 * 200 cm3

 68. (2.0 * 101,300 Pa)(100 * 10-6 m3) = n(8.31 J/mol K)T1

n =
0.12 g

20 g/mol

T2 =
200 cm3

100 cm3 * 1 * T1

Challenge Problems

 69. The 50 kg lead piston shown in FIGurE CP16.69 floats on 0.12 mol 
of compressed air.

 a. What is the piston height h if the temperature is 30�C?
 b. How far does the piston move if the temperature is increased 

by 100�C?

 70. A diving bell is a 3.0-m-tall cylinder closed at the upper end but 
open at the lower end. The temperature of the air in the bell is 
20�C. The bell is lowered into the ocean until its lower end is 
100 m deep. The temperature at that depth is 10�C.

 a. How high does the water rise in the bell after enough time has 
passed for the air inside to reach thermal equilibrium?

 b. A compressed-air hose from the surface is used to expel all 
the water from the bell. What minimum air pressure is needed 
to do this?

 71. 10,000 cm3 of 200�C steam at a pressure of 20 atm is cooled 
until it condenses. What is the volume of the liquid water? Give 
your answer in cm3.

 72. The cylinder in FIGurE CP16.72 has a moveable piston attached 
to a spring. The cylinder’s cross-section area is 10 cm2, it con-
tains 0.0040 mol of gas, and the spring constant is 1500 N/m. 
At 20�C the spring is neither compressed nor stretched. How 
far is the spring compressed if the gas temperature is raised to 
100�C?

 73. Containers A and B in FIGurE CP16.73 hold the same gas. The 
volume of B is four times the volume of A. The two containers 
are connected by a thin tube (negligible volume) and a valve that 
is closed. The gas in A is at 300 K and pressure of 1.0 * 105 Pa. 
The gas in B is at 400 K and pressure of 5.0 * 105 Pa. Heaters 
will maintain the temperatures of A and B even after the valve 
is opened.

 a. After the valve is opened, gas will flow one way or the 
other until A and B have equal pressure. What is this final 
pressure?

 b. Is this a reversible or an irreversible process? Explain.
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 74.  The closed cylinder of Figure CP16.74 has a tight-fitting but fric-
tionless piston of mass M. The piston is in equilibrium when the 
left chamber has pressure  p0 and length L 0 while the spring on 
the right is compressed by �L.

  a.  What is �L in terms of p0, L 0, A, M, and k?
  b.  Suppose the piston is moved a small distance x to the right. 

Find an expression for the net force (Fx)net on the piston. As-
sume all motions are slow enough for the gas to remain at the 
same temperature as its surroundings.

  c.  If  released,  the piston will oscillate  around  the equilibrium 
position. Assuming x V  L 0 find an expression for the oscil-
lation period T.

Hint: Use the binomial approximation.

StoP to think AnSwerS

Stop to Think 16.1: d. The pressure decreases by 20 kPa.

Stop to Think 16.2: a. The number of atoms depends only on  the 
number of moles, not the substance.

Stop to Think 16.3: a. The step size on the Kelvin scale is the same 
as the step size on the Celsius scale. A change of 10�C is a change 
of 10 K.

Stop to Think 16.4: a. On  the water phase diagram, you can see 
that for a pressure just slightly below the triple-point pressure, the 
solid/gas  transition occurs  at  a  higher  temperature  than does  the 
solid/liquid transition at high pressures. This is not true for carbon 
dioxide.

Stop to Think 16.5:  c.  T = pV/nR.  Pressure  and  volume  are  the 
same, but n differs. The number of moles in mass M is n = M/Mmol. 
Helium, with the smaller molar mass, has a larger number of moles 
and thus a lower temperature.

Stop to Think 16.6: b. The pressure  is determined entirely by  the 
weight of the piston pressing down. Changing the temperature chang-
es the volume of the gas, but not its pressure.

Stop to Think 16.7:  b.  The  temperature  decreases  by  a  factor  of 
4  during  the  isochoric  process,  where  pf/pi =

1
4 .  The  temperature 

then increases by a factor of 2 during the isobaric expansion, where 
Vf/Vi = 2.
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This false-color thermal image— 
an infrared photo—shows where 
heat is escaping from the house.

Work, Heat, and the First 
Law of Thermodynamics

Thermal Properties 
of Matter
Changing the thermal energy can cause
■	 A temperature change, or
■	 A phase change.

A material’s response to heat is governed 
by its specific heat, its heat of fusion, 
and its heat of vaporization.

You’ll learn how to do practical calorimetry 
calculations to determine the final tempera
ture of two or more interacting systems.

Heat Transfer
Heat energy can be transferred between 
a system and its environment by
■	 Conduction ■	 Convection
■	 Radiation ■	 Evaporation

Air heated by the 
hot teakettle streams 
upward, an example 
of heat transfer by 
convection.

 Looking Back
Sections 16.4–16.6 Phase changes and 
ideal gases

 Looking Back
Sections 11.7–11.8 Conservation of 
energy

The First Law of 
Thermodynamics
The first law of thermodynamics is a 
very general statement of the idea that 
energy can be transferred and trans-
formed but not created or destroyed.

■	 The system’s thermal energy increases 
if energy is transferred into the system 
as heat or work.

■	 The system’s thermal energy de-
creases if energy is transferred out of 
the system as heat or work.

System

Eth

Q � 0

W � 0

Q � 0

W � 0

Work on

Heat in

Work by

Heat out

In a jet engine, part of the heat from burn
ing fuel is used to do work—pushing the 
aircraft forward. The remainder becomes 
increased thermal energy of the hot exhaust 
gases. No energy is destroyed.

Energy Transfers
There are two ways to transfer energy 
between a system and its environment: 
work and heat.

Work is the transfer of energy in a 
mechanical interaction—when external 
forces push or pull on the system.

 Looking Back
Section 11.4 Work

V

p
i

f
W � �area

You will learn to cal
culate the work done 
in an idealgas pro
cess as the negative 
of the area under a 
pV curve.

Heat is the transfer of energy in a 
thermal interaction—when the system 
and its environment have different 
temperatures.

You will learn to calculate the heat energy 
required for various processes. For example, 
it takes just over 4000 J of heat to raise the 
temperature of 1 kg of water by 1�C.

 Looking Ahead  The goal of Chapter 17 is to develop and apply the first law of thermodynamics.
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17.1 It’s All About Energy
A key idea of Chapter 11 was the work-kinetic energy theorem in the form

 �K = Wc + Wdiss + Wext (17.1)

Equation 17.1 tells us that the kinetic energy of a system of particles is changed when 
forces do work on the particles by pushing or pulling them through a distance. Here

	 1.	Wc is the work done by conservative forces. This work can be represented as a 
change in the system’s potential energy: �U = -Wc.

	 2.	Wdiss is the work done by friction-like dissipative forces within the system. This 
work increases the system’s thermal energy: �Eth = -Wdiss.

	 3.	Wext is the work done by external forces that originate in the environment. The 
push of a piston rod would be an external force.

With these definitions, Equation 17.1 becomes

 �K + �U + �Eth = Wext (17.2)

The system’s mechanical energy was defined as Emech = K + U. FIgurE 17.1 reminds 
you that the mechanical energy is associated with the motion of the system as a whole, 
while Eth is associated with the motion of the atoms and molecules within the system. 
Emech is the macroscopic energy of the system as a whole while Eth is the microscopic 
energy of the particle-like atoms and spring-like molecular bonds. This led to our final 
energy statement of Chapter 11:

 �Esys = �Emech + �Eth = Wext (17.3)

Thus the total energy of an isolated system, for which Wext = 0, is constant. This was 
the essence of the law of conservation of energy as stated in Chapter 11.

The emphasis in Chapters 10 and 11 was on isolated systems. There we were 
interested in learning how kinetic and potential energy were transformed into each 
other and, where there is friction, into thermal energy. Now we want to focus on 
how energy is transferred between the system and its environment, when Wext is 
not zero.

NoTE  Strictly speaking, Equation 17.3 should use the internal energy Eint rather 
than the thermal energy Eth, where Eint = Eth + Echem + Enuc + g  includes all 
the various kinds of energies that can be stored inside a system. This textbook will 
focus on simple thermodynamics systems in which the internal energy is entirely 
thermal: Eint = Eth. We’ll leave other forms of internal energy to more advanced 
courses. 

Energy Transfer
Doing work on a system can have very different consequences. FIgurE 17.2a shows an 
object being lifted at steady speed by a rope. The rope’s tension is an external force 
doing work Wext on the system. In this case, the energy transferred into the system 
goes entirely to increasing the system’s macroscopic potential energy Ugrav, part of the 
mechanical energy. The energy-transfer process Wext S Emech is shown graphically in 
the energy bar chart of Figure 17.2a.

Contrast this with FIgurE 17.2b, where the same rope with the same tension now drags 
the object at steady speed across a rough surface. The tension does the same amount 
of work, but the mechanical energy does not change. Instead, friction increases the 
thermal energy of the object + surface system. The energy-transfer process Wext S Eth 
is shown in the energy bar chart of Figure 17.2b.

rv

Esys � Emech � Eth

The microscopic motion
of the atoms and molecules
is kinetic energy Kmicro. The
stretched and compressed
bonds have potential energy
Umicro. Together, these are the
system’s thermal energy Eth. 

The macroscopic energy of
the system as a whole is its
mechanical energy Emech.

FIgurE 17.1 The total energy of a system 
consists of the macroscopic energy plus 
the microscopic thermal energy.

r
T

Lift at steady speed

rv

0 � �

Ki Ui

�

Wext

�

Uf

�

� �� � �Kf �Eth

The energy transferred to the system goes 
entirely to the system’s mechanical energy.

The tension does 
work on the system.

(a)

r
T

Drag at steady speed
rv

0 � �

Ki Ui

�

Wext

�

Uf

�

� �� � �Kf �Eth

The energy transferred to the system goes 
entirely to the system’s thermal energy.

The tension does 
work on the system.

(b)

FIgurE 17.2 The work done by tension 
can have very different consequences.
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The point of this example is that the energy transferred to a system can go entirely 
to the system’s mechanical energy, entirely to its thermal energy, or (imagine dragging 
the object up an incline) some combination of the two. The energy isn’t lost, but where 
it ends up depends on the circumstances.

That Can’t Be All
You can transfer energy into a system by the mechanical process of doing work on the 
system. But that can’t be all there is to energy transfer. What happens when you place 
a pan of water on the stove and light the burner? The water temperature increases, 
so �Eth 7 0. But no work is done (Wext = 0) and there is no change in the water’s 
mechanical energy (�Emech = 0). This process clearly violates the energy equation 
�Emech + �Eth = Wext. What’s wrong?

Nothing is wrong. The energy equation is correct as far as it goes, but it is incom-
plete. Work is energy transferred in a mechanical interaction, but that is not the only 
way a system can interact with its environment. Energy can also be transferred be-
tween the system and the environment if they have a thermal interaction. The energy 
transferred in a thermal interaction is called heat.

The symbol for heat is Q. When heat is included, the energy equation becomes

 �Esys = �Emech + �Eth = W + Q (17.4)

Heat and work are both energy transferred between the system and the environment.

NoTE  We’ve dropped the subscript “ext” from W. The work that we consider 
in thermodynamics is always the work done by the environment on the system. 
We won’t need to distinguish this work from Wc or Wdiss, so the subscript is 
superfluous. 

We’ll return to Equation 17.4 in Section 17.4 after we look at how work is calcu-
lated for ideal-gas processes and at what heat is.

Stop to think 17.1  A gas cylinder and piston are 
covered with heavy insulation. The piston is pushed 
into the cylinder, compressing the gas. In this pro-
cess the gas temperature

 a. Increases.
 b. Decreases.
 c. Doesn’t change.
 d. There’s not sufficient information to tell.

17.2 Work in Ideal-gas Processes
We introduced the idea of work in Chapter 11. Work is the energy transferred be-
tween a system and the environment when a net force acts on the system over a dis-
tance. The process itself is a mechanical interaction, meaning that the system and 
the environment interact via macroscopic pushes and pulls. Loosely speaking, we 
say that the environment (or a particular force from the environment) “does work” 
on the system. A system is in mechanical equilibrium if there is no net force on the 
system.

FIgurE 17.3 on the next page reminds you that work can be either positive or negative. 
The sign of the work is not just an arbitrary convention, nor does it have anything 
to do with the choice of coordinate system. The sign of the work tells us which way 
energy is being transferred.

F
r

�x

Insulation

The pistons in a car engine do work on the 
airfuel mixture by compressing it.
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In contrast to the mechanical energy or the thermal energy, work is not a state 
variable. That is, work is not a number characterizing the system. Instead, work is 
the amount of energy that moves between the system and the environment during a 
mechanical interaction. We can measure the change in a state variable, such as a tem-
perature change �T = Tf - Ti, but it would make no sense to talk about a “change of 
work.” Consequently, work always appears as W, never as �W.

You learned in Chapter 11 how to calculate work. The small amount of work dW 
done by force F

u

 as a system moves through the small displacement ds
u

 is dW = F
u # ds

u
. 

If we restrict ourselves to situations where F
u

 is either parallel or opposite to ds
u
, then 

the total work done on the system as it moves from si to sf is

 W = 3
sf

si

 Fs ds (17.5)

Let’s apply this definition to a gas as it expands or is compressed. FIgurE 17.4a shows 
a gas cylinder sealed at one end by a movable piston. Force F

u

ext, perhaps a force sup-
plied by a piston rod, is equal in magnitude and opposite in direction to F

u

gas. The gas 
pressure would blow the piston out of the cylinder if the external force weren’t there! 
Using the coordinate system of Figure 17.4a,

 (Fext)x = -(Fgas)x = -pA (17.6)

Suppose the piston moves the small distance dx shown in FIgurE 17.4b. As it does so, 
the external force (i.e., the environment) does work

 dW = (Fext)x dx = -pA dx (17.7)

If dx is positive (the gas expands), then dW is negative. This is because the external 
force is opposite the displacement. dW is positive if the gas is slightly compressed 
(negative dx) because the force and the displacement are in the same direction. This 
is an important idea.

NoTE  The force F
u

gas due to the gas pressure inside the cylinder also does work. 
Because F

u

gas = - F
u

ext, by Newton’s third law, the work done by the gas is simply 
Wgas = -Wext. To compress the gas, the environment does positive work and the 
gas does negative work. As the gas expands, Wgas is positive and Wext is negative. 
But the work that appeared in the work-kinetic energy theorem, and now appears 
in the laws of thermodynamics, is the work done on the system by external forces, 
not the work done by the system. It is Wext that tells us whether energy enters the 
system or leaves the system—by whether it is positive or negative—and that is why 
we focus our attention on Wext rather than on Wgas. 

As the piston moves dx, the volume of the gas changes by dV = A dx. Consequently, 
Equation 17.7 can be written in terms of the cylinder’s volume as

 dW = -p dV  (17.8)

r
F

r
F

Before After

rv

Before After

Work is positive when the force
is in the direction of motion.
�  The force causes the object to speed up.
�  Energy is transferred from the
 environment to the system.
�  The system’s energy increases.

Work is negative when the force
is opposite to the motion.
�  The force causes the object to slow down.
�  Energy is transferred from the system to
 the environment.
�  The system’s energy decreases.

vr

FIgurE 17.3 The sign of work.

Fext

r
Fgas

r

Pressure p

(a)

Piston area A

x
0

The gas pushes on the piston
with force Fgas.

r

To keep the piston in place,
an external force must be
equal and opposite to Fgas.

r

dx

(b) As the piston moves dx, the
external force does work (Fext)x dx
on the gas.

The volume changes by dV � Adx
as the piston moves dx.

Fext

r

FIgurE 17.4 The external force does 
work on the gas as the piston moves.
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If we let the piston move in a slow quasi-static process from initial volume Vi to 
final volume Vf, the total work done by the environment on the gas is found by inte-
grating Equation 17.8:

 W = - 3
Vf

Vi

p dV  (work done on a gas) (17.9)

Equation 17.9 is a key result of thermodynamics. Although we used a cylinder to de-
rive Equation 17.9, it turns out to be true for a container of any shape.

NoTE  The pressure of a gas usually changes as the gas expands or contracts. 
Consequently, p is not a constant that can be brought outside the integral. You 
need to know how the pressure changes with volume before you can carry out the 
integration. 

We can give the work done on a gas a nice geometric interpretation. You learned 
in Chapter 16 how to represent an ideal-gas process as a curve in the pV diagram. 
FIgurE 17.5 shows that the work done on a gas is the negative of the area under the pV 
curve as the volume changes from Vi to Vf. That is

 W = the negative of the area under the pV curve between Vi and Vf

Figure 17.5a shows a process in which a gas expands from Vi to a larger volume 
Vf. The area under the curve is positive, so the environment does a negative amount of 
work on an expanding gas. Figure 17.5b shows a process in which a gas is compressed 
to a smaller volume. This one is a little trickier because we have to integrate “back-
ward” along the V@axis. You learned in calculus that integrating from a larger limit to 
a smaller limit gives a negative result, so the area in Figure 17.5b is a negative area. 
Consequently, as the minus sign in Equation 17.9 indicates, the environment does 
positive work on a gas to compress it.

For an expanding gas (Vf � Vi),
the area under the pV curve is
positive (integration direction is
to the right). Thus the environment
does negative work on the gas.

(a)

p

V

Integration direction

i

f

W � �area

VfVi

For a compressed gas (Vf � Vi),
the area is negative because the
integration direction is to the left. 
Thus the environment does positive
work on the gas.

(b)

p

V

Integration direction

f

i

W � �area

ViVf

FIgurE 17.5 The work done on a gas is 
the negative of the area under the curve.

ExAMPLE 17.1  The work done on an expanding gas
How much work is done on the gas in the ideal-gas process of FIgurE 17.6?

V (cm3)

p (kPa)

150010005000
0

100

200

300

(500 � 10�6 m3)(300,000 Pa) � 150 J

(500 � 10�6 m3)(100,000 Pa) � 50 J

f

i

(500 � 10�6 m3)(200,000 Pa) � 50 J1
2

FIgurE 17.6 The idealgas process of Example 17.1.

ModEL The work done on a gas is the negative of the area under the pV curve. The gas is 
expanding, so we expect the work to be negative.

SoLvE As Figure 17.6 shows, the area under the curve can be divided into two rectangles 
and a triangle. Volumes must be converted to SI units of m3. The total area under the 
curve is 250 J, so the work done on the gas as it expands is

W = - (area under the pV curve) = -250 J

ASSESS We noted previously that the product Pa  m3 is equivalent to joules. The work is 
negative, as expected, because the external force pushing on the piston is opposite the 
direction of the piston’s displacement.
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Isochoric Process
The isochoric process in FIgurE 17.7a is one in which the volume does not change. 
Consequently,

 W = 0  (isochoric process) (17.10)

An isochoric process is the only ideal-gas process in which no work is done.

Isobaric Process
FIgurE 17.7b shows an isobaric process in which the volume changes from Vi to Vf. The 
rectangular area under the curve is p�V, so the work done during this process is

 W = -p �V  (isobaric process) (17.11)

where �V = Vf - Vi. �V  is positive if the gas expands (Vf 7 Vi), so W is negative. 
�V  is negative if the gas is compressed (Vf 6 Vi), making W positive.

Isothermal Process
FIgurE 17.8 shows an isothermal process. Here we need to know the pressure as a 
function of volume before we can integrate Equation 17.9. From the ideal-gas law, 
p = nRT/V. Thus the work on the gas as the volume changes from Vi to Vf is

 W = - 3
Vf

Vi

  p dV = - 3
Vf

Vi

 
nRT

V
 dV = -nRT3

Vf

Vi

 
dV

V
 (17.12)

where we could take the T outside the integral because temperature is constant during 
an isothermal process. This is a straightforward integration, giving

  W = -nRT3
Vf

Vi

 
dV

V
= -nRT ln V `

Vf

Vi

  = -nRT (ln Vf - ln Vi) = -nRT ln1Vf

Vi
2  

(17.13)

ProBLEM-SoLvINg
STrATEgy 17.1  Work in ideal-gas processes

ModEL Assume the gas is ideal and the process is quasi-static.

vISuALIzE Show the process on a pV diagram. Note whether it happens to be one 
of the basic gas processes: isochoric, isobaric, or isothermal.

SoLvE Calculate the work as the area under the pV curve either geometrically or 
by carrying out the integration:

 Work done on the gas W = - 3
Vf

Vi

p dV = -(area under pV curve)

ASSESS Check your signs.

 ■	 W 7 0 when the gas is compressed. Energy is transferred from the environ-
ment to the gas.

 ■	 W 6 0 when the gas expands. Energy is transferred from the gas to the 
environment.

 ■	 No work is done if the volume doesn’t change. W = 0.
Exercise 4 

For an isochoric process,
the area under the pV
curve is zero. No work
is done.

(a)

(b)

p

V

f

i

Vi � Vf

For an isobaric process,
the area is p�V. The work
done on the gas is �p�V. 

p

p

V

i f

�V

pi

pf

VfVi

FIgurE 17.7 Calculating the work done 
during idealgas processes.

Isotherm for
temperature T

For an isothermal process,
the work done on the gas is
the negative of the area
under the hyperbola.

p

V

i

f

VfVi

pi

pf

FIgurE 17.8 An isothermal process.

Equation 17.9 is the basis for a problem-solving strategy.
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Because nRT = piVi = pfVf during an isothermal process, the work is:

 

W = -nRT ln1Vf

Vi
2 = -piVi ln1Vf

Vi
2 = -pfVf ln1Vf

Vi
2

(isothermal process)
 

(17.14)

Which version of Equation 17.14 is easiest to use will depend on the information 
you’re given. The pressure, volume, and temperature must be in SI units.

Work depends on the Path
FIgurE 17.9a shows two different processes that take a gas from an initial state i to a final 
state f. Although the initial and final states are the same, the work done during these 
two processes is not the same. The work done during an ideal-gas process depends 
on the path followed through the pV  diagram.

You may recall that “work is independent of the path,” but that referred to a differ-
ent situation. In Chapter 11, we found that the work done by a conservative force is 
independent of the physical path of the object through space. For an ideal-gas process, 
the “path” is a sequence of thermodynamic states on a pV diagram. It is a figurative 
path because we can draw a picture of it on a pV diagram, but it is not a literal path.

The path dependence of work has an important implication for multistep processes 
such as the one shown in FIgurE 17.9b. The total work done on the gas during the pro-
cess 1 S 2 S 3 must be calculated as W1 to 3 = W1 to 2 + W2 to 3. In this case, W1 to 2 
is negative and W2 to 3 is positive. Trying to compute the work in a single step, using 
�V = V3 - V1, would give you the work of a process that goes directly from 1 to 3. 
The initial and final states are the same, but the work is not the same because work 
depends on the path followed through the pV diagram.

Stop to think 17.2  Two processes take an ideal gas from 
state 1 to state 3. Compare the work done by process A to 
the work done by process B.

 a. WA = WB = 0
 b. WA = WB but neither is zero
 c. WA 7 WB

 d. WA 6 WB

17.3 Heat
Heat is a more elusive concept than work. We use the word “heat” very loosely in the 
English language, often as synonymous with hot. We might say on a very hot day, 
“This heat is oppressive.” If your apartment is cold, you may say, “Turn up the heat.” 
These expressions date to a time long ago when it was thought that heat was a sub-
stance with fluid-like properties.

V

p

f
Process A

Process Bi

The area under the process A
curve is larger than the area
under the process B curve.
Thus 0WA0 � 0WB0.

(a)

V

p

1

2

3
(b)

FIgurE 17.9 The work done during an 
idealgas process depends on the path.

Process A Process B

1

3

2

V

p

ExAMPLE 17.2  The work of an isothermal compression

 W = -nRT ln1Vf

Vi
2

 = - (0.25 mol) (8.31 J/mol K) (353 K)ln(1/2) = 508 J

ASSESS The work is positive because a force from the environ-
ment pushes the piston inward to compress the gas.

A cylinder contains 7.0 g of nitrogen gas. How much work must 
be done to compress the gas at a constant temperature of 80�C 
until the volume is halved?

ModEL This is an isothermal ideal-gas process.

SoLvE Nitrogen gas is N2, with molar mass Mmol = 28 g/mol, so 
7.0 g is 0.25 mol of gas. The temperature is T = 353 K. Although 
we don’t know the actual volume, we do know that Vf =

1
2 Vi. The 

volume ratio is all we need to calculate the work:
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Our concept of heat changed with the work of British physicist James Joule in the 
1840s. Joule was the first to carry out careful experiments to learn how it is that systems 
change their temperature. Using experiments like those shown in FIgurE 17.10, Joule found 
that you can raise the temperature of a beaker of water by two entirely different means:

	 1.	Heating it with a flame, or
	 2.	Doing work on it with a rapidly spinning paddle wheel.

The final state of the water is exactly the same in both cases. This implies that heat 
and work are essentially equivalent. In other words, heat is not a substance. Instead, 
heat is energy. Heat and work, which previously had been regarded as two completely 
different phenomena, were now seen to be simply two different ways of transferring 
energy to or from a system.

Thermal Interactions
To be specific, heat is the energy transferred between a system and the environment as 
a consequence of a temperature difference between them. Unlike a mechanical interac-
tion in which work is done, heat requires no macroscopic motion of the system. Instead 
(we’ll look at the details in Chapter 18), energy is transferred when the faster molecules 
in the hotter object collide with the slower molecules in the cooler object. On average, 
these collisions cause the faster molecules to lose energy and the slower molecules to 
gain energy. The net result is that energy is transferred from the hotter object to the 
colder object. The process itself, whereby energy is transferred between the system and 
the environment via atomic-level collisions, is called a thermal interaction.

When you place a pan of water on the stove, heat is the energy transferred from the 
hotter flame to the cooler water. If you place the water in a freezer, heat is the energy 
transferred from the warmer water to the colder air in the freezer. A system is in 
thermal equilibrium with the environment, or two systems are in thermal equilibrium 
with each other, if there is no temperature difference.

Like work, heat is not a state variable. That is, heat is not a property of the 
system. Instead, heat is the amount of energy that moves between the system and the 
environment during a thermal interaction. It would not be meaningful to talk about a 
“change of heat.” Thus heat appears in the energy equation simply as a value Q, never 
as �Q. FIgurE 17.11 shows how to interpret the sign of Q.

NoTE  For both heat and work, a positive value indicates energy being transferred 
from the environment to the system. Table 17.1 summarizes the similarities and 
differences between work and heat. 

Water

The flame heats the 
water. The temperature 
increases.

The spinning paddle 
does work on the 
water. The temperature 
increases.

FIgurE 17.10 Joule’s experiments to 
show the equivalence of heat and work.

Q � 0
Tenv � Tsys

System

(a) Positive heat

Q � 0
Tsys � Tenv

System

(b) Negative heat

Q � 0
Tsys � Tenv

System

(c) Thermal equilibrium

FIgurE 17.11 The sign of heat.

TABLE 17.1 Understanding work and heat

Work Heat

Interaction: Mechanical Thermal

Requires: Force and displacement Temperature difference

Process: Macroscopic pushes and pulls Microscopic collisions

Positive value: W 7 0 when a gas is 
compressed. Energy is  
transferred in.

Q 7 0 when the 
environment is at a higher 
temperature than the system. 
Energy is transferred in.

Negative value: W 6 0 when a gas expands. 
Energy is transferred out.

Q 6 0 when the system is 
at a higher temperature than 
the environment. Energy is 
transferred out.

Equilibrium: A system is in mechanical  
equilibrium when there is  
no net force or torque on it.

A system is in thermal 
equilibrium when it is at 
the same temperature as the 
environment.



units of Heat
Heat is energy transferred between the system and the environment. Consequently, 
the SI unit of heat is the joule. Historically, before the connection between heat and 
work had been recognized, a unit for measuring heat, the calorie, had been defined as

  1 calorie = 1 cal = the quantity of heat needed to change
  the temperature of 1 g of water by 1�C

Once Joule established that heat is energy, it was apparent that the calorie is really a 
unit of energy. In today’s SI units, the conversion is

 1 cal = 4.186 J

The calorie you know in relation to food is not the same as the heat calorie. The 
food calorie, abbreviated Cal with a capital C, is

 1 food calorie = 1 Cal = 1000 cal = 1 kcal = 4186 J

We will not use calories in this textbook, but there are some fields of science and 
engineering where calories are still widely used. All the calculations you learn to do 
with joules can equally well be done with calories.

Heat, Temperature, and Thermal Energy
It is important to distinguish among heat, temperature, and thermal energy. These 
three ideas are related, but the distinctions among them are crucial. In brief,

	■	 Thermal energy is an energy of the system due to the motion of its atoms and mole-
cules. It is a form of energy. Thermal energy is a state variable, and it makes sense 
to talk about how Eth changes during a process. The system’s thermal energy con-
tinues to exist even if the system is isolated and not interacting thermally with its 
environment.

	■	 Heat is energy transferred between the system and the environment as they interact. 
Heat is not a particular form of energy, nor is it a state variable. It makes no sense 
to talk about how heat changes. Q = 0 if a system does not interact thermally with 
its environment. Heat may cause the system’s thermal energy to change, but that 
doesn’t make heat and thermal energy the same.

	■	 Temperature is a state variable that quantifies the “hotness” or “coldness” of a 
system. We haven’t given a precise definition of temperature, but it is related to 
the thermal energy per molecule. A temperature difference is a requirement for a 
thermal interaction in which heat energy is transferred between the system and the 
environment.

It is especially important not to associate an observed temperature increase with 
heat. Heating a system is one way to change its temperature, but, as Joule showed, not 
the only way. You can also change the system’s temperature by doing work on the 
system or, as is the case with friction, transforming mechanical energy into thermal 
energy. Observing the system tells us nothing about the process by which energy 
enters or leaves the system.

Stop to think 17.3  Which one or more of the following processes involves heat?

 a. The brakes in your car get hot when you stop.
 b. A steel block is held over a candle.
 c. You push a rigid cylinder of gas across a frictionless surface.
 d. You push a piston into a cylinder of gas, increasing the temperature of the gas.
 e. You place a cylinder of gas in hot water. The gas expands, causing a piston to rise 

and lift a weight. The temperature of the gas does not change.

Heat is the energy transferred in a thermal 
interaction.

17.3 . Heat    477
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17.4 The First Law of Thermodynamics
Heat was the missing piece that we needed to arrive at a completely general statement 
of the law of conservation of energy. Restating Equation 17.4, we have

 �Esys = �Emech + �Eth = W + Q

Work and heat, two ways of transferring energy between a system and the environ-
ment, cause the system’s energy to change.

At this point in the text we are not interested in systems that have a macroscopic 
motion of the system as a whole. Moving macroscopic systems were important to us 
for many chapters, but now, as we investigate the thermal properties of a system, we 
would like the system as a whole to rest peacefully on the laboratory bench while we 
study it. So we will assume, throughout the remainder of Part IV, that �Emech = 0.

With this assumption clearly stated, the law of conservation of energy becomes

 �Eth = W + Q  (first law of thermodynamics) (17.15)

The energy equation, in this form, is called the first law of thermodynamics or simply 
“the first law.” The first law is a very general statement about the conservation of energy.

Chapters 10 and 11 introduced the basic energy model. It was called basic because 
it included work but not heat. The first law of thermodynamics has included heat, but it 
excludes situations where the mechanical energy changes. FIgurE 17.12 is a pictorial rep-
resentation of the thermodynamic energy model described by the first law. Work and 
heat are energies transferred between the system and the environment. Energy added to 
the system (W or Q positive) increases the system’s thermal energy (�Eth 7 0). Like-
wise, the thermal energy decreases when energy is removed from the system.

Two comments are worthwhile:

	 1.	The first law of thermodynamics doesn’t tell us anything about the value of Eth, 
only how Eth changes. Doing 1 J of work changes the thermal energy by �Eth =  
1 J regardless of whether Eth = 10 J or 10,000 J.

	 2.	The system’s thermal energy isn’t the only thing that changes. Work or heat 
that changes the thermal energy also changes the pressure, volume, temperature, 
and other state variables. The first law tells us only about �Eth. Other laws and 
relationships must be used to learn how the other state variables change.

Three Special Ideal-gas Processes
There are three ideal-gas processes in which one of the terms in the first law—�Eth, 
W, or Q—is zero. To investigate these processes, FIgurE 17.13 shows a gas cylinder with 
three special properties:

	■	 You can keep the gas volume from changing by inserting the locking pin into the 
piston. Without the pin, the piston can slide up or down. The piston is massless, 
frictionless, and insulated.

	■	 You can change the gas pressure by adding or removing masses on top of the pis-
ton. Work is done as the piston moves the masses up and down.

	■	 You can warm or cool the gas by placing the cylinder above a flame or on a block of 
ice. The thin bottom of the cylinder is the only surface through which heat energy 
can be transferred.

You learned in Chapter 16 (see Figure 16.9) that the gas pressure when the piston 
“floats” is determined by the atmospheric pressure and by the total mass M on the piston:

 pgas = patmos +
Mg

A
 (17.16)

The pressure doesn’t change as the piston moves unless you change the mass. This 
is a particularly important point to understand. Equation 17.16 is not valid when the 
piston is locked. The pressure with the piston locked could be either higher or lower 
than the value found with Equation 17.16.

System

�Eth � W � Q

Environment

Q � 0

W � 0

Q � 0

W � 0

Energy in

Work on
system

Heat to
system

Energy out

Work by
system

Heat from
system

FIgurE 17.12 The thermodynamic 
energy model.

Masses determine the gas pressure. Work
is done as the masses move up and down.

A locking
pin fixes
the gas
volume.

Heat energy can
be transferred into
or out of the gas.

Insulation

Thin bottom

Piston

Gas

Flame

Ice

FIgurE 17.13 The gas can be heated and 
have work done on it.
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An isochoric cooling process (W � 0): No work is done in an isochoric (con-
stant volume) process because the piston doesn’t move. To cool the gas without doing 
work:

	■	 Insert the locking pin so that the volume cannot change.
	■	 Place the cylinder on the block of ice. Heat energy will be transferred from the gas 

to the ice, causing the gas temperature and pressure to fall.
	■	 Remove the cylinder from the ice when the desired pressure is reached.
	■	 Remove masses from the piston until the total mass M balances the new gas pres-

sure. This step must be done before removing the locking pin; otherwise, the piston 
will move when the pin is removed.

	■	 Remove the locking pin.

Figure 17.7a showed the pV diagram. The final point is on a lower isotherm than the 
initial point, so Tf 6 Ti. No work was done, but heat energy was transferred out of the 
gas (Q 6 0) and the thermal energy of the gas decreased (�Eth 6 0) as the temperature 
fell. FIgurE 17.14 shows this result on a first-law bar chart.

An isothermal expansion (�Eth � 0): The thermal energy does not change in an 
isothermal process because the temperature of the gas doesn’t change. To expand the 
gas without changing its thermal energy:

	■	 Place the cylinder over the flame. Heat energy will be transferred to the gas, and the 
gas will begin to expand.

	■	 The product pV must remain constant during an isothermal process. Slowly remove 
masses from the piston to reduce the pressure as the volume increases. The tem-
perature remains constant as heat energy from the flame balances the negative work 
done on the gas as it expands.

	■	 Remove the cylinder from the flame when the gas reaches the desired volume.

Figure 17.8 showed the pV diagram, and FIgurE 17.15 is the first-law bar chart. The tem-
perature doesn’t change in an isothermal process (�T = 0), hence the thermal energy 
cannot change (�Eth = 0). Heat energy is transferred to the gas, but that energy is 
used to do work (the piston lifts the masses) rather than to increase the temperature. 
Here “do work” means that the gas is doing work (Wgas 7 0), so the external work on 
the gas—the W in the first law—is negative.

NoTE  It is surprising, but true, that we can heat the system without changing its 
temperature. But to do so, we must have a process in which the energy coming into 
the system as heat is exactly balanced by the energy leaving the system as work. 
The important point is that	�T � 0	does not mean Q � 0. 

An adiabatic compression (Q � 0): A process in which no heat energy is trans-
ferred between the system and the environment is called an adiabatic process. Al-
though the system cannot have thermal interactions with its environment, it can still 
have mechanical interactions as the insulated piston pushes or pulls on the gas. To 
compress the gas without heat:

	■	 Add insulation beneath the cylinder.
	■	 Slowly add masses to the piston, increasing the pressure. The piston will slowly 

descend, compressing the gas and decreasing its volume.
	■	 Stop adding masses when the gas reaches the desired volume.

Q = 0 in an adiabatic process, so the first law �Eth = W + Q can be satisfied only if 
�Eth = W. This information is shown on the first-law bar chart of FIgurE 17.16.

NoTE  Just because the system is well insulated—thermally isolated from the 
environment—does not mean its temperature remains constant. An adiabatic com-
pression uses work to increase the temperature of the gas. Similarly, an adiabatic 
expansion lowers the temperature of the gas. The important point is that	Q � 0	
does not mean �T � 0. 

0

�

�

� ��

Eth f�QW� �Eth i

Thermal energy has decreased
by the amount of energy that
left the system as heat.

FIgurE 17.14 A firstlaw bar chart for a 
process that does no work.

0

�

�

� ��

Eth f�QW� �Eth i

The energy that enters the system
as heat leaves as work. The
thermal energy is unchanged.

FIgurE 17.15 A firstlaw bar chart for a 
process that doesn’t change the thermal 
energy.

0

�

�

� ��

Eth f�QW� �Eth i

Energy that enters the system as
work increases the thermal energy
—and thus the temperature.

FIgurE 17.16 A firstlaw bar chart for a 
process that transfers no heat energy.
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Stop to think 17.4  Which first-law bar chart describes the process shown in the pV diagram?

We’ll examine adiabatic gas processes and their pV curve later in the chapter. For 
now, make sure you understand which quantities are zero and which aren’t in these 
three special processes.

p

i f

V

(a)

0

�

�
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(c)

0
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� ��
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(d)

0

�

�

� ��

Eth f�QW� �Eth i

17.5 Thermal Properties of Matter
Heat and work are equivalent in the sense that the change of the system is exactly the 
same whether you transfer heat energy to it or do an equal amount of work on it. Add-
ing energy to the system, or removing it, changes the system’s thermal energy.

What happens to a system when you change its thermal energy? In this section 
we’ll consider two distinct possibilities:

	■	 The temperature of the system changes.
	■	 The system undergoes a phase change, such as melting or freezing.

Temperature Change and Specific Heat
Suppose you do an experiment in which you add energy to water, either by doing 
work on it or by transferring heat to it. Either way, you will find that adding 4190 J of 
energy raises the temperature of 1 kg of water by 1 K. If you were fortunate enough to 
have 1 kg of gold, you would need to add only 129 J of energy to raise its temperature 
by 1 K.

The amount of energy that raises the temperature of 1 kg of a substance by 1 K is 
called the specific heat of that substance. The symbol for specific heat is c. Water 
has specific heat cwater = 4190 J/kg  K. The specific heat of gold is cgold = 129 J/kg K. 
Specific heat depends only on the material from which an object is made. Table 17.2 
provides some specific heats for common liquids and solids.

NoTE  The term specific heat does not use the word “heat” in the way that we have 
defined it. Specific heat is an old idea, dating back to the days of the caloric theory 
when heat was thought to be a substance contained in the object. The term has con-
tinued in use even though our understanding of heat has changed. 

If energy c is required to raise the temperature of 1 kg of a substance by 1 K, then 
energy Mc is needed to raise the temperature of mass M by 1 K and (Mc)�T  is needed 
to raise the temperature of mass M by �T. In other words, the thermal energy of the 
system changes by

 �Eth = Mc�T  (temperature change) (17.17)

TABLE 17.2 Specific heats and molar 
specific heats of solids and liquids

Substance c (J/kg K) C (J/mol K)

Solids

Aluminum  900  24.3

Copper  385  24.4

Iron  449  25.1

Gold  129  25.4

Lead  128  26.5

Ice 2090  37.6

Liquids

Ethyl alcohol 2400 110.4

Mercury  140  28.1

Water 4190  75.4
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a normal body temperature of 37�C. We need to calculate the ad-
ditional energy needed to raise the body’s temperature by 2.0�C,  
or 2.0 K.

SoLvE The necessary heat energy is

 Q = Mc�T = (70 kg)(3400 J/kg K)(2.0 K) = 4.8 * 105 J

ASSESS This appears to be a lot of energy, but a joule is actually a 
very small amount of energy. It is only 110 Cal, approximately the 
energy gained by eating an apple.

when its temperature changes by �T. �Eth can be either positive (thermal energy in-
creases as the temperature goes up) or negative (thermal energy decreases as the tem-
perature goes down). Recall that uppercase M is used for the mass of an entire system 
while lowercase m is reserved for the mass of an atom or molecule.

NoTE  In practice, �T  is usually measured in �C. But the Kelvin and the Celsius 
temperature scales have the same step size, so �T  in K has exactly the same nu-
merical value as �T  in �C. Thus

	■	 You do not need to convert temperatures from �C to K if you need only a tem-
perature change �T.

	■	 You do need to convert anytime you need the actual temperature T.

The first law of thermodynamics, �Eth = W + Q, allows us to write Equation 17.17 
as Mc�T = W + Q. In other words, we can change the system’s temperature either 
by heating it or by doing an equivalent amount of work on it. In working with solids 
and liquids, we almost always change the temperature by heating. If W = 0, which we 
will assume for the rest of this section, then the heat energy needed to bring about a 
temperature change �T  is

 Q = Mc�T  (temperature change) (17.18)

Because �T = �Eth/Mc, it takes more energy to change the temperature of a sub-
stance with a large specific heat than to change the temperature of a substance with 
a small specific heat. You can think of specific heat as measuring the thermal inertia 
of a substance. Metals, with small specific heats, warm up and cool down quickly. 
A piece of aluminum foil can be safely held within seconds of removing it from a 
hot oven. Water, with a very large specific heat, is slow to warm up and slow to cool 
down. This is fortunate for us. The large thermal inertia of water is essential for the 
biological processes of life. We wouldn’t be here studying physics if water had a small 
specific heat!

ExAMPLE 17.3  running a fever
A 70 kg student catches the flu, and his body temperature increases 
from 37.0�C (98.6�F) to 39.0�C (102.2�F). How much energy is re-
quired to raise his body’s temperature? The specific heat of a mam-
malian body is 3400 J/kg K, nearly that of water because mammals 
are mostly water.

ModEL Energy is supplied by the chemical reactions of the 
body’s metabolism. These exothermic reactions transfer heat to 
the body. Normal metabolism provides enough heat energy to off-
set energy losses (radiation, evaporation, etc.) while maintaining 

The molar specific heat is the amount of energy that raises the temperature of 
1 mol of a substance by 1 K. We’ll use an uppercase C for the molar specific heat. The 
heat energy needed to bring about a temperature change �T  of n moles of substance is

 Q = nC�T  (17.19)

Molar specific heats are listed in Table 17.2. Look at the five elemental solids 
(excluding ice). All have C very near 25 J/mol K. If we were to expand the table, we 
would find that most elemental solids have C � 25 J/mol K. This can’t be a coinci-
dence, but what is it telling us? This is a puzzle we will address in Chapter 18, where 
we will explore thermal energy at the atomic level.
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Phase Change and Heat of Transformation
Suppose you start with a system in its solid phase and heat it at a steady rate. FIgurE 17.17, 
which you saw in Chapter 16, shows how the system’s temperature changes. At first, the 
temperature increases linearly. This is not hard to understand because Equation 17.18 
can be written

 slope of the T@versus@Q graph =
�T

Q
=

1

Mc
 (17.20)

The slope of the graph depends inversely on the system’s specific heat. A constant 
specific heat implies a constant slope and thus a linear graph. In fact, you can measure 
c from such a graph.

NoTE  The different slopes indicate that the solid, liquid, and gas phases of a sub-
stance have different specific heats. 

But there are times, shown as horizontal line segments, during which heat is being 
transferred to the system but the temperature isn’t changing. These are phase changes. 
The thermal energy continues to increase during a phase change, but the additional 
energy goes into breaking molecular bonds rather than speeding up the molecules. A 
phase change is characterized by a change in thermal energy without a change in 
temperature.

The amount of heat energy that causes 1 kg of a substance to undergo a phase 
change is called the heat of transformation of that substance. For example, labora-
tory experiments show that 333,000 J of heat are needed to melt 1 kg of ice at 0�C. The 
symbol for heat of transformation is L. The heat required for the entire system of mass 
M to undergo a phase change is

 Q = ML  (phase change) (17.21)

Heat of transformation is a generic term that refers to any phase change. Two spe-
cific heats of transformation are the heat of fusion L f, the heat of transformation be-
tween a solid and a liquid, and the heat of vaporization L v, the heat of transformation 
between a liquid and a gas. The heat needed for these phase changes is

 Q = b{ML f  melt/freeze

{ML v boil/condense
 (17.22)

where the {  indicates that heat must be added to the system during melting or boil-
ing but removed from the system during freezing or condensing. You must explicitly 
include the minus sign when it is needed.

Table 17.3 gives the heats of transformation of a few substances. Notice that the 
heat of vaporization is always much larger than the heat of fusion. We can understand 
this. Melting breaks just enough molecular bonds to allow the system to lose rigidity 
and flow. Even so, the molecules in a liquid remain close together and loosely bonded. 
Vaporization breaks all bonds completely and sends the molecules flying apart. This 
process requires a larger increase in the thermal energy and thus a larger quantity 
of heat.

T

Cumulative heat added

Solid

Tb

Tm

Liquid

Boiling
Gas

Melting

Slope � �T
Q

The system’s thermal energy is
increasing as heat energy is added,
but it’s causing a phase change
rather than a temperature change.

FIgurE 17.17 The temperature of a 
system that is heated at a steady rate.

Lava—molten rock—undergoes a phase 
change when it contacts the much colder 
water. This is one way in which new 
islands are formed.

TABLE 17.3 Melting/boiling temperatures and heats of transformation

Substance Tm (�C) Lf (J/kg) Tb (�C) Lv (J/kg)

Nitrogen (N2) -210 0.26 * 105 -196 1.99 * 105

Ethyl alcohol -114 1.09 * 105 78 8.79 * 105

Mercury -39 0.11 * 105 357 2.96 * 105

Water 0 3.33 * 105 100 22.6 * 105

Lead 328 0.25 * 105 1750 8.58 * 105
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Stop to think 17.5  Objects A and B are brought into 
close thermal contact with each other, but they are well 
isolated from their surroundings. Initially TA = 0�C and 
TB = 100�C. The specific heat of A is less than the 
specific heat of B. The two objects will soon reach a 
common final temperature Tf. The final temperature is

 a. Tf 7 50�C b. Tf = 50�C c. Tf 6 50�C

17.6 Calorimetry
At one time or another you’ve probably put an ice cube into a hot drink to cool it 
quickly. You were engaged, in a somewhat trial-and-error way, in a practical aspect of 
heat transfer known as calorimetry.

FIgurE 17.19 on the next page shows two systems thermally interacting with each 
other but isolated from everything else. Suppose they start at different temperatures T1 
and T2. As you know from experience, heat energy will be transferred from the hotter 

the cumulative heat Q, although notice that the horizontal axis is in 
kJ, not J. The initial linear slope corresponds to raising the wax’s 
temperature to the melting point. Temperature remains constant 
during a phase change, even though the sample is still being heated, 
so the horizontal section of the graph is when the wax is melting. 
The temperature increase at the end shows that the temperature of 
the liquid wax is beginning to rise after melting is complete.

SoLvE From Q = Mc�T, the slope of the T@versus@Q graph 
is �T/Q = 1/Mc. The experimental slope of the best-fit line is 
1.708�C/kJ = 0.001708 K/J. Thus the specific heat of the solid 
wax is

c =
1

M * slope
=

1

(0.200 kg)(0.001708 K/J)
= 2930 J/kg K

From the table, we see that the melting temperature—which re-
mains constant during the phase change—is 70.5�C. The heat re-
quired for the phase change is Q = ML f, so the heat of fusion is 
L f = Q/M. With data recorded only every 30 s, it’s not exactly 
clear when the melting began and when it ended. The extension 
of the initial slope shows that the temperature reached the melt-
ing point about halfway between 120 s and 150 s, so the melting 
started at about 135 s. We’ll assume it was complete about half-
way between 300 s and 330 s, or at about 315 s. Thus the melting 
took 180 s, during which, at 220 J/s, 39,600 J of heat energy was 
transferred from the hot plate to the wax. With this value of Q, the 
heat of fusion is

 L f =
Q

M
=

39,600 J

0.200 kg
= 2.0 * 105  J/kg

ASSESS Both the specific heat and the heat of fusion are similar 
to values in Tables 17.2 and 17.3, which gives us confidence in 
our results.

ExAMPLE 17.4  Melting wax
An insulated jar containing 200 g of solid candle wax is placed 
on a hot plate that supplies heat energy to the wax at the rate of 
220 J/s. The wax temperature is measured every 30 s, yielding the 
following data:

Time (s) Temperature (�C) Time (s) Temperature (�C)

  0 20.0 180 70.5

 30 31.7 210 70.5

 60 42.2 240 70.6

 90 55.0 270 70.5

120 64.7 300 70.4

150 70.4 330 74.5

What are the specific heat of the solid wax, the melting point, and 
the wax’s heat of fusion?

ModEL The wax is in an insulated jar, so assume that heat loss to 
the environment is negligible.

vISuALIzE Heat energy is being supplied at the rate of 220 J/s, so 
the total heat energy that has been transferred into the wax at time t 
is Q = 220t J. FIgurE 17.18 shows the temperature graphed against 

T (�C)

Q (kJ)

Solid

60

40

20

0

80

6040200 80

Liquid

Best-fit line
y � 1.708x � 20.2

Melting

FIgurE 17.18 The heating curve of the wax.

A
1.0 kg
0�C

B
1.0 kg
100�C
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to the colder system until they reach a common final temperature Tf. The systems will 
then be in thermal equilibrium and the temperature will not change further.

The insulation prevents any heat energy from being transferred to or from the en-
vironment, so energy conservation tells us that any energy leaving the hotter system 
must enter the colder system. That is, the systems exchange energy with no net loss or 
gain. The concept is straightforward, but to state the idea mathematically we need to 
be careful with signs.

Let Q1 be the energy transferred to system 1 as heat. Similarly, Q2 is the energy 
transferred to system 2. The fact that the systems are merely exchanging energy can 
be written 0Q1 0 = 0Q2 0 . That is, the energy lost by the hotter system is the energy 
gained by the colder system. Thus Q1 and Q2 have opposite signs: Q1 = -Q2. No 
energy is exchanged with the environment, hence it makes more sense to write this 
relationship as

 Qnet = Q1 + Q2 = 0 (17.23)

This idea is not limited to the interaction of only two systems. If three or more sys-
tems are combined in isolation from the rest of their environment, each at a different 
initial temperature, they will all come to a common final temperature that can be found 
from the relationship

 Qnet = Q1 + Q2 + Q3 + g = 0 (17.24)

NoTE  The signs are very important in calorimetry problems. �T  is always 
Tf - Ti, so �T  and Q are negative for any system whose temperature decreases. 
The proper sign of Q for any phase change must be supplied by you, depending on 
the direction of the phase change. 

System 1

T1

Q1

Q2 System 2

T2

Heat energy is transferred 
from system 1 to system 2. 
Energy conservation requires

0Q1 0 � 0Q2 0
Opposite signs mean that

Qnet � Q1 � Q2 � 0

FIgurE 17.19 Two systems interact 
thermally.

ProBLEM-SoLvINg
STrATEgy 17.2  Calorimetry problems

ModEL Identify the interacting systems. Assume that they are isolated from the 
larger environment.

vISuALIzE List known information and identify what you need to find. Convert 
all quantities to SI units.

SoLvE The mathematical representation, which is a statement of energy conser-
vation, is

 Qnet = Q1 + Q2 + g = 0

 ■	 For systems that undergo a temperature change, Q = Mc(Tf - Ti). Be sure to 
have the temperatures Ti and Tf in the correct order.

 ■	 For systems that undergo a phase change, Q = {ML. Supply the correct 
sign by observing whether energy enters or leaves the system.

 ■	 Some systems may undergo a temperature change and a phase change. Treat 
the changes separately. The heat energy is Q = Q�T + Qphase.

ASSESS Is the final temperature in the middle? Tf that is higher or lower than all 
initial temperatures is an indication that something is wrong, usually a sign error.

Exercise 15 

NoTE  You may have learned to solve calorimetry problems in other courses by 
writing Qgained = Qlost. That is, by balancing heat gained with heat lost. That ap-
proach works in simple problems, but it has two drawbacks. First, you often have to 
“fudge” the signs to make them work. Second, and more serious, you can’t extend 
this approach to a problem with three or more interacting systems. Using Qnet = 0 
is much preferred. 
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way to 0�C. The volume is V = 500 mL = 5.00 * 10-4 m3 and 
thus the mass is Ms = rV = 0.500 kg. The heat is

 Qcool = Mscw( -20 K) = -41,900 J

where �T = -20 K because the temperature decreases. Because 
0Qcool 0 7 Qmelt, the soda has sufficient energy to melt all the ice. 
Hence the final state will be all liquid at Tf 7 0. (Had we found 
0Qcool 0 6 Qmelt, then the final state would have been an ice-liquid 
mixture at 0�C.)

Energy conservation requires Qice + Qsoda = 0. The heat Qice 
consists of three terms: warming the ice to 0�C, melting the ice to 
water at 0�C, then warming the 0�C water to Tf. The mass will still 
be Mi in the last of these steps because it is the “ice system,” but 
we need to use the specific heat of liquid water. Thus

  Qice + Qsoda = [Mici (20 K) + MiL f + Micw(Tf - 0�C)]

  +  Mscw(Tf - 20�C) = 0

We’ve already done part of the calculation, allowing us to write

 37,500 J + Micw(Tf - 0�C) + Mscw(Tf - 20�C) = 0

Solving for Tf gives

 Tf =
20Mscw - 37,500

Micw + Mscw
= 1.7�C

ASSESS As expected, the soda has been cooled to nearly the freez-
ing point.

Solving for Tf gives

 Tf =
120Mici - 50Mccc + 20Mece

Mici + Mccc + Mece
= 25.7�C

ASSESS The temperature is between the initial iron and copper 
temperatures, as expected. It turns out that the alcohol warms 
up (Qe 7 0), but we had no way to know this without doing the 
calculation.

ExAMPLE 17.5  Calorimetry with a phase change
Your 500 mL soda is at 20�C, room temperature, so you add 100 g 
of ice from the -20�C freezer. Does all the ice melt? If so, what 
is the final temperature? If not, what fraction of the ice melts? 
Assume that you have a well-insulated cup.

ModEL We have a thermal interaction between the soda, which is 
essentially water, and the ice. We need to distinguish between three 
possible outcomes. If all the ice melts, then Tf 7 0�C. It’s also pos-
sible that the soda will cool to 0�C before all the ice has melted, 
leaving the ice and liquid in equilibrium at 0�C. A third possibility is 
that the soda will freeze solid before the ice warms up to 0�C. That 
seems unlikely here, but there are situations, such as the pouring of 
molten metal out of furnaces, when all the liquid does solidify. We 
need to distinguish between these before knowing how to proceed.

vISuALIzE All the initial temperatures, masses, and specific heats 
are known. The final temperature of the combined soda + ice sys-
tem is unknown.

SoLvE Let’s first calculate the heat needed to melt all the ice and 
leave it as liquid water at 0�C. To do so, we must warm the ice 
to 0�C, then change it to water. The heat input for this two-stage 
process is

 Qmelt = Mici (20 K) + MiL f = 37,500 J

where L f is the heat of fusion of water. It is used as a positive 
quantity because we must add heat to melt the ice. Next, let’s cal-
culate how much heat energy will leave the soda if it cools all the 

ExAMPLE 17.6  Three interacting systems
A 200 g piece of iron at 120�C and a 150 g piece of copper at 
-50�C are dropped into an insulated beaker containing 300 g of 
ethyl alcohol at 20�C. What is the final temperature?

ModEL Here you can’t use a simple Qgained = Qlost approach be-
cause you don’t know whether the alcohol is going to warm up or 
cool down.

vISuALIzE All the initial temperatures, masses, and specific heats 
are known. We need to find the final temperature.

SoLvE Energy conservation requires

  Qi + Qc + Qe = Mici(Tf - 120�C) + Mccc(Tf - ( -50�C))

  +  Mece (Tf - 20�C) = 0

17.7 The Specific Heats of gases
Specific heats are given in Table 17.2 for solids and liquids. Gases are harder to char-
acterize because the heat required to cause a specified temperature change depends on 
the process by which the gas changes state.

FIgurE 17.20 shows two isotherms on the pV diagram for a gas. Processes A and B, 
which start on the Ti isotherm and end on the Tf isotherm, have the same temperature 
change �T = Tf - Ti. But process A, which takes place at constant volume, requires a 
different amount of heat than does process B, which occurs at constant pressure. The 
reason is that work is done in process B but not in process A. This is a situation that 
we are now equipped to analyze.

It is useful to define two different versions of the specific heat of gases, one for 
constant-volume (isochoric) processes and one for constant-pressure (isobaric) 
processes. We will define these as molar specific heats because we usually do gas 
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FIgurE 17.20 Processes A and B have 
the same �T  and the same �Eth, but 
they require different amounts of heat.
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calculations using moles instead of mass. The quantity of heat needed to change the 
temperature of n moles of gas by �T  is

  Q = nCV �T  (temperature change at constant volume)  
(17.25)

  Q = nCP �T  (temperature change at constant pressure) 

where CV is the molar specific heat at constant volume and CP is the molar specific 
heat at constant pressure. Table 17.4 gives the values of CV and CP for a few com-
mon monatomic and diatomic gases. The units are J/mol K.

NoTE  Equations 17.25 apply to two specific ideal-gas processes. In a general 
gas process, for which neither p nor V is constant, we have no direct way to relate 
Q to �T. In that case, the heat must be found indirectly from the first law as Q =  
�Eth - W. 

TABLE 17.4 Molar specific heats of gases 
(J/mol K)

Gas CP CV CP - CV

Monatomic	Gases

He 20.8 12.5 8.3

Ne 20.8 12.5 8.3

Ar 20.8 12.5 8.3

Diatomic	Gases

H2 28.7 20.4 8.3

N2 29.1 20.8 8.3

O2 29.2 20.9 8.3

pV diagram. The gas expands (moves horizontally on the diagram) 
as heat is added, then cools at constant volume (moves vertically 
on the diagram) as heat is removed.

Notice that we used masses and specific heats for the solids but 
moles and the molar specific heat for the gas. We used CV because 
this is a constant-volume process. Solving for Tf gives

 Tf =
mAlcAlTAl + nN2CVTN2 + mCucCuTCu

mAlcAl + nN2CV + mCucCu

The specific heat values are found in Tables 17.2 and 17.4. The 
mass of the copper is

 mCu = rCuVCu = (8920 kg/cm3) (20 * 10-6 m3) = 0.178 kg

The number of moles of the gas is found from the ideal-gas law, 
using the initial conditions. Notice that inserting the copper 
block displaces 20 cm3 of gas; hence the gas volume is only V =  
780 cm3 = 7.80 * 10-4 m3. Thus

 nN2 =
pV

RT
= 0.0348 mol

Computing the final temperature gives Tf = 83�C.

ExAMPLE 17.7  Heating and cooling a gas
Three moles of O2 gas are at 20.0�C. 600 J of heat energy are 
transferred to the gas at constant pressure, then 600 J are removed 
at constant volume. What is the final temperature? Show the pro-
cess on a pV diagram.

ModEL O2 is a diatomic ideal gas. The gas is heated as an isobaric 
process, then cooled as an isochoric process.

SoLvE The heat transferred during the constant-pressure process 
causes a temperature rise

 �T = T2 - T1 =
Q

nCP
=

600 J

(3.0 mol)(29.2 J/mol K)
= 6.8�C

where CP for oxygen was taken from Table 17.4. Heating leaves 
the gas at temperature T2 = T1 + �T = 26.8�C. The temperature 
then falls as heat is removed during the constant-volume process:

�T = T3 - T2 =
Q

nCV
=

-600 J

(3.0 mol) (20.9 J/mol K)
= -9.5�C

We used a negative value for Q because heat energy is transferred 
from the gas to the environment. The final temperature of the gas 
is T3 = T2 + �T = 17.3�C. FIgurE 17.21 shows the process on a 

ExAMPLE 17.8  Calorimetry with a gas and a solid
The interior volume of a 200 g hollow aluminum box is 800 cm3. 
The box contains nitrogen gas at STP. A 20 cm3 block of copper 
at a temperature of 300�C is placed inside the box, then the box is 
sealed. What is the final temperature?

ModEL This example has three interacting systems: the aluminum 
box, the nitrogen gas, and the copper block. They must all come to 
a common final temperature Tf.

vISuALIzE The box and gas have the same initial tempera-
ture: TAl = TN2 = 0�C. The box doesn’t change size, so this is a 
constant-volume process. The final temperature is unknown.

SoLvE Although one of the systems is now a gas, the calorimetry 
equation Qnet = QAl + QN2 + QCu = 0 is still appropriate. In this 
case,

  Qnet = mAlcAl(Tf - TAl) + nN2CV(Tf - TN2)

  +  mCucCu(Tf - TCu ) = 0

ASSESS The final temperature is lower than the initial temperature 
because CP 7 CV.
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FIgurE 17.21 The pV diagram for 
Example 17.7.



CP and Cv

You may have noticed two curious features in Table 17.4. First, the molar specific 
heats of monatomic gases are all alike. And the molar specific heats of diatomic gases, 
while different from monatomic gases, are again very nearly alike. We saw a similar 
feature in Table 17.2 for the molar specific heats of solids. Second, the difference 
CP - CV = 8.3 J/mol K is the same in every case. And, most puzzling of all, the value 
of CP - CV appears to be equal to the universal gas constant R! Why should this be?

The relationship between CV and CP hinges on one crucial idea: �Eth, the change 
in the thermal energy of a gas, is the same for any two processes that have the 
same �T. The thermal energy of a gas is associated with temperature, so any process 
that changes the gas temperature from Ti to Tf has the same �Eth as any other process 
that goes from Ti to Tf. Furthermore, the first law �Eth = Q + W  tells us that a gas 
cannot distinguish between heat and work. The system’s thermal energy changes in 
response to energy added to or removed from the system, but the response of the gas is 
the same whether you heat the system, do work on the system, or do some combination 
of both. Thus any two processes that change the thermal energy of the gas by �Eth 
will cause the same temperature change �T.

With that in mind, look back at Figure 17.20. Both gas processes have the same �T, 
so both have the same value of �Eth. Process A is an isochoric process in which no 
work is done (the piston doesn’t move), so the first law for this process is

 ( �Eth )A = W + Q = 0 + Qconst vol = nCV �T  (17.26)

Process B is an isobaric process. You learned earlier that the work done on the gas 
during an isobaric process is W = -p�V. Thus

 ( �Eth )B = W + Q = -p�V + Qconst press = -p�V + nCP �T  (17.27)

( �Eth )B = ( �Eth )A because both have the same �T, so we can equate the right sides 
of Equations 17.26 and 17.27:

 -p�V + nCP �T = nCV �T  (17.28)

For the final step, we can use the ideal-gas law pV = nRT  to relate �V  and �T  
during process B. For any gas process,

 � (pV) = � (nRT) (17.29)

For a constant-pressure process, where p is constant, Equation 17.29 becomes

 p�V = nR�T  (17.30)

Substituting this expression for p�V  into Equation 17.28 gives

 -nR�T + nCP �T = nCV �T  (17.31)

The n�T  cancels, and we are left with

 CP = CV + R (17.32)

This result, which applies to all ideal gases, is exactly what we see in the data of 
Table 17.4.

But that’s not the only conclusion we can draw. Equation 17.26 found that 
�Eth = nCV �T  for a constant-volume process. But we had just noted that �Eth is the 
same for all gas processes that have the same �T. Consequently, this expression for 
�Eth is equally true for any other process. That is

 �Eth = nCV �T  (any ideal@gas process) (17.33)

Compare this result to Equations 17.25. We first made a distinction between constant-
volume and constant-pressure processes, but now we’re saying that Equation 17.33 is 
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true for any process. Are we contradicting ourselves? No, the difference lies in what 
you need to calculate.

	■	 The change in thermal energy when the temperature changes by �T  is the same for 
any process. That’s Equation 17.33.

	■	 The heat required to bring about the temperature change depends on what the pro-
cess is. That’s Equations 17.25. An isobaric process requires more heat than an 
isochoric process that produces the same �T.

The reason for the difference is seen by writing the first law as Q = �Eth - W. In an 
isochoric process, where W = 0, all the heat input is used to increase the gas tem-
perature. But in an isobaric process, some of the energy that enters the system as heat 
then leaves the system as work (W 6 0) done by the expanding gas. Thus more heat is 
needed to produce the same �T.

Heat depends on the Path
Consider the two ideal-gas processes shown in FIgurE 17.22. Even though the initial and 
final states are the same, the heat added during these two processes is not the same. We 
can use the first law �Eth = W + Q to see why.

The thermal energy is a state variable. That is, its value depends on the state of the 
gas, not the process by which the gas arrived at that state. Thus �Eth = Eth f - Eth i is 
the same for both processes. If �Eth is the same for processes A and B, then WA +  
QA = WB + QB.

You learned in Section 17.2 that the work done during an ideal-gas process de-
pends on the path in the pV diagram. There’s more area under the process B curve, so 
0WB 0 7 0WA 0 . Both values of W are negative because the gas expands, so WB is more 
negative than WA. Consequently, WA + QA can equal WB + QB only if QB 7 QA. The 
heat added or removed during an ideal-gas process depends on the path followed 
through the pV diagram.

Adiabatic Processes
Section 17.4 introduced the idea of an adiabatic process, a process in which no heat 
energy is transferred (Q = 0). FIgurE 17.23 compares an adiabatic process with isothermal 
and isochoric processes. We’re now prepared to look at adiabatic processes in more detail.

In practice, there are two ways that an adiabatic process can come about. First, a 
gas cylinder can be completely surrounded by thermal insulation, such as thick pieces 
of Styrofoam. The environment can interact mechanically with the gas by pushing or 
pulling on the insulated piston, but there is no thermal interaction.

Second, the gas can be expanded or compressed very rapidly in what we call an 
adiabatic expansion or an adiabatic compression. In a rapid process there is essen-
tially no time for heat to be transferred between the gas and the environment. We’ve 
already alluded to the idea that heat is transferred via atomic-level collisions. These 
collisions take time. If you stick one end of a copper rod into a flame, the other end 
will eventually get too hot to hold—but not instantly. Some amount of time is required 
for heat to be transferred from one end to the other. A process that takes place faster 
than the heat can be transferred is adiabatic.

NoTE  You may recall reading in Chapter 16 that we are going to study only 
quasi-static processes, processes that proceed slowly enough to remain essentially 
in equilibrium at all times. Now we’re proposing to study processes that take place 
very rapidly. Isn’t this a contradiction? Yes, to some extent it is. What we need to 
establish are the appropriate time scales. How slow must a process go to be quasi-
static? How fast must it go to be adiabatic? These types of calculations must be 
deferred to a more advanced course. It turns out—fortunately!—that many practi-
cal applications, such as the compression strokes in gasoline and diesel engines, are 
fast enough to be adiabatic yet slow enough to still be considered quasi-static. 
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FIgurE 17.22 Is the heat input along 
these two paths the same or different?

An isothermal
process has
�Eth � 0, so
W � �Q.

�Eth � W � Q

An isochoric
process has
W � 0, so
�Eth� Q.

An adiabatic process
has Q � 0, so �Eth� W.

FIgurE 17.23 The relationship of three 
important processes to the first law of 
thermodynamics.



For an adiabatic process, with Q = 0, the first law of thermodynamics is �Eth = W. 
Compressing a gas adiabatically (W 7 0) increases the thermal energy. Thus an adia-
batic compression raises the temperature of a gas. A gas that expands adiabatically 
(W 6 0) gets colder as its thermal energy decreases. Thus an adiabatic expansion 
lowers the temperature of a gas. You can use an adiabatic process to change the gas 
temperature without using heat!

The work done in an adiabatic process goes entirely to changing the thermal energy 
of the gas. But we just found that �Eth = nCV �T  for any process. Thus

 W = nCV �T  (adiabatic process) (17.34)

Equation 17.34 joins with the equations we derived earlier for the work done in iso-
choric, isobaric, and isothermal processes.

Gas processes can be represented as trajectories in the pV diagram. For example, 
a gas moves along a hyperbola during an isothermal process. How does an adiabatic 
process appear in a pV diagram? The result is more important than the derivation, 
which is a bit tedious, so we’ll begin with the answer and then, at the end of this sec-
tion, show where it comes from.

First, we define the specific heat ratio g (lowercase Greek gamma) to be

 g =
CP

CV
= b1.67 monatomic gas

1.40 diatomic gas
 (17.35)

The specific heat ratio has many uses in thermodynamics. Notice that g is dimensionless.
An adiabatic process is one in which

 pV g = constant  or  pfVf 

g = piVi 

g (17.36)

This is similar to the isothermal pV = constant, but somewhat more complex due to 
the exponent g.

The curves found by graphing p = constant/V g are called adiabats. In FIgurE 17.24 
you see that the two adiabats are steeper than the hyperbolic isotherms. An adiabatic 
process moves along an adiabat in the same way that an isothermal process moves 
along an isotherm. You can see that the temperature falls during an adiabatic expan-
sion and rises during an adiabatic compression.
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FIgurE 17.24 An adiabatic process 
moves along pV curves called adiabats.

 Tf = Ti  
pf

pi
 
Vf

Vi
= (303 K)(25.1)1 1

10 2 = 761 K = 488�C

Temperature must be in kelvins for doing gas calculations such 
as these.

 b. FIgurE 17.25 shows the pV diagram. The 30�C and 488�C iso-
therms are included to show how the temperature changes dur-
ing the process.

ExAMPLE 17.9  An adiabatic compression
Air containing gasoline vapor is admitted into the cylinder of an 
internal combustion engine at 1.00 atm pressure and 30�C. The 
piston rapidly compresses the gas from 500 cm3 to 50 cm3, a com-
pression ratio of 10.

 a. What are the final temperature and pressure of the gas?
 b. Show the compression process on a pV diagram.
 c. How much work is done to compress the gas?

ModEL The compression is rapid, with insufficient time for heat 
to be transferred from the gas to the environment, so we will  
model it as an adiabatic compression. We’ll treat the gas as if it 
were 100% air.

SoLvE a. We know the initial pressure and volume, and we know 
the volume after the compression. For an adiabatic process, 
where pV g remains constant, the final pressure is

 pf = pi1Vi

Vf
2g = (1.00 atm)(10)1.40 = 25.1 atm

Air is a mixture of N2 and O2, diatomic gases, so we used g =  
1.40. We can now find the temperature by using the ideal-gas law:

p (atm)

V (cm3)

488�C

30�C

500

i

f

50

1

25

FIgurE 17.25 The adiabatic compression of 
the gas in an internal combustion engine.

Continued
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If we use the ideal-gas-law expression p = nRT/V  in the adiabatic equation pV g =
constant, we see that TV g-1 is also constant during an adiabatic process. Thus another 
useful equation for adiabatic processes is

 TfVf 

g-1 = TiVi 

g-1 (17.37)

Proof of Equation 17.36
Now let’s see where Equation 17.36 comes from. Consider an adiabatic process in 
which an infinitesimal amount of work dW done on a gas causes an infinitesimal 
change in the thermal energy. For an adiabatic process, with dQ = 0, the first law of 
thermodynamics is

 dEth = dW  (17.38)

We can use Equation 17.33, which is valid for any gas process, to write dEth =
 nCV dT. Earlier in the chapter we found that the work done during a small volume 
change is dW = -p dV. With these substitutions, Equation 17.38 becomes

 nCV dT = -p dV  (17.39)

The ideal-gas law can now be used to write p = nRT/V. The n cancels, and the CV can 
be moved to the other side of the equation to give

 
dT

T
= -  

R

CV
 
dV

V
 (17.40)

We’re going to integrate Equation 17.40, but anticipating the need for g = CP/CV 
we can first use the fact that CP = CV + R to write

 
R

CV
=

CP - CV

CV
=

CP

CV
- 1 = g - 1 (17.41)

Now we integrate Equation 17.40 from the initial state i to the final state f:

 3
Tf

Ti

 
dT

T
= -(g - 1)3

Vf

Vi

 
dV

V
 (17.42)

Carrying out the integration gives

 ln1Tf

Ti
2 = ln1Vi

Vf
2g-1

 (17.43)

where we used the logarithm properties log a - log b = log (a/b) and c log a =  log (ac).
Taking the exponential of both sides now gives

  1Tf

Ti
2 = 1Vi

Vf
2g-1

 
(17.44)

   TfVf 

g-1 = TiVi 

g-1

This was Equation 17.37. Writing T = pV/nR and canceling 1/nR from both sides of 
the equation give Equation 17.36:

 pfVf 

g = piVi 

g (17.45)

 c. The work done is W = nCV �T, with �T = 458 K. The number 
of moles is found from the ideal-gas law and the initial conditions:

 n =
piVi

RTi
= 0.0201 mol

Thus the work done to compress the gas is

W = nCV �T = (0.0201 mol) (20.8 J/mol K) (458 K) = 192 J

ASSESS The temperature rises dramatically during the compres-
sion stroke of an engine. But the higher temperature has nothing 
to do with heat! The temperature and thermal energy of the gas 
are increased not by heating the gas but by doing work on it. 
This is an important idea to understand.
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This was a lengthy derivation, but it is good practice at seeing how the ideal-gas law and 
the first law of thermodynamics can work together to yield results of great importance.

Stop to think 17.6  For the two processes shown, which of the following is true:

 a. QA 7 QB

 b. QA = QB

 c. QA 6 QB

17.8 Heat-Transfer Mechanisms
You feel warmer when the sun is shining on you, colder when sitting on a metal bench 
or when the wind is blowing, especially if your skin is wet. This is due to the transfer 
of heat. Although we’ve talked about heat a lot in this chapter, we haven’t said much 
about how heat is transferred from a hotter object to a colder object. There are four ba-
sic mechanisms by which objects exchange heat with their surroundings. Evaporation 
was treated in Section 17.5; in this section, we will consider the other mechanisms.
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Heat-transfer mechanisms

When two objects are in  
direct contact, such as  
the soldering iron and  
the circuit board, heat is  
transferred by conduction.

Air currents near a warm  
glass of water rise, taking  
thermal energy with them  
in a process known as  
convection.

The lamp at the top shines  
on the lambs huddled below, 
warming them. The energy  
is transferred by radiation.

Blowing on a hot cup of  
tea or coffee cools it by  
evaporation.
 

Conduction
FIgurE 17.26 shows an object sandwiched between a higher temperature TH and a lower 
temperature TC. The temperature difference causes heat energy to be transferred from 
the hot side to the cold side in a process known as conduction.

It is not surprising that more heat is transferred if the temperature difference �T  
is larger. A material with a larger cross section A (a fatter pipe) transfers more heat, 
while a thicker material, increasing the distance L between the hot and cold sources, 
decreases the rate of heat transfer.

These observations about heat conduction can be summarized in a single formula. 
If heat Q is transferred in a time interval �t, the rate of heat transfer is Q/�t. For 
a material of cross-section area A and length L, spanning a temperature difference 
�T = TH - TC, the rate of heat transfer is

 
Q

�t
= k 

A

L
�T  (17.46)

This material is conducting heat across 
the temperature difference.

TH

Hot
Q

Q

TC

L

Cold

Area A

FIgurE 17.26 Conduction of heat 
through a solid.
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The quantity k, which characterizes whether the material is a good conductor of 
heat or a poor conductor, is called the thermal conductivity of the material. Because 
the heat-transfer rate J/s is a power, measured in watts, the units of k are W/m K. Val-
ues of k for common materials are given in Table 17.5; a material with a larger value 
of k is a better conductor of heat.

Most good heat conductors are metals, which are also good conductors of electric-
ity. One exception is diamond, in which the strong bonds among atoms that make 
diamond such a hard material lead to a rapid transfer of thermal energy. Air and 
other gases are poor conductors of heat because there are no bonds between adjacent 
molecules.

Some of our perceptions of hot and cold have more to do with thermal conductivity 
than with temperature. For example, a metal chair feels colder to your bare skin than a 
wooden chair not because it has a lower temperature—both are at room temperature—
but because it has a much larger thermal conductivity that conducts heat away from 
your body at a much higher rate.

TABLE 17.5 Thermal conductivities

Material k (W/m K)

Diamond 2000

Silver 430

Copper 400

Aluminum 240

Iron 80

Stainless steel 14

Ice 1.7

Concrete 0.8

Glass 0.8

Styrofoam 0.035

Air (20�C, 1 atm) 0.023

The total surface area is

 Atotal = 2 *  (1.8 m * 1.0 m + 1.8 m * 0.65 m

  + 1.0 m * 0.65 m) = 7.24 m2

Using k = 0.035 W/m K from Table 17.5, we find

 
Q

�t
=

k �t

L
 Atotal =

(0.035 W/m K) (45 K) (7.24 m2)

0.050 m
= 230 W

Heat enters the freezer through the walls at the rate 230 J/s; thus 
the compressor must remove 230 J of heat energy every second to 
keep the temperature at -20�C.

ASSESS We’ll learn in Chapter 19 how the compressor does this 
and how much work it must do. A typical freezer uses electric 
energy at a rate of about 150 W, so our result seems reasonable.

ExAMPLE 17.10  Keeping a freezer cold
A 1.8-m-wide by 1.0-m-tall by 0.65-m-deep home freezer is insu-
lated with 5.0-cm-thick Styrofoam insulation. At what rate must 
the compressor remove heat from the freezer to keep the inside at 
-20�C in a room where the air temperature is 25�C?

ModEL Heat is transferred through each of the six sides by con-
duction. The compressor must remove heat at the same rate it en-
ters to maintain a steady temperature inside. The heat conduction 
is determined primarily by the thick insulation, so we’ll neglect 
the thin inner and outer panels.

SoLvE Each of the six sides is a slab of Styrofoam with cross-
section area Ai and thickness L = 5.0 cm. The total rate of heat 
transfer is

 
Q

�t
= a

6

i=1
 k 

Ai

L
  �T =

k �T

L
 a

6

i=1
 Ai =

k �T

L
 Atotal

Convection
Air is a poor conductor of heat, but thermal energy is easily transferred through air, 
water, and other fluids because the air and water can flow. A pan of water on the stove 
is heated at the bottom. This heated water expands, becomes less dense than the wa-
ter above it, and thus rises to the surface, while cooler, denser water sinks to take its 
place. The same thing happens to air. This transfer of thermal energy by the motion of 
a fluid—the well-known idea that “heat rises”—is called convection.

Convection is usually the main mechanism for heat transfer in fluid systems. On 
a small scale, convection mixes the pan of water that you heat on the stove; on a 
large scale, convection is responsible for making the wind blow and ocean currents 
circulate. Air is a very poor thermal conductor, but it is very effective at transferring 
energy by convection. To use air for thermal insulation, it is necessary to trap the air in 
small pockets to limit convection. And that’s exactly what feathers, fur, double-paned 
windows, and fiberglass insulation do. Convection is much more rapid in water than 
in air, which is why people can die of hypothermia in 68�F (20�C) water but can live 
quite happily in 68�F air.

Because convection involves the often-turbulent motion of fluids, there is no 
simple equation for energy transfer by convection. Our description must remain 
qualitative.

Warm water (colored) moves 
by convection.



radiation
The sun radiates energy to earth through the vacuum of space. Similarly, you feel the 
warmth from the glowing red coals in a fireplace.

All objects emit energy in the form of radiation, electromagnetic waves generated by 
oscillating electric charges in the atoms that form the object. These waves transfer energy 
from the object that emits the radiation to the object that absorbs it. Electromagnetic 
waves carry energy from the sun; this energy is absorbed when sunlight falls on your skin, 
warming you by increasing your thermal energy. Your skin also emits electromagnetic 
radiation, helping to keep your body cool by decreasing your thermal energy. Radiation 
is a significant part of the energy balance that keeps your body at the proper temperature.

NoTE  The word “radiation” comes from “radiate,” meaning “to beam.” Radiation 
can refer to x rays or to the radioactive decay of nuclei, but it also can refer simply 
to light and other forms of electromagnetic waves that “beam” from an object. Here 
we are using this second meaning of the term. 

You are familiar with radiation from objects hot enough to glow “red hot” or, at a 
high enough temperature, “white hot.” The sun is simply a very hot ball of glowing 
gas, and the white light from an incandescent lightbulb is radiation emitted by a thin 
wire filament heated to a very high temperature by an electric current. Objects at lower 
temperatures also radiate, but at infrared wavelengths. You can’t see this radiation 
(although you can sometimes feel it), but infrared-sensitive detectors can measure it 
and are used to make thermal images.

The energy radiated by an object depends strongly on temperature. If heat energy 
Q is radiated in a time interval �t by an object with surface area A and absolute tem-
perature T, the rate of heat transfer is found to be

 
Q

�t
= esAT 4 (17.47)

Because the rate of energy transfer is power (1 J/s = 1 W), Q/�t is often called the 
radiated power. Notice the very strong fourth-power dependence on temperature. 
Doubling the absolute temperature of an object increases the radiated power by a fac-
tor of 16!

The parameter e in Equation 17.47 is the emissivity of the surface, a measure of 
how effectively it radiates. The value of e ranges from 0 to 1. s is a constant, known 
as the Stefan-Boltzmann constant, with the value

 s = 5.67 * 10-8 W/m2 K4

NoTE  Just as in the ideal-gas law, the temperature in Equation 17.47 must be in 
kelvins. 

Objects not only emit radiation, they also absorb radiation emitted by their sur-
roundings. Suppose an object at temperature T is surrounded by an environment at 
temperature T0. The net rate at which the object radiates heat energy—that is, radiation 
emitted minus radiation absorbed—is

 
Qnet

�t
= esA(T 4 - T0 

4) (17.48)

This makes sense. An object should have no net radiation if it’s in thermal equilibrium 
(T = T0) with its surroundings.

Notice that the emissivity e appears for absorption as well as emission; good emitters 
are also good absorbers. A perfect absorber (e = 1), one absorbing all light and radiation 
impinging on it but reflecting none, would appear completely black. Thus a perfect ab-
sorber is sometimes called a black body. But a perfect absorber would also be a perfect 
emitter, so thermal radiation from an ideal emitter is called black-body radiation. It 
seems strange that black objects are perfect emitters, but think of black charcoal glowing 
bright red in a fire. At room temperature, it “glows” equally bright with infrared.

This satellite image shows radiation 
emitted by the ocean waters off the east 
coast of the United States. You can clearly 
see the warm waters of the Gulf Stream, a 
largescale convection that transfers heat 
to northern latitudes.
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Thermal radiation plays a prominent role in climate and global warming. The earth 
as a whole is in thermal equilibrium. Consequently, it must radiate back into space ex-
actly as much energy as it receives from the sun. The incoming radiation from the hot 
sun is mostly visible light. The earth’s atmosphere is transparent to visible light, so this 
radiation reaches the surface and is absorbed. The cooler earth radiates infrared radia-
tion, but the atmosphere is not completely transparent to infrared. Some components 
of the atmosphere, notably water vapor and carbon dioxide, are strong absorbers of in-
frared radiation. They hinder the emission of radiation and, rather like a blanket, keep 
the earth’s surface warmer than it would be without these gases in the atmosphere.

The greenhouse effect, as it’s called, is a natural part of the earth’s climate. The 
earth would be much colder and mostly frozen were it not for naturally occurring carbon 
dioxide in the atmosphere. But carbon dioxide also results from the burning of fossil fuels, 
and human activities since the beginning of the industrial revolution have increased the 
atmospheric concentration of carbon dioxide by nearly 50%. This human contribution has 
amplified the greenhouse effect and is the primary cause of global warming.

Stop to think 17.7  Suppose you are an astronaut in space, hard at work in your sealed 
spacesuit. The only way that you can transfer excess heat to the environment is by

 a. Conduction. b. Convection. c. Radiation. d. Evaporation.

sphere of radius RS. Using this information in Equation 17.47, we 
find that the sun’s surface temperature is

  T = c Q/�t

es(4pRS 

2)
d

1/4

  = c 3.87 * 1026 W

(1)(5.67 * 10-8 W/m2 K4 )4p(6.96 * 108 m)2 d
1/4

  = 5790 K

ASSESS This temperature is confirmed by measurements of the 
solar spectrum, a topic we’ll explore in Part VII.

ExAMPLE 17.11  Taking the sun’s temperature
The radius of the sun is 6.96 * 108 m. At the distance of the earth, 
1.50 * 1011 m, the intensity of solar radiation (measured by satel-
lites above the atmosphere) is 1370 W/m2. What is the tempera-
ture of the sun’s surface?

ModEL Assume the sun to be an ideal radiator with e = 1.

SoLvE The total power radiated by the sun is the power per m2 
multiplied by the surface area of a sphere extending to the earth:

 P =
1370 W

1 m2  * 4p(1.50 * 1011 m)2 = 3.87 * 1026 W

That is, the sun radiates energy at the rate Q/�t = 3.87 * 1026 J/s. 
That’s a lot of power! This energy is radiated from the surface of a 

where k = 0.80 W/m K is the thermal conductivity of glass. Be-
cause the heat transferred by conduction is used entirely for boil-
ing the water, we can combine these two expressions:

 k 
A

L
 �T �t = ML v

and then solve for �t:

  �t =
MLL v

kA�T
=

(0.40 kg)(0.0020 m)(2.26 * 106 J/kg)

(0.80 W/m K)(0.0050 m2)(300 K)

  = 1500 s = 25 min

We used the density of water to find that M = 400 g = 0.40 kg 
and calculated A = pr2 = 0.0050 m2 as the area through which 
heat conduction occurs.

ASSESS 400 mL is roughly 2 cups, a small hot plate can bring 
2 cups of water to a boil in 5 min or so, and boiling the water away 
takes quite a bit longer than bringing it to a boil. 25 min is prob-
ably a slight underestimate since we neglected energy losses due 
to convection and radiation, but it seems reasonable. A stove could 
boil the water away much faster because the burner temperature 
(gas flame or red-hot heating coil) is much higher.

CHALLENgE ExAMPLE 17.12  Boiling water
400 mL of water is poured into an 8.0@cm@diameter, 150 g glass 
beaker with a 2.0@mm@thick bottom; then the beaker is placed on 
a 400�C hot plate. Once the water reaches the boiling point, how 
long will it take to boil away all the water?

ModEL The bottom of the beaker is a heat-conducting material 
transferring heat energy from the 400�C hot plate to the 100�C 
boiling water. The temperature of both the water and the beaker 
remains constant until the water has boiled away. We’ll assume 
that heat losses due to convection and radiation are negligible, in 
which case the heat energy entering the system is used entirely for 
the phase change of the water. The beaker’s mass isn’t relevant 
because its temperature isn’t changing.

SoLvE The heat energy required to boil mass M of water is

 Q = ML v

where L v = 2.26 * 106 J/kg is the heat of vaporization. The heat 
energy transferred through the bottom of the beaker during a time 
interval �t is

 Q = k 
A

L
 �T �t
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Process Definition Stays constant Work Heat

Isochoric �V = 0 V and p/T W = 0 Q = nCV �T

Isobaric �p = 0 p and V/T W = -p�V Q = nCP �T

Isothermal �T = 0 T and pV W = -nRT  ln (Vf /Vi ) �Eth = 0

Adiabatic Q = 0 pV g W = �Eth Q = 0

All gas processes First law �Eth = W + Q = nCV �T Ideal-gas law pV = nRT

Summary of Basic gas Processes

S u M M A r y
The goal of Chapter 17 has been to develop and apply the first law of thermodynamics.

general Principles
First Law of Thermodynamics
 �Eth = W + Q

The first law is a general  
statement of energy 
conservation.

Work W and heat Q depend 
on the process by which the 
system is changed.

The change in the system depends only on the total energy 
exchanged W + Q, not on the process.

Energy
Thermal energy Eth Microscopic energy of moving molecules 
and stretched molecular bonds. �Eth depends on the initial/final 
states but is independent of the process.

Work W Energy transferred to the system by forces in a 
mechanical interaction.

Heat Q Energy transferred to the system via atomic-level 
collisions when there is a temperature difference. A thermal 
interaction.

System

Eth

Q � 0

W � 0

Q � 0

W � 0

Work on

Heat in

Work by

Heat out

The heat of transformation L is the energy needed to cause 
1 kg of substance to undergo a phase change

Q = {ML

The specific heat c of a substance is the energy needed to raise 
the temperature of 1 kg by 1 K:

Q = Mc�T

The molar specific heat C is the energy needed to raise the 
temperature of 1 mol by 1 K:

Q = nC�T

The molar specific heat of gases depends on the process by 
which the temperature is changed:

 CV = molar specific heat at constant	volume

 CP = CV + R = molar specific heat at constant	pressure

Heat is transferred by conduction, convection, radiation, and 
evaporation.

 Conduction: Q/�t = (kA/L)�T

 Radiation:   Q/�t = esAT 4

Important Concepts

Calorimetry When two or more systems interact thermally, they 
come to a common final temperature determined by

Qnet = Q1 + Q2 + g = 0

An adiabatic process is one for 
which Q = 0. Gases move along an 
adiabat for which pV g =  constant, 
where g = CP/CV is the specific	heat	
ratio. An adiabatic process changes 
the temperature of the gas without 
heating it.

The work done on a gas is

  W = - 3
Vf

Vi

 p dV

  = - (area under the pV curve) V

p
i

f

V

p

Adiabat

Isotherms
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work, W
mechanical interaction
mechanical equilibrium
heat, Q
thermal interaction
thermal equilibrium
first law of thermodynamics
thermodynamic energy model

adiabatic process
specific heat, c
molar specific heat, C
heat of transformation, L
heat of fusion, L f

heat of vaporization, L v

calorimetry

molar specific heat at 
constant volume, CV

molar specific heat at 
constant pressure, CP

specific heat ratio, g
adiabat
conduction

thermal conductivity, k
convection
radiation
emissivity, e
black body
black-body radiation
greenhouse effect

Terms and Notation

C o N C E P T u A L  Q u E S T I o N S

 1. When the space shuttle returns to earth, its surfaces get very hot 
as it passes through the atmosphere at high speed. Has the space 
shuttle been heated? If so, what was the source of the heat? If 
not, why is it hot?

 2. Do (a) temperature, (b) heat, and (c) thermal energy describe a 
property of a system, an interaction of the system with its envi-
ronment, or both? Explain.

 3. Two containers hold equal masses of nitrogen gas at equal tem-
peratures. You supply 10 J of heat to container A while not al-
lowing its volume to change, and you supply 10 J of heat to con-
tainer B while not allowing its pressure to change. Afterward, is 
temperature TA greater than, less than, or equal to TB? Explain.

 4. You need to raise the temperature of a gas by 10�C. To use the 
least amount of heat energy, should you heat the gas at constant 
pressure or at constant volume? Explain.

 5. Why is the molar specific heat of a gas at constant pressure larger 
than the molar specific heat at constant volume?

 6. FIgurE Q17.6 shows an adiabatic process.
 a. Is the final temperature higher than, lower than, or equal to 

the initial temperature?
 b. Is any heat energy added to or removed from the system in 

this process? Explain.

 7. FIgurE Q17.7 shows two different processes taking an ideal gas 
from state i to state f. Is the work done on the gas in process A 
greater than, less than, or equal to the work done in process B? 
Explain.

 8. FIgurE Q17.8 shows two different processes taking an ideal gas 
from state i to state f.

 a. Is the temperature change �T  during process A larger than, 
smaller than, or equal to the change during process B? Explain.

 b. Is the heat energy added during process A greater than, less 
than, or equal to the heat added during process B? Explain.

 9. Describe a series of steps in which you use the cylinder of 
Figure 17.13 to implement the ideal-gas process shown in 
FIgurE Q17.9. Then show the process as a first-law bar chart.

 10. Describe a series of steps in 
which you use the cylinder of 
Figure 17.13 to implement the 
ideal-gas process shown in 
FIgurE Q17.10. Then show the 
process as a first-law bar chart.

 11. The gas cylinder in FIgurE Q17.11, similar 
to the cylinder shown in Fig ure 17.13, is 
placed on a block of ice. The initial gas 
temperature is 7 0�C.

 a. During the process that occurs until 
the gas reaches a new equilibrium, are 
(i) �T, (ii) W, and (iii) Q greater than, 
less than, or equal to zero? Explain.

 b. Draw a pV diagram showing the 
process.

 12. The gas cylinder in FIgurE Q17.12 is simi-
lar to the cylinder described earlier in Fig - 
ure 17.13, except that the bottom is 
insulated. Masses are slowly removed 
from the top of the piston until the total 
mass is reduced by 50%.

 a. During this process, are (i) �T , (ii) 
W, and (iii) Q greater than, less than, 
or equal to zero? Explain.

 b. Draw a pV diagram showing the process.
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E x E r C I S E S  A N d  P r o B L E M S

Problems labeled  integrate material from earlier chapters.

Exercises

Section	17.1	It’s	All	About	Energy

Section	17.2	Work	in	Ideal-Gas	Processes

 1. || How much work is done on the gas in the process shown in 
FIgurE Ex17.1?

 2. || How much work is done on the gas in the process shown in 
FIgurE Ex17.2?

 3. || 80 J of work are done on the gas in the process shown in 
FIgurE Ex17.3. What is V1 in cm3?

 4. || A 2000 cm3 container holds 0.10 mol of helium gas at 300�C. 
How much work must be done to compress the gas to 1000 cm3 
at (a) constant pressure and (b) constant temperature?

Section	17.3	Heat

Section	17.4	The	First	Law	of	Thermodynamics

 5. | Draw a first-law bar chart (see Figure 17.14) for the gas 
process in FIgurE Ex17.5.

 6. | Draw a first-law bar chart (see Figure 17.14) for the gas 
process in FIgurE Ex17.6.

 7. | Draw a first-law bar chart (see Figure 17.14) for the gas 
process in FIgurE Ex17.7.

 8. | Draw a first-law bar chart (see Figure 17.14) for the gas 
process in FIgurE Ex17.8.

 9. || A gas is compressed from 600 cm3 to 200 cm3 at a constant 
pressure of 400 kPa. At the same time, 100 J of heat energy is 
transferred out of the gas. What is the change in thermal energy 
of the gas during this process?

 10. | 500 J of work are done on a system in a process that decreases 
the system’s thermal energy by 200 J. How much heat energy is 
transferred to or from the system?

Section	17.5	Thermal	Properties	of	Matter

 11. || How much heat energy must be added to a 6.0 cm * 6.0 cm *  
6.0 cm block of aluminum to raise its temperature from 
- 50�C to 50�C?

 12. || A rapidly spinning paddle wheel raises the temperature of 
200 mL of water from 21�C to 25�C. How much (a) heat is trans-
ferred and (b) work is done in this process?

 13. | a.  100 J of heat energy are transferred to 20 g of mercury. By 
how much does the temperature increase?

  b.  How much heat is needed to raise the temperature of 20 g 
of water by the same amount?

 14. || How much heat is needed to change 20 g of mercury at 20�C 
into mercury vapor at the boiling point?

 15. || What is the maximum mass of ethyl alcohol you could boil 
with 1000 J of heat, starting from 20�C?

Section	17.6	Calorimetry

 16. || 30 g of copper pellets are removed from a 300�C oven and im-
mediately dropped into 100 mL of water at 20�C in an insulated 
cup. What will the new water temperature be?

 17. || A 750 g aluminum pan is removed from the stove and plunged 
into a sink filled with 10.0 L of water at 20.0�C. The water tem-
perature quickly rises to 24.0�C. What was the initial tempera-
ture of the pan in �C and in �F?

 18. || A 50.0 g thermometer is used to measure the temperature of 
200 mL of water. The specific heat of the thermometer, which 
is mostly glass, is 750 J/kg K, and it reads 20.0�C while lying 
on the table. After being completely immersed in the water, the 
thermometer’s reading stabilizes at 71.2�C. What was the actual 
water temperature before it was measured?

p (kPa)

V (cm3)

if

0
1000 200 300

200

400

FIgurE Ex17.1 

p (kPa)

V (cm3)

i f

0
1000 200 300

200

400

FIgurE Ex17.2 

V0
V10 2V1 3V1

200

p (kPa)

FIgurE Ex17.3 

p

V

i f

FIgurE Ex17.5 

p

V

i

f

FIgurE Ex17.6 

f

i
V

p

Adiabat

Isotherms

FIgurE Ex17.7 

p

V

Isotherm

f

i

FIgurE Ex17.8 

http://www.meetyourbrain.com/bookChapters.php?book=Physics-for-Scientists-and-Engineers-A-Strategic-Approach-with-Modern-Physics-3rd-Edition-Solutions&title=0


498    c h a p t e r  17 . Work, Heat, and the First Law of Thermodynamics

 19. || A 500 g metal sphere is heated to 300�C, then dropped into a 
beaker containing 300 cm3 of mercury at 20.0�C. A short time later 
the mercury temperature stabilizes at 99.0�C. Identify the metal.

 20. || A 65 cm3 block of iron is removed from an 800�C furnace and 
immediately dropped into 200 mL of 20�C water. What fraction 
of the water boils away?

Section	17.7	The	Specific	Heats	of	Gases

 21. | A container holds 1.0 g of argon at a pressure of 8.0 atm.
 a. How much heat is required to increase the temperature by 

100�C at constant volume?
 b. How much will the temperature increase if this amount of 

heat energy is transferred to the gas at constant pressure?
 22. || A container holds 1.0 g of oxygen at a pressure of 8.0 atm.
 a. How much heat is required to increase the temperature by 

100�C at constant pressure?
 b. How much will the temperature increase if this amount of 

heat energy is transferred to the gas at constant volume?
 23. || A rigid cylinder contains 7.0 g of nitrogen at 20�C. What is the 

minimum amount of heat energy that must be removed to liquify 
the nitrogen?

 24. | The volume of a gas is halved during an adiabatic compres-
sion that increases the pressure by a factor of 2.5.

 a. What is the specific heat ratio g?
 b. By what factor does the temperature increase?
 25. || A gas cylinder holds 0.10 mol of O2 at 150�C and a pressure 

of 3.0 atm. The gas expands adiabatically until the pressure is 
halved. What are the final (a) volume and (b) temperature?

 26. || A gas cylinder holds 0.10 mol of O2 at 150�C and a pressure 
of 3.0 atm. The gas expands adiabatically until the volume is 
doubled. What are the final (a) pressure and (b) temperature?

Section	17.8	Heat-Transfer	Mechanisms

 27. || A 10 m * 14 m house is built on a 12-cm-thick concrete slab. 
What is the heat-loss rate through the slab if the ground tempera-
ture is 5�C while the interior of the house is 22�C?

 28. | The ends of a 20-cm-long, 2.0-cm-diameter rod are main-
tained at 0�C and 100�C by immersion in an ice-water bath and 
boiling water. Heat is conducted through the rod at 4.5 * 104  J 
per hour. Of what material is the rod made?

 29. || What maximum power can be radiated by a 10-cm-diameter 
solid lead sphere? Assume an emissivity of 1.

 30. ||| Radiation from the head is a major source of heat loss from the 
human body. Model a head as a 20-cm-diameter, 20-cm-tall cyl-
inder with a flat top. If the body’s surface temperature is 35�C, 
what is the net rate of heat loss on a chilly 5�C day? All skin, 
regardless of color, is effectively black in the infrared where the 
radiation occurs, so use an emissivity of 0.95.

Problems

 31. || A 5.0 g ice cube at -20�C is in a rigid, sealed container from 
which all the air has been evacuated. How much heat is required 
to change this ice cube into steam at 200�C?

 32. || A 5.0-m-diameter garden pond is 30 cm deep. Solar energy 
is incident on the pond at an average rate of 400 W/m2. If the 
water absorbs all the solar energy and does not exchange energy 
with its surroundings, how many hours will it take to warm from  
15�C to 25�C?

BIO

 33. | An 11 kg bowling ball at 0�C is dropped into a tub containing 
a mixture of ice and water. A short time later, when a new equi-
librium has been established, there are 5.0 g less ice. From what 
height was the ball dropped? Assume no water or ice splashes out.

 34. || The burner on an electric stove has a power output of 2.0 kW. 
A 750 g stainless steel teakettle is filled with 20�C water and 
placed on the already hot burner. If it takes 3.0 min for the water 
to reach a boil, what volume of water, in cm3, was in the kettle? 
Stainless steel is mostly iron, so you can assume its specific heat 
is that of iron.

 35. || Reptiles don’t use enough metabolic energy to keep their body 
temperature constant. They cool off at night and must warm up in 
the morning sun. Suppose a 2.9-m-long, 60-cm-wide, 350 kg alliga-
tor is basking in the sun. If the sun’s intensity on the back of the 
alli gator is 500 W/m2, and if energy losses can be ignored, how 
long will it take the alligator to warm up from 23�C to a more favor-
able 30�C? The average specific heat of body tissue is 3400 J/kg K.

 36. | One way you keep from overheating is by perspiring. 
Evaporation—a phase change—requires heat, and the heat energy 
is removed from your body. Evaporation is much like boiling, 
only water’s heat of vaporization at 35�C is a somewhat larger 
24 * 105 J/kg because at lower temperatures more energy is 
required to break the molecular bonds. Very strenuous activity can 
cause an adult human to produce 30 g of perspiration per minute. 
If all the perspiration evaporates, rather than dripping off, at what 
rate (in J/s) is it possible to exhaust heat by perspiring?

 37. || When air is inhaled, it quickly becomes saturated with water 
vapor as it passes through the moist airways. Consequently, an 
adult human exhales about 25 mg of evaporated water with each 
breath. Evaporation—a phase change—requires heat, and the 
heat energy is removed from your body. Evaporation is much 
like boiling, only water’s heat of vaporization at 35�C is a 
somewhat larger 24 * 105 J/kg because at lower temperatures 
more energy is required to break the molecular bonds. At 
12 breaths/min, on a dry day when the inhaled air has almost no 
water content, what is the body’s rate of energy loss (in J/s) due 
to exhaled water? (For comparison, the energy loss from radia-
tion, usually the largest loss on a cool day, is about 100 J/s.)

 38. ||| Two cars collide head-on while each is traveling at 80 km/h. 
Suppose all their kinetic energy is transformed into the thermal 
energy of the wrecks. What is the temperature increase of each 
car? You can assume that each car’s specific heat is that of iron.

 39. ||| 10 g of aluminum at 200�C and 20 g of copper are dropped 
into 50 cm3 of ethyl alcohol at 15�C. The temperature quickly 
comes to 25�C. What was the initial temperature of the copper?

 40. || A 100 g ice cube at -10�C is placed in an aluminum bucket 
whose initial temperature is 70�C. The system comes to an equi-
librium temperature of 20�C. What is the mass of the bucket?

 41. || 512 g of an unknown metal at a temperature of 15�C is drop-
ped into a 100 g aluminum container holding 325 g of water at 
98�C. A short time later, the container of water and metal stabi-
lizes at a new temperature of 78�C. Identify the metal.

 42. || A 150 L (�  40 gal) electric hot-water tank has a 5.0 kW 
heater. How many minutes will it take to raise the water tem-
perature from 65�F to 140�F?

 43. || What is oxygen’s specific heat at constant volume in J/kg K?
 44. || Suppose you take and hold a deep breath on a chilly day, in-

haling 3.0 L of air at 0�C and 1 atm.
 a. How much heat must your body supply to warm the air to 

your internal body temperature of 37�C?
 b. By how much does the air’s volume increase as it warms?

BIO
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 45. | An experiment measures the temperature of a 500 g substance 
while steadily supplying heat to it. FIgurE P17.45 shows the re-
sults of the experiment. What are the (a) specific heat of the solid 
phase, (b) specific heat of the liquid phase, (c) melting and boil-
ing temperatures, and (d) heats of fusion and vaporization?

 46. || Your 300 mL cup of coffee is too hot to drink when served 
at 90�C. What is the mass of an ice cube, taken from a -20�C 
freezer, that will cool your coffee to a pleasant 60�C?

 47. || A typical nuclear reactor generates 1000 MW (1000 MJ/s) of 
electrical energy. In doing so, it produces 2000 MW of “waste 
heat” that must be removed from the reactor to keep it from melt-
ing down. Many reactors are sited next to large bodies of water 
so that they can use the water for cooling. Consider a reactor 
where the intake water is at 18�C. State regulations limit the tem-
perature of the output water to 30�C so as not to harm aquatic 
organisms. How many liters of cooling water have to be pumped 
through the reactor each minute?

 48. || A beaker with a metal bottom is 
filled with 20 g of water at 20�C. 
It is brought into good thermal 
contact with a 4000 cm3 container 
holding 0.40 mol of a monatomic 
gas at 10 atm pressure. Both con-
tainers are well insulated from 
their surroundings. What is the 
gas pressure after a long time has 
elapsed? You can assume that the containers themselves are 
nearly massless and do not affect the outcome.

 49. || 2.0 mol of gas are at 30�C and a pressure of 1.5 atm. How 
much work must be done on the gas to compress it to one third 
of its initial volume at (a) constant temperature and (b) constant 
pressure? (c) Show both processes on a single pV diagram.

 50. || 500 J of work must be done to compress a gas to half its initial 
volume at constant temperature. How much work must be done 
to compress the gas by a factor of 10, starting from its initial 
volume?

 51. || A 6.0-cm-diameter cylinder of nitrogen gas has a 4.0-cm-thick 
movable copper piston. The cylinder is oriented vertically, as 
shown in FIgurE P17.51, and the air above the piston is evacu-
ated. When the gas temperature is 20�C, the 
piston floats 20 cm above the bottom of the 
cylinder.

 a. What is the gas pressure?
 b. How many gas molecules are in the 

cylinder?
  Then 2.0 J of heat energy are transferred to 

the gas.
 c. What is the new equilibrium temperature 

of the gas?
 d. What is the final height of the piston?
 e. How much work is done on the gas as the 

piston rises?

 52. || A 10-cm-diameter cylinder contains argon gas at 10 atm pres-
sure and a temperature of 50�C. A piston can slide in and out 
of the cylinder. The cylinder’s initial length is 20 cm. 2500 J 
of heat are transferred to the gas, causing the gas to expand at 
constant pressure. What are (a) the final temperature and (b) the 
final length of the cylinder?

 53. || A cube 20 cm on each side contains 3.0 g of helium at 20�C. 
1000 J of heat energy are transferred to this gas. What are (a) the 
final pressure if the process is at constant volume and (b) the 
final volume if the process is at constant pressure? (c) Show and 
label both processes on a single pV diagram.

 54. || An 8.0-cm-diameter, well-insulated vertical cylinder contain-
ing nitrogen gas is sealed at the top by a 5.1 kg frictionless pis-
ton. The air pressure above the piston is 100 kPa.

 a. What is the gas pressure inside the cylinder?
 b. Initially, the piston height above the bottom of the cylinder is 

26 cm. What will be the piston height if an additional 3.5 kg 
are placed on top of the piston?

 55. || n moles of an ideal gas at temperature T1 and volume V1 ex-
pand isothermally until the volume has doubled. In terms of n, 
T1, and V1, what are (a) the final temperature, (b) the work done 
on the gas, and (c) the heat energy transferred to the gas?

 56. || 5.0 g of nitrogen gas at 20�C and an initial pressure of 3.0 atm 
undergo an isobaric expansion until the volume has tripled.

 a. What are the gas volume and temperature after the expansion?
 b. How much heat energy is transferred to the gas to cause this 

expansion?
  The gas pressure is then decreased at constant volume until the 

original temperature is reached.
 c. What is the gas pressure after the decrease?
 d. What amount of heat energy is transferred from the gas as its 

pressure decreases?
 e. Show the total process on a pV diagram. Provide an appropri-

ate scale on both axes.
 57. || FIgurE P17.57 shows two processes that take a gas from state i 

to state f. Show that QA -  QB = piVi.

 58. | 0.10 mol of nitrogen gas follow the two processes shown in 
FIgurE P17.58. How much heat is required for each?

 59. || 0.10 mol of nitrogen gas follow the two processes shown in 
FIgurE P17.59. How much heat is required for each?
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 60. || 0.10 mol of a monatomic gas follow the process shown in 
FIgurE P17.60.

 a. How much heat energy is transferred to or from the gas 
during process 1 S 2?

 b. How much heat energy is transferred to or from the gas 
during process 2 S 3?

 c. What is the total change in thermal energy of the gas?

 61. ||| Your laboratory assignment for the week is to measure the 
specific heat ratio g of carbon dioxide. The gas is contained in 
a cylinder with a movable piston and a thermometer. When the 
piston is withdrawn as far as possible, the cylinder’s length is 
20 cm. You decide to push the piston in very rapidly by various 
amounts and, for each push, to measure the temperature of the 
carbon dioxide. Before each push, you withdraw the piston all 
the way and wait several minutes for the gas to come to the room 
temperature of 21�C. Your data are as follows:

Push (cm) Temperature (°C)

 5  35

10  68

13 110

15 150

  Use the best-fit line of an appropriate graph to determine g for 
carbon dioxide.

 62. || Two cylinders each contain 0.10 mol of a diatomic gas at 
300 K and a pressure of 3.0 atm. Cylinder A expands isother-
mally and cylinder B expands adiabatically until the pressure of 
each is 1.0 atm.

 a. What are the final temperature and volume of each?
 b. Show both processes on a single pV diagram. Use an appro-

priate scale on both axes.
 63. ||| A monatomic gas follows the process 1 S 2 S 3 shown in 

FIgurE P17.63. How much heat is needed for (a) process 1 S 2 
and (b) process 2 S 3?

 64. || FIgurE P17.64 shows a thermodynamic process followed by 
0.015 mol of hydrogen. How much heat energy is transferred to 
the gas?

 65. || FIgurE P17.65 shows a thermodynamic process followed by 
120 mg of helium.

 a. Determine the pressure (in atm), temperature (in �C), and 
volume (in cm3) of the gas at points 1, 2, and 3. Put your 
results in a table for easy reading.

 b. How much work is done on the gas during each of the three 
segments?

 c. How much heat energy is transferred to or from the gas dur-
ing each of the three segments?

 66 || a.  What compression ratio Vmax/Vmin will raise the air tem-
perature from 20�C to 1000�C in an adiabatic process?

  b. What pressure ratio pmax/pmin does this process have?
 67. || Two containers of a diatomic gas have the same initial con-

ditions. One container, heated at constant pressure, has a tem-
perature increase of 20�C. The other container receives the same 
quantity of heat energy, but at constant volume. What is its tem-
perature increase?

 68. || 14 g of nitrogen gas at STP are adiabatically compressed to 
a pressure of 20 atm. What are (a) the final temperature, (b) the 
work done on the gas, (c) the heat input to the gas, and (d) the 
compression ratio Vmax/Vmin ? (e) Show the process on a pV dia-
gram, using proper scales on both axes.

 69. || 14 g of nitrogen gas at STP are pressurized in an isochoric 
process to a pressure of 20 atm. What are (a) the final tempera-
ture, (b) the work done on the gas, (c) the heat input to the gas, 
and (d) the pressure ratio pmax/pmin ? (e) Show the process on a 
pV diagram, using proper scales on both axes.

 70. || When strong winds rapidly carry air down from mountains to 
a lower elevation, the air has no time to exchange heat with its 
surroundings. The air is compressed as the pressure rises, and its 
temperature can increase dramatically. These warm winds are 
called Chinook winds in the Rocky Mountains and Santa Ana 
winds in California. Suppose the air temperature high in the 
mountains behind Los Angeles is 0�C at an elevation where the 
air pressure is 60 kPa. What will the air temperature be, in �C 
and �F, when the Santa Ana winds have carried this air down to 
an elevation near sea level where the air pressure is 100 kPa?

 71. || You would like to put a solar hot water system on your roof, 
but you’re not sure it’s feasible. A reference book on solar en-
ergy shows that the ground-level solar intensity in your city is 
800 W/m2 for at least 5 hours a day throughout most of the year. 
Assuming that a completely black collector plate loses energy 
only by radiation, and that the air temperature is 20�C, what is 
the equilibrium temperature of a collector plate directly facing 
the sun? Note that while a plate has two sides, only the side fac-
ing the sun will radiate because the opposite side will be well 
insulated.

 72. || A cubical box 20 cm on a side is constructed from 1.2-cm-
thick concrete panels. A 100 W lightbulb is sealed inside the 
box. What is the air temperature inside the box when the light is 
on if the surrounding air temperature is 20�C?
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	73.	 ||	 The	sun’s	intensity	at	the	distance	of	the	earth	is	1370	W/m2.	
30%	of	this	energy	is	reflected	by	water	and	clouds;	70%	is	ab-
sorbed.	What	would	be	the	earth’s	average	temperature	(in	�C)	
if	 the	 earth	had	no	 atmosphere?	The	 emissivity	of	 the	 surface	
is	very	close	to	1.	(The	actual	average	temperature	of	the	earth,	
about	15�C,	is	higher	than	your	calculation	because	of	the	green-
house	effect.)

In	Problems	74	through	76	you	are	given	the	equation	used	to	solve	a	
problem.	For	each	of	these,	you	are	to
	 a.	 Write	a	realistic	problem	for	which	this	is	the	correct	equation.
	 b.	 Finish	the	solution	of	the	problem.

	74.	 50	J = -n(8.31	J/mol	K)(350	K)ln	11

3 2
	75.	 	(200 * 10-6	m3)(13,600	kg/m3	)

	 	 	* (140	J/kg	K) (90�C - 15�C)

	 	 	+ (0.50	kg) (449	J/kg	K)(90�C - Ti) = 0

	76.	 (10	atm)V2	

1.40 = (1.0	atm)V1	

1.40

Challenge	Problems

	77.	 Figure	CP17.77	shows	a	thermo-
dynamic	 process	 followed	 by	
120	mg	of	helium.

	 a.	 Determine	 the	 pressure	 (in	
atm),	 temperature	 (in	�C),	
and	volume	(in	cm3)	of	the	
gas	at	points	1,	2,	and	3.	Put	
your	 results	 in	 a	 table	 for	
easy	reading.

	 b.	 How	much	work	is	done	on	the	gas	during	each	of	the	three	
segments?

	 c.	 How	much	heat	is	transferred	to	or	from	the	gas	during	each	
of	the	three	segments?

	78.	 One	cylinder	in	the	diesel	engine	of	a	truck	has	an	initial	volume	
of	600	cm3.	Air	is	admitted	to	the	cylinder	at	30�C	and	a	pres-
sure	of	1.0	atm.	The	piston	rod	then	does	400	J	of	work	to	rapidly	
compress	the	air.	What	are	its	final	temperature	and	volume?

	79.	 You	come	into	lab	one	day	and	find	a	well-insulated	2000	mL	
thermos	 bottle	 containing	 500	 mL	 of	 boiling	 liquid	 nitrogen.	
The	remainder	of	the	thermos	has	nitrogen	gas	at	a	pressure	of	
1.0	atm.	The	gas	and	 liquid	are	 in	 thermal	equilibrium.	While	
waiting	for	 lab	to	start,	you	notice	a	piece	of	 iron	on	the	table	
with	“197	g”	written	on	it.	Just	for	fun,	you	drop	the	iron	into	
the	thermos	and	seal	the	cap	tightly	so	that	no	gas	can	escape.	
After	a	few	seconds	have	passed,	what	is	the	pressure	inside	the	
thermos?	The	density	of	liquid	nitrogen	is	810	kg/m3.

	80.	 A	cylindrical	copper	rod	and	an	iron	rod	with	exactly	the	same	
dimensions	are	welded	together	end	to	end.	The	outside	end	of	
the	copper	rod	is	held	at	100�C,	and	the	outside	end	of	the	iron	
rod	is	held	at	0�C.	What	is	the	temperature	at	the	midpoint	where	
the	rods	are	joined	together?

	81.	 0.020	mol	of	a	diatomic	gas,	with	initial	temperature	20�C,	are	
compressed	 from	 1500	cm3	 to	 500	cm3	 in	 a	 process	 in	 which	
pV 2 = constant.	How	much	heat	is	added	during	this	process?

	82.	 A	monatomic	gas	fills	the	left	end	of	the	cylinder	in	Fig	ure	CP17.82.	
At	300	K,	the	gas	cylinder	length	is	10.0	cm	and	the	spring	is	
compressed	by	2.0	cm.	How	much	heat	energy	must	be	added	to	
the	gas	to	expand	the	cylinder	length	to	16.0	cm?

StoP	to	think	AnSwerS

Stop to Think 17.1:	a.	The	piston	does	work	W	on	the	gas.	There’s	
no	heat	because	of	the	insulation,	and	�Emech = 0	because	the	gas	as	
a	whole	doesn’t	move.	Thus	�Eth = W 7 0.	The	work	increases	the	
system’s	thermal	energy	and	thus	raises	its	temperature.

Stop to Think 17.2:	d.	WA = 0	because	A	is	an	isochoric	process.	
WB = W1	to	2 + W2	to	3.	 0W2	to	3 0 7 0W1	to	2 0 	 because	 there’s	 more	 area	
under	 the	 curve,	 and	 W2	to	3	 is	 positive	 whereas	 W1	to	2	 is	 negative.	
Thus	WB	is	positive.

Stop to Think 17.3:	b and e.	The	temperature	rises	in	d	from	doing	
work	on	the	gas	(�Eth = W),	not	from	heat.	e	involves	heat	because	
there	is	a	temperature	difference.	The	temperature	of	the	gas	doesn’t	
change	because	the	heat	is	used	to	do	the	work	of	lifting	a	weight.

Stop to Think 17.4:	 c.	 The	 temperature	 increases	 so	 Eth	 must	 in-
crease.	 W	 is	 negative	 in	 an	 expansion,	 so	 Q	 must	 be	 positive	 and	
larger	than	 0W 0 .
Stop to Think 17.5:	a.	A	has	a	smaller	 specific	heat	and	 thus	 less	
thermal	inertia.	The	temperature	of	A	will	change	more	than	the	tem-
perature	of	B.

Stop to Think 17.6:	a.	WA + QA = WB + QB.	The	area	under	process	
A	is	larger	than	the	area	under	B,	so	WA	is	more negative	than	WB.	QA	
has	to	be	more	positive	than	QB	to	maintain	the	equality.

Stop to Think 17.7:	c.	Conduction,	convection,	and	evaporation	re-
quire	matter.	Only	radiation	transfers	energy	through	the	vacuum	of	
space.

p (atm)

Isotherm

Adiabat

V (cm3)
20001000 3000

3

2

3

1

0
0

Figure	CP17.77	

8.0 cm2 Vacuum

2000 N/mL

Figure	CP17.82	

Exercises	and	Problems				501

S
E

C
li

p
s

e
™

-
"D

-2
"

 The files that RR Donnelley is providing to Marvel are the property of RR Donnelley and are being provided on a testing
and evaluation basis to Marvel for their internal use only. All files, printouts, facsimiles, or any related materials that may
incorporate these files should be treated as RR Donnelley Confidential information, and they or any representative thereof,
may not be transferred to or shared with any third party, and must be returned to RR Donnelley upon request.



The Micro/Macro 
Connection

18

Heating the air in a hot-air 
balloon increases the thermal 
energy of the molecules. This 
causes the gas to expand, 
lowering its density and 
allowing it to float in the cooler 
surrounding air.

Heat goes from the burner to the teakettle, 
making the water hotter and the burner 
a little cooler. It would not violate energy 
conservation for heat to go from the kettle 
to the burner, making the water colder and 
the burner hotter. But it doesn’t happen.

You’ll learn to use the concept of 
entropy to understand why all macro
scopic interactions are irreversible. 
Entropy explains why the future is dif
ferent from the past and why there are 
theoretical limits to the efficiency of 
using energy in practical ways.

The Second Law of 
Thermodynamics
You will learn a new law of nature, the 
second law of thermodynamics, that 
governs how systems evolve in time.

One statement of the second law is that 
heat energy is transferred spontaneously 
from a hotter system to a colder system, 
never from colder to hotter. Heat transfer 
is an irreversible process.

Macro Puzzles 
Micro Explanations
■	 Why does the idealgas law work for 

every gas?
■	 Why is the molar specific heat for 

every monatomic gas the same? And 
for every diatomic gas and for every 
elemental solid?

■	 What does temperature measure?

These are puzzles we uncovered in the 
last two chapters. In this chapter, you 
will learn that we can resolve these 
puzzles and understand many of the 
properties of macroscopic systems by 
investigating the microscopic behavior 
of its atoms and molecules.

Collisions
You will learn how to understand the 
pressure of a gas in terms of atomic col
lisions with the walls of the container.

 Looking Back
Sections 17.3–17.7 Heat, the first law 
of thermodynamics, and specific heat

Energy and Temperature
We’ll find that the average energy of a 
molecule depends only on temperature.

 Looking Ahead  The goal of Chapter 18 is to understand a macroscopic system in terms of the microscopic behavior 
of its molecules.

Macro

A container of
an ideal gas

Micro

N molecules of gas with 
number density N/V

The molecules have kinetic 
energy. They collide with 
each other and the walls of 
the container.

Macroscopic
properties include
pressure, temperature
and thermal energy.

You’ll also learn that heat transfer occurs 
via collisions at the boundary between two 
systems. More-energetic molecules on one 
side transfer their energy to less-energetic 
molecules on the other.

Q

Hotter Colder

This will allow us to interpret 
temperature in terms of thermal 
energy—the microscopic energy 
of the moving molecules—and 
then to understand why every 
monatomic gas has the same 
molar specific heat.
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18.1 Molecular Speeds and Collisions
Let us begin by thinking about gases at the atomic level. If gases really are composed 
of atoms and molecules in motion, how fast are the molecules moving? Do all mol
ecules move with the same speed, or is there a range of speeds?

To answer these questions, FigurE 18.1 shows an experiment to measure the 
speeds of molecules in a gas. The two rotating disks form a velocity selector. Once 
every revolution, the slot in the first disk allows a small pulse of molecules to 
pass through. By the time these molecules reach the second disk, the slots have 
rotated. The mole cules can pass through the second slot and be detected only if 
they have exactly the right speed v = L/�t to travel between the two disks during 
time interval �t it takes the axle to complete one revolution. Molecules having any 
other speed are blocked by the second disk. By changing the rotation period of the 
axle, this apparatus can measure how many molecules have each of many possible 
speeds.

FigurE 18.2 shows the results for nitrogen gas (N2) at T = 20�C. The data are pre
sented in the form of a histogram, a bar chart in which the height of each bar tells how 
many (or, in this case, what percentage) of the molecules have a speed in the range of 
speeds shown below the bar. For example, 16% of the molecules have speeds in the 
range from 600 m/s to 700 m/s. All the bars sum to 100%, showing that this histogram 
describes all of the molecules leaving the source.

It turns out that the molecules have what is called a distribution of speeds, ranging 
from as low as �  100 m/s to as high as �  1200 m/s. But not all speeds are equally 
likely; there is a most likely speed of �  550 m/s. This is really fast, �  1200 mph! 
Changing the temperature or changing to a different gas changes the most likely speed, 
as we’ll learn later in the chapter, but it does not change the shape of the distribution.

If you were to repeat the experiment, you would again find the most likely speed 
to be �  550 m/s and that 16% of the molecules have speeds between 600 m/s and 
700 m/s. Think about what this means. The “molecular deck of cards” is constantly 
being reshuffled by molecular collisions, yet 16% of the molecules always have speeds 
between 600 m/s and 700 m/s.

This is an important lesson. Although a gas consists of a vast number of molecules, 
each moving randomly, averages, such as the average number of molecules in the 
speed range 600 to 700 m/s, have precise, predictable values. The micro/macro con-
nection is built on the idea that the macroscopic properties of a system, such as 
temperature or pressure, are related to the average behavior of the atoms and 
molecules.

Mean Free Path
Imagine someone opening a bottle of strong perfume a few feet away from you. If 
molecular speeds are hundreds of meters per second, you might expect to smell the 
perfume almost instantly. But that isn’t what happens. As you know, it takes many 
seconds for the molecules to diffuse across the room. Let’s see why this is.

FigurE 18.3 shows a “movie” of one molecule. Instead of zipping along in a straight 
line, as it would in a vacuum, the molecule follows a convoluted zigzag path in which 
it frequently collides with other molecules. A molecule may have traveled hundreds of 
meters by the time it manages to get 1 or 2 m away from its starting point.

The random distribution of the molecules in the gas causes the straightline seg
ments between collisions to be of unequal lengths. A question we could ask is: What is 
the average distance between collisions? If a molecule has Ncoll  collisions as it travels 
distance L, the average distance between collisions, which is called the mean free 
path l (lowercase Greek lambda), is

 l =
L

Ncoll
 (18.1)

Source of
molecules

Molecular beam Velocity
selector

Detector

Axle

L

The only molecules that reach the detector
are those whose speed allows them to travel
distance L during the time it takes the 
disks to make one full revolution.

Vacuum inside, so that
molecules travel without
collisions.

FigurE 18.1 An experiment to measure 
the speeds of molecules in a gas.

N2 molecules
at 20�C

16% of the molecules
have speeds between 
600 m/s and 700 m/s.
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FigurE 18.2 The distribution of molecular 
speeds in a sample of nitrogen gas.
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The molecule changes 
direction and speed 
with each collision.

It moves freely
between collisions.

FigurE 18.3 A single molecule follows a 
zig-zag path through a gas as it collides 
with other molecules.
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The concept of mean free path is used not only in gases but also to describe electrons 
moving through conductors and light passing through a medium that scatters the photons.

Our task is to determine the number of collisions. FigurE 18.4a shows two molecules 
approaching each other. We will assume that the molecules are spherical and of ra
dius r. We will also continue the idealgas assumption that the molecules undergo 
hardsphere collisions, like billiard balls. In that case, the molecules will collide if the 
distance between their centers is less than 2r. They will miss if the distance is greater 
than 2r.

FigurE 18.4b shows a cylinder of radius 2r centered on the trajectory of a “sample” 
molecule. The sample molecule collides with any “target” molecule whose center is 
located within the cylinder, causing the cylinder to bend at that point. Hence the num
ber of collisions Ncoll is equal to the number of molecules in a cylindrical volume of 
length L.

The volume of a cylinder is Vcyl = AL = p(2r)2L. If the number density of the gas 
is N/V  particles per m3, then the number of collisions along a trajectory of length L is

 Ncoll =
N

V
 Vcyl =

N

V
 p(2r)2 L = 4p 

N

V
 r2L (18.2)

Thus the mean free path between collisions is

 l =
L

Ncoll
=

1

4p(N/V)r2

We made a tacit assumption in this derivation that the target molecules are at rest. 
While the general idea behind our analysis is correct, a more detailed calculation with 
all the molecules moving introduces an extra factor of 12 , giving

 l =
1

422 p(N/V)r2
  (mean free path) (18.3)

Laboratory measurements are necessary to determine atomic and molecular radii, 
but a reasonable rule of thumb is to assume that atoms in a monatomic gas have 
r � 0.5 * 10-10 m and diatomic molecules have r � 1.0 * 10-10 m.

2r
Molecules
of radius r

(a)

2r

Two molecules will collide if
the distance between their
centers is less than 2r.

Sample
molecule

Target molecules(b)

“Bent cylinder”
  of radius 2r

FigurE 18.4 A sample molecule will 
collide with all target molecules whose 
centers are within a bent cylinder of 
radius 2r centered on its path.

  l =
1

422 p(N/V)r2

  =
1

422 p(2.5 * 1025 m-3)(1.0 * 10-10 m)2
 

  = 2.3 * 10-7 m = 230 nm

ASSESS You learned in Example 16.5 that the average separation 
between gas molecules at STP is �  4 nm. It seems that any given 
molecule can slip between its neighbors, which are spread out in 
three dimensions, and travel—on average—about 60 times the av
erage spacing before it collides with another molecule.

ExAMPLE 18.1  The mean free path at room temperature
What is the mean free path of a nitrogen molecule at 1.0 atm pres
sure and room temperature (20�C)?

SoLvE Nitrogen is a diatomic molecule, so r � 1.0 * 10-10 m. 
We can use the idealgas law in the form pV = NkBT  to determine 
the number density:

 
N

V
=

p

kBT
=

101,300 Pa

(1.38 * 10-23 J/K)(293 K)
= 2.5 * 1025 m-3

Thus the mean free path is

Stop to think 18.1  The table shows the properties of four gases, each having the same 
number of molecules. Rank in order, from largest to smallest, the mean free paths lA 
to lD of molecules in these gases.

Gas A B C D

Volume V 2V V V

Atomic mass m m 2m m

Atomic radius r r r 2r
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18.2 Pressure in a gas
Why does a gas have pressure? In Chapter 15, where pressure was introduced, we sug
gested that the pressure in a gas is due to collisions of the molecules with the walls of 
its container. The force due to one such collision may be unmeasurably tiny, but the 
steady rain of a vast number of molecules striking a wall each second exerts a measur
able macroscopic force. The gas pressure is the force per unit area (p = F/A) resulting 
from these molecular collisions.

Our task in this section is to calculate the pressure by doing the appropriate averaging 
over molecular motions and collisions. This task can be divided into three main pieces:

 1. Calculate the impulse a single molecule exerts on the wall during a collision.
 2. Find the force due to all collisions.
 3. Introduce an appropriate average speed.

Force Due to a Single Collision
FigurE 18.5 shows a molecule with an xcomponent of velocity vx colliding with a wall 
and rebounding with its xcomponent of velocity changed from +vx to -vx. This 
molecule experiences an impulse. We can use the impulsemomentum theorem from 
Chapter 9 to write

 (Jx)wall on molecule = �p = m(-vx) - mvx = -2mvx (18.4)

According to Newton’s third law, the wall experiences the equal but opposite impulse

 (Jx)molecule on wall = +2mvx (18.5)

as a result of this single collision.
Suppose there are Ncoll such collisions during a very small time interval �t. If we 

assume for the moment that all molecules have the same xcomponent velocity vx, the 
net impulse of these collisions on the wall is

 Jwall = Ncoll * (Jx)molecule on wall = 2Ncollmvx (18.6)

FigurE 18.6 reminds you that impulse is the area under the forceversustime curve and thus 
Jwall = Favg�t, where Favg is the average force exerted on the wall. Using this in Equa
tion 18.6, we see that the average force on the wall due to many molecular collisions is

 Favg = 2 
Ncoll

�t
 mvx (18.7)

The quantity Ncoll /�t is the rate of collisions with the wall—that is, the number of 
collisions per second. FigurE 18.7 shows how to determine the rate of collisions. Let the 
time interval �t be much less than the average time between molecular collisions, so 
no collisions alter the molecular speeds during this interval. (This assumption about 
�t isn’t really necessary, but it makes it easier to think about what’s going on.) During 
�t, all molecules travel distance � x = vx �t along the xaxis. This distance is shaded 
in the figure. Every one of the molecules in this shaded region that is moving to the 
right will reach and collide with the wall during time �t. Molecules outside this region 
will not reach the wall during �t and will not collide.

The shaded region has volume A� x, where A is the surface area of the wall. Be
cause of their random motions, only half the molecules are moving to the right, hence 
the number of collisions during �t is

 Ncoll =
1

2
 
N

V
  A� x =

1

2
 
N

V
  Avx�t (18.8)

and thus the rate of collisions is

 
Ncoll

�t
=

1

2
 
N

V
  Avx (18.9)

x

y

�vx

vx

Wall of
area ABefore:

After:

Collision

FigurE 18.5 A molecule colliding with 
the wall exerts an impulse on it.

Fmolecule on wall

t
0

0
�t

Favg

Average
force

Impulse is the area under the 
curve. The average force on 
the wall is constant, so the 
area is Favg �t.  

FigurE 18.6 Impulse is the area under 
the force-versus-time curve.

�x � vx�t

Area A

Only molecules moving to the right in the 
shaded region will hit the wall during �t.

FigurE 18.7 Determining the rate of 
collisions.
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The average force on the wall is found by substituting Ncoll/�t from Equation 18.9 
into Equation 18.7:

 Favg = 211

2
 
N

V
 Avx2mvx =

N

V
 mvx 

2A (18.10)

Notice that this expression for Favg does not depend on any details of the molecular 
collisions.

We can relax the assumption that all molecules have the same speed by replacing 
the squared velocity vx 

2 in Equation 18.10 with its average value. That is,

 Favg =
N

V
 m(vx 

2)avg A (18.11)

where (vx 

2)avg is the quantity vx 

2 averaged over all the molecules in the container.

The root-Mean-Square Speed
We need to be somewhat careful when averaging velocities. The velocity component 
vx has a sign. At any instant of time, half the molecules in a container move to the 
right and have positive vx while the other half move to the left and have negative vx. 
Thus the average velocity is (vx)avg = 0. If this weren’t true, the entire container of gas 
would move away!

The speed of a molecule is v = (vx 

2 + vy 

2 + vz 

2)1/2. Thus the average of the speed 
squared is

 (v2)avg = (vx 

2 + vy 

2 + vz 

2)avg = (vx 

2)avg + (vy 

2)avg + (vz 

2)avg (18.12)

The square root of (v2)avg is called the root-mean-square speed vrms:

 vrms = 2(v2)avg  (root@mean@square speed) (18.13)

This is usually called the rms speed. You can remember its definition by noting that 
its name is the opposite of the sequence of operations: First you square all the speeds, 
then you average the squares (find the mean), then you take the square root. Because 
the square root “undoes” the square, vrms must, in some sense, give an average speed.

NoTE  We could compute a true average speed vavg, but that calculation is difficult. 
More important, the rootmeansquare speed tends to arise naturally in many scien
tific and engineering calculations. It turns out that vrms differs from vavg by less than 
10%, so for practical purposes we can interpret vrms as being essentially the average 
speed of a molecule in a gas. 

ExAMPLE 18.2  Calculating the root-mean-square speed
FigurE 18.8 shows the velocities of all the molecules in a six
molecule, twodimensional gas. Calculate and compare the aver
age velocity v  

u

avg, the average speed vavg, and the rms speed vrms.

SoLvE Table 18.1 on the next page shows the velocity compo
nents vx and vy for each molecule, the squares vx 

2 and vy 

2, their 
sum v 2 = vx 

2 + vy 

2, and the speed v = (vx 

2 + vy 

2)1/2. Averages of all 
the values in each column are shown at the bottom. You can see 
that the average velocity is v  

u

avg = 0
u

 m/s and the average speed is 
vavg = 11.9 m/s. The rms speed is

vrms = 2(v 2)avg = 2148.3 m2/s2 = 12.2 m/s

ASSESS The rms speed is only 2.5% greater than the average 
speed.

6i � 5j

10i � 10j

�10i � 2j

2i � 15j

�8i � 6j

�14j
1

5
6

4

2

3

^ ^
^ ^

^

^ ^

^ ^

^ ^

FigurE 18.8 The molecular velocities 
of Example 18.2. Units are m/s.



There’s nothing special about the xaxis. The coordinate system is something that 
we impose on the problem, so on average it must be the case that

 (vx 

2)avg = (vy 

2)avg = (vz 

2)avg (18.14)

Hence we can use Equation 18.12 and the definition of vrms to write

 vrms 

2 = (vx 

2)avg + (vy 

2)avg + (vz 

2)avg = 3(vx 

2)avg (18.15)

Consequently, (vx 

2)avg is

 (vx 

2)avg =
1

3
 vrms 

2 (18.16)

Using this result in Equation 18.11 gives us the net force on the wall of the container:

 Fnet =
1

3
 
N

V
 mvrms 

2A (18.17)

Thus the pressure on the wall of the container due to all the molecular collisions is

 p =
F

A
=

1

3
 
N

V
 mvrms 

2 (18.18)

We have met our goal. Equation 18.18 expresses the macroscopic pressure in terms of 
the microscopic physics. The pressure depends on the number density of molecules in 
the container and on how fast, on average, the molecules are moving.

TABLE 18.1 Calculation of rms speed and average speed for the molecules of 
Example 18.2

Molecule vx vy vx 

2 vy 

2 v2 v

1 10 -10 100 100 200 14.1

2 2 15   4 225 229 15.1

3 -8 6  64  36 100 10.0

4 -10 -2 100   4 104 10.2

5 6 5  36 25  61  7.8

6 0 -14   0 196 196 14.0

Average 0 0 148.3 11.9

 
N

V
=

p

kBT
=

200,000 Pa

(1.38 * 10-23 J/K)(333 K)
= 4.35 * 1025 m-3

The mass of a helium atom is m = 4 u = 6.64 * 10-27 kg. Thus

 vrms = B 3p

(N/V)m
= 1440 m/s

ExAMPLE 18.3  The rms speed of helium atoms
A container holds helium at a pressure of 200 kPa and a tempera
ture of 60.0�C. What is the rms speed of the helium atoms?

SoLvE The rms speed can be found from the pressure and the 
number density. Using the idealgas law gives us the number 
density:

Stop to think 18.2  The speed of every molecule in a gas is suddenly increased by a 
factor of 4. As a result, vrms increases by a factor of

 a. 2. b. 64 but not necessarily 2.
 c. 4. d. 74 but not necessarily 16.
 e. 16. f. vrms doesn’t change.
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18.3 Temperature
A molecule of mass m and velocity v has translational kinetic energy

 P =
1

2
 mv 2 (18.19)

We’ll use P (lowercase Greek epsilon) to distinguish the energy of a molecule from the 
system energy E. Thus the average translational kinetic energy is

  Pavg = average translational kinetic energy of a molecule

  =
1

2
 m(v 2)avg =

1

2
 mvrms 

2  (18.20)

We’ve included the word “translational” to distinguish P from rotational kinetic en
ergy, which we will consider later in this chapter.

We can write the gas pressure, Equation 18.18, in terms of the average translational 
kinetic energy as

 p =
2

3
 
N

V
 11

2
 mvrms 

22 =
2

3
 
N

V
 Pavg (18.21)

The pressure is directly proportional to the average molecular translational kinetic 
energy. This makes sense. Moreenergetic molecules will hit the walls harder as they 
bounce and thus exert more force on the walls.

It’s instructive to write Equation 18.21 as

 pV =
2

3
 NPavg (18.22)

We know, from the idealgas law, that

 pV = NkBT  (18.23)

Comparing these two equations, we reach the significant conclusion that the average 
translational kinetic energy per molecule is

 Pavg =
3

2
 kBT  (average translational kinetic energy) (18.24)

where the temperature T is in kelvins. For example, the average translational kinetic 
energy of a molecule at room temperature (20�C) is

 Pavg =
3

2
 (1.38 * 10-23 J/K)(293 K) = 6.1 * 10-21 J

NoTE  A molecule’s average translational kinetic energy depends only on the tem
perature, not on the molecule’s mass. If two gases have the same temperature, their 
molecules have the same average translational kinetic energy. 

Equation 18.24 is especially satisfying because it finally gives real meaning to the 
concept of temperature. Writing it as

 T =
2

3kB
 Pavg (18.25)

we can see that, for a gas, this thing we call temperature measures the average 
translational kinetic energy. A higher temperature corresponds to a larger value of 
Pavg and thus to higher molecular speeds. This concept of temperature also gives mean
ing to absolute zero as the temperature at which Pavg = 0 and all molecular motion 
ceases. (Quantum effects at very low temperatures prevent the motions from actually 
stopping, but our classical theory predicts that they would.) FigurE 18.9 summarizes 
what we’ve learned thus far about the micro/macro connection.

Macro

A container of
an ideal gas

Micro

N molecules of gas with 
number density N/V

The average translational
kinetic energy of a 
molecule is
Pavg �   mvrms

2 �   kBT.1
2

3
2

Pressure, p � Pavg
N
V

2
3

Temperature, T � Pavg
2

3kB

FigurE 18.9 The micro/macro 
connection for pressure and 
temperature.
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We can now justify our assumption that molecular collisions are perfectly elastic. 
Suppose they were not. If kinetic energy was lost in collisions, the average translation
al kinetic energy Pavg of the gas would decrease and we would see a steadily decreasing 
temperature. But that doesn’t happen. The temperature of an isolated system remains 
constant, indicating that Pavg is not changing with time. Consequently, the collisions 
must be perfectly elastic.

1.0 mol of gas contains NA molecules; hence the total kinetic 
energy is

 Kmicro = NAPavg = 3400 J

ASSESS The energy of any one molecule is incredibly small. 
Nonetheless, a macroscopic system has substantial thermal energy 
because it consists of an incredibly large number of molecules.

ExAMPLE 18.4  Total microscopic kinetic energy
What is the total translational kinetic energy of the molecules in 
1.0 mol of gas at STP?

SoLvE The average translational kinetic energy of each molecule is

  Pavg =
3

2
 kBT =

3

2
 (1.38 * 10-23 J/K)(273 K)

  = 5.65 * 10-21 J

 tcoll =
l

vrms 
=

2.3 * 10-7 m

509 m/s
= 4.5 * 10-10 s

ASSESS The air molecules around us move very fast, they collide 
with their neighbors about two billion times every second, and 
they manage to move, on average, only about 230 nm between 
collisions.

ExAMPLE 18.6  Mean time between collisions
Estimate the mean time between collisions for a nitrogen molecule 
at 1.0 atm pressure and room temperature (20�C).

MoDEL Because vrms is essentially the average molecular speed, 
the mean time between collisions is simply the time needed to 
travel distance l, the mean free path, at speed vrms.

SoLvE We found l = 2.3 * 10-7 m in Example 18.1 and vrms =  
509 m/s in Example 18.5. Thus the mean time between collisions is

By definition, Pavg =
1
2 mvrms 

2. Using the idealgas law, we found Pavg =
3
2 kBT. By 

equating these expressions we find that the rms speed of molecules in a gas is

 vrms = B3kBT

m
 (18.26)

The rms speed depends on the square root of the temperature and inversely on the 
square root of the molecular mass.

Stop to think 18.3  The speed of every molecule in a gas is suddenly increased by a 
factor of 4. As a result, T  increases by a factor of

 a. 2. b. 64 but not necessarily 2.
 c. 4. d. 74 but not necessarily 16.
 e. 16. f. T  doesn’t change.

ExAMPLE 18.5  Calculating an rms speed
What is the rms speed of nitrogen molecules at room temperature 
(20�C)?

SoLvE The molecular mass is m = 28 u = 4.68 * 10-26 kg and 
T = 20�C = 293 K. It is then a simple calculation to find

 vrms = B 3(1.38 * 10-23 J/K)(293 K)

4.68 * 10-26 kg
= 509 m/s

Some speeds will be greater than this and others smaller, but 
509 m/s will be a typical or fairly average speed. This is in excel
lent agreement with the experimental results of Figure 18.2.
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18.4 Thermal Energy and Specific Heat
We defined the thermal energy of a system to be Eth = Kmicro + Umicro, where Kmicro 
is the microscopic kinetic energy of the moving molecules and Umicro is the potential 
energy of the stretched and compressed molecular bonds. We’re now ready to take a 
microscopic look at thermal energy.

Monatomic gases
FigurE 18.10 shows a monatomic gas such as helium or neon. The atoms in an ideal gas 
have no molecular bonds with their neighbors; hence Umicro = 0. Furthermore, the 
kinetic energy of a monatomic gas particle is entirely translational kinetic energy P. 
Thus the thermal energy of a monatomic gas of N atoms is

 Eth = Kmicro = P1 + P2 + P3 + g+ PN = NPavg (18.27)

where Pi is the translational kinetic energy of atom i. We found that Pavg =
3
2 kBT; hence 

the thermal energy is

 Eth =
3

2
 NkBT =

3

2
 nRT  (thermal energy of a monatomic gas) (18.28)

where we used N = nNA and the definition of Boltzmann’s constant, kB = R/NA.
We’ve noted for the last two chapters that thermal energy is associated with tem

perature. Now we have an explicit result for a monatomic gas: Eth is directly propor
tional to the temperature. Notice that Eth is independent of the atomic mass. Any two 
monatomic gases will have the same thermal energy if they have the same temperature 
and the same number of atoms (or moles).

If the temperature of a monatomic gas changes by �T, its thermal energy changes by

 �Eth =
3

2
 nR�T  (18.29)

In Chapter 17 we found that the change in thermal energy for any idealgas process is 
related to the molar specific heat at constant volume by

 �Eth = nCV �T  (18.30)

Equation 18.29 is a microscopic result that we obtained by relating the temperature to 
the average translational kinetic energy of the atoms. Equation 18.30 is a macroscopic 
result that we arrived at from the first law of thermodynamics. We can make a micro/
macro connection by combining these two equations. Doing so gives us a prediction 
for the molar specific heat:

 CV =
3

2
 R = 12.5 J/mol K  (monatomic gas) (18.31)

This was exactly the value of CV for all three monatomic gases in Table 17.4. The 
perfect agreement of theory and experiment is strong evidence that gases really do 
consist of moving, colliding molecules.

The Equipartition Theorem
The particles of a monatomic gas are atoms. Their energy consists exclusively of their 
translational kinetic energy. A particle’s translational kinetic energy can be written

 P =
1

2
 mv 2 =

1

2
 mvx 

2 +
1

2
 mvy 

2 +
1

2
 mvz 

2 = Px + Py + Pz (18.32)

where we have written separately the energy associated with translational motion 
along the three axes. Because each axis in space is independent, we can think of Px, Py, 
and Pz as independent modes of storing energy within the system.

N atoms in a gas
at temperature T

Atom i has translational kinetic
energy Pi but no potential energy
or rotational kinetic energy.

The thermal energy of the gas is
Eth � P1 � P2 � P3 � … � NPavg.

FigurE 18.10 The atoms in a monatomic 
gas have only translational kinetic 
energy.
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Other systems have additional modes of energy storage. For example,

	■	 Two atoms joined by a springlike molecular bond can vibrate back and forth. Both 
kinetic and potential energy are associated with this vibration.

	■	 A diatomic molecule, in addition to translational kinetic energy, has rotational 
kinetic energy if it rotates endoverend like a dumbbell.

We define the number of degrees of freedom as the number of distinct and indepen
dent modes of energy storage. A monatomic gas has three degrees of freedom, the 
three modes of translational kinetic energy. Systems that can vibrate or rotate have 
more degrees of freedom.

An important result of statistical physics says that the energy in a system is dis
tributed so that all modes of energy storage have equal amounts of energy. This con
clusion is known as the equipartition theorem, meaning that the energy is equally 
divided. The proof is beyond what we can do in this textbook, so we will state the 
theorem without proof:

Equipartition theorem The thermal energy of a system of particles is equally 
divided among all the possible degrees of freedom. For a system of N particles at 
temperature T, the energy stored in each mode (each degree of freedom) is 12 NkBT  
or, in terms of moles, 12 nRT.

A monatomic gas has three degrees of freedom and thus, as we found above, 
Eth =

3
2 NkBT.

Solids
FigurE 18.11 reminds you of our “bedspring model” of a solid with particlelike atoms 
connected by a lattice of springlike molecular bonds. How many degrees of freedom 
does a solid have? Three degrees of freedom are associated with the kinetic energy, 
just as in a monatomic gas. In addition, the molecular bonds can be compressed or 
stretched independently along the x, y, and zaxes. Three additional degrees of free
dom are associated with these three modes of potential energy. Altogether, a solid has 
six degrees of freedom.

The energy stored in each of these six degrees of freedom is 1
2 NkBT. The thermal 

energy of a solid is the total energy stored in all six modes, or

 Eth = 3NkBT = 3nRT  (thermal energy of a solid) (18.33)

We can use this result to predict the molar specific heat of a solid. If the temperature 
changes by �T, then the thermal energy changes by

 �Eth = 3nR�T  (18.34)

In Chapter 17 we defined the molar specific heat of a solid such that

 �Eth = nC�T  (18.35)

By comparing Equations 18.34 and 18.35 we can predict that the molar specific heat 
of a solid is

 C = 3R = 25.0 J/mol K (solid) (18.36)

Not bad. The five elemental solids in Table 17.2 had molar specific heats clustered 
right around 25 J/mol K. They ranged from 24.3 J/mol K for aluminum to 26.5 J/mol K 
for lead. There are two reasons the agreement between theory and experiment isn’t 
quite as perfect as it was for monatomic gases. First, our simple bedspring model of a 
solid isn’t quite as accurate as our model of a monatomic gas. Second, quantum effects 

x

z

y

Each atom has microscopic translational 
kinetic energy and microscopic potential 
energy along all three axes.

FigurE 18.11 A simple model of a solid.
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are beginning to make their appearance. More on this shortly. Nonetheless, our ability 
to predict C to within a few percent from a simple model of a solid is further evidence 
for the atomic structure of matter.

Diatomic Molecules
Diatomic molecules are a bigger challenge. How many degrees of freedom does a 
diatomic molecule have? FigurE 18.12 shows a diatomic molecule, such as molecular 
nitrogen N2, oriented along the xaxis. Three degrees of freedom are associated with 
the molecule’s translational kinetic energy. The molecule can have a dumbbelllike 
endoverend rotation about either the yaxis or the zaxis. It can also rotate about its 
own axis. These are three rotational degrees of freedom. The two atoms can also vi
brate back and forth, stretching and compressing the molecular bond. This vibrational 
motion has both kinetic and potential energy—thus two more degrees of freedom.

Altogether, then, a diatomic molecule has eight degrees of freedom, and we would 
expect the thermal energy of a gas of diatomic molecules to be Eth = 4kBT. The analy
sis we followed for a monatomic gas would then lead to the prediction CV = 4R =  
33.2 J/mol K. As compelling as this reasoning seems to be, this is not the experimental 
value of CV that was reported for diatomic gases in Table 17.4. Instead, we found 
CV = 20.8 J/mol K.

Why should a theory that works so well for monatomic gases and solids fail so 
miserably for diatomic molecules? To see what’s going on, notice that 20.8 J/mol K =  
5
2 R. A monatomic gas, with three degrees of freedom, has CV =

3
2 R. A solid, with six 

degrees of freedom, has C = 3R. A diatomic gas would have CV =
5
2 R if it had five 

degrees of freedom, not eight.
This discrepancy was a major conundrum as statistical physics developed in the 

late 19th century. Although it was not recognized as such at the time, we are here see
ing our first evidence for the breakdown of classical Newtonian physics. Classically, 
a diatomic molecule has eight degrees of freedom. The equipartition theorem doesn’t 
distinguish between them; all eight should have the same energy. But atoms and mole
cules are not classical particles. It took the development of quantum theory in the 
1920s to accurately characterize the behavior of atoms and molecules. We don’t yet 
have the tools needed to see why, but quantum effects prevent three of the modes—
the two vibrational modes and the rotation of the molecule about its own axis—from 
being active at room temperature.

FigurE 18.13 shows CV as a function of temperature for hydrogen gas. CV is right 
at 5

2 R for temperatures from �  200 K up to �  800 K. But at very low temperatures 
CV drops to the monatomicgas value 32 R. The two rotational modes become “frozen 
out” and the nonrotating molecule has only translational kinetic energy. Quantum 
physics can explain this, but not Newtonian physics. You can also see that the two 
vibrational modes do become active at very high temperatures, where CV rises to 
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FigurE 18.12 A diatomic molecule can 
rotate or vibrate.
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FigurE 18.13 Hydrogen molar specific heat at constant volume as a function of 
temperature. The temperature scale is logarithmic.



7
2 R. Thus the real answer to What’s wrong? is that Newtonian physics is not the 
right physics for describing atoms and molecules. We are somewhat fortunate that 
Newtonian physics is adequate to understand monatomic gases and solids, at least 
at room temperature.

Accepting the quantum result that a diatomic gas has only five degrees of freedom 
at commonly used temperatures (the translational degrees of freedom and the two end
overend rotations), we find

  Eth =
5

2
 NkBT =

5

2
 nRT    

(diatomic gases) (18.37)

  CV =
5

2
 R = 20.8 J/mol K

A diatomic gas has more thermal energy than a monatomic gas at the same tempera
ture because the molecules have rotational as well as translational kinetic energy.

While the micro/macro connection firmly establishes the atomic structure of mat
ter, it also heralds the need for a new theory of matter at the atomic level. That is a task 
we will take up in Part VII. For now, Table 18.2 summarizes what we have learned 
from kinetic theory about thermal energy and molar specific heats.

TABLE 18.2 Kinetic theory predictions for the thermal energy and the molar specific heat

System Degrees of freedom Eth CV

Monatomic gas 3 3
2 NkBT =

3
2 nRT 3

2 R = 12.5 J/mol K

Diatomic gas 5 5
2 NkBT =

5
2 nRT 5

2 R = 20.8 J/mol K

Elemental solid 6 3NkBT = 3nRT 3R = 25.0 J/mol K

associated with this mode is 1
2 NkBT, so the average rotational 

kinetic energy per molecule is

 (Prot)avg =
1

2
 kBT

Equating these two expressions for Prot gives us

 p2mL2f 2 =
1

2
 kBT

Thus the rotational frequency is

 f = B kBT

2p2mL2 = 7.8 * 1011 rev/s

We evaluated f  at T = 293 K, using m = 14 u = 2.34 * 10-26 kg 
for each atom.

ASSESS This is a very high frequency, but these values are typical 
of molecular rotations.

ExAMPLE 18.7  The rotational frequency of a molecule
The nitrogen molecule N2 has a bond length of 0.12 nm. Estimate 
the rotational frequency of N2 at 20�C.

MoDEL The molecule can be modeled as a rigid dumbbell of 
length L = 0.12 nm rotating about its center.

SoLvE The rotational kinetic energy of the molecule is Prot =
1
2 Iv2, 

where I is the moment of inertia about the center. Because we have 
two point masses each moving in a circle of radius r = L/2, the 
moment of inertia is

 I = mr2 + mr2 = 2m1L

2 2 2

=
mL2

2

Thus the rotational kinetic energy is

 Prot =
1

2
 
mL2

2
 v2 =

mL2v2

4
= p2mL2 f 2

where we used v = 2pf  to relate the rotational frequency f  to the 
angular frequency v. From the equipartition theorem, the energy 

Stop to think 18.4  How many degrees of freedom 
does a bead on a rigid rod have?

 a. 1 b. 2 c. 3 d. 4 e. 5 f. 6
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18.5 Thermal interactions and Heat
We can now look in more detail at what happens when two systems at different tem
peratures interact with each other. FigurE 18.14 shows a rigid, insulated container di
vided into two sections by a very thin, stiff membrane. The left side, which we’ll 
call system 1, has N1 atoms at an initial temperature T1i. System 2 on the right has N2 
atoms at an initial temperature T2i. The membrane is so thin that atoms can collide at 
the boundary as if the membrane were not there, yet it is a barrier that prevents atoms 
from moving from one side to the other. The situation is analogous, on an atomic scale, 
to basketballs colliding through a shower curtain.

Suppose that system 1 is initially at a higher temperature: T1i 7 T2i. This is not an 
equilibrium situation. The temperatures will change with time until the systems even
tually reach a common final temperature Tf. If you watch the gases as one warms and 
the other cools, you see nothing happening. This interaction is quite different from a 
mechanical interaction in which, for example, you might see a piston move from one 
side toward the other. The only way in which the gases can interact is via molecular 
collisions at the boundary. This is a thermal interaction, and our goal is to understand 
how thermal interactions bring the systems to thermal equilibrium.

System 1 and system 2 begin with thermal energies

  E1i =
3

2
 N1kBT1i =

3

2
 n1RT1i 

(18.38)
  E2i =

3

2
 N2kBT2i =

3

2
 n2RT2i

We’ve written the energies for monatomic gases; you could do the same calculation if 
one or both of the gases is diatomic by replacing the 32 with 52. Notice that we’ve omit
ted the subscript “th” to keep the notation manageable.

The total energy of the combined systems is Etot = E1i + E2i. As systems 1 and 2 
interact, their individual thermal energies E1 and E2 can change but their sum Etot 
remains constant. The system will have reached thermal equilibrium when the indi
vidual thermal energies reach final values E1f and E2f that no longer change.

The Systems Exchange Energy
FigurE 18.15 shows a fast atom and a slow atom approaching the barrier from opposite 
sides. They undergo a perfectly elastic collision at the barrier. Although no net energy 
is lost in a perfectly elastic collision, the faster atom loses energy while the slower one 
gains energy. In other words, there is an energy transfer from the faster atom’s side to 
the slower atom’s side.

The average translational kinetic energy per molecule is directly proportional to the 
temperature: Pavg =

3
2 kBT. Because T1i 7 T2i, the atoms in system 1 are, on average, 

more energetic than the atoms in system 2. Thus on average the collisions transfer en
ergy from system 1 to system 2. Not in every collision: sometimes a fast atom in system 
2 collides with a slow atom in system 1, transferring energy from 2 to 1. But the net en
ergy transfer, from all collisions, is from the warmer system 1 to the cooler system 2. In 
other words, heat is the energy transferred via collisions between the more-energetic 
(warmer) atoms on one side and the less-energetic (cooler) atoms on the other.

How do the systems “know” when they’ve reached thermal equilibrium? Energy 
transfer continues until the atoms on both sides of the barrier have the same average 
translational kinetic energy. Once the average translational kinetic energies are the 
same, there is no tendency for energy to flow in either direction. This is the state of 
thermal equilibrium, so the condition for thermal equilibrium is

 (P1)avg = (P2)avg  (thermal equilibrium) (18.39)

where, as before, P is the translational kinetic energy of an atom.

Insulation prevents heat from
entering or leaving the container.

System 1

N1

T1

System 2

N2

T2

A thin barrier prevents atoms from 
moving from system 1 to 2 but still 
allows them to collide. The barrier is 
clamped in place and cannot move.

FigurE 18.14 Two gases can interact 
thermally through a very thin barrier.

Fast Slow

Elastic collision

Gains energyLoses energy

Thin barrier

Energy transfer

FigurE 18.15 Collisions at the barrier 
transfer energy from faster molecules to 
slower molecules.
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Because the average energies are directly proportional to the final temperatures, 
Pavg =

3
2 kBTf, thermal equilibrium is characterized by the macroscopic condition

 T1f = T2f = Tf  (thermal equilibrium) (18.40)

In other words, two thermally interacting systems reach a common final tempera-
ture because they exchange energy via collisions until the atoms on each side have, 
on average, equal translational kinetic energies. This is a very important idea.

Equation 18.40 can be used to determine the equilibrium thermal energies. Because 
these are monatomic gases, Eth = NPavg. Thus the equilibrium condition (P1)avg =  
(P2)avg = (Ptot)avg implies

 
E1f

N1
=

E2f 

N2
=

Etot

N1 + N2
 (18.41)

from which we can conclude

  E1f =
N1

N1 + N2
 Etot =

n1

n1 + n2
 Etot 

(18.42)

  E2f =
N2

N1 + N2
 Etot =

n2

n1 + n2
 Etot

where in the last step we used moles rather than molecules.
Notice that E1f + E2f = Etot, verifying that energy has been conserved even while 

being redistributed between the systems.
No work is done on either system because the barrier has no macroscopic displace

ment, so the first law of thermodynamics is

  Q1 = �E1 = E1f - E1i 
(18.43)

  Q2 = �E2 = E2f - E2i

As a homework problem you can show that Q1 = -Q2, as required by energy conser
vation. That is, the heat lost by one system is gained by the other. 0Q1 0  is the quantity 
of heat that is transferred from the warmer gas to the cooler gas during the thermal 
interaction.

NoTE  In general, the equilibrium thermal energies of the system are not equal. 
That is, E1f � E2f. They will be equal only if N1 = N2. Equilibrium is reached when 
the average translational kinetic energies in the two systems are equal—that is, 
when (P1)avg = (P2)avg, not when E1f = E2f. The distinction is important. FigurE 18.16 
summarizes these ideas. 

Thermal equilibrium occurs when
the systems have the same average
translational kinetic energy and thus
the same temperature.

In general, the thermal
energies E1f and E2f are
not equal.

T1i

E1i

(P1)avg

T2i

E2i

(P2)avg

Tf

E1f

Pavg

Tf

E2f

Pavg

Collisions transfer energy from the 
warmer system to the cooler system 
as more-energetic atoms lose energy 
to less-energetic atoms.

FigurE 18.16 Equilibrium is reached 
when the atoms on each side have, on 
average, equal energies.

SoLvE a. Let the helium be system 1. Helium has molar mass 
Mmol = 0.004 kg/mol, so n1 = M/Mmol = 0.50 mol.
Similarly, argon has Mmol = 0.040 kg/mol, so n2 = 0.25 mol. 
The initial thermal energies of the two monatomic gases are

  E1i =
3

2
 n1RT1i = 225R = 1870 J

  E2i =
3

2
 n2RT2i = 225R = 1870 J

The systems start with equal thermal energies, but they are 
not in thermal equilibrium. The total energy is Etot = 3740 J. 

ExAMPLE 18.8  A thermal interaction
A sealed, insulated container has 2.0 g of helium at an initial tem
perature of 300 K on one side of a barrier and 10.0 g of argon at an 
initial temperature of 600 K on the other side.

 a. How much heat energy is transferred, and in which direction?
 b. What is the final temperature?

MoDEL The systems start with different temperatures, so they are 
not in thermal equilibrium. Energy will be transferred via colli
sions from the argon to the helium until both systems have the 
same average molecular energy.

Continued
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The main idea of this section is that two systems reach a common final temperature 
not by magic or by a prearranged agreement but simply from the energy exchange of 
vast numbers of molecular collisions. Real interacting systems, of course, are sepa
rated by walls rather than our unrealistic thin membrane. As the systems interact, the 
energy is first transferred via collisions from system 1 into the wall and subsequently, 
as the cooler molecules collide with a warm wall, into system 2. That is, the energy 
transfer is E1 S Ewall S E2. This is still heat because the energy transfer is occurring 
via molecular collisions rather than mechanical motion.

Stop to think 18.5  Systems A and B are 
interacting thermally. At this instant 
of time,

 a. TA 7 TB

 b. TA = TB

 c. TA 6 TB

18.6  irreversible Processes and the Second 
Law of Thermodynamics

The preceding section looked at the thermal interaction between a warm gas and a 
cold gas. Heat energy is transferred from the warm gas to the cold gas until they reach 
a common final temperature. But why isn’t heat transferred from the cold gas to the 
warm gas, making the cold side colder and the warm side warmer? Such a process 
could still conserve energy, but it never happens. The transfer of heat energy from hot 
to cold is an example of an irreversible process, a process that can happen only in one 
direction.

Examples of irreversible processes abound. Stirring the cream in your coffee mixes 
the cream and coffee together. No amount of stirring ever unmixes them. If you shake 
a jar that has red marbles on the top and blue marbles on the bottom, the two colors 
are quickly mixed together. No amount of shaking ever separates them again. If you 
watched a movie of someone shaking a jar and saw the red and blue marbles separat
ing, you would be certain that the movie was running backward. In fact, a reasonable 
definition of an irreversible process is one for which a backwardrunning movie shows 
a physically impossible process.

In equilibrium, this energy is distributed between the two 
systems as

  E1f =
n1

n1 + n2
 Etot =

0.50

0.75
 3740 J = 2493 J

  E2f =
n2

n1 + n2
 Etot =

0.25

0.75
 3740 J = 1247 J

The heat entering or leaving each system is

  Q1 = QHe = E1f - E1i = 623 J

  Q2 = QAr = E2f - E2i = -623 J

The helium and the argon interact thermally via collisions at 
the boundary, causing 623 J of heat to be transferred from the 
warmer argon to the cooler helium.

 b. These are constantvolume processes, thus Q = nCV�T. 
CV =

3
2 R for monatomic gases, so the temperature changes are

  �THe =
QHe

3
2 nR

=
623 J

1.5(0.50 mol) (8.31 J/mol K)
= 100 K

  �TAr =
QAr

3
2 nR

=
-623 J

1.5(0.25 mol) (8.31 J/mol K)
= -200 K

Both gases reach the common final temperature Tf = 400 K.

ASSESS E1f = 2E2f because there are twice as many atoms in 
system 1.

N � 1000

A

Eth � 1.0 � 10�17 J

Pavg � 1.0 � 10�20 J 

N � 2000

B

Eth � 1.0 � 10�17 J

Pavg � 0.5 � 10�20 J 
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FigurE 18.17a is a twoframe movie of a collision between two particles, perhaps two 
gas molecules. Suppose that sometime after the collision is over we could reach in 
and reverse the velocities of both particles. That is, replace vector v  

u
 with vector -v  

u
. 

Then, as in a movie playing backward, the collision would happen in reverse. This is 
the movie of FigurE 18.17b.

You cannot tell, just by looking at the two movies, which is really going forward 
and which is being played backward. Maybe Figure 18.17b was the original colli
sion and Figure 18.17a is the backward version. Nothing in either collision looks 
wrong, and no measurements you might make on either would reveal any violations of 
Newton’s laws. Interactions at the molecular level are reversible processes.

Contrast this with the twoframe car crash movies in FigurE 18.18. Past and future are 
clearly distinct in an irreversible process, and the backward movie of Figure 18.18b 
is obviously wrong. But what has been violated in the backward movie? To have 
the crumpled car spring away from the wall would not violate any laws of physics 
we have so far discovered. It would simply require transforming the thermal energy 
of the car and wall back into the macroscopic centerofmass energy of the car as a 
whole.

The paradox stems from our assertion that macroscopic phenomena can be un
derstood on the basis of microscopic molecular motions. If the microscopic motions 
are all reversible, how can the macroscopic phenomena end up being irreversible? If 
reversible collisions can cause heat to be transferred from hot to cold, why do they 
never cause heat to be transferred from cold to hot? There must be another law of 
physics preventing it. The law we seek must, in some sense, be able to distinguish the 
past from the future.

Which Way to Equilibrium?
Stated another way, how do two systems initially at different temperatures “know” 
which way to go to reach equilibrium? Perhaps an analogy will help.

FigurE 18.19 shows two boxes, numbered 1 and 2, containing identical balls. Box 1 
starts with more balls than box 2, so N1i 7 N2i. Once every second, one ball is chosen 
at random and moved to the other box. This is a reversible process because a ball can 
move from box 2 to box 1 just as easily as from box 1 to box 2. What do you expect to 
see if you return several hours later?

Because balls are chosen at random, and because N1i 7 N2i, it’s initially more likely 
that a ball will move from box 1 to box 2 than from box 2 to box 1. Sometimes a ball 
will move “backward” from box 2 to box 1, but overall there’s a net movement of balls 
from box 1 to box 2. The system will evolve until N1 � N2. This is a stable situation—
equilibrium!—with an equal number of balls moving in both directions.

But couldn’t it go the other way, with N1 getting even larger while N2 decreases? 
In principle, any possible arrangement of the balls is possible in the same way that any 
number of heads are possible if you throw N coins in the air and let them fall. If you 

Before: After: Before: After:

(b) The backward movie is equally plausible.(a) Forward movie

FigurE 18.17 Molecular collisions are reversible.

Before:

(a) Forward movie

(b) The backward movie is physically impossible.

Before:

After:

After:

FigurE 18.18 A car crash is irreversible.

Balls are chosen at random
and moved from one box
to the other.

Box 1
N1 balls

Box 2
N2 balls

FigurE 18.19 Two interacting systems. 
Balls are chosen at random and moved 
to the other box.
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throw four coins, the odds are 1 in 24, or 1 in 16, of getting four heads. With four balls, 
the odds are 1 in 16 that, at a randomly chosen instant of time, you would find N1 = 4. 
You wouldn’t find that to be terribly surprising.

With 10 balls, the probability that N1 = 10 is 0.510 � 1/1000. With 100 balls, the 
probability that N1 = 100 has dropped to �  10-30. With 1020 balls, the odds of finding 
all of them, or even most of them, in one box are so staggeringly small that it’s safe to 
say it will “never” happen. Although each transfer is reversible, the statistics of large 
numbers make it overwhelmingly more likely that the system will evolve toward a 
state in which N1 � N2 than toward a state in which N1 + N2.

The balls in our analogy represent energy. The total energy, like the total number 
of balls, is conserved, but molecular collisions can move energy between system 1 and 
system 2. Each collision is reversible, just as likely to transfer energy from 1 to 2 as 
from 2 to 1. But if (P1i)avg 7 (P2i)avg, and if we’re dealing with two macroscopic systems 
where N 7 1020, then it’s overwhelmingly likely that the net result of many, many col
lisions will be to transfer energy from system 1 to system 2 until (P1f)avg = (P2f)avg—in 
other words, for heat energy to be transferred from hot to cold.

The system reaches thermal equilibrium not by any plan or by outside interven
tion, but simply because equilibrium is the most probable state in which to be. It 
is possible that the system will move away from equilibrium, with heat moving from 
cold to hot, but remotely improbable in any realistic system. The consequence of a 
vast number of random events is that the system evolves in one direction, toward 
equilibrium, and not the other. Reversible microscopic events lead to irreversible 
macroscopic behavior because some macroscopic states are vastly more probable 
than others.

order, Disorder, and Entropy
FigurE 18.20 shows three different systems. At the top is a group of atoms arranged 
in a crystallike lattice. This is a highly ordered and nonrandom system, with each 
atom’s position precisely specified. Contrast this with the system on the bottom, 
where there is no order at all. The position of every atom was assigned entirely at 
random.

It is extremely improbable that the atoms in a container would spontaneously ar
range themselves into the ordered pattern of the top picture. In a system of, say, 1020 
atoms, the probability of this happening is similar to the probability that 1020 tossed 
coins will all be heads. We can safely say that it will never happen. By contrast, there 
are a vast number of arrangements like the one on the bottom that randomly fill the 
container.

The middle picture of Figure 18.20 is an inbetween situation. This situation might 
arise as a solid melts. The positions of the atoms are clearly not completely random, 
so the system preserves some degree of order. This inbetween situation is more likely 
to occur spontaneously than the highly ordered lattice on the top, but is less likely to 
occur than the completely random system on the bottom.

Scientists and engineers use a state variable called entropy to measure the prob
ability that a macroscopic state will occur spontaneously. The ordered lattice, which 
has a very small probability of spontaneous occurrence, has a very low entropy. The 
entropy of the randomly filled container is high. The entropy of the middle picture is 
somewhere in between. It is often said that entropy measures the amount of disorder in 
a system. The entropy in Figure 18.20 increases as you move from the ordered system 
on the top to the disordered system on the bottom.

Similarly, two thermally interacting systems with different temperatures have a low 
entropy. These systems are ordered in the sense that the faster atoms are on one side 
of the barrier, the slower atoms on the other. The most random possible distribution 
of energy, and hence the least ordered system, corresponds to the situation where the 
two systems are in thermal equilibrium with equal temperatures. Entropy increases as 
two systems with initially different temperatures move toward equilibrium. Entropy 

Increasing order
Decreasing entropy
Decreasing probability

Increasing randomness
Increasing entropy
Increasing probability

FigurE 18.20 Ordered and disordered 
systems.



would decrease if heat energy moved from cold to hot, making the hot system hotter 
and the cold system colder.

Entropy can be calculated, but we’ll leave that to more advanced courses. For our 
purposes, the concept of entropy as a measure of the disorder in a system, or of the 
probability that a macroscopic state will occur, is more important than a numerical 
value.

The Second Law of Thermodynamics
The fact that macroscopic systems evolve irreversibly toward equilibrium is a state
ment about nature that is not contained in any of the laws of physics we have en
countered. It is, in fact, a new law of physics, one known as the second law of 
thermodynamics.

The formal statement of the second law of thermodynamics is given in terms of 
entropy:

Second law, formal statement The entropy of an isolated system (or group of 
systems) never decreases. The entropy either increases, until the system reaches 
equilibrium, or, if the system began in equilibrium, stays the same.

The qualifier “isolated” is most important. We can order the system by reaching in 
from the outside, perhaps using tiny tweezers to place the atoms in a lattice. Simi
larly, we can transfer heat from cold to hot by using a refrigerator. The second law 
is about what a system can or cannot do spontaneously, on its own, without outside 
intervention.

The second law of thermodynamics tells us that an isolated system evolves 
such that

	■	 Order turns into disorder and randomness.
	■	 Information is lost rather than gained.
	■	 The system “runs down.”

An isolated system never spontaneously generates order out of randomness. It is not 
that the system “knows” about order or randomness, but rather that there are vastly 
more states corresponding to randomness than there are corresponding to order. As 
collisions occur at the microscopic level, the laws of probability dictate that the system 
will, on average, move inexorably toward the most probable and thus most random 
macroscopic state.

The second law of thermodynamics is often stated in several equivalent but more 
informal versions. One of these, and the one most relevant to our discussion, is

Second law, informal statement #1 When two systems at different tempera
tures interact, heat energy is transferred spontaneously from the hotter to the colder 
system, never from the colder to the hotter.

The second law of thermodynamics is an independent statement about nature, sepa
rate from the first law. The first law is a precise statement about energy conservation. 
The second law, by contrast, is a probabilistic statement, based on the statistics of very 
large numbers. While it is conceivable that heat could spontaneously move from cold 
to hot, it will never occur in any realistic macroscopic system.

The irreversible evolution from lesslikely macroscopic states to morelikely 
macroscopic states is what gives us a macroscopic direction of time. Stirring blends 
your coffee and cream, it never unmixes them. Friction causes an object to stop while 
increasing its thermal energy; the random atomic motions of thermal energy never 
spontaneously organize themselves into a macroscopic motion of the entire object. 

Tossing all heads, while not impossible, is 
extremely unlikely, and the probability of 
doing so rapidly decreases as the number 
of coins increases.
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A plant in a sealed jar dies and decomposes to carbon and various gases; the gases 
and carbon never spontaneously assemble themselves into a flower. These are all ex
amples of irreversible processes. They each show a clear direction of time, a distinct 
difference between past and future.

Thus another statement of the second law is

Second law, informal statement #2 The time direction in which the entropy of 
an isolated macroscopic system increases is “the future.”

Establishing the “arrow of time” is one of the most profound implications of the sec
ond law of thermodynamics.

The second law of thermodynamics has important implications for issues ranging 
from how we as a society use energy and resources to biological evolution and the 
future of the universe. We’ll return to some of these issues in the Summary to Part IV. 
In the meantime, the second law will be used in Chapter 19 to understand some of the 
practical aspects of the thermodynamics of engines.

Stop to think 18.6  Two identical boxes each contain 1,000,000 molecules. In box A, 
750,000 molecules happen to be in the left half of the box while 250,000 are in the 
right half. In box B, 499,900 molecules happen to be in the left half of the box while 
500,100 are in the right half. At this instant of time,

 a. The entropy of box A is larger than the entropy of box B.
 b. The entropy of box A is equal to the entropy of box B.
 c. The entropy of box A is smaller than the entropy of box B.
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histogram
mean free path, l
rootmeansquare speed, vrms

degrees of freedom
equipartition theorem
irreversible process

entropy
second law of thermodynamics

Terms and Notation

The root-mean-square speed vrms is the square root of the 
average of the squares of the molecular speeds:

vrms = 2(v 2)avg

For molecules of mass m at temperature T, vrms = B 3kBT

m

Molar specific heats can be predicted from the thermal energy 
because �Eth = nC�T.

•	 Monatomic gas  CV =
3
2 R

•	 Diatomic gas  CV =
5
2 R

•	 Elemental solid  C = 3R

Applications

S u M M A r y
The goal of Chapter 18 has been to understand a macroscopic system in terms of the microscopic behavior of its molecules.

general Principles
The micro/macro connection relates the macroscopic properties of a system to the motion and collisions of its atoms and molecules.

The Equipartition Theorem
Tells us how collisions distribute the energy in the system.
The energy stored in each mode of the system (each degree 
of freedom) is 12 NkBT  or, in terms of moles, 12 nRT.

The Second Law of Thermodynamics
Tells us how collisions move a system toward equilibrium.
The entropy of an isolated system can only increase or, in 
equilibrium, stay the same.

•	 Order turns into disorder and randomness.

•	 Systems run down.

•	 Heat energy is transferred spontaneously from a hotter to a 
colder system, never from colder to hotter.

important Concepts
Pressure is due to the force of the 
molecules colliding with the walls:

p =
1

3
 
N

V
 mvrms 

2 =
2

3
 
N

V
 Pavg

The average translational kinetic energy of a molecule is

Pavg =
3
2 kBT. The temperature of the gas T =

2
3kB  Pavg

measures the average translational kinetic energy.

Entropy measures the probability that 
a macroscopic state will occur or, 
equivalently, the amount of disorder 
in a system.

Heat is energy transferred via 
collisions from moreenergetic 
molecules on one side to less
energetic molecules on the other. 
Equilibrium is reached when 
(P1)avg = (P2)avg, which implies 
T1f = T2f.

The thermal energy of a system is

  Eth = translational kinetic energy + rotational
  kinetic energy + vibrational energy

•	 Monatomic gas Eth =
3
2 NkBT =

3
2 nRT

•	 Diatomic gas Eth =
5
2 NkBT =

5
2 nRT

•	 Elemental solid Eth = 3NkBT = 3nRT

Increasing entropy Q
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E x E r C i S E S  A N D  P r o B L E M S

Problems labeled  integrate material from earlier chapters.

Exercises

Section 18.1 Molecular Speeds and Collisions

 1. | A 1.0 m * 1.0 m * 1.0 m cube of nitrogen gas is at 20�C and 
1.0 atm. Estimate the number of molecules in the cube with a 
speed between 700 m/s and 1000 m/s.

 2. | The number density of an ideal gas at STP is called the 
Loschmidt number. Calculate the Loschmidt number.

 3. || At what pressure will the mean free path in roomtemperature 
(20�C) nitrogen be 1.0 m?

 4. || Integrated circuits are manufactured in vacuum chambers 
in which the air pressure is 1.0 * 10-10 mm of Hg. What are 
(a) the number density and (b) the mean free path of a molecule? 
Assume T = 20�C.

 5. | The mean free path of a molecule in a gas is 300 nm. What 
will the mean free path be if the gas temperature is doubled at 
(a) constant volume and (b) constant pressure?

 6. || For a monatomic gas, what is the ratio of the volume per atom 
(V/N) to the volume of an atom when the mean free path is ten 
times the atomic diameter?

 7. || A lottery machine uses blowing air to keep 2000 PingPong 
balls bouncing around inside a 1.0 m * 1.0 m * 1.0 m box. The 
diameter of a PingPong ball is 3.0 cm. What is the mean free 
path between collisions? Give your answer in cm.

Section 18.2 Pressure in a Gas

 8. | Eleven molecules have speeds 15, 16, 17, . . . , 25 m/s. Calcu
late (a) vavg and (b) vrms.

 9. || The molecules in a sixparticle gas have velocities

v
u

1 = (20 in - 30jn) m/s v
u

4 = 30 in m/s 

v
u

2 = (40 in + 70jn) m/s v
u

5 = (40 in - 40jn) m/s

v
u

3 = (-80 in + 20jn) m/s v
u

6 = (-50 in - 20jn) m/s

Calculate (a) v
u

avg, (b) vavg, and (c) vrms.

C o N C E P T u A L  Q u E S T i o N S

 1. Solids and liquids resist being compressed. They are not totally 
incompressible, but it takes large forces to compress them even 
slightly. If it is true that matter consists of atoms, what can you 
infer about the microscopic nature of solids and liquids from 
their incompressibility?

 2. Gases, in contrast with solids and liquids, are very compressible. 
What can you infer from this observation about the microscopic 
nature of gases?

 3. The density of air at STP is about 1
1000 the density of water. How 

does the average distance between air molecules compare to the 
average distance between water molecules? Explain.

 4. The mean free path of molecules in a gas is 200 nm.
 a. What will be the mean free path if the pressure is doubled 

while all other state variables are held constant?
 b. What will be the mean free path if the absolute temperature is 

doubled while all other state variables are held constant?
 5. If the pressure of a gas is really due to the random collisions 

of molecules with the walls of the container, why do pressure 
gauges—even very sensitive ones—give perfectly steady 
readings? Shouldn’t the gauge be continually jiggling and 
fluctuating? Explain.

 6. Suppose you could suddenly increase the speed of every mole
cule in a gas by a factor of 2.

 a. Would the rms speed of the molecules increase by a factor of 
21/2, 2, or 22? Explain.

 b. Would the gas pressure increase by a factor of 21/2, 2, or 22? 
Explain.

 7. Suppose you could suddenly increase the speed of every mole
cule in a gas by a factor of 2.

 a. Would the temperature of the gas increase by a factor of 21/2, 
2, or 22? Explain.

 b. Would the molar specific heat at constant volume change? If 
so, by what factor? If not, why not?

 8. The two containers of gas in FigurE Q18.8 are in good thermal 
contact with each other but well insulated from the environment. 
They have been in contact for a long time and are in thermal 
equilibrium.

 a. Is vrms of helium greater than, less than, or equal to vrms of 
argon? Explain.

 b. Does the helium have more thermal energy, less thermal en
ergy, or the same amount of thermal energy as the argon? 
Explain.

 9. Suppose you place an ice cube in a beaker of roomtemperature 
water, then seal them in a rigid, wellinsulated container. No en
ergy can enter or leave the container.

 a. If you open the container an hour later, will you find a beaker 
of water slightly cooler than room temperature, or a large ice 
cube and some 100�C steam?

 b. Finding a large ice cube and some 100�C steam would not 
violate the first law of thermodynamics. W = 0 J and Q = 0 J 
because the container is sealed, and �Eth = 0 J because the 
increase in thermal energy of the water molecules that became 
steam is offset by the decrease in thermal energy of the water 
molecules that turned to ice. Energy would be conserved, yet 
we never see an outcome like this. Why not?

0.1 mol He 0.2 mol Ar

FigurE Q18.8 
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 10. | FigurE Ex18.10 is a histogram showing the speeds of the mol
ecules in a very small gas. What are (a) the most probable speed, 
(b) the average speed, and (c) the rms speed?

 11. || The number density in a container of neon gas is 5.00 *
1025 m-3. The atoms are moving with an rms speed of 660 m/s. 
What are (a) the temperature and (b) the pressure inside the 
container?

 12. || A cylinder contains gas at a pressure of 2.0 atm and a num
ber density of 4.2 * 1025 m-3. The rms speed of the atoms is 
660 m/s. Identify the gas.

 13. || At 100�C the rms speed of nitrogen molecules is 576 m/s. 
Nitrogen at 100�C and a pressure of 2.0 atm is held in a con
tainer with a 10 cm * 10 cm square wall. Estimate the rate of 
molecular collisions (collisions/s) on this wall.

Section 18.3 Temperature

 14. || What are the rms speeds of (a) argon atoms and (b) hydrogen 
molecules at 800�C?

 15. || A gas consists of a mixture of neon and argon. The rms speed 
of the neon atoms is 400 m/s. What is the rms speed of the argon 
atoms?

 16. | 1.5 m/s is a typical walking speed. At what temperature (in 
°C) would nitrogen molecules have an rms speed of 1.5 m/s?

 17. || At what temperature (in °C) do hydrogen molecules have the 
same rms speed as nitrogen molecules at 100�C?

 18. | At what temperature (in °C) is the rms speed of helium atoms 
(a) half and (b) twice its value at STP?

 19. | The rms speed of molecules in a gas is 600 m/s. What will be 
the rms speed if the gas pressure and volume are both halved?

 20. || By what factor does the rms speed of a molecule change if the 
temperature is increased from 10�C to 1000�C?

 21. || Atoms can be “cooled” to incredibly low temperatures by 
letting them interact with a laser beam. Various novel quan
tum phenomena appear at these temperatures. What is the rms 
speed of cesium atoms that have been cooled to a temperature of 
100 nK?

 22. | At STP, what is the total translational kinetic energy of the 
molecules in 1.0 mol of (a) hydrogen, (b) helium, and (c) oxygen?

 23. | Suppose you double the temperature of a gas at constant 
volume. Do the following change? If so, by what factor?

 a. The average translational kinetic energy of a molecule.
 b. The rms speed of a molecule.
 c. The mean free path.
 24. || During a physics experiment, helium gas is cooled to a tem

perature of 10 K at a pressure of 0.10 atm. What are (a) the mean 
free path in the gas, (b) the rms speed of the atoms, and (c) the 
average energy per atom?

 25. | What are (a) the average kinetic energy and (b) the rms speed 
of a proton in the center of the sun, where the temperature is 
2.0 * 107 K?

 26. | The atmosphere of the sun consists mostly of hydrogen atoms 
(not molecules) at a temperature of 6000 K. What are (a) the 
average translational kinetic energy per atom and (b) the rms 
speed of the atoms?

Section 18.4 Thermal Energy and Specific Heat

 27. || A 10 g sample of neon gas has 1700 J of thermal energy. Esti
mate the average speed of a neon atom.

 28. || The rms speed of the atoms in a 2.0 g sample of helium gas is 
700 m/s. What is the thermal energy of the gas?

 29. || A 6.0 m * 8.0 m * 3.0 m room contains air at 20�C. What is 
the room’s thermal energy?

 30. | The thermal energy of 1.0 mol of a substance is increased by 
1.0 J. What is the temperature change if the system is (a) a mona
tomic gas, (b) a diatomic gas, and (c) a solid?

 31. || What is the thermal energy of 100 cm3 of aluminum at 100�C?
 32. | 1.0 mol of a monatomic gas interacts thermally with 1.0 mol 

of an elemental solid. The gas temperature decreases by 50�C at 
constant volume. What is the temperature change of the solid?

 33. || A cylinder of nitrogen gas has a volume of 15,000 cm3 and a 
pressure of 100 atm.

 a. What is the thermal energy of this gas at room temperature 
(20�C)?

 b. What is the mean free path in the gas?
 c. The valve is opened and the gas is allowed to expand slowly 

and isothermally until it reaches a pressure of 1.0 atm. What 
is the change in the thermal energy of the gas?

 34. || A rigid container holds 0.20 g of hydrogen gas. How much 
heat is needed to change the temperature of the gas

 a. From 50 K to 100 K?
 b. From 250 K to 300 K?
 c. From 2250 K to 2300 K?

Section 18.5 Thermal Interactions and Heat

 35. || 4.0 mol of monatomic gas A interacts with 3.0 mol of mona
tomic gas B. Gas A initially has 9000 J of thermal energy, but in 
the process of coming to thermal equilibrium it transfers 1000 J 
of heat energy to gas B. How much thermal energy did gas B 
have initially?

 36. | 2.0 mol of monatomic gas A initially has 5000 J of thermal 
energy. It interacts with 3.0 mol of monatomic gas B, which 
initially has 8000 J of thermal energy.

 a. Which gas has the higher initial temperature?
 b. What is the final thermal energy of each gas?

Problems

 37. ||| The pressure inside a tank of neon is 150 atm. The temperature 
is 25�C. On average, how many atomic diameters does a neon 
atom move between collisions?

 38. || From what height must an oxygen molecule fall in a vacuum 
so that its kinetic energy at the bottom equals the average energy 
of an oxygen molecule at 300 K?

 39. || A gas at p = 50 kPa and T = 300 K has a mass density of 
0.0802 kg/m3.

 a. Identify the gas.
 b. What is the rms speed of the atoms in this gas?
 c. What is the mean free path of the atoms in the gas?

v (m/s)0

N

1

2

3

4

2 4 6 8FigurE Ex18.10 
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 40. || Dust particles are �  10 mm in diameter. They are pulverized 
rock, with r � 2500 kg/m3. If you treat dust as an ideal gas, 
what is the rms speed of a dust particle at 20�C?

 41. || Interstellar space, far from any stars, is filled with a very low 
density of hydrogen atoms (H, not H2) . The number density is 
about 1 atom/cm3 and the temperature is about 3 K.

 a. Estimate the pressure in interstellar space. Give your answer 
in Pa and in atm.

 b. What is the rms speed of the atoms?
 c. What is the edge length L of an L * L * L cube of gas with 

1.0 J of thermal energy?
 42. || Equation 18.3 is the mean free path of a particle through a gas 

of identical particles of equal radius. An electron can be thought 
of as a point particle with zero radius.

 a. Find an expression for the mean free path of an electron 
through a gas.

 b. Electrons travel 3 km through the Stanford Linear Accelera
tor. In order for scattering losses to be negligible, the pres
sure inside the accelerator tube must be reduced to the point 
where the mean free path is at least 50 km. What is the maxi
mum possible pressure inside the accelerator tube, assuming 
T = 20�C? Give your answer in both Pa and atm.

 43. || Uranium has two naturally occurring isotopes. 238U has a nat
ural abundance of 99.3% and 235U has an abundance of 0.7%. It 
is the rarer 235U that is needed for nuclear reactors. The isotopes 
are separated by forming uranium hexafluoride, UF6, which 
is a gas, then allowing it to diffuse through a series of porous 
membranes. 235UF6 has a slightly larger rms speed than 238UF6 
and diffuses slightly faster. Many repetitions of this procedure 
gradually separate the two isotopes. What is the ratio of the rms 
speed of 235UF6 to that of 238UF6?

 44. || On earth, STP is based on the average atmospheric pressure at 
the surface and on a phase change of water that occurs at an easily 
produced temperature, being only slightly cooler than the aver
age air temperature. The atmosphere of Venus is almost entirely 
carbon dioxide (CO2), the pressure at the surface is a staggering 
93 atm, and the average temperature is 470�C. Venusian scientists, 
if they existed, would certainly use the surface pressure as part of 
their definition of STP. To complete the definition, they would 
seek a phase change that occurs near the average temperature. 
Conveniently, the melting point of the element tellurium is 450�C. 
What are (a) the rms speed and (b) the mean free path of carbon 
dioxide molecules at Venusian STP based on this phase change in 
tellurium. The radius of a CO2 molecule is 1.5 * 10-10 m.

 45. ||| 5.0 * 1023 nitrogen molecules collide with a 10 cm2 wall each 
second. Assume that the molecules all travel with a speed of 
400 m/s and strike the wall headon. What is the pressure on 
the wall?

 46. ||| A 10 cm * 10 cm * 10 cm box contains 0.010 mol of nitro
gen at 20�C. What is the rate of collisions (collisions/s) on one 
wall of the box?

 47. | FigurE P18.47 shows the thermal energy of 0.14 mol of gas as 
a function of temperature. What is CV for this gas?

 48. || A 100 cm3 box contains helium at a pressure of 2.0 atm and 
a temperature of 100�C. It is placed in thermal contact with a 
200 cm3 box containing argon at a pressure of 4.0 atm and a 
temperature of 400�C.

 a. What is the initial thermal energy of each gas?
 b. What is the final thermal energy of each gas?
 c. How much heat energy is transferred, and in which direction?
 d. What is the final temperature?
 e. What is the final pressure in each box?
 49. || 2.0 g of helium at an initial temperature of 300 K interacts 

thermally with 8.0 g of oxygen at an initial temperature of 600 K.
 a. What is the initial thermal energy of each gas?
 b. What is the final thermal energy of each gas?
 c. How much heat energy is transferred, and in which direction?
 d. What is the final temperature?
 50. || A gas of 1.0 * 1020 atoms or molecules has 1.0 J of 

thermal energy. Its molar specific heat at constant pressure is 
20.8 J/mol K. What is the temperature of the gas?

 51. || How many degrees of freedom does a system have if 
g = 1.29?

 52. || A monatomic gas and a diatomic gas have equal numbers of 
moles and equal temperatures. Both are heated at constant pressure 
until their volume doubles. What is the ratio Qdiatomic/Qmonatomic?

 53. || In the discussion following Equation 18.43 it was said that 
Q1 = -Q2. Prove that this is so.

 54. || A monatomic gas is adiabatically compressed to 1
8 of its ini

tial volume. Does each of the following quantities change? If so, 
does it increase or decrease, and by what factor? If not, why not?

 a. The rms speed.
 b. The mean free path.
 c. The thermal energy of the gas.
 d. The molar specific heat at constant volume.
 55. || A diatomic gas is isobarically expanded to four times its ini

tial volume. Does each of the following quantities change? If so, 
does it increase or decrease, and by what factor? If not, why not?

 a. The rms speed.
 b. The mean free path.
 c. The thermal energy of the gas.
 d. The molar heat capacity at constant volume.
 56. || The 2010 Nobel Prize in Physics was awarded for the dis

covery of graphene, a twodimensional form of carbon in which 
the atoms form a twodimensional crystallattice sheet only one 
atom thick. Predict the molar specific heat of graphene. Give 
your answer as a multiple of R.

 57. || Equal masses of hydrogen gas and oxygen gas are mixed to
gether in a container and held at constant temperature. What is 
the hydrogen/oxygen ratio of (a) vrms, (b) Pavg, and (c) Eth?

 58. || The rms speed of the molecules in 1.0 g of hydrogen gas is 
1800 m/s.

 a. What is the total translational kinetic energy of the gas 
molecules?

 b. What is the thermal energy of the gas?
 c. 500 J of work are done to compress the gas while, in the same 

process, 1200 J of heat energy are transferred from the gas 
to the environment. Afterward, what is the rms speed of the 
molecules?

 59. || At what temperature does the rms speed of (a) a nitrogen mol
ecule and (b) a hydrogen molecule equal the escape speed from 
the earth’s surface? (c) You’ll find that these temperatures are 
very high, so you might think that the earth’s gravity could easily 
contain both gases. But not all molecules move with vrms. There 

T (�C)

Eth (J)

1892

1492

1092

0
2001000FigurE P18.47 



is a distribution of speeds, and a small percentage of molecules 
have speeds several times vrms. Bit by bit, a gas can slowly leak 
out of the atmosphere as its fastest molecules escape. A reason
able rule of thumb is that the earth’s gravity can contain a gas 
only if the average translational kinetic energy per molecule is 
less than 1% of the kinetic energy needed to escape. Use this rule 
to show why the earth’s atmosphere contains nitrogen but not 
hydrogen, even though hydrogen is the most abundant element 
in the universe.

 60. || n1 moles of a monatomic gas and n2 moles of a diatomic gas 
are mixed together in a container.

 a. Derive an expression for the molar specific heat at constant 
volume of the mixture.

 b. Show that your expression has the expected behavior if 
n1 S 0 or n2 S 0.

 61. || A 1.0 kg ball is at rest on the floor in a 2.0 m * 2.0 m * 2.0 m 
room of air at STP. Air is 80% nitrogen (N2) and 20% oxygen 
(O2) by volume.

 a. What is the thermal energy of the air in the room?
 b. What fraction of the thermal energy would have to be con

veyed to the ball for it to be spontaneously launched to a 
height of 1.0 m?

 c. By how much would the air temperature have to decrease to 
launch the ball?

 d. Your answer to part c is so small as to be unnoticeable, yet 
this event never happens. Why not?

 62. || An inventor wants you to invest money with his company, 
offering you 10% of all future profits. He reminds you that the 
brakes on cars get extremely hot when they stop and that there 
is a large quantity of thermal energy in the brakes. He has in
vented a device, he tells you, that converts that thermal energy 
into the forward motion of the car. This device will take over 
from the engine after a stop and accelerate the car back up to its 
original speed, thereby saving a tremendous amount of gasoline. 
Now, you’re a smart person, so he admits up front that this de
vice is not 100% efficient, that there is some unavoidable heat 
loss to the air and to friction within the device, but the upcoming 
research for which he needs your investment will make those 
losses extremely small. You do also have to start the car with 
cold brakes after it has been parked awhile, so you’ll still need a 

gasoline engine for that. Nonetheless, he tells you, his prototype 
car gets 500 miles to the gallon and he expects to be at well over 
1000 miles to the gallon after the next phase of research. Should 
you invest? Base your answer on an analysis of the physics of the 
situation.

Challenge Problems

 63. n moles of a diatomic gas with CV =
5
2 R has initial pressure pi 

and volume Vi. The gas undergoes a process in which the pres
sure is directly proportional to the volume until the rms speed of 
the molecules has doubled.

 a. Show this process on a pV diagram.
 b. How much heat does this process require? Give your answer 

in terms of n, pi, and Vi.
 64. An experiment you’re designing needs a gas with g = 1.50. 

You recall from your physics class that no individual gas has 
this value, but it occurs to you that you could produce a gas with 
g = 1.50 by mixing together a monatomic gas and a diatomic 
gas. What fraction of the molecules need to be monatomic?

 65. Consider a container like that shown in Figure 18.14, with n1 
moles of a monatomic gas on one side and n2 moles of a diatomic 
gas on the other. The monatomic gas has initial temperature T1i. 
The diatomic gas has initial temperature T2i.

 a. Show that the equilibrium thermal energies are

   E1f =
3n1

3n1 + 5n2
 (E1i + E2i)

   E2f =
5n2

3n1 + 5n2
 (E1i + E2i)

 b. Show that the equilibrium temperature is

  Tf =
3n1T1i + 5n2T2i 

3n1 + 5n2

 c. 2.0 g of helium at an initial temperature of 300 K interacts 
thermally with 8.0 g of oxygen at an initial temperature of 
600 K. What is the final temperature? How much heat energy 
is transferred, and in which direction?

SToP To THiNk ANSWErS

Stop to Think 18.1: LB + LA � LC + LD. Increasing the volume 
makes the gas less dense, so l increases. Increasing the radius makes 
the targets larger, so l decreases. The mean free path doesn’t depend 
on the atomic mass.

Stop to Think 18.2: c. Each v 2 increases by a factor of 16 but, after 
averaging, vrms takes the square root.

Stop to Think 18.3: e. Temperature is proportional to the average 
energy. The energy of a gas molecule is kinetic, proportional to v 2. 
The average energy, and thus T, increases by 42.

Stop to Think 18.4: b. The bead can slide along the wire (one degree 
of translational motion) and rotate around the wire (one degree of 
rotational motion).

Stop to Think 18.5: a. Temperature measures the average transla
tional kinetic energy per molecule, not the thermal energy of the 
entire system.

Stop to Think 18.6: c. With 1,000,000 molecules, it’s highly unlikely 
that 750,000 of them would spontaneously move into one side of the 
box. A state with a very small probability of occurrence has a very 
low entropy. Having an imbalance of only 100 out of 1,000,000 is 
well within what you might expect for random fluctuations. This is a 
highly probable situation and thus one of large entropy.
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This power plant is generating 
electricity by turning heat into 
work—but not very efficiently. 
The cooling towers dissipate 
roughly two-thirds of the fuel’s 
energy into the air as “waste 
heat.”

The Carnot Engine
We’ll use the second law of thermodynam
ics to show that a perfectly reversible heat 
engine—called a Carnot engine—has the 
maximum possible thermal efficiency.

You’ll learn that the efficiency of a Carnot 
engine depends only on the temperatures 
of the hot and cold reservoirs. Any real 
engine’s efficiency will be less—often 
much less.

Refrigerators
A refrigerator is a heat engine in 
reverse, using work to “pump energy 
uphill” from cold to hot.

Heat Engines
Heat engine is the generic name for any 
device that uses a cyclical process to 
transform heat energy into work.

Efficiency
How good is a heat engine at trans
forming heat into work? We’ll define 
an engine’s thermal efficiency as

efficiency =
work done

heat required

You’ll learn that the laws of thermody
namics set limits on the maximum 
possible efficiency. The fact that no heat 
engine can have an efficiency of 100% 
prevents us from extracting and using 
the vast thermal energy in the air and 
water around us.

The heat from burning fuel boils water to 
make high-pressure steam that then does 
work by spinning this turbine at an electric 
generating station.

 Looking Back
Section 18.6 The second law of 
thermodynamics

In a refrigerator, a 
compressor does work 
to pump heat energy 
from the colder inside 
to the warmer room. 
Air conditioners are 
“refrigerators” pumping 
heat energy from the 
cool inside of a house to 
the hot outside.

Turning Heat into Work
Modern society is powered by devices that 
transform the heat energy of burning fuel 
into useful work, such as
■	 Pumping water.
■	 Propelling cars and airplanes.
■	 Generating electricity.

Our goal in this chapter is not to study spe
cific devices but to look at the underlying 
physics that governs all such devices

You will learn that heat engines
■	 Follow a cyclical process that can be 

shown on pV diagrams and on energy-
transfer diagrams.

■	 Require not only a source of heat but also 
a source of cooling. These are called the 
hot reservoir and the cold reservoir.

■	 Are governed by the first and second 
laws of thermodynamics.

Hot reservoir

Cold reservoir

QH

QC

Wout

V

p

1 3

2

Isotherm

 Looking Back
Sections 17.2–17.4 Work, heat, and the 
first law of thermodynamics

 Looking Ahead   The goal of Chapter 19 is to study the physical principles that govern heat engines and refrigerators.
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19.1 Turning Heat into Work
Thermodynamics is the branch of physics that studies the transformation of energy. 
Many practical devices are designed to transform energy from one form, such as the 
heat from burning fuel, into another, such as work. Chapters 17 and 18 established two 
laws of thermodynamics that any such device must obey:

First law Energy is conserved; that is, �Eth = W + Q.

Second law Most macroscopic processes are irreversible. In particular, heat en
ergy is transferred spontaneously from a hotter to a colder system but never from a 
colder system to a hotter system.

Our goal in this chapter is to discover what these two laws, especially the second law, 
imply about devices that turn heat into work. In particular:

	■	 How does a practical device transform heat into work?
	■	 What are the limitations and restrictions on these energy transformations?

Work Done by the System
The work W in the first law is the work done on the system by external forces from the 
environment. However, it makes more sense in “practical thermodynamics” to use the 
work done by the system. For example, you want to know how much useful work you 
can obtain from an expanding gas. The work done by the system is called Ws.

Work done by the environment and work done by the system are not mutually 
exclusive. In fact, they are very simply related by Ws = -W. In FiguRE 19.1, force F

u

gas 
due to the gas pressure does work when the piston moves. This is Ws, the work done 
by the system. At the same time, some object in the environment, such as a piston rod, 
must be pushing inward with force F

u

ext = - F
u

gas to keep the gas pressure from blow
ing the piston out. This force does the work W on the system, work that you’ve learned 
is the negative of the area under the pV curve of the process.

Because the forces are equal but opposite, we see that

 Ws = -W = the area under the pV curve (19.1)

When a gas expands and pushes the piston out, transferring energy out of the system, 
we say “the system does work on the environment.” While this may seem to imply 
that the environment is doing no work on the system, all the phrase means is that Ws 
is positive and W is negative.

Similarly, “the environment does work on the system” means that W 7 0 (energy 
is transferred into the system) and thus Ws 6 0. Whether we use W or Ws is a matter 
of convenience. They are always opposite to each other rather than one being zero.

The first law of thermodynamics �Eth = W + Q can be written in terms of Ws as

 Q = Ws + �Eth  (first law of thermodynamics) (19.2)

Any energy transferred into a system as heat is either used to do work or stored 
within the system as an increased thermal energy.

Energy-Transfer Diagrams
Suppose you drop a hot rock into the ocean. Heat is transferred from the rock to the 
ocean until the rock and ocean are at the same temperature. Although the ocean warms 
up ever so slightly, �Tocean is so small as to be completely insignificant. For all practi
cal purposes, the ocean is infinite and unchangeable.

An energy reservoir is an object or a part of the environment so large that its 
temperature does not change when heat is transferred between the system and the 
reservoir. A reservoir at a higher temperature than the system is called a hot reservoir. 

FiguRE 19.1 Forces F
u

gas and F
u

ext both do 
work as the piston moves.

Fgas

r

Fext

r

The external force does
work W � �Fext�x.

�x

(a)

i f

The system does work Ws � Fgas�x.
Ws � �W because Fgas � �Fext.

rr

(b) p

i

f

V
Vi Vf

Ws is the area
under the pV curve.
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A vigorously burning flame is a hot reservoir for small objects placed in the flame. A 
reservoir at a lower temperature than the system is called a cold reservoir. The ocean is 
a cold reservoir for the hot rock. We will use TH and TC to designate the temperatures 
of the hot and cold reservoirs.

Hot and cold reservoirs are idealizations, in the same category as frictionless sur
faces and massless strings. No real object can maintain a perfectly constant tempera
ture as heat is transferred in or out. Even so, an object can be modeled as a reservoir if 
it is much larger than the system that thermally interacts with it.

Heat energy is transferred between a system and a reservoir if they have different 
temperatures. We will define

  QH = amount of heat transferred to or from a hot reservoir

  QC = amount of heat transferred to or from a cold reservoir

By definition, QH and QC are positive quantities. The direction of heat transfer, which 
determines the sign of Q in the first law, will always be clear as we deal with thermo
dynamic devices.

FiguRE 19.2a shows a heavy copper bar between a hot reservoir (at temperature TH )  
and a cold reservoir (at temperature TC). Heat QH is transferred from the hot reser
voir into the copper and heat QC is transferred from the copper to the cold reservoir. 
FiguRE 19.2b is an energy-transfer diagram for this process. The hot reservoir is always 
drawn at the top, the cold reservoir at the bottom, and the system—the copper bar in 
this case—between them. Figure 19.2b shows heat QH being transferred into the sys
tem and QC being transferred out.

The first law of thermodynamics Q = Ws + �Eth refers to the system. Q is the 
net heat to the system, which, in this case, is Q = QH - QC. The copper bar does no 
work, so Ws = 0. The bar warms up when first placed between the two reservoirs, 
but it soon comes to a steady state where its temperature no longer changes. Then 
�Eth = 0. Thus the first law tells us that Q = QH - QC = 0, from which we conclude 
that QC = QH.

In other words, all of the heat transferred into the hot end of the rod is subsequently 
transferred out of the cold end. This isn’t surprising. After all, we know that heat is 
transferred spontaneously from a hotter object to a colder object. Even so, there has to 
be some means by which the heat energy gets from the hotter object to the colder. The 
copper bar provides a route for the energy transfer, and QC = QH is the statement that 
energy is conserved as it moves through the bar.

Contrast Figure 19.2b with FiguRE 19.2c. Figure 19.2c shows a system in which heat 
is being transferred from the cold reservoir to the hot reservoir. The first law of ther
modynamics is not violated, because QH = QC, but the second law is. If there were 
such a system, it would allow the spontaneous (i.e., with no outside input or assistance) 
transfer of heat from a colder object to a hotter object. The process of Figure 19.2c is 
forbidden by the second law of thermodynamics.

Work into Heat and Heat into Work
Turning work into heat is easy—just rub two objects together. Work from the friction 
force increases the objects’ thermal energy and their temperature. Heat energy is then 
transferred from the warmer objects to the cooler environment. FiguRE 19.3 is the energy
transfer diagram for this process. The conversion of work into heat is 100% efficient in 
that all the energy supplied to the system as work is ultimately transferred to the environ
ment as heat. Notice that the objects have returned to their initial state at the end of this 
process, ready to repeat the process for as long as there’s a source of motion.

The reverse—transforming heat into work—isn’t so easy. Heat can be transformed 
into work in a onetime process, such as an isothermal expansion of a gas, but at the end 
the system is not restored to its initial state. To be practical, a device that transforms heat 
into work must return to its initial state at the end of the process and be ready for 
continued use. You want your car engine to turn over and over for as long as there’s fuel.

FiguRE 19.2 Energy-transfer diagrams.
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FiguRE 19.3 Work can be transformed 
into heat with 100% efficiency.
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Interestingly, no one has ever invented a “perfect engine” that transforms heat into 
work with 100% efficiency and returns to its initial state so that it can continue to do 
work as long as there is fuel. Of course, that such a device has not been invented is not 
a proof that it can’t be done. We’ll provide a proof shortly, but for now we’ll make the 
hypothesis that the process of FiguRE 19.4 is somehow forbidden.

Notice the asymmetry between Figures 19.3 and 19.4. The perfect transformation 
of work into heat is permitted, but the perfect transformation of heat into work is for
bidden. This asymmetry parallels the asymmetry of the two processes in Figure 19.2. 
In fact, we’ll soon see that the “perfect engine” of Figure 19.4 is forbidden for exactly 
the same reason: the second law of thermodynamics.

19.2 Heat Engines and Refrigerators
The steam generator at your local electric power plant works by boiling water to pro
duce highpressure steam that spins a turbine (which then spins a generator to produce 
electricity). That is, the steam pressure is doing work. The steam is then condensed to 
liquid water and pumped back to the boiler to start the process again. There are two 
crucial ideas here. First, the device works in a cycle, with the water returning to its 
initial conditions once a cycle. Second, heat is transferred to the water in the boiler, but 
heat is transferred out of the water in the condenser.

Car engines and steam generators are examples of what we call heat engines. A 
heat engine is any closedcycle device that extracts heat QH from a hot reservoir, does 
useful work, and exhausts heat QC to a cold reservoir. A closed-cycle device is one 
that periodically returns to its initial conditions, repeating the same process over and 
over. That is, all state variables (pressure, temperature, thermal energy, and so on) re
turn to their initial values once every cycle. Consequently, a heat engine can continue 
to do useful work for as long as it is attached to the reservoirs.

FiguRE 19.5 is the energytransfer diagram of a heat engine. Unlike the forbidden 
“perfect engine” of Figure 19.4, a heat engine is connected to both a hot reservoir and 
a cold reservoir. You can think of a heat engine as “siphoning off” some of the heat 
that moves from the hot reservoir to the cold reservoir and transforming that heat into 
work—some of the heat, but not all.

Because the temperature and thermal energy of a heat engine return to their initial 
values at the end of each cycle, there is no net change in Eth  :

 (�Eth)net = 0  (any heat engine, over one full cycle) (19.3)

Consequently, the first law of thermodynamics for a full cycle of a heat engine is 
(�Eth)net = Q - Ws = 0.

Let’s define Wout to be the useful work done by the heat engine per cycle. The first 
law applied to a heat engine is

 Wout = Qnet = QH - QC (work per cycle done by a heat engine) (19.4)

This is just energy conservation. The energytransfer diagram of Figure 19.5 is a picto
rial representation of Equation 19.4.

NoTE  Equations 19.3 and 19.4 apply only to a full cycle of the heat engine. They 
are not valid for any of the individual processes that make up a cycle. 

For practical reasons, we would like an engine to do the maximum amount of work 
with the minimum amount of fuel. We can measure the performance of a heat engine 
in terms of its thermal efficiency h (lowercase Greek eta), defined as

 h =
Wout

QH
=

what you get

what you had to pay
 (19.5)

FiguRE 19.4 There are no perfect 
engines that turn heat into work with 
100% efficiency.

Hot reservoir

Perfect engine

TH

QH

Wout

The steam turbine in a modern power 
plant is an enormous device. Expanding 
steam does work by spinning the turbine.

FiguRE 19.5 The energy-transfer 
diagram of a heat engine.
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3. The remaining energy
 QC � QH � Wout is exhausted
 to the cold reservoir (cooling
    water or the air) as waste heat.
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Using Equation 19.4 for Wout, we can also write the thermal efficiency as

 h = 1 -
QC

QH
 (19.6)

FiguRE 19.6 illustrates the idea of thermal efficiency.
A perfect heat engine would have hperfect = 1. That is, it would be 100% efficient at 

converting heat from the hot reservoir (the burning fuel) into work. You can see from 
Equation 19.6 that a perfect engine would have no exhaust (QC = 0) and would not 
need a cold reservoir. Figure 19.4 has already suggested that there are no perfect heat 
engines, that an engine with h = 1 is impossible. A heat engine must exhaust waste 
heat to a cold reservoir. It is energy that was extracted from the hot reservoir but not 
transformed to useful work.

Practical heat engines, such as car engines and steam generators, have thermal ef
ficiencies in the range h � 0.19  0.5. This is not large. Can a clever designer do better, 
or is this some kind of physical limitation?

FiguRE 19.6 h is the fraction of heat 
energy that is transformed into 
useful work.

Hot reservoir

Heat
engine

Cold reservoir TC

TH

QH is what
you pay.

QC � (1 � h)QH

is the energy that
wasn’t used.

Wout � hQH is
what you get.

Stop to think 19.1 
 Rank in order, from largest to smallest, the work Wout performed by these four heat engines.

100 J

(a)

60 J

TC

TH

Wout

200 J

(b)

160 J

TC

TH

Wout

90 J

(c)

60 J

TC

TH

Wout

90 J

(d)

40 J

TC

TH

Wout

A Heat-Engine Example
To illustrate how these ideas actually work, FiguRE 19.7 shows a simple engine that 
converts heat into the work of lifting mass M.

FiguRE 19.7 A simple heat engine transforms heat into work.

M

Gas
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into the gas from 
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M
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by lifting the mass 
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M

(c) The piston is locked and 
the mass is removed. 
The heat is turned off.

(d) The gas cools back to 
room temperature at 
constant volume. 
Then the piston is 
unlocked.

Isothermal compression

(e) A steadily increasing external 
force steadily raises the pressure 
in an isothermal compression 
until the pressure has been 
restored to its initial value.

Fext

r

The net effect of this multistep process is to convert some of the fuel’s energy into the 
useful work of lifting the mass. There has been no net change in the gas, which has returned 
to its initial pressure, volume, and temperature at the end of step (e). We can start the whole 
process over again and continue lifting masses (doing work) as long as we have fuel.



FiguRE 19.8 shows the heatengine process on a pV diagram. It is a closed cycle 
because the gas returns to its initial conditions. No work is done during the isochoric 
process, and, as you can see from the areas under the curve, the work done by the 
gas to lift the mass is greater than the work the environment must do on the gas 
to recompress it. Thus this heat engine, by burning fuel, does net work per cycle: 
Wnet = Wlift - Wext = (Ws)1S2 + (Ws)3S1.

Notice that the cyclical process of Figure 19.8 involves two cooling processes in 
which heat is transferred from the gas to the environment. Heat energy is transferred 
from hotter objects to colder objects, so the system must be connected to a cold reser
voir with TC 6 Tgas during these two processes. A key to understanding heat engines is 
that they require both a heat source (burning fuel) and a heat sink (cooling water, the 
air, or something at a lower temperature than the system).

FiguRE 19.8 The closed-cycle pV diagram 
for the heat engine of Figure 19.7.
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Process 2 S 3: No work is done in an isochoric process, so 
(Ws)23 = 0. The temperature drops back to 300 K, so the heat 
transfer, with CV =

3
2 R, is

  Q23 = nCV �T

  = (0.0160 mol)(12.5 J/mol K)(300 K - 900 K) = -120 J

Process 3 S 1: The gas returns to its initial state with volume V1. 
The work done by the gas during an isothermal process is

  (Ws)31 = nRT ln1V1

V3
2

  = (0.0160 mol)(8.31 J/mol K)(300 K) ln11

3 2 = -44 J

Ws is negative because the environment does work on the gas to 
compress it. An isothermal process has �Eth = 0 and hence, from 
the first law,

 Q31 = (Ws)31 = -44 J

Q is negative because the gas must be cooled as it is compressed 
to keep the temperature constant.

 a. The net work done by the engine during one cycle is

 Wout = (Ws)12 + (Ws)23 + (Ws)31 = 36 J

As a consistency check, notice that the net heat transfer is

 Qnet = Q12 + Q23 + Q31 = 36 J

Equation 19.4 told us that a heat engine must have Wout = Qnet, 
and we see that it does.

 b. The efficiency depends not on the net heat transfer but on the 
heat QH transferred into the engine from the flame. Heat enters 
during process 1 S 2, where Q is positive, and exits during 
processes 2 S 3 and 3 S 1, where Q is negative. Thus

  QH = Q12 = 200 J

  QC = 0Q23 0 + 0Q31 0 = 164 J

Notice that QH - QC = 36 J = Wout. In this heat engine, 200 J 
of heat from the hot reservoir does 36 J of useful work. Thus 
the thermal efficiency is

 h =
Wout

QH
=

36 J

200 J
= 0.18 or 18%

This heat engine is far from being a perfect engine!

ExAmpLE 19.1  Analyzing a heat engine i
Analyze the heat engine of FiguRE 19.9 to determine (a) the net 
work done per cycle, (b) the engine’s thermal efficiency, and 
(c) the engine’s power output if it runs at 600 rpm. Assume the 
gas is monatomic.

FiguRE 19.9 The heat engine of Example 19.1.
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moDEL The gas follows a closed cycle consisting of three distinct 
processes, each of which was studied in Chapters 16 and 17. For 
each of the three we need to determine the work done and the heat 
transferred.

SoLvE To begin, we can use the initial conditions at state 1 and the 
idealgas law to determine the number of moles of gas:

 n =
p1V1

RT1
=

(200 * 103 Pa)(2.0 * 10-4 m3)

(8.31 J/mol K)(300 K)
= 0.0160 mol

Process 1 S 2: The work done by the gas in the isobaric ex
pansion is

 (Ws)12 = p�V = (200 * 103 Pa)1(6.0 - 2.0) * 10-4 m32 = 80 J

We can use the idealgas law at constant pressure to find 
T2 = (V2/V1)T1 = 3T1 = 900 K. The heat transfer during a 
constantpressure process is

  Q12 = nCP �T

  = (0.0160 mol)(20.8 J/mol K)(900 K - 300 K) = 200 J

where we used CP =
5
2 R for a monatomic ideal gas.

Continued
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Let’s think about this example a bit more before going on. We’ve said that a heat 
engine operates between a hot reservoir and a cold reservoir. Figure 19.9 doesn’t ex
plicitly show the reservoirs. Nonetheless, we know that heat is transferred from a 
hotter object to a colder object. Heat QH is transferred into the system during process 
1 S 2 as the gas warms from 300 K to 900 K. For this to be true, the hotreservoir 
temperature TH must be Ú900 K. Likewise, heat QC is transferred from the system to 
the cold reservoir as the temperature drops from 900 K to 300 K in process 2 S 3. For 
this to be true, the coldreservoir temperature TC must be …300 K.

So, while we really don’t know what the reservoirs are or their exact temperatures, 
we can say with certainty that the hotreservoir temperature TH must exceed the high
est temperature reached by the system and the coldreservoir temperature TC must be 
less than the coldest system temperature.

Refrigerators
Your house or apartment has a refrigerator. Very likely it has an air conditioner. The 
purpose of these devices is to make air that is cooler than its environment even colder. 
The first does so by blowing hot air out into a warm room, the second by blowing it out 
to the hot outdoors. You’ve probably felt the hot air exhausted by an air conditioner 
compressor or coming out from beneath the refrigerator.

At first glance, a refrigerator or air conditioner may seem to violate the second law 
of thermodynamics. After all, doesn’t the second law forbid heat from being trans
ferred  from a colder object to a hotter object? Not quite: The second law says that heat  
is not spontaneously transferred from a colder to a hotter object. A refrigerator or air 
conditioner requires electric power to operate. They do cause heat to be transferred 
from cold to hot, but the transfer is “assisted” rather than spontaneous.

A refrigerator is any closedcycle device that uses external work Win to remove heat 
QC from a cold reservoir and exhaust heat QH to a hot reservoir. FiguRE 19.10 is the energy
transfer diagram of a refrigerator. The cold reservoir is the air inside the refrigerator or 
the air inside your house on a summer day. To keep the air cold, in the face of inevitable 
“heat leaks,” the refrigerator or air conditioner compressor continuously removes heat 
from the cold reservoir and exhausts heat into the room or outdoors. You can think of a 
refrigerator as “pumping heat uphill,” much as a water pump lifts water uphill.

Because a refrigerator, like a heat engine, is a cyclical device, �Eth = 0. Conserva
tion of energy requires

 QH = QC + Win (19.7)

To move energy from a colder to a hotter reservoir, a refrigerator must exhaust more 
heat to the outside than it removes from the inside. This has significant implications 
for whether or not you can cool a room by leaving the refrigerator door open.

The thermal efficiency of a heat engine was defined as “what you get (useful work 
Wout)< versus “what you had to pay (fuel to supply QH ) .< By analogy, we define the 
coefficient of performance K of a refrigerator to be

 K =
QC

Win
=

what you get

what you had to pay
 (19.8)

What you get, in this case, is the removal of heat from the cold reservoir. But you 
have to pay the electric company for the work needed to run the refrigerator. A better 

 c. An engine running at 600 rpm goes through 10 cycles per sec
ond. The power output is the work done per second:

  Pout = (work per cycle) * (cycles per second)

  = 360 J/s = 360 W

ASSESS Although we didn’t need Qnet, verifying that Qnet = Wout 
was a check of selfconsistency. Heatengine analysis requires many 
calculations and offers many opportunities to get signs wrong. How
ever, there are a sufficient number of selfconsistency checks so that 
you can almost always spot calculational errors if you check for them.

This air conditioner transfers heat energy 
from the cool indoors to the hot exterior.

FiguRE 19.10 The energy-transfer 
diagram of a refrigerator.
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to a hot reservoir.



refrigerator will require less work to remove a given amount of heat, thus having a 
larger coefficient of performance.

A perfect refrigerator would require no work (Win = 0) and would have Kperfect = �. 
But if Figure 19.10 had no work input, it would look like Figure 19.2c. That device 
was forbidden by the second law of thermodynamics because, with no work input, 
heat would move spontaneously from cold to hot.

We noted in Chapter 18 that the second law of thermodynamics can be stated sev
eral different but equivalent ways. We can now give a third statement:

Second law, informal statement #3 There are no perfect refrigerators with 
coefficient of performance K = �.

Any real refrigerator or air conditioner must use work to move energy from the cold 
reservoir to the hot reservoir, hence K 6 �.

No perfect Heat Engines
We hypothesized above that there are no perfect heat engines—that is, no heat engines 
like the one shown in Figure 19.4 with QC = 0 and h = 1. Now we’re ready to prove 
this hypothesis. FiguRE 19.11 shows a hot reservoir at temperature TH and a cold reser
voir at temperature TC. An ordinary refrigerator, one that obeys all the laws of physics, 
is operating between these two reservoirs.

FiguRE 19.11 A perfect engine driving 
an ordinary refrigerator would be 
able to violate the second law of 
thermodynamics.
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Suppose we had a perfect heat engine, one that takes in heat QH from the high
temperature reservoir and transforms that energy entirely into work Wout. If we had 
such a heat engine, we could use its output to provide the work input to the refrig
erator. The two devices combined have no connection to the external world. That is, 
there’s no net input or net output of work.

If we built a box around the heat engine and refrigerator, so that you couldn’t see 
what was inside, the only thing you would observe is heat being transferred with no 
outside assistance from the cold reservoir to the hot reservoir. But a spontaneous or 
unassisted transfer of heat from a colder to a hotter object is exactly what the second 
law of thermodynamics forbids. Consequently, our assumption of a perfect heat en
gine must be wrong. Hence another statement of the second law of thermodynamics is:

Second law, informal statement #4 There are no perfect heat engines with 
efficiency h = 1.

Any real heat engine must exhaust waste heat QC to a cold reservoir.

Stop to think 19.2 
 It’s a hot day and your air conditioner is broken. Your roommate 

says, “Let’s open the refrigerator door and cool this place off.” Will this work?

 a. Yes. b. No. c. It might, but it will depend on how hot the room is.

19.2 . Heat Engines and Refrigerators    533
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19.3 ideal-gas Heat Engines
We will focus on heat engines that use a gas as the working substance. The gasoline 
or diesel engine in your car is an engine that alternately compresses and expands a 
gaseous fuelair mixture. A discussion of engines such as steam generators that rely 
on phase changes will be deferred to more advanced courses.

A gas heat engine can be represented by a closedcycle trajectory in the pV dia
gram, such as the one shown in FiguRE 19.12a. This observation leads to an important 
geometric interpretation of the work done by the system during one full cycle. You 
learned in Section 19.1 that the work done by the system is the area under the curve of 
a pV trajectory. As FiguRE 19.12b shows, the net work done during a full cycle is

 Wout = Wexpand - 0Wcompress 0 = area inside the closed curve (19.9)

FiguRE 19.12 The work Wout done by the system during one full cycle is the area enclosed 
within the curve.

V
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A typical heat-engine cycle

As the gas expands,
the work Wexpand done
by the gas is positive.

As the gas is compressed,
the work Wcompress done by
the gas is negative.

The net work done by the
gas is the area enclosed
within the curve.

You can see that the net work done by a gas heat engine during one full cycle 
is the area enclosed by the pV curve for the cycle. A thermodynamic cycle with a 
larger enclosed area does more work than one with a smaller enclosed area. Notice that 
the gas must go around the pV trajectory in a clockwise direction for Wout to be posi
tive. We’ll see later that a refrigerator uses a counterclockwise (ccw) cycle.

ideal-gas Summary
We’ve learned a lot about ideal gases in the last three chapters. All gas processes obey 
the idealgas law pV = nRT  and the first law of thermodynamics �Eth = Q - Ws. 
Table 19.1 summarizes the results for specific gas processes. This table shows Ws, the 
work done by the system, so the signs are opposite those in Chapter 17.

TABLE 19.1 Summary of ideal-gas processes

Process Gas law Work Ws Heat Q Thermal energy

Isochoric pi /Ti = pf /Tf 0 nCV �T �Eth = Q

Isobaric Vi /Ti = Vf  /Tf p�V nCP �T �Eth = Q - Ws

Isothermal piVi = pfVf nRT ln(Vf /Vi)

pV ln(Vf /Vi)

Q = Ws �Eth = 0

Adiabatic piVi  
g = pfVf  

g

TiVi  
g-1 = TfVf  

g-1

(pfVf - piVi)/(1 - g)

-nCV �T

0 �Eth = -Ws

Any piVi/Ti = pfVf /Tf area under curve �Eth = nCV �T

There is one entry in this table that you haven’t seen before. The expression

 Ws =
pfVf - piVi

1 - g
 (work in an adiabatic process) (19.10)
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for the work done in an adiabatic process follows from writing Ws = - �Eth = -nCV �T, 
which you learned in Chapter 17, then using �T = �(pV)/nR and the definition of g. 
The proof will be left for a homework problem.

You learned in Chapter 18 that the thermal energy of an ideal gas depends only on 
its temperature. Table 19.2 lists the thermal energy, molar specific heats, and specific 
heat ratio g = CP/CV for monatomic and diatomic gases.

A Strategy for Heat-Engine problems
The engine of Example 19.1 was not a realistic heat engine, but it did illustrate the 
kinds of reasoning and computations involved in the analysis of a heat engine.

TABLE 19.2 Properties of monatomic and 
diatomic gases

 Monatomic Diatomic

Eth 
3
2 nRT  5

2 nRT

CV 3
2 R 5

2 R

CP 5
2 R 7

2 R

g 5
3 = 1.67 7

5 = 1.40

 
pRoBLEm-SoLviNg
STRATEgy 19.1  Heat-engine problems

moDEL Identify each process in the cycle.

viSuALizE Draw the pV diagram of the cycle.

SoLvE There are several steps in the mathematical analysis.

■	 Use the idealgas law to complete your knowledge of n, p, V, and T at one 
point in the cycle.

■	 Use the idealgas law and equations for specific gas processes to determine p, 
V, and T at the beginning and end of each process.

■	 Calculate Q, Ws, and �Eth for each process.
■	 Find Wout by adding Ws for each process in the cycle. If the geometry is simple, 

you can confirm this value by finding the area enclosed within the pV curve.
■	 Add just the positive values of Q to find QH.
■	 Verify that (�Eth)net = 0. This is a selfconsistency check to verify that you 

haven’t made any mistakes.
■	 Calculate the thermal efficiency h and any other quantities you need to com

plete the solution.

ASSESS Is (�Eth)net = 0? Do all the signs of Ws and Q make sense? Does h have 
a reasonable value? Have you answered the question?

moDEL Processes 1 S 2 and 3 S 4 are isobaric. Processes 2 S 3 
and 4 S 1 are isochoric.

viSuALizE The pV diagram has already been drawn.

SoLvE We know the pressure, volume, and temperature at state 4. 
The number of moles of gas in the heat engine is

 n =
p4V4

RT4
=

(101,300 Pa)(1.0 m3)

(8.31 J/mol K)(300 K)
= 40.6 mol

p/T = constant during an isochoric process and V/T = constant 
during an isobaric process. These allow us to find that T1 = T3 =

900 K and T2 = 2700 K. This completes our knowledge of the 
state variables at all four corners of the diagram.

Process 1 S 2 is an isobaric expansion, so

 (Ws)12 = p�V = (3.0 * 101,300 Pa)(2.0 m3) = 6.08 * 105 J

ExAmpLE 19.2  Analyzing a heat engine ii
A heat engine with a diatomic gas as the working substance uses 
the closed cycle shown in FiguRE 19.13. How much work does this 
engine do per cycle, and what is its thermal efficiency?

FiguRE 19.13 The pV diagram for the heat engine of 
Example 19.2.
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Continued
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We noted in Example 19.1 that a heat engine’s hotreservoir temperature TH must 
exceed the highest temperature reached by the system and the coldreservoir tempera
ture TC must be less than the coldest system temperature. Although we don’t know what 
the reservoirs are in Example 19.2, we can be sure that TH 7 2700 K and TC 6 300 K.

where we converted the pressure to pascals. The heat transfer dur
ing an isobaric expansion is

  Q12 = nCP �T = (40.6 mol)(29.1 J/mol K)(1800 K)

  = 21.27 * 105 J

where CP =
7
2 R for a diatomic gas. Then, using the first law,

 �E12 = Q12 - (Ws)12 = 15.19 * 105 J

Process 2 S 3 is an isochoric process, so (Ws)23 = 0 and

 �E23 = Q23 = nCV �T = -15.19 * 105 J

Notice that �T  is negative.
Process 3 S 4 is an isobaric compression. Now �V  is nega

tive, so

 (Ws)34 = p�V = -2.03 * 105 J

and

 Q34 = nCP �T = -7.09 * 105 J

Then �Eth = Q34 - (Ws)34 = -5.06 * 105 J.
Process 4 S 1 is another constantvolume process, so again 

(Ws)41 = 0 and

 �E41 = Q41 = nCV �T = 5.06 * 105 J

The results of all four processes are shown in Table 19.3. The net 
results for Wout, Qnet, and (�Eth)net are found by summing the col
umns. As expected, Wout = Qnet and (�Eth)net = 0.

TABLE 19.3 Energy transfers in Example 19.2. All energies * 105 J

Process Ws Q �Eth

1 S 2     6.08    21.27     15.19

2 S 3 0 -15.19 -15.19

3 S 4 -2.03   -7.09  -5.06

4 S 1 0     5.06      5.06

Net    4.05     4.05 0

The work done during one cycle is Wout = 4.05 * 105 J. 
Heat enters the system from the hot reservoir during processes 
1 S 2 and 4 S 1, where Q is positive. Summing these gives 
QH =26.33 * 105 J. Thus the thermal efficiency of this engine is

 h =
Wout

QH
=

4.05 * 105 J

26.33 * 105 J
= 0.15 = 15%

ASSESS The verification that Wout = Qnet and (�Eth)net = 0 gives 
us great confidence that we didn’t make any calculational errors. 
This engine may not seem very efficient, but h is quite typical of 
many real engines.

Stop to think 19.3  What is the thermal efficiency of this heat engine?

 a. 0.10
 b. 0.50
 c. 0.25
 d. 4
 e. Can’t tell without knowing QC  

p (Pa)

V (m3)0
0 0.1 0.2

20,000

40,000

QC

QC

QH � 4000 J

The Brayton Cycle
The heat engines of Examples 19.1 and 19.2 have been educational but not realistic. 
As an example of a more realistic heat engine we’ll look at the thermodynamic cycle 
known as the Brayton cycle. It is a reasonable model of a gas turbine engine. Gas tur
bines are used for electric power generation and as the basis for jet engines in aircraft 
and rockets. The Otto cycle, which describes the gasoline internal combustion engine, 
and the Diesel cycle, which, not surprisingly, describes the diesel engine, will be the 
subject of homework problems.

FiguRE 19.14a is a schematic look at a gas turbine engine, and FiguRE 19.14b is the 
corresponding pV diagram. To begin the Brayton cycle, air at an initial pressure p1 
is rapidly compressed in a compressor. This is an adiabatic process, with Q = 0, A jet engine uses a modified Brayton cycle.



because there is no time for heat to be exchanged with the surroundings. Recall that 
an adiabatic compression raises the temperature of a gas by doing work on it, not by 
heating it, so the air leaving the compressor is very hot.

The hot gas flows into a combustion chamber. Fuel is continuously admitted to the 
combustion chamber where it mixes with the hot gas and is ignited, transferring heat 
to the gas at constant pressure and raising the gas temperature yet further. The high 
pressure gas then expands, spinning a turbine that does some form of useful work. This 
adiabatic expansion, with Q = 0, drops the temperature and pressure of the gas. The 
pressure at the end of the expansion through the turbine is back to p1, but the gas is 
still quite hot. The gas completes the cycle by flowing through a device called a heat 
exchanger that transfers heat energy to a cooling fluid. Large power plants are often sit
ed on rivers or oceans in order to use the water for the cooling fluid in the heat exchanger.

This thermodynamic cycle, called a Brayton cycle, has two adiabatic processes—
the compression and the expansion through the turbine—plus a constantpressure 
heating and a constantpressure cooling. There’s no heat transfer during the adiabatic 
processes. The hotreservoir temperature must be TH Ú T3 for heat to be transferred 
into the gas during process 2 S 3. Similarly, the heat exchanger will remove heat 
from the gas only if TC … T1.

The thermal efficiency of any heat engine is

 h =
Wout

QH
= 1 -

QC

QH

Heat is transferred into the gas only during process 2 S 3. This is an isobaric process, 
so QH = nCP �T = nCP  (T3 - T2). Similarly, heat is transferred out only during the 
isobaric process 4 S 1.

We have to be careful with signs. Q41 is negative because the temperature decreases, 
but QC was defined as the amount of heat exchanged with the cold reservoir, a positive 
quantity. Thus

 QC = 0Q41 0 = 0 nCP  (T1 - T4) 0 = nCP  (T4 - T1) (19.11)

With these expressions for QH and QC  , the thermal efficiency is

 hBrayton = 1 -  
T4 - T1

T3 - T2
 (19.12)

This expression isn’t useful unless we compute all four temperatures. Fortunately, we 
can cast Equation 19.12 into a more useful form.

You learned in Chapter 17 that pV  

g = constant during an adiabatic process, where 
g = CP/CV is the specific heat ratio. If we use V = nRT/p from the idealgas law, 
V  

g = (nR)gT  

gp-g. (nR)g is a constant, so we can write pV  

g = constant as

 p(1-g)T g = constant (19.13)

Equation 19.13 is a pressuretemperature relationship for an adiabatic process. Be
cause (T  

g)1/g = T, we can simplify Equation 19.13 by raising both sides to the power 
1/g. Doing so gives

 p(1-g)/gT = constant (19.14)

during an adiabatic process.
Process 1 S 2 is an adiabatic process; hence

 p1 

(1-g)/gT1 = p2 

(1-g)/gT2 (19.15)

Isolating T1 gives

 T1 =
p2 

(1-g)/g

p1 

(1-g)/g  T2 = 1p2

p1
2 (1-g)/g

T2 = 1pmax

pmin
2 (1-g)/g

T2 (19.16)

If we define the pressure ratio rp as rp = pmax/pmin , then T1 and T2 are related by

 T1 = rp 

(1-g)/gT2 (19.17)

FiguRE 19.14 A gas turbine engine 
follows a Brayton cycle.
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The algebra of getting to Equation 19.17 was a bit tricky, but the final result is fairly 
simple.

Process 3 S 4 is also an adiabatic process. The same reasoning leads to

 T4 = rp 

(1-g)/gT3 (19.18)

If we substitute these expressions for T1 and T4 into Equation 19.12, the efficiency is

  hB = 1 -
T4 - T1

T3 - T2
= 1 -

rp 

(1-g)/gT3 - rp 

(1-g)/gT2

T3 - T2
= 1 -

rp
 (1-g)/g(T3 - T2)

T3 - T2

  = 1 - rp 

(1-g)/g

Remarkably, all the temperatures cancel and we’re left with an expression that de
pends only on the pressure ratio. Noting that (1 - g) is negative, we can make one 
final change and write

 hB = 1 -
1

rp 

(g-1)/g (19.19)

FiguRE 19.15 is a graph of the efficiency of the Brayton cycle as a function of the pres
sure ratio, assuming g = 1.40 for a diatomic gas such as air.

19.4 ideal-gas Refrigerators
Suppose we were to operate a Brayton heat engine backward, going ccw rather than 
cw in the pV diagram. FiguRE 19.16a, (which you should compare to Figure 19.14a) 
shows a device for doing this. FiguRE 19.16b is its pV diagram, and FiguRE 19.16c is the 
energytransfer diagram. Starting from point 4, the gas is adiabatically compressed to 
increase its temperature and pressure. It then flows through a hightemperature heat 
exchanger where the gas cools at constant pressure from temperature T3 to T2. The gas 
then expands adiabatically, leaving it significantly colder at T1 than it started at T4. It 
completes the cycle by flowing through a lowtemperature heat exchanger, where it 
warms back to its starting temperature.

Suppose that the lowtemperature heat exchanger is a closed container of air sur
rounding a pipe through which the engine’s cold gas is flowing. The heatexchange 
process 1 S 4 cools the air in the container as it warms the gas flowing through the 
pipe. If you were to place eggs and milk inside this closed container, you would call 
it a refrigerator!

Going around a closed pV cycle in a ccw direction reverses the sign of W for each 
process in the cycle. Consequently, the area inside the curve of Figure 19.16b is Win, 
the work done on the system. Here work is used to extract heat QC from the cold res
ervoir and exhaust a larger amount of heat QH = QC + Win to the hot reservoir. But 
where, in this situation, are the energy reservoirs?

Understanding a refrigerator is a little harder than understanding a heat engine. The 
key is to remember that heat is always transferred from a hotter object to a colder 
object. In particular,

	■	 The gas in a refrigerator can extract heat QC from the cold reservoir only if the gas 
temperature is lower than the coldreservoir temperature TC. Heat energy is then 
transferred from the cold reservoir into the colder gas.

	■	 The gas in a refrigerator can exhaust heat QH to the hot reservoir only if the gas 
temperature is higher than the hotreservoir temperature TH. Heat energy is then 
transferred from the warmer gas into the hot reservoir.

These two requirements place severe constraints on the thermodynamics of a refrig
erator. Because there is no reservoir colder than TC, the gas cannot reach a temperature 
lower than TC by heat exchange. The gas in a refrigerator must use an adiabatic expan
sion (Q = 0) to lower the temperature below TC. Likewise, a gas refrigerator requires 
an adiabatic compression to raise the gas temperature above TH.

FiguRE 19.15 The efficiency of a Brayton 
cycle as a function of the pressure 
ratio rp.
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FiguRE 19.16 A refrigerator that extracts 
heat from the cold reservoir and 
exhausts heat to the hot reservoir.
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Solving for T3 gives

 T3 = 1p4

p3
2 -0.40

T4 = 11

5 2 -0.40

(250 K) = 476 K = 203�C

The same analysis applied to the 2 S 1 adiabatic expansion gives

 T2 = 1p1

p2
2 -0.40

T1 = 11

5 2 -0.40

(200 K) = 381 K = 108�C

Now we can use CP =
5
2 R = 20.8 J/mol K for a monatomic gas to 

compute the heat transfers:

  QH = 0Q32 0 = nCP  (T3 - T2)

  = (0.00722 mol)(20.8 J/mol K)(95 K) = 14.3 J

  QC = 0Q14 0 = nCP  (T4 - T1)

  = (0.00722 mol)(20.8 J/mol K)(50 K) = 7.5 J

Thus the work input to the refrigerator is Win = QH - QC = 6.8 J. 
During each cycle, 6.8 J of work are done on the gas to extract 7.5 J 
of heat from the cold reservoir. Then 14.3 J of heat are exhausted 
into the hot reservoir.

The refrigerator’s coefficient of performance is

 K =
QC

Win
=

7.5 J

6.8 J
= 1.1

The power input needed to run the refrigerator is

 Pin = 6.8 
J

cycle
* 60 

cycles

s
= 410 

J

s
= 410 W

ASSESS These are fairly realistic values for a kitchen refrigera
tor. You pay your electric company for providing the work Win 
that operates the refrigerator. The cold reservoir is the freezer 
compartment. The cold temperature TC must be higher than 
T4 (TC 7  -23�C) in order for heat to be transferred from the cold 
reservoir to the gas. A typical freezer temperature is -15�C, so 
this condition is satisfied. The hot reservoir is the air in the room. 
The back and underside of a refrigerator have heatexchanger coils 
where the hot gas, after compression, transfers heat to the air. The 
hot temperature TH must be less than T2  (TH 6 108�C) in order 
for heat to be transferred from the gas to the air. An air temperature 
�  25�C under a refrigerator satisfies this condition.

ExAmpLE 19.3  Analyzing a refrigerator
A refrigerator using helium gas operates on a reversed Brayton 
cycle with a pressure ratio of 5.0. Prior to compression, the gas 
occupies 100 cm3 at a pressure of 150 kPa and a temperature of 
-23�C. Its volume at the end of the expansion is 80 cm3. What are 
the refrigerator’s coefficient of performance and its power input if 
it operates at 60 cycles per second?

moDEL The Brayton cycle has two adiabatic processes and two 
isobaric processes. The work per cycle needed to run the refrigera
tor is Win = QH - QC ; hence we can determine both the coefficient 
of performance and the power requirements from QH and QC. Heat 
energy is transferred only during the two isobaric processes.

viSuALizE FiguRE 19.17 shows the pV cycle. We know from the 
pressure ratio of 5.0 that the maximum pressure is 750 kPa. Nei
ther V2 nor V3 is known.

SoLvE To calculate heat we’re going to need the temperatures at 
the four corners of the cycle. First, we can use the conditions of 
state 4 to find the number of moles of helium:

 n =
p4V4

RT4
= 0.00722 mol

Process 1 S 4 is isobaric; hence temperature T1 is

 T1 =
V1

V4
 T4 = (0.80)(250 K) = 200 K = -73�C

With Equation 19.14 we found that the quantity p(1-g)/gT  re
mains constant during an adiabatic process. Helium is a monatomic 
gas with g =

5
3 , so (1 - g)/g = -  25 = -0.40. For the adiabatic 

compression 4 S 3,

 p3 

-0.40T3 = p4 

-0.40T4

FiguRE 19.17 A Brayton-cycle refrigerator.
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19.5 The Limits of Efficiency
Thermodynamics has its historical roots in the development of the steam engine and 
other machines of the early industrial revolution. Early steam engines, built on the 
basis of experience rather than scientific understanding, were not very efficient at 
converting fuel energy into work. The first major theoretical analysis of heat engines 
was published by the French engineer Sadi Carnot in 1824. The question that Carnot 
raised was: Can we make a heat engine whose thermal efficiency h approaches 1, or is 
there an upper limit hmax that cannot be exceeded? To frame the question more clearly, 
imagine we have a hot reservoir at temperature TH and a cold reservoir at TC. What 
is the most efficient heat engine (maximum h)  that can operate between these two 
energy reservoirs? Similarly, what is the most efficient refrigerator (maximum K) that 
can operate between the two reservoirs?

We just saw that a refrigerator is, in some sense, a heat engine running backward. 
We might thus suspect that the most efficient heat engine is related to the most ef
ficient refrigerator. Suppose we have a heat engine that we can turn into a refrigera
tor by reversing the direction of operation, thus changing the direction of the energy 
transfers, and with no other changes. In particular, the heat engine and the refrigerator 
operate between the same two energy reservoirs at temperatures TH and TC.

FiguRE 19.18a shows such a heat engine and its corresponding refrigerator. Notice that 
the refrigerator has exactly the same work and heat transfer as the heat engine, only in 
the opposite directions. A device that can be operated as either a heat engine or a re
frigerator between the same two energy reservoirs and with the same energy transfers, 
with only their direction changed, is called a perfectly reversible engine. A perfectly 
reversible engine is an idealization, as was the concept of a perfectly elastic collision. 
Nonetheless, it will allow us to establish limits that no real engine can exceed.

Everyone knows that heat can produce 
motion. That it possesses vast motive 
power no one can doubt, in these days 
when the steam engine is everywhere 
so well known. . . . Notwithstanding the 
satisfactory condition to which they have 
been brought today, their theory is very 
little understood. The question has often 
been raised whether the motive power of 
heat is unbounded, or whether the possible 
improvements in steam engines have an 
assignable limit.

Sadi Carnot

FiguRE 19.18 If a perfectly reversible heat engine is used to operate a perfectly reversible 
refrigerator, the two devices exactly cancel each other.
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Suppose we have a perfectly reversible heat engine and a perfectly reversible re
frigerator (the same device running backward) operating between a hot reservoir at 
temperature TH and a cold reservoir at temperature TC. Because the work Win needed 
to operate the refrigerator is exactly the same as the useful work Wout done by the heat 
engine, we can use the heat engine, as shown in FiguRE 19.18b, to drive the refrigera
tor. The heat QC the engine exhausts to the cold reservoir is exactly the same as the 
heat QC the refrigerator extracts from the cold reservoir. Similarly, the heat QH the 
engine extracts from the hot reservoir matches the heat QH the refrigerator exhausts 
to the hot reservoir. Consequently, there is no net heat transfer in either direction. The 
refrigerator exactly replaces all the heat energy that had been transferred out of the hot 
reservoir by the heat engine.

You may want to compare the reasoning used here with the reasoning we used 
with Figure 19.11. There we tried to use the output of a “perfect” heat engine to run a 
refrigerator but did not succeed.
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A perfectly Reversible Engine Has maximum Efficiency
Now we’ve arrived at the critical step in the reasoning. Suppose I claim to have a heat 
engine that can operate between temperatures TH and TC with more efficiency than a 
perfectly reversible engine. FiguRE 19.19 shows the output of this heat engine operating 
the same perfectly reversible refrigerator that we used in Figure 19.18b.

FiguRE 19.19 A heat engine more efficient than a perfectly reversible engine could be 
used to violate the second law of thermodynamics.
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Recall that the thermal efficiency and the work of a heat engine are

 h =
Wout

QH
  and  Wout = QH - QC

If the new heat engine is more efficient than the perfectly reversible engine it replaces, 
it needs less heat QH from the hot reservoir to perform the same work Wout. If QH is 
less while Wout is the same, then QC must also be less. That is, the new heat engine 
exhausts less heat to the cold reservoir than does the perfectly reversible heat engine.

When this new heat engine drives the perfectly reversible refrigerator, the heat it 
exhausts to the cold reservoir is less than the heat extracted from the cold reservoir 
by the refrigerator. Similarly, this engine extracts less heat from the hot reservoir than 
the refrigerator exhausts. Thus the net result of using this superefficient heat engine 
to operate a perfectly reversible refrigerator is that heat is transferred from the cold 
reservoir to the hot reservoir without outside assistance.

But this can’t happen. It would violate the second law of thermodynamics. Hence 
we have to conclude that no heat engine operating between reservoirs at temperatures 
TH and TC can be more efficient than a perfectly reversible engine. This very important 
conclusion is another version of the second law:

Second law, informal statement #5 No heat engine operating between reser
voirs at temperatures TH and TC can be more efficient than a perfectly reversible 
engine operating between these temperatures.

The answer to our question “Is there a maximum h that cannot be exceeded?” is 
a clear Yes! The maximum possible efficiency hmax is that of a perfectly reversible 
engine. Because the perfectly reversible engine is an idealization, any real engine will 
have an efficiency less than hmax.

A similar argument shows that no refrigerator can be more efficient than a perfectly 
reversible refrigerator. If we had such a refrigerator, and if we ran it with the output 
of a perfectly reversible heat engine, we could transfer heat from cold to hot with no 
outside assistance. Thus:

Second law, informal statement #6 No refrigerator operating between reser
voirs at temperatures TH and TC can have a coefficient of performance larger than 
that of a perfectly reversible refrigerator operating between these temperatures.
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Conditions for a perfectly Reversible Engine
This argument tells us that hmax and Kmax exist, but it doesn’t tell us what they are. Our 
final task will be to “design” and analyze a perfectly reversible engine. Under what 
conditions is an engine reversible?

An engine transfers energy by both mechanical and thermal interactions. Mechani
cal interactions are pushes and pulls. The environment does work on the system, trans
ferring energy into the system by pushing in on a piston. The system transfers energy 
back to the environment by pushing out on the piston.

The energy transferred by a moving piston is perfectly reversible, returning the sys
tem to its initial state, with no change of temperature or pressure, only if the motion is 
frictionless. The slightest bit of friction will prevent the mechanical transfer of energy 
from being perfectly reversible.

The circumstances under which heat transfer can be completely reversed aren’t 
quite so obvious. After all, Chapter 18 emphasized the irreversible nature of heat 
transfer. If objects A and B are in thermal contact, with TA 7 TB, then heat energy is 
transferred from A to B. But the second law of thermodynamics prohibits a heat trans
fer from B back to A. Heat transfer through a temperature difference is an irreversible 
process.

But suppose TA = TB. With no temperature difference, any heat that is transferred 
from A to B can, at a later time, be transferred from B back to A. This transfer wouldn’t 
violate the second law, which prohibits only heat transfer from a colder object to a hot
ter object. Now you might object, and rightly so, that heat can’t move from A to B if 
they are at the same temperature because heat, by definition, is the energy transferred 
between two objects at different temperatures.

This is true, so let’s consider a limiting case in which TA = TB + dT. The tempera
ture difference is infinitesimal. Heat is transferred from A to B, but very slowly! If you 
later try to make the heat move from B back to A, the second law will prevent you 
from doing so with perfect precision. But because the temperature difference is infini
tesimal, you’ll be missing only an infinitesimal amount dQ of heat. You can transfer 
heat reversibly in the limit dT S 0, but you must be prepared to spend an infinite 
amount of time doing so.

Thus the thermal transfer of energy is reversible if the heat is transferred infinitely 
slowly in an isothermal process. This is an idealization, but so are completely friction
less processes. Nonetheless, we can now say that a perfectly reversible engine must 
use only two types of processes:

 1. Frictionless mechanical interactions with no heat transfer (Q = 0), and
 2. Thermal interactions in which heat is transferred in an isothermal process 

(�Eth = 0).

Any engine that uses only these two types of processes is called a Carnot engine. 
A Carnot engine is a perfectly reversible engine; thus it has the maximum possible 
thermal efficiency hmax and, if operated as a refrigerator, the maximum possible coef
ficient of performance Kmax.

19.6 The Carnot Cycle
The definition of a Carnot engine does not specify whether the engine’s working sub
stance is a gas or a liquid. It makes no difference. Our argument that a perfectly revers
ible engine is the most efficient possible heat engine depended only on the engine’s 
reversibility. Consequently, any Carnot engine operating between TH and TC must 
have exactly the same efficiency as any other Carnot engine operating between 
the same two energy reservoirs. If we can determine the thermal efficiency of one 
Carnot engine, we’ll know the efficiency of all Carnot engines. Because liquids and 
phase changes are complicated, we’ll analyze a Carnot engine that uses an ideal gas.
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Designing a Carnot Engine
The Carnot cycle is an idealgas cycle that consists of the two adiabatic processes (Q = 0) 
and two isothermal processes (�Eth = 0) shown in FiguRE 19.20. These are the two types 
of processes allowed in a perfectly reversible gas engine. As a Carnot cycle operates,

 1. The gas is isothermally compressed while in thermal contact with the cold res
ervoir at temperature TC  . Heat energy QC = 0Q12 0  is removed from the gas as it 
is compressed in order to keep the temperature constant. The compression must 
take place extremely slowly because there can be only an infinitesimal tempera
ture difference between the gas and the reservoir.

 2. The gas is adiabatically compressed while thermally isolated from the environ
ment. This compression increases the gas temperature until it matches tempera
ture TH of the hot reservoir. No heat is transferred during this process.

 3. After reaching maximum compression, the gas expands isothermally at tem
perature TH. Heat QH = Q34 is transferred from the hot reservoir into the gas as 
it expands in order to keep the temperature constant.

 4. Finally, the gas expands adiabatically, with Q = 0, until the temperature de
creases back to TC.

Work is done in all four processes of the Carnot cycle, but heat is transferred only dur
ing the two isothermal processes.

The thermal efficiency of any heat engine is

 h =
Wout

QH
= 1 -

QC

QH

We can determine hCarnot by finding the heat transfer in the two isothermal processes.
Process 1 S 2: Table 19.1 gives us the heat transfer in an isothermal process at 

temperature TC:

 Q12 = (Ws)12 = nRTC ln1V2

V1
2 = -nRTC ln1V1

V2
2  (19.20)

V1 7 V2, so the logarithm on the right is positive. Q12 is negative because heat is trans
ferred out of the system, but QC is simply the amount of heat transferred to the cold 
reservoir:

 QC = 0Q12 0 = nRTC ln1V1

V2
2  (19.21)

Process 3 S 4: Similarly, the heat transferred in the isothermal expansion at tem
perature TH is

 QH = Q34 = (Ws)34 = nRTH ln1V4

V3
2  (19.22)

Thus the thermal efficiency of the Carnot cycle is

 hCarnot = 1 -
QC

QH
= 1 -

TC ln(V1/V2)

TH ln(V4/V3)
 (19.23)

We can simplify this expression. During the two adiabatic processes,

 TCV2 

g-1 = THV3 

g-1  and  TCV1 

g-1 = THV4 

g-1 (19.24)

An algebraic rearrangement gives

 V2 = V3  1TH

TC
2 1/(g-1)

  and  V1 = V4  1TH

TC
2 1/(g-1)

 (19.25)

from which it follows that

 
V1

V2
=

V4

V3
 (19.26)

FiguRE 19.20 The Carnot cycle is 
perfectly reversible.

p

V
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QH

QC TC

Isotherms

Adiabats



544    c h a p t e r  19 . Heat Engines and Refrigerators

Consequently, the two logarithms in Equation 19.23 cancel and we’re left with the 
result that the thermal efficiency of a Carnot engine operating between a hot reservoir 
at temperature TH and a cold reservoir at temperature TC is

 hCarnot = 1 -
TC

TH
  (Carnot thermal efficiency) (19.27)

This remarkably simple result, an efficiency that depends only on the ratio of the tem
peratures of the hot and cold reservoirs, is Carnot’s legacy to thermodynamics.

NoTE  Temperatures TH and TC are absolute temperatures. 

 TH =
TC

1 - hCarnot
= 943 K = 670�C

where we used TC = 283 K.

ASSESS A “real” engine would need a higher temperature than this 
to provide 70% efficiency because no real engine will match the 
Carnot efficiency.

ExAmpLE 19.4  A Carnot engine
A Carnot engine is cooled by water at TC = 10�C. What tempera
ture must be maintained in the hot reservoir of the engine to have 
a thermal efficiency of 70%?

moDEL The efficiency of a Carnot engine depends only on the 
temperatures of the hot and cold reservoirs.

SoLvE The thermal efficiency hCarnot = 1 - TC/TH can be rear
ranged to give

 hCarnot = 1 -
TC

TH
= 1 -

300 K

2700 K
= 0.89 = 89%

ASSESS The thermodynamic cycle used in Example 19.2 doesn’t 
come anywhere close to the Carnot efficiency.

ExAmpLE 19.5  A real engine
The heat engine of Example 19.2 had a highest temperature of 
2700 K, a lowest temperature of 300 K, and a thermal efficiency of 
15%. What is the efficiency of a Carnot engine operating between 
these two temperatures?

SoLvE The Carnot efficiency is

The maximum Efficiency
In Section 19.2 we tried to invent a perfect engine with h = 1 and QC = 0. We found 
that we could not do so without violating the second law, so no engine can have h = 1. 
However, that example didn’t rule out an engine with h = 0.9999. Further analysis 
has now shown that no heat engine operating between energy reservoirs at tempera
tures TH and TC can be more efficient than a perfectly reversible engine operating 
between these temperatures.

We’ve now reached the endpoint of this line of reasoning by establishing an exact 
result for the thermal efficiency of a perfectly reversible engine, the Carnot engine. 
We can summarize our conclusions:

Second law, informal statement #7 No heat engine operating between energy 
reservoirs at temperatures TH and TC can exceed the Carnot efficiency

 hCarnot = 1 -
TC

TH

As Example 19.5 showed, real engines usually fall well short of the Carnot limit.
We also found that no refrigerator can exceed the coefficient of performance of a 

perfectly reversible refrigerator. We’ll leave the proof as a homework problem, but 
an analysis very similar to that above shows that the coefficient of performance of a 
Carnot refrigerator is

 KCarnot =
TC

TH  - TC
  (Carnot coefficient of performance) (19.28)



Thus we can state:

Second law, informal statement #8 No refrigerator operating between energy 
reservoirs at temperatures TH and TC can exceed the Carnot coefficient of 
performance

 KCarnot =
TC

TH - TC

ExAmpLE 19.6  Brayton versus Carnot
The Braytoncycle refrigerator of Example 19.3 had coefficient of performance K = 1.1. 
Compare this to the limit set by the second law of thermodynamics.

SoLvE Example 19.3 found that the reservoir temperatures had to be TC Ú 250 K and 
TH … 381 K. A Carnot refrigerator operating between 250 K and 381 K has

KCarnot =
TC

TH - TC
=

250 K

381 K - 250 K
= 1.9

ASSESS This is the minimum value of KCarnot. It will be even higher if TC 7 250 K or 
TH 6 381 K. The coefficient of performance of the reasonably realistic refrigerator of 
Example 19.3 is less than 60% of the limiting value.

Statements #7 and #8 of the second law are a major result of this chapter, one 
with profound implications. The efficiency limit of a heat engine is set by the tem
peratures of the hot and cold reservoirs. High efficiency requires TC/TH V 1 and 
thus TH W TC. However, practical realities often prevent TH from being significantly 
larger than TC, in which case the engine cannot possibly have a large efficiency. 
This limit on the efficiency of heat engines is a consequence of the second law of 
thermodynamics.

ASSESS This is an upper limit. Real coal, oil, gas, and nuclear
heated steam generators actually operate at �  35% thermal ef
ficiency, converting only about onethird of the fuel energy to 
electric energy while exhausting about twothirds of the energy 
to the environment as waste heat. (The heat source has nothing 
to do with the efficiency. All it does is boil water.) Not much can 
be done to alter the lowtemperature limit. The hightemperature 
limit is determined by the maximum temperature and pressure the 
boiler and turbine can withstand. The efficiency of electricity gen
eration is far less than most people imagine, but it is an unavoid
able consequence of the second law of thermodynamics.

ExAmpLE 19.7  generating electricity
An electric power plant boils water to produce highpressure steam 
at 400�C. The highpressure steam spins a turbine as it expands, 
then the turbine spins the generator. The steam is then condensed 
back to water in an oceancooled heat exchanger at 25�C. What is 
the maximum possible efficiency with which heat energy can be 
converted to electric energy?

moDEL The maximum possible efficiency is that of a Carnot en
gine operating between these temperatures.

SoLvE The Carnot efficiency depends on absolute temperatures, so 
we must use TH = 400�C = 673 K and TC = 25�C = 298 K. Then

 hmax = 1 -
298

673
= 0.56 = 56%

A limit on the efficiency of heat engines was not expected. We are used to thinking 
in terms of energy conservation, so it comes as no surprise that we cannot make an 
engine with h 7 1. But the limits arising from the second law were not anticipated, 
nor are they obvious. Nonetheless, they are a very real fact of life and a very real con
straint on any practical device. No one has ever invented a machine that exceeds the 
secondlaw limits, and we have seen that the maximum efficiency for realistic engines 
is surprisingly low.

19.6 . The Carnot Cycle    545
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Stop to think 19.5 
 Could this heat engine be built?

 a. Yes.
 b. No.
 c. It’s impossible to tell  

without knowing what  
kind of cycle it uses.

Hot reservoir

Heat
engine

Cold reservoir TC � 300 K

TH � 600 K

100 J

40 J

60 J

where we used CV =
3
2 R for a monatomic gas and �T =  

2T - T = T.
Process 2 S 3: An isothermal process has �Eth = 0 and

 Q = Ws = nR(2T  ) ln(2V/V) = (2 ln 2)nRT

Here we used the Table 19.1 result for the work done in an iso
thermal process.

Process 3 S 1: The work done by the gas is the area under 
the curve, which is negative because �V = V - 2V = -V  in the 
compression:

 Ws = area = p�V = -pV = -nRT

We used the idealgas law in the last step to express the result 
in terms of n and T. The heat transfer is also negative because 
�T = T - 2T = -T:

 Q = nCP �T = -
5
2 nRT

where we used CP =
5
2R for a monatomic gas. Based on the first 

law, �Eth = Q - Ws = -
3
2 nRT.

Summing over the three processes, we see that (�Eth)net = 0, 
as expected, and

 Wout = (2 ln 2 - 1)nRT

Heat energy is supplied to the gas (Q 7 0) in processes 1 S 2 and 
2 S 3, so

 QH = (2 ln 2 +
3
2)nRT

Thus the thermal efficiency of this heat engine is

 h =
Wout

QH
=

(2 ln 2 - 1)nRT

(2 ln 2 +
3
2)nRT

= 0.134 = 13.4%

A Carnot engine would be able to operate between a high tem
perature TH = 2T  and a low temperature TC = T. Its efficiency 
would be

 hCarnot = 1 -
TC

TH
= 1 -

T

2T
= 0.500 = 50.0% 

ASSESS As we anticipated, the thermal efficiency depends on the 
shape of the pV  cycle but not on the quantity of gas or even on the 
values of p, V, or T. The heat engine’s 13.4% efficiency is consid
erably less than the 50% maximum possible efficiency set by the 
second law of thermodynamics.

CHALLENgE ExAmpLE 19.8  Calculating efficiency
A heat engine using a monatomic ideal gas goes through the 
following closed cycle:

	■	 Isochoric heating until the pressure is doubled.

	■	 Isothermal expansion until the pressure is restored to its 
initial value.

	■	 Isobaric compression until the volume is restored to its ini
tial value.

What is the thermal efficiency of this heat engine? What would be 
the thermal efficiency of a Carnot engine operating between the 
highest and lowest temperatures reached by this engine?

moDEL The cycle consists of three familiar processes; we’ll need 
to analyze each. The amount of work and heat will depend on the 
quantity of gas, which we don’t know, but efficiency is a workto
heat ratio that is independent of the amount of gas.

viSuALizE FiguRE 19.21 shows the cycle. The initial pressure, vol
ume, and temperature are p, V, and T. The isochoric process in
creases the pressure to 2p and, because the ratio p/T  is constant 
in an isochoric process, increases the temperature to 2T. The iso
thermal expansion is along the 2T isotherm. The product pV  is 
constant in an isothermal process, so the volume doubles to 2V as 
the pressure returns to p.

FiguRE 19.21 The pV  cycle of the heat engine.

SoLvE We know, symbolically, the state variables at each corner 
of the pV  diagram. That is sufficient for calculating Ws, Q, and 
�Eth.

Process 1 S 2: An isochoric process has Ws = 0 and

 Q = �Eth = nCV �T =
3
2 nRT
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S u m m A R y
The goal of Chapter 19 has been to study the physical principles that govern heat engines and refrigerators.

general principles
Heat Engines
Devices that transform heat into work. They require two energy 
reservoirs at different temperatures.

Thermal efficiency

h =
Wout

QH
=

what you get

what you pay

Refrigerators
Devices that use work to transfer heat from a colder object to a 
hotter object.

Coefficient of performance

K =
QC

Win
=

what you get

what you pay

Secondlaw limit:

h … 1 -
TC

TH

Cyclical process
(�Eth)net � 0

QC

QH

Useful work done
Wout � QH � QC

Hot reservoir

Energy in

TH

TC Cold reservoir

Unused energy is 
exhausted as waste heat.

Secondlaw limit:

K …
TC

TH - TC

Cyclical process
(�Eth)net � 0

QC

QH

Work must be done
to transfer energy
from cold to hot.

Hot reservoir
Energy
QH � QC � Win

is exhausted to
the hot reservoir.

TH

TC Cold reservoir

Heat energy is
extracted from
the cold reservoir.

Win

The work Ws done 
by the system has the 
opposite sign to the 
work done on the system.

Ws = area under pV curve

important Concepts
A perfectly reversible engine (a Carnot engine) can be operated as either a 
heat engine or a refrigerator between the same two energy reservoirs by  
reversing the cycle and with no other changes.

•	 A Carnot heat engine has the maximum possible thermal efficiency of any 
heat engine operating between TH and TC :

hCarnot = 1 -
TC

TH

•	 A Carnot refrigerator has the 
maximum possible coefficient of 
performance of any refrigerator 
operating between TH and TC :

KCarnot =
TC

TH - TC

The Carnot cycle for a gas engine 
consists of two isothermal processes 
and two adiabatic processes.

An energy reservoir is a part of the environ
ment so large in comparison to the system that its 
temperature doesn’t change as the system extracts 
heat energy from or exhausts heat energy to the 
reservoir. All heat engines and refrigerators oper
ate between two energy reservoirs at different 
temperatures TH and TC.

TC

TH

p

V

1

2

3

4

Isotherms

Adiabats
V

p

Vi Vf

Ws � area

Applications
To analyze a heat engine or refrigerator:

moDEL Identify each process in the cycle.

viSuALizE Draw the pV  diagram of the cycle.

SoLvE There are several steps:

•	 Determine p, V, and T at the beginning and 
end of each process.

•	 Calculate �Eth, Ws, and Q for each process.

•	 Determine Win or Wout, QH, and QC.

•	 Calculate h = Wout /QH or K = QC/Win.

ASSESS Verify (�Eth)net = 0. 
Check signs.
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thermodynamics
energy reservoir
energytransfer diagram
heat engine

closedcycle device
thermal efficiency, h
waste heat
refrigerator

coefficient of performance, K
heat exchanger
pressure ratio, rp

perfectly reversible engine

Carnot engine
Carnot cycle

Terms and Notation

C o N C E p T u A L  Q u E S T i o N S

 1. In going from i to f in each of the three processes of FiguRE Q19.1, 
is work done by the system (W 6 0, Ws 7 0), is work done on the 
system (W 7 0, Ws 6 0), or is no net work done?

 2. Rank in order, from largest to smallest, the amount of work 
(Ws)1 to (Ws)4 done by the gas in each of the cycles shown in 
FiguRE Q19.2. Explain.

 3. Could you have a heat engine with h 7 1? Explain.
 4. FiguRE Q19.4 shows the pV 

diagram of a heat engine. 
During which stage or stages 
is (a) heat added to the gas, 
(b) heat removed from the 
gas, (c) work done on the gas, 
and (d) work done by the gas?

 5. Rank in order, from largest to smallest, the thermal efficiencies 
h1 to h4 of the four heat engines in FiguRE Q19.5. Explain.

 6. FiguRE Q19.6 shows the thermodynamic cycles of two heat 
engines. Which heat engine has the larger thermal efficiency? Or 
are they the same? Explain.

 7. A heat engine satisfies Wout = Qnet. Why is there no �Eth term in 
this relationship?

 8. Do the energytransfer diagrams in FiguRE Q19.8 represent pos
sible heat engines? If not, what is wrong?

FiguRE Q19.1 

V

f

i f

i

i

f

p
(a)

V

p
(b)

V

p
(c)

FiguRE Q19.2 

1 2

3 4

V

p

V

p

V

p

V

p

FiguRE Q19.4 

p1

p2

V1 V2

p

V

Stage 1

Stage 3

Stage 2

Isotherm

FiguRE Q19.5 

1

6 J

10 J

4 J

Hot reservoir

Cold reservoir

2

60 J

100 J

40 J

Hot reservoir

Cold reservoir

3

4 J

10 J

6 J

Hot reservoir

Cold reservoir

4

94 J

100 J

6 J

Hot reservoir

Cold reservoir

FiguRE Q19.6 

V1 V2

V V

p2

p1

p p

Engine 1

V1 V2

p2

p1

Engine 2

FiguRE Q19.8 

(a)

10 J

10 J

5 J

Hot reservoir

Cold reservoir

600 K

300 K

(b)

6 J

10 J

4 J

Hot reservoir

Cold reservoir

600 K

300 K

(c)

4 J

10 J

6 J

Hot reservoir

Cold reservoir

600 K

300 K
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 9. Do the energytransfer diagrams in FiguRE Q19.9 represent pos
sible refrigerators? If not, what is wrong?

 10. It gets pretty hot in your apartment. In browsing the Internet, 
you find a company selling small “room air conditioners.” You 
place the air conditioner on the floor, plug it in, and—the adver
tisement says—it will lower the room temperature up to 10�F. 
Should you order one? Explain.

 11. The first and second laws of thermodynamics are sometimes 
stated as “You can’t win” and “You can’t even break even.” Do 
these sayings accurately characterize the laws of thermodynam
ics as applied to heat engines? Why or why not?

FiguRE Q19.9 

(b)

30 J

10 J

20 J

Hot reservoir

Cold reservoir

600 K

300 K

(c)

30 J

20 J

10 J

Hot reservoir

Cold reservoir

600 K

300 K

(a)

10 J

10 J

20 J

Hot reservoir

Cold reservoir

600 K

300 K

E x E R C i S E S  A N D  p R o B L E m S

Problems labeled  integrate material from earlier chapters.

Exercises

Section 19.1 Turning Heat into Work

Section 19.2 Heat Engines and Refrigerators

 1. | A heat engine with a thermal efficiency of 40% does 100 J 
of work per cycle. How much heat is (a) extracted from the hot 
reservoir and (b) exhausted to the cold reservoir per cycle?

 2. || A heat engine does 200 J of work per cycle while exhausting 
400 J of waste heat. What is the engine’s thermal efficiency?

 3. | A heat engine extracts 55 kJ of heat from the hot reservoir 
each cycle and exhausts 40 kJ of heat. What are (a) the thermal 
efficiency and (b) the work done per cycle?

 4. || A refrigerator requires 200 J of work and exhausts 600 J of heat 
per cycle. What is the refrigerator’s coefficient of performance?

 5. | 50 J of work are done per cycle on a refrigerator with a coef
ficient of performance of 4.0. How much heat is (a) extracted from 
the cold reservoir and (b) exhausted to the hot reservoir per cycle?

 6. || The power output of a car engine running at 2400 rpm is 
500 kW. How much (a) work is done and (b) heat is exhausted 
per cycle if the engine’s thermal efficiency is 20%? Give your 
answers in kJ.

 7. || A 32%efficient electric power plant produces 900 MW of 
electric power and discharges waste heat into 20�C ocean wa
ter. Suppose the waste heat could be used to heat homes during 
the winter instead of being discharged into the ocean. A typical 
American house requires an average 20 kW for heating. How 
many homes could be heated with the waste heat of this one 
power plant?

 8. || 1.0 L of 20�C water is placed in a refrigerator. The refrigerator’s 
motor must supply an extra 8.0 W of power to chill the water to 
5�C in 1.0 h. What is the refrigerator’s coefficient of performance?

Section 19.3 Ideal-Gas Heat Engines

Section 19.4 Ideal-Gas Refrigerators

 9. || The cycle of FiguRE Ex19.9 consists of four processes. Make a 
table with rows labeled A to D and columns labeled �Eth , Ws , 
and Q. Fill each box in the table with + , - , or 0 to indicate 
whether the quantity increases, decreases, or stays the same dur
ing that process.

 10. || The cycle of FiguRE Ex19.10 consists of three processes. Make 
a table with rows labeled A–C and columns labeled �Eth, Ws, 
and Q. Fill each box in the table with + , - , or 0 to indicate 
whether the quantity increases, decreases, or stays the same dur
ing that process.

 11. || How much work is done per cycle by a gas following the pV 
trajectory of FiguRE Ex19.11?

 12. || A gas following the pV trajectory of FiguRE Ex19.12 does 60 J 
of work per cycle. What is pmax  ?

 13. || What are (a) Wout and QH and (b) the thermal efficiency for the 
heat engine shown in FiguRE Ex19.13?

 14. || What are (a) Wout and QC and (b) the thermal efficiency for the 
heat engine shown in FiguRE Ex19.14?

V

p

A B
IsothermC

D

Adiabat

FiguRE Ex19.9 FiguRE Ex19.10 

V

p

A

C Isotherm

B

Adiabat

FiguRE Ex19.11 

V (cm3)

p (atm)

2000

1

400 600

2

0

3

FiguRE Ex19.12 

V (cm3)

p (kPa)

2000

100

400 600 800
0

pmax

FiguRE Ex19.14 

V (cm3)

p (kPa)

1000

200

200
0

400
Q �
30 J

Q � 84 J

FiguRE Ex19.13 

V (cm3)

p (kPa)

1000

200

200
0

400

Q � �90 J

Q � �25 J
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 15. || How much heat is exhausted to the cold reservoir by the heat 
engine shown in FiguRE Ex19.15?

 16. || What are (a) the thermal efficiency and (b) the heat extracted 
from the hot reservoir for the heat engine shown in FiguRE Ex19.16?

 17. || A heat engine uses a diatomic gas in a Brayton cycle. What is 
the engine’s thermal efficiency if the gas volume is halved dur
ing the adiabatic compression?

 18. || What are (a) the heat extracted from the cold reservoir and 
(b) the coefficient of performance for the refrigerator shown in 
FiguRE Ex19.18?

Section 19.5 The Limits of Efficiency

Section 19.6 The Carnot Cycle

 19. | Which, if any, of the heat engines in FiguRE Ex19.19 violate 
(a) the first law of thermodynamics or (b) the second law of ther
modynamics? Explain.

 20. | Which, if any, of the refrigerators in FiguRE Ex19.20 violate 
(a) the first law of thermodynamics or (b) the second law of ther
modynamics? Explain.

 21. || At what coldreservoir temperature (in °C) would a Carnot 
engine with a hotreservoir temperature of 427�C have an 
efficiency of 60%?

 22. || A heat engine does 10 J of work and exhausts 15 J of waste 
heat during each cycle.

 a. What is the engine’s thermal efficiency?
 b. If the coldreservoir temperature is 20�C, what is the mini

mum possible temperature in °C of the hot reservoir?
 23. | a.  A heat engine does 200 J of work per cycle while exhaust

ing 600 J of heat to the cold reservoir. What is the engine’s 
thermal efficiency?

   b.  A Carnot engine with a hotreservoir temperature of 400�C 
has the same thermal efficiency. What is the coldreservoir 
temperature in °C?

 24. | A Carnot engine operating between energy reservoirs at tem
peratures 300 K and 500 K produces a power output of 1000 W. 
What are (a) the thermal efficiency of this engine, (b) the rate of 
heat input, in W, and (c) the rate of heat output, in W?

 25. || A Carnot engine whose hotreservoir temperature is 400�C 
has a thermal efficiency of 40%. By how many degrees should 
the temperature of the cold reservoir be decreased to raise the 
engine’s efficiency to 60%?

 26. || A heat engine operating between energy reservoirs at 20�C 
and 600�C has 30% of the maximum possible efficiency. How 
much energy must this engine extract from the hot reservoir to 
do 1000 J of work?

 27. || A heat engine operating between a hot reservoir at 500�C and 
a cold reservoir at 0�C is 60% as efficient as a Carnot engine. If 
this heat engine and the Carnot engine do the same amount of 
work, what is the ratio QH/(QH)Carnot  ?

 28. || A Carnot refrigerator operating between -20�C and +20�C 
extracts heat from the cold reservoir at the rate 200 J/s. What 
are (a) the coefficient of performance of this refrigerator, (b) the 
rate at which work is done on the refrigerator, and (c) the rate at 
which heat is exhausted to the hot side?

FiguRE Ex19.15 
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105 J
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Refrigerator

40 J

60 J

20 J

Hot reservoir TH � 400 K

TC � 300 KCold reservoir

(a)

Refrigerator

30 J

40 J

20 J

Hot reservoir TH � 400 K

TC � 300 KCold reservoir

(c)

Refrigerator

40 J

50 J

10 J

Hot reservoir TH � 400 K

TC � 300 KCold reservoir

(b)

Heat
engine

200 J

300 J

100 J

Hot reservoir TH � 600 K

TC � 300 KCold reservoir

(c)

Heat
engine

200 J

500 J

300 J

Hot reservoir TH � 600 K

TC � 300 KCold reservoir

(a)

Heat
engine

200 J

500 J

200 J

Hot reservoir TH � 600 K

TC � 300 KCold reservoir

(b)

FiguRE Ex19.19 



 a. Determine Q1, Q2, Q3, and Q4.
 b. Is Q3 greater than, less than, or equal to Q1  ?
 c. Do these two devices, when operated together in this way, 

violate the second law?

 43. || A Carnot heat engine and an ordinary refrigerator with coefficient 
of performance 2.00 operate between reservoirs at 350 K and 250 K. 
The work done by the Carnot heat engine drives the refrigerator. If 
the heat engine extracts 10.0 J of energy from the hot reservoir, how 
much energy does the refrigerator exhaust to the hot reservoir?

 44. || A heat engine running backward is called a refrigerator if its 
purpose is to extract heat from a cold reservoir. The same en
gine running backward is called a heat pump if its purpose is to 
exhaust warm air into the hot reservoir. Heat pumps are widely 
used for home heating. You can think of a heat pump as a re
frigerator that is cooling the already cold outdoors and, with its 
exhaust heat QH, warming the indoors. Perhaps this seems a little 
silly, but consider the following. Electricity can be directly used 
to heat a home by passing an electric current through a heating 
coil. This is a direct, 100% conversion of work to heat. That is, 
15 kW of electric power (generated by doing work at the rate of 
15 kJ/s at the power plant) produces heat energy inside the home 
at a rate of 15 kJ/s. Suppose that the neighbor’s home has a heat 
pump with a coefficient of performance of 5.0, a realistic value.

 a. How much electric power (in kW) does the heat pump use to 
deliver 15 kJ/s of heat energy to the house?

 b. An average price for electricity is about 40 MJ per dollar. A 
furnace or heat pump will run typically 200 hours per month 
during the winter. What does one month’s heating cost in the 
home with a 15 kW electric heater and in the home of the 
neighbor who uses an equivalent heat pump?

 45. || You and your roommates need a new refrigerator. At the ap
pliance store, the salesman shows you the DreamFridge. Ac
cording to its sticker, the DreamFridge uses a mere 100 W of 
power to remove 100 kJ of heat per minute from the 2�C interior. 
According to the fine print on the sticker, this claim is true in a 
22�C kitchen. Should you buy? Explain.

 46. || Three engineering students submit their solutions to a design 
problem in which they were asked to design an engine that oper
ates between temperatures 300 K and 500 K. The heat input/output 
and work done by their designs are shown in the following table:

Student QH QC Wout

1 250 J 140 J 110 J

2 250 J 170 J  90 J

3 250 J 160 J  90 J

  Critique their designs. Are they acceptable or not? Is one better 
than the others? Explain.

 29. || The coefficient of performance of a refrigerator is 5.0. The 
compressor uses 10 J of energy per cycle.

 a. How much heat energy is exhausted per cycle?
 b. If the hotreservoir temperature is 27�C, what is the lowest 

possible temperature in °C of the cold reservoir?
 30. || A Carnot heat engine with thermal efficiency 1

3 is run back
ward as a Carnot refrigerator. What is the refrigerator’s coef
ficient of performance?

problems

 31. || The engine that powers a crane burns fuel at a flame tempera
ture of 2000�C. It is cooled by 20�C air. The crane lifts a 2000 kg 
steel girder 30 m upward. How much heat energy is transferred 
to the engine by burning fuel if the engine is 40% as efficient as 
a Carnot engine?

 32. ||| 100 mL of water at 15�C is placed in the freezer compart
ment of a refrigerator with a coefficient of performance of 4.0. 
How much heat energy is exhausted into the room as the water is 
changed to ice at 15�C?

 33. || Prove that the work done in an adiabatic process i S f is 
Ws = (pfVf - piVi)/(1 - g).

 34. || A Carnot refrigerator operates between reservoirs at 
- 20�C and 50�C in a 25�C room. The refrigerator is a 

40 cm * 40 cm * 40 cm box. Five of the walls are perfect in
sulators, but the sixth is a 1.0cmthick piece of stainless steel. 
What electric power does the refrigerator require to maintain the 
inside temperature at –20�C?

 35. || Prove that the coefficient of performance of a Carnot refrig
erator is KCarnot = TC/(TH - TC).

 36. || An ideal refrigerator utilizes a Carnot cycle operating between 
0�C and 25�C. To turn 10 kg of liquid water at 0�C into 10 kg 
of ice at 0�C, (a) how much heat is exhausted into the room and 
(b) how much energy must be supplied to the refrigerator?

 37. || There has long been an interest in using the vast quantities of 
thermal energy in the oceans to run heat engines. A heat engine 
needs a temperature difference, a hot side and a cold side. Conve
niently, the ocean surface waters are warmer than the deep ocean 
waters. Suppose you build a floating power plant in the tropics 
where the surface water temperature is �  30�C. This would be 
the hot reservoir of the engine. For the cold reservoir, water would 
be pumped up from the ocean bottom where it is always �  5�C. 
What is the maximum possible efficiency of such a power plant?

 38. || The ideal gas in a Carnot engine extracts 1000 J of heat energy 
during the isothermal expansion at 300�C. How much heat en
ergy is exhausted during the isothermal compression at 50�C?

 39. | The hotreservoir temperature of a Carnot engine with 25% 
efficiency is 80�C higher than the coldreservoir temperature. 
What are the reservoir temperatures, in °C?

 40. || A Carnot heat engine operates between reservoirs at 182�C 
and 0�C. If the engine extracts 25 J of energy from the hot reser
voir per cycle, how many cycles will it take to lift a 10 kg mass 
a height of 10 m?

 41. || A Carnot refrigerator operates between reservoirs at 55�C and 
–20�C. If the engine exhausts 250 J of energy to the hot reservoir 
per cycle, how many cycles will it take to cool a 500 mL soda 
from 25�C to 5�C?

 42. || FiguRE p19.42 shows a Carnot heat engine driving a Carnot 
refrigerator.
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 53. || A heat engine using a diatomic gas follows the cycle shown in 
FiguRE p19.53. Its temperature at point 1 is 20�C.

 a. Determine Ws, Q, and �Eth for each of the three processes in 
this cycle. Display your results in a table.

 b. What is the thermal efficiency of this heat engine?
 c. What is the power output of the engine if it runs at 500 rpm?
 54. || FiguRE p19.54 shows the cycle for a heat engine that uses a gas 

having g = 1.25. The initial temperature is T1 = 300 K, and this 
engine operates at 20 cycles per second.

 a. What is the power output of the engine?
 b. What is the engine’s thermal efficiency?

 55. || A heat engine using a monatomic gas follows the cycle shown 
in FiguRE p19.55.

 a. Find Ws, Q, and �Eth for each process in the cycle. Display 
your results in a table.

 b. What is the thermal efficiency of this heat engine?

 56. || A heat engine uses a diatomic gas that follows the pV cycle in 
FiguRE p19.56.

 a. Determine the pressure, volume, and temperature at point 2.
 b. Determine �Eth, Ws, and Q for each of the three processes. 

Put your results in a table for easy reading.
 c. How much work does this engine do per cycle and what is its 

thermal efficiency?

 47. || A typical coalfired power plant burns 300 metric tons of 
coal every hour to generate 750 MW of electricity. 1 metric 
ton = 1000 kg. The density of coal is 1500 kg/m3 and its heat 
of combustion is 28 MJ/kg. Assume that all heat is transferred 
from the fuel to the boiler and that all the work done in spinning 
the turbine is transformed into electric energy.

 a. Suppose the coal is piled up in a 10 m * 10 m room. How tall 
must the pile be to operate the plant for one day?

 b. What is the power plant’s thermal efficiency?
 48. || A nuclear power plant generates 3000 MW of heat energy 

from nuclear reactions in the reactor’s core. This energy is used 
to boil water and produce highpressure steam at 300�C. The 
steam spins a turbine, which produces 1000 MW of electric 
power, then the steam is condensed and the water is cooled to 
25�C before starting the cycle again.

 a. What is the maximum possible thermal efficiency of the 
power plant?

 b. What is the plant’s actual efficiency?
 c. Cooling water from a river flows through the condenser (the 

lowtemperature heat exchanger) at the rate of 1.2 * 108 L/h 
( �30 million gallons per hour). If the river water enters the 
condenser at 18�C, what is its exit temperature?

 49. || The electric output of a power plant is 750 MW. Cooling 
water flows through the power plant at the rate 1.0 * 108 L/h. 
The cooling water enters the plant at 16�C and exits at 27�C. 
What is the power plant’s thermal efficiency?

 50. || a.  A large nuclear power plant has a power output of 
1000 MW. In other words, it generates electric energy at 
the rate 1000 MJ/s. How much energy does this power 
plant supply in one day?

   b.  The oceans are vast. How much energy could be extracted 
from 1 km3 of water if its temperature were decreased by 
1�C? For simplicity, assume fresh water.

   c.  A friend of yours who is an inventor comes to you with an 
idea. He has done the calculations that you just did in parts 
a and b, and he’s concluded that a few cubic kilometers of 
ocean water could meet most of the energy needs of the  
United States. This is an insignificant fraction of the U.S. 
coastal waters. In addition, the oceans are constantly being 
reheated by the sun, so energy obtained from the ocean is 
essentially solar energy. He has sketched out some design 
plans—highly secret, of course, because they’re not pat
ented—and now he needs some investors to provide money 
for a prototype. A working prototype will lead to a patent. 
As an initial investor, you’ll receive a fraction of all future 
royalties. Time is of the essence because a rival inventor 
is working on the same idea. He needs $10,000 from you 
right away. You could make millions if it works out. Will 
you invest? If so, explain why. If not, why not? Either way, 
your explanation should be based on scientific principles. 
Sketches and diagrams are a reasonable part of an explanation.

 51. || An air conditioner removes 5.0 * 105 J/min of heat from a 
house and exhausts 8.0 * 105 J/min to the hot outdoors.

 a. How much power does the air conditioner’s compressor require?
 b. What is the air conditioner’s coefficient of performance?
 52. || A heat engine using 1.0 mol of a monatomic gas follows the 

cycle shown in FiguRE p19.52. 3750 J of heat energy is transferred 
to the gas during process 1 S 2.

 a. Determine Ws, Q, and �Eth for each of the four processes in 
this cycle. Display your results in a table.

 b. What is the thermal efficiency of this heat engine?
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 61. || The heat engine shown in FiguRE p19.61 uses 0.020 mol of a 
diatomic gas as the working substance.

 a. Determine T1, T2, and T3.
 b. Make a table that shows �Eth, Ws, and Q for each of the three 

processes.
 c. What is the engine’s thermal efficiency?

 62. ||| A heat engine using a diatomic ideal gas goes through the fol
lowing closed cycle:

 ■	 Isothermal compression until the volume is halved.
 ■	 Isobaric expansion until the volume is restored to its initial 

value.
 ■	 Isochoric cooling until the pressure is restored to its initial 

value.

  What are the thermal efficiencies of (a) this heat engine and  
(b) a Carnot engine operating between the highest and lowest 
temperatures reached by this engine?

 63. ||| A heat engine with 0.20 mol of a monatomic ideal gas initially 
fills a 2000 cm3 cylinder at 600 K. The gas goes through the fol
lowing closed cycle:

 ■	 Isothermal expansion to 4000 cm3.
 ■	 Isochoric cooling to 300 K.
 ■	 Isothermal compression to 2000 cm3.
 ■	 Isochoric heating to 600 K.

  How much work does this engine do per cycle and what is its 
thermal efficiency?

 64. || FiguRE p19.64 is the pV diagram of Example 19.2, but now the 
device is operated in reverse.

 a. During which processes is heat transferred into the gas?
 b. Is this QH, heat extracted from a hot reservoir, or QC, heat 

extracted from a cold reservoir? Explain.
 c. Determine the values of QH and QC.
  Hint: The calculations have been done in Example 19.2 and do 

not need to be repeated. Instead, you need to determine which 
processes now contribute to QH and which to QC.

 d. Is the area inside the curve Win or Wout  ? What is its value?
 e. The device is now being operated in a ccw cycle. Is it a refrig

erator? Explain.

 57. || A heat engine uses a diatomic gas that follows the pV cycle in 
FiguRE p19.57.

 a. Determine the pressure, volume, and temperature at point 1.
 b. Determine �Eth, Ws, and Q for each of the three processes. 

Put your results in a table for easy reading.
 c. How much work does this engine do per cycle and what is its 

thermal efficiency?

 58. || A refrigerator using helium gas operates on the reversed cycle 
shown in FiguRE p19.58. What are the refrigerator’s (a) coefficient 
of performance and (b) power input if it operates at 60 cycles 
per second?

 59. || A heat engine using 120 mg of helium as the working sub
stance follows the cycle shown in FiguRE p19.59.

 a. Determine the pressure, temperature, and volume of the gas 
at points 1, 2, and 3.

 b. What is the engine’s thermal efficiency?
 c. What is the maximum possible efficiency of a heat engine 

that operates between Tmax and Tmin  ?

 60. || The heat engine shown in 
FiguRE p19.60 uses 2.0 mol of a 
monatomic gas as the working 
substance.

 a. Determine T1, T2, and T3.
 b. Make a table that shows 

�Eth, Ws, and Q for each of 
the three processes.

 c. What is the engine’s thermal 
efficiency?
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In Problems 65 through 68 you are given the equation(s) used to 
solve a problem. For each of these, you are to
 a. Write a realistic problem for which this is the correct 

equation(s).
 b. Finish the solution of the problem.

 65. 0.80 = 1 - (0�C + 273)/(TH + 273) 

 66. 4.0 = QC/Win

  QH = 100 J

 67. 0.20 = 1 - QC/QH

  Wout = QH - QC = 20 J

 68. 400 kJ =
1
2 (  pmax - 100 kPa)(3.0 m3 - 1.0 m3)

Challenge problems

 69. FiguRE Cp19.69 shows a heat engine going through one cycle. 
The gas is diatomic. The masses are such that when the pin is 
removed, in steps 3 and 6, the piston does not move.

 a. Draw the pV diagram for this heat engine.
 b. How much work is done per cycle?
 c. What is this engine’s thermal efficiency?

 70. FiguRE Cp19.70 shows two insulated compartments separated 
by a thin wall. The left side contains 0.060 mol of helium at an 
initial temperature of 600 K and the right side contains 0.030 
mol of helium at an initial temperature of 300 K. The com
partment on the right is attached to a vertical cylinder, above 
which the air pressure is 1.0 atm. A 10cmdiameter, 2.0 kg 
piston can slide without friction up and down the cylinder. 
Neither the cylinder diameter nor the volumes of the compart
ments are known.

 a. What is the final temperature?
 b. How much heat is transferred from the left side to the 

right side?
 c. How high is the piston lifted due to this heat transfer?
 d. What fraction of the heat is converted into work?

 71. The gasoline engine in your car can be modeled as the Otto 
cycle shown in FiguRE Cp19.71. A fuelair mixture is sprayed 
into the cylinder at point 1, where the piston is at its farthest 
distance from the spark plug. This mixture is compressed as 
the piston moves toward the spark plug during the adiabatic 
compression stroke. The spark plug fires at point 2, releasing 
heat energy that had been stored in the gasoline. The fuel burns 
so quickly that the piston doesn’t have time to move, so the 
heating is an isochoric process. The hot, highpressure gas then 
pushes the piston outward during the power stroke. Finally, 
an exhaust value opens to allow the gas temperature and pres
sure to drop back to their initial values before starting the cycle 
over again.

 a. Analyze the Otto cycle and show that the work done per cycle is

 Wout =
nR

1 - g
 (T2 - T1 + T4 - T3)

 b. Use the adiabatic connection between T1 and T2 and also be
tween T3 and T4 to show that the thermal efficiency of the 
Otto cycle is

 h = 1 -
1

r (g-1)

  where r = Vmax/Vmin is the engine’s compression ratio.
 c. Graph h versus r out to r = 30 for a diatomic gas.

 72. FiguRE Cp19.72 shows the Diesel cycle. It is similar to the Otto 
cycle (see Problem CP19.71), but there are two important dif
ferences. First, the fuel is not admitted until the air is fully com
pressed at point 2. Because of the high temperature at the end 
of an adiabatic compression, the fuel begins to burn spontane
ously. (There are no spark plugs in a diesel engine!) Second, 
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combustion takes place more slowly, with fuel continuing to 
be injected. This makes the ignition stage a constantpressure 
process. The cycle shown, for one cylinder of a diesel engine, 
has a displacement Vmax - Vmin of 1000 cm3 and a compression 
ratio r = Vmax/Vmin = 21. These are typical values for a diesel 
truck. The engine operates with intake air (g = 1.40) at 25�C 
and 1.0 atm pressure. The quantity of fuel injected into the cylin
der has a heat of combustion of 1000 J.

 a. Find p, V, and T at each of the four corners of the cycle. Dis
play your results in a table.

 b. What is the net work done by the cylinder during one full 
cycle?

 c. What is the thermal efficiency of this engine? FiguRE Cp19.72 
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 d. What is the power output in kW and horsepower 
(1 hp = 746 W) of an eightcylinder diesel engine running at 
2400 rpm?

STop To THiNk ANSWERS

Stop to Think 19.1: Wd + Wa � Wb + Wc. Wout = QH - QC.

Stop to Think 19.2: b. Energy conservation requires QH = QC + Win. 
The refrigerator will exhaust more heat out the back than it removes 
from the front. A refrigerator with an open door will heat the room 
rather than cool it.

Stop to Think 19.3: c.  Wout = area inside triangle = 1000 J. h =  
Wout /QH = (1000 J)/(4000 J) = 0.25.

Stop to Think 19.4: To conserve energy, the heat QH exhausted to the 
hot reservoir needs to be QH = QC + Win = 40 J + 10 J = 50 J, not 
30 J. The numbers shown here would be appropriate to a heat engine 
if the energytransfer arrows were all reversed.

Stop to Think 19.5: b. The efficiency of this engine would be 
h = Wout /QH = 0.6. That exceeds the Carnot efficiency hCarnot =  
1-TC/TH = 0.5, so it is not possible.
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Part IV had two important goals: first, to learn how energy 
is transformed; second, to establish a micro/macro connection 
in which we can understand the macroscopic properties of 
solids, liquids, and gases in terms of the microscopic motions 
of atoms and molecules. We have been quite successful. You 
have learned that:

■	 Temperature is a measure of the thermal energy of the mol
ecules in a system, and the average energy per molecule is 
simply 12 kB  T  per degree of freedom.

■	 The pressure of a gas is due to collisions of the molecules 
with the walls of the container.

■	 Heat is the energy transferred between two systems that 
have different temperatures. An important mechanism of 
heat transfer is molecular collisions at the boundary between 
the two systems.

■	 Work, heat, and thermal energy can be transformed into 
each other in accord with the first law of thermodynamics, 
�Eth = W + Q. This is a statement that energy is conserved.

■	 Practical devices for turning heat into work, called heat en
gines, are limited in their efficiency by the second law of 
thermodynamics.

The knowledge structure of thermodynamics below sum
marizes the basic laws, diagramming our energy model and 
presenting our model of a heat engine in pictorial form. Ther
modynamics, more than most topics in physics, can seem very 
“equation oriented.” It’s undeniable that there are more equa
tions than we used in earlier parts of this text and more things 
to remember. But focusing on the equations is seeing only the 
trees, not the forest. A better strategy is to focus on the ideas 
embedded in the knowledge structure. You can find the neces
sary equations if you know how the ideas are connected, but 
memorizing all the equations won’t help if you don’t know 
which are relevant to different situations.

ThermodynamicsIV
SummARyP a r t 

ESSENTiAL CoNCEpTS Work, heat, and thermal energy
BASiC goALS How is energy converted from one form to another?
 How are macroscopic properties related to microscopic behavior?

gENERAL pRiNCipLES First law of thermodynamics  Energy is conserved, �Eth = W + Q.
 Second law of thermodynamics  Heat is not spontaneously transferred from a colder object to a hotter object.

gas laws and processes Idealgas law pV = nRT = NkBT

•	 Isochoric process  V = constant and W = 0 •	 Isobaric process p = constant

•	 Isothermal process  T = constant and �Eth = 0 •	 Adiabatic process Q = 0
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OnE STEP BEyOnd

the water molecules certainly decreases, but water doesn’t 
freeze as an isolated system. For it to freeze, heat energy 
must be transferred from the water to the surrounding air. 
The entropy of the air increases by more than the entropy 
of the water decreases. Thus the total entropy of the 
water + air system increases when a snowflake is formed, 
just as the second law predicts.

Selforganization is closely related to nonlinear mechan
ics, chaos, and the geometry of fractals. It has important 
applications in fields ranging from ecology to computer sci
ence to aeronautical engineering. For example, the airflow 
across a wing gives rise to largescale turbulence—eddies 
and whirlpools—in the wake behind an airplane. Their for
mation affects the aerodynamics of the plane and can also 
create hazards for following aircraft. Whirlpools are or
dered, largescale macroscopic structures with low entropy, 
but they are produced from disordered, random collisions 
of the air molecules.

Selforganizing systems are a very active field of re
search in both science and engineering. The 1977 Nobel 
Prize in chemistry was awarded to the Belgian scientist Ilya 
Prigogine for his studies of nonequilibrium thermodynam-
ics, the basic science underlying selforganizing systems. 
Prigogine and others have shown how energy flow through 
a system can, when the conditions are right, “bring order 
out of chaos.”

The second law predicts that systems will run down, that 
order will evolve toward disorder and randomness, and 
that complexity will give way to simplicity. But just look 
around you!

■	 Plants grow from simple seeds to complex entities.

■	 Singlecell fertilized eggs grow into complex adult 
organisms.

■	 Electric current passing through a “soup” of simple ran
dom molecules produces such complex chemicals as 
amino acids.

■	 Over the last billion or so years life has evolved from 
simple unicellular organisms to very complex forms.

■	 Knowledge and information seem to grow every year, not 
to fade away.

Everywhere we look, it seems, the second law is being vio
lated. How can this be?

There is an important qualification in the second law of 
thermodynamics: It applies only to isolated systems, sys
tems that do not exchange energy with their environment. 
The situation is entirely different if energy is transferred 
into or out of the system, and we cannot predict what will 
happen to the entropy of a nonisolated system. The popular
science literature is full of arguments and predictions that 
make incorrect use of the second law by trying to apply it to 
systems that are not isolated.

Systems that become more ordered as time passes, and 
in which the entropy decreases, are called self-organizing 
systems. All the examples listed above are selforganizing 
systems. One of the major characteristics of selforganizing 
systems is a substantial flow of energy through the system. 
For example, plants and animals take in energy from the sun 
or chemical energy from food, make use of that energy, and 
then give waste heat back to the environment via evapo
ration, decay, and other means. It is this energy flow that 
allows the systems to maintain, or even increase, a high de
gree of order and a very low entropy.

But—and this is the important point—the entropy of the 
entire system, including the earth and the sun, undergoes 
a significant increase so as to let selected subsystems de
crease their entropy and become more ordered. The second 
law is not violated at all, but you must apply the second law 
to the combined systems that are interacting and not just to 
a single subsystem.

The snowflake in the photo is a beautiful example. As 
water freezes, the random motion of water molecules is 
transformed into a highly ordered crystal. The entropy of 

Order Out of Chaos

A snowflake is a highly ordered arrangement of 
water molecules. The creation of a snowflake 
decreases the entropy of the water, but the second 
law of thermodynamics is not violated because the 
water molecules are not an isolated system.
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OvervieW

The Wave Model
Parts I–IV of this text have been primarily about the physics of particles. You’ve seen 
that macroscopic systems ranging from balls and rockets to a gas of molecules can be 
thought of as particles or as systems of particles. A particle is one of the two funda
mental models of classical physics. The other, to which we now turn our attention, is 
a wave.

Waves are ubiquitous in nature. Familiar examples of waves include

	■	 Undulating ripples on a pond.
	■	 The swaying ground of an earthquake.
	■	 A vibrating guitar string.
	■	 The sweet sound of a flute.
	■	 The colors of the rainbow.

The physics of waves is the subject of Part V, the next stage of our journey. Despite 
the great diversity of types and sources of waves, a single, elegant physical theory is 
capable of describing them all. Our exploration of wave phenomena will call upon 
sound waves, light waves, and vibrating strings for examples, but our goal is to em
phasize the unity and coherence of the ideas that are common to all types of waves.

A wave, in contrast with a particle, is diffuse, spread out, not to be found at a single 
point in space. We will start with waves traveling outward through some medium, like 
the spreading ripples after a pebble hits a pool of water. These are called traveling 
waves. An investigation of what happens when waves travel through each other will 
lead us to standing waves, which are essential for understanding phenomena ranging 
from those as common as musical instruments and  water sloshing in a tub to as com
plex as lasers and the electrons in atoms. We’ll also study one of the most important 
defining characteristics of waves—their ability to exhibit interference.

Three chapters will be devoted to light and optics, perhaps the most important ap
plication of waves. Although light is an electromagnetic wave, your understanding 
of these chapters will depend on nothing more than the “waviness” of light. You can 
study these chapters either before or after your study of electricity and magnetism in 
Part VI. The electromagnetic aspects of light waves will be taken up in Chapter 34.

Our investigation of light will be aided by a second model, the ray model, in which 
light travels in straight lines, reflects from mirrors, and is focused by lenses. Many 
practical applications of optics, from the camera to the telescope, are best understood 
with the ray model of light.

In fact, that you’re able to read this book at all is due to the first optical instrument 
you ever used—your eyes. We will investigate the optics of the eye, learn how the 
cornea and lens form an image on the retina, and see how glasses or contact lenses can 
be used to correct the image if it is out of focus.



Wave Properties
You’ll learn that a wave is characterized 
by three basic properties:
■	 Wave speed: How fast it travels 

through the medium.
■	 Wavelength: The distance between 

two neighboring crests.
■	 Frequency: The number of oscilla

tions per second.
You’ll also see that wave motion is closely 
related to simple harmonic motion.

The Doppler Effect
The frequency and wavelength of a 
wave are shifted when there is relative 
motion between the source and the 
observer of the waves. This is called  
the Doppler effect.

Sound and Light
Two types of waves are especially impor
tant: sound and light.
■	 Sound waves are longitudinal waves.
■	 Light waves are transverse waves.

You’ll learn that the 
colors of visible light 
correspond to dif-
ferent wavelengths.

The Wave Model
A wave is a disturbance traveling through 
a medium. Our goal is to develop a 
model —the wave model—that describes 
the basic properties of all waves.

The wave propagates, but the particles of 
the medium don’t. The water molecules 
simply oscillate up and down as the ripples 
spread outward.

Traveling Waves20

This surfer is “catching a wave.” 
At the same time, he’s seeing 
light waves and hearing sound 
waves.

 Looking Ahead The goal of Chapter 20 is to learn the basic properties of traveling waves.

Two Types of Waves
You’ll find that waves come in two basic 
types:

Intensity and Loudness
Waves carry energy. The rate at which a 
wave delivers energy to a surface is the 
intensity of the wave.

Your ears are sensitive to a remarkable 
range of intensities. You’ll learn to use 
the logarithmic decibel scale to charac
terize the loudness of a sound.

The pitch of 
the ambulance 
siren drops as it 
races past you. 
The frequency is 
shifted up as it 
approaches, then 
shifted down as 
it recedes.

Longitudinal waves: The displacement is 
parallel to the direction of travel.

v

 Looking Back
Sections 14.1 and 14.2 Properties of 
simple harmonic motion

v

Transverse waves: The displacement is per-
pendicular to the direction of travel. 

Focusing the 
sun’s light into 
a smaller area 
increases its 
intensity.

Ultrasound images 
are made with very-
high-frequency sound 
waves.
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20.1 The Wave Model
Balls, cars, and rockets obviously differ from one another, but the general features of 
their motions are well described by the particle model of Parts I–IV. In Part V we will 
explore the basic properties of waves with a wave model, emphasizing those aspects 
of wave behavior common to all waves. Although water waves, sound waves, and 
light waves are clearly different, the wave model will allow us to understand many of 
the important features they have in common.

The wave model is built around the idea of a traveling wave, which is an organized 
disturbance traveling with a welldefined wave speed. We’ll begin our study of travel
ing waves by looking at two distinct wave motions.

We can also classify waves on the basis of what is “waving”:

 1. Mechanical waves travel only within a material medium, such as air or water. 
Two familiar mechanical waves are sound waves and water waves.

 2. Electromagnetic waves, from radio waves to visible light to x rays, are a self
sustaining oscillation of the electromagnetic field. Electromagnetic waves 
require no material medium and can travel through a vacuum.

The medium of a mechanical wave is the substance through or along which the 
wave moves. For example, the medium of a water wave is the water, the medium of 
a sound wave is the air, and the medium of a wave on a stretched string is the string. 
A medium must be elastic. That is, a restoring force of some sort brings the medium 
back to equilibrium after it has been displaced or disturbed. The tension in a stretched 
string pulls the string back straight after you pluck it. Gravity restores the level surface 
of a lake after the wave generated by a boat has passed by.

As a wave passes through a medium, the atoms of the medium—we’ll simply call 
them the particles of the medium—are displaced from equilibrium. This is a distur-
bance of the medium. The water ripples of FIgurE 20.1 are a disturbance of the water’s 
surface. A pulse traveling down a string is a disturbance, as are the wake of a boat and 
the sonic boom created by a jet traveling faster than the speed of sound. The distur-
bance of a wave is an organized motion of the particles in the medium, in contrast 
to the random molecular motions of thermal energy.

Wave Speed
A wave disturbance is created by a source. The source of a wave might be a rock 
thrown into water, your hand plucking a stretched string, or an oscillating loudspeaker 
cone pushing on the air. Once created, the disturbance travels outward through the 
medium at the wave speed v. This is the speed with which a ripple moves across the 
water or a pulse travels down a string.

Two types of traveling waves

A transverse wave is a wave in which the displacement is 
perpendicular to the direction in which the wave travels. For example, 
a wave travels along a string in a horizontal direction while the 
particles that make up the string oscillate vertically. Electromagnetic 
waves are also transverse waves because the electromagnetic fields 
oscillate perpendicular to the direction in which the wave travels.

In a longitudinal wave, the particles in the medium move parallel 
to the direction in which the wave travels. Here we see a chain of 
masses connected by springs. If you give the first mass in the chain a 
sharp push, a disturbance travels down the chain by compressing and 
expanding the springs. Sound waves in gases and liquids are the most 
well known examples of longitudinal waves.

Motion of wave at speed vUp/down
A transverse wave

Motion of wave at speed vPush/pull
A longitudinal wave

The disturbance is the rippling
of the water’s surface.

The water is the medium.

FIgurE 20.1 ripples on a pond are a 
traveling wave.
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NoTE  The disturbance propagates through the medium, but the medium as a 
whole does not move! The ripples on the pond (the disturbance) move outward 
from the splash of the rock, but there is no outward flow of water from the splash. 
Likewise, the particles of a string oscillate up and down but do not move in the di
rection of a pulse traveling along the string. A wave transfers energy, but it does 
not transfer any material or substance outward from the source. 

As an example, we’ll prove in Section 20.3 that the wave speed on a string stretched 
with tension Ts is

 vstring = BTs

m
  (wave speed on a stretched string) (20.1)

where m is the string’s linear density, its masstolength ratio:

 m =
m

L
 (20.2)

The SI unit of linear density is kg/m. A fat string has a larger value of m than a skinny 
string made of the same material. Similarly, a steel wire has a larger value of m than a 
plastic string of the same diameter. We’ll assume that strings are uniform, meaning the 
linear density is the same everywhere along the length of the string.

NoTE  The subscript s on the symbol Ts for the string’s tension distinguishes it 
from the symbol T for the period of oscillation. 

Equation 20.1 is the wave speed, not the wave velocity, so vstring always has a posi
tive value. Every point on a wave travels with this speed. You can increase the wave 
speed either by increasing the string’s tension (make it tighter) or by decreasing the 
string’s linear density (make it skinnier). We’ll examine the implications for stringed 
musical instruments in Chapter 21.

This sequence of photographs shows a 
wave pulse traveling along a spring.

equilibrium, with no net force, so we see from the freebody 
diagram that the tension in the wire is Ts = FG = Mg. Squaring 
both sides of Equation 20.1 gives

 v 2 = 1�x

�t 2 2

=
Ts

m
=

Mg

m

Mass M is the independent variable that we’ve changed, each time 
measuring the pulse travel time �t, so we can rearrange the wave
speed equation as

 (�t)2 =
m (�x)2

g
 
1

M

FIgurE 20.2 A wave pulse on the wire.

ExAMPLE 20.1  Measuring the linear density
In a laboratory experiment, one end of a metal wire is connected 
to a motion sensor. The wire is stretched horizontally to a pulley 
1.50 m away, then attached to a hanging mass that provides ten
sion. A mechanical pick plucks the horizontal segment of the wire 
right at the pulley, creating a small wave pulse that travels along 
the wire. The plucking motion starts a timer that is stopped by the 
motion sensor when the pulse reaches the end of the wire. Chang
ing the hanging mass changes the time required for the pulse to 
travel the length of the wire. The data are as follows:

Mass (kg) Time (ms)

0.50 31

1.00 23

1.50 18

2.00 15

2.50 14

Use the data to determine the wire’s linear density.

MoDEL The wave pulse is a traveling wave on a stretched string. 
The hanging mass is in static equilibrium.

VISuALIzE FIgurE 20.2 is a pictorial representation.

SoLVE The wave speed on the wire is determined by the wire’s 
linear density m and tension Ts. The hanging mass is in static 
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Theory predicts that a graph of the square of the travel time 
versus the inverse of the hanging mass should be a straight line 
passing through the origin with slope m (�x)2/g. The graph of 
FIgurE 20.3, with the times converted from ms to s, is indeed linear 
with a yintercept of zero. The slope of the bestfit line is seen to 
be 4.85 * 10-4 kg s2 (recall that spreadsheets and graphing calcu
lators display this as 4.85E–04), from which we find the wire’s 
linear density:

 m =
g * slope

(�x)2 = 0.0021 kg/m = 2.1 g/m

ASSESS A meter of thin wire is likely to have a mass of a few 
grams, so a linear density of a few g/m seems reasonable.

1/M (kg�1)

(�t)2 (s2)

1.5 2.01.00.5

Best-fit line

y � 4.85E�04x � 3.99E�06

0.0
0

2 � 10�4

4 � 10�4

6 � 10�4

8 � 10�4

10 � 10�4

FIgurE 20.3 A graph of the data.

The wave speed on a string is a property of the string—its tension and linear den
sity. In general, the wave speed is a property of the medium. The wave speed de
pends on the restoring forces within the medium but not at all on the shape or size of 
the pulse, how the pulse was generated, or how far it has traveled.

Stop to think 20.1  Which of the following actions would make a pulse travel faster 
along a stretched string? More than one answer may be correct. If so, give all that are 
correct.

 a. Move your hand up and down more quickly as you generate the pulse.
 b. Move your hand up and down a larger distance as you generate the pulse.
 c. Use a heavier string of the same length, under the same tension.
 d. Use a lighter string of the same length, under the same tension.
 e. Stretch the string tighter to increase the tension.
 f. Loosen the string to decrease the tension.
 g. Put more force into the wave.

20.2 one-Dimensional Waves
To understand waves we must deal with functions of two variables. Until now, we 
have been concerned with quantities that depend only on time, such as x(t) or v(t). 
Functions of the one variable t are all right for a particle because a particle is only in 
one place at a time, but a wave is not localized. It is spread out through space at each 
instant of time. To describe a wave mathematically requires a function that specifies 
not only an instant of time (when) but also a point in space (where).

Rather than leaping into mathematics, we will start by thinking about waves graphi
cally. Consider the wave pulse shown moving along a stretched string in FIgurE 20.4. 
(We will consider somewhat artificial triangular and squareshaped pulses in this sec
tion to make clear where the edges of the pulse are.) The graph shows the string’s 
displacement �y at a particular instant of time t1 as a function of position x along the 
string. This is a “snapshot” of the wave, much like what you might make with a camera 
whose shutter is opened briefly at t1. A graph that shows the wave’s displacement as a 
function of position at a single instant of time is called a snapshot graph. For a wave 
on a string, a snapshot graph is literally a picture of the wave at this instant.

FIgurE 20.5 shows a sequence of snapshot graphs as the wave of Figure 20.4 con
tinues to move. These are like successive frames from a movie. Notice that the wave 

�y
This is a graph of the string’s
displacement as a function of
position at time t1.

x

This is a wave pulse traveling
along a string. Wave speed v

Trailing edge Leading edge

FIgurE 20.4 A snapshot graph of a wave 
pulse on a string.
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pulse moves forward distance �x = v�t during the time interval �t. That is, the wave 
moves with constant speed.

A snapshot graph tells only half the story. It tells us where the wave is and how 
it varies with position, but only at one instant of time. It gives us no information 
about how the wave changes with time. As a different way of portraying the wave, 
suppose we follow the dot marked on the string in Figure 20.5 and produce a graph 
showing how the displacement of this dot changes with time. The result, shown 
in FIgurE 20.6, is a displacementversustime graph at a single position in space. A 
graph that shows the wave’s displacement as a function of time at a single position 
in space is called a history graph. It tells the history of that particular point in the 
medium.

You might think we have made a mistake; the graph of Figure 20.6 is reversed 
compared to Figure 20.5. It is not a mistake, but it requires careful thought to see 
why. As the wave moves toward the dot, the steep leading edge causes the dot to 
rise quickly. On the displacementversustime graph, earlier times (smaller values 
of t) are to the left and later times (larger t) to the right. Thus the leading edge of the 
wave is on the left side of the Figure 20.6 history graph. As you move to the right 
on Figure 20.6 you see the slowly falling trailing edge of the wave as it moves past 
the dot at later times.

The snapshot graph of Figure 20.4 and the history graph of Figure 20.6 portray 
complementary information. The snapshot graph tells us how things look throughout 
all of space, but at only one instant of time. The history graph tells us how things look 
at all times, but at only one position in space. We need them both to have the full 
story of the wave. An alternative representation of the wave is the series of graphs in 
FIgurE 20.7, where we can get a clearer sense of the wave moving forward. But graphs 
like these are essentially impossible to draw by hand, so it is necessary to move back 
and forth between snapshot graphs and history graphs.

Wave at
time t1

The wave moves horizontally,
but a string particle moves
only vertically.

The wave moves
forward �x � v�t
during time
interval �t.

The wave moves
without changing
shape.

t2

x1

x

x

x

x

x1

x1

x1

t3

t4

�x � v�t

�y

�y

�y

�y

�x � v�t

�x � v�t

FIgurE 20.5 A sequence of snapshot 
graphs shows the wave in motion.

�y The string’s displacement as a
function of time at position x1

t

Later timesEarlier times

Trailing edgeLeading edge

FIgurE 20.6 A history graph for the 
dot on the string in Figure 20.5.

x

t

Wave
travel

Greater
distances

Later
times (0, 0)

FIgurE 20.7 An alternative look at a 
traveling wave.

MoDEL This is a wave traveling at constant speed. The pulse 
moves 2.0 m to the right every second.

VISuALIzE The snapshot graph of Figure 20.8 shows the wave at 
all points on the xaxis at t = 0 s. You can see that nothing is hap
pening at x = 8.0 m at this instant of time because the wave has 
not yet reached x = 8.0 m. In fact, at t = 0 s the leading edge of 
the wave is still 4.0 m away from x = 8.0 m. Because the wave is 
traveling at 2.0 m/s, it will take 2.0 s for the leading edge to reach 
x = 8.0 m. Thus the history graph for x = 8.0 m will be zero until 
t = 2.0 s. The first part of the wave causes a downward displace
ment of the medium, so immediately after t = 2.0 s the displace
ment at x = 8.0 m will be negative. The negative portion of the 

ExAMPLE 20.2  Finding a history graph from a snapshot graph
FIgurE 20.8 is a snapshot graph at t = 0 s of a wave moving to the 
right at a speed of 2.0 m/s. Draw a history graph for the position 
x = 8.0 m.

�y (mm)

2

�2

�2 2 4 6 8 10

2.0 m/s

Snapshot graph at t � 0 s

x (m)

FIgurE 20.8 A snapshot graph at t = 0 s.
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wave pulse is 2.0 m wide and takes 1.0 s to pass x = 8.0 m, so the 
midpoint of the pulse reaches x = 8.0 m at t = 3.0 s. The positive 
portion takes another 1.0 s to go past, so the trailing edge of the 
pulse arrives at t = 4.0 s. You could also note that the trailing edge 
was initially 8.0 m away from x = 8.0 m and needed 4.0 s to travel 
that distance at 2.0 m/s. The displacement at x = 8.0 m returns to 
zero at t = 4.0 s and remains zero for all later times. This informa
tion is all portrayed on the history graph of FIgurE 20.9.

�y (mm)

2

�2

�1 1 2 3 4 5

History graph at x � 8.0 m

t (s)

FIgurE 20.9 The corresponding history graph at x = 8.0 m.

Stop to think 20.2  The graph at the right is the history graph at x = 4.0 m of a 
wave traveling to the right at a speed of 2.0 m/s. Which is the history graph of 
this wave at x = 0 m?

2 6 10

The wave at x � 4.0 m

40 8 12
t (s)

�y (cm)
1

2 6 1040 8 12

�y (cm)

t (s)

1

2 6 104 8 12

�y (cm)

t (s)

1

2 6 104 8 12
t (s)

�y (cm)
1

(b) (c) (d)

0 02 6 1040 8 12

�y (cm)

t (s)

1

(a)

Longitudinal Waves
For a wave on a string, a transverse wave, the snapshot graph is literally a picture of 
the wave. Not so for a longitudinal wave, where the particles in the medium are dis
placed parallel to the direction in which the wave is traveling. Thus the displacement 
is �x rather than �y, and a snapshot graph is a graph of �x versus x.

FIgurE 20.10a is a snapshot graph of a longitudinal wave, such as a sound wave. It’s 
purposefully drawn to have the same shape as the string wave in Example 20.2. With
out practice, it’s not clear what this graph tells us about the particles in the medium.

To help you find out, FIgurE 20.10b provides a tool for visualizing longitudinal waves. 
In the second row, we’ve used information from the graph to displace the particles in 
the medium to the right or to the left of their equilibrium positions. For example, the 
particle at x = 1.0 cm has been displaced 0.5 cm to the right because the snapshot 
graph shows �x = 0.5 cm at x = 1.0 cm. We now have a picture of the longitudinal 
wave pulse at t1 = 0 s. You can see that the medium is compressed to higher density 
at the center of the pulse and, to compensate, expanded to lower density at the leading 
and trailing edges. Two more lines show the medium at t2 = 1 s and t3 = 2 s so that 
you can see the wave propagating through the medium at 1.0 cm/s.

�1

1

2 4 6 8 10
x (cm)

�x (cm)

Snapshot graph of a longitudinal wave at t1 � 0 s

1.0 cm/s

(a)

1. Draw a series of equally spaced vertical lines to represent
 the equilibrium positions of particles before the wave arrives.

2. Use information from the graph to displace the particles
 in the medium to the right or left.

3. The wave propagates to the right at 1.0 cm/s.

t1 � 0 s

t2 � 1 s

Equilibrium

t3 � 2 s

(b)

FIgurE 20.10 visualizing a longitudinal wave.
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The Displacement
A traveling wave causes the particles of the medium to be displaced from their equilib
rium positions. Because one of our goals is to develop a mathematical representation 
to describe all types of waves, we’ll use the generic symbol D to stand for the displace-
ment of a wave of any type. But what do we mean by a “particle” in the medium? And 
what about electromagnetic waves, for which there is no medium?

For a string, where the atoms stay fixed relative to each other, you can think of either 
the atoms themselves or very small segments of the string as being the particles of the 
medium. D is then the perpendicular displacement �y of a point on the string. For a 
sound wave, D is the longitudinal displacement �x of a small volume of fluid. For 
any other mechanical wave, D is the appropriate displacement. Even electromagnetic 
waves can be described within the same mathematical representation if D is inter
preted as a yetundefined electromagnetic field strength, a “displacement” in a more 
abstract sense as an electromagnetic wave passes through a region of space.

Because the displacement of a particle in the medium depends both on where the 
particle is (position x) and on when you observe it (time t), D must be a function of the 
two variables x and t. That is,

 D (x, t) = the displacement at time t of a particle at position x

The values of both variables—where and when—must be specified before you can 
evaluate the displacement D.

20.3 Sinusoidal Waves
A wave source that oscillates with simple harmonic motion (SHM) generates a 
sinusoidal wave. For example, a loudspeaker cone that oscillates in SHM radiates a 
sinusoidal sound wave. The sinusoidal electromagnetic waves broadcast by television 
and FM radio stations are generated by electrons oscillating back and forth in the 
antenna wire with SHM. The frequency f  of the wave is the frequency of the oscil-
lating source.

FIgurE 20.11 shows a sinusoidal wave moving through a medium. The source of the 
wave, which is undergoing vertical SHM, is located at x = 0. Notice how the wave 
crests move with steady speed toward larger values of x at later times t.

FIgurE 20.12a is a history graph for a sinusoidal wave, showing the displacement of the 
medium at one point in space. Each particle in the medium undergoes simple harmonic 
motion with frequency f, so this graph of SHM is identical to the graphs you learned 
to work with in Chapter 14. The period of the wave, shown on the graph, is the time 
interval for one cycle of the motion. The period is related to the wave frequency f  by

 T =
1

f
 (20.3)

exactly as in simple harmonic motion. The amplitude A of the wave is the maximum 
value of the displacement. The crests of the wave have displacement Dcrest = A and the 
troughs have displacement Dtrough = -A.

You’ve probably seen or participated 
in “the wave” at a sporting event. The 
wave moves around the stadium, but 
the people (the medium) simply undergo 
small displacements from their equilibrium 
positions.

x

t

(0, 0)

Wave
travel

Greater
distances

Later
times

FIgurE 20.11 A sinusoidal wave moving 
along the x-axis.

(a) A history graph at one point in space (b) A snapshot graph at one instant of time

D D

A

�A

A

�A

Period T
Amplitude Wavelength l Crest Wave

speed v

Trough

t x

FIgurE 20.12 History and snapshot graphs for a sinusoidal wave.
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Displacement versus time is only half the story. FIgurE 20.12b shows a snapshot 
graph for the same wave at one instant in time. Here we see the wave stretched out in 
space, moving to the right with speed v. An important characteristic of a sinusoidal 
wave is that it is periodic in space as well as in time. As you move from left to right 
along the “frozen” wave in the snapshot graph, the disturbance repeats itself over and 
over. The distance spanned by one cycle of the motion is called the wavelength of the 
wave. Wavelength is symbolized by l (lowercase Greek lambda) and, because it is a 
length, it is measured in units of meters. The wavelength is shown in Figure 20.12b 
as the distance between two crests, but it could equally well be the distance between 
two troughs.

NoTE  Wavelength is the spatial analog of period. The period T is the time in 
which the disturbance at a single point in space repeats itself. The wavelength l is 
the distance in which the disturbance at one instant of time repeats itself. 

The Fundamental relationship for Sinusoidal Waves
There is an important relationship between the wavelength and the period of a wave. 
FIgurE 20.13 shows this relationship through five snapshot graphs of a sinusoidal wave 
at time increments of onequarter of the period T. One full period has elapsed between 
the first graph and the last, which you can see by observing the motion at a fixed 
point on the xaxis. Each point in the medium has undergone exactly one complete 
oscillation.

The critical observation is that the wave crest marked by an arrow has moved one 
full wavelength between the first graph and the last. That is, during a time interval 
of exactly one period T, each crest of a sinusoidal wave travels forward a distance 
of exactly one wavelength L. Because speed is distance divided by time, the wave 
speed must be

 v =
distance

time
=

l

T
 (20.4)

Because f = 1/T, it is customary to write Equation 20.4 in the form

 v = lf  (20.5)

Although Equation 20.5 has no special name, it is the fundamental relationship 
for periodic waves. When using it, keep in mind the physical meaning that a wave 
moves forward a distance of one wavelength during a time interval of one 
period.

NoTE  Wavelength and period are defined only for periodic waves, so Equations 
20.4 and 20.5 apply only to periodic waves. A wave pulse has a wave speed, but it 
doesn’t have a wavelength or a period. Hence Equations 20.4 and 20.5 cannot be 
applied to wave pulses. 

Because the wave speed is a property of the medium while the wave frequency is a 
property of the source, it is often useful to write Equation 20.5 as

 l =
v

f
=

property of the medium

property of the source
 (20.6)

The wavelength is a consequence of a wave of frequency f  traveling through a 
medium in which the wave speed is v.

1
4T

x (m)

x (m)
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x (m)

x (m)

t �

t � 0

2
4Tt �
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t � T

A
D

This crest is
moving to
the right.

v

0
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A

0
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0
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A

0
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l 2l

l 2l

l

l

2l

l 2l

l 2l

During a time interval of exactly
one period, the crest has moved
forward exactly one wavelength.

FIgurE 20.13 A series of snapshot graphs 
at time increments of one-quarter of the 
period T.
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Stop to think 20.3  What is the frequency of this traveling wave?

 a. 0.1 Hz
 b. 0.2 Hz
 c. 2 Hz
 d. 5 Hz
 e. 10 Hz
 f. 500 Hz

The Mathematics of Sinusoidal Waves
FIgurE 20.14 shows a snapshot graph at t = 0 of a sinusoidal wave. The sinusoidal func
tion that describes the displacement of this wave is

 D (x, t = 0) = A sin12p 
x

l
+ f02  (20.7)

where the notation D (x, t = 0) means that we’ve frozen the time at t = 0 to make the 
displacement a function of only x. The term f0 is a phase constant that characterizes 
the initial conditions. (We’ll return to the phase constant momentarily.)

The function of Equation 20.7 is periodic with period l. We can see this by writing

  D (x + l) = A sin12p 
(x + l)

l
+ f02 = A sin12p 

x

l
+ f0 + 2p rad2

  = A sin12p 
x

l
+ f02 = D (x)

where we used the fact that sin(a + 2p rad) = sin a. In other words, the disturbance 
created by the wave at x + l is exactly the same as the disturbance at x.

The next step—and it’s an important step to graph—is to set the wave in motion. 
We can do this by replacing x in Equation 20.7 with x - vt. To see why this works, 
recall that the wave moves distance vt during time t. In other words, whatever dis
placement the wave has at position x at time t, the wave must have had that same 
displacement at position x - vt at the earlier time t = 0. Mathematically, this idea can 
be captured by writing

 D (x, t) = D (x - vt, t = 0) (20.8)

Make sure you understand how this statement describes a wave moving in the positive 
xdirection at speed v.

This is what we were looking for. D (x, t) is the general function describing the 
traveling wave. It’s found by taking the function that describes the wave at t = 0—the 
function of Equation 20.7—and replacing x with x - vt. Thus the displacement equa
tion of a sinusoidal wave traveling in the positive xdirection at speed v is

 D (x, t) = A sin12p 
x - vt

l
+ f02 = A sin12p1 x

l
-

t

T 2 + f02  (20.9)

In the last step we used v = lf = l/T  to write v/l = 1/T. The function of Equa
tion 20.9 is not only periodic in space with period l, it is also periodic in time with 
period T. That is, D (x, t + T ) = D (x, t).

A

D

x (m)

�A

10 20

Travels left
at 50 m/s

D

A

�A

x
x x � l x � 2l

D (x, t � 0) � A sin 12p   � f02x
l

Snapshot graph at t � 0

FIgurE 20.14 A sinusoidal wave is 
“frozen” at t = 0.



It will be useful to introduce two new quantities. First, recall from simple harmonic 
motion the angular frequency

 v = 2pf =
2p

T
 (20.10)

The units of v are rad/s, although many textbooks use simply s-1.
You can see that v is 2p times the reciprocal of the period in time. This suggests 

that we define an analogous quantity, called the wave number k, that is 2p times the 
reciprocal of the period in space:

 k =
2p

l
 (20.11)

The units of k are rad/m, although many textbooks use simply m-1.

NoTE  The wave number k is not a spring constant, even though it uses the same 
symbol. This is a most unfortunate use of symbols, but every major textbook and 
professional tradition uses the same symbol k for these two very different mean
ings, so we have little choice but to follow along. 

We can use the fundamental relationship v = lf  to find an analogous relationship 
between v and k:

 v = lf =
2p

k
 
v

2p
=

v

k
 (20.12)

which is usually written

 v = vk (20.13)

Equation 20.13 contains no new information. It is a variation of Equation 20.5, but one 
that is convenient when working with k and v.

If we use the definitions of Equations 20.10 and 20.11, Equation 20.9 for the dis
placement can be written

 
D (x, t) = A sin(kx - vt + f0)

(sinusoidal wave traveling in the positive x@direction)
 (20.14)

A sinusoidal wave traveling in the negative xdirection is A sin(kx + vt + f0). 
Equation 20.14 is graphed versus x and t in FIgurE 20.15.

Just as it did for simple harmonic motion, the phase constant f0 characterizes the 
initial conditions. At (x, t) = (0 m, 0 s) Equation 20.14 becomes

 D (0 m, 0 s) = A sin f (20.15)

Different values of f0 describe different initial conditions for the wave.

D

D

A

�A

A

�A

T

l

t

x

If x is fixed, D (x1, t) � A sin (kx1 � vt � f0)
gives a sinusoidal history graph at one
point in space, x1. It repeats every T s.

If t is fixed, D (x, t1) � A sin (kx � vt1 � f0)
gives a sinusoidal snapshot graph at one
instant of time, t1. It repeats every l m.

History graph at x1

Snapshot graph at t1

FIgurE 20.15 interpreting the equation 
of a sinusoidal traveling wave.

SoLVE a. There are several numerical values associated with a 
sinusoidal traveling wave, but they are not all independent. 
From the problem statement itself we learn that

 A = 1.00 cm  v = 200 m/s  f = 100 Hz

We can then find:

  l = v/f = 2.00 m

  k = 2p/l = p rad/m or 3.14 rad/m

ExAMPLE 20.3  Analyzing a sinusoidal wave
A sinusoidal wave with an amplitude of 1.00 cm and a frequency 
of 100 Hz travels at 200 m/s in the positive xdirection. At t = 0 s, 
the point x = 1.00 m is on a crest of the wave.

 a. Determine the values of A, v, l, k, f, v, T, and f0 for this wave.
 b. Write the equation for the wave’s displacement as it travels.
 c. Draw a snapshot graph of the wave at t = 0 s.

VISuALIzE The snapshot graph will be sinusoidal, but we must do 
some numerical analysis before we know how to draw it.

Continued
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  v = 2pf = 628 rad/s

  T = 1/f = 0.0100 s = 10.0 ms

The phase constant f0 is determined by the initial conditions. 
We know that a wave crest, with displacement D = A, is pass
ing x0 = 1.00 m at t0 = 0 s. Equation 20.14 at x0 and t0 is

 D (x0, t0) = A = A sin1k(1.00 m) + f02
This equation is true only if sin1k(1.00 m) + f02 = 1, which 
requires

 k (1.00 m) + f0 =
p

2
 rad

Solving for the phase constant gives

 f0 =
p

2
 rad - (p rad/m) (1.00 m) = -  

p

2
 rad

 b. With the information gleaned from part a, the wave’s displace
ment is

  D (x, t) = 1.00 cm *

  sin3(3.14 rad/m)x - (628 rad/s)t - p/2 rad4

Notice that we included units with A, k, v, and f0.
 c. We know that x = 1.00 m is a wave crest at t = 0 s and that 

the wavelength is l = 2.00 m. Because the origin is l/2 away 
from the crest at x = 1.00 m, we expect to find a wave trough 
at x = 0. This is confirmed by calculating D (0 m, 0 s) =  
(1.00 cm) sin( -p/2 rad) = -1.00 cm. FIgurE 20.16 is a snap
shot graph that portrays this information.

Wave Motion on a String
The displacement equation, Equation 20.14, allows us to learn more about wave mo
tion on a string. As a wave travels along the xaxis, the points on the string oscillate 
back and forth in the ydirection. The displacement D of a point on the string is simply 
that point’s ycoordinate, so Equation 20.14 for a string wave is

 y(x, t) = A sin(kx - vt + f0) (20.16)

The velocity of a particle on the string—which is not the same as the velocity of 
the wave along the string—is the time derivative of Equation 20.16:

 vy =
dy

dt
= -vA cos(kx - vt + f0) (20.17)

The maximum velocity of a small segment of the string is vmax = vA. This is the same 
result we found for simple harmonic motion because the motion of the string particles 
is simple harmonic motion. FIgurE 20.17 shows velocity vectors of the particles at dif
ferent points on a sinusoidal wave.

NoTE  Creating a wave of larger amplitude increases the speed of particles in the 
medium, but it does not change the speed of the wave through the medium. 

Pursuing this line of thought, we can derive an expression for the wave speed along 
the string. FIgurE 20.18 shows a small segment of the string with length �x V l right 
at a crest of the wave. You can see that the string’s tension exerts a downward force 
on this piece of the string, pulling it back to equilibrium. Newton’s second law for this 
small segment of string is

 (Fnet)y = may = (m�x)ay (20.18)

where we used the string’s linear density m to write the mass as m = m�x.

1

0

�1

1 2 3 4 5
x (m)

D (cm) At t � 0 s v � 200 m/s

l � 2.00 m

FIgurE 20.16 A snapshot graph at t = 0 s of the 
sinusoidal wave of example 20.3.

The velocity of a
particle on the string

At a turning point,
the particle has
zero velocity.

A particle’s velocity
is maximum at zero
displacement.

x

The velocity of the wave

FIgurE 20.17 A snapshot graph of a wave 
on a string with vectors showing the 
velocity of the string at various points.



From simple harmonic motion, we know that this point of maximum displacement 
is also the point of maximum acceleration. The acceleration of a point on the string is 
the time derivative of Equation 20.17:

 ay =
dvy

dt
= -v2A sin(kx - vt + f0 )  (20.19)

Thus the acceleration at the crest of the wave is ay = -v2A. But the angular frequency 
v with which the particles of the string oscillate is related to the wave’s speed v along 
the string by Equation 20.13, v = vk. Thus

 ay = -v2A = -v 2k2A (20.20)

A large wave speed causes the particles of the string to oscillate more quickly and thus 
to have a larger acceleration.

You can see from Figure 20.18 that the ycomponent of the tension is Ts sin u, where 
u is the angle of the string at x =

1
2�x. u is a negative angle because it is below the 

xaxis. This segment of string is pulled from both ends, so

 (Fnet ) y = 2Ts sin u (20.21)

The angle u is very small because �x V l, so we can use the smallangle approxima
tion (sin u � tan u if u V 1)  to write

 (Fnet ) y � 2Ts tan u (20.22)

where tan u is the slope of the string at x =
1
2�x.

At this specific instant, with the crest of the wave at x = 0, the equation of the 
string is

 y = A cos(kx)

The slope of the string at x =
1
2�x is the derivative evaluated at that point:

 tan u =
dy

dx
`
at �x/2

= -kA sin(kx) �at �x/2 = -kA sin1k�x

2 2
Now �x V l, so k�x/2 = p�x/l V 1. Thus the smallangle approximation 
(sin u � u if u V 1) of the slope is

 tan u � -kA1k�x

2 2 = -  
k2A�x

2
 (20.23)

If we substitute this expression for tan u into Equation 20.22, we find that the net force 
on this little piece of string is

 (Fnet ) y = -k2ATs �x (20.24)

Now we can use Equation 20.20 for ay and Equation 20.24 for (Fnet ) y in Newton’s 
second law. With these substitutions, Equation 20.18 becomes

 (Fnet ) y = -k2ATs �x = (m�x)ay = -v 2k2Am�x (20.25)

The term -k2A�x cancels, and we’re left with

 v = BTs

m
 (20.26)

This was the result that we stated, without proof, in Equation 20.1. Although we’ve 
derived Equation 20.26 with the assumption of a sinusoidal wave, the wave speed does 
not depend on the shape of the wave. Thus any wave on a stretched string will have 
this wave speed.

u u

Ts

r
Ts

r�x

D

0�

A small segment of the string at the crest
of the wave. Because of the curvature of
the string, the tension forces exert a net
downward force on this segment.

x
�x2

1 �x2
1

FIgurE 20.18 A small segment of string 
at the crest of a wave.
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20.4 Waves in Two and Three Dimensions
Suppose you were to take a photograph of ripples spreading on a pond. If you mark 
the location of the crests on the photo, your picture would look like FIgurE 20.19a. The 
lines that locate the crests are called wave fronts, and they are spaced precisely one 
wavelength apart. The diagram shows only a single instant of time, but you can imag
ine a movie in which you would see the wave fronts moving outward from the source 
at speed v. A wave like this is called a circular wave. It is a twodimensional wave that 
spreads across a surface.

Although the wave fronts are circles, you would hardly notice the curvature if you 
observed a small section of the wave front very, very far away from the source. The 
wave fronts would appear to be parallel lines, still spaced one wavelength apart and 
traveling at speed v. A good example is an ocean wave reaching a beach. Ocean waves 
are generated by storms and wind far out at sea, hundreds or thousands of miles away. 
By the time they reach the beach where you are working on your tan, the crests ap
pear to be straight lines. An aerial view of the ocean would show a wave diagram like 
FIgurE 20.19b.

Many waves of interest, such as sound waves or light waves, move in three dimen
sions. For example, loudspeakers and lightbulbs emit spherical waves. That is, the 
crests of the wave form a series of concentric spherical shells separated by the wave
length l. In essence, the waves are threedimensional ripples. It will still be useful to 
draw wavefront diagrams such as Figure 20.19, but now the circles are slices through 
the spherical shells locating the wave crests.

If you observe a spherical wave very, very far from its source, the small piece of 
the wave front that you can see is a little patch on the surface of a very large sphere. 
If the radius of the sphere is sufficiently large, you will not notice the curvature and 
this little patch of the wave front appears to be a plane. FIgurE 20.20 illustrates the idea 
of a plane wave.

therefore the angular frequency is v = 2pf = 200p rad/s. We 
still need k = 2p/l, but we do not know the wavelength. How
ever, we have enough information to determine the wave speed, 
and we can then use either l = v/f  or k = v/v. The speed is

v = BTs

m
= A 5.0 N

0.0020 kg/m
= 50 m/s

Using v, we find l = 0.50 m and k = 2p/l = 4p rad/m. Thus 
the wave’s displacement equation is

  D (x, t) = (2.0 mm) *

  sin32p1(2.0 m-1 )x - (100 s-1 ) t2 + p/2 rad4
Notice that we have separated out the 2p. This step is not es
sential, but for some problems it makes subsequent steps easier.

 b. The wave’s displacement at t = 5.0 ms = 0.0050 s is

  D (x, t = 5.0 ms) = (2.0 mm)  sin(4px - p rad + p/2 rad)

 = (2.0 mm)  sin(4px - p/2 rad)

At x = 2.7 m (calculator set to radians!), the displacement is

D (2.7 m, 5.0 ms) = 1.6 mm

ExAMPLE 20.4  generating a sinusoidal wave
A very long string with m = 2.0 g/m is stretched along the xaxis 
with a tension of 5.0 N. At x = 0 m it is tied to a 100 Hz simple 
harmonic oscillator that vibrates perpendicular to the string with 
an amplitude of 2.0 mm. The oscillator is at its maximum positive 
displacement at t = 0 s.

 a. Write the displacement equation for the traveling wave on the 
string.

 b. At t = 5.0 ms, what is the string’s displacement at a point 
2.7 m from the oscillator?

MoDEL The oscillator generates a sinusoidal traveling wave on a 
string. The displacement of the wave has to match the displace
ment of the oscillator at x = 0 m.

SoLVE a. The equation for the displacement is

D (x, t) = A sin(kx - vt + f0 )

with A, k, v, and f0 to be determined. The wave amplitude 
is the same as the amplitude of the oscillator that generates 
the wave, so A = 2.0 mm. The oscillator has its maximum dis
placement yosc = A = 2.0 mm at t = 0 s, thus

D (0 m, 0 s) = A sin(f0 ) = A

This requires the phase constant to be f0 = p/2 rad. The 
wave’s frequency is f = 100 Hz, the frequency of the source; 

Source

Wave fronts are the crests of the wave.
They are spaced one wavelength apart.

The circular wave fronts move
outward from the source at speed v.

v v

v v

l l l

(a)

Very far away from
the source, small
sections of the wave
fronts appear to be
straight lines.

v

v
lll

(b)

FIgurE 20.19 The wave fronts of a 
circular or spherical wave.
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To visualize a plane wave, imagine standing on the xaxis facing a sound wave as 
it comes toward you from a very distant loudspeaker. Sound is a longitudinal wave, so 
the particles of medium oscillate toward you and away from you. If you were to locate 
all of the particles that, at one instant of time, were at their maximum displacement 
toward you, they would all be located in a plane perpendicular to the travel direction. 
This is one of the wave fronts in Figure 20.20, and all the particles in this plane are 
doing exactly the same thing at that instant of time. This plane is moving toward you at 
speed v. There is another plane one wavelength behind it where the molecules are also 
at maximum displacement, yet another two wavelengths behind the first, and so on.

Because a plane wave’s displacement depends on x but not on y or z, the displace
ment function D (x, t) describes a plane wave just as readily as it does a one
dimensional wave. Once you specify a value for x, the displacement is the same at 
every point in the yzplane that slices the xaxis at that value (i.e., one of the planes 
shown in Figure 20.20).

NoTE  There are no perfect plane waves in nature, but many waves of practical 
interest can be modeled as plane waves. 

We can describe a circular wave or a spherical wave by changing the mathematical 
description from D (x, t) to D (r, t), where r is the radial distance measured outward 
from the source. Then the displacement of the medium will be the same at every point 
on a spherical surface. In particular, a sinusoidal spherical wave with wave number k 
and angular frequency v is written

 D (r, t) = A(r) sin(kr - vt + f0) (20.27)

Other than the change of x to r, the only difference is that the amplitude is now a func
tion of r. A onedimensional wave propagates with no change in the wave amplitude. 
But circular and spherical waves spread out to fill larger and larger volumes of space. 
To conserve energy, an issue we’ll look at later in the chapter, the wave’s amplitude 
has to decrease with increasing distance r. This is why sound and light decrease in 
intensity as you get farther from the source. We don’t need to specify exactly how the 
amplitude decreases with distance, but you should be aware that it does.

Phase and Phase Difference
The quantity (kx - vt + f0) is called the phase of the wave, denoted f. The phase of 
a wave will be an important concept in Chapters 21 and 22, where we will explore the 
consequences of adding various waves together. For now, we can note that the wave 
fronts seen in Figures 20.19 and 20.20 are “surfaces of constant phase.” To see this, 
use the phase to write the displacement as simply D (x, t) = A sin f. Because each 
point on a wave front has the same displacement, the phase must be the same at every 
point.

It will be useful to know the phase difference �f between two different points on 
a sinusoidal wave. FIgurE 20.21 shows two points on a sinusoidal wave at time t. The 
phase difference between these points is

  �f = f2 - f1 = (kx2 - vt + f0) - (kx1 - vt + f0) 
(20.28)

  = k(x2 - x1) = k�x = 2p 
�x

l

That is, the phase difference between two points on a wave depends on only the 
ratio of their separation �x to the wavelength L. For example, two points on a wave 
separated by �x =

1
2 l have a phase difference �f = p rad.

An important consequence of Equation 20.28 is that the phase difference between 
two adjacent wave fronts is �F � 2P rad. This follows from the fact that two adja
cent wave fronts are separated by �x = l. This is an important idea. Moving from one 
crest of the wave to the next corresponds to changing the distance by l and changing 
the phase by 2p rad.

D v

x

Very far from the source, small segments of
spherical wave fronts appear to be planes. The
wave is cresting at every point in these planes.

l l

FIgurE 20.20 A plane wave.

D

The phase of the
wave at this point is
f1 � kx1 � vt � f0.

The phase of the
wave at this point is
f2 � kx2 � vt � f0.

x1 x2

x

The phase difference
between these points is

l

�x

�f � 2p      .�x
l

FIgurE 20.21 The phase difference 
between two points on a wave.
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Stop to think 20.4  What is the phase difference between the crest of a wave and the 
adjacent trough?

 a. -2p rad b. 0 rad c. p/4 rad
 d. p/2 rad e. p rad f. 3p rad

20.5 Sound and Light
Although there are many kinds of waves in nature, two are especially significant for 
us as humans. These are sound waves and light waves, the basis of hearing and seeing.

Sound Waves
We usually think of sound waves traveling in air, but sound can travel through any gas, 
through liquids, and even through solids. FIgurE 20.22 shows a loudspeaker cone vibrat
ing back and forth in a fluid such as air or water. Each time the cone moves forward, 
it collides with the molecules and pushes them closer together. A half cycle later, as 
the cone moves backward, the fluid has room to expand and the density decreases a 
little. These regions of higher and lower density (and thus higher and lower pressure) 
are called compressions and rarefactions.

This periodic sequence of compressions and rarefactions travels outward from the 
loudspeaker as a longitudinal sound wave. When the wave reaches your ear, the oscil
lating pressure causes your eardrum to vibrate. These vibrations are transferred into 
your inner ear and perceived as sound.

Your ears are able to detect sinusoidal sound waves with frequencies between about 
20 Hz and about 20,000 Hz, or 20 kHz. Low frequencies are perceived as “low pitch” 
bass notes, while high frequencies are heard as “high pitch” treble notes. Your high
frequency range of hearing can deteriorate either with age or as a result of exposure to 
loud sounds that damage the ear.

The speed of sound waves depends on the properties of the medium. A thermodynamic 
analysis of the compressions and expansions shows that the wave speed in a gas depends on 
the temperature and on the molecular mass of the gas. For air at room temperature (20�C),

 vsound = 343 m/s  (sound speed in air at 20�C)

The speed of sound is a little lower at lower temperatures and a little higher at higher 
temperatures. Liquids and solids are less compressible than air, and that makes the 
speed of sound in those media higher than in air. Table 20.1 gives the speed of sound 
in several substances.

and thus

 �f = 2p 
0.600 m

3.43 m
= 0.350p rad = 63.0�

 b. A phase difference �f = 90� is p/2 rad. This will be the 
phase difference between two points when �x/l =

1
4 , or when 

�x = l/4. Here, with l = 3.43 m, �x = 85.8 cm.

ASSESS The phase difference increases as �x increases, so we ex
pect the answer to part b to be larger than 60 cm.

ExAMPLE 20.5  The phase difference between two points on a sound wave
A 100 Hz sound wave travels with a wave speed of 343 m/s.

 a. What is the phase difference between two points 60.0 cm apart 
along the direction the wave is traveling?

 b. How far apart are two points whose phase differs by 90�?

MoDEL Treat the wave as a plane wave traveling in the positive 
xdirection.

SoLVE a. The phase difference between two points is

 �f = 2p 
�x

l

In this case, �x = 60.0 cm = 0.600 m. The wavelength is

 l =
v

f
=

343 m/s

100 Hz
= 3.43 m

Loudspeaker

Rarefaction Compression

Molecules

Individual molecules oscillate back
and forth with displacement D. As
they do so, the compressions propagate
forward at speed vsound. Because
compressions are regions of higher
pressure, a sound wave can be thought
of as a pressure wave.

l

vsound

FIgurE 20.22 A sound wave in a fluid 
is a sequence of compressions and 
rarefactions. The variation in density 
and the amount of motion have been 
greatly exaggerated.

TABLE 20.1 The speed of sound

Medium Speed (m/s)

Air (0�C)  331

Air (20�C)  343

Helium (0�C)  970

Ethyl alcohol 1170

Water 1480

Granite 6000

Aluminum 6420
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A speed of 343 m/s is high, but not extraordinarily so. A distance as small as 100 m 
is enough to notice a slight delay between when you see something, such as a person 
hammering a nail, and when you hear it. The time required for sound to travel 1 km 
is t = (1000 m)/(343 m/s) � 3 s. You may have learned to estimate the distance to a 
bolt of lightning by timing the number of seconds between when you see the flash and 
when you hear the thunder. Because sound takes 3 s to travel 1 km, the time divided 
by 3 gives the distance in kilometers. Or, in English units, the time divided by 5 gives 
the distance in miles.

Sound waves exist at frequencies well above 20 kHz, even though humans can’t 
hear them. These are called ultrasonic frequencies. Oscillators vibrating at frequen
cies of many MHz generate the ultrasonic waves used in ultrasound medical imaging. 
A 3 MHz wave traveling through water (which is basically what your body is) at 
a sound speed of 1480 m/s has a wavelength of about 0.5 mm. It is this very small 
wavelength that allows ultrasound to image very small objects. We’ll see why when 
we study diffraction in Chapter 22. This ultrasound image is an example of 

using high-frequency sound waves to 
“see” within the human body.

   f = 20,000 Hz   l =
343 m/s

20,000 Hz
= 0.017 m = 1.7 cm

ASSESS The wavelength of a 20 kHz note is a small 1.7 cm while, 
at the other extreme, a 20 Hz note has a huge wavelength of 17 m! 
This is because a wave moves forward one wavelength during a 
time interval of one period, and a wave traveling at 343 m/s can 
move 17 m during the 1

20 s period of a 20 Hz note. The 69 cm 
wavelength of a 500 Hz note is more of a “human scale.” You 
might note that most musical instruments are a meter or a little less 
in size. This is not a coincidence. You will see in the next chapter 
how the wavelength produced by a musical instrument is related 
to its size.

ExAMPLE 20.6  Sound wavelengths
What are the wavelengths of sound waves at the limits of human 
hearing and at the midrange frequency of 500 Hz? Notes sung by 
human voices are near 500 Hz, as are notes played by striking  
keys near the center of a piano keyboard.

MoDEL Assume a room temperature of 20�C.

SoLVE We can use the fundamental relationship l = v/f  to find 
the wavelengths for sounds of various frequencies:

   f = 20 Hz   l =
343 m/s

20 Hz
= 17 m

   f = 500 Hz   l =
343 m/s

500 Hz
= 0.69 m

Electromagnetic Waves
A light wave is an electromagnetic wave, an oscillation of the electromagnetic field. 
Other electromagnetic waves, such as radio waves, microwaves, and ultraviolet light, 
have the same physical characteristics as light waves even though we cannot sense 
them with our eyes. It is easy to demonstrate that light will pass unaffected through a 
container from which all the air has been removed, and light reaches us from distant 
stars through the vacuum of interstellar space. Such observations raise interesting but 
difficult questions. If light can travel through a region in which there is no matter, then 
what is the medium of a light wave? What is it that is waving?

It took scientists over 50 years, most of the 19th century, to answer this question. 
We will examine the answers in more detail in Part IV after we introduce the ideas of 
electric and magnetic fields. For now we can say that light waves are a “selfsustaining 
oscillation of the electromagnetic field.” That is, the displacement D is an electric or 
magnetic field. Being selfsustaining means that electromagnetic waves require no 
material medium in order to travel; hence electromagnetic waves are not mechanical 
waves. Fortunately, we can learn about the wave properties of light without having to 
understand electromagnetic fields.

It was predicted theoretically in the late 19th century, and has been subsequently 
confirmed, that all electromagnetic waves travel through vacuum with the same speed, 
called the speed of light. The value of the speed of light is

 vlight = c = 299,792,458 m/s  (electromagnetic wave speed in vacuum)
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where the special symbol c is used to designate the speed of light. (This is the c in 
Einstein’s famous formula E = mc2. )  Now this is really moving—about one million 
times faster than the speed of sound in air!

NoTE  c = 3.00 * 108 m/s is the appropriate value to use in calculations. 

The wavelengths of light are extremely small. You will learn in Chapter 22 how these 
wavelengths are determined, but for now we will note that visible light is an electromag
netic wave with a wavelength (in air) in the range of roughly 400 nm (400 * 10-9 m) 
to 700 nm (700 * 10-9 m). Each wavelength is perceived as a different color, with the 
longer wavelengths seen as orange or red light and the shorter wavelengths seen as blue 
or violet light. A prism is able to spread the different wavelengths apart, from which we 
learn that “white light” is all the colors, or wavelengths, combined. The spread of colors 
seen with a prism, or seen in a rainbow, is called the visible spectrum.

If the wavelengths of light are unbelievably small, the oscillation frequencies are 
unbelievably large. The frequency for a 600 nm wavelength of light (orange) is

 f =
v

l
=

3.00 * 108 m/s

600 * 10-9 m
= 5.00 * 1014 Hz

The frequencies of light waves are roughly a factor of a trillion (1012) higher than 
sound frequencies.

Electromagnetic waves exist at many frequencies other than the rather limited 
range that our eyes detect. One of the major technological advances of the 20th cen
tury was learning to generate and detect electromagnetic waves at many frequencies, 
ranging from lowfrequency radio waves to the extraordinarily high frequencies of 
x rays. FIgurE 20.23 shows that the visible spectrum is a small slice of the much broader 
electromagnetic spectrum.

White light passing through a prism is 
spread out into a band of colors called the 
visible spectrum.

106

AM radio FM radio/TV Microwaves Infrared Ultraviolet

Visible light

X rays

108 1010 1012 1014

700 nm 600 nm 500 nm 400 nm

1016 1018

300 3 0.03 3 � 10�4 3 � 10�6 3 � 10�8 3 � 10�10

Increasing frequency (Hz)

Increasing wavelength (m)

FIgurE 20.23 The electromagnetic spectrum from 106 Hz to 1018 Hz.

 l =
c

f
=

3.00 * 108 m/s

2.00 * 108 Hz
= 1.5 m

The time needed to travel 800 * 106 km = 8.0 * 1011 m is

 �t =
�x

c
=

8.0 * 1011 m

3.00 * 108 m/s
= 2700 s = 45 min

ExAMPLE 20.7  Traveling at the speed of light
A satellite exploring Jupiter transmits data to the earth as a radio 
wave with a frequency of 200 MHz. What is the wavelength of 
the electromagnetic wave, and how long does it take the signal to 
travel 800 million kilometers from Jupiter to the earth?

SoLVE Radio waves are sinusoidal electromagnetic waves travel
ing with speed c. Thus

The Index of refraction
Light waves travel with speed c in a vacuum, but they slow down as they pass through 
transparent materials such as water or glass or even, to a very slight extent, air. The 
slowdown is a consequence of interactions between the electromagnetic field of the 
wave and the electrons in the material. The speed of light in a material is characterized 
by the material’s index of refraction n, defined as

 n =
speed of light in a vacuum

speed of light in the material
=

c
v

 (20.29)



The index of refraction of a material is always greater than 1 because v 6 c. A vacuum 
has n = 1 exactly. Table 20.2 shows the index of refraction for several materials. You 
can see that liquids and solids have larger indices of refraction than gases.

NoTE  An accurate value for the index of refraction of air is relevant only in very 
precise measurements. We will assume nair = 1.00 in this text. 

If the speed of a light wave changes as it enters into a transparent material, such as 
glass, what happens to the light’s frequency and wavelength? Because v = lf, either 
l or f or both have to change when v changes.

As an analogy, think of a sound wave in the air as it impinges on the surface of a 
pool of water. As the air oscillates back and forth, it periodically pushes on the surface 
of the water. These pushes generate the compressions of the sound wave that con
tinues on into the water. Because each push of the air causes one compression of the 
water, the frequency of the sound wave in the water must be exactly the same as the 
frequency of the sound wave in the air. In other words, the frequency of a wave is the 
frequency of the source. It does not change as the wave moves from one medium 
to another.

The same is true for electromagnetic waves; the frequency does not change as the 
wave moves from one material to another.

FIgurE 20.24 shows a light wave passing through a transparent material with index of 
refraction n. As the wave travels through vacuum it has wavelength lvac and frequency 
fvac such that lvac fvac = c. In the material, lmat fmat = v = c/n. The frequency does not 
change as the wave enters ( fmat = fvac), so the wavelength must. The wavelength in the 
material is

 lmat =
v

fmat
=

c

nfmat
=

c

nfvac
=

lvac

n
 (20.30)

The wavelength in the transparent material is less than the wavelength in vacuum. 
This makes sense. Suppose a marching band is marching at one step per second at a 
speed of 1 m/s. Suddenly they slow their speed to 1

2 m/s but maintain their march at 
one step per second. The only way to go slower while marching at the same pace is to 
take smaller steps. When a light wave enters a material, the only way it can go slower 
while oscillating at the same frequency is to have a smaller wavelength.

TABLE 20.2 Typical indices of refraction

Material Index of refraction

Vacuum 1 exactly

Air 1.0003

Water 1.33

Glass 1.50

Diamond 2.42

A transparent material in which
light travels slower, at speed v � c/n

The wavelength inside the
material decreases, but the
frequency doesn’t change.

Vacuum n � 1 Index n n � 1

l � lvac/nlvac

FIgurE 20.24 Light passing through 
a transparent material with index of 
refraction n.

 b. The wavelength inside the glass is

 lglass =
lvac

nglass
=

600 nm

1.50
= 400 nm = 4.00 * 10-7 m

N wavelengths span a distance d = Nl, so the number of 
wavelengths in d = 1.00 mm is

 N =
d

l
=

1.00 * 10-3 m

4.00 * 10-7 m
= 2500

ASSESS The fact that 2500 wavelengths fit within 1 mm shows 
how small the wavelengths of light are.

ExAMPLE 20.8  Light traveling through glass
Orange light with a wavelength of 600 nm is incident upon a 
1.00mmthick glass microscope slide.

 a. What is the light speed in the glass?
 b. How many wavelengths of the light are inside the slide?

SoLVE a. From Table 20.2 we see that the index of refraction of 
glass is nglass = 1.50. Thus the speed of light in glass is

 vglass =
c

nglass
=

3.00 * 108 m/s

1.50
= 2.00 * 108 m/s

Stop to think 20.5  A light wave travels through three 
transparent materials of equal thickness. Rank in order, 
from largest to smallest, the indices of refraction na, 
nb, and nc.

va

na nb nc

vb vc

20.5 . Sound and Light    577
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20.6 Power, Intensity, and Decibels
A traveling wave transfers energy from one point to another. The sound wave from 
a loudspeaker sets your eardrum into motion. Light waves from the sun warm the 
earth. The power of a wave is the rate, in joules per second, at which the wave 
transfers energy. As you learned in Chapter 11, power is measured in watts. A 
loudspeaker might emit 2 W of power, meaning that energy in the form of sound 
waves is radiated at the rate of 2 joules per second. A lightbulb might emit 5 W, or 
5 J/s, of visible light. (In fact, this is about right for a socalled 100 watt bulb, with 
the other 95 W of power being emitted as heat, or infrared radiation, rather than as 
visible light.)

Imagine doing two experiments with a lightbulb that emits 5 W of visible light. In 
the first, you hang the bulb in the center of a room and allow the light to illuminate the 
walls. In the second experiment, you use mirrors and lenses to “capture” the bulb’s 
light and focus it onto a small spot on one wall. This is what a computer projector does. 
The energy emitted by the bulb is the same in both cases, but, as you know, the light is 
much brighter when focused onto a small area. We would say that the focused light is 
more intense than the diffuse light that goes in all directions. Similarly, a loudspeaker 
that beams its sound forward into a small area produces a louder sound in that area 
than a speaker of equal power that radiates the sound in all directions. Quantities such 
as brightness and loudness depend not only on the rate of energy transfer, or power, 
but also on the area that receives that power.

FIgurE 20.25 shows a wave impinging on a surface of area a. The surface is perpen
dicular to the direction in which the wave is traveling. This might be a real, physical 
surface, such as your eardrum or a photovoltaic cell, but it could equally well be a 
mathematical surface in space that the wave passes right through. If the wave has 
power P, we define the intensity I of the wave to be

 I =
P
a

= power@to@area ratio (20.31)

The SI units of intensity are W/m2. Because intensity is a powertoarea ratio, a wave 
focused into a small area will have a larger intensity than a wave of equal power that 
is spread out over a large area.

v

Area a l

The wave intensity at
this surface is I � P/a.

Plane waves
of power P

FIgurE 20.25 Plane waves of power P 
impinge on area a with intensity I = P/a.

ASSESS This is roughly the intensity of sunlight at noon on a sum
mer day. The difference between the sun and a small laser is not 
their intensities, which are about the same, but their powers. The 
laser has a small power of 1 mW. It can produce a very intense wave 
only because the area through which the wave passes is very small. 
The sun, by contrast, radiates a total power Psun � 4 * 1026 W. 
This immense power is spread through all of space, producing an 
intensity of 1400 W/m2 at a distance of 1.5 * 1011 m, the radius of 
the earth’s orbit.

If a source of spherical waves radiates uniformly in all directions, then, as 
FIgurE 20.26 shows, the power at distance r is spread uniformly over the surface of a 
sphere of radius r. The surface area of a sphere is a = 4pr2, so the intensity of a uni
form spherical wave is

 I =
Psource

4pr2  (intensity of a uniform spherical wave) (20.32)

ExAMPLE 20.9  The intensity of a laser beam
A heliumneon laser, the kind that provides the familiar red light 
of classroom demonstrations and supermarket checkout scanners, 
emits 1.0 mW of light power into a 1.0mmdiameter laser beam. 
What is the intensity of the laser beam?

MoDEL The laser beam is a light wave.

SoLVE The light waves of the laser beam pass through a math
ematical surface that is a circle of diameter 1.0 mm. The intensity 
of the laser beam is

 I =
P

a
=

P

pr2 =
0.0010 W

p(0.00050 m)2 = 1300 W/m2



20.6 . Power, Intensity, and Decibels    579

The inversesquare dependence of r is really just a statement of energy conservation. 
The source emits energy at the rate P joules per second. The energy is spread over a 
larger and larger area as the wave moves outward. Consequently, the energy per unit 
area must decrease in proportion to the surface area of a sphere.

If the intensity at distance r1 is I1 = Psource/4pr1 

2 and the intensity at r2 is 
I2 = Psource/4pr2 

2, then you can see that the intensity ratio is

 
I1

I2
=

r2 

2

r1 

2 (20.33)

You can use Equation 20.33 to compare the intensities at two distances from a source 
without needing to know the power of the source.

NoTE  Wave intensities are strongly affected by reflections and absorption. Equa
tions 20.32 and 20.33 apply to situations such as the light from a star or the sound 
from a firework exploding high in the air. Indoor sound does not obey a simple 
inversesquare law because of the many reflecting surfaces. 

For a sinusoidal wave, each particle in the medium oscillates back and forth in 
simple harmonic motion. You learned in Chapter 14 that a particle in SHM with am
plitude A has energy E =

1
2 kA2, where k is the spring constant of the medium, not the 

wave number. It is this oscillatory energy of the medium that is transferred, particle to 
particle, as the wave moves through the medium.

Because a wave’s intensity is proportional to the rate at which energy is transferred 
through the medium, and because the oscillatory energy in the medium is proportional 
to the square of the amplitude, we can infer that

 I � A2 (20.34)

That is, the intensity of a wave is proportional to the square of its amplitude. If you 
double the amplitude of a wave, you increase its intensity by a factor of 4.

Human hearing spans an extremely wide range of intensities, from the threshold 
of hearing at �  1 * 10-12 W/m2 (at midrange frequencies) to the threshold of pain 
at �  10 W/m2. If we want to make a scale of loudness, it’s convenient and logical to 
place the zero of our scale at the threshold of hearing. To do so, we define the sound 
intensity level, expressed in decibels (dB), as

 b = (10 dB) log101 I

I0
2  (20.35)

where I0 = 1.0 * 10-12 W/m2. The symbol b is the Greek letter beta. Notice that b is 
computed as a base10 logarithm, not a natural logarithm.

The decibel is named after Alexander Graham Bell, inventor of the telephone. 
Sound intensity level is actually dimensionless because it’s formed from the ratio of 
two intensities, so decibels are just a name to remind us that we’re dealing with an 
intensity level rather than a true intensity.

Right at the threshold of hearing, where I = I0, the sound intensity level is

 b = (10 dB) log101I0

I0
2 = (10 dB) log10(1) = 0 dB

Note that 0 dB doesn’t mean no sound; it means that, for most people, no sound is 
heard. Dogs have more sensitive hearing than humans, and most dogs can easily per
ceive a 0 dB sound. The sound intensity level at the pain threshold is

 b = (10 dB) log101 10 W/m2

10-12 W/m2 2 = (10 dB) log10(1013) = 130 dB

Source with
power Psource

Intensity I1 at
distance r1

Intensity I2 at
distance r2

The energy from the source
is spread uniformly over a
spherical surface of area 4pr2.

r1

r2

FIgurE 20.26 A source emitting uniform 
spherical waves.
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The major point to notice is that the sound intensity level increases by 10 dB each 
time the actual intensity increases by a factor of 10. For example, the sound inten
sity level increases from 70 dB to 80 dB when the sound intensity increases from 
10-5 W/m2 to 10-4 W/m2. Perception experiments find that sound is perceived as 
“twice as loud” when the intensity increases by a factor of 10. In terms of decibels, we 
can say that the perceived loudness of a sound doubles with each increase in the sound 
intensity level by 10 dB.

Table 20.3 gives the sound intensity levels for a number of sounds. Although 
130 dB is the threshold of pain, quieter sounds can damage your hearing. A fairly short 
exposure to 120 dB can cause damage to the hair cells in the ear, but lengthy exposure 
to sound intensity levels of over 85 dB can produce damage as well.

TABLE 20.3 Sound intensity levels of 
common sounds

Sound B (dB)

Threshold of hearing   0

Person breathing, at 3 m  10

A whisper, at 1 m  20

Quiet room  30

Outdoors, no traffic  40

Quiet restaurant  50

Normal conversation, at 1 m  60

Busy traffic  70

Vacuum cleaner, for user  80

Niagara Falls, at viewpoint  90

Snowblower, at 2 m 100

Stereo, at maximum volume 110

Rock concert 120

Threshold of pain 130

ExAMPLE 20.10  Blender noise
The blender making a smoothie produces a sound intensity level of 83 dB. What is the 
intensity of the sound? What will the sound intensity level be if a second blender is 
turned on?

SoLVE We can solve Equation 20.35 for the sound intensity, finding I = I0 * 10 b/10 dB. 
Here we used the fact that 10 raised to a power is an “antilogarithm.” In this case,

I = (1.0 * 10-12 W/m2) * 108.3 = 2.0 * 10-4 W/m2

A second blender doubles the sound power and thus raises the intensity to I =  
4.0 * 10-4 W/m2. The new sound intensity level is

b = (10 dB) log101 4.0 * 10-4 W/m2

1.0 * 10-12 W/m2 2 = 86 dB

ASSESS In general, doubling the actual sound intensity increases the decibel level by 3 dB.

Stop to think 20.6  Four trumpet players are playing the same note. If three of them 
suddenly stop, the sound intensity level decreases by

 a. 40 dB b. 12 dB c. 6 dB d. 4 dB

20.7 The Doppler Effect
Our final topic for this chapter is an interesting effect that occurs when you are in mo
tion relative to a wave source. It is called the Doppler effect. You’ve likely noticed that 
the pitch of an ambulance’s siren drops as it goes past you. Why?

FIgurE 20.27a shows a source of sound waves moving away from Pablo and toward 
Nancy at a steady speed vs. The subscript s indicates that this is the speed of the source, 
not the speed of the waves. The source is emitting sound waves of frequency f0 as it 
travels. The figure is a motion diagram showing the position of the source at times 
t = 0, T, 2T, and 3T, where T = 1/f0 is the period of the waves.

Nancy measures the frequency of the wave emitted by the approaching source to be 
f+. At the same time, Pablo measures the frequency of the wave emitted by the receding 
source to be f-. Our task is to relate f+ and f- to the source frequency f0 and speed vs.

After a wave crest leaves the source, its motion is governed by the properties of 
the medium. That is, the motion of the source cannot affect a wave that has already 
been emitted. Thus each circular wave front in FIgurE 20.27b is centered on the point 
from which it was emitted. The wave crest from point 3 was emitted just as this figure 
was made, but it hasn’t yet had time to travel any distance.

The wave crests are bunched up in the direction the source is moving, stretched out 
behind it. The distance between one crest and the next is one wavelength, so the wave
length l+ Nancy measures is less than the wavelength l0 = v/f0 that would be emitted 
if the source were at rest. Similarly, l- behind the source is larger than l0.
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These crests move through the medium at the wave speed v. Consequently, the fre
quency f+ = v/l+ detected by the observer whom the source is approaching is higher 
than the frequency f0 emitted by the source. Similarly, f- = v/l- detected behind the 
source is lower than frequency f0. This change of frequency when a source moves 
relative to an observer is called the Doppler effect.

The distance labeled d in Figure 20.27b is the difference between how far the wave 
has moved and how far the source has moved at time t = 3T. These distances are

  �xwave = vt = 3vT  
(20.36)

  �xsource = vst = 3vsT

The distance d spans three wavelengths; thus the wavelength of the wave emitted by 
an approaching source is

 l+ =
d

3
=

�xwave - �xsource

3
=

3vT - 3vsT

3
= (v - vs)T  (20.37)

You can see that our arbitrary choice of three periods was not relevant because the 3 
cancels. The frequency detected in Nancy’s direction is

 f+ =
v

l+

=
v

(v - vs)T
=

v

(v - vs)
 f0 (20.38)

where f0 = 1/T  is the frequency of the source and is the frequency you would detect 
if the source were at rest. We’ll find it convenient to write the detected frequency as

   f+ =
f0

1 - vs/v
   (Doppler effect for an approaching source) 

(20.39)

   f- =
f0

1 + vs/v
    (Doppler effect for a receding source)

Proof of the second version, for the frequency f- of a receding source, is similar. You 
can see that f+ 7 f0 in front of the source, because the denominator is less than 1, and 
f- 6 f0 behind the source.

Distance d

vs

Pablo sees the source
receding at speed vs.

Nancy sees the source
approaching at speed vs.

Nancy

The dots are the positions of the
source at t � 0, T, 2T, and 3T.
The source emits frequency f0.

Pablo

(a) Motion of the source

0 1 2 3

Pablo detects
frequency f�.

(b) Snapshot at time 3T

Nancy detects
frequency f�.

Crest 2 was emitted
at t � 2T. The wave
front is a circle
centered on point 2.

Crest 1 was emitted
at t � T. The wave
front is a circle
centered on point 1.

Crest 0 was emitted
at t � 0. The wave 
front is a circle
centered on point 0.

0 1 2 3

3l0

2l0

l 0

Behind the source,
the wavelength is
expanded to l�.

In front of the source,
the wavelength is
compressed to l�.

l�
l�

FIgurE 20.27 A motion diagram showing the wave fronts emitted by a source as it moves to the right at speed vs.

Doppler weather radar uses the Doppler 
shift of reflected radar signals to measure 
wind speeds and thus better gauge the 
severity of a storm.
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We subtract the second equation from the first, giving

 0 = f- - f+ +
vs

v
( f- + f+)

This is easily solved to give

 vs =
f+ - f-

f+ + f-

 v =
100 Hz

1000 Hz
 343 m/s = 34.3 m/s

ASSESS If you now solve for the siren frequency when at rest, you 
will find f0 = 495 Hz. Surprisingly, the atrest frequency is not 
halfway between f- and f+.

ExAMPLE 20.11  How fast are the police traveling?
A police siren has a frequency of 550 Hz as the police car ap
proaches you, 450 Hz after it has passed you and is receding. How 
fast are the police traveling? The temperature is 20�C.

MoDEL The siren’s frequency is altered by the Doppler effect. The 
frequency is f+ as the car approaches and f- as it moves away.

SoLVE To find vs, we rewrite Equations 20.39 as

   f0 = (1 + vs/v) f-

   f0 = (1 - vs/v) f+

A Stationary Source and a Moving observer
Suppose the police car in Example 20.11 is at rest while you drive toward it at 34.3 m/s. 
You might think that this is equivalent to having the police car move toward you at 
34.3 m/s, but it isn’t. Mechanical waves move through a medium, and the Doppler 
effect depends not just on how the source and the observer move with respect to each 
other but also on how they move with respect to the medium. We’ll omit the proof, 
but it’s not hard to show that the frequencies heard by an observer moving at speed vo 
relative to a stationary source emitting frequency f0 are

   f+ = (1 + vo/v) f0   (observer approaching a source)  
(20.40)

   f- = (1 - vo/v) f0   (observer receding from a source)

A quick calculation shows that the frequency of the police siren as you approach it at 
34.3 m/s is 545 Hz, not the 550 Hz you heard as it approached you at 34.3 m/s.

The Doppler Effect for Light Waves
The Doppler effect is observed for all types of waves, not just sound waves. If a source 
of light waves is receding from you, the wavelength l- that you detect is longer than 
the wavelength l0 emitted by the source.

Although the reason for the Doppler shift for light is the same as for sound waves, 
there is one fundamental difference. We derived Equations 20.39 for the Doppler
shifted frequencies by measuring the wave speed v relative to the medium. For elec
tromagnetic waves in empty space, there is no medium. Consequently, we need to 
turn to Einstein’s theory of relativity to determine the frequency of light waves from a 
moving source. The result, which we state without proof, is

  l- = B1 + vs/c

1 - vs/c
 l0  (receding source)

  l+ = B1 - vs/c

1 + vs/c
 l0  (approaching source) 

(20.41)

Here vs is the speed of the source relative to the observer.
The light waves from a receding source are shifted to longer wavelengths (l- 7 l0). 

Because the longest visible wavelengths are perceived as the color red, the light from 
a receding source is red shifted. That is not to say that the light is red, simply that its 
wavelength is shifted toward the red end of the spectrum. If l0 = 470 nm (blue) light 
emitted by a rapidly receding source is detected at l- = 520 nm (green), we would 
say that the light has been red shifted. Similarly, light from an approaching source 
is blue shifted, meaning that the detected wavelengths are shorter than the emitted 
wavelengths (l+ 6 l0) and thus are shifted toward the blue end of the spectrum.



In the 1920s, an analysis of the red shifts of many galaxies led the astronomer Edwin 
Hubble to the conclusion that the galaxies of the universe are all moving apart from each 
other. Extrapolating backward in time must bring us to a point when all the matter of the 
universe—and even space itself, according to the theory of relativity—began rushing out 
of a primordial fireball. Many observations and measurements since have given support 
to the idea that the universe began in a Big Bang about 14 billion years ago.

As an example, FIgurE 20.28 is a Hubble Space Telescope picture of a quasar, short 
for quasistellar object. Quasars are extraordinarily powerful sources of light and radio 
waves. The light reaching us from quasars is highly red shifted, corresponding in some 
cases to objects that are moving away from us at greater than 90% of the speed of light. 
Astronomers have determined that some quasars are 10 to 12 billion light years away from 
the earth, hence the light we see was emitted when the universe was only about 25% of 
its present age. Today, the red shifts of distant quasars and supernovae (exploding stars) 
are being used to refine our understanding of the structure and evolution of the universe.

Stop to think 20.7  Amy and Zack are both listening to the source of sound waves that 
is moving to the right. Compare the frequencies each hears.

 a. fAmy 7 fZack

 b. fAmy = fZack

 c. fAmy 6 fZack

  vs =
(l-/l0)

2 - 1

(l-/l0)
2 + 1

 c

  =
(691 nm/656 nm)2 - 1

(691 nm/656 nm)2 + 1
 c

  = 0.052c = 1.56 * 107 m/s

ASSESS The galaxy is moving away from the earth at about 5% of 
the speed of light!

ExAMPLE 20.12  Measuring the velocity of a galaxy
Hydrogen atoms in the laboratory emit red light with wavelength 
656 nm. In the light from a distant galaxy, this “spectral line” is ob
served at 691 nm. What is the speed of this galaxy relative to the earth?

MoDEL The observed wavelength is longer than the wavelength 
emitted by atoms at rest with respect to the observer (i.e., red 
shifted), so we are looking at light emitted from a galaxy that is 
receding from us.

SoLVE Squaring the expression for l- in Equations 20.41 and 
solving for vs give

At the desired 55 dB, the intensity will have dropped to

 I2 = I0 * 105.5 = 3.2 * 10-7 W/m2

The intensity ratio is related to the distances by

 
I1

I2
=

r2 

2

r1 

2

Thus the sound will have dropped to 55 dB when the distance to 
the speaker is

 r2 = B I1

I2
 r1 = 2104 * 10 m =  1000 m

The float has to travel �x = 990 m, which will take

 �t =
�x

vs
=

990 m

3.3 m/s
= 300 s =  5.0 min

ASSESS To drop the sound intensity level by 40 dB requires de
creasing the intensity by a factor of 104. And with the intensity 
depending on the inverse square of the distance, that requires in
creasing the distance by a factor of 100. Floats don’t move very 
fast—3.3 m/s is about 7 mph—so needing several minutes to trav
el the �  1000 m seems reasonable.

cHALLENgE ExAMPLE 20.13  Decreasing the sound
The loudspeaker on a homecoming float—mounted on a pole—is 
stuck playing an annoying 210 Hz tone. When the speaker is 10 m 
away, you measure the sound to be a loud 95 dB at 208 Hz. How long 
will it take for the sound intensity level to drop to a tolerable 55 dB?

MoDEL The source is on a pole, so model the sound waves as uni
form spherical waves. Assume a temperature of 20�C.

SoLVE The 208 Hz frequency you measure is less than the 210 Hz 
frequency that was emitted, so the float must be moving away 
from you. The Doppler effect for a receding source is

 f- =
f0

1 + vs/v

We can solve this to find the speed of the float:

 vs = 1 f0

f-

- 12v = 1210 Hz

208 Hz
- 12 * 343 m/s = 3.3 m/s

The sound intensity of a spherical wave decreases with the 
inverse square of the distance from the source. A sound inten
sity level b corresponds to an intensity I = I0 * 10 b/10 dB, where 
I0 = 1.0 * 10-12 W/m2. At the initial 95 dB, the intensity is

 I1 = I0 * 109.5 = 3.2 * 10-3 W/m2

FIgurE 20.28 A Hubble Space Telescope 
picture of a quasar.

Amy Zack

10 m/s 10 m/s10 m/s

f0
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S u M M A r y
The goal of Chapter 20 has been to learn the basic properties of traveling waves.

•	 String (transverse): v = 2Ts/m

•	 Sound (longitudinal): v = 343 m/s in 20�C air

•	 Light (transverse): v = c/n, where c = 3.00 * 108 m/s is the 
speed of light in a vacuum and n is the material’s index of 
refraction

The wave intensity is the powertoarea ratio: I = P/a

For a circular or spherical wave: I = Psource/4pr2

The sound intensity level is

b = (10 dB) log10  (I/1.0 * 10-12 W/m2)

The Doppler effect occurs when a wave source and detector are 
moving with respect to each other: the frequency detected differs 
from the frequency f0 emitted.

Approaching source Observer approaching a source

  f+ =
f0

1 - vs/v
 f+ = (1 + vo/v)f0

Receding source  Observer receding from a source

  f- =
f0

1 + vs/v
 f- = (1 - vo/v)f0

The Doppler effect for light uses a result derived from the theory 
of relativity.

Applications

The Wave Model
This model is based on the idea of a traveling wave, which is an organized 
disturbance traveling at a welldefined wave speed v.

•	 In transverse waves the displacement is 
perpendicular to the direction in which the 
wave travels.

•	 In longitudinal waves the particles of the 
medium move parallel to the direction in 
which the wave travels.

A wave transfers energy, but no material or substance is transferred outward 
from the source.

Two basic types of waves:

•	 Mechanical waves travel through a material 
medium such as water or air.

•	 Electromagnetic waves require no material 
medium and can travel through a vacuum.

For mechanical waves, such as sound waves and 
waves on strings, the speed of the wave is a prop
erty of the medium. Speed does not depend on the 
size or shape of the wave.

general Principles

v

v

The displacement D of a wave is a function of both position 
(where) and time (when).

•	 A snapshot graph shows 
the wave’s displacement as 
a function of position at a 
single instant of time.

•	 A history graph shows the 
wave’s displacement as a 
function of time at a single 
point in space.

For a transverse wave on a string, the snapshot graph is a picture 
of the wave. The displacement of a longitudinal wave is parallel 
to the motion; thus the snapshot graph of a longitudinal sound 
wave is not a picture of the wave.

Sinusoidal waves are periodic in both time (period T) and space 
(wavelength l):

 D (x, t) = A sin32p (x/l - t/T) + f04
 = A sin(kx - vt + f0)

where A is the amplitude, k = 2p/l is the wave number, 
v = 2pf = 2p/T  is the angular frequency, and f0 is the 
phase constant that describes initial conditions.

The fundamental relationship for any sinusoidal wave is v = lf.

Important concepts

v

D

x

D

t A

�A

0

l

x

Onedimensional waves

l l

Wave fronts

Two and threedimensional waves
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wave model
traveling wave
transverse wave
longitudinal wave
mechanical waves
electromagnetic waves
medium
disturbance

wave speed, v
linear density, m
snapshot graph
history graph
sinusoidal wave
amplitude, A
wavelength, l
wave number, k

wave front
circular wave
spherical wave
plane wave
phase, f
compression
rarefaction
electromagnetic spectrum

index of refraction, n
intensity, I
sound intensity level, b
decibels
Doppler effect
red shifted
blue shifted

Terms and Notation

c o N c E P T u A L  Q u E S T I o N S

 1. The three wave pulses in FIgurE Q20.1 
travel along the same stretched string. 
Rank in order, from largest to small
est, their wave speeds va, vb, and vc. 
Explain.

 2. A wave pulse travels along a stretched string at a speed of 
200 cm/s. What will be the speed if:

 a. The string’s tension is doubled?
 b. The string’s mass is quadrupled (but its length is unchanged)?
 c. The string’s length is quadrupled (but its mass is unchanged)?
  Note: Each part is independent and refers to changes made to the 

original string.
 3. FIgurE Q20.3 is a history 

graph showing the displace
ment as a function of time at 
one point on a string. Did the 
displacement at this point 
reach its maximum of 2 mm 
before or after the interval of 
time when the displacement 
was a constant 1 mm?

 4. FIgurE Q20.4 shows a snapshot graph and a history graph for a 
wave pulse on a stretched string. They describe the same wave 
from two perspectives.

 a. In which direction is the wave traveling? Explain.
 b. What is the speed of this wave?

 5. Rank in order, from largest to smallest, the wavelengths la, 
lb, and lc for sound waves having frequencies fa = 100 Hz, 
fb = 1000 Hz, and fc = 10,000 Hz. Explain.

 6. A sound wave with wavelength l0 and frequency f0 moves into 
a new medium in which the speed of sound is v1 = 2v0. What are 
the new wavelength l1 and frequency f1? Explain.

 7. What are the amplitude, wavelength, frequency, and phase con
stant of the traveling wave in FIgurE Q20.7?

 8. FIgurE Q20.8 is a snapshot graph of a sinusoidal wave at t = 1.0 s. 
What is the phase constant of this wave?

 9. FIgurE Q20.9 shows the wave 
fronts of a circular wave. What 
is the phase difference between 
(a) points A and B, (b) points C 
and D, and (c) points E and F?

 10. Sound wave A delivers 2 J of energy in 2 s. Sound wave B deliv
ers 10 J of energy in 5 s. Sound wave C delivers 2 mJ of energy 
in 1 ms. Rank in order, from largest to smallest, the sound pow
ers PA, PB, and PC of these three sound waves. Explain.

 11. One physics professor talking produces a sound intensity level 
of 52 dB. It’s a frightening idea, but what would be the sound 
intensity level of 100 physics professors talking simultaneously?

 12. You are standing at x = 0 m, 
listening to a sound that is emit
ted at frequency f0. The graph 
of FIgurE Q20.12 shows the 
frequency you hear during a 
4second interval. Which of the 
following describes the sound 
source? Explain your choice.

 A. It moves from left to right 
and passes you at t = 2 s.

 B. It moves from right to left and passes you at t = 2 s.
 C. It moves toward you but doesn’t reach you. It then reverses 

direction at t = 2 s.
 D. It moves away from you until t = 2 s. It then reverses direc

tion and moves toward you but doesn’t reach you.

va
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vc
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E x E r c I S E S  A N D  P r o B L E M S

Problems labeled  integrate material from earlier chapters.

Exercises

Section 20.1 The Wave Model

 1. | The wave speed on a string is 150 m/s when the tension is 
75 N. What tension will give a speed of 180 m/s?

 2. | The wave speed on a string under tension is 200 m/s. What is 
the speed if the tension is halved?

 3. || A 25 g string is under 20 N of tension. A pulse travels the 
length of the string in 50 ms. How long is the string?

Section 20.2 One-Dimensional Waves

 4. || Draw the history graph D(x = 0 m, t) at x = 0 m for the wave 
shown in FIgurE Ex20.4.

 5. || Draw the history graph D(x = 5.0 m, t) at x = 5.0 m for the 
wave shown in FIgurE Ex20.5.

 6. || Draw the snapshot graph D(x, t = 0 s) at t = 0 s for the wave 
shown in FIgurE Ex20.6.

 7. || Draw the snapshot graph D(x, t = 1.0 s) at t = 1.0 s for the 
wave shown in FIgurE Ex20.7.

 8. || FIgurE Ex20.8 is the snapshot graph at t = 0 s of a longitudinal 
wave. Draw the corresponding picture of the particle positions, as 
was done in Figure 20.10b. Let the equilibrium spacing between 
the particles be 1.0 cm.

 9. || FIgurE Ex20.9 is a picture at t = 0 s of the particles in a me
dium as a longitudinal wave is passing through. The equilibrium 
spacing between the particles is 1.0 cm. Draw the snapshot graph 
D(x, t = 0 s) of this wave at t = 0 s.

Section 20.3 Sinusoidal Waves

 10. | A wave travels with speed 200 m/s. Its wave number is 
1.5 rad/m. What are its (a) wavelength and (b) frequency?

 11. | A wave has angular frequency 30 rad/s and wavelength 2.0 m. 
What are its (a) wave number and (b) wave speed?

 12. | The displacement of a wave traveling in the positive xdirec
tion is D(x, t) = (3.5 cm) sin(2.7x - 124t), where x is in m and t 
is in s. What are the (a) frequency, (b) wavelength, and (c) speed 
of this wave?

 13. | The displacement of a wave traveling in the negative ydirec
tion is D(y, t) = (5.2 cm) sin(5.5y + 72t), where y is in m and t 
is in s. What are the (a) frequency, (b) wavelength, and (c) speed 
of this wave?

 14. | What are the amplitude, frequency, and wavelength of the 
wave in FIgurE Ex20.14?

Section 20.4 Waves in Two and Three Dimensions

 15. | A spherical wave with a wavelength of 2.0 m is emitted from 
the origin. At one instant of time, the phase at r = 4.0 m is p rad. 
At that instant, what is the phase at r = 3.5 m and at r = 4.5 m?

 16. | A circular wave travels outward from the origin. At one in
stant of time, the phase at r1 = 20 cm is 0 rad and the phase at 
r2 = 80 cm is 3p rad. What is the wavelength of the wave?

 17. || A loudspeaker at the origin emits a 120 Hz tone on a day when 
the speed of sound is 340 m/s. The phase difference between two 
points on the xaxis is 5.5 rad. What is the distance between these 
two points?

 18. || A sound source is located somewhere along the xaxis. Ex
periments show that the same wave front simultaneously reaches 
listeners at x = -7.0 m and x = +3.0 m.

 a. What is the xcoordinate of the source?
 b. A third listener is positioned along the positive yaxis. What 

is her ycoordinate if the same wave front reaches her at the 
same instant it does the first two listeners?

Section 20.5 Sound and Light

 19. || A hammer taps on the end of a 4.00mlong metal bar at room 
temperature. A microphone at the other end of the bar picks up 
two pulses of sound, one that travels through the metal and one 
that travels through the air. The pulses are separated in time by 
9.00 ms. What is the speed of sound in this metal?

 20. || a.  What is the wavelength of a 2.0 MHz ultrasound wave trav
eling through aluminum?

   b.  What frequency of electromagnetic wave would have the 
same wavelength as the ultrasound wave of part a?
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 21. | a.  What is the frequency of an electromagnetic wave with a 
wavelength of 20 cm?

   b.  What would be the wavelength of a sound wave in water 
with the same frequency as the electromagnetic wave of 
part a?

 22. | a.  What is the frequency of blue light that has a wavelength of 
450 nm?

   b.  What is the frequency of red light that has a wavelength of 
650 nm?

   c.  What is the index of refraction of a material in which the 
redlight wavelength is 450 nm?

 23. | a.  An FM radio station broadcasts at a frequency of 
101.3 MHz. What is the wavelength?

   b.  What is the frequency of a sound source that produces the 
same wavelength in 20�C air?

 24. | a.  Telephone signals are often transmitted over long distances 
by microwaves. What is the frequency of microwave radia
tion with a wavelength of 3.0 cm?

   b.  Microwave signals are beamed between two mountaintops 
50 km apart. How long does it take a signal to travel from 
one mountaintop to the other?

 25. || a.  How long does it take light to travel through a 3.0mm
thick piece of window glass?

   b.  Through what thickness of water could light travel in the 
same amount of time?

 26. || Cell phone conversations are transmitted by highfrequency radio 
waves. Suppose the signal has wavelength 35 cm while traveling 
through air. What are the (a) frequency and (b) wavelength as the 
signal travels through 3mmthick window glass into your room?

 27. | A light wave has a 670 nm wavelength in air. Its wavelength 
in a transparent solid is 420 nm.

 a. What is the speed of light in this solid?
 b. What is the light’s frequency in the solid?

Section 20.6 Power, Intensity, and Decibels

 28. || A sound wave with intensity 2.0 * 10-3 W/m2 is perceived to 
be modestly loud. Your eardrum is 6.0 mm in diameter. How 
much energy will be transferred to your eardrum while listening 
to this sound for 1.0 min?

 29. || The intensity of electromagnetic waves from the sun is 
1.4 kW/m2 just above the earth’s atmosphere. Eighty percent of 
this reaches the surface at noon on a clear summer day. Sup
pose you think of your back as a 30 cm * 50 cm rectangle. How 
many joules of solar energy fall on your back as you work on 
your tan for 1.0 h?

 30. || A concert loudspeaker suspended high above the ground emits 
35 W of sound power. A small microphone with a 1.0 cm2 area 
is 50 m from the speaker.

 a. What is the sound intensity at the position of the microphone?
 b. How much sound energy impinges on the microphone each 

second?
 31. || During takeoff, the sound intensity level of a jet engine is 

140 dB at a distance of 30 m. What is the sound intensity level at 
a distance of 1.0 km?

 32. | The sun emits electromagnetic waves with a power of 
4.0 * 1026 W. Determine the intensity of electromagnetic waves 
from the sun just outside the atmospheres of Venus, the earth, 
and Mars.

 33. | What are the sound intensity levels for sound waves of inten
sity (a) 3.0 * 10-6 W/m2 and (b) 3.0 * 10-2 W/m2?

BIO

 34. | What are the intensities of sound waves with sound intensity 
levels (a) 46 dB and (b) 103 dB?

 35. || A loudspeaker on a tall pole broadcasts sound waves equally 
in all directions. What is the speaker’s power output if the sound 
intensity level is 90 dB at a distance of 20 m?

Section 20.7 The Doppler Effect

 36. | A friend of yours is loudly singing a single note at 400 Hz 
while racing toward you at 25.0 m/s on a day when the speed of 
sound is 340 m/s.

 a. What frequency do you hear?
 b. What frequency does your friend hear if you suddenly start 

singing at 400 Hz?
 37. | An opera singer in a convertible sings a note at 600 Hz while 

cruising down the highway at 90 km/h. What is the frequency 
heard by

 a. A person standing beside the road in front of the car?
 b. A person on the ground behind the car?
 38. || A bat locates insects by emitting ultrasonic “chirps” and then 

listening for echoes from the bugs. Suppose a bat chirp has a 
frequency of 25 kHz. How fast would the bat have to fly, and in 
what direction, for you to just barely be able to hear the chirp at 
20 kHz?

 39. | A mother hawk screeches as she dives at you. You recall from 
biology that female hawks screech at 800 Hz, but you hear the 
screech at 900 Hz. How fast is the hawk approaching?

Problems

 40. || The displacement of a traveling wave is

 D(x, t) = b 1 cm if 0 x - 3t 0 … 1

0 cm if 0 x - 3t 0 7 1

  where x is in m and t in s.
 a. Draw displacementversusposition graphs from x = -2 m 

to x = 12 m at 1 s intervals from t = 0 s to t = 3 s.
 b. Determine the wave speed from the graphs. Explain.
 c. Determine the wave speed from the equation for D(x, t). 

Does it agree with your answer to part b?
 41. || FIgurE P20.41 is a history graph at x = 0 m of a wave traveling 

in the positive xdirection at 4.0 m/s.
 a. What is the wavelength?
 b. What is the phase constant of the wave?
 c. Write the displacement equation for this wave.

 42. || FIgurE P20.42 is a snapshot graph at t = 0 s of a 5.0 Hz wave 
traveling to the left.

 a. What is the wave speed?
 b. What is the phase constant of the wave?
 c. Write the displacement equation for this wave.

BIO
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 43. || A wave travels along a string at speed v0. What will be the 
speed if the string is replaced by one made of the same material 
and under the same tension but having twice the radius?

 44. | String 1 in FIgurE P20.44 has linear density 2.0 g/m and string 
2 has linear density 4.0 g/m. A student sends pulses in both 
directions by quickly pulling up on the knot, then releasing it. 
What should the string lengths L 1 and L 2 be if the pulses are to 
reach the ends of the strings simultaneously?

 45. || Ships measure the distance to the ocean bottom with sonar. A 
pulse of sound waves is aimed at the ocean bottom, then sensi
tive microphones listen for the echo. FIgurE P20.45 shows the de
lay time as a function of the ship’s position as it crosses 60 km of 
ocean. Draw a graph of the ocean bottom. Let the ocean surface 
define y = 0 and ocean bottom have negative values of y. This 
way your graph will be a picture of the ocean bottom. The speed 
of sound in ocean water varies slightly with temperature, but you 
can use 1500 m/s as an average value.

 46. || Oil explorers set off explosives to make loud sounds, then lis
ten for the echoes from underground oil deposits. Geologists sus
pect that there is oil under 500mdeep Lake Physics. It’s known 
that Lake Physics is carved out of a granite basin. Explorers 
detect a weak echo 0.94 s after exploding dynamite at the lake 
surface. If it’s really oil, how deep will they have to drill into the 
granite to reach it?

 47. || One cue your hearing system uses to localize a sound (i.e., to 
tell where a sound is coming from) is the slight difference in the 
arrival times of the sound at your ears. Your ears are spaced 
approximately 20 cm apart. Consider a sound source 5.0 m from 
the center of your head along a line 45� to your right. What is the 
difference in arrival times? Give your answer in microseconds.

  Hint: You are looking for the difference between two numbers 
that are nearly the same. What does this near equality imply 
about the necessary precision during intermediate stages of the 
calculation?

 48. || A heliumneon laser beam has a wavelength in air of 633 nm. 
It takes 1.38 ns for the light to travel through 30 cm of an un
known liquid. What is the wavelength of the laser beam in the 
liquid?

 49. | A 440 Hz sound wave in 20�C air propagates into the water 
of a swimming pool. What are the wave’s (a) frequency and 
(b) wavelength in the water?

 50. || Earthquakes are essentially sound waves—called seismic 
waves—traveling through the earth. Because the earth is solid, 
it can support both longitudinal and transverse seismic waves. 
The speed of longitudinal waves, called P waves, is 8000 m/s. 
Transverse waves, called S waves, travel at a slower 4500 m/s. 

BIO

A seismograph records the two waves from a distant earthquake. 
If the S wave arrives 2.0 min after the P wave, how far away 
was the earthquake? You can assume that the waves travel in 
straight lines, although actual seismic waves follow more com
plex routes.

 51. || A sound wave is described by D(y, t) = (0.0200 mm) *  
sin3(8.96 rad/m)y + (3140 rad/s)t + p/4 rad4 , where y is in m 
and t is in s.

 a. In what direction is this wave traveling?
 b. Along which axis is the air oscillating?
 c. What are the wavelength, the wave speed, and the period of 

oscillation?
 52. || A wave on a string is described by D(x, t) = (3.0 cm) *  

sin32p(x/(2.4 m) + t/(0.20 s) + 1)4 , where x is in m and t is in s.
 a. In what direction is this wave traveling?
 b. What are the wave speed, the frequency, and the wave number?
 c. At t = 0.50 s, what is the displacement of the string at 

x = 0.20 m?
 53. || A wave on a string is described by D(x, t) = (2.00 cm) *  

sin3(12.57 rad/m)x - (638 rad/s)t4 , where x is in m and t in s. 
The linear density of the string is 5.00 g/m. What are

 a. The string tension?
 b. The maximum displacement of a point on the string?
 c. The maximum speed of a point on the string?
 54. | Write the displacement equation for a sinusoidal wave that 

is traveling in the negative ydirection with wavelength 50 cm, 
speed 4.0 m/s, and amplitude 5.0 cm. Assume f0 = 0.

 55. | Write the displacement equation for a sinusoidal wave that is 
traveling in the positive xdirection with frequency 200 Hz, speed 
400 m/s, amplitude 0.010 mm, and phase constant p/2 rad.

 56. | A string with linear density 2.0 g/m is stretched along the pos
itive xaxis with tension 20 N. One end of the string, at x = 0 m, 
is tied to a hook that oscillates up and down at a frequency of 
100 Hz with a maximum displacement of 1.0 mm. At t = 0 s, the 
hook is at its lowest point.

 a. What are the wave speed on the string and the wavelength?
 b. What are the amplitude and phase constant of the wave?
 c. Write the equation for the displacement D(x, t) of the travel

ing wave.
 d. What is the string’s displacement at x = 0.50 m and 

t = 15 ms?
 57. || FIgurE P20.57 shows a snapshot graph of a wave traveling to 

the right along a string at 45 m/s. At this instant, what is the ve
locity of points 1, 2, and 3 on the string?

 58. || FIgurE P20.58 shows two masses hanging from a steel wire. 
The mass of the wire is 60.0 g. A wave pulse travels along the 
wire from point 1 to point 2 in 24.0 ms. What is mass m?
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 59. || A wire is made by welding together two metals having differ
ent densities. FIgurE P20.59 shows a 2.00mlong section of wire 
centered on the junction, but the wire extends much farther in 
both directions. The wire is placed under 2250 N tension, then 
a 1500 Hz wave with an amplitude of 3.00 mm is sent down the 
wire. How many wavelengths (complete cycles) of the wave are 
in this 2.00mlong section of the wire?

 60. || The string in FIgurE P20.60 has linear density m. Find an ex
pression in terms of M, m and u for the speed of waves on the 
string.

 61. || A string that is under 50.0 N of tension has linear density 
5.0 g/m. A sinusoidal wave with amplitude 3.0 cm and wave
length 2.0 m travels along the string. What is the maximum 
speed of a particle on the string?

 62. || A sinusoidal wave travels along a stretched string. A particle 
on the string has a maximum speed of 2.0 m/s and a maximum 
acceleration of 200 m/s2. What are the frequency and amplitude 
of the wave?

 63. || a.  A 100 W lightbulb produces 5.0 W of visible light. (The 
other 95 W are dissipated as heat and infrared radiation.) 
What is the light intensity on a wall 2.0 m away from the 
lightbulb?

   b.  A krypton laser produces a cylindrical red laser beam 
2.0 mm in diameter with 5.0 W of power. What is the light 
intensity on a wall 2.0 m away from the laser?

 64. || An AM radio station broadcasts with a power of 25 kW at a 
frequency of 920 kHz. Estimate the intensity of the radio wave 
at a point 10 km from the broadcast antenna.

 65. || LASIK eye surgery uses pulses of laser light to shave off 
tissue from the cornea, reshaping it. A typical LASIK laser emits 
a 1.0mmdiameter laser beam with a wavelength of 193 nm. 
Each laser pulse lasts 15 ns and contains 1.0 mJ of light energy

 a. What is the power of one laser pulse?
 b. During the very brief time of the pulse, what is the intensity 

of the light wave?
 66. || The sound intensity 50 m from a wailing tornado siren is 

0.10 W/m2.
 a. What is the intensity at 1000 m?
 b. The weakest intensity likely to be heard over background 

noise is �  1 mW/m2. Estimate the maximum distance at 
which the siren can be heard.

 67. || The sound intensity level 5.0 m from a large power saw is 
100 dB. At what distance will the sound be a more tolerable 
80 dB?

 68. || Two loudspeakers on elevated platforms are at opposite ends 
of a field. Each broadcasts equally in all directions. The sound 
intensity level at a point halfway between the loudspeakers is 
75.0 dB. What is the sound intensity level at a point onequarter 
of the way from one speaker to the other along the line joining 
them?
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 69. || Your ears are sensitive to differences in pitch, but they are not 
very sensitive to differences in intensity. You are not capable of 
detecting a difference in sound intensity level of less than 1 dB. 
By what factor does the sound intensity increase if the sound 
intensity level increases from 60 dB to 61 dB?

 70. ||| The intensity of a sound source is described by an inverse
square law only if the source is very small (a point source) and 
only if the waves can travel unimpeded in all directions. For 
an extended source or in a situation where obstacles absorb or 
reflect the waves, the intensity at distance r can often be ex
pressed as I = cPsource/r x, where c is a constant and the exponent 
x—which would be 2 for an ideal spherical wave—depends on 
the situation. In one such situation, you use a sound meter to 
measure the sound intensity level at different distances from a 
source, acquiring the following data:

Distance (m) Intensity level (dB)

  1 100

  3  93

 10  85

 30  78

100  70

  Use the bestfit line of an appropriate graph to determine the 
exponent x that characterizes this sound source.

 71. ||| A mad doctor believes that baldness can be cured by warm
ing the scalp with sound waves. His patients sit underneath the 
BaldoMatic loudspeakers, where their heads are bathed with 
93 dB of soothing 800 Hz sound waves. Suppose we model a 
bald head as a 16cmdiameter hemisphere. If 0.10 J of sound 
energy is considered an appropriate “dose,” how many minutes 
should each therapy session last?

 72. || A physics professor demonstrates the Doppler effect by tying 
a 600 Hz sound generator to a 1.0mlong rope and whirling it 
around her head in a horizontal circle at 100 rpm. What are the 
highest and lowest frequencies heard by a student in the class
room?

 73. || Show that the Doppler frequency f- of a receding source is 
f- = f0/(1 + vs/v).

 74. | A starship approaches its home planet at a speed of 0.1c. 
When it is 54 * 106 km away, it uses its green laser beam 
(l = 540 nm) to signal its approach.

 a. How long does the signal take to travel to the home planet?
 b. At what wavelength is the signal detected on the home planet?
 75. | Wavelengths of light from a distant galaxy are found to be 

0.5% longer than the corresponding wavelengths measured in a 
terrestrial laboratory. Is the galaxy approaching or receding from 
the earth? At what speed?

 76. | You have just been pulled over for running a red light, and 
the police officer has informed you that the fine will be $250. In 
desperation, you suddenly recall an idea that your physics pro
fessor recently discussed in class. In your calmest voice, you tell 
the officer that the laws of physics prevented you from knowing 
that the light was red. In fact, as you drove toward it, the light 
was Doppler shifted to where it appeared green to you. “OK,” 
says the officer, “Then I’ll ticket you for speeding. The fine is $1 
for every 1 km/h over the posted speed limit of 50 km/h.< How 
big is your fine? Use 650 nm as the wavelength of red light and 
540 nm as the wavelength of green light.
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Challenge Problems

 77.  One way to monitor global warming is to measure the average 
temperature of the ocean. Researchers are doing this by measur-
ing the time it takes sound pulses to travel underwater over large 
distances.  At  a  depth  of  1000  m,  where  ocean  temperatures 
hold  steady  near  4�C,  the  average  sound  speed  is  1480 m/s. 
It’s known from laboratory measurements that the sound speed 
increases  4.0 m/s  for  every  1.0�C  increase  in  temperature.  In 
one experiment, where sounds generated near California are de-
tected in the South Pacific, the sound waves travel 8000 km. If 
the smallest time change that can be reliably detected is 1.0 s, 
what is the smallest change in average temperature that can be 
measured?

 78.  The G string on a guitar is a 0.46-mm-diameter steel string with 
a  linear density of 1.3 g/m. When  the  string  is properly  tuned 
to 196 Hz,  the wave speed on the string is 250 m/s. Tuning is 
done by turning the  tuning screw, which slowly tightens—and 
stretches—the string. By how many mm does a 75-cm-long G 
string stretch when it’s first tuned?

 79.  A rope of mass m and length L hangs from a ceiling.
  a.  Show that the wave speed on the rope a distance y above the 

lower end is v = 1gy.
  b.  Show that the time for a pulse to travel the length of the string 

is �t = 2 2L/g.
 80.  Some  modern  optical  devices 

are made with glass whose in-
dex of refraction changes with 
distance from the front surface. 
Figure CP20.80 shows the index 
of  refraction  as  a  function  of 
the distance into a slab of glass 
of  thickness  L.  The  index  of 
refraction  increases  linearly 
from n1 at the front surface to 
n2 at the rear surface.

  a.  Find an expression for the time light takes to travel through 
this piece of glass.

  b.  Evaluate your expression for a 1.0-cm-thick piece of glass for 
which n1 = 1.50 and n2 = 1.60.

 81.  A water wave is a shallow-water wave if the water depth d is less 
than  �  l/10. It is shown in hydrodynamics that the speed of a 
shallow-water wave is v = 1gd, so waves slow down as they 
move into shallower water. Ocean waves, with wavelengths of 
typically 100 m, are shallow-water waves when the water depth 
is less than  � 10 m. Consider a beach where the depth increases 
linearly with distance from the shore until  reaching a depth of 
5.0 m at a distance of 100 m. How long does it take a wave to 
move the last 100 m to the shore? Assume that the waves are so 
small that they don’t break before reaching the shore.

 82.  An  important  characteristic of  the heart,  one used  to diagnose 
heart disease, is the pressure difference between the blood pres-
sure inside the heart and the blood pressure in the aorta, the large 
artery leading away from the heart. The blood inside the heart is 
essentially at rest, but it speeds up significantly as it enters the 
aorta—and its speed can be measured by using the Doppler shift 
of reflected ultrasound.

  a.  The  Doppler  effect  enters  twice  in  calculating  the  frequency 
of  the  reflection  from a moving object. Suppose  the object’s 
speed  vo  is very  small  compared  to  the wave speed v. Show 
that a good approximation for the Doppler shift—the difference 
between the reflected frequency and the incident frequency—is

  � f = 2f0 
vo

v

  b.  A  doctor  using  2.5  MHz  ultrasound  measures  a  6000  Hz 
Doppler  shift  as  the  ultrasound  reflects  from  blood  ejected 
from the heart into the aorta. What is the blood pressure dif-
ference, in mm of Hg, between the inside of the heart and the 
aorta? Assume the patient  is  lying down so that  there is no 
height difference between the heart and the aorta. The density 
of blood is 1060 kg/m3.
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StoP to think AnSwerS

Stop to Think 20.1: d and e. The wave speed depends on proper-
ties of the medium, not on how you generate the wave. For a string, 
v = 2Ts/m.  Increasing  the  tension or  decreasing  the  linear  density 
(lighter string) will increase the wave speed.

Stop to Think 20.2: b. The wave is traveling to the right at 2.0 m/s, 
so each point on the wave passes x = 0 m, the point of interest, 2.0 s 
before reaching x = 4.0 m. The graph has the same shape, but every-
thing happens 2.0 s earlier.

Stop to Think 20.3: d. The wavelength—the distance between two 
crests—is  seen  to  be  10  m.  The  frequency  is  f = v/l = (50 m/s)/ 
(10 m) = 5 Hz.

Stop to Think 20.4: e. A crest and an adjacent trough are separated 
by l/2. This is a phase difference of p rad.

Stop to Think 20.5: nc + na + nb. l = lvac/n, so a shorter wave-
length corresponds to a larger index of refraction.

Stop to Think 20.6: c. Any factor-of-2 change in intensity changes 
the sound intensity level by 3 dB. One trumpet is 1

4 the original num-
ber, so the intensity has decreased by two factors of 2.

Stop to Think 20.7: c. Zack hears a higher frequency as he and the 
source approach. Amy is moving with the source, so  fAmy = f0.

Distance

Index of
refraction n

L0

1

0

n1

n2

Figure CP20.80 
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This swirl of colors is due to a 
very thin layer of oil. Oil is clear. 
The colors arise from the inter-
ference of reflected light waves.

Superposition

You’ll learn how to calculate the fre-
quencies and wavelengths of standing 
waves on strings and in air.

Standing Waves
Standing waves are created from 
the superposition of traveling waves 
bouncing back and forth between the 
edges of the medium.

Interference
When two sources emit waves of the same 
wavelength and frequency, the overlapped 
waves create an interference pattern.

You’ll learn to 
interpret interfer-
ence patterns 
such as this one. 
The two black 
dots are the 
sources of the 
waves.

Beats
The superposition of two waves of 
slightly different frequency produces a 
soft-loud-soft-loud- p modulation of the 
intensity called beats.

Beats are easily demonstrated with sound 
waves, but the concept is used in applications 
from ultrasonics to telecommunications.

You’ll learn to analyze the response 
of the medium when two waves pass 
through each other.

 Looking Back
Sections 20.2–20.4 Properties of 
traveling waves

Superposition
Waves can pass through each other— 
a characteristic that distinguishes waves 
from particles. As they do, their dis-
placements add together. This is called 
the principle of superposition.

 Looking Ahead The goal of Chapter 21 is to understand and use the idea of superposition.

LoudSoft

0

LoudSoft Soft

t

These water waves are exhibiting 
superposition as the ripples pass 
through each other.

Standing waves 
occur in well-
defined patterns 
called modes, each 
with its own distinct 
frequency. Some 
points on the wave, 
called nodes, do 
not oscillate at all.

 Looking Back
Section 20.5 Sound waves

Applications
You’ll learn how standing 
waves determine the notes of  
a guitar and other musical 
instruments ...

... and how interference is used to de- 
sign antireflection coatings for lenses.

Constructive interference occurs where 
the waves add to make a larger wave. 
Destructive interference is where the 
waves cancel to make a smaller wave.
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21.1 The Principle of Superposition
FIgure 21.1a shows two baseball players, Alan and Bill, at batting practice. Unfortunately, 
someone has turned the pitching machines so that pitching machine A throws base-
balls toward Bill while machine B throws toward Alan. If two baseballs are launched 
at the same time, and with the same speed, they collide at the crossing point. Two 
particles cannot occupy the same point of space at the same time.

FIgure 21.1 Unlike particles, two waves can pass directly through each other.

Alan Bill

The waves pass
through each other.

Loudspeakers(b)
A B

Pitching machines

Alan Bill

The balls collide and bounce
apart. Two particles cannot
occupy the same point of
space at the same time.

(a)

A B

If wave 1 displaces a particle in the medium by D1 and wave 2 simultaneously dis-
places it by D2, the net displacement of the particle is simply D1 + D2. This is a very 
important idea because it tells us how to combine waves. It is known as the principle 
of superposition.

Principle of superposition When two or more waves are simultaneously present 
at a single point in space, the displacement of the medium at that point is the sum 
of the displacements due to each individual wave.

When one object is placed on top of another, the two are said to be superimposed. 
But through some quirk in the English language, the result of superimposing objects is 
called a superposition, without the syllable “im.” When one wave is “placed” on top 
of another wave, we have a superposition of waves.

Mathematically, the net displacement of a particle in the medium is

 Dnet = D1 + D2 + g = a
i

Di (21.1)

where Di is the displacement that would be caused by wave i alone. We will make the 
simplifying assumption that the displacements of the individual waves are along the 
same line so that we can add displacements as scalars rather than vectors.

To use the principle of superposition you must know the displacement caused by 
each wave if traveling alone. Then you go through the medium point by point and add 
the displacements due to each wave at that point to find the net displacement at that 
point. The outcome will be different at each and every point in the medium because 
the displacements are different at each point.

To illustrate, FIgure 21.2 shows snapshot graphs taken 1 s apart of two waves travel-
ing at the same speed (1 m/s) in opposite directions along a string. The principle of 
superposition comes into play wherever the waves overlap. The solid line is the sum 
at each point of the two displacements at that point. This is the displacement that you 
would actually observe as the two waves pass through each other.

FIgure 21.2 The superposition of two 
waves on a string as they pass through 
each other.

x (m)
10 2 3 4 5 6 7

x (m)
10 2 3 4 5 6 7

x (m)
10 2 3 4 5 6 7

x (m)
10 2 3 4 5 6 7

x (m)
10 2 3 4 5 6 7

Both waves emerge unchanged.

The net displacement is the point-by-point
summation of the individual waves.

Two waves approach each other.

1 m/s 1 m/s

1 m/s1 m/s

t � 0 s

t � 1 s

t � 2 s

t � 3 s

t � 4 s

But waves, unlike particles, can pass directly through each other. In FIgure 21.1b 
Alan and Bill are listening to the stereo system in the locker room after practice. Be-
cause both hear the music quite well, the sound wave that travels from loudspeaker A 
toward Bill must pass through the wave traveling from loudspeaker B toward Alan. 
What happens to the medium at a point where two waves are present simultaneously?
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Stop to think 21.1 
 Two pulses on a string approach each other at 

speeds of 1 m/s. What is the shape of the string at t = 6 s?
x (m)

20 4 6 8 10 12 14 16 18 20

1 m/s 1 m/s

Approaching waves at t � 0 s

x (m)
86 10 12 14

(a)

x (m)
86 10 12 14

(b)

x (m)
86 10 12 14

(c)

x (m)
86 10 12 14

(d)

21.2 Standing Waves
FIgure 21.3 is a time-lapse photograph of a standing wave on a vibrating string. It’s 
not obvious from the photograph, but this is actually a superposition of two waves. 
To understand this, consider two sinusoidal waves with the same frequency, wave-
length, and amplitude traveling in opposite directions. For example, FIgure 21.4a 
shows two waves on a string, and FIgure 21.4b shows nine snapshot graphs, at intervals 
of 18 T. The dots identify two of the crests to help you visualize the wave movement.

At each point, the net displacement—the superposition—is found by adding the red 
displacement and the green displacement. FIgure 21.4c shows the result. It is the wave 
you would actually observe. The blue dot shows that the blue wave is moving neither 
right nor left. The wave of Figure 21.4c is called a standing wave because the crests 
and troughs “stand in place” as the wave oscillates.

FIgure 21.3 A vibrating string is an 
example of a standing wave.

FIgure 21.4 The superposition of two sinusoidal waves traveling in opposite directions.

t � T7
8

t � T6
8

t � T5
8

t � T4
8

t � T3
8

t � T2
8

t � T1
8

t � T

t � 0

The blue wave is the
superposition of the
red and green waves.

At this time the waves exactly
overlap and the superposition
has a maximum amplitude.

At this time a crest of the red
wave meets a trough of the
green wave. The waves cancel.

The superposition again reaches
a maximum amplitude.

The waves again overlap
and cancel.

At this time the superposition
has the form it had at t � 0.

(b)

t � T7
8

t � T6
8

t � T5
8

t � T4
8

t � T3
8

t � T2
8

t � T1
8

t � T

t � 0

The superposition is a standing wave with
the same wavelength as the original waves.

(c)

l

A string is carrying two waves moving in opposite directions.(a)

Antinode Node

The red wave is
traveling to the right.

The green wave is
traveling to the left.
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Nodes and Antinodes
FIgure 21.5 has collapsed the nine graphs of Figure 21.4b into a single graphical repre-
sentation of a standing wave. Compare this to the Figure 21.3 photograph of a vibrat-
ing string. A striking feature of a standing-wave pattern is the existence of nodes, 
points that never move! The nodes are spaced L/2 apart. Halfway between the nodes 
are the points where the particles in the medium oscillate with maximum displace-
ment. These points of maximum amplitude are called antinodes, and you can see that 
they are also spaced l/2 apart.

It seems surprising and counterintuitive that some particles in the medium have 
no motion at all. To understand how this happens, look carefully at the two traveling 
waves in Figure 21.4a. You will see that the nodes occur at points where at every 
instant of time the displacements of the two traveling waves have equal magnitudes 
but opposite signs. Thus the superposition of the displacements at these points is 
always zero. The antinodes correspond to points where the two displacements have 
equal magnitudes and the same sign at all times.

Two waves 1 and 2 are said to be in phase at a point where D1 is always equal to 
D2. The superposition at that point yields a wave whose amplitude is twice that of the 
individual waves. This is called a point of constructive interference. The antinodes of a 
standing wave are points of constructive interference between the two traveling waves.

In contrast, two waves are said to be out of phase at points where D1 is always equal 
to -D2. Their superposition gives a wave with zero amplitude—no wave at all! This is 
a point of destructive interference. The nodes of a standing wave are points of destruc-
tive interference. We will defer the main discussion of constructive and destructive 
interference until later in this chapter, but you’ll then recognize that you’re seeing con-
structive and destructive interference at the antinodes and nodes of a standing wave.

In Chapter 20 you learned that the intensity of a wave is proportional to the square 
of the amplitude: I � A2. You can see in FIgure 21.6 that maximum intensity occurs at 
the antinodes and that the intensity is zero at the nodes. If this is a sound wave, the 
loudness is maximum at the antinodes and zero at the nodes. A standing light wave 
is bright at the antinodes, dark at the nodes. The key idea is that the intensity is 
maximum at points of constructive interference and zero at points of destructive 
interference.

The Mathematics of Standing Waves
A sinusoidal wave traveling to the right along the x-axis with angular frequency 
v = 2pf, wave number k = 2p/l, and amplitude a is

 DR = a sin(kx - vt) (21.2)

An equivalent wave traveling to the left is

 DL = a sin(kx + vt) (21.3)

We previously used the symbol A for the wave amplitude, but here we will use a 
lowercase a to represent the amplitude of each individual wave and reserve A for the 
amplitude of the net wave.

According to the principle of superposition, the net displacement of the medium 
when both waves are present is the sum of DR and DL :

 D(x, t) = DR + DL = a sin(kx - vt) + a sin(kx + vt) (21.4)

We can simplify Equation 21.4 by using the trigonometric identity

 sin(a { b) = sin a cos b { cos a sin b

Doing so gives

  D(x, t) = a(sin kx cos vt - cos kx sin vt) + a(sin kx cos vt + cos kx sin vt)

  = (2a sin kx) cos vt  
(21.5)

FIgure 21.5 Standing waves are often 
represented as they would be seen in a 
time-lapse photograph.

Nodes
x

D
Antinodes

0

0

The nodes and antinodes are spaced l/2 apart.
2l1

2l
3
2ll

FIgure 21.6 The intensity of a standing 
wave is maximum at the antinodes, zero 
at the nodes.

Node
Antinode

x

I

2l

l/2

0
The intensity is zero at the nodes.

The intensity is maximum
at the antinodes.

1
2l

3
2ll

Imax

x

D

0

0

A

�A

This photograph shows the Tacoma 
Narrows suspension bridge on the day in 
1940 when it experienced a catastrophic 
standing-wave oscillation that led to its 
collapse. Aerodynamic forces caused the 
amplitude of a particular resonant mode 
of the bridge to increase dramatically 
until the bridge failed. In this photo, the 
red line shows the original line of the 
deck of the bridge. You can clearly see 
the large amplitude of the oscillation and 
the node at the center of the span.
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It is useful to write Equation 21.5 as

 D(x, t) = A (x ) cos vt (21.6)

where the amplitude function A(x) is defined as

 A(x) = 2a sin kx (21.7)

The amplitude reaches a maximum value Amax = 2a at points where sin kx = 1.
The displacement D(x, t) given by Equation 21.6 is neither a function of x - vt 

nor a function of x + vt; hence it is not a traveling wave. Instead, the cos vt term in 
Equation 21.6 describes a medium in which each point oscillates in simple harmonic 
motion with frequency f = v/2p. The function A(x) = 2a sin kx gives the amplitude 
of the oscillation for a particle at position x.

FIgure 21.7 graphs Equation 21.6 at several different instants of time. Notice that 
the graphs are identical to those of Figure 21.5, showing us that Equation 21.6 is the 
mathematical description of a standing wave.

The nodes of the standing wave are the points at which the amplitude is zero. They 
are located at positions x for which

 A(x) = 2a sin kx = 0 (21.8)

The sine function is zero if the angle is an integer multiple of p rad, so Equation 21.8 
is satisfied if

 kxm =
2pxm

l
= mp  m = 0, 1, 2, 3, p  (21.9)

Thus the position xm of the mth node is

 xm = m 
l

2
  m = 0, 1, 2, 3, p  (21.10)

You can see that the spacing between two adjacent nodes is l/2, in agreement with 
Figure 21.6. The nodes are not spaced by l, as you might have expected.

FIgure 21.7 The net displacement 
resulting from two counter-propagating 
sinusoidal waves.

D

0

The oscillation amplitude
changes with position.

When t � 0, cos vt � 1.
Thus the outer curve is the
amplitude function A(x).

2a

�2a

x

SOLve a. The speed of the waves on the string is

 v = BTs 

m
 = B 8.0 N

0.0050 kg/m
= 40 m/s

and the wavelength is

 l =
v

f
=

40 m/s

100 Hz
= 0.40 m = 40 cm

Thus the spacing between adjacent nodes is l/2 = 20 cm.
 b. The maximum displacement is Amax = 2a = 4.0 mm.

exAMPLe 21.1  Node spacing on a string
A very long string has a linear density of 5.0 g/m and is stretched 
with a tension of 8.0 N. 100 Hz waves with amplitudes of 2.0 mm 
are generated at the ends of the string.

 a. What is the node spacing along the resulting standing wave?
 b. What is the maximum displacement of the string?

MOdeL Two counter-propagating waves of equal frequency create 
a standing wave.

vISuALIze The standing wave will look like Figure 21.5.

21.3 Standing Waves on a String
Wiggling both ends of a very long string is not a practical way to generate standing 
waves. Instead, as in the photograph in Figure 21.3, standing waves are usually seen on a 
string that is fixed at both ends. To understand why this condition causes standing waves, 
we need to examine what happens when a traveling wave encounters a discontinuity.

FIgure 21.8a on the next page shows a discontinuity between a string with a larger lin-
ear density and one with a smaller linear density. The tension is the same in both strings, 
so the wave speed is slower on the left, faster on the right. Whenever a wave encounters 
a discontinuity, some of the wave’s energy is transmitted forward and some is reflected.
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FIgure 21.8 A wave reflects when it encounters a discontinuity or a boundary.

(a) Discontinuity where the
wave speed increases

Before:

After:

String with faster
wave speed

String with slower
wave speed

(b) Discontinuity where the
wave speed decreases

The reflected pulse is inverted.

Before:

 After:

(c)

The reflected pulse is inverted
and its amplitude is unchanged.

Boundary

Before:

After:

FIgure 21.9 A strobe photo of a pulse 
traveling along a rope-like spring.

FIgure 21.10 Reflections at the two 
boundaries cause a standing wave on 
the string.

The reflected waves travel
through each other. This 
creates a standing wave.

Wiggle the string in the middle.

x � 0 x � L

Light waves exhibit an analogous behavior when they encounter a piece of glass. 
Most of the light wave’s energy is transmitted through the glass, which is why glass is 
transparent, but a small amount of energy is reflected. That is how you see your reflec-
tion dimly in a storefront window.

In FIgure 21.8b, an incident wave encounters a discontinuity at which the wave 
speed decreases. In this case, the reflected pulse is inverted. A positive displacement 
of the incident wave becomes a negative displacement of the reflected wave. Because 
sin(f + p) = -sin f, we say that the reflected wave has a phase change of p upon 
reflection. This aspect of reflection will be important later in the chapter when we look 
at the interference of light waves.

The wave in FIgure 21.8c reflects from a boundary. You can think of this as 
Figure 21.8b in the limit that the string on the right becomes infinitely massive. Thus the 
reflection in Figure 21.8c looks like that of Figure 21.8b with one exception: Because 
there is no transmitted wave, all the wave’s energy is reflected. Hence the amplitude 
of a wave reflected from a boundary is unchanged. FIgure 21.9 is a sequence of strobe 
photos in which you see a pulse on a rope-like spring reflecting from a boundary at the 
right of the photo. The reflected pulse is inverted but otherwise unchanged.

Creating Standing Waves
FIgure 21.10 shows a string of length L tied at x = 0 and x = L. If you wiggle the string 
in the middle, sinusoidal waves travel outward in both directions and soon reach the 
boundaries. Because the speed of a reflected wave does not change, the wavelength 
and frequency of a reflected sinusoidal wave are unchanged. Consequently, reflec-
tions at the ends of the string cause two waves of equal amplitude and wavelength to 
travel in opposite directions along the string. As we’ve just seen, these are the condi-
tions that cause a standing wave!

To connect the mathematical analysis of standing waves in Section 21.2 with the 
physical reality of a string tied down at the ends, we need to impose boundary condi-
tions. A boundary condition is a mathematical statement of any constraint that must 
be obeyed at the boundary or edge of a medium. Because the string is tied down at 
the ends, the displacements at x = 0 and x = L must be zero at all times. Thus the 
standing-wave boundary conditions are D(x = 0, t) = 0 and D(x = L, t) = 0. Stated 
another way, we require nodes at both ends of the string.

We found that the displacement of a standing wave is D(x, t) = (2a sin kx) cos vt. 
This equation already satisfies the boundary condition D(x = 0, t) = 0. That is, the 
origin has already been located at a node. The second boundary condition, at x = L, 
requires D(x = L, t) = 0. This condition will be met at all times if

 2a sin kL = 0  (boundary condition at x = L) (21.11)

Equation 21.11 will be true if sin kL = 0, which in turn requires

 kL =
2pL

l
= mp  m = 1, 2, 3, 4, p  (21.12)

kL must be a multiple of mp, but m = 0 is excluded because L can’t be zero.



For a string of fixed length L, the only quantity in Equation 21.12 that can vary is 
l. That is, the boundary condition is satisfied only if the wavelength has one of the 
values

 lm =
2L
m
  m = 1, 2, 3, 4, p  (21.13)

A standing wave can exist on the string only if its wavelength is one of the values 
given by Equation 21.13. The mth possible wavelength lm = 2L/m is just the right 
size so that its mth node is located at the end of the string (at x = L).

NOTe  Other wavelengths, which would be perfectly acceptable wavelengths for 
a traveling wave, cannot exist as a standing wave of length L because they cannot 
meet the boundary conditions requiring a node at each end of the string. 

If standing waves are possible only for certain wavelengths, then only a few spe-
cific oscillation frequencies are allowed. Because lf = v for a sinusoidal wave, the 
oscillation frequency corresponding to wavelength lm is

 fm =
v

lm

=
v

2L /m
= m  

v

2L
   m = 1, 2, 3, 4, p  (21.14)

The lowest allowed frequency

 f1 =
v

2L
   (fundamental frequency) (21.15)

which corresponds to wavelength l1 = 2L, is called the fundamental frequency of 
the string. The allowed frequencies can be written in terms of the fundamental fre-
quency as

 fm = mf1   m = 1, 2, 3, 4, p  (21.16)

The allowed standing-wave frequencies are all integer multiples of the fundamen-
tal frequency. The higher-frequency standing waves are called harmonics, with the 
m = 2 wave at frequency f2 called the second harmonic, the m = 3 wave called the 
third harmonic, and so on.

FIgure 21.11 graphs the first four possible standing waves on a string of fixed length 
L. These possible standing waves are called the modes of the string, or sometimes the 
normal modes. Each mode, numbered by the integer m, has a unique wavelength and 
frequency. Keep in mind that these drawings simply show the envelope, or outer edge, 
of the oscillations. The string is continuously oscillating at all positions between these 
edges, as we showed in more detail in Figure 21.5.

There are three things to note about the modes of a string.

 1. m is the number of antinodes on the standing wave, not the number of nodes. 
You can tell a string’s mode of oscillation by counting the number of antinodes.

 2. The fundamental mode, with m = 1, has l1 = 2L, not l1 = L. Only half of a 
wavelength is contained between the boundaries, a direct consequence of the 
fact that the spacing between nodes is l/2.

 3. The frequencies of the normal modes form a series: f1, 2f1, 3f1, 4f1, p . The fun-
damental frequency f1 can be found as the difference between the frequencies of 
any two adjacent modes. That is, f1 = �f = fm+1 - fm.

FIgure 21.12 is a time-exposure photograph of the m = 3 standing wave on a string. The 
nodes and antinodes are quite distinct. The string vibrates three times faster for the 
m = 3 mode than for the fundamental m = 1 mode.

FIgure 21.11 The first four modes for 
standing waves on a string of length L.

m � 4

m � 3
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v
2L
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f3 � 3 v
2L

f4 � 4 v
2L

l3 �
2L
3

l4 �
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4

L

FIgure 21.12 Time-exposure photograph 
of the m = 3 standing-wave mode on a 
stretched string.
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Stop to think 21.2 
 A standing wave on a string vibrates as shown at the 

right. Suppose the string tension is quadrupled while the frequency and 
the length of the string are held constant. Which standing-wave pattern 
is produced?

where Mg is the weight of the hanging mass, and thus the tension 
in the wire, while m is the mass of the wire. Combining these two 
equations, we have

 f3 =
3

2
 BMg

mL
=

3

2
 A g

mL
 2M

Squaring both sides gives

 f3 

2 =
9g

4mL
 M

A graph of the square of the standing-wave frequency versus 
mass M should be a straight line passing through the origin with 
slope 9g/4mL. We can use the experimental slope to determine g.

FIgure 21.14 is a graph of f3 

2 versus M. The slope of the best-fit 
line is 2289 kg-1s-2, from which we find

  g = slope *
4mL

9
 

  = 2289 kg-1 s-2 *
4(0.00585 kg)(1.65 m)

9
= 9.82 m/s2

exAMPLe 21.2  Measuring g
Standing-wave frequencies can 
be measured very accurately. 
Consequently, standing waves 
are often used in experiments to 
make accurate measurements of 
other quantities. One such ex-
periment, shown in FIgure 21.13, 
uses standing waves to measure 
the free-fall acceleration g. A 
heavy mass is suspended from a 
1.65-m-long, 5.85 g steel wire;  
then an oscillating magnetic field  
(because steel is magnetic) is used to excite the m = 3 standing 
wave on the wire. Measuring the frequency for different masses 
yields the following data:

Mass (kg) f3 (Hz)

2.00  68

4.00  97

6.00 117

8.00 135

10.00 152

Analyze these data to determine the local value of g.

MOdeL The hanging mass creates tension in the wire. This estab-
lishes the wave speed along the wire and thus the frequencies of 
standing waves. Masses of a few kg might stretch the wire a mm 
or so, but that doesn’t change the length L until the third decimal 
place. The mass of the wire itself is insignificant in comparison 
to that of the hanging mass. We’ll be justified in determining g to 
three significant figures.

SOLve The frequency of the third harmonic is

 f3 =
3

2
 
v

L
The wave speed on the wire is

 v = BTs

m
= B Mg

m/L
= BMgL

m

FIgure 21.13 An experiment 
to measure g with standing 
waves.

Electro-
magnet

M

L

FIgure 21.14 Graph of the data.

Best-fit line

y � 2289x � 77

f3
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ASSeSS The fact that the graph is linear and passes through the 
origin confirms our model. This is an important reason for having 
multiple data points rather than using only one mass.

Original standing wave

(a) (b) (c) (d)

Standing electromagnetic Waves
Because electromagnetic waves are transverse waves, a standing electromagnetic 
wave is very much like a standing wave on a string. Standing electromagnetic waves 
can be established between two parallel mirrors that reflect light back and forth. The 
mirrors are boundaries, analogous to the boundaries at the ends of a string. In fact, 
this is exactly how a laser operates. The two facing mirrors in FIgure 21.15 form what 
is called a laser cavity.
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Because the mirrors act like the points to which a string is tied, the light wave must 
have a node at the surface of each mirror. One of the mirrors is only partially reflec-
tive, to allow some light to escape and form the laser beam, but this doesn’t affect the 
boundary condition.

Because the boundary conditions are the same, Equations 21.13 and 21.14 for lm 
and fm apply to a laser just as they do to a vibrating string. The primary difference is 
the size of the wavelength. A typical laser cavity has a length L � 30 cm, and visible 
light has a wavelength l � 600 nm. The standing light wave in a laser cavity has a 
mode number m that is approximately

 m =
2L

l
�

2 * 0.30 m

6.00 * 10-7 m
= 1,000,000

In other words, the standing light wave inside a laser cavity has approximately one 
million antinodes! This is a consequence of the very short wavelength of light.

FIgure 21.15 A laser contains a standing 
light wave between two parallel mirrors.

Full reflector

Standing light wave

Laser cavity

Laser
beam

Partial reflector

Microwaves, with a wavelength of a few centimeters, can also set up standing 
waves. This is not always good. If the microwaves in a microwave oven form a stand-
ing wave, there are nodes where the electromagnetic field intensity is always zero. 
These nodes cause cold spots where the food does not heat. Although designers of 
microwave ovens try to prevent standing waves, ovens usually do have cold spots 
spaced l/2 apart at nodes in the microwave field. A turntable in a microwave oven 
keeps the food moving so that no part of your dinner remains at a node.

21.4  Standing Sound Waves 
and Musical Acoustics

A long, narrow column of air, such as the air in a tube or pipe, can support 
a longitudinal standing sound wave. Longitudinal waves are somewhat trickier than 
string waves because a graph—showing displacement parallel to the tube—is not a 
picture of the wave.

To illustrate the ideas, FIgure 21.16 on the next page is a series of three graphs and 
pictures that show the m = 2 standing wave inside a column of air closed at both ends. 
We call this a closed-closed tube. The air at the closed ends cannot oscillate because 
the air molecules are pressed up against the wall, unable to move; hence a closed end 
of a column of air must be a displacement node. Thus the boundary conditions—
nodes at the ends—are the same as for a standing wave on a string.

Although the graph looks familiar, it is now a graph of longitudinal displacement. 
At t = 0, positive displacements in the left half and negative displacements in the right 
half cause all the air molecules to converge at the center of the tube. The density and 
pressure rise at the center and fall at the ends—a compression and rarefaction in the 
terminology of Chapter 20. A half cycle later, the molecules have rushed to the ends 

SOLve a. We can use lm = 2L /m  to find that m (the mode) is

 m =
2L

lm

=
2(0.310372 m)

6.329924 * 10-7 m
= 980,650

There are 980,650 antinodes in the standing light wave.
 b. The next longest wavelength that can fit in this laser cavity will 

have one fewer node. It will be the m = 980,649 mode and its 
wavelength will be

 l =
2L

m
=

2(0.310372 m)

980,649
= 632.9930 nm

ASSeSS The wavelength increases by a mere 0.0006 nm when the 
mode number is decreased by 1.

exAMPLe 21.3  The standing light wave inside a laser
Helium-neon lasers emit the red laser light commonly used in 
classroom demonstrations and supermarket checkout scanners. 
A helium-neon laser operates at a wavelength of precisely 
632.9924 nm when the spacing between the mirrors is 310.372 mm.

 a. In which mode does this laser operate?
 b. What is the next longest wavelength that could form a standing 

wave in this laser cavity?

MOdeL The light wave forms a standing wave between the two 
mirrors.

vISuALIze The standing wave looks like Figure 21.15.
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of the tube. Now the pressure is maximum at the ends, minimum in the center. Try to 
visualize the air molecules sloshing back and forth this way.

FIgure 21.17 combines these illustrations into a single picture showing where the mole-
cules are oscillating (antinodes) and where they’re not (nodes). A graph of the displace-
ment � x looks just like the m = 2 graph of a standing wave on a string. Because the 
boundary conditions are the same, the possible wavelengths and frequencies of standing 
waves in a closed-closed tube are the same as for a string of the same length.

It is often useful to think of sound as a pressure wave rather than a displacement 
wave, and the bottom graph in Figure 21.17 shows the m = 2 pressure standing wave in 
a closed-closed tube. Notice that the pressure is oscillating around patmos, its equilibrium 
value. The nodes and antinodes of the pressure wave are interchanged with those of 
the displacement wave, and a careful study of Figure 21.16 reveals why. The gas mole-
cules are alternately pushed up against the ends of the tube, then pulled away, causing the 
pressure at the closed ends to oscillate with maximum amplitude—an antinode.

FIgure 21.16 This time sequence of graphs and pictures illustrates the m = 2 standing 
sound wave in a closed-closed tube of air.

Positive �x is to
the right.

Negative �x is
to the left.
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t � 0
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molecules aren’t moving.
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x
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FIgure 21.17 The m = 2 longitudinal 
standing wave can be represented as a 
displacement wave or as a pressure wave.
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The closed end is a displacement
node and a pressure antinode.

Air molecules undergo longitudinal
oscillations. This is a displacement
antinode and a pressure node.
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The displacement and pressure nodes
and antinodes are interchanged.

The pressure is oscillating around
atmospheric pressure patmos.

exAMPLe 21.4  Singing in the shower
A shower stall is 2.45 m (8 ft) tall. For what frequencies less than 500 Hz are there stand-
ing sound waves in the shower stall?

MOdeL The shower stall, to a first approximation, is a column of air 2.45 m long. It is 
closed at the ends by the ceiling and floor. Assume a 20�C speed of sound.

vISuALIze A standing sound wave will have nodes at the ceiling and the floor. The m = 2 
mode will look like Figure 21.17 rotated 90�.

SOLve The fundamental frequency for a standing sound wave in this air column is

f1 =
v

2L
=

343 m/s

2(2.45 m)
= 70 Hz

The possible standing-wave frequencies are integer multiples of the fundamental fre-
quency. These are 70 Hz, 140 Hz, 210 Hz, 280 Hz, 350 Hz, 420 Hz, and 490 Hz.

ASSeSS The many possible standing waves in a shower cause the sound to resonate, 
which helps explain why some people like to sing in the shower. Our approximation of 
the shower stall as a one-dimensional tube is actually a bit too simplistic. A three-dimen-
sional analysis would find additional modes, making the “sound spectrum” even richer.

Air columns closed at both ends are of limited interest unless, as in Example 21.4, 
you are inside the column. Columns of air that emit sound are open at one or both ends. 
Many musical instruments fit this description. For example, a flute is a tube of air open 
at both ends. The flutist blows across one end to create a standing wave inside the tube, 



and a note of that frequency is emitted from both ends of the flute. (The blown end of 
a flute is open on the side, rather than across the tube. That is necessary for practical 
reasons of how flutes are played, but from a physics perspective this is the “end” of 
the tube because it opens the tube to the atmosphere.) A trumpet, however, is open at 
the bell end but is closed by the player’s lips at the other end.

You saw earlier that a wave is partially transmitted and partially reflected at a dis-
continuity. When a sound wave traveling through a tube of air reaches an open end, 
some of the wave’s energy is transmitted out of the tube to become the sound that you 
hear and some portion of the wave is reflected back into the tube. These reflections, 
analogous to the reflection of a string wave from a boundary, allow standing sound 
waves to exist in a tube of air that is open at one or both ends.

Not surprisingly, the boundary condition at the open end of a column of air is not 
the same as the boundary condition at a closed end. The air pressure at the open end of 
a tube is constrained to match the atmospheric pressure of the surrounding air. Conse-
quently, the open end of a tube must be a pressure node. Because pressure nodes and 
antinodes are interchanged with those of the displacement wave, an open end of an 
air column is required to be a displacement antinode. (A careful analysis shows that 
the antinode is actually just outside the open end, but for our purposes we’ll assume 
the antinode is exactly at the open end.)

FIgure 21.18 shows displacement and pressure graphs of the first three standing-wave 
modes of a tube closed at both ends (a closed-closed tube), a tube open at both ends (an 
open-open tube), and a tube open at one end but closed at the other (an open-closed tube), 
all with the same length L. Notice the pressure and displacement boundary conditions. 
The standing wave in the open-open tube looks like the closed-closed tube except that the 
positions of the nodes and antinodes are interchanged. In both cases there are m half-wave-
length segments between the ends; thus the wavelengths and frequencies of an open-open 
tube and a closed-closed tube are the same as those of a string tied at both ends:

FIgure 21.18 The first three standing sound wave modes in columns of air with different 
boundary conditions.
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 d lm =
2L
m

 

fm = m  
v

2L
= mf1

  
m = 1, 2, 3, 4, p

(open@open or closed@closed tube)
  (21.17)

The open-closed tube is different. The fundamental mode has only one-quarter of 
a wavelength in a tube of length L; hence the m = 1 wavelength is l1 = 4L. This is 
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twice the l1 wavelength of an open-open or a closed-closed tube. Consequently, the 
fundamental frequency of an open-closed tube is half that of an open-open or a 
closed-closed tube of the same length. It will be left as a homework problem for 
you to show that the possible wavelengths and frequencies of an open-closed tube of 
length L are

 d lm =
4L
m

 

fm = m 
v

4L
= mf1 

   
m = 1, 3, 5, 7, p

(open@closed tube)
  (21.18)

Notice that m in Equation 21.18 takes on only odd values.

Stop to think 21.3 
 An open-open tube of air supports standing waves at frequencies 

of 300 Hz and 400 Hz and at no frequencies between these two. The second harmonic 
of this tube has frequency

a. 100 Hz b. 200 Hz c. 400 Hz d. 600 Hz e. 800 Hz

Musical Instruments
An important application of standing waves is to musical instruments. Instruments 
such as the guitar, the piano, and the violin have strings fixed at the ends and tightened 
to create tension. A disturbance generated on the string by plucking, striking, or bow-
ing it creates a standing wave on the string.

The fundamental frequency of a vibrating string is

 f1 =
v

2L
=

1

2L
 BTs

m
 

where Ts is the tension in the string and m is its linear density. The fundamental fre-
quency is the musical note you hear when the string is sounded. Increasing the tension 
in the string raises the fundamental frequency, which is how stringed instruments are 
tuned.

NOTe  v is the wave speed on the string, not the speed of sound in air. 

For the guitar or the violin, the strings are all the same length and under approximately 
the same tension. Were that not the case, the neck of the instrument would tend to twist 

Standing waves also occur at the harmonics, but an open-closed 
tube has only odd harmonics. These are

   f3 = 3f1 = 10,500 Hz

   f5 = 5f1 = 17,500  Hz

Higher harmonics are beyond the range of human hearing, as dis-
cussed in Section 20.5.

ASSeSS The ear canal is short, so we expected the standing-wave 
frequencies to be relatively high. The air in your ear canal responds 
readily to sounds at these frequencies—what we call a resonance 
of the ear canal—and transmits theses sounds to the eardrum. Con-
sequently, your ear actually is slightly more sensitive to sounds 
with frequencies around 3500 Hz and 10,500 Hz than to sounds at 
nearby frequencies.

exAMPLe 21.5  resonances of the ear canal
The eardrum, which transmits sounds vibrations to the sensory or-
gans of the inner ear, lies at the end of the ear canal. For adults, 
the ear canal is about 2.5 cm in length. What frequency standing 
waves can occur in the ear canal that are within the range of hu-
man hearing? The speed of sound in the warm air of the ear canal 
is 350 m/s.

MOdeL The ear canal is open to the air at one end, closed by the 
eardrum at the other. We can model it as an open-closed tube. The 
standing waves will be those of Figure 21.18c.

SOLve The lowest standing-wave frequency is the fundamental 
frequency for a 2.5-cm-long open-closed tube:

f1 =
v

4L
=

350 m/s

4(0.025 m)
= 3500 Hz



toward the side of higher tension. The strings have different frequencies because they dif-
fer in linear density: The lower-pitched strings are “fat” while the higher-pitched strings 
are “skinny.” This difference changes the frequency by changing the wave speed. Small 
adjustments are then made in the tension to bring each string to the exact desired frequency. 
Once the instrument is tuned, you play it by using your fingertips to alter the effective 
length of the string. As you shorten the string’s length, the frequency and pitch go up.

A piano covers a much wider range of frequencies than a guitar or violin. This 
range cannot be produced by changing only the linear densities of the strings. The 
high end would have strings too thin to use without breaking, and the low end would 
have solid rods rather than flexible wires! So a piano is tuned through a combination 
of changing the linear density and the length of the strings. The bass note strings are 
not only fatter, they are also longer.

With a wind instrument, blowing into the mouthpiece creates a standing sound 
wave inside a tube of air. The player changes the notes by using her fingers to cover 
holes or open valves, changing the length of the tube and thus its frequency. The fact 
that the holes are on the side makes very little difference; the first open hole becomes 
an antinode because the air is free to oscillate in and out of the opening.

A wind instrument’s frequency depends on the speed of sound inside the instrument. 
But the speed of sound depends on the temperature of the air. When a wind player first 
blows into the instrument, the air inside starts to rise in temperature. This increases the 
sound speed, which in turn raises the instrument’s frequency for each note until the 
air temperature reaches a steady state. Consequently, wind players must “warm up” 
before tuning their instrument.

Many wind instruments have a “buzzer” at one end of the tube, such as a vibrating reed 
on a saxophone or vibrating lips on a trombone. Buzzers generate a continuous range of 
frequencies rather than single notes, which is why they sound like a “squawk” if you play 
on just the mouthpiece without the rest of the instrument. When a buzzer is connected to the 
body of the instrument, most of those frequencies cause no response of the air molecules. 
But the frequency from the buzzer that matches the fundamental frequency of the instru-
ment causes the buildup of a large-amplitude response at just that frequency—a standing-
wave resonance. This is the energy input that generates and sustains the musical note.

The strings on a harp vibrate as standing 
waves. Their frequencies determine the 
notes that you hear.

The clarinet, an open-closed tube, has

 f1 =
v

4L
=

350 m/s

4(0.660 m)
= 133 Hz

The next higher harmonic on the flute’s open-open tube is m = 2 
with frequency f2 = 2 f1 = 550 Hz. An open-closed tube has only 
odd harmonics, so the next higher harmonic of the clarinet is 
f3 = 3 f1 = 399 Hz.

ASSeSS The clarinet plays a much lower note than the flute—
musically, about an octave lower—because it is an open-closed 
tube. It’s worth noting that neither of our fundamental frequencies 
is exactly correct because our open-open and open-closed tube 
models are a bit too simplified to adequately describe a real instru-
ment. However, both calculated frequencies are close because our 
models do capture the essence of the physics.

exAMPLe 21.6  Flutes and clarinets
A clarinet is 66.0 cm long. A flute is nearly the same length, with 
63.5 cm between the hole the player blows across and the end of 
the flute. What are the frequencies of the lowest note and the next 
higher harmonic on a flute and on a clarinet? The speed of sound 
in warm air is 350 m/s.

MOdeL The flute is an open-open tube, open at the end as well as 
at the hole the player blows across. A clarinet is an open-closed 
tube because the player’s lips and the reed seal the tube at the up-
per end.

SOLve The lowest frequency is the fundamental frequency. For 
the flute, an open-open tube, this is

 f1 =
v

2L
=

350 m/s

2(0.635 m)
= 275 Hz

A vibrating string plays the musical note corresponding to the fundamental frequency 
f1, so stringed instruments must use several strings to obtain a reasonable range of 
notes. In contrast, wind instruments can sound at the second or third harmonic of the 
tube of air (f2 or f3). These higher frequencies are sounded by overblowing (flutes, 
brass instruments) or with keys that open small holes to encourage the formation of 
an antinode at that point (clarinets, saxophones). The controlled use of these higher 
harmonics gives wind instruments a wide range of notes.

21.4 . Standing Sound Waves and Musical Acoustics    603



604    c h a p t e r  21 . Superposition

21.5 Interference in One dimension
One of the most basic characteristics of waves is the ability of two waves to combine 
into a single wave whose displacement is given by the principle of superposition. The 
pattern resulting from the superposition of two waves is often called interference. 
A standing wave is the interference pattern produced when two waves of equal fre-
quency travel in opposite directions. In this section we will look at the interference of 
two waves traveling in the same direction.

FIgure 21.19 Two overlapped waves travel along the x-axis.
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Partially 
silvered
mirror

(a) Two overlapped light waves

Speaker 2

(b) Two overlapped sound waves
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FIgure 21.20 Waves from three sources 
having phase constants f0 = 0 rad, 
f0 = p/2 rad, and f0 = p rad.
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(a) Snapshot graph at t � 0 for f0 � 0 rad

When this crest was emitted,
a quarter cycle ago, the speaker
cone was all the way forward.

Now this speaker cone, at x � 0, 
is centered and moving backward.
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This speaker cone is
all the way forward.

v

(b) Snapshot graph at t � 0 for f0 � p/2 rad
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This speaker cone is centered
and moving forward.

When this trough was emitted,
a quarter cycle ago, the speaker
cone was all the way back.

v

(c) Snapshot graph at t � 0 for f0 � p rad

FIgure 21.19a shows two light waves impinging on a partially silvered mirror. Such 
a mirror partially transmits and partially reflects each wave, causing two overlapped 
light waves to travel along the x-axis to the right of the mirror. Or consider the two 
loudspeakers in FIgure 21.19b. The sound wave from loudspeaker 2 passes just to the 
side of loudspeaker 1; hence two overlapped sound waves travel to the right along 
the x-axis. We want to find out what happens when two overlapped waves travel in the 
same direction along the same axis.

Figure 21.19b shows a point on the x-axis where the overlapped waves are detected, 
either by your ear or by a microphone. This point is distance x1 from loudspeaker 1 and 
distance x2 from loudspeaker 2. (We will use loudspeakers and sound waves for most 
of our examples, but our analysis is valid for any wave.) What is the amplitude of the 
combined waves at this point?

Throughout this section, we will assume that the waves are sinusoidal, have the 
same frequency and amplitude, and travel to the right along the x-axis. Thus we 
can write the displacements of the two waves as

  D1  (x1, t) = a sin(kx1 - vt + f10) = a sin f1

  D2  (x2, t) = a sin(kx2 - vt + f20) = a sin f2 
(21.19)

where f1 and f2 are the phases of the waves. Both waves have the same wave number 
k = 2p/l and the same angular frequency v = 2pf.

The phase constants f10 and f20 are characteristics of the sources, not the medium. 
FIgure 21.20 shows snapshot graphs at t = 0 of waves emitted by three sources with 
phase constants f0 = 0 rad, f0 = p/2 rad, and f0 = p rad. You can see that the 
phase constant tells us what the source is doing at t � 0. For example, a loud-
speaker at its center position and moving backward at t = 0 has f0 = 0 rad. Looking 
back at Figure 21.19b, you can see that loudspeaker 1 has phase constant f10 = 0 rad 
and loudspeaker 2 has f20 = p rad.

NOTe  We will often consider identical sources, by which we mean that f20 = f10.
That is, the sources oscillate in phase. 

Let’s examine overlapped waves graphically before diving into the mathematics. 
FIgure 21.21 shows two important situations. In part a, the crests of the two waves are 
aligned as they travel along the x-axis. In part b, the crests of one wave align with the 
troughs of the other wave. The graphs and the wave fronts are slightly displaced from 
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each other so that you can see what each wave is doing, but the physical situation is 
one in which the waves are traveling on top of each other. Recall, from Chapter 20, 
that the wave fronts shown in the middle panel locate the crests of the waves.

The two waves of FIgure 21.21a have the same displacement at every point: 
D1  (x) = D2  (x). Two waves that are aligned crest to crest and trough to trough are said 
to be in phase. Waves that are in phase march along “in step” with each other.

When we combine two in-phase waves, using the principle of superposition, the 
net displacement at each point is twice the displacement of each individual wave. 
The superposition of two waves to create a traveling wave with an amplitude larger 
than either individual wave is called constructive interference. When the waves 
are exactly in phase, giving A = 2a, we have maximum constructive interference.

In FIgure 21.21b, where the crests of one wave align with the troughs of the other, the 
waves march along “out of step” with D1  (x) = -D2  (x) at every point. Two waves that 
are aligned crest to trough are said to be 180° out of phase or, more generally, just out 
of phase. A superposition of two waves to create a wave with an amplitude smaller 
than either individual wave is called destructive interference. In this case, because 
D1 = -D2, the net displacement is zero at every point along the axis. The combina-
tion of two waves that cancel each other to give no wave is called perfect destructive 
interference.

NOTe  Perfect destructive interference occurs only if the two waves have equal 
wavelengths and amplitudes, as we’re assuming. Two waves of unequal amplitudes 
can interfere destructively, but the cancellation won’t be perfect. 

The Phase difference
To understand interference, we need to focus on the phases of the two waves, which 
are

  f1 = kx1 - vt + f10

  f2 = kx2 - vt + f20 
(21.20)

The difference between the two phases f1 and f2, called the phase difference �f, is

  �f = f2 - f1 = (kx2 - vt + f20 ) - (kx1 - vt + f10 )

  = k(x2 - x1 ) + (f20 - f10 )

  = 2p 
�x

l
+ �f0  

(21.21)

You can see that there are two contributions to the phase difference. �x = x2 - x1, 
the distance between the two sources, is called path-length difference. It is the extra 
distance traveled by wave 2 on the way to the point where the two waves are com-
bined. �f0 = f20 - f10 is the inherent phase difference between the sources.

The condition of being in phase, where crests are aligned with crests and troughs 
with troughs, is �f = 0, 2p, 4p, or any integer multiple of 2p rad. Thus the condi-
tion for maximum constructive interference is

  Maximum constructive interference:

  �f = 2p 
�x

l
+ �f0 = m # 2p rad  m = 0, 1, 2, 3, p  

(21.22)

For identical sources, which have �f0 = 0 rad, maximum constructive interference 
occurs when �x = ml. That is, two identical sources produce maximum construc-
tive interference when the path-length difference is an integer number of wave-
lengths.

FIgure 21.21 Constructive and 
destructive interference of two waves 
traveling along the x-axis.
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FIgure 21.22 shows two identical sources (i.e., the two loudspeakers are doing the 
same thing at the same time), so �f0 = 0 rad. The path-length difference �x is the 
extra distance traveled by the wave from loudspeaker 2 before it combines with loud-
speaker 1. In this case, �x = l. Because a wave moves forward exactly one wave-
length during one period, loudspeaker 1 emits a crest exactly as a crest of wave 2 
passes by. The two waves are “in step,” with �f = 2p rad, so the two waves interfere 
constructively to produce a wave of amplitude 2a.

Perfect destructive interference, where the crests of one wave are aligned with the 
troughs of the other, occurs when two waves are out of phase, meaning that �f = p, 
3p, 5p, or any odd multiple of p rad. Thus the condition for perfect destructive in-
terference is

  Perfect destructive interference:

  �f = 2p 
�x

l
+ �f0 = 1m +

1

2 2 # 2p rad  m = 0, 1, 2, 3, p  (21.23)

For identical sources, which have �f0 = 0 rad, perfect destructive interference occurs 
when �x = (m +

1
2)l. That is, two identical sources produce perfect destructive 

interference when the path-length difference is a half-integer number of wavelengths.
Two waves can be out of phase because the sources are located at different posi-

tions, because the sources themselves are out of phase, or because of a combination of 
these two. FIgure 21.23 illustrates these ideas by showing three different ways in which 
two waves interfere destructively. Each of these three arrangements creates waves 
with �f = p rad.

FIgure 21.22 Two identical sources one 
wavelength apart.

Speaker 2

Identical sources
�f0 � 0
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from speaker 2 passes by.

The two waves are in phase (�f � 2p rad)
and interfere constructively.

FIgure 21.23 Destructive interference three ways.
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(c) The sources are both separated and
 partially out of phase.
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NOTe  Don’t confuse the phase difference of the waves (�f) with the phase dif-
ference of the sources (�f0). It is �f, the phase difference of the waves, that 
governs interference. 

SOLve A minimum sound intensity implies that the two sound 
waves are interfering destructively. Initially the loudspeakers are 
side by side, so the situation is as shown in Figure 21.23a with 
� x = 0 and �f0 = p rad. That is, the speakers themselves are 
out of phase. Moving one of the speakers does not change �f0, 
but it does change the path-length difference � x and thus increases 
the overall phase difference �f. Constructive interference, caus-
ing maximum intensity, is reached when

 �f = 2p 
� x

l
+ �f0 = 2p 

� x

l
+ p = 2p rad

exAMPLe 21.7  Interference between two sound waves
You are standing in front of two side-by-side loudspeakers playing 
sounds of the same frequency. Initially there is almost no sound 
at all. Then one of the speakers is moved slowly away from you. 
The sound intensity increases as the separation between the speak-
ers increases, reaching a maximum when the speakers are 0.75 m 
apart. Then, as the speaker continues to move, the intensity starts 
to decrease. What is the distance between the speakers when the 
sound intensity is again a minimum?

MOdeL The changing sound intensity is due to the interference of 
two overlapped sound waves.

vISuALIze Moving one speaker relative to the other changes the 
phase difference between the waves.
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where we used m = 1 because this is the first separation giving 
constructive interference. The speaker separation at which this oc-
curs is � x = l/2. This is the situation shown in FIgure 21.24.

Because �x = 0.75 m is l/2, the sound’s wavelength is 
l = 1.50 m. The next point of destructive interference, with 
m = 1, occurs when

 �f = 2p 
�x

l
+ �f0 = 2p 

�x

l
+ p = 3p rad

Thus the distance between the speakers when the sound intensity 
is again a minimum is

 �x = l = 1.50 m

ASSeSS A separation of l gives constructive interference for two 
identical speakers (�f0 = 0). Here the phase difference of p rad 
between the speakers (one is pushing forward as the other pulls 
back) gives destructive interference at this separation.

FIgure 21.24 Two out-of-phase sources 
generate waves that are in phase if the 
sources are one half-wavelength apart.

The sources are out of phase, �f0 = p rad.

The sources are
separated by half
a wavelength. 

As a result, the
waves are in
phase.

2

1

�x � 1
2l

Stop to think 21.4 
 Two loudspeakers emit waves with l = 2.0 m. Speaker 2 

is 1.0 m in front of speaker 1. What, if anything, can be done to cause construc-
tive interference between the two waves?

 a. Move speaker 1 forward (to the right) 1.0 m.
 b. Move speaker 1 forward (to the right) 0.5 m.
 c. Move speaker 1 backward (to the left) 0.5 m.
 d. Move speaker 1 backward (to the left) 1.0 m.
 e. Nothing. The situation shown already causes constructive interference.
 f. Constructive interference is not possible for any placement of the speakers.

1.0 m l � 2.0 m 

l � 2.0 m 

1

2

21.6 The Mathematics of Interference
Let’s look more closely at the superposition of two waves. As two waves of equal 
amplitude and frequency travel together along the x-axis, the net displacement of the 
medium is

  D = D1 + D2 = a sin(kx1 - vt + f10 ) + a sin(kx2 - vt + f20 )

  = a sin f1 + a sin f2  
(21.24)

where the phases f1 and f2 were defined in Equation 21.20.
A useful trigonometric identity is

 sin a + sin b = 2 cos31
2 (a - b)4  sin31

2 (a + b)4  (21.25)

This identity is certainly not obvious, although it is easily proven by working back-
ward from the right side. We can use this identity to write the net displacement of 
Equation 21.24 as

 D = c 2a cos 1�f

2 2 d  sin(kxavg - vt + (f0)avg) (21.26)

where �f = f2 - f1 is the phase difference between the two waves, exactly as in 
Equation 21.21. xavg = (x1 + x2 )/2 is the average distance to the two sources and 
(f0 )avg = (f10 + f20 )/2 is the average phase constant of the sources.

The sine term shows that the superposition of the two waves is still a traveling 
wave. An observer would see a sinusoidal wave moving along the x-axis with the same 
wavelength and frequency as the original waves.
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But how big is this wave compared to the two original waves? They each had am-
plitude a, but the amplitude of their superposition is

 A = ` 2a cos1�f

2 2 `  (21.27)

where we have used an absolute value sign because amplitudes must be positive. 
Depending upon the phase difference of the two waves, the amplitude of their super-
position can be anywhere from zero (perfect destructive interference) to 2a (maximum 
constructive interference).

The amplitude has its maximum value A = 2a if cos(�f/2) = { 1. This occurs 
when

 �f = m # 2p  (maximum amplitude A = 2a) (21.28)

where m is an integer. Similarly, the amplitude is zero if cos(�f/2) = 0, which occurs 
when

 �f = 1m +
1
22 # 2p  (minimum amplitude A = 0) (21.29)

Equations 21.28 and 21.29 are identical to the conditions of Equations 21.22 and 21.23 
for constructive and destructive interference. We initially found these conditions by 
considering the alignment of the crests and troughs. Now we have confirmed them 
with an algebraic addition of the waves.

It is entirely possible, of course, that the two waves are neither exactly in phase nor 
exactly out of phase. Equation 21.27 allows us to calculate the amplitude of the super-
position for any value of the phase difference. As an example, FIgure 21.25 shows the 
calculated interference of two waves that differ in phase by 40�, by 90�, and by 160�.

FIgure 21.25 The interference of two 
waves for three different values of the 
phase difference.
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For �f � 40�, the interference is constructive
but not maximum constructive.

For �f � 160�, the interference is destructive
but not perfect destructive.
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A � 1.41a

A � 1.88a

�f � 160� A � 0.35a

Application: Thin-Film Optical Coatings
The shimmering colors of soap bubbles and oil slicks, as seen in the photo at the be-
ginning of the chapter, are due to the interference of light waves. In fact, the idea of 
light-wave interference in one dimension has an important application in the optics 
industry, namely the use of thin-film optical coatings. These films, less than 1 mm 
(10-6 m) thick, are placed on glass surfaces, such as lenses, to control reflections from 
the glass. Antireflection coatings on the lenses in cameras, microscopes, and other 
optical equipment are examples of thin-film coatings.

 l =
v

f
=

343 m/s

500 Hz
= 0.686 m

Distances x1 = 2.00 m and x2 = 3.00 m are measured from the 
speakers, so the path-length difference is �x = 1.00 m. We’re 
given that the inherent phase difference between the speakers 
is �f0 = p/2 rad. Thus the phase difference at the observation 
point is

 �f = 2p 
�x

l
+ �f0 = 2p 

1.00 m

0.686 m
+
p

2
 rad = 10.73 rad

and the amplitude of the wave at this point is

A = ` 2a cos1�f

2 2 ` = ` (0.200 mm) cos110.73

2 2 ` = 0.121 mm

ASSeSS The interference is constructive because A 7 a, but less 
than maximum constructive interference.

exAMPLe 21.8  More interference of sound waves
Two loudspeakers emit 500 Hz sound waves with an amplitude of 
0.10 mm. Speaker 2 is 1.00 m behind speaker 1, and the phase dif-
ference between the speakers is 90�. What is the amplitude of the 
sound wave at a point 2.00 m in front of speaker 1?

MOdeL The amplitude is determined by the interference of the two 
waves. Assume that the speed of sound has a room-temperature 
(20�C) value of 343 m/s.

SOLve The amplitude of the sound wave is

 A = 0 2a cos(�f/2) 0
where a = 0.10 mm and the phase difference between the waves is

 �f = f2 - f1 = 2p 
�x

l
+ �f0

The sound’s wavelength is



FIgure 21.26 shows a light wave of wavelength l approaching a piece of glass that 
has been coated with a transparent film of thickness d whose index of refraction is n. 
The air-film boundary is a discontinuity at which the wave speed suddenly decreases, 
and you saw earlier, in Figure 21.8, that a discontinuity causes a reflection. Most of the 
light is transmitted into the film, but a little bit is reflected.

Furthermore, you saw in Figure 21.8 that the wave reflected from a discon-
tinuity at which the speed decreases is inverted with respect to the incident wave. 
For a sinusoidal wave, which we’re now assuming, the inversion is represented 
mathematically as a phase shift of p rad. The speed of a light wave decreases when 
it enters a material with a larger index of refraction. Thus a light wave that reflects 
from a boundary at which the index of refraction increases has a phase shift of P 
rad. There is no phase shift for the reflection from a boundary at which the index of 
refraction decreases. The reflection in Figure 21.26 is from a boundary between air 
(nair = 1.00) and a transparent film with nfilm 7 nair, so the reflected wave is inverted 
due to the phase shift of p rad.

When the transmitted wave reaches the glass, most of it continues on into the glass 
but a portion is reflected back to the left. We’ll assume that the index of refraction of 
the glass is larger than that of the film, nglass 7 nfilm, so this reflection also has a phase 
shift of p rad. This second reflection, after traveling back through the film, passes 
back into the air. There are now two equal-frequency waves traveling to the left, and 
these waves will interfere. If the two reflected waves are in phase, they will interfere 
constructively to cause a strong reflection. If the two reflected waves are out of phase, 
they will interfere destructively to cause a weak reflection or, if their amplitudes are 
equal, no reflection at all.

This suggests practical uses for thin-film optical coatings. The reflections from 
glass surfaces, even if weak, are often undesirable. For example, reflections degrade 
the performance of optical equipment. These reflections can be eliminated by coating 
the glass with a film whose thickness is chosen to cause destructive interference of the 
two reflected waves. This is an antireflection coating.

The amplitude of the reflected light depends on the phase difference between the 
two reflected waves. This phase difference is

  �f = f2 - f1 = (kx2 + f20 + p rad) - (kx1 + f10 + p rad)

  = 2p 
�x

lf 
+ �f0  

(21.30)

where we explicitly included the reflection phase shift of each wave. In this case, be-
cause both waves had a phase shift of p rad, the reflection phase shifts cancel.

The wavelength lf is the wavelength in the film because that’s where the path-
length difference �x occurs. You learned in Chapter 20 that the wavelength in a trans-
parent material with index of refraction n is lf = l/n, where the unsubscripted l is the 
wavelength in vacuum or air. That is, l is the wavelength that we measure on “our” 
side of the air-film boundary.

The path-length difference between the two waves is �x = 2d because wave 2 
travels through the film twice before rejoining wave 1. The two waves have a common 
origin—the initial division of the incident wave at the front surface of the film—so the 
inherent phase difference is �f0 = 0. Thus the phase difference of the two reflected 
waves is

 �f = 2p 
2d

l/n
= 2p 

2nd

l
 (21.31)

The interference is constructive, causing a strong reflection, when �f = m # 2p rad. 
So when both reflected waves have a phase of p rad, constructive interference occurs 
for wavelengths

 lC =
2nd
m

   m = 1, 2, 3, p  (constructive interference) (21.32)

FIgure 21.26 The two reflections, one 
from the coating and one from the 
glass, interfere.

1. Incident wave
 approaches
    the first surface.

4. The two reflected
 waves are overlapped
 and interfere.

GlassThin film
Index n

d

lf

l

Air

2. Part of the wave reflects back
 with a phase shift of p rad, part
 continues on into the film. 

3. Part of the transmitted wave
 reflects at the second surface,
 part continues on into the glass.

Antireflection coatings use the interference 
of light waves to nearly eliminate 
reflections from glass surfaces.
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You will notice that m starts with 1, rather than 0, in order to give meaningful results. 
Destructive interference, with minimum reflection, requires �f = 1m -

1
22 #  2p rad. 

This—again, when both waves have a phase shift of p rad—occurs for wavelengths

 lD =
2nd

m -
1
2 

   m = 1, 2, 3, p  (destructive interference) (21.33)

We’ve used m -
1
2, rather than m +

1
2, so that m can start with 1 to match the condition 

for constructive interference.

NOTe  The exact condition for constructive or destructive interference is satis-
fied for only a few discrete wavelengths l. Nonetheless, reflections are strongly 
enhanced (nearly constructive interference) for a range of wavelengths near lC. 
Likewise, there is a range of wavelengths near lD for which the reflection is nearly 
canceled. 

FIgure 21.27 A circular or spherical wave.

The wave fronts are
crests, separated by l.

Troughs are halfway
between wave fronts.

Source

r

v

This graph shows the
displacement of the 
medium.

l

The film thickness is significantly less than the wavelength of vis-
ible light!

ASSeSS The reflected light is completely eliminated (perfect de-
structive interference) only if the two reflected waves have equal 
amplitudes. In practice, they don’t. Nonetheless, the reflection is 
reduced from �  4% of the incident intensity for “bare glass” to 
well under 1%. Furthermore, the intensity of reflected light is much 
reduced across most of the visible spectrum (400–700 nm), even 
though the phase difference deviates more and more from p rad 
as the wavelength moves away from 510 nm. It is the increasing 
reflection at the ends of the visible spectrum (l � 400 nm and 
l � 700 nm), where �f deviates significantly from p rad, that 
gives a reddish-purple tinge to the lenses on cameras and binocu-
lars. Homework problems will let you explore situations where 
only one of the two reflections has a reflection phase shift of p rad.

exAMPLe 21.9  designing an antireflection coating
Magnesium fluoride (MgF2) is used as an antireflection coating 
on lenses. The index of refraction of MgF2 is 1.39. What is the 
thinnest film of MgF2 that works as an antireflection coating at 
l = 510 nm, near the center of the visible spectrum?

MOdeL Reflection is minimized if the two reflected waves inter-
fere destructively.

SOLve The film thicknesses that cause destructive interference at 
wavelength l are

 d = 1m -
1

2 2  
l

2n

The thinnest film has m = 1. Its thickness is

 d =
l

4n
=

510 nm

4(1.39)
= 92 nm

21.7  Interference in Two and 
Three dimensions

Ripples on a lake move in two dimensions. The glow from a lightbulb spreads outward 
as a spherical wave. A circular or spherical wave can be written

 D(r, t) = a sin(kr - vt + f0 ) (21.34)

where r is the distance measured outward from the source. Equation 21.34 is 
our familiar wave equation with the one-dimensional coordinate x replaced by a more 
general radial coordinate r. Strictly speaking, the amplitude a of a circular or spherical 
wave diminishes as r increases. However, we will assume that a remains essentially 
constant over the region in which we study the wave. FIgure 21.27 shows the wave-front 
diagram for a circular or spherical wave. Recall that the wave fronts represent the 
crests of the wave and are spaced by the wavelength l.

What happens when two circular or spherical waves overlap? For example, imagine 
two paddles oscillating up and down on the surface of a pond. We will assume that 
the two paddles oscillate with the same frequency and amplitude and that they are in 
phase. FIgure 21.28 shows the wave fronts of the two waves. The ripples overlap as they 
travel, and, as was the case in one dimension, this causes interference.

Constructive interference with A = 2a occurs where two crests align or two troughs 
align. Several locations of constructive interference are marked in Figure 21.28. In-
tersecting wave fronts are points where two crests are aligned. It’s a bit harder to 
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visualize, but two troughs are aligned when a midpoint between two wave fronts is 
overlapped with another midpoint between two wave fronts. Destructive interference 
with A = 0 occurs where the crest of one wave aligns with a trough of the other wave. 
Several points of destructive interference are also indicated in Figure 21.28.

A picture on a page is static, but the wave fronts are in motion. Try to imagine the 
wave fronts of Figure 21.28 expanding outward as new circular rings are born at the 
sources. The waves will move forward half a wavelength during half a period, causing 
the crests in Figure 21.28 to be replaced by troughs while the troughs become crests.

The important point to recognize is that the motion of the waves does not affect 
the points of constructive and destructive interference. Points in the figure where 
two crests overlap will become points where two troughs overlap, but this overlap is 
still constructive interference. Similarly, points in the figure where a crest and a trough 
overlap will become a point where a trough and a crest overlap—still destructive in-
terference.

The mathematical description of interference in two or three dimensions is very 
similar to that of one-dimensional interference. The net displacement of a particle in 
the medium is

 D = D1 + D2 = a sin(kr1 - vt + f10 ) + a sin(kr2 - vt + f20 ) (21.35)

The only difference between Equation 21.35 and the earlier one-dimensional 
Equation 21.24 is that the linear coordinates x1 and x2 have been changed to radial 
coordinates r1 and r2. Thus our conclusions are unchanged. The superposition of the 
two waves yields a wave traveling outward with amplitude

 A = ` 2a cos1�f

2 2 `  (21.36)

where the phase difference, with x replaced by r, is now

 �f = 2p 
�r

l
+ �f0 (21.37)

The term 2p(�r/l) is the phase difference that arises when the waves travel differ-
ent distances from the sources to the point at which they combine. �r itself is the 
path-length difference. As before, �f0 is any inherent phase difference of the sources 
themselves.

Maximum constructive interference with A = 2a occurs, just as in one dimension, 
at those points where cos(�f/2) = { 1. Similarly, perfect destructive interference 
occurs at points where cos(�f/2) = 0. The conditions for constructive and destructive 
interference are

 Maximum constructive interference:

 �f = 2p 
�r

l
+ �f0 = m # 2p

 Perfect destructive interference:

 �f = 2p 
�r

l
+ �f0 = 1m +

1

2 2 # 2p  

m = 0, 1, 2, p  (21.38)

For two identical sources (i.e., sources that oscillate in phase with �f0 = 0) , the 
conditions for constructive and destructive interference are simple:

 Constructive:   �r = ml

 Destructive:    �r = 1m +
1

2 2l  
(identical sources) (21.39)

Two overlapping water waves create an 
interference pattern.

FIgure 21.28 The overlapping ripple 
patterns of two sources. Several 
points of constructive and destructive 
interference are noted.

Two in-phase sources emit
circular or spherical waves.

Points of constructive interference.
A crest is aligned with a crest, or a
trough with a trough.

Points of destructive interference.
A crest is aligned with a trough of
another wave.

l

l
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The waves from two identical sources interfere constructively at points where the 
path-length difference is an integer number of wavelengths because, for these val-
ues of �r, crests are aligned with crests and troughs with troughs. The waves interfere 
destructively at points where the path-length difference is a half-integer number 
of wavelengths because, for these values of �r, crests are aligned with troughs. These 
two statements are the essence of interference.

NOTe  Equation 21.39 applies only if the sources are in phase. If the sources are 
not in phase, you must use the more general Equation 21.38 to locate the points of 
constructive and destructive interference. 

Wave fronts are spaced exactly one wavelength apart; hence we can measure the 
distances r1 and r2 simply by counting the rings in the wave-front pattern. In FIgure 21.29, 
which is based on Figure 21.28, point A is distance r1 = 3l from the first source and 
r2 = 2l from the second. The path-length difference is �rA = 1l, the condition for 
the maximum constructive interference of identical sources. Point B has �rB =

1
2  l, 

so it is a point of perfect destructive interference.

NOTe  Interference is determined by �r, the path-length difference, rather than 
by r1 or r2. 

Stop to think 21.5 
 The interference at point C in Figure 21.29 is

 a. Maximum constructive. b. Constructive, but less than maximum.
 c. Perfect destructive. d. Destructive, but not perfect.
 e. There is no interference at point C.

We can now locate the points of maximum constructive interference, for which 
�r = ml, by drawing a line through all the points at which �r = 0, another line 
through all the points at which �r = l, and so on. These lines, shown in red in 
FIgure 21.30, are called antinodal lines. They are analogous to the antinodes of a 
standing wave, hence the name. An antinode is a point of maximum constructive 
interference; for circular waves, oscillation at maximum amplitude occurs along a 
continuous line. Similarly, destructive interference occurs along lines called nodal 
lines. The displacement is always zero along these lines, just as it is at a node in a 
standing-wave pattern.

FIgure 21.29 The path-length difference 
�r determines whether the interference 
at a particular point is constructive or 
destructive.

At A, �rA � l, so this is a point
of constructive interference.

C

A 2l
2.5l

3l3l

B

At B, �rB �   l, so this is a point
of destructive interference.

1
2

FIgure 21.30 The points of constructive and destructive interference fall along antinodal 
and nodal lines.

Antinodal lines, constructive
interference, oscillation with
maximum amplitude. Intensity
is at its maximum value.

�r � l

�r � l

�r � l

�r � 2l

�r � 2l

�r � 0

�r � l

�r � l

3
2

3
2

1
2

�r � l
1
2

Nodal lines, destructive
interference, no oscillation.
Intensity is zero.



A Problem-Solving Strategy for Interference Problems
The information in this section is the basis of a strategy for solving interference prob-
lems. This strategy applies equally well to interference in one dimension if you use 
�x instead of �r.

PrOBLeM-SOLvINg
STrATegy 21.1  Interference of two waves

MOdeL Make simplifying assumptions, such as assuming waves are circular and 
of equal amplitude.

vISuALIze Draw a picture showing the sources of the waves and the point where 
the waves interfere. Give relevant dimensions. Identify the distances r1 and r2 
from the sources to the point. Note any phase difference �f0 between the two 
sources.

SOLve The interference depends on the path-length difference �r = r2 - r1 and 
the source phase difference �f0.

 

Constructive: �f = 2p 
�r

l
+ �f0 = m # 2p

Destructive: �f = 2p 
�r

l
+ �f0 = 1m +

1

2 2 # 2p

   m = 0, 1, 2, p

For identical sources (�f0 = 0), the interference is maximum constructive if 
�r = ml, perfect destructive if �r = 1m +

1
22l.

ASSeSS Check that your result has the correct units, is reasonable, and answers 
the question.

Exercise 18 

SOLve It’s not r1 and r2 that matter, but the difference �r between 
them. From the geometry of the figure we can calculate that

  r1 = 2(5.0 m)2 + (1.0 m)2 = 5.10 m

  r2 = 2(5.0 m)2 + (3.0 m)2 = 5.83 m

Thus the path-length difference is �r = r2 - r1 = 0.73 m. The 
wavelength of the sound waves is

 l =
v

f
=

341 m/s

700 Hz
= 0.487 m

In terms of wavelengths, the path-length difference is 
�r/l = 1.50, or

 �r =
3

2
 l

Because the sources are in phase (�f0 = 0), this is the condi-
tion for destructive interference. If the sources were out of phase 
(�f0 = p rad), then the phase difference of the waves at the lis-
tener would be

 �f = 2p 
�r

l
+ �f0 = 2p13

2 2 + p rad = 4p rad

This is an integer multiple of 2p rad, so in this case the interfer-
ence would be constructive.

ASSeSS Both the path-length difference and any inherent phase 
difference of the sources must be considered when evaluating 
interference.

exAMPLe 21.10   Two-dimensional interference between two loudspeakers
Two loudspeakers in a plane are 2.0 m apart and in phase with 
each other. Both emit 700 Hz sound waves into a room where the 
speed of sound is 341 m/s. A listener stands 5.0 m in front of the 
loudspeakers and 2.0 m to one side of the center. Is the interfer-
ence at this point maximum constructive, perfect destructive, or 
in between? How will the situation differ if the loudspeakers are 
out of phase?

MOdeL The two speakers are sources of in-phase, spherical 
waves. The overlap of these waves causes interference.

vISuALIze FIgure 21.31 shows the loudspeakers and defines the 
distances r1 and r2 to the point of observation. The figure includes 
dimensions and notes that �f0 = 0 rad.

FIgure 21.31 Pictorial representation of the 
interference between two loudspeakers.

21.7 . Interference in Two and Three Dimensions    613
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Picturing Interference
A contour map is a useful way to visualize an interference pattern. FIgure 21.32a shows 
the superposition of the waves from two identical sources (�f0 = 0) emitting waves 
with l = 1 m. The sources, indicated with black dots, are located two wavelengths 
apart at y = {1 m. Positive displacements are shown in red, with the deepest red 
representing the maximum displacement of the wave at this instant in time. These are 
the points where the crests of the individual waves interfere constructively to give 
D = 2a. Negative displacements are blue, with the darkest blue being the most nega-
tive displacement of the wave. These are also points of constructive interference, with 
two troughs overlapping to give D = -2a.

FIgure 21.32 A contour map of the interference pattern of two sources. The graph on 
the right side of each figure shows the wave intensity along a vertical line at x = 4 m.

�r � l

�r � 0

�4 �2 0

0

2 4

�r � l

4

2

0

�2

�4

y (m)

x (m) Intensity
at x � 4 m

(a) Two identical sources

Crest Zero Trough

�4 �2 0

0

2 4

4

2

0

�2

�4

Intensity
at x � 4 m

x (m)

y (m)(b) Two out-of-phase sources

Crest Zero Trough

To understand this figure, try to visualize the waves expanding outward from the 
center. The red@blue@red@blue@red@ gpattern of crests and troughs moves outward 
along the antinodal lines as a traveling wave of amplitude A = 2a. Nothing ever hap-
pens along the nodal lines, where the amplitude is always zero.

Suppose you were to observe the intensity of the wave as it crosses the vertical line 
at x = 4 m on the right edge of the figure. If, for example, these are sound waves, you 
could listen to (or measure with a microphone) the sound intensity as you walk from 
(x, y) = (4 m, -4 m) at the bottom of the figure to (x, y) = (4 m, 4 m) at the top. The 
intensity is zero as you cross the nodal lines at y � {1 m 1�r =

1
2  l2 . The inten-

sity is maximum at the antinodal lines at y = 0 (�r = 0) and y � {2.5 m (�r = l), 
where a wave of maximum amplitude streams out from the sources.

The intensity is shown in the rather unusual graph on the right side of 
Figure 21.32a. It is unusual in the sense that the intensity, the quantity of interest, is 
graphed to the left. The peaks are the points of constructive interference, where you 
would measure maximum amplitude. The zeros are points of destructive interference, 
where the intensity is zero.

FIgure 21.32b is a contour map of the interference pattern produced by the same two 
sources but with the sources themselves now out of phase (�f0 = p rad). We’ll leave 
the investigation of this figure to you, but notice that the nodal and antinodal lines are 
reversed from those of Figure 21.32a.
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Stop to think 21.6  These two loudspeakers 
are in phase. They emit equal-amplitude 
sound waves with a wavelength of 1.0 m. At 
the point indicated, is the interference max-
imum constructive, perfect destructive, or 
something in between?

21.8 Beats
Thus far we have looked at the superposition of sources having the same wavelength 
and frequency. We can also use the principle of superposition to investigate a phe-
nomenon that is easily demonstrated with two sources of slightly different frequency.

If you listen to two sounds with very different frequencies, such as a high note and 
a low note, you hear two distinct tones. But if the frequency difference is very small, 
just one or two hertz, then you hear a single tone whose intensity is modulated once or 
twice every second. That is, the sound goes up and down in volume, loud, soft, loud, 
soft, . . . , making a distinctive sound pattern called beats.

so the intensity of each speaker alone is I0 = ca2, where c is an 
unknown proportionality constant. Point A is a point of construc-
tive interference because the speakers are in phase (�f0 = 0) and 
the path-length difference is �r = 0. The amplitude at this point 
is given by Equation 21.36:

 A A = ` 2a cos1�f

2 2 ` = 2a cos(0) = 2a

Consequently, the intensity at this point is

 IA = cAA 

2 = c(2a)2 = 4ca2 = 4I0

The intensity at A is four times that of either speaker played alone.
At point B, the path-length difference is

 �r = 2(10.0 m)2 + (6.0 m)2 - 10.0 m = 1.662 m

The phase difference of the waves at this point is

 �f = 2p 
�r

l
= 2p 

1.662 m

1.0 m
= 10.44 rad

Consequently, the amplitude at B is

 AB = ` 2a cos1�f

2 2 ` = 0 2a cos(5.22 rad) 0 = 0.972a

Thus the intensity at this point is

 IB = cAB 

2 = c(0.972a)2 = 0.95ca2 = 0.95I0

ASSeSS Although B is directly in front of one of the speakers, su-
perposition of the two waves results in an intensity that is less than 
it would be if this speaker played alone.

exAMPLe 21.11   The intensity of two interfering loudspeakers

FIgure 21.33 Pictorial representation of the interference 
between two loudspeakers.

10.0 m

�f0 � 0 rad

B

l � 1.0 m

l � 1.0 m

r1

r2

6.0 m A

8.5 m

9.5 m

l � 1.0 m

l � 1.0 m

Two loudspeakers in a plane are 6.0 m apart and in phase. They 
emit equal-amplitude sound waves with a wavelength of 1.0 m. 
Each speaker alone creates sound with intensity I0. An observer 
at point A is 10 m in front of the plane containing the two loud-
speakers and centered between them. A second observer at point 
B is 10 m directly in front of one of the speakers. In terms of 
I0, what are the intensity IA at point A and the intensity IB at 
point B?

MOdeL The two speakers are sources of in-phase waves. The 
overlap of these waves causes interference.

vISuALIze FIgure 21.33 shows the two loudspeakers and the 
two points of observation. Distances r1 and r2 are defined for 
point B.

SOLve Let the amplitude of the wave from each speaker be a. The 
intensity of a wave is proportional to the square of the amplitude, 
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Consider two sinusoidal waves traveling along the x-axis with angular frequencies 
v1 = 2pf1 and v2 = 2pf2. The two waves are

  D1 = a sin(k1x - v1t + f10) 
(21.40)

  D2 = a sin(k2x - v2t + f20) 

where the subscripts 1 and 2 indicate that the frequencies, wave numbers, and phase 
constants of the two waves may be different.

To simplify the analysis, let’s make several assumptions:

 1. The two waves have the same amplitude a,
 2. A detector, such as your ear, is located at the origin (x = 0),
 3. The two sources are in phase (f10 = f20), and
 4. The source phases happen to be f10 = f20 = p rad.

None of these assumptions is essential to the outcome. All could be otherwise and we 
would still come to basically the same conclusion, but the mathematics would be far 
messier. Making these assumptions allows us to emphasize the physics with the least 
amount of mathematics.

With these assumptions, the two waves as they reach the detector at x = 0 are

  D1 = a sin(-v1t + p) = a sin v1t 
(21.41)

  D2 = a sin(-v2t + p) = a sin v2t 

where we’ve used the trigonometric identity sin(p - u) = sin u. The principle of 
superposition tells us that the net displacement of the medium at the detector is the 
sum of the displacements of the individual waves. Thus

 D = D1 + D2 = a(sin v1t + sin v2t) (21.42)

Earlier, for interference, we used the trigonometric identity

 sin a + sin b = 2 cos31
2 (a - b)4  sin31

2 (a + b)4

We can use this identity again to write Equation 21.42 as

  D = 2a cos31
2 (v1 - v2)t4  sin31

2 (v1 + v2)t4  
(21.43)

  = 32a cos(vmodt)4  sin(vavgt)  

where vavg =
1
2 (v1 + v2) is the average angular frequency and vmod =

1
2 (v1 - v2) is 

called the modulation frequency.
We are interested in the situation when the two frequencies are very nearly equal: 

v1 � v2. In that case, vavg hardly differs from either v1 or v2 while vmod is very near 
to—but not exactly—zero. When vmod is very small, the term cos(vmodt) oscillates 
very slowly. We have grouped it with the 2a term because, together, they provide a 
slowly changing “amplitude” for the rapid oscillation at frequency vavg.

FIgure 21.34 is a history graph of the wave at the detector (x = 0). It shows the 
oscillation of the air against your eardrum at frequency favg = vavg/2p =

1
2 ( f1 + f2). 

This oscillation determines the note you hear; it differs little from the two notes at 
frequencies f1 and f2. We are especially interested in the time-dependent amplitude, 
shown as a dashed line, that is given by the term 2a cos(vmodt). This periodically vary-
ing amplitude is called a modulation of the wave, which is where vmod gets its name.

As the amplitude rises and falls, the sound alternates as loud, soft, loud, soft, and 
so on. But that is exactly what you hear when you listen to beats! The alternating loud 
and soft sounds arise from the two waves being alternately in phase and out of phase, 
causing constructive and then destructive interference.

FIgure 21.34 Beats are caused by the 
superposition of two waves of nearly 
identical frequency.

2a

�2a

D

LoudLoud Soft LoudSoft LoudSoft

0

The medium oscillates
rapidly at frequency favg.

The amplitude is slowly
modulated as 2a cos (vmod t).

t



Imagine two people walking side by side at just slightly different paces. Initially 
both of their right feet hit the ground together, but after a while they get out of 
step. A little bit later they are back in step and the process alternates. The sound 
waves are doing the same. Initially the crests of each wave, of amplitude a, arrive 
together at your ear and the net displacement is doubled to 2a. But after a while the 
two waves, being of slightly different frequency, get out of step and a crest of one 
arrives with a trough of the other. When this happens, the two waves cancel each 
other to give a net displacement of zero. This process alternates over and over, loud 
and soft.

Notice, from the figure, that the sound intensity rises and falls twice during one 
cycle of the modulation envelope. Each “loud-soft-loud” is one beat, so the beat fre-
quency fbeat, which is the number of beats per second, is twice the modulation fre-
quency fmod = vmod /2p. From the above definition of vmod, the beat frequency is

 fbeat = 2fmod = 2
vmod 

2p
= 2 # 1

2
 1v1 

2p
-

v2

2p 2 = f1 - f2 (21.44)

where, to keep fbeat from being negative, we will always let f1 be the larger of the two 
frequencies. The beat frequency is simply the difference between the two individual 
frequencies.

FIgure 21.35 The operation of a bat detector.

f1 � f2

f2

The mixer combines the signal from 
the bat with a sinusoidal wave from an 
oscillator. The result is a modulated wave.

The filter extracts the 
beat frequency, which 
is sent to the speaker.

Mixer Filter

Tunable
oscillator Speaker

f1

Microphone

Beats aren’t limited to sound waves. FIgure 21.36 shows a graphical example of 
beats. Two “fences” of slightly different frequencies are superimposed on each other. 
The difference in the two frequencies is two lines per inch. You can confirm, with a 
ruler, that the figure has two “beats” per inch, in agreement with Equation 21.44.

Beats are important in many other situations. For example, you have probably 
seen movies where rotating wheels seem to turn slowly backward. Why is this? 
Suppose the movie camera is shooting at 30 frames per second but the wheel is 
rotating 32 times per second. The combination of the two produces a “beat” of 
2 Hz, meaning that the wheel appears to rotate only twice per second. The same is 
true if the wheel is rotating 28 times per second, but in this case, where the wheel 
frequency slightly lags the camera frequency, it appears to rotate backward twice 
per second!

FIgure 21.36 A graphical example of 
beats.

27 lines per inch

25 lines per inch

The visual beat frequency 
is fbeat � 2 per inch.

exAMPLe 21.12  detecting bats with beats
The little brown bat is a common species in North America. It 
emits echolocation pulses at a frequency of 40 kHz, well above the 
range of human hearing. To allow researchers to “hear” these bats, 
the bat detector shown in FIgure 21.35 combines the bat’s sound 
wave at frequency f1 with a wave of frequency f2 from a tunable 
oscillator. The resulting beat frequency is then amplified and sent 
to a loudspeaker. To what frequency should the tunable oscillator 
be set to produce an audible beat frequency of 3 kHz?

SOLve Combining two waves with different frequencies gives a 
beat frequency

 fbeat = f1 - f2 

A beat frequency will be generated at 3 kHz if the oscillator 
frequency and the bat frequency differ by 3 kHz. An oscillator 
frequency of either 37 kHz or 43 kHz will work nicely.

ASSeSS The electronic circuitry of radios, televisions, and cell 
phones makes extensive use of mixers to generate difference 
frequencies.

21.8 . Beats    617
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structive interference—on either side. Comparing this to Figure 
21.30, where the two sources were in phase, you can see that the 
nodal and antinodal lines have been reversed.

SOLve Point P, 60 m to the side at a distance of 3000 m, needs to 
be a point of maximum constructive interference. The distances are

 r1 = 2(3000 m)2 + (60 m - 25 m)2 = 3000.204 m 

 r2 = 2(3000 m)2 + (60 m + 25 m)2 = 3001.204 m 

We needed to keep several extra significant figures because we’re 
looking for the difference between two numbers that are almost 
the same. The path-length difference at P is

 �r = r2 - r1 = 1.000 m

We know, for out-of-phase transmitters, that the phase difference 
of the sources is �f0 = p rad. The first maximum will occur 
where the phase difference between the waves is �f = 1 # 2p rad. 
Thus the condition that we must satisfy at P is

 �f = 2p rad = 2p 
�r

l
+ p rad

Solving for l, we find

 l = 2 �r = 2.00 m

Consequently, the required frequency is

 f =
c

l
=

3.00 * 108 m/s

2.00 m
= 1.50 * 108  Hz = 150 MHz

ASSeSS 150 MHz is slightly higher than the frequencies of FM 
radio (�  100 MHz) but is well within the radio frequency range. 
Notice that the condition to be satisfied at P is that the path-length 
difference must be 12 l. This makes sense. A path-length difference 
of 1

2 l contributes p rad to the phase difference. When combined 
with the p rad from the out-of-phase sources, the total phase dif-
ference of 2p rad creates constructive interference.

ChALLeNge exAMPLe 21.13  An airplane landing system
Your firm has been hired to design a system that allows airplane 
pilots to make instrument landings in rain or fog. You’ve decided 
to place two radio transmitters 50 m apart on either side of the run-
way. These two transmitters will broadcast the same frequency, 
but out of phase with each other. This will cause a nodal line to 
extend straight off the end of the runway. As long as the airplane’s 
receiver is silent, the pilot knows she’s directly in line with the 
runway. If she drifts to one side or the other, the radio will pick up 
a signal and sound a warning beep. To have sufficient accuracy, 
the first intensity maxima need to be 60 m on either side of the 
nodal line at a distance of 3.0 km. What frequency should you 
specify for the transmitters?

MOdeL The two transmitters are sources of out-of-phase, circular 
waves. The overlap of these waves produces an interference 
pattern.

vISuALIze For out-of-phase sources, the center line—with zero 
path-length difference—is a nodal line of perfect destructive 
interference because the two signals always arrive out of phase.  
FIgure 21.37 shows the nodal line, extending straight off the 
runway, and the first antinodal line—the points of maximum con-

FIgure 21.37 Pictorial representation of the landing system.

Stop to think 21.7  You hear three beats per second when two sound tones are 
generated. The frequency of one tone is 610 Hz. The frequency of the other is

 a. 604 Hz b. 607 Hz c. 613 Hz
 d. 616 Hz e. Either a or d. f. Either b or c.
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S u M M A r y
The goal of Chapter 21 has been to understand and use the idea of superposition.

Principle of Superposition
The displacement of a medium when more than one wave is present is the sum of the 
displacements due to each individual wave.

general Principles

Standing waves are due to the superposition of 
two traveling waves moving in opposite directions.

The amplitude at position x is

A (x) = 2a sin kx

where a is the ampli-
tude of each wave.

The boundary 
conditions determine 
which standing-wave 
frequencies and  
wavelengths are  
allowed. The allowed 
standing waves are 
modes of the system.

Interference
In general, the superposition of two or more waves 
into a single wave is called interference.

Maximum constructive interference occurs 
where crests are aligned with crests and troughs 
with troughs. These waves are in phase. The 
maximum displacement is A = 2a.

Perfect destructive interference occurs where 
crests are aligned with troughs. These waves are 
out of phase. The amplitude is A = 0.

Interference depends on the phase difference �f 
between the two waves.

 Constructive: �f = 2p 
�r

l
+ �f0 = m # 2p

 Destructive: �f = 2p 
�r

l
+ �f0 = 1m +

1

2 2 # 2p

�r is the path-length difference of the two waves, and �f0 is any phase 
difference between the sources. For identical sources (in phase, �f0 = 0):

 Interference is constructive if the path-length difference �r = ml.

 Interference is destructive if the path-length difference �r = 1m +
1
22l.

The amplitude at a point where the phase difference is �f is A = ` 2a cos1�f

2 2 ` .

Important Concepts

Node spacing is 12l.

Antinodes

Nodes

m � 3

Standing waves on a string

m � 2

m � 1

Antinodal lines, constructive
interference.  A � 2a 

Nodal lines, destructive
interference.  A � 0

Boundary conditions

Strings, electromagnetic waves, and sound waves in closed-
closed tubes must have nodes at both ends:

lm =
2L

m
  fm = m 

v

2L
= mf1

where m = 1, 2, 3, p .

The frequencies and wavelengths are the same for a sound wave 
in an open-open tube, which has antinodes at both ends.

A sound wave in an open-closed tube must have a node at the 
closed end but an antinode at the open end. This leads to

lm =
4L

m
   fm = m 

v

4L
= mf1

where m = 1, 3, 5, 7, p .

Beats (loud-soft-loud-soft modulations of intensity) occur when 
two waves of slightly different frequency are superimposed.

The beat frequency between waves of frequencies f1 and f2 is

fbeat = f1 - f2

Applications

D

LoudSoft

0

LoudSoft Soft

t
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principle of superposition
standing wave
node
antinode
amplitude function, A(x)
boundary condition
fundamental frequency, f1

harmonic

mode
interference
in phase
constructive interference
out of phase
destructive interference
phase difference, �f

path-length difference, �x or �r
thin-film optical coating
antinodal line
nodal line
beats
modulation
beat frequency, fbeat

Terms and Notation

C O N C e P T u A L  Q u e S T I O N S

 7. In music, two notes are said to be an octave apart when one note 
is exactly twice the frequency of the other. Suppose you have a 
guitar string playing frequency f0. To increase the frequency by 
an octave, to 2f0, by what factor would you have to (a) increase 
the tension or (b) decrease the length?

 8. FIgure Q21.8 is a snapshot graph of two plane waves passing 
through a region of space. Each wave has a 2.0 mm amplitude 
and the same wavelength. What is the net displacement of the 
medium at points a, b, and c?

 9. FIgure Q21.9 shows the circular waves emitted by two in-phase 
sources. Are points a, b, and c points of maximum constructive 
interference or perfect destructive interference? Explain.

 10. A trumpet player hears 5 beats per second when she plays a note 
and simultaneously sounds a 440 Hz tuning fork. After pulling 
her tuning valve out to slightly increase the length of her trum-
pet, she hears 3 beats per second against the tuning fork. Was her 
initial frequency 435 Hz or 445 Hz? Explain.

a b

c

Wave 1

Wave 2

FIgure Q21.8 FIgure Q21.9 

e x e r C I S e S  A N d  P r O B L e M S

Problems labeled  integrate material from earlier chapters.

exercises

Section 21.1 The Principle of Superposition

 1. | FIgure ex21.1 is a snapshot 
graph at t = 0 s of two waves 
approaching each other at 
1.0 m/s. Draw six snapshot 
graphs, stacked vertically, 
showing the string at 1 s inter-
vals from t = 1 s to t = 6 s.

 2. | FIgure ex21.2 is a snapshot graph at t = 0 s of two waves 
approaching each other at 1.0 m/s. Draw six snapshot graphs, 
stacked vertically, showing the string at 1 s intervals from 
t = 1 s to t = 6 s.

x (m)

1

0

�1 1.0 m/s

1.0 m/s

2 104 86

D (cm) at t � 0 s

FIgure ex21.1 

x (m)

1

0

�1

1.0 m/s1.0 m/s

2 104 86

D (cm) at t � 0 s

FIgure ex21.2 

 1. FIgure Q21.1 shows a standing 
wave oscillating on a string at 
frequency f0.

 a. What mode (m-value) is this?
 b. How many antinodes will there be if the frequency is doubled 

to 2f0?
 2. If you take snapshots of a standing wave on a string, there are 

certain instants when the string is totally flat. What has happened 
to the energy of the wave at those instants?

 3. FIgure Q21.3 shows the displace-
ment of a standing sound wave 
in a 32-cm-long horizontal tube 
of air open at both ends.

 a. What mode (m-value) is this?
 b. Are the air molecules mov-

ing horizontally or vertically? Explain.
 c. At what distances from the left end of the tube do the mol-

ecules oscillate with maximum amplitude?
 d. At what distances from the left end of the tube does the air 

pressure oscillate with maximum amplitude?
 4. An organ pipe is tuned to exactly 384 Hz when the room tem-

perature is 20�C. If the room temperature later increases to 22�C, 
does the pipe’s frequency increase, decrease, or stay the same? 
Explain.

 5. If you pour liquid into a tall, narrow glass, you may hear sound 
with a steadily rising pitch. What is the source of the sound? And 
why does the pitch rise as the glass fills?

 6. A flute filled with helium will, until the helium escapes, play 
notes at a much higher pitch than normal. Why?

FIgure Q21.1 

x (cm)

D

32
0

FIgure Q21.3 
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 3. || FIgure ex21.3 is a snapshot graph at t = 0 s of two waves ap-
proaching each other at 1.0 m/s. Draw four snapshot graphs, 
stacked vertically, showing the string at t = 2, 4, 6, and 8 s.

 4. || FIgure ex21.4a is a snapshot graph at t = 0 s of two waves 
approaching each other at 1.0 m/s.

 a. At what time was the snapshot graph in FIgure ex21.4b taken?
 b. Draw a history graph of the string at x = 5.0 m from t = 0 s 

to t = 6 s.

Section 21.2 Standing Waves

Section 21.3 Standing Waves on a String

 5. || FIgure ex21.5 is a snapshot graph at t = 0 s of two waves 
moving to the right at 1.0 m/s. The string is fixed at x = 8.0 m. 
Draw four snapshot graphs, stacked vertically, showing the 
string at t = 2, 4, 6, and 8 s.

 6. | FIgure ex21.6 shows a standing wave oscillating at 100 Hz on 
a string. What is the wave speed?

 7. || FIgure ex21.7 shows a standing wave on a 2.0-m-long string 
that has been fixed at both ends and tightened until the wave 
speed is 40 m/s. What is the frequency?

 8. || FIgure ex21.8 shows a stand-
ing wave that is oscillating at 
frequency f0.

 a. How many antinodes will 
there be if the frequency is 
doubled to 2f0? Explain.

 b. If the tension in the string is increased by a factor of four, 
for what frequency, in terms of f0, will the string continue to 
oscillate as a standing wave with four antinodes?

 9. | a.  What are the three longest wavelengths for standing waves 
on a 240-cm-long string that is fixed at both ends?

   b.  If the frequency of the second-longest wavelength is 50 Hz, 
what is the frequency of the third-longest wavelength?

 10. | Standing waves on a 1.0-m-long string that is fixed at both 
ends are seen at successive frequencies of 36 Hz and 48 Hz.

 a. What are the fundamental frequency and the wave speed?
 b. Draw the standing-wave pattern when the string oscillates at 

48 Hz.
 11. || A heavy piece of hanging sculpture is suspended by a 90-cm-

long, 5.0 g steel wire. When the wind blows hard, the wire hums 
at its fundamental frequency of 80 Hz. What is the mass of the 
sculpture?

 12. | A carbon dioxide laser is an infrared laser. A CO2 laser with 
a cavity length of 53.00 cm oscillates in the m = 100,000 mode. 
What are the wavelength and frequency of the laser beam?

Section 21.4 Standing Sound Waves and Musical Acoustics

 13. | What are the three longest wavelengths for standing sound 
waves in a 121-cm-long tube that is (a) open at both ends and 
(b) open at one end, closed at the other?

 14. | FIgure ex21.14 shows a standing sound wave in an 80-cm-long 
tube. The tube is filled with an unknown gas. What is the speed 
of sound in this gas?

 15. || The fundamental frequency of an open-open tube is 1500 Hz 
when the tube is filled with 0�C helium. What is its frequency 
when filled with 0�C air?

 16. | We can make a simple model of the human vocal tract as an 
open-closed tube extending from the opening of the mouth to 
the diaphragm. What is the length of this tube if its fundamen-
tal frequency equals a typical speech frequency of 250 Hz? The 
speed of sound in the warm air is 350 m/s.

 17. || The lowest note on a grand piano has a frequency of 27.5 Hz. 
The entire string is 2.00 m long and has a mass of 400 g. The 
vibrating section of the string is 1.90 m long. What tension is 
needed to tune this string properly?

 18. || A violin string is 30 cm long. It sounds the musical note A 
(440 Hz) when played without fingering. How far from the 
end of the string should you place your finger to play the note 
C (523 Hz)?

Section 21.5 Interference in One Dimension

Section 21.6 The Mathematics of Interference

 19. || Two loudspeakers emit sound waves along the x-axis. The 
sound has maximum intensity when the speakers are 20 cm 
apart. The sound intensity decreases as the distance between the 
speakers is increased, reaching zero at a separation of 60 cm.

 a. What is the wavelength of the sound?
 b. If the distance between the speakers continues to increase, at 

what separation will the sound intensity again be a maximum?
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 20. || Two loudspeakers in a 20�C room emit 686 Hz sound waves 
along the x-axis.

 a. If the speakers are in phase, what is the smallest distance 
between the speakers for which the interference of the sound 
waves is perfectly destructive?

 b. If the speakers are out of phase, what is the smallest distance 
between the speakers for which the interference of the sound 
waves is maximum constructive?

 21. | What is the thinnest film of MgF2 (n = 1.39) on glass that 
produces a strong reflection for orange light with a wavelength 
of 600 nm?

 22. || A very thin oil film (n = 1.25) floats on water (n = 1.33). 
What is the thinnest film that produces a strong reflection for 
green light with a wavelength of 500 nm?

Section 21.7 Interference in Two and Three Dimensions

 23. || FIgure ex21.23 shows the circular wave fronts emitted by two 
wave sources.

 a. Are these sources in phase or out of phase? Explain.
 b. Make a table with rows labeled P, Q, and R and columns 

labeled r1, r2, �r, and C/D. Fill in the table for points P, Q, 
and R, giving the distances as multiples of l and indicating, 
with a C or a D, whether the interference at that point is con-
structive or destructive.

 24. || FIgure ex21.24 shows the circular wave fronts emitted by two 
wave sources.

 a. Are these sources in phase or out of phase? Explain.
 b. Make a table with rows labeled P, Q, and R and columns 

labeled r1, r2, �r, and C/D. Fill in the table for points P, Q, 
and R, giving the distances as multiples of l and indicating, 
with a C or a D, whether the interference at that point is con-
structive or destructive.

 25. || Two in-phase speakers 2.0 m apart in a plane are emitting 1800 Hz 
sound waves into a room where the speed of sound is 340 m/s. Is the 
point 4.0 m in front of one of the speakers, perpendicular to the 
plane of the speakers, a point of maximum constructive interfer-
ence, perfect destructive interference, or something in between?

 26. || Two out-of-phase radio antennas at x = { 300 m on the 
x-axis are emitting 3.0 MHz radio waves. Is the point (x, y) =
(300 m, 800 m) a point of maximum constructive interference, 
perfect destructive interference, or something in between?

Section 21.8 Beats

 27. | Two strings are adjusted to vibrate at exactly 200 Hz. Then the 
tension in one string is increased slightly. Afterward, three beats 
per second are heard when the strings vibrate at the same time. 
What is the new frequency of the string that was tightened?

 28. | A flute player hears four beats per second when she compares 
her note to a 523 Hz tuning fork (the note C). She can match the 
frequency of the tuning fork by pulling out the “tuning joint” to 
lengthen her flute slightly. What was her initial frequency?

 29. | Two microwave signals of nearly equal wavelengths can gen-
erate a beat frequency if both are directed onto the same micro-
wave detector. In an experiment, the beat frequency is 100 MHz. 
One microwave generator is set to emit microwaves with a 
wavelength of 1.250 cm. If the second generator emits the longer 
wavelength, what is that wavelength?

Problems

 30. || Two waves on a string travel in opposite directions at 100 m/s. 
FIgure P21.30 shows a snapshot graph of the string at t = 0 s, 
when the two waves are overlapped, and a snapshot graph of the 
left-traveling wave at 
t = 0.050 s. Draw a 
snapshot graph of the 
right-traveling wave 
at t = 0.050 s.

 31. | A 2.0-m-long string vibrates at its second-harmonic frequency 
with a maximum amplitude of 2.0 cm. One end of the string is at 
x = 0 cm. Find the oscillation amplitude at x = 10, 20, 30, 40, 
and 50 cm.

 32. || A string vibrates at its third-harmonic frequency. The ampli-
tude at a point 30 cm from one end is half the maximum ampli-
tude. How long is the string?

 33. || A string of length L vibrates at its fundamental frequency. The 
amplitude at a point 1

4 L from one end is 2.0 cm. What is the 
amplitude of each of the traveling waves that form this standing 
wave?

 34. || Two sinusoidal waves with equal wavelengths travel along a 
string in opposite directions at 3.0 m/s. The time between two 
successive instants when the antinodes are at maximum height is 
0.25 s. What is the wavelength?

 35. || Tendons are, essentially, elastic cords stretched between two 
fixed ends. As such, they can support standing waves. A woman 
has a 20-cm-long Achilles tendon—connecting the heel to a 
muscle in the calf—with a cross-section area of 90 mm2. The 
density of tendon tissue is 1100 kg/m3. For a reasonable tension 
of 500 N, what will be the fundamental frequency of her Achilles 
tendon?

 36. || Biologists think that some spiders “tune” strands of their web 
to give enhanced response at frequencies corresponding to those 
at which desirable prey might struggle. Orb spider web silk has 
a typical diameter of 20 mm, and spider silk has a density of 
1300 kg/m3. To have a fundamental frequency at 100 Hz, to 
what tension must a spider adjust a 12-cm-long strand of silk?

 37. || A particularly beautiful note reaching your ear from a rare 
Stradivarius violin has a wavelength of 39.1 cm. The room is 
slightly warm, so the speed of sound is 344 m/s. If the string’s 
linear density is 0.600 g/m and the tension is 150 N, how long is 
the vibrating section of the violin string?

 38. || A violinist places her finger so that the vibrating section of 
a 1.0 g/m string has a length of 30 cm, then she draws her bow 
across it. A listener nearby in a 20�C room hears a note with a 
wavelength of 40 cm. What is the tension in the string?
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 39. || A steel wire is used to stretch the spring of FIgure P21.39. An 
oscillating magnetic field drives the steel wire back and forth. A 
standing wave with three antinodes is created when the spring is 
stretched 8.0 cm. What stretch of the spring produces a standing 
wave with two antinodes?

 40. || Astronauts visiting Planet X have a 250-cm-long string whose 
mass is 5.00 g. They tie the string to a support, stretch it horizon-
tally over a pulley 2.00 m away, and hang a 4.00 kg mass on the 
free end. Then the astronauts begin to excite standing waves on 
the horizontal portion of the string. Their data are as follows:

m Frequency (Hz)

1  31

2  66

3  95

4 130

5 162

  Use the best-fit line of an appropriate graph to determine the 
value of g, the free-fall acceleration on Planet X.

 41. || A 75 g bungee cord has an equilibrium length of 1.20 m. The 
cord is stretched to a length of 1.80 m, then vibrated at 20 Hz. 
This produces a standing wave with two antinodes. What is the 
spring constant of the bungee cord?

 42. || A metal wire under tension T0 vibrates at its fundamental 
frequency. For what tension will the second-harmonic frequency 
be the same as the fundamental frequency at tension T0?

 43. ||| In a laboratory experiment, one end of a horizontal string is 
tied to a support while the other end passes over a frictionless 
pulley and is tied to a 1.5 kg sphere. Students determine the 
frequencies of standing waves on the horizontal segment of the 
string, then they raise a beaker of water until the hanging 1.5 kg 
sphere is completely submerged. The frequency of the fifth har-
monic with the sphere submerged exactly matches the frequency 
of the third harmonic before the sphere was submerged. What is 
the diameter of the sphere?

 44. ||| What is the fundamental frequency of the steel wire in 
FIgure P21.44?

 45. || The two strings in FIgure P21.45 are of equal length and are 
being driven at equal frequencies. The linear density of the left 
string is m0. What is the linear density of the right string?

 46. | Microwaves pass through a 
small hole into the “microwave 
cavity” of FIgure P21.46. What 
frequencies between 10 GHz and  
20 GHz will create standing waves  
in the cavity?

 47. || An open-open organ pipe is 78.0 cm long. An open-closed 
pipe has a fundamental frequency equal to the third harmonic of 
the open-open pipe. How long is the open-closed pipe?

 48. | A narrow column of 20�C air is found to have standing waves 
at frequencies of 390 Hz, 520 Hz, and 650 Hz and at no frequen-
cies in between these. The behavior of the tube at frequencies 
less than 390 Hz or greater than 650 Hz is not known.

 a. Is this an open-open tube or an open-closed tube? Explain.
 b. How long is the tube?
 49. || Deep-sea divers often breathe a mixture of helium and oxygen 

to avoid getting the “bends” from breathing high-pressure nitro-
gen. The helium has the side effect of making the divers’ voices 
sound odd. Although your vocal tract can be roughly described 
as an open-closed tube, the way you hold your mouth and posi-
tion your lips greatly affects the standing-wave frequencies of the 
vocal tract. This is what allows different vowels to sound differ-
ent. The “ee” sound is made by shaping your vocal tract to have 
standing-wave frequencies at, normally, 270 Hz and 2300 Hz. 
What will these frequencies be for a helium-oxygen mixture in 
which the speed of sound at body temperature is 750 m/s? The 
speed of sound in air at body temperature is 350 m/s.

 50. || In 1866, the German scientist Adolph Kundt developed a 
technique for accurately measuring the speed of sound in vari-
ous gases. A long glass tube, known today as a Kundt’s tube, 
has a vibrating piston at one end and is closed at the other. Very 
finely ground particles of cork are sprinkled in the bottom of 
the tube before the piston is inserted. As the vibrating piston is 
slowly moved forward, there are a few positions that cause the 
cork particles to collect 
in small, regularly spaced 
piles along the bottom. 
FIgure P21.50 shows an 
experiment in which the 
tube is filled with pure 
oxygen and the piston is 
driven at 400 Hz. What 
is the speed of sound in 
oxygen?

 51. || The 40-cm-long tube of FIgure P21.51 has a 40-cm-long insert 
that can be pulled in and out. A vibrating tuning fork is held next 
to the tube. As the insert is slowly pulled out, the sound from 
the tuning fork creates standing waves in the tube when the total 
length L is 42.5 cm, 56.7 cm, and 70.9 cm. What is the frequency 
of the tuning fork? Assume vsound = 343 m/s.

 52. || A 1.0-m-tall vertical tube is filled with 20�C water. A tuning 
fork vibrating at 580 Hz is held just over the top of the tube as the 
water is slowly drained from the bottom. At what water heights, 
measured from the bottom of the tube, will there be a standing 
wave in the tube above the water?
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 53. || A 25-cm-long wire with a linear density of 20 g/m passes 
across the open end of an 85-cm-long open-closed tube of air. If 
the wire, which is fixed at both ends, vibrates at its fundamental 
frequency, the sound wave it generates excites the second vibra-
tional mode of the tube of air. What is the tension in the wire? 
Assume vsound = 340 m/s.

 54. || A longitudinal standing wave can be created in a long, thin 
aluminum rod by stroking the rod with very dry fingers. This 
is often done as a physics demonstration, creating a high-
pitched, very annoying whine. From a wave perspective, the 
standing wave is equivalent to a sound standing wave in an 
open-open tube. As FIgure P21.54 shows, both ends of the rod 
are anti-nodes. What is the fundamental frequency of a 2.0-m-
long aluminum rod?

 55. || An old mining tunnel disappears into a hillside. You would 
like to know how long the tunnel is, but it’s too dangerous to 
go inside. Recalling your recent physics class, you decide to try 
setting up standing-wave resonances inside the tunnel. Using 
your subsonic amplifier and loudspeaker, you find resonances 
at 4.5 Hz and 6.3 Hz, and at no frequencies between these. It’s 
rather chilly inside the tunnel, so you estimate the sound speed 
to be 335 m/s. Based on your measurements, how far is it to the 
end of the tunnel?

 56. || Analyze the standing sound waves in an open-closed tube to 
show that the possible wavelengths and frequencies are given by 
Equation 21.18.

 57. ||| Two in-phase loudspeakers emit identical 1000 Hz sound 
waves along the x-axis. What distance should one speaker be 
placed behind the other for the sound to have an amplitude 
1.5 times that of each speaker alone?

 58. || Two loudspeakers emit sound waves of the same frequency 
along the x-axis. The amplitude of each wave is a. The sound 
intensity is minimum when speaker 2 is 10 cm behind speaker 1. 
The intensity increases as speaker 2 is moved forward and first 
reaches maximum, with amplitude 2a, when it is 30 cm in front 
of speaker 1. What is

 a. The wavelength of the sound?
 b. The phase difference between the two loudspeakers?
 c. The amplitude of the sound (as a multiple of a) if the speakers 

are placed side by side?
 59. ||| Two loudspeakers emit sound waves along the x-axis. A lis-

tener in front of both speakers hears a maximum sound intensity 
when speaker 2 is at the origin and speaker 1 is at x = 0.50 m. If 
speaker 1 is slowly moved forward, the sound intensity decreases 
and then increases, reaching another maximum when speaker 
1 is at x = 0.90 m.

 a. What is the frequency of the sound? Assume vsound = 340 m/s.
 b. What is the phase difference between the speakers?
 60. | A sheet of glass is coated with a 500-nm-thick layer of oil 

(n = 1.42).
 a. For what visible wavelengths of light do the reflected waves 

interfere constructively?
 b. For what visible wavelengths of light do the reflected waves 

interfere destructively?
 c. What is the color of reflected light? What is the color of 

transmitted light?

 61. || A manufacturing firm has hired your company, Acoustical 
Consulting, to help with a problem. Their employees are com-
plaining about the annoying hum from a piece of machinery. Us-
ing a frequency meter, you quickly determine that the machine 
emits a rather loud sound at 1200 Hz. After investigating, you 
tell the owner that you cannot solve the problem entirely, but 
you can at least improve the situation by eliminating reflections 
of this sound from the walls. You propose to do this by installing 
mesh screens in front of the walls. A portion of the sound will 
reflect from the mesh; the rest will pass through the mesh and 
reflect from the wall. How far should the mesh be placed in front 
of the wall for this scheme to work?

 62. || A soap bubble is essentially a very thin film of water (n =
1.33) surrounded by air. The colors that you see in soap bubbles 
are produced by interference.

 a. Derive an expression for the wavelengths lC for which con-
structive interference causes a strong reflection from a soap 
bubble of thickness d.

  Hint: Think about the reflection phase shifts at both boundaries.
 b. What visible wavelengths of light are strongly reflected from 

a 390-nm-thick soap bubble? What color would such a soap 
bubble appear to be?

 63. || Two radio antennas are separated by 2.0 m. Both broadcast 
identical 750 MHz waves. If you walk around the antennas in a 
circle of radius 10 m, how many maxima will you detect?

 64. || You are standing 2.5 m directly in front of one of the two 
loudspeakers shown in FIgure P21.64. They are 3.0 m apart and 
both are playing a 686 Hz tone in phase. As you begin to walk di-
rectly away from the speaker, at what distances from the speaker 
do you hear a minimum sound intensity? The room temperature 
is 20�C.

 65. || Two loudspeakers in a plane, 5.0 apart, are playing the same 
frequency. If you stand 12.0 m in front of the plane of the speak-
ers, centered between them, you hear a sound of maximum 
intensity. As you walk parallel to the plane of the speakers, stay-
ing 12.0 m in front of them, you first hear a minimum of sound 
intensity when you are directly in front of one of the speakers. 
What is the frequency of the sound? Assume a sound speed of 
340 m/s.

 66. || Two in-phase loudspeakers are located at (x, y) coordinates 
(-3.0 m, +2.0 m) and (-3.0 m, -2.0 m). They emit identical 
sound waves with a 2.0 m wavelength and amplitude a. Deter-
mine the amplitude of the sound at the five positions on the  
y-axis (x = 0) with y = 0.0 m, 0.5 m, 1.0 m, 1.5 m, and 2.0 m.

 67. || Two identical loudspeakers separated by distance �x each 
emit sound waves of wavelength l and amplitude a along the 
x-axis. What is the minimum value of the ratio �x/l for which 
the amplitude of their superposition is also a?
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 68. || Two radio antennas are 100 m apart along a north-south 
line. They broadcast identical radio waves at a frequency of 
3.0 MHz. Your job is to monitor the signal strength with a hand-
held receiver. To get to your first measuring point, you walk 
800 m east from the midpoint between the antennas, then 600 m 
north.

 a. What is the phase difference between the waves at this 
point?

 b. Is the interference at this point maximum constructive, per-
fect destructive, or somewhere in between? Explain.

 c. If you now begin to walk farther north, does the signal 
strength increase, decrease, or stay the same? Explain.

 69. || The three identical loudspeakers 
in FIgure P21.69 play a 170 Hz tone 
in a room where the speed of sound 
is 340 m/s. You are standing 4.0 m 
in front of the middle speaker. At 
this point, the amplitude of the wave 
from each speaker is a.

 a. What is the amplitude at this 
point?

 b. How far must speaker 2 be moved 
to the left to produce a maximum 
amplitude at the point where you 
are standing?

 c. When the amplitude is maximum, 
by what factor is the sound inten-
sity greater than the sound intensity from a single speaker?

 70. | Piano tuners tune pianos by listening to the beats between the 
harmonics of two different strings. When properly tuned, the 
note A should have a frequency of 440 Hz and the note E should 
be at 659 Hz.

 a. What is the frequency difference between the third harmonic 
of the A and the second harmonic of the E?

 b. A tuner first tunes the A string very precisely by matching it 
to a 440 Hz tuning fork. She then strikes the A and E strings 
simultaneously and listens for beats between the harmonics. 
What beat frequency indicates that the E string is properly 
tuned?

 c. The tuner starts with the tension in the E string a little low, 
then tightens it. What is the frequency of the E string when 
she hears four beats per second?

 71. || A flutist assembles her flute in a room where the speed of 
sound is 342 m/s. When she plays the note A, it is in perfect tune 
with a 440 Hz tuning fork. After a few minutes, the air inside her 
flute has warmed to where the speed of sound is 346 m/s.

 a. How many beats per second will she hear if she now plays the 
note A as the tuning fork is sounded?

 b. How far does she need to extend the “tuning joint” of her 
flute to be in tune with the tuning fork?

 72. || Two loudspeakers face each other from opposite walls of a 
room. Both are playing exactly the same frequency, thus set-
ting up a standing wave with distance l/2 between antinodes. 
Assume that l is much less than the room width, so there are 
many antinodes.

 a. Yvette starts at one speaker and runs toward the other at 
speed vY. As the does so, she hears a loud-soft-loud modula-
tion of the sound intensity. From your perspective, as you sit 
at rest in the room, Yvette is running through the nodes and 
antinodes of the standing wave. Find an expression for the 
number of sound maxima she hears per second.

 b. From Yvette’s perspective, the two sound waves are Doppler 
shifted. They’re not the same frequency, so they don’t create 
a standing wave. Instead, she hears a loud-soft-loud modula-
tion of the sound intensity because of beats. Find an expres-
sion for the beat frequency that Yvette hears.

 c. Are your answers to parts a and b the same or different? 
Should they be the same or different?

 73. || Two loudspeakers emit 400 Hz notes. One speaker sits on the 
ground. The other speaker is in the back of a pickup truck. You 
hear eight beats per second as the truck drives away from you. 
What is the truck’s speed?

Challenge Problems

 74. a.  The frequency of a standing wave on a string is f  when the 
string’s tension is Ts. If the tension is changed by the small 
amount �Ts, without changing the length, show that the fre-
quency changes by an amount �f  such that

 
�f

f
=

1

2
 
�Ts

Ts
  

 b. Two identical strings vibrate at 500 Hz when stretched with 
the same tension. What percentage increase in the tension of 
one of the strings will cause five beats per second when both 
strings vibrate simultaneously?

 75. A 280 Hz sound wave is directed into one end of the trombone 
slide seen in FIgure CP21.75. A microphone is placed at the other 
end to record the intensity of sound waves that are transmitted 
through the tube. The straight sides of the slide are 80 cm in 
length and 10 cm apart with a semicircular bend at the end. For 
what slide extensions s will the microphone detect a maximum 
of sound intensity?

 76. As the captain of the scientific team sent to Planet Physics, one 
of your tasks is to measure g. You have a long, thin wire labeled 
1.00 g/m and a 1.25 kg weight. You have your accurate space 
cadet chronometer but, unfortunately, you seem to have forgot-
ten a meter stick. Undeterred, you first find the midpoint of the 
wire by folding it in half. You then attach one end of the wire to 
the wall of your laboratory, stretch it horizontally to pass over 
a pulley at the midpoint of the wire, then tie the 1.25 kg weight 
to the end hanging over the pulley. By vibrating the wire, and 
measuring time with your chronometer, you find that the wire’s 
second-harmonic frequency is 100 Hz. Next, with the 1.25 kg 
weight still tied to one end of the wire, you attach the other end to 
the ceiling to make a pendulum. You find that the pendulum re-
quires 314 s to complete 100 oscillations. Pulling out your trusty 
calculator, you get to work. What value of g will you report back 
to headquarters?

 77. When mass M is tied to the bottom of a long, thin wire sus-
pended from the ceiling, the wire’s second-harmonic frequency 
is 200 Hz. Adding an additional 1.0 kg to the hanging mass in-
creases the second-harmonic frequency to 245 Hz. What is M?

FIgure P21.69 

3.0 m

4.0 m

3.0 m

1

2

3

FIgure CP21.75 

80 cm

80 cm10 cm

s

Exercises and Problems    625



626    c h a p t e r  21 . Superposition

 78. Ultrasound has many medical applications, one of which is to 
monitor fetal heartbeats by reflecting ultrasound off a fetus in the 
womb.

 a. Consider an object moving at speed vo toward an at-rest 
source that is emitting sound waves of frequency f0. Show 
that the reflected wave (i.e., the echo) that returns to the 
source has a Doppler-shifted frequency

 fecho = 1v + vo 

v - vo
2 f0

  where v is the speed of sound in the medium.
 b. Suppose the object’s speed is much less than the wave speed: 

vo V v. Then fecho � f0, and a microphone that is sensitive to 
these frequencies will detect a beat frequency if it listens to 
f0 and fecho simultaneously. Use the binomial approximation 
and other appropriate approximations to show that the beat 
frequency is fbeat � (2vo/v)f0.

 c. The reflection of 2.40 MHz ultrasound waves from the surface 
of a fetus’s beating heart is combined with the 2.40 MHz wave 
to produce a beat frequency that reaches a maximum of 65 Hz. 
What is the maximum speed of the surface of the heart? The 
speed of ultrasound waves within the body is 1540 m/s.

 d. Suppose the surface of the heart moves in simple harmonic 
motion at 90 beats/min. What is the amplitude in mm of the 
heartbeat?

 79. A water wave is called a deep-water wave if the water’s depth 
is more than one-quarter of the wavelength. Unlike the waves 
we’ve considered in this chapter, the speed of a deep-water wave 
depends on its wavelength:

 v = B gl

2p
 

  Longer wavelengths travel faster. Let’s apply this to standing 
waves. Consider a diving pool that is 5.0 m deep and 10.0 m 
wide. Standing water waves can set up across the width of the 
pool. Because water sloshes up and down at the sides of the pool, 
the boundary conditions require antinodes at x = 0 and x = L. 
Thus a standing water wave resembles a standing sound wave in 
an open-open tube.

 a. What are the wavelengths of the first three standing-wave 
modes for water in the pool? Do they satisfy the condition for 
being deep-water waves? Draw a graph of each.

BIO
 b. What are the wave speeds for each of these waves?
 c. Derive a general expression for the frequencies fm of the pos-

sible standing waves. Your expression should be in terms of 
m, g, and L.

 d. What are the oscillation periods of the first three standing-
wave modes?

 80. The broadcast antenna of an 
AM radio station is located at 
the edge of town. The station 
owners would like to beam all 
of the energy into town and 
none into the countryside, but 
a single antenna radiates en-
ergy equally in all directions. 
FIgure CP21.80 shows two par-
allel antennas separated by dis-
tance L. Both antennas broadcast a signal at wavelength l, but 
antenna 2 can delay its broadcast relative to antenna 1 by a time 
interval �t in order to create a phase difference �f0 between 
the sources. Your task is to find values of L and �t such that the 
waves interfere constructively on the town side and destructively 
on the country side.

   Let antenna 1 be at x = 0. The wave that travels to the right is 
a sin32p (x/l - t/T )4 . The left wave is a sin32p ( -x/l - t/T )4 . 
(It must be this, rather than a sin32p (x/l + t/T )4 , so that the 
two waves match at x = 0.)  Antenna 2 is at x = L. It broadcasts 
wave a sin32p((x - L)/l - t/T ) + f204  to the right and wave 
a sin32p(- (x - L)/l - t/T ) + f204  to the left.

 a. What is the smallest value of L for which you can create per-
fect constructive interference on the town side and perfect 
destructive interference on the country side? Your answer 
will be a multiple or fraction of the wavelength l.

 b. What phase constant f20 of antenna 2 is needed?
 c. What fraction of the oscillation period T must �t be to pro-

duce the proper value of f20?
 d. Evaluate both L and �t for the realistic AM radio frequency 

of 1000 KHz.
  Comment: This is a simple example of what is called a phased 

array, where phase differences between identical emitters are 
used to “steer” the radiation in a particular direction. Phased ar-
rays are widely used in radar technology.

FIgure CP21.80 

D1 left

D2 left

Country Townx � 0

Antenna 1 Antenna 2

x � L

D1 right

D2 right

STOP TO ThINk ANSWerS

Stop to Think 21.1: c. The figure shows the two waves at t = 6 s and 
their superposition. The superposition is the point-by-point addition 
of the displacements of the two individual waves.

Stop to Think 21.2: a. The allowed standing-wave frequencies are 
fm = m(v/2L), so the mode number of a standing wave of frequency 
f  is m = 2Lf/v. Quadrupling Ts increases the wave speed v by a factor 
of 2. The initial mode number was 2, so the new mode number is 1.

Stop to Think 21.3: b. 300 Hz and 400 Hz are allowed standing 
waves, but they are not f1 and f2 because 400 Hz � 2 * 300 Hz. 
Because there’s a 100 Hz difference between them, these must be 

f3 = 3 * 100 Hz and f4 = 4 * 100 Hz, with a fundamental frequency 
f1 = 100 Hz. Thus the second harmonic is f2 = 2 * 100 Hz =
200 Hz.

Stop to Think 21.4: c. Shifting the top wave 0.5 m to the left aligns 
crest with crest and trough with trough.

Stop to Think 21.5: a. r1 = 0.5l and r2 = 2.5l, so �r = 2.0l. This 
is the condition for maximum constructive interference.

Stop to Think 21.6: Maximum constructive. The path-length dif-
ference is �r = 1.0 m = l. For identical sources, interference is con-
structive when �r is an integer multiple of l.

Stop to Think 21.7: f. The beat frequency is the difference between 
the two frequencies.

20 4 6 8 10 12 14 16 18 20
x (m)
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The vivid colors of this 
peacock—which change as you 
see the feathers from different 
angles—are not due to pigments. 
Instead, the colors are due to the 
interference of light waves.

Wave Optics

Models of Light
You’ll learn that light has aspects of both 
waves and particles. We’ll introduce 
three models of light:

 Looking Back
Sections 20.4–20.6 Wave fronts, phase, 
and intensity

Double-Slit Interference
You’ll learn that an inter-
ference pattern is formed 
when light shines on an 
opaque screen with two 
narrow, closely spaced 
slits. This also shows 
that light is a wave.

Interferometry
Today, the controlled interference of 
light has applications that include optical 
computing, precision measurements in 
engineering, holography, and observing 
movements of the earth’s crust.

Interference fringes 
such as these can 
be used to monitor 
vibrations and dis-
placements of only 
a few nanometers.

The Diffraction Grating
A diffraction grating is a periodic array 
of closely spaced holes or slits or grooves. 
You’ll learn how a diffraction grating sends 
different wavelengths 
off at different angles.

Diffraction
Diffraction is the abil-
ity of waves to spread 
out after going through 
small holes or around 
corners. The diffraction 
of light indicates that 
light is a wave.

The “ripples” around 
the edges of this razor 
blade—back lit with a 
blue laser beam—are 
due to the diffraction 
of light.

 Looking Ahead The goal of Chapter 22 is to understand and apply the wave model of light.

Interference fringes from green light passing 
through two closely spaced slits

The wave model 
of light—the 
subject of this 
chapter—allows 
us to understand 
the colors of a 
soap bubble.

To understand the 
focusing of light 
by a contact lens, 
Chapter 23 will 
introduce a ray 
model in which 
light travels 
in particle-like 
straight lines.

Solar cells generate 
electricity from 
sunlight. The 
photon model 
of Part VII will be 
most appropriate 
for understanding 
this aspect of light.

 Looking Back
Section 21.7 Interference

The microscopic pits in 
this DVD act as a dif-
fraction grating, break-
ing white light into its 
component colors.

Diffraction gratings are the basis for 
spectroscopy, an important tool for de-
termining the composition of materials 
by the wavelengths they emit.
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22.1 Light and Optics
The study of light is called optics. But what is light? The first Greek scientists did 
not make a distinction between light and vision. Light, to them, was inseparable from 
seeing. But gradually there arose a view that light actually “exists,” that light is some 
sort of physical entity that is present regardless of whether or not someone is look-
ing. But if light is a physical entity, what is it? What are its characteristics? Is it a 
wave, similar to sound? Or is light a collection of small particles that blows by like 
the wind?

Newton, in addition to his pioneering work in mathematics and mechanics in the 
1660s, investigated the nature of light. Newton knew that a water wave, after passing 
through an opening, spreads out to fill the space behind the opening. You can see this 
in FIGure 22.1a, where plane waves, approaching from the left, spread out in circular 
arcs after passing through a hole in a barrier. This inexorable spreading of waves is 
the phenomenon called diffraction. Diffraction is a sure sign that whatever is passing 
through the hole is a wave.

In contrast, FIGure 22.1b shows that sunlight makes a sharp-edged shadow after 
passing through a door. We don’t see sunlight light spreading out in circular arcs. 
This behavior is exactly what you would expect if light consists of particles traveling 
in straight lines. Some particles would pass through the door to make a bright area on 
the floor, others would be blocked and cause the well-defined shadow. This reasoning 
led Newton to the conclusion that light consists of very small, light, fast particles that 
he called corpuscles.

The situation changed dramatically in 1801, when the English scientist Thomas 
Young announced that he had produced interference between two waves of light. 
Young’s experiment, which we will analyze in the next section, was painstakingly dif-
ficult with the technology of his era. Nonetheless, Young’s experiment quickly settled 
the debate in favor of a wave theory of light because interference is a distinctly wave-
like phenomenon.

But if light is a wave, what is waving? This was the question that Young posed to 
the 19th century. It was ultimately established that light is an electromagnetic wave, 
an oscillation of the electromagnetic field requiring no material medium in which to 
travel. Further, as we have already seen, visible light is just one small slice out of a 
vastly broader electromagnetic spectrum.

But this satisfying conclusion was soon undermined by new discoveries at the start 
of the 20th century. Albert Einstein’s introduction of the concept of the photon—a 
wave having certain particle-like characteristics—marked the end of classical physics 
and the beginning of a new era called quantum physics. Equally important, Einstein’s 
theory marked yet another shift in our age-old effort to understand light.

Models of Light
Light is a real physical entity, but the nature of light is elusive. Light is the chameleon 
of the physical world. Under some circumstances, light acts like particles traveling in 
straight lines. But change the circumstances, and light shows the same kinds of wave-
like behavior as sound waves or water waves. Change the circumstances yet again, and 
light exhibits behavior that is neither wave-like nor particle-like but has characteristics 
of both.

Rather than an all-encompassing “theory of light,” it will be better to develop 
three models of light. Each model successfully explains the behavior of light 
within a certain domain—that is, within a certain range of physical situations. Our 
task will be twofold:

 1. To develop clear and distinct models of light.
 2. To learn the conditions and circumstances for which each model is valid.

We’ll begin with a brief summary of all three models.

FIGure 22.1 Water waves spread out 
behind a small hole in a barrier, but 
light passing through a doorway makes 
a sharp-edged shadow.

(a) Plane waves approach from the left.

Circular waves spread out on the right.

(b)

A beam of
sunlight has a
sharp edge.
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22.2 The Interference of Light
Newton might have reached a different conclusion had he seen the experiment 
depicted in FIGure 22.2. Here light of a single wavelength (or color) passes through a 
“window”—a narrow slit—that is only 0.1 mm wide, about twice the width of a human 
hair. The image shows how the light appears on a viewing screen 2 m behind the slit. If 
light consists of corpuscles traveling in straight lines, as Newton thought, we should see 
a narrow strip of light, about 0.1 mm wide, with dark shadows on either side. Instead, 
we see a band of light extending over about 2.5 cm, a distance much wider than the 
aperture, with dimmer patches of light extending even farther on either side.

If you compare Figure 22.2 to the water wave of Figure 22.1, you see that the light 
is spreading out behind the 0.1-mm-wide hole. The light is exhibiting diffraction, 
the sure signature of waviness. We will look at diffraction in more detail later in the 
chapter. For now, we merely need the observation that light does, indeed, spread out 
behind a hole that is sufficiently small.

Young’s Double-Slit experiment
Rather than one small hole, suppose we use two. FIGure 22.3a shows an experiment in 
which a laser beam is aimed at an opaque screen containing two long, narrow slits 
that are very close together. This pair of slits is called a double slit, and in a typical 

FIGure 22.2 Light, just like a water 
wave, does spread out behind a hole if 
the hole is sufficiently small.

Incident laser beam

Viewing screen

2.5 cm

2 m

0.1-mm-wide 
slit in an 
opaque screen

The light 
spreads out 
behind the slit.

Three models of light

The Wave Model The Ray Model The Photon Model
The wave model of light is responsible  
for the widely known “fact” that  
light is a wave. Indeed, under many  
circumstances light exhibits the same 
behavior as sound or water waves. 
Lasers and electro-optical devices are 
best described by the wave model of 
light. Some aspects of the wave model  
were introduced in Chapters 20 and 21,  
and it is the primary focus of this 
chapter.

An equally well-known “fact” is that light 
travels in straight lines. These straight-line paths 
are called light rays. The properties of prisms, 
mirrors, and lenses are best understood in terms 
of light rays. Unfortunately, it’s difficult to 
reconcile “light travels in straight lines” with 
“light is a wave.” For the most part, waves and 
rays are mutually exclusive models of light. 
One of our important tasks will be to learn when 
each model is appropriate. Ray optics is the 
subject of Chapters 23 and 24.

Modern technology is increasingly 
reliant on quantum physics. In the 
quantum world, light behaves like 
neither a wave nor a particle. Instead, 
light consists of photons that have both 
wave-like and particle-like properties. 
Much of the quantum theory of light 
is beyond the scope of this textbook, 
but we will take a peek at some of the 
important ideas in Part VII.

FIGure 22.3 A double-slit interference experiment.

(a)

Top view of
the double slit

m � 4

m � 3

m � 2

m � 1

m � 0

m � 1

m � 2

m � 3

m � 4

1. A plane wave is incident
 on the double slit.

2. Waves spread out
 behind each slit.

3. The waves interfere in the
 region where they overlap.

4. Bright fringes occur where
 the antinodal lines intersect
 the viewing screen.

(b)

l

Central
maximum

Incident laser beam

Viewing
screen

The drawing is not to scale: The distance
to the screen is actually much greater
than the distance between the slits.

The two waves overlap as
they spread out behind the
two slits. The two overlapped
waves interfere, resulting in
a pattern of light and dark
bands on the screen.
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experiment they are �  0.1 mm wide and spaced �  0.5 mm apart. We will assume that 
the laser beam illuminates both slits equally, and any light passing through the slits 
impinges on a viewing screen. This is the essence of Young’s experiment of 1801, 
although he used sunlight rather than a laser.

What should we expect to see on the screen? FIGure 22.3b is a view from above the 
experiment, looking down on the top ends of the slits and the top edge of the viewing 
screen. Because the slits are very narrow, light spreads out behind each slit as it did 
in Figure 22.2, and these two spreading waves overlap in the region between the slits 
and the screen.

The primary conclusion of Chapter 21 was that two overlapped waves of equal 
wavelength produce interference. In fact, Figure 22.3b is equivalent to the waves emit-
ted by two loudspeakers, a situation we analyzed in Section 21.7. (It is very useful 
to compare Figure 22.3b with Figures 21.30 and 21.32a.) Nothing in that analysis 
depended on what type of wave it was, so the conclusions apply equally well to two 
overlapped light waves. If light really is a wave, we should see interference between 
the two light waves over the small region, typically a few centimeters wide, where 
they overlap on the viewing screen.

The image in Figure 22.3b shows how the screen looks. As expected, the light is 
intense at points where an antinodal line intersects the screen. There is no light at all 
at points where a nodal line intersects the screen. These alternating bright and dark 
bands of light, due to constructive and destructive interference, are called interference 
fringes. The fringes are numbered m = 0, 1, 2, 3, p , going outward from the center. 
The brightest fringe, at the midpoint of the viewing screen, with m = 0, is called the 
central maximum.

Stop to think 22.1 
 Suppose the viewing screen in Figure 22.3 is moved closer to the 

double slit. What happens to the interference fringes?

 a. They get brighter but otherwise do not change.
 b. They get brighter and closer together.
 c. They get brighter and farther apart.
 d. They get out of focus.
 e. They fade out and disappear.

Analyzing Double-Slit Interference
Figure 22.3 showed qualitatively how interference is produced behind a double slit 
by the overlap of the light waves spreading out behind each slit. Now let’s analyze 
the experiment more carefully. FIGure 22.4 shows a double-slit experiment in which the 
spacing between the two slits is d and the distance to the viewing screen is L. We will 
assume that L is very much larger than d. Consequently, we don’t see the individual 
slits in the upper part of Figure 22.4.

Let P be a point on the screen at angle u. Our goal is to determine whether the inter-
ference at P is constructive, destructive, or in between. The insert to Figure 22.4 shows 
the individual slits and the paths from these slits to point P. Because P is so far away 
on this scale, the two paths are virtually parallel, both at angle u. Both slits are illumi-
nated by the same wave front from the laser; hence the slits act as sources of identical, 
in-phase waves (�f0 = 0). You learned in Chapter 21 that constructive interference 
between the waves from in-phase sources occurs at points for which the path-length 
difference �r = r2 - r1 is an integer number of wavelengths:

 �r = ml  m = 0, 1, 2, 3, p  (constructive interference) (22.1)

Thus the interference at point P is constructive, producing a bright fringe, if �r = ml 
at that point.

FIGure 22.4 Geometry of the double-slit 
experiment.

u u

u
Path length r1

Path length r2

The paths are virtually
parallel because the
screen is so distant.

The two slits are invisible
at this scale because d V L.

Two light waves
meet and
interfere at P.

This little segment 
�r � dsinu is the
path-length
difference.

Slit
spacing
d

u

PDouble slit

Viewing
screen

L

L tan u

0

y
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The midpoint on the viewing screen at y = 0 is equally distant from both slits 
(�r = 0) and thus is a point of constructive interference. This is the bright fringe iden-
tified as the central maximum in Figure 22.3b. The path-length difference increases 
as you move away from the center of the screen, and the m = 1 fringes occur at the 
points where �r = 1l—that is, where one wave has traveled exactly one wavelength 
farther than the other. In general, the mth bright fringe occurs where the wave from 
one slit travels m wavelengths farther than the wave from the other slit and thus 
�r � mL.

You can see from the magnified portion of Figure 22.4 that the wave from the lower 
slit travels an extra distance

 �r = d sin u (22.2)

If we use this in Equation 22.1, we find that bright fringes (constructive interference) 
occur at angles um such that

 �r = d sin um = ml  m = 0, 1, 2, 3, p  (22.3)

We added the subscript m to denote that um is the angle of the mth bright fringe, 
starting with m = 0 at the center.

In practice, the angle u in a double-slit experiment is very small (61�). We can use 
the small-angle approximation sin u � u, where u must be in radians, to write Equa-
tion 22.3 as

 um = m 
l

d
  m = 0, 1, 2, 3, p  (angles of bright fringes) (22.4)

This gives the angular positions in radians of the bright fringes in the interference 
pattern.

It’s usually easier to measure distances rather than angles, so we can also specify 
point P by its position on a y-axis with the origin directly across from the midpoint 
between the slits. You can see from Figure 22.4 that

 y = L tan u (22.5)

Using the small-angle approximation once again, this time in the form tan u � u, we 
can substitute um from Equation 22.4 for tan um in Equation 22.1 to find that the mth 
bright fringe occurs at position

 ym =
mlL

d
  m = 0, 1, 2, 3, p  (positions of bright fringes) (22.6)

The interference pattern is symmetrical, so there is an mth bright fringe at the same 
distance on both sides of the center. You can see this in Figure 22.3b. As we’ve noted, 
the m � 1 fringes occur at points on the screen where the light from one slit trav-
els exactly one wavelength farther than the light from the other slit.

NOTe  Equations 22.4 and 22.6 do not apply to the interference of sound waves 
from two loudspeakers. The approximations we’ve used (small angles, L W d) are 
usually not valid for the much longer wavelengths of sound waves. 

Equation 22.6 predicts that the interference pattern is a series of equally spaced 
bright lines on the screen, exactly as shown in Figure 22.3b. How do we know the 
fringes are equally spaced? The fringe spacing between the m fringe and the m + 1 
fringe is

 �y = ym+1 - ym =
(m + 1)lL

d
-

mlL

d
=

lL

d
 (22.7)
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Because �y is independent of m, any two adjacent bright fringes have the same spacing.
The dark fringes in the image are bands of destructive interference. You learned 

in Chapter 21 that destructive interference occurs at positions where the path-length 
difference of the waves is a half-integer number of wavelengths:

 �r = 1m +
1

2 2l  m = 0, 1, 2, p  
(destructive
interference)  (22.8)

We can use Equation 22.2 for �r and the small-angle approximation to find that the 
dark fringes are located at positions

 y=
m = 1m +

1

2 2  
lL

d
  m = 0, 1, 2, p  

(positions of
dark fringes)  (22.9)

We have used y=
m, with a prime, to distinguish the location of the mth minimum from 

the mth maximum at ym. You can see from Equation 22.9 that the dark fringes are 
located exactly halfway between the bright fringes.

Stop to think 22.2  Light of wavelength l1 illuminates a double slit, and interference 
fringes are observed on a screen behind the slits. When the wavelength is changed to 
l2, the fringes get closer together. Is l2 larger or smaller than l1?

  ym =
mlL

d
=

2(633 * 10-9 m)(2.0 m)

4.0 * 10-4 m
= 6.3 mm

Each of the m = 2 fringes is 6.3 mm from the central maximum; 
so the distance between the two m = 2 bright fringes is 12.6 mm.
The m = 2 dark fringe is located at

 y =
m = 1m +

1

2 2  
lL

d
= 7.9 mm

Thus the distance between the two m = 2 dark fringes is 15.8 mm.

ASSeSS Because the fringes are counted outward from the center, 
the m = 2 bright fringe occurs before the m = 2 dark fringe.

exAMpLe 22.1   Double-slit interference of a laser beam
Light from a helium-neon laser (l = 633 nm) illuminates two slits 
spaced 0.40 mm apart. A viewing screen is 2.0 m behind the slits. 
What are the distances between the two m = 2 bright fringes and 
between the two m = 2 dark fringes?

MODeL Two closely spaced slits produce a double-slit interfer-
ence pattern.

VISuALIze The interference pattern looks like the image of Fig-
ure 22.3b. It is symmetrical, with m = 2 bright fringes at equal 
distances on both sides of the central maximum.

SOLVe The positions of the bright fringes are given by 
Equation 22.6. The m = 2 bright fringe is located at position

Using this fringe spacing in Equation 22.7, we find that the wave-
length is

 l =
d

L
�y = 5.7 * 10-7 m = 570 nm

It is customary to express the wavelengths of visible light in 
nanometers. Be sure to do this as you solve problems.

ASSeSS Young’s double-slit experiment not only demonstrated 
that light is a wave, it provided a means for measuring the wave-
length. You learned in Chapter 20 that the wavelengths of visible 
light span the range 400–700 nm. These lengths are smaller than 
we can easily comprehend. A wavelength of 570 nm, which is in 
the middle of the visible spectrum, is only about 1% of the diam-
eter of a human hair.

exAMpLe 22.2  Measuring the wavelength of light

A double-slit interference pattern is observed on a screen 1.0 m 
behind two slits spaced 0.30 mm apart. Ten bright fringes span a 
distance of 1.7 cm. What is the wavelength of the light?

MODeL It is not always obvious which fringe is the central maxi-
mum. Slight imperfections in the slits can make the interference 
fringe pattern less than ideal. However, you do not need to identify 
the m = 0 fringe because you can make use of the fact that the 
fringe spacing �y is uniform. Ten bright fringes have nine spaces 
between them (not ten—be careful!).

VISuALIze The interference pattern looks like the image of 
Figure 22.3b.

SOLVe The fringe spacing is

 �y =
1.7 cm

9
= 1.89 * 10-3 m
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Intensity of the Double-Slit Interference pattern
Equations 22.6 and 22.9 locate the positions of maximum and zero intensity. To com-
plete our analysis we need to calculate the light intensity at every point on the screen. 
All the tools we need to do this calculation were developed in Chapters 20 and 21.

You learned in Chapter 20 that the wave intensity I is proportional to the square 
of the wave’s amplitude. The light spreading out behind a single slit produces the 
wide band of light that you saw in Figure 22.2. The intensity in this band of light is 
I1 = ca2, where a is the light-wave amplitude at the screen due to one wave and c is a 
proportionality constant.

If there were no interference, the light intensity due to two slits would be twice the 
intensity of one slit: I2 = 2I1 = 2ca2. In other words, two slits would cause the broad 
band of light on the screen to be twice as bright. But that’s not what happens. Instead, 
the superposition of the two light waves creates bright and dark interference fringes.

We found in Chapter 21 (Equation 21.36) that the net amplitude of two superim-
posed waves is

 A = ` 2a cos1�f

2 2 `  (22.10)

where a is the amplitude of each individual wave. Because the sources (i.e., the two 
slits) are in phase, the phase difference �f at the point where the two waves are com-
bined is due only to the path-length difference: �f = 2p(�r/l). Using Equation 22.2 
for �r, along with the small-angle approximation and Equation 22.5 for y, we find the 
phase difference at position y on the screen to be

 �f = 2p 
�r

l
= 2p 

d sin u

l
� 2p 

d tan u

l
=

2pd

lL
 y (22.11)

Substituting Equation 22.11 into Equation 22.10, we find the wave amplitude at posi-
tion y to be

 A = ` 2a cos1pd

lL
 y2 `  (22.12)

Consequently, the light intensity at position y on the screen is

 I = cA2 = 4ca2 cos21pd

lL
 y2  (22.13)

But ca2 is I1, the light intensity of a single slit. Thus the intensity of the double-slit 
interference pattern at position y is

 Idouble = 4I1 cos21pd

lL
 y2  (22.14)

FIGure 22.5a is a graph of the double-slit intensity versus position y. Notice the 
unusual orientation of the graph, with the intensity increasing toward the left so that 
the y-axis can match the experimental layout. You can see that the intensity oscillates 
between dark fringes (Idouble = 0) and bright fringes (Idouble = 4I1). The maxima occur 
at points where ym = mlL/d. This is what we found earlier for the positions of the 
bright fringes, so Equation 22.14 is consistent with our initial analysis.

One curious feature is that the light intensity at the maxima is I = 4I1, four times 
the intensity of the light from each slit alone. You might think that two slits would 
make the light twice as intense as one slit, but interference leads to a different result. 
Mathematically, two slits make the amplitude twice as big at points of constructive 
interference (A = 2a), so the intensity increases by a factor of 22 = 4. Physically, this 
is conservation of energy. The line labeled 2I1 in Figure 22.5a is the uniform inten-
sity that two slits would produce if the waves did not interfere. Interference does not 
change the amount of light energy coming through the two slits, but it does redistribute 
the light energy on the viewing screen. You can see that the average intensity of the 

FIGure 22.5 Intensity of the interference 
fringes in a double-slit experiment.
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oscillating curve is 2I1, but the intensity of the bright fringes gets pushed up from 2I1 
to 4I1 in order for the intensity of the dark fringes to drop from 2I1 to 0.

There is still one problem. Equation 22.14 predicts that all interference fringes are 
equally bright, but you saw in Figure 22.3b that the fringes decrease in brightness as 
you move away from the center. The erroneous prediction stems from our assumption 
that the amplitude a of the wave from each slit is constant across the screen. This isn’t 
really true. A more detailed calculation, in which the amplitude gradually decreases 
as you move away from the center, finds that Equation 22.14 is correct if I1 slowly 
decreases as y increases.

FIGure 22.5b summarizes this analysis by graphing the light intensity (Equation 22.14) 
with I1 slowly decreasing as y increases. Comparing this graph to the image, you can 
see that the wave model of light has provided an excellent description of Young’s 
double-slit interference experiment.

22.3 The Diffraction Grating
Suppose we were to replace the double slit with an opaque screen that has N closely 
spaced slits. When illuminated from one side, each of these slits becomes the source 
of a light wave that diffracts, or spreads out, behind the slit. Such a multi-slit device is 
called a diffraction grating. The light intensity pattern on a screen behind a diffrac-
tion grating is due to the interference of N overlapped waves.

FIGure 22.6 shows a diffraction grating in which N slits are equally spaced a distance d 
apart. This is a top view of the grating, as we look down on the experiment, and the slits 
extend above and below the page. Only 10 slits are shown here, but a practical grating 
will have hundreds or even thousands of slits. Suppose a plane wave of wavelength l 
approaches from the left. The crest of a plane wave arrives simultaneously at each of the 
slits, causing the wave emerging from each slit to be in phase with the wave emerging 
from every other slit. Each of these emerging waves spreads out, just like the light wave 
in Figure 22.2, and after a short distance they all overlap with each other and interfere.

We want to know how the interference pattern will appear on a screen behind the 
grating. The light wave at the screen is the superposition of N waves, from N slits, as 
they spread and overlap. As we did with the double slit, we’ll assume that the distance 
L to the screen is very large in comparison with the slit spacing d; hence the path 
followed by the light from one slit to a point on the screen is very nearly parallel to 
the path followed by the light from neighboring slits. The paths cannot be perfectly 
parallel, of course, or they would never meet to interfere, but the slight deviation from 
perfect parallelism is too small to notice. You can see in Figure 22.6 that the wave 
from one slit travels distance �r = d sin u more than the wave from the slit above it 
and �r = d sin u less than the wave below it. This is the same reasoning we used in 
Figure 22.4 to analyze the double-slit experiment.

Figure 22.6 is a magnified view of the slits. FIGure 22.7 steps back to where we can 
see the viewing screen. If the angle u is such that �r = d sin u = ml, where m is an 
integer, then the light wave arriving at the screen from one slit will be exactly in phase 
with the light waves arriving from the two slits next to it. But each of those waves is 
in phase with waves from the slits next to them, and so on until we reach the end of 
the grating. In other words, N light waves, from N different slits, will all be in phase 
with each other when they arrive at a point on the screen at angle Um such that

 d sin um = ml  m = 0, 1, 2, 3, p  (22.15)

The screen will have bright constructive-interference fringes at the values of um given 
by Equation 22.15. We say that the light is “diffracted at angle um.<

Because it’s usually easier to measure distances rather than angles, the position ym 
of the mth maximum is

 ym = L tan um   (positions of bright fringes) (22.16)

FIGure 22.6 Top view of a diffraction 
grating with N = 10 slits.
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The integer m is called the order of the diffraction. For example, light diffracted at u2 
would be the second-order diffraction. Practical gratings, with very small values for d, 
display only a few orders. Because d is usually very small, it is customary to character-
ize a grating by the number of lines per millimeter. Here “line” is synonymous with 
“slit,” so the number of lines per millimeter is simply the inverse of the slit spacing d 
in millimeters.

NOTe  The condition for constructive interference in a grating of N slits is identical 
to Equation 22.4 for just two slits. Equation 22.15 is simply the requirement that the 
path-length difference between adjacent slits, be they two or N, is ml. But unlike 
the angles in double-slit interference, the angles of constructive interference from a 
diffraction grating are generally not small angles. The reason is that the slit spacing 
d in a diffraction grating is so small that l/d is not a small number. Thus you cannot 
use the small-angle approximation to simplify Equations 22.15 and 22.16. 

The wave amplitude at the points of constructive interference is Na because N 
waves of amplitude a combine in phase. Because the intensity depends on the square 
of the amplitude, the intensities of the bright fringes of a diffraction grating are

 Imax = N 2I1 (22.17)

where, as before, I1 is the intensity of the wave from a single slit. Equation 22.17 is 
consistent with our prior conclusion that the intensity of a bright fringe in a double-
slit interference experiment is four times the intensity of the light from each slit 
alone. You can see that the fringe intensities increase rapidly as the number of slits 
increases.

Not only do the fringes get brighter as N increases, they also get narrower. This is 
again a matter of conservation of energy. If the light waves did not interfere, the inten-
sity from N slits would be NI1. Interference increases the intensity of the bright fringes 
by an extra factor of N, so to conserve energy the width of the bright fringes must be 
proportional to 1/N. For a realistic diffraction grating, with N 7 100, the interference 
pattern consists of a small number of very bright and very narrow fringes while most 
of the screen remains dark. FIGure 22.8a shows the interference pattern behind a diffrac-
tion grating both graphically and with a simulation of the viewing screen. A compari-
son with Figure 22.5b shows that the bright fringes of a diffraction grating are much 
sharper and more distinct than the fringes of a double slit.

Because the bright fringes are so distinct, diffraction gratings are used for mea-
suring the wavelengths of light. Suppose the incident light consists of two slightly 
differ ent wavelengths. Each wavelength will be diffracted at a slightly different angle 
and, if N is sufficiently large, we’ll see two distinct fringes on the screen. FIGure 22.8b 
illustrates this idea. By contrast, the bright fringes in a double-slit experiment are too 
broad to distinguish the fringes of one wavelength from those of the other.

A microscopic side-on look at a diffraction 
grating.

1000 nm

FIGure 22.8 The interference pattern 
behind a diffraction grating.
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 u1 = tan-11y1

L 2 = b 36.08� fringe at 72.88 cm

36.13� fringe at 73.00 cm

These angles must satisfy the interference condition d sin u1 = l, 
so the wavelengths are l = d sin u1. What is d? If a 1 mm length 
of the grating has 1000 slits, then the spacing from one slit to the 
next must be 1/1000 mm, or d = 1.000 * 10-6 m. Thus the wave-
lengths creating the two bright fringes are

 l = d sin u1 = b 589.0 nm fringe at 72.88 cm

589.6 nm fringe at 73.00 cm

ASSeSS We had data accurate to four significant figures, and all 
four were necessary to distinguish the two wavelengths.

exAMpLe 22.3   Measuring wavelengths emitted by sodium atoms
Light from a sodium lamp passes through a diffraction grating having 
1000 slits per millimeter. The interference pattern is viewed on a 
screen 1.000 m behind the grating. Two bright yellow fringes are 
visible 72.88 cm and 73.00 cm from the central maximum. What 
are the wavelengths of these two fringes?

VISuALIze This is the situation shown in Figure 22.8b. The two 
fringes are very close together, so we expect the wavelengths to be 
only slightly different. No other yellow fringes are mentioned, so we 
will assume these two fringes are the first-order diffraction (m = 1).

SOLVe The distance ym of a bright fringe from the central maxi-
mum is related to the diffraction angle by ym = L tan um. Thus the 
diffraction angles of these two fringes are



636    c h a p t e r  22 . Wave Optics

The science of measuring the wavelengths of atomic and molecular emissions is 
called spectroscopy. The two sodium wavelengths in this example are called the 
sodium doublet, a name given to two closely spaced wavelengths emitted by the atoms 
of one element. This doublet is an identifying characteristic of sodium. Because no 
other element emits these two wavelengths, the doublet can be used to identify the 
presence of sodium in a sample of unknown composition, even if sodium is only a very 
minor constituent. This procedure is called spectral analysis.

reflection Gratings
We have analyzed what is called a transmission grating, with many parallel slits. In 
practice, most diffraction gratings are manufactured as reflection gratings. The sim-
plest reflection grating, shown in FIGure 22.9a, is a mirror with hundreds or thousands of 
narrow, parallel grooves cut into the surface. The grooves divide the surface into many 
parallel reflective stripes, each of which, when illuminated, becomes the source of a 
spreading wave. Thus an incident light wave is divided into N overlapped waves. The 
interference pattern is exactly the same as the interference pattern of light transmitted 
through N parallel slits.

Naturally occurring reflection gratings are responsible for some forms of color in 
nature. As the micrograph of FIGure 22.9b shows, a peacock feather consists of nearly 
parallel rods of melanin. These act as a reflection grating and create the ever-changing, 
multicolored hues of iridescence as the angle between the grating and your eye changes. 
The iridescence of some insects is due to diffraction from parallel microscopic ridges 
on the shell.

The rainbow of colors reflected from the surface of a DVD is a similar display 
of interference. The surface of a DVD is smooth plastic with a mirror-like reflective 
coating in which millions of microscopic holes, each about 1 mm in diameter, encode 
digital information. From an optical perspective, the array of holes in a shiny surface is 
a two-dimensional version of the reflection grating shown in Figure 22.9a. Reflection 
gratings can be manufactured at very low cost simply by stamping holes or grooves 
into a reflective surface, and these are widely sold as toys and novelty items. Rainbows 
of color are seen as each wavelength of white light is diffracted at a unique angle.

FIGure 22.9 Reflection gratings.

A reflection grating can be made by cutting
parallel grooves in a mirror surface. These can
be very precise, for scientific use, or mass
produced in plastic.
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Stop to think 22.3 
 White light passes through a diffraction grating and forms rainbow 

patterns on a screen behind the grating. For each rainbow,

 a. The red side is on the right, the violet side on the left.
 b. The red side is on the left, the violet side on the right.
 c. The red side is closest to the center of the screen, the violet side is farthest from 

the center.
 d. The red side is farthest from the center of the screen, the violet side is closest to 

the center.

22.4 Single-Slit Diffraction
We opened this chapter with a photograph (Figure 22.1a) of a water wave passing 
through a hole in a barrier, then spreading out on the other side. You then saw an 
image (Figure 22.2) showing that light, after passing through a very narrow slit, also 
spreads out on the other side. This phenomenon is called diffraction. We’re now ready 
to look at the details of diffraction.

FIGure 22.10 shows the experimental arrangement for observing the diffraction of light 
through a narrow slit of width a. Diffraction through a tall, narrow slit is known as single-
slit diffraction. A viewing screen is placed distance L behind the slit, and we will assume 
that L W a. The light pattern on the viewing screen consists of a central maximum 

FIGure 22.10 A single-slit diffraction 
experiment.
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flanked by a series of weaker secondary maxima and dark fringes. Notice that the cen-
tral maximum is significantly broader than the secondary maxima. It is also significantly 
brighter than the secondary maxima, although that is hard to tell here because this image 
has been overexposed to make the secondary maxima show up better.

Huygens’ principle
Our analysis of the superposition of waves from distinct sources, such as two loud-
speakers or the two slits in a double-slit experiment, has tacitly assumed that the 
sources are point sources, with no measurable extent. To understand diffraction, we 
need to think about the propagation of an extended wave front. This is a problem first 
considered by the Dutch scientist Christiaan Huygens, a contemporary of Newton who 
argued that light is a wave.

Huygens lived before a mathematical theory of waves had been developed, so he 
developed a geometrical model of wave propagation. His idea, which we now call 
Huygens’ principle, has two steps:

 1. Each point on a wave front is the source of a spherical wavelet that spreads out 
at the wave speed.

 2. At a later time, the shape of the wave front is the line tangent to all the wavelets.

FIGure 22.11 illustrates Huygens’ principle for a plane wave and a spherical wave. As 
you can see, the line tangent to the wavelets of a plane wave is a plane that has propa-
gated to the right. The line tangent to the wavelets of a spherical wave is a larger sphere.

Huygens’ principle is a visual device, not a theory of waves. Nonetheless, the full 
mathematical theory of waves, as it developed in the 19th century, justifies Huygens’ 
basic idea, although it is beyond the scope of this textbook to prove it.

Analyzing Single-Slit Diffraction
FIGure 22.12a shows a wave front passing through a narrow slit of width a. According 
to Huygens’ principle, each point on the wave front can be thought of as the source of 
a spherical wavelet. These wavelets overlap and interfere, producing the diffraction 
pattern seen on the viewing screen. The full mathematical analysis, using every point 
on the wave front, is a fairly difficult problem in calculus. We’ll be satisfied with a 
geometrical analysis based on just a few wavelets.

FIGure 22.12b shows the paths of several wavelets that travel straight ahead to the cen-
tral point on the screen. (The screen is very far to the right in this magnified view of the 
slit.) The paths are very nearly parallel to each other, thus all the wavelets travel the same 
distance and arrive at the screen in phase with each other. The constructive interference 
between these wavelets produces the central maximum of the diffraction pattern at u = 0.

FIGure 22.11 Huygens’ principle applied 
to the propagation of plane waves and 
spherical waves.
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FIGure 22.12 Each point on the wave front is a source of spherical wavelets. The 
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The situation is different at points away from the center. Wavelets 1 and 2 in 
FIGure 22.12c start from points that are distance a/2 apart. If the angle is such that �r12, 
the extra distance traveled by wavelet 2, happens to be l/2, then wavelets 1 and 2 
arrive out of phase and interfere destructively. But if �r12 is l/2, then the difference 
�r34 between paths 3 and 4 and the difference �r56 between paths 5 and 6 are also 
l/2. Those pairs of wavelets also interfere destructively. The superposition of all the 
wavelets produces perfect destructive interference.

Figure 22.12c shows six wavelets, but our conclusion is valid for any number of 
wavelets. The key idea is that every point on the wave front can be paired with 
another point distance a/2 away. If the path-length difference is l/2, the wavelets 
originating at these two points arrive at the screen out of phase and interfere destruc-
tively. When we sum the displacements of all N wavelets, they will—pair by pair—
add to zero. The viewing screen at this position will be dark. This is the main idea of 
the analysis, one worth thinking about carefully.

You can see from Figure 22.12c that �r12 = (a/2) sin u. This path-length difference 
will be l/2, the condition for destructive interference, if

 �r12 =
a

2
 sin u1 =

l

2
 (22.18)

or, equivalently, if a sin u1 = l.

NOTe  Equation 22.18 cannot be satisfied if the slit width a is less than the wave-
length l. If a wave passes through an opening smaller than the wavelength, the 
central maximum of the diffraction pattern expands to where it completely fills the 
space behind the opening. There are no minima or dark spots at any angle. This 
situation is uncommon for light waves, because l is so small, but quite common in 
the diffraction of sound and water waves. 

We can extend this idea to find other angles of perfect destructive interference. 
Suppose each wavelet is paired with another wavelet from a point a/4 away. If �r 
between these wavelets is l/2, then all N wavelets will again cancel in pairs to give 
complete destructive interference. The angle u2 at which this occurs is found by 
replacing a/2 in Equation 22.18 with a/4, leading to the condition a sin u2 = 2l. This 
process can be continued, and we find that the general condition for complete destruc-
tive interference is

 a sin up = pl  p = 1, 2, 3, p  (22.19)

When up V 1 rad, which is almost always true for light waves, we can use the 
small-angle approximation to write

 up = p 
l

a
  p = 1, 2, 3, p  (angles of dark fringes) (22.20)

Equation 22.20 gives the angles in radians to the dark minima in the diffraction pat-
tern of Figure 22.10. Notice that p = 0 is explicitly excluded. p = 0 corresponds to 
the straight-ahead position at u = 0, but you saw in Figures 22.10 and 22.12b that 
u = 0 is the central maximum, not a minimum.

NOTe  It is perhaps surprising that Equations 22.19 and 22.20 are mathematically 
the same as the condition for the mth maximum of the double-slit interference pat-
tern. But the physical meaning here is quite different. Equation 22.20 locates the 
minima (dark fringes) of the single-slit diffraction pattern. 

You might think that we could use this method of pairing wavelets from different 
points on the wave front to find the maxima in the diffraction pattern. Why not take 
two points on the wave front that are distance a/2 apart, find the angle at which their 
wavelets are in phase and interfere constructively, then sum over all points on the 
wave front? There is a subtle but important distinction. FIGure 22.13 shows six vector 

FIGure 22.13 Destructive interference by 
pairs leads to net destructive interference, 
but constructive interference by 
pairs does not necessarily lead to net 
constructive interference.

(a)

Each pair of vectors interferes destructively.
The vector sum of all six vectors is zero.

(b)

Each pair of vectors interferes constructively.
Even so, the vector sum of all six vectors is zero.



arrows. The arrows in FIGure 22.13a are arranged in pairs such that the two members of 
each pair cancel. The sum of all six vectors is clearly the zero vector 0

u

, representing 
destructive interference. This is the procedure we used in Figure 22.12c to arrive at 
Equation 22.18.

The arrows in FIGure 22.13b are arranged in pairs such that the two members of each 
pair point in the same direction—constructive interference! Nonetheless, the sum of 
all six vectors is still 0

u

. To have N waves interfere constructively requires more than 
simply having constructive interference between pairs. Each pair must also be in phase 
with every other pair, a condition not satisfied in Figure 22.13b. Constructive interfer-
ence by pairs does not necessarily lead to net constructive interference. It turns out 
that there is no simple formula to locate the maxima of a single-slit diffraction pattern.

It is possible, although beyond the scope of this textbook, to calculate the entire light 
intensity pattern. The results of such a calculation are shown graphically in FIGure 22.14. 
You can see the bright central maximum at u = 0, the weaker secondary maxima, 
and the dark points of destructive interference at the angles given by Equation 22.20. 
Compare this graph to the image of Figure 22.10 and make sure you see the agreement 
between the two.

FIGure 22.14 A graph of the intensity of 
a single-slit diffraction pattern.

y

u1

p � 2

p � 1

Width w

p � 1

p � 2

Single
slit

Screen

a

Light
intensity

Central
maximum

0

L W a

 u1 =
1.2 cm

200 cm
= 0.00600 rad = 0.344�

The first minimum is at angle u1 = l/a, from which we find that 
the slit width is

 a =
l

u1
=

633 * 10-9 m

6.00 * 10-3 rad
= 1.1 * 10-4 m = 0.11 mm

ASSeSS This is typical of the slit widths used to observe single-
slit diffraction. You can see that the small-angle approximation is 
well satisfied.

exAMpLe 22.4  Diffraction of a laser through a slit
Light from a helium-neon laser (l = 633 nm) passes through a 
narrow slit and is seen on a screen 2.0 m behind the slit. The first 
minimum in the diffraction pattern is 1.2 cm from the central max-
imum. How wide is the slit?

MODeL A narrow slit produces a single-slit diffraction pattern. A 
displacement of only 1.2 cm in a distance of 200 cm means that 
angle u1 is certainly a small angle.

VISuALIze The intensity pattern will look like Figure 22.14.

SOLVe We can use the small-angle approximation to find that the 
angle to the first minimum is

The Width of a Single-Slit Diffraction pattern
We’ll find it useful, as we did for the double slit, to measure positions on the screen 
rather than angles. The position of the pth dark fringe, at angle up, is yp = L tan up, 
where L is the distance from the slit to the viewing screen. Using Equation 22.20 for 
up and the small-angle approximation tan up � up, we find that the dark fringes in the 
single-slit diffraction pattern are located at

 yp =
plL

a
  p = 1, 2, 3, p  (positions of dark fringes) (22.21)

A diffraction pattern is dominated by the central maximum, which is much brighter 
than the secondary maxima. The width w of the central maximum, shown in Figure 22.14, 
is defined as the distance between the two p = 1 minima on either side of the central 
maximum. Because the pattern is symmetrical, the width is simply w = 2y1. This is

 w =
2lL

a
   (single slit) (22.22)

The width of the central maximum is twice the spacing LL/a between the dark 
fringes on either side. The farther away the screen (larger L), the wider the pattern of 
light on it becomes. In other words, the light waves are spreading out behind the slit, 
and they fill a wider and wider region as they travel farther.

An important implication of Equation 22.22, one contrary to common sense, is that 
a narrower slit (smaller a) causes a wider diffraction pattern. The smaller the opening 
you squeeze a wave through, the more it spreads out on the other side.

The central maximum of this single-slit 
diffraction pattern appears white because 
it is overexposed. The width of the central 
maximum is clear.
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Stop to think 22.4 
 The figure shows two single-slit diffraction patterns. 

The distance between the slit and the viewing screen is the same in both 
cases. Which of the following (perhaps more than one) could be true?

 a. The slits are the same for both; l1 7 l2.
 b. The slits are the same for both; l2 7 l1.
 c. The wavelengths are the same for both; a1 7 a2.
 d. The wavelengths are the same for both; a2 7 a1.
 e. The slits and the wavelengths are the same for both; p1 7 p2.
 f. The slits and the wavelengths are the same for both; p2 7 p1.

SOLVe From Equation 22.22, the wavelength is

  l =
aw

2L
=

(1.2 * 10-4 m)(0.0085 m)

2(1.00 m)

  = 5.1 * 10-7 m = 510 nm

exAMpLe 22.5  Determining the wavelength
Light passes through a 0.12-mm-wide slit and forms a diffraction 
pattern on a screen 1.00 m behind the slit. The width of the central 
maximum is 0.85 cm. What is the wavelength of the light?

l1

l2

22.5 Circular-Aperture Diffraction
Diffraction occurs if a wave passes through an opening of any shape. Diffraction by a single 
slit establishes the basic ideas of diffraction, but a common situation of practical impor-
tance is diffraction of a wave by a circular aperture. Circular diffraction is mathematically 
more complex than diffraction from a slit, and we will present results without derivation.

Consider some examples. A loudspeaker cone generates sound by the rapid oscillation 
of a diaphragm, but the sound wave must pass through the circular aperture defined by the 
outer edge of the speaker cone before it travels into the room beyond. This is diffraction by 
a circular aperture. Telescopes and microscopes are the reverse. Light waves from outside 
need to enter the instrument. To do so, they must pass through a circular lens. In fact, the 
performance limit of optical instruments is determined by the diffraction of the circular 
openings through which the waves must pass. This is an issue we’ll look at in Chapter 24.

FIGure 22.15 shows a circular aperture of diameter D. Light waves passing through 
this aperture spread out to generate a circular diffraction pattern. You should compare 
this to Figure 22.10 for a single slit to note the similarities and differences. The diffrac-
tion pattern still has a central maximum, now circular, and it is surrounded by a series 
of secondary bright fringes.

FIGure 22.15 The diffraction of light by a circular opening.

u1

p � 2

p � 3

p � 3

p � 1

Width w

p � 1

p � 2

Circular
aperture

Diameter D

Light
intensity

Central
maximum

Angle u1 locates the first minimum in the intensity, where there is perfect destruc-
tive interference. A mathematical analysis of circular diffraction finds

 u1 =
1.22l

D
 (22.23)
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where D is the diameter of the circular opening. Equation 22.23 has assumed the 
small-angle approximation, which is almost always valid for the diffraction of light 
but usually is not valid for the diffraction of longer-wavelength sound waves.

Within the small-angle approximation, the width of the central maximum is

 w = 2y1 = 2L tan u1 �
2.44lL

D
   (circular aperture) (22.24)

The diameter of the diffraction pattern increases with distance L, showing that light 
spreads out behind a circular aperture, but it decreases if the size D of the aperture is 
increased.

SOLVe Equation 22.24 gives us the appropriate screen distance:

 L =
wD

2.44l
=

(3.0 * 10-3 m)(5.0 * 10-4 m)

2.44(633 * 10-9 m)
= 0.97 m

exAMpLe 22.6  Shining a laser through a circular hole

Light from a helium-neon laser (l = 633 nm) passes through a 
0.50-mm-diameter hole. How far away should a viewing screen 
be placed to observe a diffraction pattern whose central maximum 
is 3.0 mm in diameter?

The Wave and ray Models of Light
We opened this chapter by noting that there are three models of light, each useful within 
a certain range of circumstances. We are now at a point where we can establish an 
important condition that separates the wave model of light from the ray model of light.

When light passes through an opening of size a, the angle of the first diffraction 
minimum is

 u1 = sin-11la 2  (22.25)

Equation 22.25 is for a slit, but the result is very nearly the same if a is the diameter of 
a circular aperture. Regardless of the shape of the opening, the factor that determines 
how much a wave spreads out behind an opening is the ratio L/a, the size of the 
wavelength compared to the size of the opening.

FIGure 22.16 illustrates the difference between a wave whose wavelength is much 
smaller than the size of the opening and a second wave whose wavelength is compa-
rable to the opening. A wave with l/a � 1 quickly spreads to fill the region behind 
the opening. Light waves, because of their very short wavelength, almost always have 
l/a V 1 and diffract to produce a slowly spreading “beam” of light.

Now we can better appreciate Newton’s dilemma. With everyday-sized openings, 
sound and water waves have l/a � 1 and diffract to fill the space behind the opening. 
Consequently, this is what we come to expect for the behavior of waves. Newton saw 
no evidence of this for light passing through openings. We see now that light really 
does spread out behind an opening, but the very small l/a ratio usually makes the dif-
fraction pattern too small to see. Diffraction begins to be discernible only when the 
size of the opening is a fraction of a millimeter or less. If we wanted the diffracted light 
wave to fill the space behind the opening (u1 � 90�), as a sound wave does, we would 
need to reduce the size of the opening to a � 0.001 mm! Although holes this small can 
be made today, with the processes used to make integrated circuits, the light passing 
through such a small opening is too weak to be seen by the eye.

FIGure 22.17 shows light passing through a hole of diameter D. According to the ray 
model, light rays passing through the hole travel straight ahead to create a bright cir-
cular spot of diameter D on a viewing screen. This is the geometric image of the slit. 
In reality, diffraction causes the light to spread out behind the slit, but—and this is the 
important point—we will not notice the spreading if it is less than the diameter D 
of the geometric image. That is, we will not be aware of diffraction unless the bright 
spot on the screen increases in diameter.

FIGure 22.16 The diffraction of a 
long-wavelength wave and a short-
wavelength wave through the same 
opening.

u1

u1

a

Long wavelength, l � a.
This wave quickly fills the
region behind the opening.

Short wavelength, l V a.
This wave spreads slowly
and remains a well-defined
beam.

FIGure 22.17 Diffraction will be noticed 
only if the bright spot on the screen is 
wider than D.

Screen

Hole of
diameter D

Incident light

If light travels in straight lines, the image on 
the screen is the same size as the hole. 
Diffraction will not be noticed unless the light 
spreads over a diameter larger than D.
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This idea provides a reasonable criterion for when to use ray optics and when to 
use wave optics:

	■	 If the spreading due to diffraction is less than the size of the opening, use the ray 
model and think of light as traveling in straight lines.

	■	 If the spreading due to diffraction is greater than the size of the opening, use the 
wave model of light.

The crossover point between these two regimes occurs when the spreading due 
to diffraction is equal to the size of the opening. The central-maximum width of a 
circular-aperture diffraction pattern is w = 2.44lL/D. If we equate this diffraction 
width to the diameter of the aperture itself, we have

 
2.44lL

Dc 
= Dc  (22.26)

where the subscript c on Dc  indicates that this is the crossover between the ray model 
and the wave model. Because we’re making an estimate—the change from the ray 
model to the wave model is gradual, not sudden—to one significant figure, we find

 Dc � 22lL (22.27)

This is the diameter of a circular aperture whose diffraction pattern, at distance L, has 
width w = D. We know that visible light has l � 500 nm, and a typical distance in 
laboratory work is L � 1 m. For these values,

 Dc � 1 mm

This brings us to an important and very practical conclusion, presented in Tactics 
Box 22.1.

TACTICS
B O x  2 2 . 1 

 Choosing a model of light

 ●1 When visible light passes through openings smaller than about 1 mm in size, 
diffraction effects are usually important. Use the wave model of light.

 ●2 When visible light passes through openings larger than about 1 mm in size, 
diffraction effects are usually not important. Use the ray model of light.

Openings �  1 mm in size are a gray area. Whether one should use a ray model or 
a wave model will depend on the precise values of l and L. We’ll avoid such ambigu-
ous cases in this book, sticking with examples and homework that fall clearly within 
the wave model or the ray model. Lenses and mirrors, in particular, are almost always 
71 mm in size. We will study the optics of lenses and mirrors in the chapter on ray 
optics. This chapter on wave optics deals with objects and openings 61 mm in size.

22.6 Interferometers
Scientists and engineers have devised many ingenious methods for using interference 
to control the flow of light and to make very precise measurements with light waves. 
A device that makes practical use of interference is called an interferometer.

Interference requires two waves of exactly the same wavelength. One way of guar-
anteeing that two waves have exactly equal wavelengths is to divide one wave into 
two parts of smaller amplitude. Later, at a different point in space, the two parts are 
recombined. Interferometers are based on the division and recombination of a single 
wave.



To illustrate the idea, FIGure 22.18 shows an acoustical interferometer. A sound 
wave is sent into the left end of the tube. The wave splits into two parts at the junction, 
and waves of smaller amplitude travel around each side. Distance L can be changed by 
sliding the upper tube in and out like a trombone. After traveling distances r1 and r2, 
the waves recombine and their superposition travels out to the microphone. The sound 
emerging from the right end has maximum intensity, zero intensity, or somewhere in 
between depending on the phase difference between the two waves as they recombine.

The two waves traveling through the interferometer started from the same source, 
the loudspeaker; hence the phase difference �f0 between the wave sources is au-
tomatically zero. The phase difference �f between the recombined waves is due 
entirely to the different distances they travel. Consequently, the conditions for con-
structive and destructive interference are those we found in Chapter 21 for identical 
sources:

 
Constructive: �r = ml

Destructive: �r = 1m +
1

2 2l   m = 0, 1, 2, p  (22.28)

The distance each wave travels is easily found from Figure 22.18:

  r1 = a + b

  r2 = L + a + L + b = 2L + a + b

Thus the path-length difference between the waves is �r = r2 - r1 = 2L, and 
the conditions for constructive and destructive interference are

 

Constructive: L = m 
l

2

Destructive: L = 1m +
1

2 2  
l

2

   m = 0, 1, 2, p  (22.29)

The interference conditions involve l/2 rather than just l because the wave follow-
ing the upper path travels distance L twice, once up and once down. The upper wave 
travels a full wavelength l farther than the lower wave when L = l/2.

The interferometer is used by recording the alternating maxima and minima in 
the sound as the top tube is pulled out and L changes. The interference changes from 
a maximum to a minimum and back to a maximum every time L increases by half a 
wavelength. FIGure 22.19 is a graph of the sound intensity at the microphone as L is in-
creased. You can see, from Equation 22.29, that the number �m of maxima appearing 
as the length changes by �L is

 �m =
�L

l/2
 (22.30)

Equation 22.30 is the basis for measuring wavelengths very accurately.

1. The wave
 divides at
 this point.

2. The waves recombine 
 at this point and interfere.

3. The microphone detects the 
 superposition of the two waves 
 that traveled different distances.

r2

r1

a b

L

FIGure 22.18 An acoustical 
interferometer.

FIGure 22.19 Interference maxima and 
minima alternate as the slide on an 
acoustical interferometer is withdrawn.

L

Intensity

Slide position

l/2

Moving the slide l/4 changes
the interference to destructive.

The waves traveling the two
paths interfere constructively.

SOLVe Using Equation 22.30, we have

 l =
2�L

�m
=

2(31.52 cm)

10
= 6.304 cm

ASSeSS The wavelength can be determined to four significant 
figures because the distance was measured to four significant figures.

exAMpLe 22.7  Measuring the wavelength of sound
A loudspeaker broadcasts a sound wave into an acoustical in-
terferometer. The interferometer is adjusted so that the output 
sound intensity is a maximum, then the slide is slowly withdrawn. 
Exactly 10 new maxima appear as the slide moves 31.52 cm. What 
is the wavelength of the sound wave?

MODeL An interferometer produces a new maximum each time L 
increases by l/2, causing the path-length difference �r to increase 
by l.
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FIGure 22.20 A Michelson 
interferometer.

1. The wave is
 divided at
 this point.

2. The returning
 waves recombine
 at this point.

3. The detector measures
 the superposition of the
 two waves that have
 traveled different paths.

Mirror M2

Mirror M1

Adjustment
screw

Source

L2

L1

Beam
splitter

FIGure 22.21 Photograph of the 
interference fringes produced by a 
Michelson interferometer.

The Michelson Interferometer
Albert Michelson, the first American scientist to receive a Nobel Prize, invented 
an optical interferometer analogous to the acoustical interferometer. In the Mi-
chelson interferometer of FIGure 22.20, the light wave is divided by a beam splitter, 
a partially silvered mirror that reflects half the light but transmits the other half. 
The two waves then travel toward mirrors M1 and M2. Half of the wave reflected 
from M1 is transmitted through the beam splitter, where it recombines with the 
reflected half of the wave returning from M2. The superimposed waves travel on 
to a light detector, originally a human observer but now more likely an electronic 
photodetector.

Mirror M2 can be moved forward or backward by turning a precision screw. This 
is equivalent to pulling out the slide on the acoustical interferometer. The waves travel 
distances r1 = 2L 1 and r2 = 2L 2, with the factors of 2 appearing because the waves 
travel to the mirrors and back again. Thus the path-length difference between the two 
waves is

 �r = 2L 2 - 2L 1 (22.31)

The condition for constructive interference is �r = ml; hence constructive inter-
ference occurs when

 Constructive:  L 2 - L 1 = m 
l

2
   m = 0, 1, 2, p  (22.32)

This result is essentially identical to Equation 22.29 for an acoustical interferometer. 
Both divide a wave, send the two smaller waves along two paths that differ in length 
by �r, then recombine the two waves at a detector.

You might expect the interferometer output to be either “bright” or “dark.” In-
stead, a viewing screen shows the pattern of circular interference fringes seen in 
FIGure 22.21. Our analysis was for light waves that impinge on the mirrors exactly 
perpendicular to the surface. In an actual experiment, some of the light waves enter 
the interferometer at slightly different angles and, as a result, the recombined waves 
have slightly altered path-length differences �r. These waves cause the alternating 
bright and dark fringes as you move outward from the center of the pattern. Their 
analysis will be left to more advanced courses in optics. Equation 22.32 is valid at 
the center of the circular pattern; thus there is a bright central spot when Equation 
22.32 is true.

If mirror M2 is moved by turning the screw, the central spot in the fringe pattern 
alternates between bright and dark. The output recorded by a detector looks exactly 
like the alternating loud and soft sounds shown in Figure 22.19. Suppose the interfer-
ometer is adjusted to produce a bright central spot. The next bright spot will appear 
when M2 has moved half a wavelength, increasing the path-length difference by one 
full wavelength. The number �m of maxima appearing as M2 moves through distance 
�L 2  is

 �m =
�L 2

l/2
 (22.33)

Very precise wavelength measurements can be made by moving the mirror while 
counting the number of new bright spots appearing at the center of the pattern. The 
number �m is counted and known exactly. The only limitation on how precisely l 
can be measured this way is the precision with which distance �L 2 can be measured. 
Unlike l, which is microscopic, �L 2 is typically a few millimeters, a macroscopic 
distance that can be measured very accurately using precision screws, micrometers, 
and other techniques. Michelson’s invention provided a way to transfer the preci-
sion of macroscopic distance measurements to an equal precision for the wavelength 
of light.



Stop to think 22.5 
 A Michelson interferometer using light of wavelength l has been 

adjusted to produce a bright spot at the center of the interference pattern. Mirror M1 is 
then moved distance l toward the beam splitter while M2 is moved distance l away 
from the beam splitter. How many bright-dark-bright fringe shifts are seen?

 a. 0 b. 1 c. 2 d. 4
 e. 8 f. It’s not possible to say without knowing l.

Holography
No discussion of wave optics would be complete without mentioning holography, 
which has both scientific and artistic applications. The basic idea is a simple extension 
of interferometry.

FIGure 22.22a shows how a hologram is made. A beam splitter divides a laser beam 
into two waves. One wave illuminates the object of interest. The light scattered by 
this object is a very complex wave, but it is the wave you would see if you looked at 
the object from the position of the film. The other wave, called the reference beam, is 
reflected directly toward the film. The scattered light and the reference beam meet at 
the film and interfere. The film records their interference pattern.

The interference patterns we’ve looked at in this chapter have been simple pat-
terns of stripes and circles because the light waves have been well-behaved plane 
waves and spherical waves. The light wave scattered by the object in Figure 22.22a is 
exceedingly complex. As a result, the interference pattern recorded on the film—the 
hologram—is a seemingly random pattern of whorls and blotches. FIGure 22.22b is an 
enlarged photograph of a portion of a hologram. It’s certainly not obvious that infor-
mation is stored in this pattern, but it is.

SOLVe The mirror moves �L 2 = 3.164 mm = 3.164 * 10-3 m. 
We can use Equation 22.33 to find

 l =
2�L 2

�m
= 6.328 * 10-7 m = 632.8 nm

ASSeSS A measurement of �L 2 accurate to four significant fig-
ures allowed us to determine l to four significant figures. This 
happens to be the neon wavelength that is emitted as the laser 
beam in a helium-neon laser.

exAMpLe 22.8  Measuring the wavelength of light
An experimenter uses a Michelson interferometer to measure one 
of the wavelengths of light emitted by neon atoms. She slowly 
moves mirror M2 until 10,000 new bright central spots have ap-
peared. (In a modern experiment, a photodetector and computer 
would eliminate the possibility of experimenter error while 
counting.) She then measures that the mirror has moved a distance 
of 3.164 mm. What is the wavelength of the light?

MODeL An interferometer produces a new maximum each time L 2 
increases by l/2.

A hologram.

FIGure 22.22 Holography is an important application of wave optics.

(a) Recording a hologram

Laser

Film

Plane waves

Beam
splitter

Object
beam

Object

Reference
beam

The interference between the
scattered light and the reference
beam is recorded on the film.

The scattered
light has a
complex
wave front.

(b) A hologram

An enlarged photo of the
developed film. This is
the hologram.

Hologram
(developed
film)

Laser beam along the
reference beam direction

(c) Playing a hologram

The diffraction of the laser beam through the
light and dark patches of the film reconstructs
the original scattered wave.

An observer
“sees” the object
as if it were here.
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SOLVe To begin, all the air is pumped out of the cell. As light 
travels from the beam splitter to the mirror and back, the number 
of wavelengths inside the cell is

 m1 =
2d

lvac

where the 2 appears because the light passes through the cell twice.
The cell is then filled with gas at 1 atm pressure. Light travels 

slower in the gas, v = c/n, and you learned in Chapter 20 that the 
reduction in speed decreases the wavelength to lvac/n. With the 
cell filled, the number of wavelengths spanning distance d is

 m2 =
2d

l
=

2d

lvac/n

The physical distance has not changed, but the number of 
wavelengths along the path has. Filling the cell has increased the 
path by

 �m = m2 - m1 = (n - 1) 
2d

lvac

wavelengths. Each increase of one wavelength causes one bright-
dark-bright fringe shift at the output. Solving for n, we find

 n = 1 +
lvac�m

2d
= 1 +

(6.33 * 10-7 m)(43)

2(0.0400 m)
= 1.00034

ASSeSS This may seem like a six-significant-figure result, but 
there are really only two. What we’re measuring is not n but n - 1. 
We know the fringe count to two significant figures, and that has 
allowed us to compute n - 1 = lvac�m/2d = 3.4 * 10-4.

CHALLeNGe exAMpLe 22.9   Measuring the index of refraction of a gas
A Michelson interferometer uses a helium-neon laser with wave-
length lvac = 633 nm. In one arm, the light passes through a 
4.00-cm-thick glass cell. Initially the cell is evacuated, and the 
interferometer is adjusted so that the central spot is a bright fringe. 
The cell is then slowly filled to atmospheric pressure with a gas. 
As the cell fills, 43 bright-dark-bright fringe shifts are seen and  
counted. What is the index of refraction of the gas at this wave-
length?

MODeL Adding one additional wavelength to the round trip causes 
one bright-dark-bright fringe shift. Changing the length of the arm 
is one way to add wavelengths, but not the only way. Increasing 
the index of refraction also adds wavelengths because light has a 
shorter wavelength when traveling through a material with a larger 
index of refraction.

VISuALIze FIGure 22.23 shows a Michelson interferometer with a 
cell of thickness d in one arm.

FIGure 22.23 Measuring the index of refraction.

Mirror M2

Mirror M1

Source

L2

d

L1

Beam
splitter

Gas-filled cell of thickness d.
Light goes through this cell twice.

The hologram is “played” by sending just the reference beam through it, as seen in 
FIGure 22.2c. The reference beam diffracts through the transparent parts of the hologram, 
just as it would through the slits of a diffraction grating. Amazingly, the diffracted wave 
is exactly the same as the light wave that had been scattered by the object! In other 
words, the diffracted reference beam reconstructs the original scattered wave. As you 
look at this diffracted wave, from the far side of the hologram, you “see” the object 
exactly as if it were there. The view is three dimensional because, by moving your head 
with respect to the hologram, you can see different portions of the wave front.
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S u M M A r Y
The goal of Chapter 22 has been to understand and apply the wave model of light.

The wave model of light considers light to be a wave propagating through space. Diffraction and interference are important.
The ray model of light considers light to travel in straight lines like little particles. Diffraction and interference are not important.
Diffraction is important when the width of the diffraction pattern of an aperture equals or exceeds the size of the aperture.
For a circular aperture, the crossover between the ray and wave models occurs for an opening of diameter Dc � 22lL.

In practice, Dc � 1 mm for visible light. Thus

•	 Use the wave model when light passes through openings 6 1 mm in size. Diffraction effects are usually important.

•	 Use the ray model when light passes through openings 7 1 mm in size. Diffraction is usually not important.

Important Concepts

Huygens’ principle says that each point on 
a wave front is the source of a spherical 
wavelet. The wave front at a later time is 
tangent to all the wavelets.

Diffraction is the spreading of a wave after 
it passes through an opening.

Constructive and destructive interference 
are due to the overlap of two or more waves 
as they spread behind openings.

General principles

Circular aperture of diameter D.
A bright central maximum of diameter

w =
2.44lL

D

is surrounded by circular secondary maxima.
The first dark fringe is located at

u1 =
1.22l

D
  y1 =

1.22lL

D

For an aperture of any shape, a smaller opening  
causes a more rapid spreading of the wave behind the  
opening.

Interference due to amplitude division

An interferometer divides a wave, lets the two waves travel different 
paths, then recombines them. Interference is constructive if one wave 
travels an integer number of wavelengths more or less than the other 
wave. The difference can be due to an actual path-length difference or 
to a different index of refraction.

Michelson interferometer

The number of bright-dark-bright fringe shifts as mirror M2 moves 
distance �L 2 is

�m =
�L 2

l/2

Single slit of width a.
A bright central maximum 
of width

w =
2lL

a

is flanked by weaker secondary maxima.
Dark fringes are located at angles such that

a sin up = pl  p = 1, 2, 3, p

If l/a V 1, then from the small-angle approximation

up =
pl

a
  yp =

plL

a

Interference due to wave-front division

Waves overlap as they spread out behind slits. Constructive  
interference occurs along antinodal lines. Bright fringes are seen  
where the antinodal lines intersect the viewing screen.

Double slit with separation d.
Equally spaced bright fringes are located at

 um =
ml

d
  ym =

mlL

d
   m = 0, 1, 2, p

The fringe spacing is �y =
lL

d

Diffraction grating with slit spacing d.
Very bright and narrow fringes are located at 
angles and positions

    d sin um = ml  ym = L tan um

Applications
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optics
diffraction
models of light
wave model
ray model

photon model
double slit
interference fringes
central maximum
fringe spacing, �y

diffraction grating
order, m
spectroscopy
single-slit diffraction
secondary maxima

Huygens’ principle
circular aperture
interferometer
beam splitter
hologram

Terms and Notation

C O N C e p T u A L  Q u e S T I O N S

 1. FIGure Q22.1 shows light waves passing through two closely 
spaced, narrow slits. The graph shows the intensity of light on 
a screen behind the slits. Reproduce these graph axes, including 
the zero and the tick marks locating the double-slit fringes, then 
draw a graph to show how the light-intensity pattern will appear 
if the right slit is blocked, allowing light to go through only the 
left slit. Explain your reasoning.

 2. In a double-slit interference experiment, which of the following 
actions (perhaps more than one) would cause the fringe spacing 
to increase? (a) Increasing the wavelength of the light. (b) In-
creasing the slit spacing. (c) Increasing the distance to the view-
ing screen. (d) Submerging the entire experiment in water.

 3. FIGure Q22.3 shows the viewing screen in a double-slit ex-
periment. Fringe C is the central maximum. What will happen to 
the fringe spacing if

 a. The wavelength of the light is decreased?
 b. The spacing between the slits is decreased?
 c. The distance to the screen is decreased?
 d. Suppose the wavelength of the light is 500 nm. How much 

farther is it from the dot on the screen in the center of fringe 
E to the left slit than it is from the dot to the right slit?

 4. FIGure Q22.3 is the interference pattern seen on a viewing screen 
behind 2 slits. Suppose the 2 slits were replaced by 20 slits hav-
ing the same spacing d between adjacent slits.

 a. Would the number of fringes on the screen increase, de-
crease, or stay the same?

 b. Would the fringe spacing increase, decrease, or stay the same?
 c. Would the width of each fringe increase, decrease, or stay the 

same?
 d. Would the brightness of each fringe increase, decrease, or 

stay the same?

 5. FIGure Q22.5 shows the light intensity on a viewing screen be-
hind a single slit of width a. The light’s wavelength is l. Is 
l 6 a, l = a, l 7 a, or is it not possible to tell? Explain.

 6. FIGure Q22.6 shows the light intensity on a viewing screen be-
hind a circular aperture. What happens to the width of the central 
maximum if

 a. The wavelength of the light is increased?
 b. The diameter of the aperture is increased?
 c. How will the screen appear if the aperture diameter is less 

than the light wavelength?
 7. Narrow, bright fringes are observed on a screen behind a diffrac-

tion grating. The entire experiment is then immersed in water. 
Do the fringes on the screen get closer together, get farther apart, 
remain the same, or disappear? Explain.

 8. a.  Green light shines through a 100-mm-diameter hole and is 
observed on a screen. If the hole diameter is increased by 
20%, does the circular spot of light on the screen decrease in 
diameter, increase in diameter, or stay the same? Explain.

 b. Green light shines through a 100@mm-diameter hole and is 
observed on a screen. If the hole diameter is increased by 
20%, does the circular spot of light on the screen decrease in 
diameter, increase in diameter, or stay the same? Explain.

 9. A Michelson interferometer using 800 nm light is adjusted to 
have a bright central spot. One mirror is then moved 200 nm 
forward, the other 200 nm back. Afterward, is the central spot 
bright, dark, or in between? Explain.

 10. A Michelson interferometer is set up to display construc-
tive interference (a bright central spot in the fringe pattern of 
Figure 22.21) using light of wavelength l. If the wavelength is 
changed to l/2, does the central spot remain bright, does the 
central spot become dark, or do the fringes disappear? Explain. 
Assume the fringes are viewed by a detector sensitive to both 
wavelengths.
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e x e r C I S e S  A N D  p r O B L e M S

Problems labeled  integrate material from earlier chapters.

exercises

Section 22.2 The Interference of Light

 1. | Two narrow slits 80 mm apart are illuminated with light of 
wavelength 600 nm. What is the angle of the m = 3 bright fringe 
in radians? In degrees?

 2. | A double slit is illuminated simultaneously with orange light 
of wavelength 600 nm and light of an unknown wavelength. The 
m = 4 bright fringe of the unknown wavelength overlaps the 
m = 3 bright orange fringe. What is the unknown wavelength?

 3. | Light of wavelength 500 nm illuminates a double slit, and the 
interference pattern is observed on a screen. At the position of 
the m = 2 bright fringe, how much farther is it to the more dis-
tant slit than to the nearer slit?

 4. | A double-slit experiment is performed with light of wave-
length 600 nm. The bright interference fringes are spaced 
1.8 mm apart on the viewing screen. What will the fringe spac-
ing be if the light is changed to a wavelength of 400 nm?

 5. || Light of 600 nm wavelength illuminates a double slit. The 
intensity pattern shown in FIGure ex22.5 is seen on a screen 
2.0 m behind the slits. What is the spacing (in mm) between  
the slits?

 6. || Light from a sodium lamp (l = 589 nm) illuminates two nar-
row slits. The fringe spacing on a screen 150 cm behind the slits 
is 4.0 mm. What is the spacing (in mm) between the two slits?

 7. || In a double-slit experiment, the slit separation is 200 times 
the wavelength of the light. What is the angular separation (in 
degrees) between two adjacent bright fringes?

 8. || A double-slit interference pattern is created by two narrow slits 
spaced 0.20 mm apart. The distance between the first and the fifth 
minimum on a screen 60 cm behind the slits is 6.0 mm. What is 
the wavelength (in nm) of the light used in this experiment?

Section 22.3 The Diffraction Grating

 9. | A 4.0-cm-wide diffraction grating has 2000 slits. It is illumi-
nated by light of wavelength 550 nm. What are the angles (in 
degrees) of the first two diffraction orders?

 10. || A diffraction grating produces a first-order maximum at an 
angle of 20.0�. What is the angle of the second-order maximum?

 11. || Light of wavelength 600 nm illuminates a diffraction grating. 
The second-order maximum is at angle 39.5�. How many lines 
per millimeter does this grating have?

 12. || The two most prominent wavelengths in the light emitted by 
a hydrogen discharge lamp are 656 nm (red) and 486 nm (blue). 
Light from a hydrogen lamp illuminates a diffraction grating 
with 500 lines/mm, and the light is observed on a screen 1.5 m 
behind the grating. What is the distance between the first-order 
red and blue fringes?

 13. || A helium-neon laser (l = 633 nm) illuminates a diffraction 
grating. The distance between the two m = 1 bright fringes is 
32 cm on a screen 2.0 m behind the grating. What is the spacing 
between slits of the grating?

 14. | A diffraction grating is illuminated simultaneously with red 
light of wavelength 660 nm and light of an unknown wave-
length. The fifth-order maximum of the unknown wavelength 
exactly overlaps the third-order maximum of the red light. What 
is the unknown wavelength?

Section 22.4 Single-Slit Diffraction

 15. | A helium-neon laser (l = 633 nm) illuminates a single slit 
and is observed on a screen 1.5 m behind the slit. The distance 
between the first and second minima in the diffraction pattern is 
4.75 mm. What is the width (in mm) of the slit?

 16. | In a single-slit experiment, the slit width is 200 times the 
wavelength of the light. What is the width (in mm) of the central 
maximum on a screen 2.0 m behind the slit?

 17. | The central maximum of a single slit has width 4000l when 
viewed on a screen 1.0 m behind the slit. How wide (in mm) is 
the slit?

 18. || Light of 600 nm wavelength illuminates a single slit. The in-
tensity pattern shown in FIGure ex22.18 is seen on a screen 2.0 m 
behind the slits. What is the width (in mm) of the slit?

 19. || A 0.50-mm-wide slit is illuminated by light of wavelength 
500 nm. What is the width (in mm) of the central maximum on 
a screen 2.0 m behind the slit?

 20. || You need to use your cell phone, which broadcasts an 
800 MHz signal, but you’re behind two massive, radio-wave-
absorbing buildings that have only a 15 m space between them. 
What is the angular width, in degrees, of the electromagnetic 
wave after it emerges from between the buildings?

 21. | The opening to a cave is a tall, 30-cm-wide crack. A bat that is 
preparing to leave the cave emits a 30 kHz ultrasonic chirp. How 
wide is the “sound beam” 100 m outside the cave opening? Use 
vsound = 340 m/s.

Section 22.5 Circular-Aperture Diffraction

 22. || A 0.50-mm-diameter hole is illuminated by light of wave-
length 500 nm. What is the width (in mm) of the central maxi-
mum on a screen 2.0 m behind the slit?

 23. | Infrared light of wavelength 2.5 mm illuminates a 0.20-mm-
diameter hole. What is the angle of the first dark fringe in radians? 
In degrees?

 24. | You want to photograph a circular diffraction pattern whose 
central maximum has a diameter of 1.0 cm. You have a helium-
neon laser (l = 633 nm) and a 0.12-mm-diameter pinhole. 
How far behind the pinhole should you place the screen that’s 
to be photographed?
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 25. || Light from a helium-neon laser (l = 633 nm) passes through 
a circular aperture and is observed on a screen 4.0 m behind the 
aperture. The width of the central maximum is 2.5 cm. What is 
the diameter (in mm) of the hole?

Section 22.6 Interferometers

 26. | A Michelson interferometer uses red light with a wavelength 
of 656.45 nm from a hydrogen discharge lamp. How many 
bright-dark-bright fringe shifts are observed if mirror M2 is 
moved exactly 1 cm?

 27. | Moving mirror M2 of a Michelson interferometer a distance of 
100 mm causes 500 bright-dark-bright fringe shifts. What is the 
wavelength of the light?

 28. || A Michelson interferometer uses light whose wavelength 
is known to be 602.446 nm. Mirror M2 is slowly moved 
while exactly 33,198 bright-dark-bright fringe shifts are observed. 
What distance has M2 moved? Be sure to give your answer to an 
appropriate number of significant figures.

 29. | A Michelson interferometer uses light from a sodium lamp. 
Sodium atoms emit light having wavelengths 589.0 nm and 
589.6 nm. The interferometer is initially set up with both arms 
of equal length (L 1 = L 2), producing a bright spot at the center 
of the interference pattern. How far must mirror M2 be moved so 
that one wavelength has produced one more new maximum than 
the other wavelength?

problems

 30. | FIGure p22.30 shows the light intensity on a screen 2.5 m be-
hind an aperture. The aperture is illuminated with light of wave-
length 600 nm.

 a. Is the aperture a single slit or a double slit? Explain.
 b. If the aperture is a single slit, what is its width? If it is a 

double slit, what is the spacing between the slits?

 31. | FIGure p22.31 shows the light intensity on a screen 2.5 m 
behind an aperture. The aperture is illuminated with light of 
wavelength 600 nm.

 a. Is the aperture a single slit or a double slit? Explain.
 b. If the aperture is a single slit, what is its width? If it is a 

double slit, what is the spacing between the slits?

 32. || Light from a helium-neon laser (l = 633 nm) is used to il-
luminate two narrow slits. The interference pattern is observed 
on a screen 3.0 m behind the slits. Twelve bright fringes are 
seen, spanning a distance of 52 mm. What is the spacing (in mm) 
between the slits?

 33. || FIGure p22.33 shows the light intensity on a screen behind a 
double slit. The slit spacing is 0.20 mm and the wavelength of the 
light is 600 nm. What is the distance from the slits to the screen?

 34. || FIGure p22.33 shows the light intensity on a screen behind a 
double slit. The slit spacing is 0.20 mm and the screen is 2.0 m 
behind the slits. What is the wavelength (in nm) of the light?

 35. | FIGure p22.33 shows the light intensity on a screen behind a 
double slit. Suppose one slit is covered. What will be the light 
intensity at the center of the screen due to the remaining slit?

 36. ||| A laser beam with a wavelength of 524 nm is exactly per-
pendicular to a screen having two narrow slits spaced 0.150 mm 
apart. Interference fringes, including a central maximum, are ob-
served on a viewing screen 1.00 m away. The direction of the 
laser beam is then slowly rotated by 1.0� around an axis parallel 
to the slits until it makes an 89.0� angle with the screen. How far 
does the central maximum move on the viewing screen?

 37. ||| A double-slit experiment is set up using a helium-neon laser 
(l = 633 nm). Then a very thin piece of glass (n = 1.50) is 
placed over one of the slits. Afterward, the central point on the 
screen is occupied by what had been the m = 10 dark fringe. 
How thick is the glass?

 38. || A diffraction grating having 500 lines/mm diffracts visible 
light at 30�. What is the light’s wavelength?

 39. || Helium atoms emit light at several wavelengths. Light from a 
helium lamp illuminates a diffraction grating and is observed on 
a screen 50.0 cm behind the grating. The emission at wavelength 
501.5 nm creates a first-order bright fringe 21.90 cm from the 
central maximum. What is the wavelength of the bright fringe 
that is 31.60 cm from the central maximum?

 40. || A triple-slit experiment consists of three narrow slits, equally 
spaced by distance d and illuminated by light of wavelength l. Each 
slit alone produces intensity I1 on the viewing screen at distance L.

 a. Consider a point on the distant viewing screen such that the 
path-length difference between any two adjacent slits is l. 
What is the intensity at this point?

 b. What is the intensity at a point where the path-length differ-
ence between any two adjacent slits is l/2?

 41. || Because sound is a wave, it’s possible to make a diffrac-
tion grating for sound from a large board of sound-absorbing 
material with several parallel slits cut for sound to go through. 
When 10 kHz sound waves pass through such a grating, listeners 
10 m from the grating report “loud spots” 1.4 m on both sides of 
center. What is the spacing between the slits? Use 340 m/s for 
the speed of sound.

 42. || A diffraction grating with 600 lines/mm is illuminated with 
light of wavelength 500 nm. A very wide viewing screen is 
2.0 m behind the grating.

 a. What is the distance between the two m = 1 bright fringes?
 b. How many bright fringes can be seen on the screen?
 43. || A 500 line/mm diffraction grating is illuminated by light of 

wavelength 510 nm. How many bright fringes are seen on a 
2.0-m-wide screen located 2.0 m behind the grating?

 44. || White light (400–700 nm) incident on a 600 line/mm diffraction 
grating produces rainbows of diffracted light. What is the width of 
the first-order rainbow on a screen 2.0 m behind the grating?

FIGure p22.30 0 1 2
x (cm)

3 4 5

Intensity

FIGure p22.31 0 1 2
x (cm)

3 4 65

Intensity

FIGure p22.33 2.0 cm

0

Intensity (mW/m2)

12



 45. || For your science fair project you need to design a diffraction 
grating that will disperse the visible spectrum (400–700 nm) 
over 30.0� in first order.

 a. How many lines per millimeter does your grating need?
 b. What is the first-order diffraction angle of light from a 

sodium lamp (l = 589 nm)?
 46. || FIGure p22.46 shows the interference pattern on a screen 1.0 m 

behind an 800 line/mm diffraction grating. What is the wave-
length (in nm) of the light?

 47. || FIGure p22.46 shows the interference pattern on a screen 1.0 m 
behind a diffraction grating. The wavelength of the light is 
600 nm. How many lines per millimeter does the grating have?

 48. || Light from a sodium lamp (l = 589 nm) illuminates a nar-
row slit and is observed on a screen 75 cm behind the slit. The 
distance between the first and third dark fringes is 7.5 mm. What 
is the width (in mm) of the slit?

 49. | The wings of some beetles 
have closely spaced parallel lines 
of melanin, causing the wing to 
act as a reflection grating. Sup-
pose sunlight shines straight onto 
a beetle wing. If the melanin lines 
on the wing are spaced 2.0 mm 
apart, what is the first-order dif-
fraction angle for green light 
(l = 550 nm)?

 50. | If sunlight shines straight onto a peacock feather, the feather 
appears bright blue when viewed from 15� on either side of the 
incident beam of light. The blue color is due to diffraction from 
parallel rods of melanin in the feather barbules, as was shown in 
the photograph on page 636. Other wavelengths in the incident 
light are diffracted at different angles, leaving only the blue light  
to be seen. The average wavelength of blue light is 470 nm.  
Assuming this to be the first-order diffraction, what is the  
spacing of the melanin rods in the feather?

 51. || You’ve found an unlabeled diffraction grating. Before you 
can use it, you need to know how many lines per mm it has. To 
find out, you illuminate the grating with light of several differ-
ent wavelengths and then measure the distance between the two 
first-order bright fringes on a viewing screen 150 cm behind the 
grating. Your data are as follows:

Wavelength (nm) Distance (cm)

430 109.6

480 125.4

530 139.8

580 157.2

630 174.4

680 194.8

  Use the best-fit line of an appropriate graph to determine the 
number of lines per mm.

BIO

BIO

 52. || A diffraction grating has slit spacing d. Fringes are viewed on 
a screen at distance L. What wavelength of light produces a first-
order fringe on the viewing screen at distance L from the center 
of the screen?

 53. | For what slit-width-to-wavelength ratio does the first mini-
mum of a single-slit diffraction pattern appear at (a) 30�, (b) 60�, 
and (c) 90�?

 54. || Light from a helium-neon laser (l = 633 nm) is incident on 
a single slit. What is the largest slit width for which there are no 
minima in the diffraction pattern?

 55. || FIGure p22.55 shows the light intensity on a screen behind a 
single slit. The slit width is 0.20 mm and the screen is 1.5 m 
behind the slit. What is the wavelength (in nm) of the light?

 56. || FIGure p22.55 shows the light intensity on a screen behind a 
single slit. The wavelength of the light is 600 nm and the slit 
width is 0.15 mm. What is the distance from the slit to the 
screen?

 57. || FIGure p22.55 shows the light intensity on a screen behind a 
circular aperture. The wavelength of the light is 500 nm and the 
screen is 1.0 m behind the slit. What is the diameter (in mm) of 
the aperture?

 58. || Light from a helium-neon laser (l = 633 nm) illuminates 
a circular aperture. It is noted that the diameter of the cen-
tral maximum on a screen 50 cm behind the aperture matches 
the diameter of the geometric image. What is the aperture’s 
diameter (in mm)?

 59. || One day, after pulling down your window shade, you notice 
that sunlight is passing through a pinhole in the shade and 
making a small patch of light on the far wall. Having recently 
studied optics in your physics class, you’re not too surprised 
to see that the patch of light seems to be a circular diffraction 
pattern. It appears that the central maximum is about 1 cm 
across, and you estimate that the distance from the window 
shade to the wall is about 3 m. Estimate (a) the average wave-
length of the sunlight (in nm) and (b) the diameter of the pin-
hole (in mm).

 60. | A radar for tracking aircraft broadcasts a 12 GHz microwave 
beam from a 2.0-m-diameter circular radar antenna. From a wave 
perspective, the antenna is a circular aperture through which the 
microwaves diffract.

 a. What is the diameter of the radar beam at a distance of  
30 km?

 b. If the antenna emits 100 kW of power, what is the average 
microwave intensity at 30 km?

 61. || Scientists use laser range-finding to measure the distance to 
the moon with great accuracy. A brief laser pulse is fired at the 
moon, then the time interval is measured until the “echo” is seen 
by a telescope. A laser beam spreads out as it travels because it 
diffracts through a circular exit as it leaves the laser. In order for 
the reflected light to be bright enough to detect, the laser spot 
on the moon must be no more than 1.0 km in diameter. Staying 
within this diameter is accomplished by using a special large-
diameter laser. If l = 532 nm, what is the minimum diameter 
of the circular opening from which the laser beam emerges? The 
earth-moon distance is 384,000 km.
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 62. || Light of wavelength 600 nm passes though two slits separated 
by 0.20 mm and is observed on a screen 1.0 m behind the slits. 
The location of the central maximum is marked on the screen 
and labeled y = 0.

 a. At what distance, on either side of y = 0, are the m = 1 
bright fringes?

 b. A very thin piece of glass is then placed in one slit. Because 
light travels slower in glass than in air, the wave passing 
through the glass is delayed by 5.0 * 10-16 s in comparison 
to the wave going through the other slit. What fraction of the 
period of the light wave is this delay?

 c. With the glass in place, what is the phase difference �f0 be-
tween the two waves as they leave the slits?

 d. The glass causes the interference fringe pattern on the screen 
to shift sideways. Which way does the central maximum 
move (toward or away from the slit with the glass) and by 
how far?

 63. || A 600 line/mm diffraction grating is in an empty aquarium 
tank. The index of refraction of the glass walls is nglass = 1.50. 
A helium-neon laser (l = 633 nm) is outside the aquarium. The 
laser beam passes through the glass wall and illuminates the dif-
fraction grating.

 a. What is the first-order diffraction angle of the laser beam?
 b. What is the first-order diffraction angle of the laser beam af-

ter the aquarium is filled with water (nwater = 1.33)?
 64. | You’ve set up a Michelson interferometer with a helium-neon 

laser (l = 632.8 nm). After adjusting mirror M2 to produce a 
bright spot at the center of the pattern, you carefully move M2 
away from the beam splitter while counting 1200 new bright 
spots at the center. Then you put the laser away. Later another 
student wants to restore the interferometer to its starting con-
dition, but he mistakenly sets up a hydrogen discharge lamp 
and uses the 656.5 nm emission from hydrogen atoms. He then 
counts 1200 new bright spots while slowly moving M2 back 
toward the beam splitter. What is the net displacement of M2 
when he is done? Is M2 now closer to or farther from the beam 
splitter?

 65. || A Michelson interferometer operating at a 600 nm wavelength 
has a 2.00-cm-long glass cell in one arm. To begin, the air is pumped 
out of the cell and mirror M2 is adjusted to produce a bright spot at 
the center of the interference pattern. Then a valve is opened and 
air is slowly admitted into the cell. The index of refraction of air at 
1.00 atm pressure is 1.00028. How many bright-dark-bright fringe 
shifts are observed as the cell fills with air?

 66. | A 0.10-mm-thick piece of glass is inserted into one arm of 
a Michelson interferometer that is using light of wavelength 
500 nm. This causes the fringe pattern to shift by 200 fringes. 
What is the index of refraction of this piece of glass?

 67. || Optical computers require microscopic optical switches to 
turn signals on and off. One device for doing so, which can be 
implemented in an integrated circuit, is the Mach-Zender inter-
ferometer seen in FIGure p22.67. Light from an on-chip infrared 
laser (l = 1.000 mm) is split into two waves that travel equal 
distances around the arms of the interferometer. One arm passes 
through an electro-optic crystal, a transparent material that can 
change its index of refraction in response to an applied voltage. 
Suppose both arms are exactly the same length and the crystal’s 
index of refraction with no applied voltage is 1.522.

 a. With no voltage applied, is the output bright (switch closed, 
optical signal passing through) or dark (switch open, no 
signal)? Explain.

 b. What is the first index of refraction of the electro-optic crys-
tal larger than 1.522 that changes the optical switch to the 
state opposite the state you found in part a?

 68. || To illustrate one of the ideas of holography in a simple way, 
consider a diffraction grating with slit spacing d. The small-
angle approximation is usually not valid for diffraction gratings, 
because d is only slightly larger than l, but assume that the l/d 
ratio of this grating is small enough to make the small-angle ap-
proximation valid.

 a. Use the small-angle approximation to find an expression 
for the fringe spacing on a screen at distance L behind the 
grating.

 b. Rather than a screen, suppose you place a piece of film at 
distance L behind the grating. The bright fringes will expose 
the film, but the dark spaces in between will leave the film 
unexposed. After being developed, the film will be a series 
of alternating light and dark stripes. What if you were to now 
“play” the film by using it as a diffraction grating? In other 
words, what happens if you shine the same laser through the 
film and look at the film’s diffraction pattern on a screen at 
the same distance L? Demonstrate that the film’s diffraction 
pattern is a reproduction of the original diffraction grating.

Challenge problems

 69. A helium-neon laser (l = 633 nm) is built with a glass tube of 
inside diameter 1.0 mm, as shown in FIGure Cp22.69. One mirror 
is partially transmitting to allow the laser beam out. An electrical 
discharge in the tube causes it to glow like a neon light. From an 
optical perspective, the laser beam is a light wave that diffracts 
out through a 1.0-mm-diameter circular opening.

 a. Can a laser beam be perfectly parallel, with no spreading? 
Why or why not?

 b. The angle u1 to the first minimum is called the divergence 
angle of a laser beam. What is the divergence angle of this 
laser beam?

 c. What is the diameter (in mm) of the laser beam after it travels 
3.0 m?

 d. What is the diameter of the laser beam after it travels 1.0 km?

 70. The intensity at the central maximum of a double-slit interfer-
ence pattern is 4I1. The intensity at the first minimum is zero. At 
what fraction of the distance from the central maximum to the 
first minimum is the intensity I1?
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 71. Light consisting of two nearly equal wavelengths l + �l and 
l, where �l V l, is incident on a diffraction grating. The slit 
separation of the grating is d.

 a. Show that the angular separation of these two wavelengths in 
the mth order is

 �u =
�l2(d/m)2 - l2

 b. Sodium atoms emit light at 589.0 nm and 589.6 nm. What are 
the first-order and second-order angular separations (in de-
grees) of these two wavelengths for a 600 line/mm grating?

 72. FIGure Cp22.72 shows two nearly overlapped intensity peaks 
of the sort you might produce with a diffraction grating (see 
Figure 22.8b). As a practical matter, two peaks can just barely 
be resolved if their spacing �y equals the width w of each peak, 
where w is measured at half of the peak’s height. Two peaks 
closer together than w will merge into a single peak. We can use 
this idea to understand the resolution of a diffraction grating.

 a. In the small-angle approximation, the position of the m = 1 
peak of a diffraction grating falls at the same location as the 
m = 1 fringe of a double slit: y1 = lL/d. Suppose two wave-
lengths differing by �l pass through a grating at the same 
time. Find an expression for �y, the separation of their first-
order peaks.

 b. We noted that the widths of the bright fringes are proportion-
al to 1/N, where N is the number of slits in the grating. Let’s 
hypothesize that the fringe width is w = y1 /N. Show that this 
is true for the double-slit pattern. We’ll then assume it to be 
true as N increases.

 c. Use your results from parts a and b together with the idea 
that �ymin = w to find an expression for �lmin, the minimum 
wavelength separation (in first order) for which the diffrac-
tion fringes can barely be resolved.

 d. Ordinary hydrogen atoms emit red light with a wavelength of 
656.45 nm. In deuterium, which is a “heavy” isotope of hy-
drogen, the wavelength is 656.27 nm. What is the minimum 
number of slits in a diffraction grating that can barely resolve 
these two wavelengths in the first-order diffraction pattern?

 73. The diffraction grating analysis in this chapter assumed that the 
incident light is normal to the grating. FIGure Cp22.73 shows a 
plane wave approaching a diffraction grating at angle f.

 a. Show that the angles um for constructive interference are giv-
en by the grating equation

 d(sin um + sin f) = ml

  where m = 0, {1, {2, p . Angles are considered positive if 
they are above the horizontal line, negative if below it.

 b. The two first-order maxima, m = +1 and m = -1, are no 
longer symmetrical about the center. Find u1 and u-1 for 
500 nm light incident on a 600 line/mm grating at f = 30�.

 74. FIGure Cp22.74 shows light of wavelength l incident at angle f 
on a reflection grating of spacing d. We want to find the angles 
um at which constructive interference occurs.

 a. The figure shows paths 1 and 2 along which two waves travel 
and interfere. Find an expression for the path-length differ-
ence �r = r2 - r1.

 b. Using your result from part a, find an equation (analogous to 
Equation 22.15) for the angles um at which diffraction occurs 
when the light is incident at angle f. Notice that m can be a 
negative integer in your expression, indicating that path 2 is 
shorter than path 1.

 c. Show that the zeroth-order diffraction is simply a “reflec-
tion.” That is, u0 = f.

 d. Light of wavelength 500 nm is incident at f = 40� on a 
reflection grating having 700 reflection lines/mm. Find all 
angles um at which light is diffracted. Negative values of um 
are interpreted as an angle left of the vertical.

 e. Draw a picture showing a single 500 nm light ray incident at 
f = 40� and showing all the diffracted waves at the correct 
angles.

 75. The pinhole camera of FIG- 

ure Cp22.75 images distant 
objects by allowing only a 
narrow bundle of light rays 
to pass through the hole and 
strike the film. If light consist-
ed of particles, you could make the image sharper and sharper 
(at the expense of getting dimmer and dimmer) by making the 
aperture smaller and smaller. In practice, diffraction of light 

FIGure Cp22.72 
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by the circular aperture limits the maximum sharpness that can 
be obtained. Consider two distant points of light, such as two 
distant  streetlights.  Each  will  produce  a  circular  diffraction 
pattern on the film. The two images can just barely be resolved 
if  the  central  maximum  of  one  image  falls  on  the  first  dark 
fringe of the other image. (This is called Rayleigh’s criterion, 
and we will explore its  implication for optical  instruments in 
Chapter 24.)

  a.  Optimum sharpness of one image occurs when the diameter 
of the central maximum equals the diameter of the pinhole. 
What is the optimum hole size for a pinhole camera in which 
the film is 20 cm behind the hole? Assume l = 550 nm, an 
average value for visible light.

  b.  For this hole size, what is the angle a (in degrees) between 
two distant sources that can barely be resolved?

  c.  What is the distance between two street lights 1 km away that 
can barely be resolved?

Stop to think AnSwerS

Stop to Think 22.1: b. The antinodal lines seen in Figure 22.3b are 
diverging.

Stop to Think 22.2:  Smaller.  Shorter-wavelength  light  doesn’t 
spread as rapidly as longer-wavelength light. The fringe spacing �y 
is directly proportional to the wavelength l.

Stop to Think 22.3: d. Larger wavelengths have  larger diffraction 
angles. Red light has a larger wavelength than violet light, so red light 
is diffracted farther from the center.

Stop to Think 22.4: b or c. The width of the central maximum, which 
is proportional to l/a, has increased. This could occur either because 
the wavelength has increased or because the slit width has decreased.

Stop to Think 22.5: d. Moving M1 in by l decreases r1 by 2l. Mov-
ing M2 out by l increases r2 by 2l. These two actions together change 
the path length by �r = 4l.
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The observation that light trav-
els in straight lines—light rays—
will help us understand the 
physics of lenses and prisms.

Ray Optics

Reflection
Light rays can bounce, or reflect, off a 
surface. There are two important cases:

The Ray Model of Light
The ray model applies when light interacts with objects that are very large compared to 
the wavelength. You’ll learn that . . .

Light rays can also be scattered or absorbed by the medium they travel through.

Images Formed by Lenses 
and Mirrors
You’ll discover how lenses and mirrors 
form images. We’ll start with a graphical 
method called ray tracing.

We’ll then develop the thin-lens equa-
tion for more quantitative results.

A magnifying glass 
creates a virtual 
image that you see 
by looking through 
the lens.

We’ll use the same graphical and math-
ematical techniques to understand how 
curved mirrors create images.

Refraction
When light rays travel from one medium to 
another, they change directions, or refract, 
at the boundary.

 Looking Back
Section 20.5 Index of refraction

 Looking Ahead The goals of Chapter 23 are to understand and apply the ray model of light.

Ray tracing shows how this lens forms 
a real image on the opposite side of 
the lens from the object.

Image

Object

. . . light rays travel in straight 
lines unless they are . . .

. . . reflected by a surface 
or . . .

. . . refracted at a 
boundary.

Specular reflection, 
like from a mirror.

Diffuse reflection, 
like from the page 
of this book.

You’ll learn to use the law of reflection.

Refraction causes 
the laser beam to 
change direction 
as it goes through 
the prism.

You’ll learn to use Snell’s law to find the 
angles on both sides.

The passenger-
side rearview 
mirror is curved, 
allowing you to 
see a wider field 
of view.
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23.1 The Ray Model of Light
A flashlight makes a beam of light through the night’s darkness. Sunbeams stream into 
a darkened room through a small hole in the shade. Laser beams are even more well 
defined. Our everyday experience that light travels in straight lines is the basis of the 
ray model of light.

The ray model is an oversimplification of reality but nonetheless is very useful 
within its range of validity. In particular, the ray model of light is valid as long as any 
apertures through which the light passes (lenses, mirrors, and holes) are very large 
compared to the wavelength of light. In that case, diffraction and other wave aspects 
of light are negligible and can be ignored. The analysis of Section 22.5 found that the 
crossover between wave optics and ray optics occurs for apertures �  1 mm in diam-
eter. Lenses and mirrors are almost always larger than 1 mm, so the ray model of light 
is an excellent basis for the practical optics of image formation.

To begin, let us define a light ray as a line in the direction along which light energy 
is flowing. A light ray is an abstract idea, not a physical entity or a “thing.” Any nar-
row beam of light, such as the laser beam in FIguRe 23.1, is actually a bundle of many 
parallel light rays. You can think of a single light ray as the limiting case of a laser 
beam whose diameter approaches zero. Laser beams are good approximations of light 
rays, certainly adequate for demonstrating ray behavior, but any real laser beam is a 
bundle of many parallel rays.

The following table outlines five basic ideas and assumptions of the ray model 
of light.

Light rays

A beam of light

Direction
of travel

FIguRe 23.1 A laser beam or beam of 
sunlight is a bundle of parallel light rays.

The ray model of light

Light rays travel in straight lines.

Light travels through a transparent material in straight lines called light rays. The speed of 
light is v = c/n, where n is the index of refraction of the material.

Light rays can cross.

Light rays do not interact with each other. Two rays can cross without either being affected 
in any way.

A light ray travels forever unless it interacts with matter.

A light ray continues forever unless it has an interaction with matter that causes the ray to 
change direction or to be absorbed. Light interacts with matter in four different ways:

 ■	 At an interface between two materials, light can be either reflected or refracted.

 ■	 Within a material, light can be either scattered or absorbed.

These interactions are discussed later in the chapter.

An object is a source of light rays.

An object is a source of light rays. Rays originate from every point on the object, and each 
point sends rays in all directions. We make no distinction between self-luminous objects and 
reflective objects.

The eye sees by focusing a diverging bundle of rays.

The eye “sees” an object when diverging bundles of rays from each point on the object 
enter the pupil and are focused to an image on the retina. (Imaging is discussed later in the 
chapter.) From the movements the eye’s lens has to make to focus the image, your brain 
determines the point from which the rays originated, and you perceive the object as being at 
that point.

Material 1

Reflection
Refraction

Absorption
Scattering

Material 2

Eye

Diverging bundle of rays
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Objects
FIguRe 23.2 illustrates the idea that objects can be either self-luminous, such as the sun, 
flames, and lightbulbs, or reflective. Most objects are reflective. A tree, unless it is 
on fire, is seen or photographed by virtue of reflected sunlight or reflected skylight. 
People, houses, and this page in the book reflect light from self-luminous sources. In 
this chapter we are concerned not with how the light originates but with how it be-
haves after leaving the object.

Light rays from an object are emitted in all directions, but you are not aware 
of light rays unless they enter the pupil of your eye. Consequently, most light rays 
go completely unnoticed. For example, light rays travel from the sun to the tree in 
Figure 23.2, but you’re not aware of these unless the tree reflects some of them into 
your eye. Or consider a laser beam. You’ve probably noticed that it’s almost impos-
sible to see a laser beam from the side unless there’s dust in the air. The dust scatters 
a few of the light rays toward your eye, but in the absence of dust you would be com-
pletely unaware of a very powerful light beam traveling past you. Light rays exist 
independently of whether you are seeing them.

FIguRe 23.3 shows two idealized sets of light rays. The diverging rays from a point 
source are emitted in all directions. It is useful to think of each point on an object as 
a point source of light rays. A parallel bundle of rays could be a laser beam. Alterna-
tively it could represent a distant object, an object such as a star so far away that the 
rays arriving at the observer are essentially parallel to each other.

Ray Diagrams
Rays originate from every point on an object and travel outward in all directions, but 
a diagram trying to show all these rays would be hopelessly messy and confusing. To 
simplify the picture, we usually use a ray diagram showing only a few rays. For ex-
ample, FIguRe 23.4 is a ray diagram showing only a few rays leaving the top and bottom 
points of the object and traveling to the right. These rays will be sufficient to show us 
how the object is imaged by lenses or mirrors.

NOTe  Ray diagrams are the basis for a pictorial representation that we’ll use 
throughout this chapter. Be careful not to think that a ray diagram shows all of the 
rays. The rays shown on the diagram are just a subset of the infinitely many rays 
leaving the object. 

Apertures
A popular form of entertainment during ancient Roman times was a visit to a camera 
obscura, Latin for “dark room.” As FIguRe 23.5a shows, a camera obscura was a dark-
ened room with a single, small hole to the outside world. After their eyes became dark 
adapted, visitors could see a dim but full-color image of the outside world displayed 
on the back wall of the room. However, the image was upside down! The pinhole 
camera is a miniature version of the camera obscura.

A hole through which light passes is called an aperture. FIguRe 23.5b uses the ray 
model of light passing through a small aperture to explain how the camera obscura 
works. Each point on an object emits light rays in all directions, but only a very few of 
these rays pass through the aperture and reach the back wall. As the figure illustrates, 
the geometry of the rays causes the image to be upside down.

Actually, as you may have realized, each point on the object illuminates a small 
but extended patch on the wall. This is because the non-zero size of the aperture—
needed for the image to be bright enough to see—allows several rays from each point 
on the object to pass through at slightly different angles. As a result, the image is 
slightly blurred and out of focus. (Diffraction also becomes an issue if the hole gets 
too small.) We’ll later discover how a modern camera, with a lens, improves on the 
camera obscura.

Reflected light

The tree is a
reflective object.

The camera “sees” light rays
reflected by the tree but not
the rays from the sun.

The sun is a self-
luminous object.

Emitted light

FIguRe 23.2 Self-luminous and reflective 
objects.

Point source Parallel bundle

FIguRe 23.3 Point sources and parallel 
bundles represent idealized objects.

These are just a few of the
infinitely many rays leaving
the object.

FIguRe 23.4 A ray diagram simplifies the 
situation by showing only a few rays.

Image on
back wall

Darkened room

Object

Aperture

(a)

These rays don’t make
it through the hole.

The image is upside down. If the hole is
sufficiently small, each point on the image
corresponds to one point on the object.

(b)

do di

hiho

FIguRe 23.5 A camera obscura.
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You can see from the similar triangles in Figure 23.5b that the object and image 
heights are related by

 
hi

ho
=

di

do
 (23.1)

where do is the distance to the object and di is the depth of the camera obscura. Any 
realistic camera obscura has di 6 do; thus the image is smaller than the object.

We can apply the ray model to more complex apertures, such as the L-shaped aper-
ture in FIguRe 23.6. The pattern of light on the screen is found by tracing all the straight-
line paths—the ray trajectories—that start from the point source and pass through the 
aperture. We will see an enlarged L on the screen, with a sharp boundary between the 
image and the dark shadow.

Stop to think 23.1  A long, thin lightbulb illuminates a 
vertical aperture. Which pattern of light do you see on 
a viewing screen behind the aperture?

23.2 Reflection
Reflection of light is a familiar, everyday experience. You see your reflection in the 
bathroom mirror first thing every morning, reflections in your car’s rearview mirror 
as you drive to school, and the sky reflected in puddles of standing water. Reflection 
from a flat, smooth surface, such as a mirror or a piece of polished metal, is called 
specular reflection, from speculum, the Latin word for “mirror.”

FIguRe 23.7a shows a bundle of parallel light rays reflecting from a mirror-like sur-
face. You can see that the incident and reflected rays are both in a plane that is normal, 
or perpendicular, to the reflective surface. A three-dimensional perspective accurately 
shows the relationship between the light rays and the surface, but figures such as this 
are hard to draw by hand. Instead, it is customary to represent reflection with the sim-
pler pictorial representation of FIguRe 23.7b. In this figure,

	■	 The plane of the page is the plane of incidence, the plane containing both incident 
and reflected rays. The reflective surface extends into the page.

	■	 A single light ray represents the entire bundle of parallel rays. This is oversimpli-
fied, but it keeps the figure and the analysis clear.

The angle ui between the ray and a line perpendicular to the surface—the normal to 
the surface—is called the angle of incidence. Similarly, the angle of reflection ur is 
the angle between the reflected ray and the normal to the surface. The law of reflec-
tion, easily demonstrated with simple experiments, states that

 1. The incident ray and the reflected ray are in the same plane normal to the sur-
face, and

 2. The angle of reflection equals the angle of incidence: ur = ui.

NOTe  Optics calculations always use the angle measured from the normal, not the 
angle between the ray and the surface. 

Some rays are
blocked by the
opaque screen.

Light

Point source

Aperture

Screen

Shadow

FIguRe 23.6 Light through an aperture.

(a)

Light

Screen

(b) (c) (d)(a)

Light

Screen

(a)

(b)

Angle of
incidence

Normal

Reflective surface

ui ur

Angle of
reflection

Reflected ray
Incident ray

Reflective
surface

The incident and reflected rays lie
in the plane of incidence, a plane
perpendicular to the surface.

FIguRe 23.7 Specular reflection of light.
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VIsuALIze FIguRe 23.8 is a pictorial representation of the light rays. 
We need to consider only the two rays that strike the edges of the 
mirror. All other reflected rays will fall between these two.

sOLVe Figure 23.8 has used the law of reflection to set the angles of 
reflection equal to the angles of incidence. Other angles have been 
identified with simple geometry. The two angles of incidence are

  u1 = tan-110.50 m

1.00 m 2 = 26.6�

  u2 = tan-112.00 m

1.00 m 2 = 63.4�

The distances to the points where the rays strike the floor are then

  l1 =
2.00 m

tan u1 
= 4.00 m

  l2 =
0.50 m

tan u2 
= 0.25 m

Thus the length of the light streak is l1 - l2 = 3.75 m.

exAMpLe 23.1  Light reflecting from a mirror
A dressing mirror on a closet door is 1.50 m tall. The bottom is 
0.50 m above the floor. A bare lightbulb hangs 1.00 m from the 
closet door, 2.50 m above the floor. How long is the streak of re-
flected light across the floor?

MODeL Treat the lightbulb as a point source and use the ray model 
of light.

Bulb

2.50 m

1.00 m

Mirror

0.50 m

1.50 m

0.50 m

l2l1

u1
u2

u2

u1

FIguRe 23.8 Pictorial representation of the light rays 
reflecting from a mirror.

Diffuse Reflection
Most objects are seen by virtue of their reflected light. For a “rough” surface, the 
law of reflection ur = ui is obeyed at each point but the irregularities of the surface 
cause the reflected rays to leave in many random directions. This situation, shown in 
FIguRe 23.9, is called diffuse reflection. It is how you see this page, the wall, your hand, 
your friend, and so on.

By a “rough” surface, we mean a surface that is rough or irregular in comparison to 
the wavelength of light. Because visible-light wavelengths are �  0.5 mm, any surface 
with texture, scratches, or other irregularities larger than 1 mm will cause diffuse re-
flection rather than specular reflection. A piece of paper may feel quite smooth to your 
hand, but a microscope would show that the surface consists of distinct fibers much 
larger than 1 mm. By contrast, the irregularities on a mirror or a piece of polished 
metal are much smaller than 1 mm.

The plane Mirror
One of the most commonplace observations is that you can see yourself in a mirror. 
How? FIguRe 23.10a shows rays from point source P reflecting from a mirror. Consider 
the particular ray shown in FIguRe 23.10b. The reflected ray travels along a line that 
passes through point P� on the “back side” of the mirror. Because ur = ui, simple 
geometry dictates that P� is the same distance behind the mirror as P is in front of the 
mirror. That is, s� = s.

Mirror

(a)

Object
P

Rays from P reflect from
the mirror. Each ray obeys
the law of reflection.

(b)

Object

This reflected ray appears to have
been traveling along a line that 
passed through point P�.

P P�

s

ui ur

ur

s�
(c)

Object

Eye

The reflected rays all diverge from P�, which
appears to be the source of the reflected rays. 
Your eye collects the bundle of diverging rays
and “sees” the light coming from P�.

P

Object distance Image distance

P�
Virtual
image

s s�

Magnified view of surface

Each ray obeys the law of reflection
at that point, but the irregular surface
causes the reflected rays to leave in
many random directions.

FIguRe 23.9 Diffuse reflection from an 
irregular surface.

FIguRe 23.10 The light rays reflecting from a plane mirror.
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eye. Thus the shortest mirror in which you can see your full reflec-
tion is 1

2 h. But this will work only if the top of the mirror is hung 
midway between your eyes and the top of your head.

Assess It is interesting that the answer does not depend on how 
far you are from the mirror.

The location of point P� in Figure 23.10b is independent of the value of ui. Conse-
quently, as FIguRe 23.10c shows, the reflected rays all appear to be coming from point 
P�. For a plane mirror, the distance s� to point P� is equal to the object distance s:

 s� = s  (plane mirror) (23.2)

If rays diverge from an object point P and interact with a mirror so that the reflected 
rays diverge from point P� and appear to come from P�, then we call P� a virtual 
image of point P. The image is “virtual” in the sense that no rays actually leave P�, 
which is in darkness behind the mirror. But as far as your eye is concerned, the light 
rays act exactly as if the light really originated at P�. So while you may say “I see P in 
the mirror,” what you are actually seeing is the virtual image of P. Distance s� is the 
image distance.

For an extended object, such as the one in FIguRe 23.11, each point on the object from 
which rays strike the mirror has a corresponding image point an equal distance on the 
opposite side of the mirror. The eye captures and focuses diverging bundles of rays 
from each point of the image in order to see the full image in the mirror. Two facts are 
worth noting:

 1. Rays from each point on the object spread out in all directions and strike every 
point on the mirror. Only a very few of these rays enter your eye, but the other 
rays are very real and might be seen by other observers.

 2. Rays from points P and Q enter your eye after reflecting from different areas of 
the mirror. This is why you can’t always see the full image of an object in a very 
small mirror.

Your eye intercepts only
a very small fraction of
all the reflected rays.

The rays from P and Q that
reach your eye reflect from
different areas of the mirror. 

P

Q Q�

P�
sP sP�

FIguRe 23.11 Each point on the 
extended object has a corresponding 
image point an equal distance on the 
opposite side of the mirror.

l2

l2

l2

l1

h

l1
1
2

1
2

1
2

FIguRe 23.12 Pictorial representation of light rays from your 
head and feet reflecting into your eye.

Stop to think 23.2  Two plane mirrors form a right angle. How many images of the 
ball can you see in the mirrors?

 a. 1
 b. 2
 c. 3
 d. 4

Observer

exAMpLe 23.2  How high is the mirror?
If your height is h, what is the shortest mirror on the wall in which 
you can see your full image? Where must the top of the mirror be 
hung?

MODeL Use the ray model of light.

VIsuALIze FIguRe 23.12 is a pictorial representation of the light 
rays. We need to consider only the two rays that leave your head 
and feet and reflect into your eye.

sOLVe Let the distance from your eyes to the top of your head be 
l1 and the distance to your feet be l2. Your height is h = l1 + l2. 
A light ray from the top of your head that reflects from the mir-
ror at ur = ui and enters your eye must, by congruent triangles, 
strike the mirror a distance 1

2 l1 above your eyes. Similarly, a ray 
from your foot to your eye strikes the mirror a distance 1

2 l2 below 
your eyes. The distance between these two points on the mirror is 
1
2 l1 +

1
2 l2 =

1
2 h. A ray from anywhere else on your body will reach 

your eye if it strikes the mirror between these two points. Pieces of 
the mirror outside these two points are irrelevant, not because rays 
don’t strike them but because the reflected rays don’t reach your 
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23.3 Refraction
Two things happen when a light ray is incident on a smooth boundary between two 
transparent materials, such as the boundary between air and glass:

 1. Part of the light reflects from the boundary, obeying the law of reflection. This is 
how you see reflections from pools of water or storefront windows, even though 
water and glass are transparent.

 2. Part of the light continues into the second medium. It is transmitted rather than 
reflected, but the transmitted ray changes direction as it crosses the boundary. 
The transmission of light from one medium to another, but with a change in 
direction, is called refraction.

The photograph of FIguRe 23.13 shows the refraction of a light beam as it passes through 
a glass prism. Notice that the ray direction changes as the light enters and leaves the 
glass. Our goal in this section is to understand refraction, so we will usually ignore the 
weak reflection and focus on the transmitted light.

NOTe  A transparent material through which light travels is called the medium. 
This term has to be used with caution. The material does affect the light speed, but 
a transparent material differs from the medium of a sound or water wave in that 
particles of the medium do not oscillate as a light wave passes through. For a light 
wave it is the electromagnetic field that oscillates. 

FIguRe 23.14a shows the refraction of light rays in a parallel beam of light, such as a 
laser beam, and rays from a point source. It’s good to remember that an infinite num-
ber of rays are incident on the boundary, but our analysis will be simplified if we focus 
on a single light ray. FIguRe 23.14b is a ray diagram showing the refraction of a single 
ray at a boundary between medium 1 and medium 2. Let the angle between the ray and 
the normal be u1 in medium 1 and u2 in medium 2. For the medium in which the ray is 
approaching the boundary, this is the angle of incidence as we’ve previously defined 
it. The angle on the transmitted side, measured from the normal, is called the angle 
of refraction. Notice that u1 is the angle of incidence in Figure 23.14b and the angle 
of refraction in FIguRe 23.14c, where the ray is traveling in the opposite direction, even 
though the value of u1 has not changed.

FIguRe 23.13 A light beam refracts twice 
in passing through a glass prism. You 
can see a weak reflection from the left 
surface of the prism.

FIguRe 23.14 Refraction of light rays.

(a)

Refraction of a parallel beam of light
and of rays from a point source

The ray has
a kink at the
boundary.

Angle of
refraction

Angle of
incidence 

(b)

Refracted
ray

Incident
ray Medium 1

Normal

Weak reflected
ray

Medium 2
Assume n2 � n1u2

u1

Angle of
incidence

Angle of
refraction

(c)

Refracted
ray

Incident
ray

Medium 1
Medium 2

If the ray direction is
reversed, the incident
and refracted angles
are interchanged but
the values of u1 and
u2 remain the same.

u2

u1

Weak reflected
ray

Refraction was first studied experimentally by the Arab scientist Ibn Al-Haitham, 
in about the year 1000, and later by the Dutch scientist Willebrord Snell. snell’s law 
says that when a ray refracts between medium 1 and medium 2, having indices of 
refraction n1 and n2, the ray angles u1 and u2 in the two media are related by

 n1 sin u1 = n2 sin u2   (Snell>s law of refraction) (23.3)

Notice that Snell’s law does not mention which is the incident angle and which the 
refracted angle.
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The Index of Refraction
To Snell and his contemporaries, n was simply an “index of the refractive power” of a 
transparent substance. The relationship between the index of refraction and the speed 
of light was not recognized until the development of a wave theory of light in the 
19th century. Theory predicts, and experiment confirms, that light travels through a 
transparent medium, such as glass or water, at a speed less than its speed c in vacuum. 
In Section 20.5, we defined the index of refraction n of a transparent medium as

 n =
c

vmedium
 (23.4)

where vmedium is the light speed in the medium. This implies, of course, that vmedium = c/n. 
The index of refraction of a medium is always n 7 1 except for vacuum, which has 
n = 1 exactly.

Table 23.1 shows measured values of n for several materials. There are many types 
of glass, each with a slightly different index of refraction, so we will keep things 
simple by accepting n = 1.50 as a typical value. Notice that cubic zirconia, used to 
make costume jewelry, has an index of refraction much higher than glass, although 
not equal to diamond.

We can accept Snell’s law as simply an empirical discovery about light. Alterna-
tively, and perhaps surprisingly, we can use the wave model of light to justify Snell’s 
law. The key ideas we need are:

	■	 Wave fronts represent the crests of waves. They are spaced one wavelength apart.
	■	 The wavelength in a medium with index of refraction n is l = lvac /n, where lvac is 

the vacuum wavelength.
	■	 Wave fronts are perpendicular to the wave’s direction of travel. Consequently, 

wave fronts are perpendicular to rays.
	■	 The wave fronts have to stay lined up as a wave crosses from one medium into 

another.

FIguRe 23.15 shows what happens as a wave crosses the boundary between two me-
dia, where we’re assuming n2 7 n1. Because the wavelengths differ on opposite 
sides of the boundary, the wave fronts can stay lined up only if the waves in the 
two media are traveling in different directions. In other words, the wave must re-
fract at the boundary to keep the crests of the wave aligned.

To analyze Figure 23.15, consider the segment of boundary of length l between the 
two dots. This segment is the common hypotenuse of two right triangles. From the 
upper triangle, which has one side of length l1, we see

 l =
l1

sin u1
 (23.5)

where u1 is the angle of incidence. Similarly, the lower triangle, where u2 is the angle 
of refraction, gives

 l =
l2

sin u2
 (23.6)

Equating these two expressions for l, and using l1 = lvac /n1 and l2 = lvac/n2, we find

 
lvac

n1 sin u1
=

lvac

n2 sin u2
 (23.7)

Equation 23.7 can be true only if

 n1 sin u1 = n2 sin u2 (23.8)

which is Snell’s law.

TABLe 23.1 Indices of refraction

Medium n

Vacuum 1.00 exactly

Air (actual) 1.0003

Air (accepted) 1.00

Water 1.33

Ethyl alcohol 1.36

Oil 1.46

Glass (typical) 1.50

Polystyrene plastic 1.59

Cubic zirconia 2.18

Diamond 2.41

Silicon (infrared) 3.50

Incidence angle u1

Refraction
angle u2

l
n2

n1

l2

l1

Wave
fronts

Rays

FIguRe 23.15 Snell’s law is a consequence 
of the wave model of light.



examples of Refraction
Look back at Figure 23.14. As the ray in Figure 23.14b moves from medium 1 to me-
dium 2, where n2 7 n1, it bends closer to the normal. In Figure 23.14c, where the ray 
moves from medium 2 to medium 1, it bends away from the normal. This is a general 
conclusion that follows from Snell’s law:

	■	 When a ray is transmitted into a material with a higher index of refraction, it bends 
toward the normal.

	■	 When a ray is transmitted into a material with a lower index of refraction, it bends 
away from the normal.

This rule becomes a central idea in a procedure for analyzing refraction problems.

TAcTIcs
B O x  2 3 . 1 

 Analyzing refraction

 ●1 Draw a ray diagram. Represent the light beam with one ray.
 ●2 Draw a line normal to the boundary. Do this at each point where the ray 

intersects a boundary.
 ●3 Show the ray bending in the correct direction. The angle is larger on the 

side with the smaller index of refraction. This is the qualitative application of 
Snell’s law.

 ●4 Label angles of incidence and refraction. Measure all angles from the 
normal.

 ●5 Use Snell’s law. Calculate the unknown angle or unknown index of refraction.

Exercises 11–15 

sOLVe a. Snell’s law, the final step in the Tactics Box, is 
n1 sin u1 = n2 sin u2. Using u1 = 60�, we find that the direction 
of travel in the glass is

  u2 = sin-11n1 sin u1

n2
2 = sin-11sin 60�

1.5 2
  = sin-1(0.577) = 35.3�

b. Snell’s law at the second boundary is n2 sin u3 = n1 sin u4. You 
can see from Figure 23.16 that the interior angles are equal: 
u3 = u2 = 35.3�. Thus the ray emerges back into the air travel-
ing at angle

  u4 = sin-11n2 sin u3

n1
2 = sin-1(1.5 sin 35.3�)

  = sin-1(0.867) = 60�

This is the same as u1, the original angle of incidence. The 
glass doesn’t change the direction of the laser beam.

c. Although the exiting laser beam is parallel to the initial la-
ser beam, it has been displaced sideways by distance d. 
FIguRe 23.17 on the next page shows the geometry for finding 
d. From trigonometry, d = l sin f. Further, f = u1 - u2 and 
l = t/cos u2 , where t is the thickness of the glass. Combining 
these gives

exAMpLe 23.3  Deflecting a laser beam
A laser beam is aimed at a 1.0-cm-thick sheet of glass at an angle 
30� above the glass.

 a. What is the laser beam’s direction of travel in the glass?
 b. What is its direction in the air on the other side?
 c. By what distance is the laser beam displaced?

MODeL Represent the laser beam with a single ray and use the ray 
model of light.

VIsuALIze FIguRe 23.16 is a pictorial representation in which the first 
four steps of Tactics Box 23.1 are identified. Notice that the angle of 
incidence is u1 = 60�, not the 30� value given in the problem.

n2 � 1.50

n1 � 1.00

n1 � 1.00 30�

u4

u3

u2

u1

Draw normal to boundary.

Label angles, measured
from normal.

Draw ray diagram.

Show smaller angle in
medium with larger n.

1 2

3 4

FIguRe 23.16 The ray diagram of a laser beam passing 
through a sheet of glass.

Continued
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  d = l sin f =
t

cos u2
 sin(u1 - u2)

  =
(1.0 cm) sin 24.7�

cos 35.3�
= 0.51 cm

The glass causes the laser beam to be displaced sideways by 0.51 cm.

Assess The laser beam exits the glass still traveling in the same 
direction as it entered. This is a general result for light traveling 
through a medium with parallel sides. Notice that the displace-
ment d becomes zero in the limit t S 0. This will be an important 
observation when we get to lenses.

u2

u1

Displaced laser beam

Initial laser beam

t l
d

f � u1 � u2

d

FIguRe 23.17 The laser beam is deflected sideways by 
distance d.

u1 = 30�, the same as the apex angle of the prism. The ray exits the 
prism at angle u2 such that the deflection is f = u2 - u1 = 22.6�. 
Thus u2 = 52.6�. Knowing both angles and n2 = 1.00 for air, we 
can use Snell’s law to find n1:

 n1 =
n2 sin u2

sin u1
=

1.00 sin 52.6�

sin 30�
= 1.59

Assess Referring to the indices of refraction in Table 23.1, we see 
that the prism is made of plastic.

exAMpLe 23.4  Measuring the index of refraction
FIguRe 23.18 shows a laser beam deflected by a 30�-60�-90� prism. 
What is the prism’s index of refraction?

FIguRe 23.19 Pictorial representation of a laser beam passing 
through the prism.

u1 and u2 are measured from the normal.

FIguRe 23.18 A prism deflects a laser beam.

30�

22.6�

60�

Laser beam

MODeL Represent the laser beam with a single ray and use the ray 
model of light.

VIsuALIze FIguRe 23.19 uses the steps of Tactics Box 23.1 to draw 
a ray diagram. The ray is incident perpendicular to the front face 
of the prism (uincident = 0�), thus it is transmitted through the first 
boundary without deflection. At the second boundary it is espe-
cially important to draw the normal to the surface at the point of 
incidence and to measure angles from the normal.

sOLVe From the geometry of the triangle you can find that the 
laser’s angle of incidence on the hypotenuse of the prism is 

Total Internal Reflection
What would have happened in Example 23.4 if the prism angle had been 45� rather 
than 30�? The light rays would approach the rear surface of the prism at an angle of 
incidence u1 = 45�. When we try to calculate the angle of refraction at which the ray 
emerges into the air, we find

 sin u2 =
n1

n2
  sin u1 =

1.59

1.00
  sin 45� = 1.12

 u2 = sin-1(1.12) = ???

Angle u2 doesn’t compute because the sine of an angle can’t be larger than 1. The 
ray is unable to refract through the boundary. Instead, 100% of the light reflects from 
the boundary back into the prism. This process is called total internal reflection, 
often abbreviated TIR. That it really happens is illustrated in FIguRe 23.20. Here three 
laser beams enter a prism from the left. The bottom two refract out through the right 

FIguRe 23.20 The blue laser beam 
undergoes total internal reflection inside 
the prism.



side of the prism. The blue beam, which is incident on the prism’s top face, undergoes 
total internal reflection and then emerges through the right surface.

FIguRe 23.21 shows several rays leaving a point source in a medium with index of 
refraction n1. The medium on the other side of the boundary has n2 6 n1. As we’ve 
seen, crossing a boundary into a material with a lower index of refraction causes the 
ray to bend away from the normal. Two things happen as angle u1 increases. First, the 
refraction angle u2 approaches 90�. Second, the fraction of the light energy transmitted 
decreases while the fraction reflected increases.

A critical angle is reached when u2 = 90�. Because sin 90� = 1, Snell’s law 
n1 sin uc = n2 sin 90� gives the critical angle of incidence as

 uc = sin-11n2

n1
2  (23.9)

The refracted light vanishes at the critical angle and the reflection becomes 100% for 
any angle u1 Ú uc. The critical angle is well defined because of our assumption that 
n2 6 n1. There is no critical angle and no total internal reflection if n2 + n1.

As a quick example, the critical angle in a typical piece of glass at the glass-air 
boundary is

 uc glass = sin-111.00

1.50 2 = 42�

The fact that the critical angle is less than 45� has important applications. For example, 
FIguRe 23.22 shows a pair of binoculars. The lenses are much farther apart than your eyes, 
so the light rays need to be brought together before exiting the eyepieces. Rather than 
using mirrors, which get dirty and require alignment, binoculars use a pair of prisms 
on each side. Thus the light undergoes two total internal reflections and emerges from 
the eyepiece. (The actual arrangement is a little more complex than in Figure 23.22, to 
avoid left-right reversals, but this illustrates the basic idea.)

FIguRe 23.21 Refraction and reflection of 
rays as the angle of incidence increases.

Transmission is getting weaker.

The angle of incidence is increasing.

Reflection is getting stronger.

n1

n2 � n1

uc

u2 � 90�

u1 � uc

Critical angle when u2 � 90�

Total internal reflection
occurs when u1 � uc.

FIguRe 23.22 Binoculars and other 
optical instruments make use of total 
internal reflection.

TIR
TIR TIR

TIR

Angles of incidence exceed the critical angle.

exAMpLe 23.5  Total internal reflection
A lightbulb is set in the bottom of a 3.0-m-deep swimming pool. 
What is the diameter of the circle of light seen on the water’s sur-
face from above?

MODeL Represent the lightbulb as a point source and use the ray 
model of light.

VIsuALIze FIguRe 23.23 is a pictorial representation of the light 
rays. The lightbulb emits rays at all angles, but only some of the 
rays refract into the air where they can be seen from above. Rays 
striking the surface at greater than the critical angle undergo TIR 
and remain within the water. The diameter of the circle of light is 
the distance between the two points at which rays strike the sur-
face at the critical angle.

sOLVe From trigonometry, the circle diameter is D = 2h tan uc, 
where h is the depth of the water. The critical angle for a water-air 
boundary is uc = sin-1 (1.00/1.33) = 48.7�. Thus

 D = 2(3.0 m) tan 48.7� = 6.8 m

FIguRe 23.23 Pictorial representation of the rays leaving 
a lightbulb at the bottom of a swimming pool.

D

h � 3.0 m
Water, n1 � 1.33

Air, n2 � 1.00

Rays at the critical angle uc form the edge
of the circle of light seen from above.

Fiber Optics
The most important modern application of total internal reflection is the transmission 
of light through optical fibers. FIguRe 23.24a on the next page shows a laser beam shining 
into the end of a long, narrow-diameter glass tube. The light rays pass easily from the 
air into the glass, but they then impinge on the inside wall of the glass tube at an angle 
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of incidence u1 approaching 90�. This is well above the critical angle, so the laser beam 
undergoes TIR and remains inside the glass. The laser beam continues to “bounce” its 
way down the tube as if the light were inside a pipe. Indeed, optical fibers are sometimes 
called “light pipes.” The rays are below the critical angle (u1 � 0) when they finally 
reach the end of the fiber, thus they refract out without difficulty and can be detected.

While a simple glass tube can transmit light, reliance on a glass-air boundary is 
not sufficiently reliable for commercial use. Any small scratch on the side of the tube 
alters the rays’ angle of incidence and allows leakage of light. FIguRe 23.24b shows the 
construction of a practical optical fiber. A small-diameter glass core is surrounded 
by a layer of glass cladding. The glasses used for the core and the cladding have 
ncore 7 ncladding; thus light undergoes TIR at the core-cladding boundary and remains 
confined within the core. This boundary is not exposed to the environment and hence 
retains its integrity even under adverse conditions.

Even glass of the highest purity is not perfectly transparent. Absorption in the glass, 
even if very small, causes a gradual decrease in light intensity. The glass used for the core 
of optical fibers has a minimum absorption at a wavelength of 1.3 mm, in the infrared, 
so this is the laser wavelength used for long-distance signal transmission. Light at this 
wavelength can travel hundreds of kilometers through a fiber without significant loss.

Stop to think 23.3 
 A light ray travels from 

medium 1 to medium 3 as shown. For these 
media,

 a. n3 7 n1 b. n3 = n1 c. n3 6 n1

 d. We can’t compare n1 to n3 without 
knowing n2.

23.4 Image Formation by Refraction
If you see a fish that appears to be swimming close to the front window of the aquari-
um, but then look through the side of the aquarium, you’ll find that the fish is actually 
farther from the window than you thought. Why is this?

To begin, recall that vision works by focusing a diverging bundle of rays onto the 
retina. The point from which the rays diverge is where you perceive the object to be. 
FIguRe 23.25a shows how you would see a fish out of water at distance d.

Now place the fish back into the aquarium at the same distance d. For simplicity, we’ll 
ignore the glass wall of the aquarium and consider the water-air boundary. (The thin glass 
of a typical window has only a very small effect on the refraction of the rays and doesn’t 
change the conclusions.) Light rays again leave the fish, but this time they refract at the 
water-air boundary. Because they’re going from a higher to a lower index of refraction, 
the rays refract away from the normal. FIguRe 23.25b shows the consequences.

A bundle of diverging rays still enters your eye, but now these rays are diverging 
from a closer point, at distance d�. As far as your eye and brain are concerned, it’s ex-
actly as if the rays really originate at distance d�, and this is the location at which you 
“see” the fish. The object appears closer than it really is because of the refraction 
of light at the boundary.

We found that the rays reflected from a mirror diverge from a point that is not the 
object point. We called that point a virtual image. Similarly, if rays from an object 
point P refract at a boundary between two media such that the rays then diverge from a 
point P� and appear to come from P�, we call P� a virtual image of point P. The virtual 
image of the fish is what you see.

Let’s examine this image formation a bit more carefully. FIguRe 23.26 shows a bound-
ary between two transparent media having indices of refraction n1 and n2. Point P, a 
source of light rays, is the object. Point P�, from which the rays appear to diverge, is 

FIguRe 23.24 Light rays are confined 
within an optical fiber by total internal 
reflection.

Laser

Detector

(a)

u1

Glass fiberTIR

TIR

TIR

TIR

Core (few mm diameter)

Cladding

Plastic protective cover(b)

30�

20�

10�

n1 n2 n3

FIguRe 23.25 Refraction of the light rays 
causes a fish in the aquarium to be seen 
at distance d�.

d Eye

Object

The rays that reach the eye are diverging
from this point, the object.

(a) A fish out of water

d�

Object Image

Refraction causes the rays
to bend at the boundary.

(b) A fish in the aquarium

Now the rays that reach the eye are
diverging from this point, the image.
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the virtual image of P. Distance s is called the object distance. Our goal is to deter-
mine distance s�, the image distance. Both are measured from the boundary.

A line perpendicular to the boundary is called the optical axis. Consider a ray 
leaving the object at angle u1 with respect to the optical axis. u1 is also the angle of 
incidence at the boundary, where the ray refracts into the second medium at angle u2. 
By tracing the refracted ray backward, you can see that u2 is also the angle between the 
refracted ray and the optical axis at point P�.

The distance l is common to both the incident and the refracted rays, and you can 
see that l = s tan u1 = s� tan u2. Thus

 s� =
tan u1

tan u2
 s (23.10)

Snell’s law relates the sines of angles u1 and u2; that is,

 
sin u1

sin u2
=

n2

n1 
 (23.11)

In practice, the angle between any of these rays and the optical axis is very small 
because the size of the pupil of your eye is very much less than the distance between the 
object and your eye. (The angles in the figure have been greatly exaggerated.) Rays that 
are nearly parallel to the axis are called paraxial rays. The small-angle approximation 
sin u � tan u � u, where u is in radians, can be applied to paraxial rays. Consequently,

 
tan u1

tan u2
�

sin u1

sin u2
=

n2

n1
 (23.12)

Using this result in Equation 23.10, we find that the image distance is

 s� =
n2

n1
 s (23.13)

NOTe  The fact that the result for s� is independent of u1 implies that all paraxial 
rays appear to diverge from the same point P�. This property of the diverging rays 
is essential in order to have a well-defined image. 

This section has given us a first look at image formation via refraction. We will 
extend this idea to image formation with lenses in Section 23.6.

FIguRe 23.26 Finding the virtual image 
P� of an object at P. We’ve assumed 
n1 7 n2.

s

Rays diverge from the
virtual image at P�.

n1 n2

s�

P�P

Object Optical
axis

Virtual
image

u1

u1

u2

u2

l

either side of the window is s = 2.5 cm. From the water side, the 
fish sees the bubble at an image distance

 s� =
n2

n1
 s =

1.33

1.50
 (2.5 cm) = 2.2 cm

This is the apparent depth of the bubble. The sailor, in air, sees the 
bubble at an image distance

 s� =
n2

n1
 s =

1.00

1.50
 (2.5 cm) = 1.7 cm

Assess The image distance is less for the sailor because of the 
larger difference between the two indices of refraction.

exAMpLe 23.6  An air bubble in a window
A fish and a sailor look at each other through a 5.0-cm-thick glass 
porthole in a submarine. There happens to be an air bubble right 
in the center of the glass. How far behind the surface of the glass 
does the air bubble appear to the fish? To the sailor?

MODeL Represent the air bubble as a point source and use the ray 
model of light.

VIsuALIze Paraxial light rays from the bubble refract into the air 
on one side and into the water on the other. The ray diagram looks 
like Figure 23.26.

sOLVe The index of refraction of the glass is n1 = 1.50. The bub-
ble is in the center of the window, so the object distance from 

23.5 color and Dispersion
One of the most obvious visual aspects of light is the phenomenon of color. Yet color, 
for all its vivid sensation, is not inherent in the light itself. Color is a perception, not a 
physical quantity. Color is associated with the wavelength of light, but the fact that we 
see light with a wavelength of 650 nm as “red” tells us how our visual system responds 
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to electromagnetic waves of this wavelength. There is no “redness” associated with 
the light wave itself.

Most of the results of optics do not depend on color. We generally don’t need to 
know the color of light—or, to be more precise, its wavelength—to use the laws of 
reflection and refraction. Nonetheless, color is an interesting subject, one worthy of a 
short digression.

color
It has been known since antiquity that irregularly shaped glass and crystals cause sun-
light to be broken into various colors. A common idea was that the glass or crystal 
somehow altered the properties of the light by adding color to the light. Newton sug-
gested a different explanation. He first passed a sunbeam through a prism, producing 
the familiar rainbow of light. We say that the prism disperses the light. Newton’s 
novel idea, shown in FIguRe 23.27a, was to use a second prism, inverted with respect to 
the first, to “reassemble” the colors. He found that the light emerging from the second 
prism was a beam of pure, white light.

But the emerging light beam is white only if all the rays are allowed to move be-
tween the two prisms. Blocking some of the rays with small obstacles, as in FIguRe 23.27b, 
causes the emerging light beam to have color. This suggests that color is associated 
with the light itself, not with anything that the prism is “doing” to the light. Newton 
tested this idea by inserting a small aperture between the prisms to pass only the rays 
of a particular color, such as green. If the prism alters the properties of light, then the 
second prism should change the green light to other colors. Instead, the light emerging 
from the second prism is unchanged from the green light entering the prism.

These and similar experiments show that

 1. What we perceive as white light is a mixture of all colors. White light can be 
dispersed into its various colors and, equally important, mixing all the colors 
produces white light.

 2. The index of refraction of a transparent material differs slightly for different 
colors of light. Glass has a slightly larger index of refraction for violet light 
than for green light or red light. Consequently, different colors of light refract 
at slightly different angles. A prism does not alter the light or add anything to 
the light; it simply causes the different colors that are inherent in white light to 
follow slightly different trajectories.

Dispersion
It was Thomas Young, with his two-slit interference experiment, who showed that 
different colors are associated with light of different wavelengths. The longest wave-
lengths are perceived as red light and the shortest as violet light. Table 23.2 is a brief 
summary of the visible spectrum of light. Visible-light wavelengths are used so fre-
quently that it is well worth committing this short table to memory.

The slight variation of index of refraction with wavelength is known as dispersion. 
FIguRe 23.28 shows the dispersion curves of two common glasses. Notice that n is larger 
when the wavelength is shorter, thus violet light refracts more than red light.

FIguRe 23.27 Newton used prisms to 
study color.

White
light

White
light

A second prism can
combine the colors
back into white light.

A prism disperses
white light into colors.

(a)

White
light

Green
light

The second prism does
not change pure colors.

An aperture selects
a green ray of light.

(b)

TABLe 23.2 A brief summary of 
the visible spectrum of light

Color
Approximate 
wavelength

Deepest red 700 nm

Red 650 nm

Green 550 nm

Blue 450 nm

Deepest violet 400 nm

FIguRe 23.28 Dispersion curves show 
how the index of refraction varies with 
wavelength.

1.62
1.60
1.58
1.56
1.54
1.52
1.50 l (nm)

300 400 500 600 700 800

Crown glass

UV

IR

Flint glass

n increases as l decreases.
n

VIsuALIze Figure 23.19 showed the geometry. A ray of any wave-
length is incident on the hypotenuse of the prism at u1 = 30�.

sOLVe a. If n1 = 1.54 for deep red light, the refraction angle is

 u2 = sin-11n1 sin u1

n2
2 = sin-111.54 sin 30�

1.00 2 = 50.4�

exAMpLe 23.7  Dispersing light with a prism
Example 23.4 found that a ray incident on a 30� prism is deflected 
by 22.6� if the prism’s index of refraction is 1.59. Suppose this is 
the index of refraction of deep violet light and deep red light has 
an index of refraction of 1.54.

 a. What is the deflection angle for deep red light?
 b. If a beam of white light is dispersed by this prism, how wide is 

the rainbow spectrum on a screen 2.0 m away?



At distance r, the spectrum spans an arc length

 s = rd = (2.0 m)(0.038 rad) = 0.076 m = 7.6 cm

Assess The angle is so small that there’s no appreciable differ-
ence between arc length and a straight line. The spectrum will be 
7.6 cm wide at a distance of 2.0 m.

Rainbows
One of the most interesting sources of color in nature is the rainbow. The details get 
somewhat complicated, but FIguRe 23.29a shows that the basic cause of the rainbow is a 
combination of refraction, reflection, and dispersion.

Figure 23.29a might lead you to think that the top edge of a rainbow is violet. In 
fact, the top edge is red, and violet is on the bottom. The rays leaving the drop in 
Figure 23.29a are spreading apart, so they can’t all reach your eye. As FIguRe 23.29b 
shows, a ray of red light reaching your eye comes from a drop higher in the sky than 
a ray of violet light. In other words, the colors you see in a rainbow refract toward 
your eye from different raindrops, not from the same drop. You have to look higher 
in the sky to see the red light than to see the violet light.

Example 23.4 showed that the deflection angle is f = u2 - u1, 
so deep red light is deflected by fred = 20.4�. This angle is 
slightly smaller than the previously observed fviolet = 22.6�.

 b. The entire spectrum is spread between fred = 20.4� and 
fviolet = 22.6�. The angular spread is

 d = fviolet - fred = 2.2� = 0.038 rad

(a)

1. The sun is behind
 your back when
 you see a rainbow.

2. Dispersion causes different colors
 to refract at different angles.

3. Most of the light refracts
 into the air at this point,
 but a little reflects back
 into the drop.

4. Dispersion separates the
 colors even more as the rays
 refract back into the air.

Sunlight

(b) Red light is refracted
predominantly at 42.5�. The red
light reaching your eye comes
from drops higher in the sky.

Violet light is refracted
predominantly at 40.8�. The violet
light reaching your eye comes
from drops lower in the sky.

You see a rainbow with red on
the top, violet on the bottom.

Eye

Sunlight
42.5�

40.8�

FIguRe 23.29 Light seen in a rainbow has undergone refraction + reflection + refraction 
in a raindrop.

colored Filters and colored Objects
White light passing through a piece of green glass emerges as green light. A possible 
explanation would be that the green glass adds “greenness” to the white light, but 
Newton found otherwise. Green glass is green because it absorbs any light that is “not 
green.” We can think of a piece of colored glass or plastic as a filter that removes all 
wavelengths except a chosen few.

If a green filter and a red filter are overlapped, as in FIguRe 23.30, no light gets 
through. The green filter transmits only green light, which is then absorbed by the red 
filter because it is “not red.”

This behavior is true not just for glass filters, which transmit light, but for pig-
ments that absorb light of some wavelengths but reflect light at other wavelengths. 
For example, red paint contains pigments reflecting light at wavelengths near 650 nm 
while absorbing all other wavelengths. Pigments in paints, inks, and natural objects 
are responsible for most of the color we observe in the world, from the red of lipstick 
to the blue of a bluebird’s feathers.

As an example, FIguRe 23.31 on the next page shows the absorption curve of chlo-
rophyll. Chlorophyll is essential for photosynthesis in green plants. The chemical 
reactions of photosynthesis are able to use red light and blue/violet light, thus chlo-
rophyll absorbs red light and blue/violet light from sunlight and puts it to use. But 

Red filter

Green filterBlack where filters overlap

FIguRe 23.30 No light at all passes 
through both a green and a red filter.
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green and yellow light are not absorbed. Instead, to conserve energy, these wave-
lengths are mostly reflected to give the object a greenish-yellow color. When you 
look at the green leaves on a tree, you’re seeing the light that was reflected because 
it wasn’t needed for photosynthesis.

Light scattering: Blue skies and Red sunsets
In the ray model of Section 23.1 we noted that light within a medium can be scattered 
or absorbed. As we’ve now seen, the absorption of light can be wavelength dependent 
and can create color in objects. What are the effects of scattering?

Light can scatter from small particles that are suspended in a medium. If the par-
ticles are large compared to the wavelengths of light—even though they may be mi-
croscopic and not readily visible to the naked eye—the light essentially reflects off 
the particles. The law of reflection doesn’t depend on wavelength, so all colors are 
scattered equally. White light scattered from many small particles makes the medium 
appear cloudy and white. Two well-known examples are clouds, where micrometer-
size water droplets scatter the light, and milk, which is a colloidal suspension of mi-
croscopic droplets of fats and proteins.

A more interesting aspect of scattering occurs at the atomic level. The atoms and 
molecules of a transparent medium are much smaller than the wavelengths of light, 
so they can’t scatter light simply by reflection. Instead, the oscillating electric field of 
the light wave interacts with the electrons in each atom in such a way that the light is 
scattered. This atomic-level scattering is called Rayleigh scattering.

Unlike the scattering by small particles, Rayleigh scattering from atoms and 
mole cules does depend on the wavelength. A detailed analysis shows that the in-
tensity of scattered light depends inversely on the fourth power of the wavelength: 
Iscattered � l-4. This wavelength dependence explains why the sky is blue and sunsets 
are red.

As sunlight travels through the atmosphere, the l-4 dependence of Rayleigh scat-
tering causes the shorter wavelengths to be preferentially scattered. If we take 650 nm 
as a typical wavelength for red light and 450 nm for blue light, the intensity of scat-
tered blue light relative to scattered red light is

 
Iblue

Ired
= 1650

450 2 4

 � 4

Four times more blue light is scattered toward us than red light and thus, as FIguRe 23.32 
shows, the sky appears blue.

Because of the earth’s curvature, sunlight has to travel much farther through 
the atmosphere when we see it at sunrise or sunset than it does during the midday 
hours. In fact, the path length through the atmosphere at sunset is so long that es-
sentially all the short wavelengths have been lost due to Rayleigh scattering. Only 
the longer wavelengths remain—orange and red—and they make the colors of the 
sunset.

23.6 Thin Lenses: Ray Tracing
A camera obscura or a pinhole camera forms images on a screen, but the images are 
faint and not perfectly focused. The ability to create a bright, well-focused image is 
vastly improved by using a lens. A lens is a transparent material that uses refraction 
at curved surfaces to form an image from diverging light rays. We will defer a math-
ematical analysis of the refraction of lenses until the next section. First, we want to 
establish a pictorial method of understanding image formation. This method is called 
ray tracing.

Sunsets are red because all the blue 
light has scattered as the sunlight passes 
through the atmosphere.

Sun

Air molecules

At midday the scattered light is mostly
blue because molecules preferentially
scatter shorter wavelengths.

At sunset, when the light has traveled much
farther through the atmosphere, the light is
mostly red because the shorter wavelengths
have been lost to scattering.

Observer
at midday

Observer
at sunset

FIguRe 23.32 Rayleigh scattering by 
molecules in the air gives the sky and 
sunsets their color.

100%

Absorption

l (nm)
400 500 600 700

0%

The green and
yellow light that
is not absorbed
is reflected and
gives plants their
green color.

Chlorophyll absorbs most of the
red and blue/violet light for use
in photosynthesis.

FIguRe 23.31 The absorption curve of 
chlorophyll.
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FIguRe 23.33 shows parallel light rays entering two different lenses. The left lens, 
called a converging lens, causes the rays to refract toward the optical axis. The com-
mon point through which initially parallel rays pass is called the focal point of the 
lens. The distance of the focal point from the lens is called the focal length f  of the 
lens. The right lens, called a diverging lens, refracts parallel rays away from the opti-
cal axis. This lens also has a focal point, but it is not as obvious.

NOTe  A converging lens is thicker in the center than at the edges. A diverging 
lens is thicker at the edges than at the center. 

FIguRe 23.34 clarifies the situation. In the case of a diverging lens, a backward projec-
tion of the diverging rays shows that they appear to have started from the same point. 
This is the focal point of a diverging lens, and its distance from the lens is the focal 
length of the lens. In the next section we’ll relate the focal length to the curvature and 
index of refraction of the lens, but now we’ll use the practical definition that the fo-
cal length is the distance from the lens at which rays parallel to the optical axis 
converge or from which they diverge.

NOTe  The focal length f  is a property of the lens, independent of how the lens 
is used. The focal length characterizes a lens in much the same way that a mass m 
characterizes an object or a spring constant k characterizes a spring. 

converging Lenses
These basic observations about lenses are enough to understand image formation 
by a thin lens. A thin lens is a lens whose thickness is very small in comparison to 
its focal length and in comparison to the object and image distances. We’ll make 
the approximation that the thickness of a thin lens is zero and that the lens lies in a 
plane called the lens plane. Within this approximation, all refraction occurs as the 
rays cross the lens plane, and all distances are measured from the lens plane. 
Fortunately, the thin-lens approximation is quite good for most practical applica-
tions of lenses.

NOTe  We’ll draw lenses as if they have a thickness, because that is how we 
expect lenses to look, but our analysis will not depend on the shape or thickness 
of a lens. 

FIguRe 23.35 shows three important situations of light rays passing through a thin 
converging lens. Part a is familiar from Figure 23.34. If the direction of each of the 
rays in FIguRe 23.35a is reversed, Snell’s law tells us that each ray will exactly retrace its 
path and emerge from the lens parallel to the optical axis. This leads to FIguRe 23.35b, 
which is the “mirror image” of part (a). Notice that the lens actually has two focal 
points, located at distances f  on either side of the lens.

FIguRe 23.35c shows three rays passing through the center of the lens. At the center, 
the two sides of a lens are very nearly parallel to each other. Earlier, in Example 23.3, 
we found that a ray passing through a piece of glass with parallel sides is displaced 

Converging lens Diverging lens

FIguRe 23.33 Parallel light rays pass through a converging lens and a diverging lens.

Diverging lens

Focal length f

This is the focal point.
Rays appear to diverge
from this point.

Parallel rays

Optical axis

This is the focal point.
Rays actually converge
at this point.

Converging lens

Parallel rays

Focal length f

Optical axis

FIguRe 23.34 The focal lengths of 
converging and diverging lenses.

Parallel rays

Far focal point

Lens plane

f

Any ray initially parallel to the optical
axis will refract through the focal point
on the far side of the lens.

(a)

Parallel rays

Near focal point

f

Any ray passing through the near focal
point emerges from the lens parallel to
the optical axis.

(b) Lens plane

Center of lens
Rays are
not bent.

Any ray directed at the center of the lens
passes through in a straight line.

(c)

FIguRe 23.35 Three important sets of 
rays passing through a thin converging 
lens.
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but not bent and that the displacement becomes zero as the thickness approaches zero. 
Consequently, a ray through the center of a thin lens, with zero thickness, is neither 
bent nor displaced but travels in a straight line.

These three situations form the basis for ray tracing.

Real Images
FIguRe 23.36 shows a lens and an object whose distance from the lens is larger than the 
focal length. Rays from point P on the object are refracted by the lens so as to con-
verge at point P� on the opposite side of the lens. If rays diverge from an object point 
P and interact with a lens such that the refracted rays converge at point P�, actually 
meeting at P�, then we call P� a real image of point P. Contrast this with our prior 
definition of a virtual image as a point from which rays—which never meet—appear 
to diverge.

All the rays leaving one point in the
object plane (P) are refracted by the lens and
converge to one point in the image plane (P�).

Near focal point

Optical axis

Special rays Lens plane

Far focal point

Object plane

P

P�

Q�

R�

Q

R

Object

Image plane

Image

f

s

f

s�

FIguRe 23.36 Rays from an object point P are refracted by the lens and converge to a 
real image at point P�.

The image will be blurry and
out of focus on a screen in
these planes.

The rays don’t
stop unless they’re
blocked by a screen.

A sharp, well-focused
image is seen on a screen
placed in the image plane.

P�

FIguRe 23.37 A close-up look at the rays 
near the image plane.

All points on the object that are in the same plane, the object plane, converge to 
image points in the image plane. Points Q and R in the object plane of Figure 23.36 
have image points Q� and R� in the same plane as point P�. Once we locate one point 
in the image plane, such as point P�, we know that the full image lies in the same 
plane.

There are two important observations to make about Figure 23.36. First, the im-
age is upside down with respect to the object. This is called an inverted image, 
and it is a standard characteristic of real-image formation with a converging lens. 
Second, rays from point P fill the entire lens surface, and all portions of the lens con-
tribute to the image. A larger lens will “collect” more rays and thus make a brighter 
image.

FIguRe 23.37 is a close-up view of the rays very near the image plane. The rays don’t 
stop at P� unless we place a screen in the image plane. When we do so, we see a sharp, 
well-focused image on the screen. To focus an image, you must either move the screen 
to coincide with the image plane or move the lens or object to make the image plane 
coincide with the screen. For example, the focus knob on a projector moves the lens 
forward or backward until the image plane matches the screen position.

NOTe  The ability to see a real image on a screen sets real images apart from 
virtual images. But keep in mind that we need not see a real image in order to have 
an image. A real image exists at a point in space where the rays converge even if 
there’s no viewing screen in the image plane. 

Figure 23.36 highlights three “special rays” based on the three situations of 
Figure 23.35. These three rays alone are sufficient to locate the image point P�. That 
is, we don’t need to draw all the rays shown in Figure 23.36. The procedure known as 
ray tracing consists of locating the image by the use of just these three rays.



TAcTIcs
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 Ray tracing for a converging lens

 ●1 Draw an optical axis. Use graph paper or a ruler! Establish an appropriate 
scale.

 ●2 Center the lens on the axis. Mark and label the focal points at distance f  on 
either side.

 ●3 Represent the object with an upright arrow at distance s. It’s usually best 
to place the base of the arrow on the axis and to draw the arrow about half the 
radius of the lens.

 ●4 Draw the three “special rays” from the tip of the arrow. Use a straight 
edge.

 a. A ray parallel to the axis refracts through the far focal point.
 b. A ray that enters the lens along a line through the near focal point emerges 

parallel to the axis.
 c. A ray through the center of the lens does not bend.

 ●5 Extend the rays until they converge. This is the image point. Draw the rest 
of the image in the image plane. If the base of the object is on the axis, then 
the base of the image will also be on the axis.

 ●6 Measure the image distance s�. Also, if needed, measure the image height 
relative to the object height.

Exercises 22–27 

The heights of the object and image are labeled h and h�. The 
ray through the center of the lens is a straight line, thus the object 
and image both subtend the same angle u. Using similar triangles,

 
h�

s�
=

h

s
Solving for h� gives

 h� = h 
s�

s
= (4.0 cm) 

67 cm

200 cm
= 1.3 cm

The flower’s image has a diameter of 1.3 cm.

Assess We’ve been able to learn a great deal about the image 
from a simple geometric procedure.

exAMpLe 23.8  Finding the image of a flower
A 4.0-cm-diameter flower is 200 cm from the 50-cm-focal-length 
lens of a camera. How far should the light detector be placed be-
hind the lens to record a well-focused image? What is the diameter 
of the image on the detector?

MODeL The flower is in the object plane. Use ray tracing to locate 
the image.

VIsuALIze FIguRe 23.38 shows the ray-tracing diagram and the 
steps of Tactics Box 23.2. The image has been drawn in the plane 
where the three special rays converge. You can see from the draw-
ing that the image distance is s� � 67 cm. This is where the detec-
tor needs to be placed to record a focused image.

5 The convergence point is
the tip of the image. Draw
the rest of the image.

4 Draw the 3 special rays from the tip of the arrow.
a. Parallel to the axis.
b. Through the near focal point.
c. Through the center of the lens.

3 Draw the object as an arrow
with its base on the axis.

1 Lay out the optical axis, with a scale.

2 Draw the lens and mark
its focal points.

6 Measure the image distance.

h�
h

f

s � 200 cm

25 cm

s�

f

u
u

FIguRe 23.38 Ray-tracing diagram for Example 23.8.
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Lateral Magnification
The image can be either larger or smaller than the object, depending on the location 
and focal length of the lens. But there’s more to a description of the image than just its 
size. We also want to know its orientation relative to the object. That is, is the image 
upright or inverted? It is customary to combine size and orientation information into a 
single number. The lateral magnification m is defined as

 m = -  
s�

s
 (23.14)

You just saw in Example 23.8 that the image-to-object height ratio is h�/h = s�/s. 
Consequently, we interpret the lateral magnification m as follows:

 1. A positive value of m indicates that the image is upright relative to the object. 
A negative value of m indicates that the image is inverted relative to the object.

 2. The absolute value of m gives the size ratio of the image and object: h�/h = 0m 0 .
The lateral magnification in Example 23.8 would be m = -0.33, indicating that the 
image is inverted and 33% the size of the object.

NOTe  The image-to-object height ratio is called lateral magnification to distin-
guish it from angular magnification, which we’ll introduce in the next chapter. 
In practice, m is simply called “magnification” when there’s no chance of confu-
sion. Magnification can be less than 1, meaning that the image is smaller than the 
object. 

Stop to think 23.4 
 A lens produces a sharply focused, inverted image on a screen. 

What will you see on the screen if the lens is removed?

 a. The image will be inverted and blurry.
 b. The image will be upright and sharp.
 c. The image will be upright and blurry.
 d. The image will be much dimmer but 

otherwise unchanged.
 e. There will be no image at all.

Virtual Images
The previous section considered a converging lens with the object at distance s 7 f. 
That is, the object was outside the focal point. What if the object is inside the focal 
point, at distance s 6 f ? FIguRe 23.39 shows just this situation, and we can use ray trac-
ing to analyze it.

The special rays initially parallel to the axis and through the center of the lens 
present no difficulties. However, a ray through the near focal point would travel to-
ward the left and would never reach the lens! Referring back to Figure 23.35b, you 
can see that the rays emerging parallel to the axis entered the lens along a line passing 
through the near focal point. It’s the angle of incidence on the lens that is important, 
not whether the light ray actually passes through the focal point. This was the basis 
for the wording of step 4b in Tactics Box 23.2 and is the third special ray shown in 
Figure 23.39.

You can see that the three refracted rays don’t converge. Instead, all three rays ap-
pear to diverge from point P�. This is the situation we found for rays reflecting from 

Screen

Image

Object

Lens

P�

P

Virtual
image

Object

Focal point

A ray along a line through the near focal
point refracts parallel to the optical axis.

The refracted rays are diverging.
They appear to come from point P�.

f

s�
s

f

FIguRe 23.39 Rays from an object at 
distance s 6 f  are refracted by the lens 
and diverge to form a virtual image.



a mirror and for the rays refracting out of an aquarium. Point P� is a virtual image of 
the object point P. Furthermore, it is an upright image, having the same orientation 
as the object.

The refracted rays, which are all to the right of the lens, appear to come from P�, 
but none of the rays were ever at that point. No image would appear on a screen placed 
in the image plane at P�. So what good is a virtual image?

Your eye collects and focuses bundles of diverging rays; thus, as FIguRe 23.40a shows, 
you can “see” a virtual image by looking through the lens. This is exactly what you 
do with a magnifying glass, producing a scene like the one in FIguRe 23.40b. In fact, you 
view a virtual image anytime you look through the eyepiece of an optical instrument 
such as a microscope or binoculars.

The image distance s� for a virtual image is defined to be a negative number 
(s� * 0), indicating that the image is on the opposite side of the lens from a real im-
age. With this choice of sign, the definition of magnification, m = -s�/s, is still valid. 
A virtual image with negative s� has m 7 0, thus the image is upright. This agrees with 
the rays in Figure 23.39 and the photograph of Figure 23.40b.

NOTe  A lens thicker in the middle than at the edges is classified as a converging 
lens. The light rays from an object can converge to form a real image after passing 
through such a lens, but only if the object distance is larger than the focal length of 
the lens: s 7 f. If s 6 f, the rays leaving a converging lens are diverging to produce 
a virtual image. 

P�

P

Virtual
image

Object

Your eye “sees” the
virtual image at P�.

The refracted rays are diverging
and appear to come from P�.

f

(a)

(b)

FIguRe 23.40 A converging lens is a 
magnifying glass when the object 
distance is less than f.

The image is three times as large as the object and, because m is 
positive, upright.

exAMpLe 23.9  Magnifying a flower
To see a flower better, a naturalist holds a 6.0-cm-focal-length mag-
nifying glass 4.0 cm from the flower. What is the magnification?

MODeL The flower is in the object plane. Use ray tracing to locate 
the image.

VIsuALIze FIguRe 23.41 shows the ray-tracing diagram. The three 
special rays diverge from the lens, but we can use a straightedge 
to extend the rays backward to the point from which they di-
verge. This point, the image point, is seen to be 12 cm to the left 
of the lens. Because this is a virtual image, the image distance is 
s� = -12 cm. Thus the magnification is

 m = -  
s�

s
= -  

-12 cm

4.0 cm
= 3.0

Image

Object

Focal point

f

s9
s

f

12 cm 4 48 8

Trace these rays back 
to the image location.

FIguRe 23.41 Ray-tracing diagram for Example 23.9.

Diverging Lenses
A lens thicker at the edges than in the middle is called a diverging lens. FIguRe 23.42 
shows three important sets of rays passing through a diverging lens. These are based 
on Figures 23.33 and 23.34, where you saw that rays initially parallel to the axis di-
verge after passing through a diverging lens.

f

Any ray initially parallel to the
optical axis diverges along a line
through the near focal point.

Parallel rays

Near focal point

f

Any ray directed along a line toward
the far focal point emerges from the 
lens parallel to the optical axis.

Parallel rays

Far focal point

Any ray directed at the center
of the lens passes through in a
straight line.

Center of lens Rays are not bent.

FIguRe 23.42 Three important sets of rays passing through a thin diverging lens.
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Ray tracing follows the steps of Tactics Box 23.2 for a converging lens except that 
two of the three special rays in step 4 are different.

TAcTIcs
B O x  2 3 . 3 

 Ray tracing for a diverging lens

 ●1 –●3 Follow steps 1 through 3 of Tactics Box 23.2.
 ●4 Draw the three “special rays” from the tip of the arrow. Use a straight-

edge.

 a. A ray parallel to the axis diverges along a line through the near focal point.
 b. A ray along a line toward the far focal point emerges parallel to the axis.
 c. A ray through the center of the lens does not bend.

 ●5 Trace the diverging rays backward. The point from which they are diverg-
ing is the image point, which is always a virtual image.

 ●6 Measure the image distance s�. This will be a negative number.

Exercise 28 

Assess Ray tracing with a diverging lens is somewhat trickier 
than with a converging lens, so this example is worth careful study.

exAMpLe 23.10  Demagnifying a flower
A diverging lens with a focal length of 50 cm is placed 100 cm 
from a flower. Where is the image? What is its magnification?

MODeL The flower is in the object plane. Use ray tracing to locate 
the image.

VIsuALIze FIguRe 23.43 shows the ray-tracing diagram. The three 
special rays (labeled a, b, and c to match the Tactics Box) do not 
converge. However, they can be traced backward to an intersec-
tion �  33 cm to the left of the lens. A virtual image is formed at 
s� = -33 cm with magnification

 m = -  
s�

s
= -  

-33 cm

100 cm
= 0.33

The image, which can be seen by looking through the lens, is one-
third the size of the object and upright.

5
4

6

FIguRe 23.43 Ray-tracing diagram for 
Example 23.10.

Diverging lenses always make virtual images and, for this reason, are rarely 
used alone. However, they have important applications when used in combination 
with other lenses. Cameras, eyepieces, and eyeglasses often incorporate diverging 
lenses.

23.7 Thin Lenses: Refraction Theory
Ray tracing is a powerful visual approach for understanding image formation, but it 
doesn’t provide precise information about the image location or image properties. We 
need to develop a quantitative relationship between the object distance s and the image 
distance s�.

To begin, FIguRe 23.44 shows a spherical boundary between two transparent media 
with indices of refraction n1 and n2. The sphere has radius of curvature R. Consider a 
ray that leaves object point P at angle a and later, after refracting, reaches point P�. 
Figure 23.44 has exaggerated the angles to make the picture clear, but we will restrict 
our analysis to paraxial rays traveling nearly parallel to the axis. For paraxial rays, all 
the angles are small and we can use the small-angle approximation.
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The ray from P is incident on the boundary at angle u1 and refracts into medium 
n2 at angle u2, both measured from the normal to the surface at the point of incidence. 
Snell’s law is n1 sin u1 = n2 sin u2, which in the small-angle approximation is

 n1u1 = n2u2 (23.15)

You can see from the geometry of Figure 23.44 that angles a, b, and f are related by

  u1 = a + f 
(23.16)

  u2 = f - b

Using these expressions in Equation 23.15, we can write Snell’s law as

 n1(a + f) = n2(f - b) (23.17)

This is one important relationship between the angles.
The line of height t, from the axis to the point of incidence, is the vertical leg of 

three different right triangles having vertices at points P, C, and P�. Consequently,

tan a � a =
t

s + d
  tan b � b =

t

s� - d
  tan f � f =

t

R - d
 (23.18)

But d S 0 for paraxial rays, thus

 a =
t
s
  b =

t

s�
  f =

t

R
 (23.19)

This is the second important relationship that comes from Figure 23.44.
If we use the angles of Equation 23.19 in Equation 23.17, we find

 n11 t
s

+
t

R 2 = n21 t

R
-

t

s� 2  (23.20)

The t cancels, and we can rearrange Equation 23.20 to read

 
n1

s
+

n2

s�
=

n2 - n1

R
 (23.21)

Equation 23.21 is independent of angle a. Consequently, all paraxial rays leaving 
point P later converge at point P�. If an object is located at distance s from a spheri-
cal refracting surface, an image will be formed at distance s� given by Equation 23.21.

Equation 23.21 was derived for a surface that is convex toward the object point, 
and the image is real. However, the result is also valid for virtual images or for sur-
faces that are concave toward the object point as long as we adopt the sign convention 
shown in Table 23.3.

Section 23.4 considered image formation due to refraction by a plane surface. 
There we found (in Equation 23.13) an image distance s� = (n2/n1)s. A plane can 
be thought of as a sphere in the limit R S �, so we should be able to reach the same 
conclusion from Equation 23.21. As R S �, the term (n2 - n1)/R S 0 and Equa-
tion 23.21 becomes s� = -(n2 /n1 )s. This seems to differ from Equation 23.13, but it 

s

d

t

s�

R

C
Object
point

Image
point

Center of
sphere

Spherical surface

n2n1

A line through C is
normal to the surface.

a f

u   1

u   2

b

P P�

FIguRe 23.44 Image formation due to refraction at a spherical surface. The angles are 
exaggerated.

TABLe 23.3 Sign convention for refract-
ing surfaces

Positive Negative

R Convex toward  
the object

Concave toward  
the object

s� Real image,  
opposite side  
from object

Virtual image,  
same side as  
object
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VIsuALIze FIguRe 23.46 shows the rays refracting away from the 
normal as they move from the water into the air. We expect to find 
a virtual image at a distance less than 10 cm.

sOLVe The object is in the water, so n1 = 1.33 and n2 = 1.00. The 
inner surface is concave (you can remember “concave” because 
it’s like looking into a cave), so R = -25 cm. The object distance 
is s = 10 cm. Thus Equation 23.21 is

 
1.33

10 cm
+

1.00

s�
=

1.00 - 1.33

-25 cm
=

0.33

25 cm

Solving for the image distance s� gives

  
1.00

s�
=

0.33

25 cm
-

1.33

10 cm
= -0.12 cm-1

  s� =
1.00

-0.12 cm-1 
= -8.3 cm

Assess The image is virtual, located to the left of the boundary. 
A person looking into the bowl will see a fish that appears to be 
8.3 cm from the edge of the bowl.

doesn’t really. Equation 23.13 gives the actual distance to the image. Equation 23.21 
is based on a sign convention in which virtual images have negative image distances, 
hence the minus sign.

VIsuALIze FIguRe 23.45 shows the situation. n1 = 1.00 for air and 
n2 = 1.50 for glass.

sOLVe The radius of the surface is half the rod diameter, so 
R = 2.0 cm. Equation 23.21 is

 
1.00

6.0 cm
+

1.50

s�
=

1.50 - 1.00

2.0 cm
=

0.50

2.0 cm

Solving for the image distance s� gives

  
1.50

s�
=

0.50

2.0 cm
-

1.00

6.0 cm
= 0.0833 cm-1

  s� =
1.50

0.0833
= 18 cm

Assess This is a real image located 18 cm inside the glass rod.

exAMpLe 23.11  Image formation inside a glass rod
One end of a 4.0-cm-diameter glass rod is shaped like a hemi-
sphere. A small lightbulb is 6.0 cm from the end of the rod. Where 
is the bulb’s image located?

MODeL Model the lightbulb as a point source of light and consider 
the paraxial rays that refract into the glass rod.

FIguRe 23.45 The curved surface refracts the light to 
form a real image.

s�

Object

Virtual image

n1 � 1.33 n2 � 1.00
R � �25 cm

s � 10 cm

FIguRe 23.46 The curved surface of a fish bowl 
produces a virtual image of the fish.

exAMpLe 23.12  A goldfish in a bowl
A goldfish lives in a spherical fish bowl 50 cm in diameter. If the 
fish is 10 cm from the near edge of the bowl, where does the fish 
appear when viewed from the outside?

MODeL Model the fish as a point source and consider the paraxial 
rays that refract from the water into the air. The thin glass wall has 
little effect and will be ignored.

Stop to think 23.5 
 Which of these actions 

will move the real image point P� farther from 
the boundary? More than one may work.

 a. Increase the radius of curvature R.
 b. Increase the index of refraction n.
 c. Increase the object distance s.
 d. Decrease the radius of curvature R.
 e. Decrease the index of refraction n.
 f. Decrease the object distance s.

P C P�

s s�

R

Air n



Lenses
The thin-lens approximation assumes rays refract one time, at the lens plane. In fact, as 
FIguRe 23.47 shows, rays refract twice, at spherical surfaces having radii of curvature R1 
and R2. Let the lens have thickness t and be made of a material with index of refraction 
n. For simplicity, we’ll assume that the lens is surrounded by air.

P��P�

Radius R2 of second surface

First surface refraction Second surface refraction

Final image

Object

Radius R1 of first surface

P

s1
s1�

s2�s2 t

The image of the first
surface is the object
for the second surface.

n

FIguRe 23.47 Image formation by a lens.

The object at point P is distance s1 to the left of the lens. The first surface of the 
lens, of radius R1, refracts the rays from P to create an image at point P�. We can use 
Equation 23.21 for a spherical surface to find the image distance s =

1:

 
1
s1

+
n

s =
1

=
n - 1

R1
 (23.22)

where we used n1 = 1 for the air and n2 = n for the lens. We’ll assume that the image 
P� is a virtual image, but this assumption isn’t essential to the outcome.

With two refracting surfaces, the image P� of the first surface becomes the 
object for the second surface. That is, the rays refracting at the second surface ap-
pear to have come from P�. Object distance s2 from P� to the second surface looks 
like it should be s2 = s =

1 + t, but P� is a virtual image, so s =
1 is a negative number. 

Thus the distance to the second surface is s2 = 0 s =
1 0 + t = t - s =

1. We can find the 
image of P� by a second application of Equation 23.21, but with a switch. The rays 
are incident on the surface from within the lens, so this time n1 = n and n2 = 1. 
Consequently,

 
n

t - s =
1

+
1

s =
2

=
1 - n

R2
 (23.23)

For a thin lens, which has t S 0, Equation 23.23 becomes

 -  
n

s =
1

+
1

s =
2

=
1 - n

R2
= -  

n - 1

R2
 (23.24)

Our goal is to find the distance s =
2 to point P�, the image produced by the lens as a 

whole. This goal is easily reached if we simply add Equations 23.22 and 23.24, elimi-
nating s =

1 and giving

 
1
s1

+
1

s =
2

=
n - 1

R1
-

n - 1

R2
= (n - 1)1 1

R1
-

1

R2
2  (23.25)
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The numerical subscripts on s1 and s =
2 no longer serve a purpose. If we replace s1 

by s, the object distance from the lens, and s =
2 by s�, the image distance, Equation 23.25 

becomes the thin-lens equation:

 
1
s

+
1

s�
=

1

f
   (thin@lens equation) (23.26)

where the focal length of the lens is

 
1

f
= (n - 1)1 1

R1 
-

1

R2
2  (lens maker>s equation) (23.27)

Equation 23.27 is known as the lens maker’s equation. It allows you to determine the 
focal length from the shape of a thin lens and the material used to make it.

We can verify that this expression for f  really is the focal length of the lens by 
recalling that rays initially parallel to the optical axis pass through the focal point on 
the far side. In fact, this was our definition of the focal length of a lens. Parallel rays 
must come from an object extremely far away, with object distance s S � and thus 
1/s = 0. In that case, Equation 23.26 tells us that the parallel rays will converge at 
distance s� = f  on the far side of the lens, exactly as expected.

We derived the thin-lens equation and the lens maker’s equation from the specific 
lens geometry shown in Figure 23.47, but the results are valid for any lens as long as all 
quantities are given appropriate signs. The sign convention used with Equations 23.26 
and 23.27 is given in Table 23.4.

TABLe 23.4 Sign convention for thin lenses

Positive Negative

R1, R2 Convex toward the object Concave toward the object

f Converging lens, thicker in center Diverging lens, thinner in center

s� Real image, opposite side from object Virtual image, same side as object

sOLVe If the object is on the left, then the first surface has 
R1 = -40 cm (concave toward the object) and the second surface 
has R2 = -20 cm (also concave toward the object). The index of 
refraction of glass is n = 1.50, so the lens maker’s equation is

 
1

f
= (n - 1)1 1

R1 
-

1

R2
2 = (1.50 - 1)1 1

-40 cm
-

1

-20 cm 2
   = 0.0125 cm-1

Inverting this expression gives f = 80 cm. This is a converging 
lens, as seen both from the positive value of f  and from the fact 
that the lens is thicker in the center.

exAMpLe 23.13  Focal length of a meniscus lens
What is the focal length of the glass meniscus lens shown in 
FIguRe 23.48? Is this a converging or diverging lens?

R1 � 40 cm

R2 � 20 cm

n � 1.50

FIguRe 23.48 A meniscus lens.

Thin-Lens Image Formation
Although the thin-lens equation allows precise calculations, the lessons of ray tracing 
should not be forgotten. The most powerful tool of optical analysis is a combination of ray 
tracing, to gain an intuitive understanding of the ray trajectories, and the thin-lens equation.

NOTe  For a thick lens, where the thickness t is not negligible, we can solve 
Equations 23.22 and 23.23 in sequence to find the position of the image point P�. 



sOLVe We can use the lens maker’s equation to solve for R2 if we 
know the lens’s focal length. Because we know both the object 
and image distances, we can use the thin-lens equation to find

 
1

f
=

1
s

+
1

s�
=

1

8.0 mm
+

1

160 mm
= 0.131 mm-1

The focal length is f = 1/(0.131 mm-1 ) = 7.6 mm, but 1/f  is all 
we need for the lens maker’s equation. The front surface of the 
lens is planar, which we can consider a portion of a sphere with 
R1 S �. Consequently 1/R1 = 0.  With this, we can solve the lens 
maker’s equation for R2:

  
1

R2
=

1

R1
-

1

n - 1
 
1

f
= 0 - 1 1

1.50 - 1 2 (0.131 mm-1 )

  = -0.262 mm-1

  R2 = -3.8 mm

The minus sign appears because the curved surface is concave 
toward the object. Physically, the radius of the curved surface is 
3.8 mm.

Assess The actual thickness of the lens has to be less than R2,
probably no more than about 1.0 mm. This thickness is signifi-
cantly less than the object and image distances, so the thin-lens 
approximation is justified.

exAMpLe 23.14  Designing a lens
The objective lens of a microscope uses a planoconvex glass lens 
with the flat side facing the specimen. A real image is formed 
160 mm behind the lens when the lens is 8.0 mm from the speci-
men. What is the radius of the lens’s curved surface?

MODeL Treat the lens as a thin lens with the specimen as the ob-
ject. The lens’s focal length is given by the lens maker’s equation.

VIsuALIze FIguRe 23.49 clarifies the shape of the lens and defines 
R2. The index of refraction was taken from Table 23.1.

Image and
object distances
not to scale

R2
R1 � �

s� � 160 mm

s � 8.0 mm

n � 1.50

FIguRe 23.49 A planoconvex microscope lens.

MODeL A magnifying lens is a converging lens with the object 
distance less than the focal length (s 6 f ). Assume it is a thin lens.

VIsuALIze FIguRe 23.50 shows the lens and a ray-tracing diagram. 
We do not need to know the actual shape of the lens, so the figure 
shows a generic converging lens.

sOLVe A virtual image is upright, so m = +4.0. The magnifica-
tion is m = -s�/s, thus

 s� = -4.0 s = - (4.0)(2.0 cm) = -8.0 cm

We can use s and s� in the thin-lens equation to find the focal 
length:

  
1

f
=

1
s

+
1

s�
=

1

2.0 cm
+

1

-8.0 cm
= 0.375 cm-1

  f = 2.7 cm

Assess f 7 2 cm, as expected.

exAMpLe 23.15  A magnifying lens
A stamp collector uses a magnifying lens that sits 2.0 cm above 
the stamp. The magnification is 4.0. What is the focal length of 
the lens?

s � 2.0 cm

Focal point

Lens plane

Stamp

Virtual image

s� � � 4.0s

f

FIguRe 23.50 Pictorial representation 
of a magnifying lens.

Stop to think 23.6 
 A lens forms a real image of a lightbulb, but the image of the bulb 

on a viewing screen is blurry because the screen is slightly in front of the image plane. 
To focus the image, should you move the lens toward the bulb or away from the bulb?

23.7 . Thin Lenses: Refraction Theory    681



682    c h a p t e r  23 . Ray Optics

23.8  Image Formation with 
spherical Mirrors

Curved mirrors—such as those used in telescopes, security and rearview mirrors, and 
searchlights—can be used to form images, and their images can be analyzed with ray 
diagrams similar to those used with lenses. We’ll consider only the important case of 
spherical mirrors, whose surface is a section of a sphere.

concave Mirrors
FIguRe 23.51 shows a concave mirror, a mirror in which the edges curve toward the light 
source. Rays parallel to the optical axis reflect from the surface of the mirror so as to 
pass through a single point on the optical axis. This is the focal point of the mirror. The 
focal length is the distance from the mirror surface to the focal point. A concave mirror 
is analogous to a converging lens, but it has only one focal point.

Let’s begin by considering the case where the object’s distance s from the mirror is 
greater than the focal length (s 7 f ), as shown in FIguRe 23.52. We see that the image is 
real (and inverted) because rays from the object point P converge at the image point 
P�. Although an infinite number of rays from P all meet at P�, each ray obeying the law 
of reflection, you can see that three “special rays” are enough to determine the position 
and size of the image:

	■	 A ray parallel to the axis reflects through the focal point.
	■	 A ray through the focal point reflects parallel to the axis.
	■	 A ray striking the center of the mirror reflects at an equal angle on the opposite side 

of the axis.

These three rays also locate the image if s 6 f, but in that case the image is virtual and 
behind the mirror.

Focal length f

Parallel rays

Concave mirror

Optical axis

This is the focal 
point. Rays converge 
at this point.

FIguRe 23.51 The focal point and focal 
length of a concave mirror.

s�

Object

Real
image

Special rays Mirror plane

f

s

P�

P

FIguRe 23.52 A real image formed by a concave mirror.

convex Mirrors
FIguRe 23.53 shows parallel light rays approaching a mirror in which the edges curve 
away from the light source. This is called a convex mirror. In this case, the reflected 
rays appear to come from a point behind the mirror. This is the focal point for a convex 
mirror.

A common example of a convex mirror is a silvered ball, such as a tree ornament. 
You may have noticed that if you look at your reflection in such a ball, your image 
appears right-side-up but is quite small. As another example, FIguRe 23.54 shows a city 
skyline reflected in a polished metal sphere. Let’s use ray tracing to understand why 
the skyscrapers all appear to be so small.

Parallel rays

Convex
mirror

Optical axis

Focal length f

This is the focal 
point. Rays 
appear to diverge 
from this point.

FIguRe 23.53 The focal point and focal 
length of a convex mirror.
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FIguRe 23.55 shows an object in front of a convex mirror. In this case, the reflected 
rays—each obeying the law of reflection—create an upright image of reduced height 
behind the mirror. We see that the image is virtual because no rays actually converge 
at the image point P�. Instead, diverging rays appear to come from this point. Once 
again, three special rays are enough to find the image.

FIguRe 23.54 A city skyline is reflected in 
this polished sphere.

This ray entered parallel to the
optical axis, and thus appears to
have come from the focal point.

This ray was heading for the
focal point, and thus emerges
parallel to the optical axis.

s�

P�

f

Mirror plane

Virtual
image

Object

Special rays

Optical axis
s

P

FIguRe 23.55 A virtual image formed by a convex mirror.

Convex mirrors are used for a variety of safety and monitoring applications, such 
as passenger-side rearview mirrors and the round mirrors used in stores to keep an eye 
on the customers. When an object is reflected in a convex mirror, the image appears 
smaller than the object itself. Because the image is, in a sense, a miniature version of 
the object, you can see much more of it within the edges of the mirror than you could 
with an equal-sized flat mirror.

TAcTIcs
BOx 23.4 

 Ray tracing for a spherical mirror

 ●1 Draw an optical axis. Use graph paper or a ruler! Establish an appropriate 
scale.

 ●2 Center the mirror on the axis. Mark and label the focal point at distance f  
from the mirror’s surface.

 ●3 Represent the object with an upright arrow at distance s. It’s usually best 
to place the base of the arrow on the axis and to draw the arrow about half the 
radius of the mirror.

 ●4 Draw the three “special rays” from the tip of the arrow. Use a straight-
edge.

 a. A ray parallel to the axis reflects through (concave) or away from (con-
vex) the focal point.

 b. An incoming ray passing through (concave) or heading toward (convex) 
the focal point reflects parallel to the axis.

 c. A ray that strikes the center of the mirror reflects at an equal angle on the 
opposite side of the optical axis.

 ●5 Extend the rays forward or backward until they converge. This is the 
image point. Draw the rest of the image in the image plane. If the base of the 
object is on the axis, then the base of the image will also be on the axis.

 ●6 Measure the image distance s�. Also, if needed, measure the image height 
relative to the object height.

Exercises 32–33 
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sOLVe We can use a ruler to find that the image position is 
s� � 120 cm in front of the mirror and its height is h� � 6 cm.

Assess The image is a real image because light rays converge at 
the image point.

exAMpLe 23.16  Analyzing a concave mirror
A 3.0-cm-high object is located 60 cm from a concave mirror. The 
mirror’s focal length is 40 cm. Use ray tracing to find the position 
and height of the image.

MODeL Use the ray-tracing steps of Tactics Box 23.4.

VIsuALIze FIguRe 23.56 shows the steps of Tactics Box 23.4.

1 Lay out the optical 
axis, with a scale.

3

Measure the image distance.

Draw the object as 
an arrow with its 
base on the axis.

4

The convergence point is 
the tip of the image. Draw 
the rest of the image.

Draw the 3 special rays from the tip of the arrow.
a. Parallel to the axis.
b. Through the focal point.
c. Hitting the center of the mirror.

6

Draw the mirror and 
mark its focal point.

2

5

FIguRe 23.56 Ray-tracing diagram for a concave mirror.

The Mirror equation
The thin-lens equation assumes lenses have negligible thickness (so a single refraction 
occurs in the lens plane) and the rays are nearly parallel to the optical axis (paraxial 
rays). If we make the same assumptions about spherical mirrors—the mirror has neg-
ligible thickness and so paraxial rays reflect at the mirror plane—then the object and 
image distances are related exactly as they were for thin lenses:

 
1
s

+
1

s�
=

1

f
   (mirror equation) (23.28)

The focal length of the mirror, as you can show as a homework problem, is related to 
the mirror’s radius of curvature by

 f =
R

2
 (23.29)

Table 23.5 shows the sign convention used with spherical mirrors. It differs from 
the convention for lenses, so you’ll want to carefully compare this table to Table 23.4. 
A concave mirror (analogous to a converging lens) has a positive focal length while a 
convex mirror (analogous to a diverging lens) has a negative focal length. The lateral 
magnification of a spherical mirror is computed exactly as for a lens:

 m = -  
s�

s
 (23.30)

TABLe 23.5 Sign convention for spherical 
mirrors

Positive Negative

R, f Concave toward  
the object

Convex toward  
the object

s� Real image,  
same side  
as object

Virtual image,  
opposite side  
from object

VIsuALIze The mirror’s focal length is f = R/2 = +40 cm, where 
we used the sign convention from Table 23.5. With the focal 
length known, the three special rays in FIguRe 23.57 show that the 
image is a magnified, virtual image behind the mirror.

exAMpLe 23.17  Analyzing a concave mirror
A 3.0-cm-high object is located 20 cm from a concave mirror. The 
mirror’s radius of curvature is 80 cm. Determine the position, ori-
entation, and height of the image.

MODeL Treat the mirror as a thin mirror.



This is easily solved to give s� = -40 cm, in agreement with the 
ray tracing. The negative sign tells us this is a virtual image behind 
the mirror. The magnification is

 m = -  
-40 cm

20 cm
= +2.0

Consequently, the image is 6.0 cm tall and upright.

Assess This is a virtual image because light rays diverge from 
the image point. You could see this enlarged image by standing 
behind the object and looking into the mirror. In fact, this is how 
magnifying cosmetic mirrors work.

sOLVe The thin-mirror equation is

 
1

20 cm
+

1

s�
=

1

40 cm

Object

10 cm

Mirror plane

Virtual
image

s�

f � 40 cm

s � 20 cm

FIguRe 23.57 Pictorial representation of Example 23.17.

Stop to think 23.7 
 A concave mirror of focal length f  forms an image of the moon. 

Where is the image located?

 a. At the mirror’s surface
 b. Almost exactly a distance f  behind the mirror
 c. Almost exactly a distance f  in front of the mirror
 d. At a distance behind the mirror equal to the distance of the moon in front of the 

mirror

Consider an endoscope having a 3.0-mm-diameter objective 
lens with a focal length of 1.1 mm. These are typical values. The 
indices of refraction of the core and the cladding of the optical 
fibers are 1.62 and 1.50, respectively. To give maximum bright-
ness, the objective lens is positioned so that, for an on-axis object, 
rays passing through the outer edge of the lens have the maxi-
mum angle of incidence for undergoing TIR in the fiber. How 
far should the objective lens be placed from the object the doctor 
wishes to view?

MODeL Represent the object as an on-axis point source and use 
the ray model of light.

VIsuALIze FIguRe 23.59 on the next page shows the real image 
being focused on the entrance face of the endoscope. Inside the 
fiber, rays that strike the cladding at an angle of incidence greater 
than the critical angle uc undergo TIR and stay in the fiber; rays 
are lost if their angle of incidence is less than uc. For maximum 
brightness, the lens is positioned so that a ray passing through 
the outer edge refracts into the fiber at the maximum angle of 
incidence umax for which TIR is possible. A smaller-diameter 
lens would sacrifice light-gathering power, whereas the outer 
rays from a larger-diameter lens would impinge on the core-
cladding boundary at less than uc and would not undergo TIR. 
Note that the lens-to-fiber distance, although unknown, is fixed 
by the manufacturer and cannot be changed. Only object distance 
is under the doctor’s control.

cHALLeNge exAMpLe 23.18  Optical fiber imaging
An endoscope is a thin bundle of 
optical fibers that can be inserted 
through a bodily opening or small 
incision to view the interior of the 
body. As FIguRe 23.58 shows, an 
objective lens forms a real image on 
the entrance face of the fiber bundle. 
Individual fibers, using total inter-
nal reflection, transport the light to 
the exit face, where it emerges. The 
doctor (or a TV camera) observes 
the object by viewing the exit face 
through an eyepiece lens.

FIguRe 23.58 An endoscope.

Objective lens

Object to
be viewed

Entrance face

Exit face

Eyepiece
lens

Light travels through
one fiber by TIR.

The emerging cone
of rays from one fiber

An endoscope—a bundle
of thousands of parallel
optical fibers

Continued

Challenge Example    685
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sOLVe We know the focal length of the lens. We can use the ge-
ometry of the ray at the critical angle to find the image distance s�, 
then use the thin-lens equation to find the object distance s. The 
critical angle for TIR inside the fiber is

 uc = sin-11ncladding

ncore
2 = sin-111.50

1.62 2 = 67.8�

A ray incident on the core-cladding boundary at exactly the criti-
cal angle must have entered the fiber, at the entrance face, at angle 

u2 = 90� - uc = 22.2�. For optimum lens placement, this ray 
passed through the outer edge of the lens and was incident on the 
entrance face at angle umax. Snell’s law at the entrance face is

 nair sin umax = 1.0 # sin umax = ncore sin u2

and thus

 umax = sin-1(1.62 sin 22.2�) = 37.7�

We know the lens radius, r = 1.5 mm, so the distance of the lens 
from the fiber—the image distance s�—is

 s� =
r

tan umax
 =

1.5 mm

tan(37.7�)
= 1.9  mm

Now we can use the thin-lens equation to locate the object:

  
1
s

=
1

f
-

1

s�
=

1

1.1 mm
-

1

1.9 mm

  s = 2.6  mm

The doctor, viewing the exit face of the fiber bundle, will see a 
focused image when the objective lens is 2.6 mm from the object 
she wishes to view.

Assess The object and image distances are both greater than the 
focal length, which is correct for forming a real image.

A ray at umax strikes the core-
cladding boundary at exactly uc

and undergoes TIR.

Rays entering at smaller
angles stay within the fiber.

Rays entering at angles
greater than umax do not
undergo TIR and are lost.

Cladding
Core

Object

umax

u2
uc

s�s

r

FIguRe 23.59 Magnified view of the entrance of 
an optical fiber.
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Ray tracing

3 special rays in 3 basic situations:

Magnification m = -  
s�

s
m is +  for an upright image, -  for inverted.

The height ratio is h�/h = 0m 0 .

Thin lenses

The image and object 
distances are related by

1
s

+
1

s�
=

1

f
where the focal length is given by the lens maker’s equation:

1

f
= (n - 1)1 1

R1
-

1

R2
2

R  +  for surface convex toward object  -  for concave
f   +  for a converging lens  -  for diverging
s�  +  for a real image -  for virtual

The ray model of light

Light travels along straight lines, called light rays, at speed 
v = c/n.

A light ray continues forever unless an interaction with matter 
causes it to reflect, refract, scatter, or be absorbed.

Light rays come from objects. Each point on the object sends 
rays in all directions.

The eye sees an object (or an image) when diverging rays are 
collected by the pupil and focused on the retina.

 Ray optics is valid when lenses, mirrors, and apertures are 
larger than �  1 mm.

Image formation

If rays diverge from P and interact  
with a lens or mirror so that the  
refracted rays converge at P�, then 
P� is a real image of P.

If rays diverge from P and interact with 
a lens or mirror so that the refracted/reflected rays diverge from P� 
and appear to come from P�, then P� is a virtual image of P.

Spherical surface: Object and image distances are related by

n1

s
+

n2 

s�
=

n2 - n1 

R

Plane surface: R S �, so 0 s�/s 0 = n2/n1.

Reflection
Law of reflection: ur = ui

Reflection can be specular 
(mirror-like) or diffuse 
(from rough surfaces).

Plane mirrors: A virtual  
image is formed at P� 
with s� = s.

Refraction
Snell’s law of refraction:

 n1 sin u1 = n2 sin u2

Index of refraction is n = c/v.
The ray is closer to the normal on  
the side with the larger index of  
refraction.

If n2 6 n1, total internal reflection (TIR) occurs when the angle 
of incidence u1 Ú uc = sin-1(n2/n1).

s u M M A R y
The goals of Chapter 23 have been to understand and apply the ray model of light.

general principles

Important concepts

Applications

Spherical mirrors

The image and object 
distances are related by

1
s

+
1

s�
=

1

f

R, f     +  for concave mirror  -  for convex
s�       +  for a real image  -  for virtual

Focal length f = R/2

P P�

s s� � s

ui ur

Incident
ray

Refracted
ray

Normal

u2

u1

n1

n2

P P�R

n1 n2

s�s

Converging lens
Real image

Converging lens
Virtual image

Diverging lens
Virtual image

Focal length f

s�s
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light ray
object
point source
parallel bundle
ray diagram
camera obscura
aperture
specular reflection
angle of incidence
angle of reflection
law of reflection

diffuse reflection
virtual image
refraction
angle of refraction
Snell’s law
total internal reflection (TIR)
critical angle, uc

object distance, s
image distance, s�
optical axis
paraxial rays

dispersion
Rayleigh scattering
lens
ray tracing
converging lens
focal point
focal length, f
diverging lens
thin lens
lens plane
real image

object plane
image plane
inverted image
lateral magnification, m
upright image
spherical mirror
concave mirror
convex mirror

Terms and Notation

c O N c e p T u A L  Q u e s T I O N s

 1. If you turn on your car headlights during the day, the road ahead 
of you doesn’t appear to get brighter. Why not?

 2. Suppose you have two pinhole cameras. The first has a small 
round hole in the front. The second is identical except it has a 
square hole of the same area as the round hole in the first camera. 
Would the pictures taken by these two cameras, under the same 
conditions, be different in any obvious way? Explain.

 3. You are looking at the image of a pencil in a mirror, as shown in 
FIguRe Q23.3.

 a. What happens to the image if the top half of the mirror, down 
to the midpoint, is covered with a piece of cardboard? Explain.

 b. What happens to the image if the bottom half of the mirror is 
covered with a piece of cardboard? Explain.

 4. One problem with using optical fibers for communication is that 
a light ray passing directly down the center of the fiber takes 
less time to travel from one end to the other than a ray taking 
a longer, zig-zag path. Thus light rays starting at the same time 
but traveling in slightly different directions reach the end of the 
fiber at different times. This problem can be solved by making 
the refractive index of the glass change gradually from a higher 
value in the center to a lower value near the edges of the fiber. 
Explain how this reduces the difference in travel times.

 5. Suppose you looked at the sky on a clear 
day through pieces of red and blue plastic 
oriented as shown in FIguRe Q23.5. Describe 
the color and brightness of the light coming 
through sections 1, 2, and 3.

 6. A red card is illuminated by red light. What color will the card 
appear? What if it’s illuminated by blue light?

 7. The center of the galaxy is filled with low-density hydrogen gas. 
An astronomer wants to take a picture of the center of the galaxy. 
Will the view be better using ultraviolet light, visible light, or 
infrared light? (High-quality telescopes are available in all three 
spectral regions.) Explain.

 8. Consider one point on an object near a lens.
 a. What is the minimum number of rays needed to locate its im-

age point? Explain.
 b. How many rays from this point actually strike the lens and 

refract to the image point?
 9. The object and lens in FIguRe Q23.9 are positioned to form a well-

focused, inverted image on a viewing screen. Then a piece of 
cardboard is lowered just in front of the lens to cover the top 
half of the lens. Describe what you see on the screen when the 
cardboard is in place.

 10. FIguRe Q23.10 shows an object near a lens. The focal points are 
marked. Is there an image? If so, is the image real or virtual? Is 
it upright or inverted? If not, why not? Explain.

 11. A concave mirror brings the sun’s rays to a focus in front of the 
mirror. Suppose the mirror is submerged in a swimming pool 
but still pointed up at the sun. Will the sun’s rays be focused 
nearer to, farther from, or at the same distance from the mirror? 
Explain.

 12. When you look at your reflection in the bowl of a spoon, it is 
upside down. Why?

Midpoint

FIguRe Q23.3 

1

2

3

FIguRe Q23.5 

Screen

LensFIguRe Q23.9 

FIguRe Q23.10 
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exercises

Section 23.1 The Ray Model of Light

 1. || a.  How long (in ns) does it take light to travel 1.0 m in vacuum?
 b.  What distance does light travel in water, glass, and cubic 

zirconia during the time that it travels 1.0 m in vacuum?
 2. || A point source of light illuminates an aperture 2.0 m away. 

A 12.0-cm-wide bright patch of light appears on a screen 1.0 m 
behind the aperture. How wide is the aperture?

 3. || A 5.0-cm-thick layer of oil is sandwiched between a 1.0-cm-
thick sheet of glass and a 2.0-cm-thick sheet of polystyrene plas-
tic. How long (in ns) does it take light incident perpendicular to 
the glass to pass through this 8.0-cm-thick sandwich?

 4. || A student has built a 15-cm-long pinhole camera for a science 
fair project. She wants to photograph her 180-cm-tall friend and 
have the image on the film be 5.0 cm high. How far should the 
front of the camera be from her friend?

Section 23.2 Reflection

 5. | The mirror in FIguRe ex23.5 deflects a horizontal laser beam by 
60�. What is the angle f?

 6. | A light ray leaves point A in FIguRe ex23.6, reflects from the 
mirror, and reaches point B. How far below the top edge does the 
ray strike the mirror?

 7. || The laser beam in FIguRe ex23.7 is aimed at the center of a 
rotating hexagonal mirror. How long is the streak of laser light as 
the reflected laser beam sweeps across the wall behind the laser?

 8. || At what angle f should the laser beam in FIguRe ex23.8 be 
aimed at the mirrored ceiling in order to hit the midpoint of the 
far wall?

 9. || It is 165 cm from your eyes to your toes. You’re standing 
200 cm in front of a tall mirror. How far is it from your eyes to 
the image of your toes?

Section 23.3 Refraction

 10. || A 1.0-cm-thick layer of water stands on a horizontal slab of 
glass. A light ray in the air is incident on the water 60� from the 
normal. What is the ray’s direction of travel in the glass?

 11. || A costume jewelry pendant made of cubic zirconia is sub-
merged in oil. A light ray strikes one face of the zirconia crystal 
at an angle of incidence of 25�. Once inside, what is the ray’s 
angle with respect to the face of the crystal?

 12. || An underwater diver sees the sun 50� above horizontal. How 
high is the sun above the horizon to a fisherman in a boat above 
the diver?

 13. | A laser beam in air is incident on a liquid at an angle of 53� 
with respect to the normal. The laser beam’s angle in the liquid 
is 35�. What is the liquid’s index of refraction?

 14. || The glass core of an optical fiber has an index of refraction 
1.60. The index of refraction of the cladding is 1.48. What is the 
maximum angle a light ray can make with the wall of the core if 
it is to remain inside the fiber?

 15. || A thin glass rod is submerged in oil. What is the critical angle 
for light traveling inside the rod?

Section 23.4 Image Formation by Refraction

 16. || A fish in a flat-sided aquarium sees a can of fish food on 
the counter. To the fish’s eye, the can looks to be 30 cm out-
side the aquarium. What is the actual distance between the can 
and the aquarium? (You can ignore the thin glass wall of the 
aquarium.)

 17. | A biologist keeps a specimen of his favorite beetle embedded 
in a cube of polystyrene plastic. The hapless bug appears to be 
2.0 cm within the plastic. What is the beetle’s actual distance 
beneath the surface?

 18. | A 150-cm-tall diver is standing completely submerged on the 
bottom of a swimming pool full of water. You are sitting on the 
end of the diving board, almost directly over her. How tall does 
the diver appear to be?

 19. || To a fish in an aquarium, the 4.00-mm-thick walls appear to 
be only 3.50 mm thick. What is the index of refraction of the 
walls?

Section 23.5 Color and Dispersion

 20. || A sheet of glass has nred = 1.52 and nviolet = 1.55. A narrow 
beam of white light is incident on the glass at 30�. What is the 
angular spread of the light inside the glass?

 21. | A narrow beam of white light is incident on a sheet of quartz. 
The beam disperses in the quartz, with red light (l � 700 nm) 
traveling at an angle of 26.3� with respect to the normal and vio-
let light (l � 400 nm) traveling at 25.7�. The index of refraction 
of quartz for red light is 1.45. What is the index of refraction of 
quartz for violet light?
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 22. || A hydrogen discharge lamp emits light with two prominent 
wavelengths: 656 nm (red) and 486 nm (blue). The light enters 
a flint-glass prism perpendicular to one face and then refracts 
through the hypotenuse back into the air. The angle between 
these two faces is 35�.

 a. Use Figure 23.28 to estimate to {0.002 the index of refrac-
tion of flint glass at these two wavelengths.

 b. What is the angle (in degrees) between the red and blue light 
as it leaves the prism?

 23. || Infrared telescopes, which use special infrared detectors, are 
able to peer farther into star-forming regions of the galaxy be-
cause infrared light is not scattered as strongly as is visible light 
by the tenuous clouds of hydrogen gas from which new stars are 
created. For what wavelength of light is the scattering only 1% 
that of light with a visible wavelength of 500 nm?

Section 23.6 Thin Lenses: Ray Tracing

 24. || An object is 20 cm in front of a converging lens with a focal 
length of 10 cm. Use ray tracing to determine the location of the 
image. Is the image upright or inverted?

 25. || An object is 30 cm in front of a converging lens with a focal 
length of 5 cm. Use ray tracing to determine the location of the 
image. Is the image upright or inverted?

 26. || An object is 6 cm in front of a converging lens with a focal 
length of 10 cm. Use ray tracing to determine the location of the 
image. Is the image upright or inverted?

 27. || An object is 15 cm in front of a diverging lens with a focal 
length of -15 cm. Use ray tracing to determine the location of 
the image. Is the image upright or inverted?

Section 23.7 Thin Lenses: Refraction Theory

 28. | Find the focal length of the glass lens in FIguRe ex23.28.

 29. | Find the focal length of the planoconvex polystyrene plastic 
lens in FIguRe ex23.29.

 30. || Find the focal length of the glass lens in FIguRe ex23.30.

 31. || Find the focal length of the meniscus polystyrene plastic lens 
in FIguRe ex23.31.

 32. || An air bubble inside an 8.0-cm-diameter plastic ball is 2.0 cm 
from the surface. As you look at the ball with the bubble turned 
toward you, how far beneath the surface does the bubble appear 
to be?

 33. || A goldfish lives in a 50-cm-diameter spherical fish bowl. The 
fish sees a cat watching it. If the cat’s face is 20 cm from the edge 
of the bowl, how far from the edge does the fish see it as being? 
(You can ignore the thin glass wall of the bowl.)

 34. | A 1.0-cm-tall candle flame is 60 cm from a lens with a focal 
length of 20 cm. What are the image distance and the height of 
the flame’s image?

Section 23.8 Image Formation with Spherical Mirrors

 35. || An object is 40 cm in front of a concave mirror with a focal 
length of 20 cm. Use ray tracing to locate the image. Is the image 
upright or inverted?

 36. || An object is 12 cm in front of a concave mirror with a focal 
length of 20 cm. Use ray tracing to locate the image. Is the image 
upright or inverted?

 37. || An object is 30 cm in front of a convex mirror with a focal 
length of -20 cm. Use ray tracing to locate the image. Is the 
image upright or inverted?

problems

 38. || An advanced computer sends information to its various parts via 
infrared light pulses traveling through silicon fibers. To acquire data 
from memory, the central processing unit sends a light-pulse request 
to the memory unit. The memory unit processes the request, then 
sends a data pulse back to the central processing unit. The memory 
unit takes 0.5 ns to process a request. If the information has to be 
obtained from memory in 2.0 ns, what is the maximum distance the 
memory unit can be from the central processing unit?

 39. || A red ball is placed at point A 
in FIguRe p23.39.

 a. How many images are seen 
by an observer at point O?

 b. What are the (x, y) coordi-
nates of each image?

 40. | A laser beam is incident on the left mir-
ror in FIguRe p23.40. Its initial direction is 
parallel to a line that bisects the mirrors. 
What is the angle f of the reflected laser 
beam?

 41. || The place you get your hair cut has two nearly parallel mir-
rors 5.0 m apart. As you sit in the chair, your head is 2.0 m from 
the nearer mirror. Looking toward this mirror, you first see your 
face and then, farther away, the back of your head. (The mirrors 
need to be slightly nonparallel for you to be able to see the back 
of your head, but you can treat them as parallel in this problem.) 
How far away does the back of your head appear to be? Neglect 
the thickness of your head.

 42. || You’re helping with an experiment in which a vertical cylin-
der will rotate about its axis by a very small angle. You need to 
devise a way to measure this angle. You decide to use what is 
called an optical lever. You begin by mounting a small mirror 
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on top of the cylinder. A laser 5.0 m away shoots a laser beam at 
the mirror. Before the experiment starts, the mirror is adjusted to 
reflect the laser beam directly back to the laser. Later, you mea-
sure that the reflected laser beam, when it returns to the laser, has 
been deflected sideways by 2.0 mm. Through how many degrees 
has the cylinder rotated?

 43. || A microscope is focused on a black dot. When a 1.00-cm-
thick piece of plastic is placed over the dot, the microscope ob-
jective has to be raised 0.40 cm to bring the dot back into focus. 
What is the index of refraction of the plastic?

 44. || A light ray in air is incident on a transparent material whose 
index of refraction is n.

 a. Find an expression for the (non-zero) angle of incidence 
whose angle of refraction is half the angle of incidence.

 b. Evaluate your expression for light incident on glass.
 45. || The meter stick in FIguRe p23.45 lies on the bottom of a 100-cm-

long tank with its zero mark against the left edge. You look into the 
tank at a 30� angle, with your line of sight just grazing the upper left 
edge of the tank. What mark do you see on the meter stick if the tank 
is (a) empty, (b) half full of water, and (c) completely full of water?

 46. || The 80-cm-tall, 65-cm-wide 
tank shown in FIguRe p23.46 is 
completely filled with water. 
The tank has marks every 10  cm  
along one wall, and the 0 cm 
mark is barely submerged. As 
you stand beside the opposite 
wall, your eye is level with the 
top of the water.

 a. Can you see the marks from 
the top of the tank (the 0 cm 
mark) going down, or from 
the bottom of the tank (the 
80 cm mark) coming up? 
Explain.

 b. Which is the lowest or highest mark, depending on your an-
swer to part a, that you can see?

 47. || A 4.0-m-wide swimming pool is filled to the top. The bottom 
of the pool becomes completely shaded in the afternoon when 
the sun is 20� above the horizon. How deep is the pool?

 48. || It’s nighttime, and you’ve dropped your goggles into a 3.0-m-
deep swimming pool. If you hold a laser pointer 1.0 m above the 
edge of the pool, you can illuminate the goggles if the laser beam 
enters the water 2.0 m from the edge. How far are the goggles 
from the edge of the pool?

 49. || Shown from above in FIg uRe p23.49 is one corner of a rectan-
gular box filled with water. A laser beam starts 10 cm from side 
A of the container and enters the water at position x. You can 
ignore the thin walls of the container.

 a. If x = 15 cm, does the laser beam refract back into the air 
through side B or reflect from side B back into the water? 
Determine the angle of refraction or reflection.

 b. Repeat part a for x = 25 cm.
 c. Find the minimum value of x for which the laser beam passes 

through side B and emerges into the air.

 50. || A fish is 20 m from the shore of a lake. A bonfire is burning 
on the edge of the lake nearest the fish.

 a. Does the fish need to be shallow (just below the surface) or 
very deep to see the light from the bonfire? Explain.

 b. What is the deepest or shallowest, depending on your an-
swer to part a, that the fish can be and still see light from 
the fire?

 51. || Your supervisor asks you to measure the index of refraction 
of a piece of plastic. You notice that, because of scattering of the 
light, you can see the path of a laser beam through the plastic. 
You decide to shoot a laser beam toward the plastic at several 
different incident angles and measure the refraction angle in the 
plastic. Your data are as follows:

Incident angle Refraction angle

15� 9�

30� 19�

45� 26�

60� 34�

75� 37�

  Use the best-fit line of an appropriate graph to determine the 
plastic’s index of refraction.

 52. ||| One of the contests at the school carnival is to throw a spear 
at an underwater target lying flat on the bottom of a pool. The 
water is 1.0 m deep. You’re standing on a small stool that places 
your eyes 3.0 m above the bottom of the pool. As you look at the 
target, your gaze is 30� below horizontal. At what angle below 
horizontal should you throw the spear in order to hit the target? 
Your raised arm brings the spear point to the level of your eyes 
as you throw it, and over this short distance you can assume 
that the spear travels in a straight line rather than a parabolic 
trajectory.

 53. || White light is incident onto a 30� prism at the 40� angle shown 
in FIguRe p23.53. Violet light emerges perpendicular to the rear 
face of the prism. The index of refraction of violet light in this 
glass is 2.0% larger than the index of refraction of red light. At 
what angle f does red light emerge from the rear face?

30�

50 cm
Zero

100 cm

Meter stick

Line of sight

FIguRe p23.45 

0

10

20

30

40

50

60

70

80

65 cm

Depth (cm)Observation point

FIguRe p23.46 

x

10 cm

Water
(top view)

Side B

Side AFIguRe p23.49 

White light

40�

f
30�

FIguRe p23.53 

Exercises and Problems    691



692    c h a p t e r  23 . Ray Optics

 54. || There’s one angle of incidence b onto 
a prism for which the light inside an isos-
celes prism travels parallel to the base 
and emerges at angle b.

 a. Find an expression for b in terms of 
the prism’s apex angle a and index of 
refraction n.

 b. A laboratory measurement finds that b = 52.2� for a prism 
shaped like an equilateral triangle. What is the prism’s index 
of refraction?

 55. || Paraxial light rays approach a transparent sphere parallel to an 
optical axis passing through the center of the sphere. The rays 
come to a focus on the far surface of the sphere. What is the 
sphere’s index of refraction?

 56. || A 6.0-cm-diameter cubic zirconia sphere has an air bubble ex-
actly in the center. As you look into the sphere, how far beneath 
the surface does the bubble appear to be?

 57. || A 1.0-cm-tall object is 10 cm in front of a converging lens that 
has a 30 cm focal length.

 a. Use ray tracing to find the position and height of the image. 
To do this accurately, use a ruler or paper with a grid. Deter-
mine the image distance and image height by making mea-
surements on your diagram.

 b. Calculate the image position and height. Compare with your 
ray-tracing answers in part a.

 58. || A 2.0-cm-tall object is 40 cm in front of a converging lens that 
has a 20 cm focal length.

 a. Use ray tracing to find the position and height of the image. 
To do this accurately, use a ruler or paper with a grid. Deter-
mine the image distance and image height by making mea-
surements on your diagram.

 b. Calculate the image position and height. Compare with your 
ray-tracing answers in part a.

 59. || A 1.0-cm-tall object is 75 cm in front of a converging lens that 
has a 30 cm focal length.

 a. Use ray tracing to find the position and height of the image. 
To do this accurately, use a ruler or paper with a grid. Deter-
mine the image distance and image height by making mea-
surements on your diagram.

 b. Calculate the image position and height. Compare with your 
ray-tracing answers in part a.

 60. || A 2.0-cm-tall object is 15 cm in front of a converging lens that 
has a 20 cm focal length.

 a. Use ray tracing to find the position and height of the image. 
To do this accurately, use a ruler or paper with a grid. Deter-
mine the image distance and image height by making mea-
surements on your diagram.

 b. Calculate the image position and height. Compare with your 
ray-tracing answers in part a.

 61. || A 1.0-cm-tall object is 60 cm in front of a diverging lens that 
has a -30 cm focal length.

 a. Use ray tracing to find the position and height of the image. 
To do this accurately, use a ruler or paper with a grid. Deter-
mine the image distance and image height by making mea-
surements on your diagram.

 b. Calculate the image position and height. Compare with your 
ray-tracing answers in part a.

 62. || A 2.0-cm-tall object is 15 cm in front of a diverging lens that 
has a -20 cm focal length.

 a. Use ray tracing to find the position and height of the im-
age. To do this accurately, use a ruler or paper with a grid. 

Determine the image distance and image height by making 
measurements on your diagram.

 b. Calculate the image position and height. Compare with your 
ray-tracing answers in part a.

 63. || To determine the focal length of a lens, you place the lens in 
front of a small lightbulb and then adjust a viewing screen to get 
a sharply focused image. Varying the lens position produces the 
following data:

Bulb to lens (cm) Lens to screen (cm)

20 61

22 47

24 39

26 37

28 32

  Use the best-fit line of an appropriate graph to determine the fo-
cal length of the lens.

 64. | A 1.0-cm-tall object is 20 cm in front of a concave mirror that 
has a 60 cm focal length. Calculate the position and height of the 
image. State whether the image is in front of or behind the mir-
ror, and whether the image is upright or inverted.

 65. | A 1.0-cm-tall object is 20 cm in front of a convex mirror that 
has a -60 cm focal length. Calculate the position and height of 
the image. State whether the image is in front of or behind the 
mirror, and whether the image is upright or inverted.

 66. || The illumination lights in an operating room use a concave 
mirror to focus an image of a bright lamp onto the surgical site. 
One such light uses a mirror with a 30 cm radius of curvature. If 
the mirror is 1.2 m from the patient, how far should the lamp be 
from the mirror?

 67. || A dentist uses a curved mirror to view the back side of teeth in 
the upper jaw. Suppose she wants an upright image with a mag-
nification of 1.5 when the mirror is 1.2 cm from a tooth. Should 
she use a convex or a concave mirror? What focal length should 
it have?

 68. || A 2.0-cm-tall candle flame is 2.0 m from a wall. You happen 
to have a lens with a focal length of 32 cm. How many places 
can you put the lens to form a well-focused image of the candle 
flame on the wall? For each location, what are the height and 
orientation of the image?

 69. || A lightbulb is 3.0 m from a wall. What are the focal length and 
the position (measured from the bulb) of a lens that will form an 
image on the wall that is twice the size of the lightbulb?

 70. || a. Estimate the diameter of your eyeball.
   b.  Bring this page up to the closest distance at which the text 

is sharp—not the closest at which you can still read it, but 
the closest at which the letters remain sharp. If you wear 
glasses or contact lenses, leave them on. This distance 
is called the near point of your (possibly corrected) eye. 
Measure it.

   c.  Estimate the effective focal length of your eye. The effec-
tive focal length includes the focusing due to the lens, the 
curvature of the cornea, and any corrections you wear. Ig-
nore the effects of the fluid in your eye.

 71. || A slide projector needs to create a 98-cm-high image of a 
2.0-cm-tall slide. The screen is 300 cm from the slide.

 a. What focal length does the lens need? Assume that it is a thin 
lens.

 b. How far should you place the lens from the slide?
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 72. || A lens placed 10 cm in front of an object creates an upright 
image twice the height of the object. The lens is then moved 
along the optical axis until it creates an inverted image twice the 
height of the object. How far did the lens move?

 73. || An object is 60 cm from a screen. What are the radii of a sym-
metric converging plastic lens (i.e., two equally curved surfaces) 
that will form an image on the screen twice the height of the object?

 74. || A sports photographer has a 150-mm-focal-length lens on his 
camera. The photographer wants to photograph a sprinter run-
ning straight away from him at 5.0 m/s. What is the speed (in 
mm/s)  of the sprinter’s image at the instant the sprinter is 10 m 
in front of the lens?

 75. || A concave mirror has a 40 cm radius of curvature. How far 
from the mirror must an object be placed to create an upright 
image three times the height of the object?

 76. ||| A 2.0-cm-tall object is placed in front of a mirror. A 1.0-cm-
tall upright image is formed behind the mirror, 150 cm from the 
object. What is the focal length of the mirror?

 77. || A spherical mirror of radius R 
has its center at C, as shown in 
FIguRe p23.77. A ray parallel to 
the axis reflects through F, the 
focal point. Prove that f = R/2 
if f V 1 rad.

challenge problems

 78. Consider a lens having index of refraction n2 and surfaces with 
radii R1 and R2. The lens is immersed in a fluid that has index of 
refraction n1.

 a. Derive a generalized lens maker’s equation to replace 
Equation 23.27 when the lens is surrounded by a medium 
other than air. That is, when n1 � 1.

 b. A symmetric converging glass lens (i.e., two equally curved 
surfaces) has two surfaces with radii of 40 cm. Find the focal 
length of this lens in air and the focal length of this lens in water.

 79. FIguRe cp23.79 shows a light ray that travels from point A to 
point B. The ray crosses the boundary at position x, making an-
gles u1 and u2 in the two media. Suppose that you did not know 
Snell’s law.

 a. Write an expression for the time t it takes the light ray to 
travel from A to B. Your expression should be in terms of the 
distances a, b, and w; the variable x; and the indices of refrac-
tion n1 and n2.

 b. The time depends on x. There’s one value of x for which the 
light travels from A to B in the shortest possible time. We’ll 
call it xmin. Write an expression (but don’t try to solve it!) 
from which xmin could be found.

 c. Now, by using the geometry of the figure, derive Snell’s law 
from your answer to part b.

  You’ve proven that Snell’s law is equivalent to the statement that 
“light traveling between two points follows the path that requires 
the shortest time.” This interesting way of thinking about refrac-
tion is called Fermat’s principle.

 80. A fortune teller’s “crystal ball” (actually just glass) is 10 cm 
in diameter. Her secret ring is placed 6.0 cm from the edge of 
the ball.

 a. An image of the ring appears on the opposite side of the 
crystal ball. How far is the image from the center of the ball?

 b. Draw a ray diagram showing the formation of the image.
 c. The crystal ball is removed and a thin lens is placed where 

the center of the ball had been. If the image is still in the same 
position, what is the focal length of the lens?

 81. A beam of white light enters a transparent material. Wavelengths 
for which the index of refraction is n are refracted at angle u2. 
Wavelengths for which the index of refraction is n + dn, where 
dn V n, are refracted at angle u2 + du.

 a. Show that the angular separation in radians is du =  
- (dn/n) tan u2.

 b. A beam of white light is incident on a piece of glass at 
 30.0�. Deep violet light is refracted 0.28� more than deep 
red light. The index of refraction for deep red light is known 
to be 1.552. What is the index of refraction for deep violet 
light?

 82. Consider an object of thickness ds (parallel to the axis) in front 
of a lens or mirror. The image of the object has thickness ds�. 
Define the longitudinal magnification as M = ds�/ds. Prove that 
M = -m2, where m is the lateral magnification.

R
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f
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sTOp TO THINk ANsweRs

Stop to Think 23.1: c. The light spreads vertically as it goes through 
the vertical aperture. The light spreads horizontally due to different 
points on the horizontal lightbulb.

Stop to Think 23.2: c. There’s one image behind the vertical mirror 
and a second behind the horizontal mirror. A third image in the corner 
arises from rays that reflect twice, once off each mirror.

Stop to Think 23.3: a. The ray travels closer to the normal in both 
media 1 and 3 than in medium 2, so n1 and n3 are both larger than 
n2. The angle is smaller in medium 3 than in medium 1, so 
n3 7 n1.

Stop to Think 23.4: e. The rays from the object are diverging. Without 
a lens, the rays cannot converge to form any kind of image on the screen.

Stop to Think 23.5: a, e, or f. Any of these will increase the angle 
of refraction u2.

Stop to Think 23.6: Away from. You need to decrease s� to bring the 
image plane onto the screen. s� is decreased by increasing s.

Stop to Think 23.7: c. A concave mirror forms a real image in front 
of the mirror. Because the object distance is s � �, the image dis-
tance is s� � f.

Exercises and Problems    693



The Camera
A camera uses a lens to project a real 
image onto a light-sensitive detector.

Resolution of Lenses
Light passing through a lens undergoes 
diffraction, just like light passing through 
a circular hole. Diffraction limits a lens’s 
ability to form a perfectly focused image.

An ideal lens would have 
focused the light to two 
points. Instead, we get 
two overlapped diffraction 
patterns.

Lenses in Combination
The “lenses” of optical instruments are 
always built with several individual 
lenses to give better optical performance.

Optical Instruments24

The world’s greatest collection of  
telescopes is on the summit of  
Mauna Kea on the Big Island 
of Hawaii, towering 4200 m 
(13,800 ft) over the Pacific Ocean.

Optical Systems That Magnify
Lenses and mirrors can be used to magnify objects both near and far. Optical instru-
ments open a realm far beyond what the unaided eye can see.

The Human Eye
The human eye 
is much like a 
camera: The 
cornea and lens 
together focus a 
real image onto 
the retina.

 Looking Ahead The goal of Chapter 24 is to understand some common optical instruments and their limitations.

Retina
Lens

Cornea

A cross section of a typical camera 
lens shows that it is built of 5 indi-
vidual lenses and an adjustable iris.

You’ll learn how to analyze a system 
with multiple lenses.

Although a modern digital 
camera is very complex, 
at its heart it’s just a light-
tight box with a lens to 
focus the image.

You’ll learn about focusing, zoom, and 
exposure.

 Looking Back
Sections 23.6–23.7 Ray tracing and 
image formation by lenses

A simple magnifying glass 
has a low magnification of 
only 2*  or 3* .

A microscope uses two sets 
of lenses in combination to 
produce magnifications of 
up to 1000* .

Small telescopes use 
lenses; larger telescopes 
use a curved mirror as the 
primary optical element.

You’ll discover how 
eyeglasses and con-
tact lenses are used 
to correct defects of 
vision.

 Looking Back
Section 22.5 Circular diffraction

You’ll learn about Rayleigh’s criterion 
for when two images can be resolved.
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24.1 Lenses in Combination
Only the simplest magnifiers are built with a single lens of the sort we analyzed in 
Chapter 23. Optical instruments, such as microscopes and cameras, are invariably 
built with multiple lenses. The reason, as we’ll see, is to improve the image quality.

The analysis of multi-lens systems requires only one new rule: The image of the 
first lens acts as the object for the second lens. To see why this is so, FIguRE 24.1 
shows a simple telescope consisting of a large-diameter converging lens, called the 
objective, and a smaller converging lens used as the eyepiece. (We’ll analyze tele-
scopes more thoroughly later in the chapter.) Highlighted are the three special rays you 
learned to use in Chapter 23:

	■	 A ray parallel to the optical axis refracts through the focal point.
	■	 A ray through the focal point refracts parallel to the optical axis.
	■	 A ray through the center of the lens is undeviated.

P

f1

Virtual image seen
through the eyepiece

The real image of the objective lens
acts as the object for the eyepiece lens.

Objective lens

Object

Eyepiece

Lens plane

P�

P��

Special rays of
the eyepiece

f1 f2f2

Special rays of
the objective

FIguRE 24.1 Ray-tracing diagram of a simple astronomical telescope.

The rays passing through the objective converge to a real image at P�, but they 
don’t stop there. Instead, light rays diverge from P� as they approach the second lens. 
As far as the eyepiece is concerned, the rays are coming from P�, and thus P� acts 
as the object for the second lens. The three special rays passing through the objective 
lens are sufficient to locate the image P�, but these rays are generally not the special 
rays for the second lens. However, other rays converging at P� leave at the correct 
angles to be the special rays for the eyepiece. That is, a new set of special rays is drawn 
from P� to the second lens and used to find the final image point P�.

NOTE  One ray seems to “miss” the eyepiece lens, but this isn’t a problem. All 
rays passing through the lens converge to (or diverge from) a single point, and the 
purpose of the special rays is to locate that point. To do so, we can let the special 
rays refract as they cross the lens plane, regardless of whether the physical lens 
really extends that far. 

 a. What are the location, size, and orientation of the image?
 b. What is the effective focal length of the double-lens system 

used in this camera?

MOdEL Each lens is a thin lens. The image of the first lens is the 
object for the second.

VISuALIzE The ray-tracing diagram of FIguRE 24.2 shows the pro-
duction of a real, inverted image �  55 mm behind the second lens.

ExAMPLE 24.1  A camera lens
The “lens” on a camera is usually a combination of two or more 
single lenses. Consider a camera in which light passes first 
through a diverging lens, with f1 = -120 mm, then a converging 
lens, with f2 = 42 mm, spaced 60 mm apart. A reasonable defini-
tion of the effective focal length of this lens combination is the 
focal length of a single lens that could produce an image in the 
same location if placed at the midpoint of the lens combination. A 
10-cm-tall object is 500 mm from the first lens.

Continued
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 m2 = -  
s =

2

s2
= -  

57 cm

157 cm
= -0.363

The second lens magnifies the image of the first lens, which 
magnifies the object, so the total magnification is the product 
of the individual magnifications:

m = m1m2 = -0.070

Thus the image is 57 mm behind the second lens, inverted (m is 
negative), and 0.70 cm tall.

 b. If a single lens midway between these two lenses produced an 
image in the same plane, its object and image distances would 
be s = 500 mm + 30 mm = 530 mm and s� = 57 mm +  
30 mm = 87 mm. A final application of the thin-lens equation 
gives the effective focal length:

 
1

feff 
=

1
s
 +

1

s�
=

1

530 mm
 +

1

87 mm
= 0.0134 mm-1

 feff = 75 mm

ASSESS This combination lens would be sold as a “75 mm lens.”

SOLVE

 a. s1 = 500 mm is the object distance of the first lens. Its image, 
a virtual image, is found from the t hin-lens equation:

 
1

s =
1

=
1

f1
-

1
s1

=
1

-120 mm
-

1

500 mm
= -0.0103 mm-1

 s =
1 = -97 mm

This is consistent with the ray-tracing diagram. The image 
of the first lens now acts as the object for the second lens. 
Because the lenses are 60 mm apart, the object distance is 
s2 = 97 mm + 60 mm = 157 mm. A second application of the 
thin-lens equation yields

 
1

s =
2

=
1

f2
-

1
s2

=
1

42 mm
-

1

157 mm
= 0.0174 mm-1

 s =
2 = 57 mm

The image of the lens combination is 57 mm behind the second 
lens. The lateral magnifications of the two lenses are

 m1 = -  
s =

1

s1
= -  

-97 cm

500 cm
= 0.194

The image of the first lens acts as
the object for the second lens.

FIguRE 24.2 Pictorial representation of a combination lens.

Stop to think 24.1  The second lens in this optical instrument

 a. Causes the light rays to focus closer than they would 
with the first lens acting alone.

 b. Causes the light rays to focus farther away than they 
would with the first lens acting alone.

 c. Inverts the image but does not change where the light 
rays focus.

 d. Prevents the light rays from reaching a focus.

24.2 The Camera
A camera, shown in FIguRE 24.3, “takes a picture” by using a lens to form a real, in-
verted image on a light-sensitive detector in a light-tight box. Film was the detector 
of choice for well over a hundred years, but today’s digital cameras use an electronic 
detector called a charge-coupled device, or CCD.

Lens 1 Lens 2

Aperture

Object

Image

Detector

Lens

FIguRE 24.3 A camera.
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The camera “lens” is always a combination of two or more individual lenses. The 
simplest such lens, shown in FIguRE 24.4, consists of a converging lens and a some-
what weaker diverging lens. This combination of positive and negative lenses corrects 
some of the defects inherent in single lenses, as we’ll discuss later in the chapter. 
As Example 24.1 suggested, we can model a combination lens as a single lens with 
an effective focal length (usually called simply “the focal length”) f. A zoom lens 
changes the effective focal length by changing the spacing between the converging lens 
and the diverging lens; this is what happens when the lens barrel on your digital camera 
moves in and out as you use the zoom. A typical digital camera has a lens whose effec-
tive focal length can be varied from 6 mm to 18 mm, giving, as we’ll see, a 3*  zoom.

Lens barrel
Shorter focal length Longer focal length

Focal point of the converging lens

Effective lens plane

f f

The effective focal length is the focal length of a single
lens that could focus parallel rays to the same point.

FIguRE 24.4 A simple camera lens is a combination lens.

A camera must carry out two important functions: focus the image on the detector 
and control the exposure. Cameras are focused by moving the lens forward or back-
ward until the image is well focused on the detector. Most modern cameras do this 
automatically, but older cameras required manual focusing.

effective lens plane and the detector is found by solving the thin-
lens equation 1/s + 1/s� = 1/f  to give

 s� = 11

f
-

1
s 2 -1

= 1 1

10.0 mm
-

1

200 mm 2 -1

= 10.5 mm

The distant landscape is effectively at object distance s = �, so 
its image distance is s� = f = 10.0 mm. To refocus as you shift 
scenes, the lens must move 0.5 mm closer to the detector.

ASSESS The required motion of the lens is very small, about the 
diameter of the lead used in a mechanical pencil.

ExAMPLE 24.2  Focusing a camera
Your digital camera lens, with an effective focal length of 
10.0 mm, is focused on a flower 20.0 cm away. You then turn to 
take a picture of a distant landscape. How far, and in which direc-
tion, must the lens move to bring the landscape into focus?

MOdEL Model the camera’s combination lens as a single thin lens 
with f = 10.0 mm. Image and object distances are measured from 
the effective lens plane. Assume all the lenses in the combination 
move together as the camera refocuses.

SOLVE The flower is at object distance s = 20.0 cm = 200 mm. 
When the camera is focused, the image distance between the 

zoom Lenses
For objects more than 10 focal lengths from the lens (roughly s 7 20 cm for a typical 
digital camera), the approximation s W f  (and thus 1/s V 1/f )  leads to s� � f. In 
other words, objects more than about 10 focal lengths away are essentially “at infin-
ity,” and we know that the parallel rays from an infinitely distant object are focused 
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one focal length behind the lens. For such an object, the lateral magnification of the 
image is

 m = -  
s�

s
� -  

f

s
 (24.1)

The magnification is much less than 1, because s W f, so the image on the detector 
is much smaller than the object itself. This comes as no surprise. More important, the 
size of the image is directly proportional to the focal length of the lens. We saw in 
Figure 24.4 that the effective focal length of a combination lens is easily changed by 
varying the distance between the individual lenses, and this is exactly how a zoom lens 
works. A lens that can be varied from fmin = 6 mm to fmax = 18 mm gives magnifica-
tions spanning a factor of 3, and that is why you see it specified as a 3*  zoom lens.

Controlling the Exposure
The camera also must control the amount of light reaching the detector. Too little light 
results in photos that are underexposed; too much light gives overexposed pictures. 
Both the shutter and the lens diameter help control the exposure.

The shutter is “opened” for a selected amount of time as the image is recorded. 
Older cameras used a spring-loaded mechanical shutter that literally opened and 
closed; digital cameras electronically control the amount of time the detector is 
active. Either way, the exposure—the amount of light captured by the detector—is 
directly proportional to the time the shutter is open. Typical exposure times range from 
1/1000 s or less for a sunny scene to 1/30 s or more for dimly lit or indoor scenes. The 
exposure time is generally referred to as the shutter speed.

The amount of light passing through the lens is controlled by an adjustable aperture, 
also called an iris because it functions much like the iris of your eye. The aperture sets 
the effective diameter D of the lens. The full area of the lens is used when the aperture 
is fully open, but a stopped-down aperture allows light to pass through only the central 
portion of the lens.

The light intensity on the detector is directly proportional to the area of the lens; a 
lens with twice as much area will collect and focus twice as many light rays from the 
object to make an image twice as bright. The lens area is proportional to the square of 
its diameter, so the intensity I is proportional to D2. The light intensity—power per 
square meter—is also inversely proportional to the area of the image. That is, the light 
reaching the detector is more intense if the rays collected from the object are focused 
into a small area than if they are spread out over a large area. The lateral size of the 
image is proportional to the focal length of the lens, as we saw in Equation 24.1, so the 
area of the image is proportional to f 2 and thus I is proportional to 1/f 2. Altogether, 
I � D2/f 2.

By long tradition, the light-gathering ability of a lens is specified by its f-number, 
defined as

 f@number =
f

D
 (24.2)

The f@number of a lens may be written either as f/4.0, to mean that the f@number is 
4.0, or as F4.0. The instruction manuals with some digital cameras call this the aper-
ture value rather than the f@number. A digital camera in fully automatic mode does 
not display shutter speed or f@number, but that information is displayed if you set your 
camera to any of the other modes. For example, the display 1/125 F5.6 means that your 
camera is going to achieve the correct exposure by adjusting the diameter of the lens 
aperture to give f/D = 5.6 and by opening the shutter for 1/125 s. If your lens’s effec-
tive focal length is 10 mm, the diameter of the lens aperture will be

 D =
f

f@number
=

10 mm

5.6
= 1.8 mm

An iris can change the effective diameter 
of a lens and thus the amount of light 
reaching the detector.



NOTE  The f  in f@number is not the focal length f ; it’s just a name. And the / in 
f/4 does not mean division; it’s just a notation. These both derive from the long 
history of photography. 

Because the aperture diameter is in the denominator of the f@number, a larger-
diameter aperture, which gathers more light and makes a brighter image, has a smaller 
f@number. The light intensity on the detector is related to the lens’s f@number by

 I �
D2

f 2 =
1

( f@number)2 (24.3)

Historically, a lens’s f@numbers could be adjusted in the sequence 2.0, 2.8, 4.0, 5.8, 
8.0, 11, 16. Each differs from its neighbor by a factor of 12, so changing the lens by 
one ;f  stop” changed the light intensity by a factor of 2. A modern digital camera is 
able to adjust the f@number continuously.

The exposure, the total light reaching the detector while the shutter is open, de-
pends on the product I�tshutter. A small f@number (large aperture diameter D) and short 
�tshutter  can produce the same exposure as a larger f@number (smaller aperture) and a 
longer �tshutter. It might not make any difference for taking a picture of a distant moun-
tain, but action photography needs very short shutter times to “freeze” the action. Thus 
action photography requires a large-diameter lens with a small f@number.

Focal length and f-number information 
is stamped on a camera lens. This lens is 
labeled 5.8–23.2 mm 1:2.6–5.5. The first 
numbers are the range of focal lengths. 
They span a factor of 4, so this is a 4*  
zoom lens. The second numbers show that 
the minimum f-number ranges from f/2.6 
(for the f = 5.8 mm focal length) to f/5.5 
(for the f = 23.2 mm focal length).

SOLVE Changing the shutter speed from 1/250 s to 1/1000 s will 
reduce the light reaching the detector by a factor of 4. To com-
pensate, she needs to let 4 times as much light through the lens. 
Because I � 1/( f@number)2, the intensity will increase by a factor 
of 4 if she decreases the f@number by a factor of 2. Thus the cor-
rect lens setting is f/4.0.

ASSESS To keep the photo properly exposed, a decreased shutter 
time must be balanced by an increased lens aperture diameter.

ExAMPLE 24.3  Capturing the action
Before a race, a photographer finds that she can make a perfectly 
exposed photo of the track while using a shutter speed of 1/250 s 
and a lens setting of f/8.0. To freeze the sprinters as they go past, 
she plans to use a shutter speed of 1/1000 s. To what f@number 
must she set her lens?

MOdEL The exposure depends on I�tshutter, and the light intensity 
depends inversely on the square of the f@number.

The detector
For traditional cameras, the light-sensitive detector is film. Today’s digital cameras 
use an electronic light-sensitive surface called a charge-coupled device or CCd. A 
CCD consists of a rectangular array of many millions of small detectors called pixels. 
When light hits one of these pixels, it generates an electric charge proportional to the 
light intensity. Thus an image is recorded on the CCD in terms of little packets of 
charge. After the CCD has been exposed, the charges are read out, the signal levels are 
digitized, and the picture is stored in the digital memory of the camera.

FIguRE 24.5a shows a CCD “chip” and, schematically, the magnified appearance of 
the pixels on its surface. To record color information, different pixels are covered by 
red, green, or blue filters. A pixel covered by a green filter, for instance, records only 
the intensity of the green light hitting it. Later, the camera’s microprocessor interpo-
lates nearby colors to give each pixel an overall true color. The pixels are so small 
that the picture looks “smooth” even after some enlargement, but, as you can see in 
FIguRE 24.5b, sufficient magnification reveals the individual pixels.

Stop to think 24.2  A photographer has adjusted his camera for a correct exposure 
with a short-focal-length lens. He then decides to zoom in by increasing the focal 
length. To maintain a correct exposure without changing the shutter speed, the diam-
eter of the lens aperture should

 a. Be increased. b. Be decreased. c. Stay the same.

2500 � 2000 pixels

1 pixel

(a)

(b)

FIguRE 24.5 The CCD detector used in a 
digital camera.
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24.3 Vision
The human eye is a marvelous and intricate organ. If we leave the biological details 
to biologists and focus on the eye’s optical properties, we find that it functions very 
much like a camera. Like a camera, the eye has refracting surfaces that focus incom-
ing light rays, an adjustable iris to control the light intensity, and a light-sensitive 
detector.

FIguRE 24.6 shows the basic structure of the eye. It is roughly spherical, about 2.4 cm 
in diameter. The transparent cornea, which is somewhat more sharply curved, and 
the lens are the eye’s refractive elements. The eye is filled with a clear, jellylike fluid 
called the aqueous humor (in front of the lens) and the vitreous humor (behind the 
lens). The indices of refraction of the aqueous and vitreous humors are 1.34, only 
slightly different from water. The lens, although not uniform, has an average index 
of 1.44. The pupil, a variable-diameter aperture in the iris, automatically opens and 
closes to control the light intensity. A fully dark-adapted eye can open to �  8 mm, and 
the pupil closes down to �  1.5 mm in bright sun. This corresponds to f@numbers from 
roughly f/3 to f/16, very similar to a camera.

Optic
nerve

Retina

Lens

Cornea

Cornea

Ciliary muscle

Aqueous humor Most of the refraction occurs
at the cornea’s surface.

Vitreous humor

Iris

Pupil

FIguRE 24.6 The human eye.

The eye’s detector, the retina, consists of specialized light-sensitive cells called 
rods and cones. The rods, sensitive mostly to light and dark, are most important in very 
dim lighting. Color vision, which requires somewhat more light, is due to the cones, of 
which there are three types. FIguRE 24.7 shows the wavelength responses of the cones. 
They have overlapping ranges, especially the red- and green-sensitive cones, so two 
or even all three cones respond to light of any particular wavelength. The relative re-
sponse of the different cones is interpreted by your brain as light of a particular color. 
Color is a perception, a response of our sensory and nervous systems, not something 
inherent in the light itself. Other animals, with slightly different retinal cells, can see 
ultraviolet or infrared wavelengths that we cannot see.

Focusing and Accommodation
The eye, like a camera, focuses light rays to an inverted image on the retina. Perhaps 
surprisingly, most of the refractive power of the eye is due to the cornea, not the lens. 
The cornea is a sharply curved, spherical surface, and you learned in Chapter 23 that 
images are formed by refraction at a spherical surface. The rather large difference 
between the index of refraction of air and that of the aqueous humor causes a signifi-
cant refraction of light rays at the cornea. In contrast, there is much less difference 
between the indices of the lens and its surrounding fluid, so refraction at the lens 
surfaces is weak. The lens is important for fine-tuning, but the air-cornea boundary is 
responsible for the majority of the refraction.

l (nm)
400 500 600 700

Relative
sensitivity

Blue-sensitive
cones

Red-sensitive
cones

Green-sensitive
cones

The eye has maximum
sensitivity for green
light at l � 550 nm.

FIguRE 24.7 Wavelength sensitivity of 
the three types of cones in the human 
retina.
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You can recognize the power of the cornea if you open your eyes underwater. 
Everything is very blurry! When light enters the cornea through water, rather than 
through air, there’s almost no difference in the indices of refraction at the surface. 
Light rays pass through the cornea with almost no refraction, so what little focusing 
ability you have while underwater is due to the lens alone.

A camera focuses by moving the lens. The eye focuses by changing the focal length 
of the lens, a feat it accomplishes by using the ciliary muscles to change the curvature 
of the lens surface. The ciliary muscles are relaxed when you look at a distant scene. 
Thus the lens surface is relatively flat and the lens has its longest focal length. As you 
shift your gaze to a nearby object, the ciliary muscles contract and cause the lens to 
bulge. This process, called accommodation, decreases the lens’s radius of curvature 
and thus decreases its focal length.

The farthest distance at which a relaxed eye can focus is called the eye’s far point 
(FP). The far point of a normal eye is infinity; that is, the eye can focus on objects 
extremely far away. The closest distance at which an eye can focus, using maximum 
accommodation, is the eye’s near point (NP). (Objects can be seen closer than the 
near point, but they’re not sharply focused on the retina.) Both situations are shown 
in FIguRE 24.8.

Vision defects and Their Correction
The near point of normal vision is considered to be 25 cm, but the near point of any 
individual changes with age. The near point of young children can be as little as 10 cm. 
The “normal” 25 cm near point is characteristic of young adults, but the near point of 
most individuals begins to move outward by age 40 or 45 and can reach 200 cm by 
age 60. This loss of accommodation, which arises because the lens loses flexibility, is 
called presbyopia. Even if their vision is otherwise normal, individuals with presby-
opia need reading glasses to bring their near point back to 25 or 30 cm, a comfortable 
distance for reading.

Presbyopia is known as a refractive error of the eye. Two other common refrac-
tive errors are hyperopia and myopia. All three can be corrected with lenses—either 
eyeglasses or contact lenses—that assist the eye’s focusing. Corrective lenses are pre-
scribed not by their focal length but by their power. The power of a lens is the inverse 
of its focal length:

 Power of a lens = P =
1

f
 (24.4)

A lens with more power (shorter focal length) causes light rays to refract through 
a larger angle. The SI unit of lens power is the diopter, abbreviated D, defined as 
1 D = 1 m-1. Thus a lens with f = 50 cm = 0.50 m has power P = 2.0 D.

A person who is farsighted can see faraway objects (but even then must use some 
accommodation rather than a relaxed eye), but his near point is larger than 25 cm, of-
ten much larger, so he cannot focus on nearby objects. The cause of farsightedness—
called hyperopia—is an eyeball that is too short for the refractive power of the cornea 
and lens. As FIguRES 24.9a and b on the next page show, no amount of accommodation 
allows the eye to focus on an object 25 cm away, the normal near point.

With hyperopia, the eye needs assistance to focus the rays from a near object onto 
the closer-than-normal retina. This assistance is obtained by adding refractive power 
with the positive (i.e., converging) lens shown in FIguRE 24.9c. To understand why this 
works, recall that the image of a first lens acts as the object for a second lens. The goal 
is to allow the person to focus on an object 25 cm away. If a corrective lens forms an 
upright, virtual image at the person’s actual near point, that virtual image acts as an 
object for the eye itself and, with maximum accommodation, the eye can focus these 
rays onto the retina. Presbyopia, the loss of accommodation with age, is corrected in 
the same way.

The ciliary muscles are relaxed
for distant vision. 

The ciliary muscles are contracted
for near vision, causing the lens to
curve more. 

FP � �

NP � 25 cm

FIguRE 24.8 Normal vision of far and 
near objects.

The optometrist’s prescription is -2.25 D 
for the right eye (top) and -2.50 D for the 
left (bottom), the minus sign indicating 
that these are diverging lenses. The 
optometrist doesn’t write the D because 
the lens maker already knows that 
prescriptions are in diopters. Most people’s 
eyes are not exactly the same, so each eye 
usually gets a different lens.
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A converging lens forms a virtual image 
at the eye’s near point. This image acts 
as the object for the eye and is what the 
eye actually focuses on. 

Maximum accommodation

NP � 25 cm

With maximum accommodation, the 
eye tries to focus the image behind the 
actual retina. Thus the image is blurry. 

Shortened eyeball

Retina position
of normal eye

Focused image

This is the closest point at 
which the eye can focus. 

25 cm

(a)

(b)

(c)

25 cm

This is the actual object the 
eye wants to see. 

FIguRE 24.9 Hyperopia.

Parallel rays from
distant object

Elongated eyeball

Retina position
of normal eye

Focused image

A fully relaxed eye focuses the image in front 
of the actual retina. The image is blurry. 

Fully relaxed

FP � �

This is the farthest point at 
which the eye can focus. 

The eye wants to see
a distant object. 

A diverging lens forms a virtual image 
at the eye’s far point. This image acts 
as the object for the eye and is what 
the eye actually focuses on. 

(a)

(b)

(c)

FIguRE 24.10 Myopia.

NOTE  Figures 24.9 and 24.10 show the corrective lenses as they are actually 
shaped—called meniscus lenses—rather than with our usual lens shape. Nonetheless, 
the lens in Figure 24.9c is a converging lens because it’s thicker in the center than at 
the edges. The lens in Figure 24.10c is a diverging lens because it’s thicker at the edges 
than in the center. 

A person who is nearsighted can clearly see nearby objects when the eye is relaxed 
(and extremely close objects by using accommodation), but no amount of relaxation 
allows her to see distant objects. Nearsightedness—called myopia—is caused by an 
eyeball that is too long. As FIguRE 24.10a shows, rays from a distant object come to a 
focus in front of the retina and have begun to diverge by the time they reach the retina. 
The eye’s far point, shown in FIguRE 24.10b, is less than infinity.

To correct myopia, we needed a diverging lens, as shown in FIguRE 24.10c, to slightly 
defocus the rays and move the image point back to the retina. To focus on a very dis-
tant object, the person needs a corrective lens that forms an upright, virtual image at 
her actual far point. That virtual image acts as an object for the eye itself and, when 
fully relaxed, the eye can focus these rays onto the retina.

at position s� = -150 cm (negative because it’s a virtual image) 
of an object held at s = 25 cm. From the thin-lens equation,

 
1

f
=

1
s

+
1

s�
=

1

0.25 m
+

1

-1.50 m
= 3.3 m-1

1/f  is the lens power, and m-1 are diopters. Thus the prescription 
is for a lens with power P = 3.3 D.

ASSESS Hyperopia is always corrected with a converging lens.

ExAMPLE 24.4  Correcting hyperopia
Sanjay has hyperopia. The near point of his left eye is 150 cm. 
What prescription lens will restore normal vision?

MOdEL Normal vision will allow Sanjay to focus on an object 
25 cm away. In measuring distances, we’ll ignore the small space 
between the lens and his eye.

SOLVE Because Sanjay can see objects at 150 cm, using maxi-
mum accommodation, we want a lens that creates a virtual image 
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position s� =  -200 cm (negative because it’s a virtual image) of 
a distant object at s = � cm. From the thin-lens equation,

 
1

f
=

1
s

+
1

s�
=

1

� m
 +

1

-2.0 m
= -0.5 m-1

Thus the prescription is for a lens with power P = -0.5 D.

ASSESS Myopia is always corrected with a diverging lens.

ExAMPLE 24.5  Correcting myopia
Martina has myopia. The far point of her left eye is 200 cm. What 
prescription lens will restore normal vision?

MOdEL Normal vision will allow Martina to focus on a very dis-
tant object. In measuring distances, we’ll ignore the small space 
between the lens and her eye.

SOLVE Because Martina can see objects at 200 cm with a fully 
relaxed eye, we want a lens that will create a virtual image at 

Stop to think 24.3  You need to improvise a magnifying glass to read some very tiny 
print. Should you borrow the eyeglasses from your hyperopic friend or from your 
myopic friend?

 a. The hyperopic friend b. The myopic friend
 c. Either will do. d. Neither will work.

24.4 Optical Systems That Magnify
The camera, with its fast shutter speed, allows us to capture images of events that take 
place too quickly for our unaided eye to resolve. Another use of optical systems is to 
magnify—to see objects smaller or closer together than our eye can see.

The easiest way to magnify an object requires no extra optics at all; simply get 
closer! The closer you get, the bigger the object appears. Obviously the actual size 
of the object is unchanged as you approach it, so what exactly is getting “bigger”? 
Consider the green arrow in FIguRE 24.11a. We can determine the size of its image on 
the retina by tracing the ray that is undeviated as it passes through the center of a lens. 
(Here we’re modeling the eye’s optical system as one thin lens.) If we get closer to the 
arrow, now shown as red, we find the arrow makes a larger image on the retina. Our 
brain interprets the larger image as a larger-appearing object. The object’s actual size 
doesn’t change, but its apparent size gets larger as it gets closer.

Technically, we say that closer objects look larger because they subtend a larger 
angle u, called the angular size of the object. The red arrow has a larger angular size 
than the green arrow, u2 7 u1, so the red arrow looks larger and we can see more de-
tail. But you can’t keep increasing an object’s angular size because you can’t focus on 
the object if it’s closer than your near point, which we’ll take to be a normal 25 cm. 
FIguRE 24.11b defines the angular size uNP  of an object at your near point. If the object’s 
height is h and if we assume the small-angle approximation tan u � u, the maximum 
angular size viewable by your unaided eye is

 uNP =
h

25 cm
 (24.5)

Suppose we view the same object, of height h, through the single converging lens 
in FIguRE 24.12 on the next page. If the object’s distance from the lens is less than the 
lens’s focal length, we’ll see an enlarged, upright image. Used in this way, the lens 
is called a magnifier or magnifying glass. The eye sees the virtual image subtending 
angle u, and it can focus on this virtual image as long as the image distance is more 
than 25 cm. Within the small-angle approximation, the image subtends angle u = h/s. 
In practice, we usually want the image to be at distance s� � � so that we can view it 
with a relaxed eye as a “distant object.” This will be true if the object is very near the 
focal point: s � f. In this case, the image subtends angle

 u =
h
s

�
h

f
 (24.6)

As the object gets closer, the angle 
it subtends becomes larger. Its 
angular size has increased.

Further, the size of the image
on the retina gets larger. The
object’s apparent size has
increased.

(a) Same object at two different distances

(b)

u1

u2

25 cm

uNPh

Near point

FIguRE 24.11 Angular size.
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s

f

Virtual image

The image of the lens acts as the object
for the eye. This is what the eye focuses on.

The object is placed very near
the focal point of the lens.

Object

uh

FIguRE 24.12 The magnifier.

Let’s define the angular magnification M as

 M =
u

uNP
 (24.7)

Angular magnification is the increase in the apparent size of the object that you 
achieve by using a magnifying lens rather than simply holding the object at your near 
point. Substituting from Equations 24.5 and 24.6, we find the angular magnification 
of a magnifying glass is

 M =
25 cm

f
 (24.8)

The angular magnification depends on the focal length of the lens but not on the size of 
the object. Although it would appear we could increase angular magnification without 
limit by using lenses with shorter and shorter focal lengths, the inherent limitations of 
lenses we discuss in the next section limit the magnification of a simple lens to about 
4* . Slightly more complex magnifiers with two lenses reach 20* , but beyond that 
one would use a microscope.

NOTE  Don’t confuse angular magnification with lateral magnification. Lateral 
magnification m compares the height of an object to the height of its image. The 
lateral magnification of a magnifying glass is �  � because the virtual image is at 
s� � �, but that doesn’t make the object seem infinitely big. Its apparent size is 
determined by the angle subtended on your retina, and that angle remains finite. 
Thus angular magnification tells us how much bigger things appear. 

The Microscope
A microscope, whose major parts are shown in FIguRE 24.13a, can attain a magnification of 
up to 1000*  by a two-step magnification process. A specimen to be observed is placed 
on the stage of the microscope, directly beneath the objective, a converging lens with a 
relatively short focal length. The objective creates a magnified real image that is further 
enlarged by the eyepiece. Both the objective and the eyepiece are complex combination 
lenses, but we’ll model them as single thin lenses. It’s common for a prism to bend the 
rays so that the eyepiece is at a comfortable viewing angle. However, we’ll consider a 
simplified version of a microscope in which the light travels along a straight tube.

FIguRE 24.13b shows the optics in more detail. The object is placed just outside the 
focal point of the objective, which then creates a highly magnified real image with 
lateral magnification m = -s�/s. The object is so close to the focal point that s � fobj 
is an excellent approximation. In addition, the focal lengths of the objective and the 
eyepiece are much less than the tube length L, so s� � L is another good approxima-
tion. With these approximations, the lateral magnification of the objective is

 mobj = -  
s�

s
� -  

L

fobj 
 (24.9)



The image of the objective acts as the object for the eyepiece, which functions as a 
simple magnifier. The angular magnification of the eyepiece is given by Equation 24.8, 
Meye = (25 cm)/feye. Together, the objective and eyepiece produce a total angular 
magnification

 M = mobjMeye = -  
L

fobj 
 
25 cm

feye 
 (24.10)

The minus sign shows that the image seen in a microscope is inverted.
In practice, the magnifications of the objective (without the minus sign) and the 

eyepiece are stamped on the barrels. A set of objectives on a rotating turret might 
include 10* , 20* , 40* , and 100* . When combined with a 10*  eyepiece, the mi-
croscope’s total angular magnification ranges from 100*  to 1000* . In addition, most 
biological microscopes are standardized with a tube length L = 160 mm. Thus a 40*  
objective has focal length fobj = 160 mm/40 = 4.0 mm.

Eyepiece(a)

Objective lens

Illuminator

Focus knob

Prism (bends light path 
so that eyepiece is at a 
comfortable angle)

Stage (moves up 
and down to 
focus sample)

Objective

Object

Eyepiece

Tube length L

The object is
just beyond
the focal point.

The eyepiece acts as
a magnifier to form
an image at infinity
that is seen by a
relaxed eye.

The magnified image
of the objective acts
as the object for the
eyepiece.

fobj

fobj

feye

feye

(b)

FIguRE 24.13 The microscope.

MOdEL Angular magnification compares the magnified angular 
size to the angular size seen at the near-point distance of 25 cm.

SOLVE The microscope’s angular magnification is M = - (40) *  
(10) = -400. The magnified cells will have the same apparent 
size as an object 400 * 7 mm � 3 mm in diameter seen from a 
distance of 25 cm.

ASSESS 3 mm is about the size of a capital O in this textbook, so a 
blood cell seen through the microscope will have about the same 
apparent size as an O seen from a comfortable reading distance.

ExAMPLE 24.6  Viewing blood cells
A pathologist inspects a sample 
of 7@mm@diameter human blood 
cells under a microscope. She 
selects a 40*  objective and a 
10*  eyepiece. What size object, 
viewed from 25 cm, has the same 
apparent size as a blood cell seen 
through the microscope?
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Stop to think 24.4  A biologist rotates the turret of a microscope to replace a 20*  
objective with a 10*  objective. To keep the same overall magnification, the focal 
length of the eyepiece must be

 a. Doubled. b. Halved. c. Kept the same.
 d. The magnification cannot be kept the same if the objective is changed.

The Telescope
A microscope magnifies small, nearby objects to look large. A telescope magnifies 
distant objects, which might be quite large, so that we can see details that are blended 
together when seen by eye.

FIguRE 24.14 shows the optical layout of a simple telescope. A large-diameter objec-
tive lens (larger lenses collect more light and thus can see fainter objects) collects the 
parallel rays from a distant object (s = �) and forms a real, inverted image at distance 
s� = fobj. Unlike a microscope, which uses a short-focal-length objective, the focal 
length of a telescope objective is very nearly the length of the telescope tube. Then, 
just as in the microscope, the eyepiece functions as a simple magnifier. The viewer 
observes an inverted image, but that’s not a serious problem in astronomy. Terrestrial 
telescopes use a different design to obtain an upright image.

The eyepiece acts as a
magnifier to form an
image at infinity that is
seen by a relaxed eye.

Parallel rays from
a distant object

Angle subtended by the distant object
Angle subtended by
the virtual image
seen by the eye

EyepieceFocal points
coincide

Objective

uobj

ueye

feye

h'

fobj

FIguRE 24.14 A refracting telescope.

Suppose the distant object, as seen by the objective lens, subtends angle uobj. If the 
image seen through the eyepiece subtends a larger angle ueye, then the angular mag-
nification is M = ueye/uobj. We can see from the undeviated ray passing through the 
center of the objective lens that (using the small-angle approximation)

 uobj � -  
h�

fobj

where the minus sign indicates the inverted image. The image of height h� acts as the 
object for the eyepiece, and we can see that the final image observed by the viewer 
subtends angle

 ueye =
h�

feye

Consequently, the angular magnification of a telescope is

 M =
ueye

uobj
= -  

fobj

feye
 (24.11)

The angular magnification is simply the ratio of the objective focal length to the eye-
piece focal length.

Because the stars and galaxies are so distant, light-gathering power is more important 
to astronomers than magnification. Large light-gathering power requires a large-diameter 
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objective lens, but large lenses are not practical; they begin to sag under their own weight. 
Thus refracting telescopes, with two lenses, are relatively small. Serious astronomy is 
done with a reflecting telescope, such as the one shown in FIguRE 24.15.

A large-diameter mirror (the primary mirror) focuses the rays to form a real image, 
but, for practical reasons, a small flat mirror (the secondary mirror) reflects the rays 
sideways before they reach a focus. This moves the primary mirror’s image out to the 
edge of the telescope where it can be viewed by an eyepiece on the side. None of these 
changes affects the overall analysis of the telescope, and its angular magnification 
is given by Equation 24.11 if fobj  is replaced by fpri, the focal length of the primary 
mirror.

24.5 The Resolution of Optical Instruments
A camera could focus light with a single lens. A microscope objective could be built 
with a single lens. So why would anyone ever use a lens combination in place of a 
single lens? There are two primary reasons.

First, any lens has dispersion. That is, its index of refraction varies slightly with 
wavelength. Because the index of refraction for violet light is larger than for red light, 
a lens’s focal length is shorter for violet light than for red light. Consequently, different 
colors of light come to a focus at slightly different distances from the lens. If red light 
is sharply focused on a viewing screen, then blue and violet wavelengths are not well 
focused. This imaging error, illustrated in FIguRE 24.16a, is called chromatic aberration.

Second, our analysis of thin lenses was based on paraxial rays traveling nearly 
parallel to the optical axis. A more exact analysis, taking all the rays into account, 
finds that rays incident on the outer edges of a spherical surface are not focused at 
exactly the same point as rays incident near the center. This imaging error, shown in 
FIguRE 24.16b, is called spherical aberration. Spherical aberration, which causes the 
image to be slightly blurred, gets worse as the lens diameter increases.

Eyepiece

Primary mirror

Secondary mirror

FIguRE 24.15 A reflecting telescope.

Different wavelengths
focus at different points.

(a) Chromatic aberration

Rays at different angles
focus at different points.

(b) Spherical aberration (c) Correcting aberrations

High power,
low dispersion

Low power,
high dispersion

All rays meet at
the same focus.

FIguRE 24.16 Chromatic aberration and spherical aberration prevent simple lenses from forming perfect images.

Fortunately, the chromatic and spherical aberrations of a converging lens and a 
diverging lens are in opposite directions. When a converging lens and a diverging lens 
are used in combination, their aberrations tend to cancel. A combination lens, such 
as the one in FIguRE 24.16c, can produce a much sharper focus than a single lens with 
the equivalent focal length. Consequently, most optical instruments use combination 
lenses rather than single lenses.

diffraction Again
According to the ray model of light, a perfect lens (one with no aberrations) should be 
able to form a perfect image. But the ray model of light, though a very good model for 
lenses, is not an absolutely correct description of light. If we look closely, the wave 
aspects of light haven’t entirely disappeared. In fact, the performance of optical equip-
ment is limited by the diffraction of light.
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FIguRE 24.17a shows a plane wave, with parallel light rays, being focused by a lens of 
diameter D. According to the ray model of light, a perfect lens would focus parallel rays 
to a perfect point. Notice, though, that only a piece of each wave front passes through 
the lens and gets focused. In effect, the lens itself acts as a circular aperture in an 
opaque barrier, allowing through only a portion of each wave front. Consequently, the 
lens diffracts the light wave. The diffraction is usually very small because D is usu-
ally much greater than the wavelength of the light; nonetheless, this small amount of 
diffraction is the limiting factor in how well the lens can focus the light.

FIguRE 24.17b separates the diffraction from the focusing by modeling the lens as an 
actual aperture of diameter D followed by an “ideal” diffractionless lens. You learned 
in Chapter 22 that a circular aperture produces a diffraction pattern with a bright cen-
tral maximum surrounded by dimmer fringes. A converging lens brings this diffrac-
tion pattern to a focus in the image plane, as shown in FIguRE 24.17c. As a result, a 
perfect lens focuses parallel light rays not to a perfect point of light, as we expected, 
but to a small, circular diffraction pattern.

The angle to the first minimum of a circular diffraction pattern is u1 = 1.22l/D. 
The ray that passes through the center of a lens is not bent, so Figure 24.17c uses this 
ray to show that the position of the dark fringe is y1 = f tan u1 � f u1. Thus the width 
of the central maximum in the focal plane is

 wmin � 2f u1 =
2.44lf

D
   (minimum spot size) (24.12)

This is the minimum spot size to which a lens can focus light.
Lenses are often limited by aberrations, so not all lenses can focus parallel light 

rays to a spot this small. A well-crafted lens, for which Equation 24.12 is the mini-
mum spot size, is called a diffraction-limited lens. No optical design can overcome the 
spreading of light due to diffraction, and it is because of this spreading that the image 
point has a minimum spot size. The image of an actual object, rather than of parallel 
rays, becomes a mosaic of overlapping diffraction patterns, so even the most perfect 
lens inevitably forms an image that is slightly fuzzy.

For various reasons, it is difficult to produce a diffraction-limited lens having a 
focal length that is much less than its diameter. The very best microscope objectives 
have f � 0.5D. This implies that the smallest diameter to which you can focus a 
spot of light, no matter how hard you try, is wmin ? L. This is a fundamental limit 
on the performance of optical equipment. Diffraction has very real consequences!

One example of these consequences is found in the manufacturing of integrated 
circuits. Integrated circuits are made by creating a “mask” showing all the components 
and their connections. A lens images this mask onto the surface of a semiconductor 
wafer that has been coated with a substance called photoresist. Bright areas in the 
mask expose the photoresist, and subsequent processing steps chemically etch away 
the exposed areas while leaving behind areas that had been in the shadows of the mask. 
This process is called photolithography.

The power of a microprocessor and the amount of memory in a memory chip de-
pend on how small the circuit elements can be made. Diffraction dictates that a circuit 
element can be no smaller than the smallest spot to which light can be focused, which 
is roughly the wavelength of the light. If the mask is projected with ultraviolet light 
having l � 200 nm, then the smallest elements on a chip are about 200 nm wide. This 
is, in fact, just about the current limit of technology.

Rays are converging
to the focal point.

Spherical wave
fronts are converging
to the focal point.

Rays are perpendicular
to the wave fronts.

(a) A lens acts as a circular aperture.

Wave fronts

Not focused

Not focused

D

(b) The aperture and focusing effects
 can be separated.

Wave fronts

Ideal diffractionless lens
with focal length f

Circular aperture
of diameter D

D

f

The first dark fringe
is focused at position y1.

Light is diffracting at angle u1

to the first dark fringe.

(c) The lens focuses the diffraction
 pattern in the focal plane.

Wave fronts

Width
w

Parallel
bundle
of rays

Light intensity

f

u1

FIguRE 24.17 A lens both focuses and 
diffracts the light passing through.

  ExAMPLE 24.7  Seeing stars
A 12-cm-diameter telescope lens has a focal length of 1.0 m. What is the diameter of 
the image of a star in the focal plane if the lens is diffraction limited and if the earth’s 
atmosphere is not a limitation?

MOdEL Stars are so far away that they appear as points in space. An ideal diffractionless 
lens would focus their light to arbitrarily small points. Diffraction prevents this. Model the 
telescope lens as a 12-cm-diameter aperture in front of an ideal lens with a 1.0 m focal length.



Resolution
Suppose you point a telescope at two nearby stars in a galaxy far, far away. If you use 
the best possible detector, will you be able to distinguish separate images for the two 
stars, or will they blur into a single blob of light? A similar question could be asked 
of a microscope. Can two microscopic objects, very close together, be distinguished if 
sufficient magnification is used? Or is there some size limit at which their images will 
blur together and never be separated? These are important questions about the resolu-
tion of optical instruments.

Because of diffraction, the image of a distant star is not a point but a circular dif-
fraction pattern. Our question, then, really is: How close together can two diffraction 
patterns be before you can no longer distinguish them? One of the major scientists of 
the 19th century, Lord Rayleigh, studied this problem and suggested a reasonable rule 
that today is called Rayleigh’s criterion.

FIguRE 24.18 shows two distant point sources being imaged by a lens of diameter D. 
The angular separation between the objects, as seen from the lens, is a. Rayleigh’s 
criterion states that

	■	 The two objects are resolvable if a 7 umin, where umin = u1 = 1.22l/D is the angle 
of the first dark fringe in the circular diffraction pattern.

	■	 The two objects are not resolvable if a 6 umin  because their diffraction patterns are 
too overlapped.

	■	 The two objects are marginally resolvable if a = umin. The central maximum of 
one image falls exactly on top of the first dark fringe of the other image. This is the 
situation shown in the figure.

FIguRE 24.19 shows enlarged photographs of the images of two point sources. The 
images are circular diffraction patterns, not points. The two images are close but dis-
tinct where the objects are separated by a 7 umin. Two objects really were recorded in 
the photo at the bottom, but their separation is a 6 umin  and their images have blended 
together. In the middle photo, with a = umin, you can see that the two images are just 
barely resolved.

The angle

 umin =
1.22l

D
   (angular resolution of a lens) (24.13)

is called the angular resolution of a lens. The angular resolution of a telescope 
depends on the diameter of the objective lens (or the primary mirror) and the wave-
length of the light; magnification is not a factor. Two images will remain overlapped 
and unresolved no matter what the magnification if their angular separation is less 
than umin. For visible light, where l is pretty much fixed, the only parameter over 
which the astronomer has any control is the diameter of the lens or mirror of the 

D

a a � umin

Object 1

Image 1

Image 2

Object 2

Distant
point sources

The image of each object is not a
perfect point, but a small circular
diffraction pattern.

The maximum of image 2 falls on the
first dark fringe of image 1. The
images are marginally resolved.

FIguRE 24.18 Two images that are 
marginally resolved.

a � umin

a � umin

a � umin

Marginally resolved

Resolved

Not resolved

FIguRE 24.19 Enlarged photographs of 
the images of two point sources.
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SOLVE The minimum spot size in the focal plane of this lens is

w =
2.44lf

D
 

where D is the lens diameter. What is l? Because stars emit white light, the longest 
wavelengths spread the most and determine the size of the image that is seen. If we 
use l = 700 nm as the approximate upper limit of visible wavelengths, we find w =  
1.4 * 10-5 m = 14 mm.

ASSESS This is certainly small, and it would appear as a point to your unaided eye. None-
theless, the spot size would be easily noticed if it were recorded on film and enlarged. 
Turbulence and temperature effects in the atmosphere, the causes of the “twinkling” of 
stars, prevent ground-based telescopes from being this good, but space-based telescopes 
really are diffraction limited.
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telescope. The urge to build ever-larger telescopes is motivated, in part, by a desire to 
improve the angular resolution. (Another motivation is to increase the light-gathering 
power so as to see objects farther away.)

The performance of a microscope is also limited by the diffraction of light pass-
ing through the objective lens. Just as light cannot be focused to a spot smaller than 
about a wavelength, the most perfect microscope cannot resolve the features of objects 
that are smaller than a wavelength. Similarly, two objects separated by less than one 
wavelength—roughly 500 nm—will blur into a single object and cannot be resolved. 
Because atoms are approximately 0.1 nm in diameter, vastly smaller than the wave-
length of visible or even ultraviolet light, there is no hope of ever seeing atoms with an 
optical microscope. This limitation is not simply a matter of needing a better design or 
more precise components; it is a fundamental limit set by the wave nature of the light 
with which we see.

Stop to think 24.5  Four diffraction-limited lenses focus plane waves of light with the 
same wavelength l. Rank in order, from largest to smallest, the spot sizes wa  to wd.

f � 10 mm

2 mm

f � 5 mm

2 mm

f � 10 mm

4 mm

f � 24 mm

8 mma b c d

SOLVE The angular separation of the top and bottom lines of the 
circle is a = d/s. Rayleigh’s criterion says that a perfect lens with 
aperture D can just barely resolve these two lines if

 a =
d

s
= umin =

1.22leye

D
=

1.22lair

neye D

The diffraction takes place inside the eye, where the wavelength 
is shortened to leye = lair /neye. Thus the circle diameter that can 
barely be resolved with perfect vision is

 d =
1.22lair s

neye D
=

1.22(600 * 10-9 m)(6.1 m)

(1.33)(0.0020 m)
� 2 mm

That’s about the height of a capital O in this book, so in principle 
you should—in very bright light—just barely be able to recognize 
it as an O at 20 feet.

ASSESS On an eye chart, the O on the line for 20/20 vision—the 
standard of excellent vision—is about 7 mm tall, so the calculated 
2 mm, although in the right range, is a bit too small. There are 
three reasons. First, eye tests are done with medium-bright indoor 
lighting. Your acuity really does improve in light bright enough 
to reduce your pupil diameter to 2.0 mm. Second, although aber-
rations of the eye are reduced with a smaller pupil, they haven’t 
vanished. And third, for a 2-mm-tall object at 20 ft, the size of the 
image on the retina is barely larger than the spacing between the 
cone cells, so the resolution of the “detector” is also a factor. Your 
eye is a very good optical instrument, but not perfect.

CHALLENgE ExAMPLE 24.8  Visual acuity
The normal human eye has maximum visual acuity with a pupil 
diameter of about 3 mm. For larger pupils, acuity decreases due 
to increasing aberrations; for smaller pupils, acuity decreases due 
to increasing diffraction. If your pupil diameter is 2.0 mm, as it 
would be in bright light, what is the smallest-diameter circle that 
you should be able to see as a circle, rather than just an unresolved 
blob, on an eye chart at the standard distance of 20 ft? The index 
of refraction inside the eye is 1.33.

MOdEL Assume that a 2.0-mm-diameter pupil is diffraction lim-
ited. Then the angular resolution is given by Rayleigh’s criterion. 
Diffraction increases with wavelength, so the eye’s acuity will 
be affected more by longer wavelengths than by shorter wave-
lengths. Consequently, assume that the light’s wavelength in air 
is 600 nm.

VISuALIzE Let the diameter of the circle be d. FIguRE 24.20 shows 
the circle at distance s = 20 ft = 6.1 m. “Seeing the circle,” 
shown edge-on, requires resolving the top and bottom lines as 
distinct.

FIguRE 24.20 Viewing a circle of diameter d.

The size of the features in an integrated 
circuit is limited by the diffraction of light.
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S u M M A R y
The goal of Chapter 24 has been to understand some common optical instruments and their limitations.

Lens Combinations

The image of the first lens acts as the object for the 
second lens.

Lens power: P =
1

f
 diopters, 1 D = 1 m-1

Resolution

The angular resolution of a lens of diameter D is

 umin = 1.22l/D

Rayleigh’s criterion states that two objects separated by an 
angle a are marginally resolvable if a = umin.

Important Concepts

a D

Cameras

Forms a real, inverted image on a detector. The lens’s f-number is

f@number =
f

D

The light intensity on the detector is

I �
1

( f@number)2

Magnifiers

For relaxed-eye viewing, the angular magnification is

 M =
25 cm

f

For microscopes and telescopes, angular magnification, not 
lateral magnification, is the important characteristic. The 
eyepiece acts as a magnifier to view the image formed by 
the objective lens.

Applications

Vision

Refraction at the cornea is responsible for most of the focusing.  
The lens provides fine-tuning by changing its shape 
(accommodation).

In normal vision, the eye can focus from a far point (FP) at � 
(relaxed eye) to a near point (NP) at �  25 cm (maximum 
accommodation).

•	 Hyperopia (farsightedness) is corrected with a converging lens.
•	 Myopia (nearsightedness) is corrected with a diverging lens.

Microscopes

The object is very close 
to the focal point of the  
objective. The total angular  
magnification is

M = -  
L

fobj 
 
25 cm

feye

The best possible spatial 
resolution of a microscope, 
limited by diffraction, is 
about one wavelength of 
light.

FP NP

Objective

Eyepiece

L

Focusing and spatial resolution

The minimum spot size to which a lens of diameter D can focus 
light is limited by diffraction to

wmin =
2.44l  f

D

With the best lenses that can be manufactured, wmin � l.

Telescopes

The object is  
very far from  
the objective.

The total angular magnification is M = -  
fobj 

feye 
.

Objective
Eyepiece
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camera
effective focal length, f
aperture
f@number
CCD
pixel
cornea
pupil

iris
retina
accommodation
far point
near point
presbyopia
power, P
diopter, D

hyperopia
myopia
angular size
magnifier
angular magnification, M
objective
eyepiece
refracting telescope

reflecting telescope
chromatic aberration
spherical aberration
minimum spot size, wmin 
Rayleigh’s criterion
angular resolution

Terms and Notation

C O N C E P T u A L  Q u E S T I O N S

 1. Suppose a camera’s exposure is correct when the lens has a focal 
length of 8.0 mm. Will the picture be overexposed, underex-
posed, or still correct if the focal length is “zoomed” to 16.0 mm 
without changing the diameter of the lens aperture? Explain.

 2. A camera has a circular aperture immediately behind the lens. 
Reducing the aperture diameter to half its initial value will

 A. Make the image blurry.
 B. Cut off the outer half of the image and leave the inner half 

unchanged.
 C. Make the image less bright.
 D. All the above.
  Explain your choice.
 3. Suppose you wanted special glasses designed to let you see 

underwater without a face mask. Should the glasses use a con-
verging or diverging lens? Explain.

 4. A friend lends you the eyepiece of his microscope to use on your 
own microscope. He claims the spatial resolution of your micro-
scope will be halved, since his eyepiece has the same diameter 
as yours but twice the magnification. Is his claim valid? Explain.

 5. A diffraction-limited lens can focus light to a 10@mm@diameter 
spot on a screen. Do the following actions make the spot diam-
eter larger, make it smaller, or leave it unchanged?

 A. Decreasing the wavelength of the light.

 B. Decreasing the lens diameter.
 C. Decreasing the lens focal length.
 D. Decreasing the lens-to-screen distance.
 6. To focus parallel light rays to the smallest possible spot, should 

you use a lens with a small f@number or a large f@number? 
Explain.

 7. An astronomer is trying to observe two distant stars. The stars 
are marginally resolved when she looks at them through a filter 
that passes green light with a wavelength near 550 nm. Which 
of the following actions would improve the resolution? Assume 
that the resolution is not limited by the atmosphere.

 A. Changing the filter to a different wavelength. If so, should 
she use a shorter or a longer wavelength?

 B. Using a telescope with an objective lens of the same diameter 
but a different focal length. If so, should she select a shorter 
or a longer focal length?

 C. Using a telescope with an objective lens of the same focal 
length but a different diameter. If so, should she select a 
larger or a smaller diameter?

 D. Using an eyepiece with a different magnification. If so, should 
she select an eyepiece with more or less magnification?

E x E R C I S E S  A N d  P R O B L E M S

Exercises

Section 24.1 Lenses in Combination

 1. || Two converging lenses with focal lengths of 40 cm and 20 cm 
are 10 cm apart. A 2.0-cm-tall object is 15 cm in front of the 
40-cm-focal-length lens.

 a. Use ray tracing to find the position and height of the image. 
Do this accurately with a ruler or paper with a grid. Estimate 
the image distance and image height by making measure-
ments on your diagram.

 b. Calculate the image position and height. Compare with your 
ray-tracing answers in part a.

 2. || A converging lens with a focal length of 40 cm and a diverg-
ing lens with a focal length of -40 cm are 160 cm apart. A 
2.0-cm-tall object is 60 cm in front of the converging lens.

 a. Use ray tracing to find the position and height of the image. 
Do this accurately with a ruler or paper with a grid. Estimate 
the image distance and image height by making measure-
ments on your diagram.

 b. Calculate the image position and height. Compare with your 
ray-tracing answers in part a.

 3. || A 2.0-cm-tall object is 20 cm to the left of a lens with a focal 
length of 10 cm. A second lens with a focal length of 15 cm is 
30 cm to the right of the first lens.

 a. Use ray tracing to find the position and height of the image. 
Do this accurately with a ruler or paper with a grid. Estimate 
the image distance and image height by making measure-
ments on your diagram.

 b. Calculate the image position and height. Compare with your 
ray-tracing answers in part a.
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 4. || A 2.0-cm-tall object is 20 cm to the left of a lens with a focal 
length of 10 cm. A second lens with a focal length of 5 cm is 
30 cm to the right of the first lens.

 a. Use ray tracing to find the position and height of the image. 
Do this accurately with a ruler or paper with a grid. Estimate 
the image distance and image height by making measure-
ments on your diagram.

 b. Calculate the image position and height. Compare with your 
ray-tracing answers in part a.

 5. ||| A 2.0-cm-tall object is 20 cm to the left of a lens with a focal 
length of 10 cm. A second lens with a focal length of -5 cm is 
30 cm to the right of the first lens.

 a. Use ray tracing to find the position and height of the image. 
Do this accurately with a ruler or paper with a grid. Estimate 
the image distance and image height by making measure-
ments on your diagram.

 b. Calculate the image position and height. Compare with your 
ray-tracing answers in part a.

Section 24.2 The Camera

 6. | A 2.0-m-tall man is 10 m in front of a camera with a 15-mm-
focal-length lens. How tall is his image on the detector?

 7. | What is the f@number of a lens with a 35 mm focal length and 
a 7.0-mm-diameter aperture?

 8. | A 12-mm-focal-length lens has a 4.0-mm-diameter aperture. 
What is the aperture diameter of an 18-mm-focal-length lens 
with the same f@number?

 9. | What is the aperture diameter of a 12-mm-focal-length lens 
set to f/4.0?

 10. | A camera takes a properly exposed photo at f/5.6 and 1/125 s. 
What shutter speed should be used if the lens is changed to f/4.0?

 11. ||| A camera takes a properly exposed photo with a 3.0-mm-
diameter aperture and a shutter speed of 1/125 s. What is the 
appropriate aperture diameter for a 1/500 s shutter speed?

Section 24.3 Vision

 12. || Ramon has contact lenses with the prescription +2.0 D.
 a. What eye condition does Ramon have?
 b. What is his near point without the lenses?
 13. | Ellen wears eyeglasses with the prescription -1.0 D.
 a. What eye condition does Ellen have?
 b. What is her far point without the glasses?
 14. | What is the f-number of a relaxed eye with the pupil fully 

dilated to 8.0 mm? Model the eye as a single lens 2.4 cm in front 
of the retina.

Section 24.4 Optical Systems That Magnify

 15. | A magnifier has a magnification of 5* . How far from the lens 
should an object be held so that its image is at the near-point 
distance of 25 cm?

 16. || A microscope has a 20 cm tube length. What focal-length 
objective will give total magnification 500*  when used with a 
eyepiece having a focal length of 5.0 cm?

 17. || A standardized biological microscope has an 8.0-mm-focal-
length objective. What focal-length eyepiece should be used to 
achieve a total magnification of 100*?

 18. || A 6.0-mm-diameter microscope objective has a focal length of 
9.0 mm. What object distance gives a lateral magnification of -40?

BIO

BIO

BIO

 19. | A 20*  telescope has a 12-cm-diameter objective lens. What 
minimum diameter must the eyepiece lens have to collect all the 
light rays from an on-axis distant source?

 20. || A reflecting telescope is built with a 20-cm-diameter mirror 
having a 1.00 m focal length. It is used with a 10*  eyepiece. 
What are (a) the magnification and (b) the f@number of the 
telescope?

Section 24.5 The Resolution of Optical Instruments

 21. || A scientist needs to focus a helium-neon laser beam 
(l = 633 nm) to a 10@mm@diameter spot 8.0 cm behind a lens.

 a. What focal-length lens should she use?
 b. What minimum diameter must the lens have?
 22. || Two lightbulbs are 1.0 m apart. From what distance can these 

lightbulbs be marginally resolved by a small telescope with a 
4.0-cm-diameter objective lens? Assume that the lens is diffrac-
tion limited and l = 600 nm.

Problems

 23. || A 1.0-cm-tall object is located 4.0 cm to the left of a converg-
ing lens with a focal length of 5.0 cm. A diverging lens, of focal 
length -8.0 cm, is 12 cm to the right of the first lens. Find the 
position, size, and orientation of the final image.

 24. | In FIguRE P24.24, are parallel rays from the left focused to a 
point? If so, on which side of the lens and at what distance?

 25. || The rays leaving the two-component optical system of 
FIguRE P24.25 produce two distinct images of the 1.0-cm-tall object.

 a. What are the position (relative to the lens), orientation, and 
height of each image?

 b. Draw two ray diagrams, one for each image, showing how 
the images are formed.

 26. | A common optical instrument in a laser laboratory is a beam 
expander. One type of beam expander is shown in FIguRE P24.26. 
The parallel rays of a laser beam of width w1 enter from the left.

 a. For what lens spacing d does a parallel laser beam exit from 
the right?

 b. What is the width w2 of the exiting laser beam?

f1 � �10 cm f2 � 10 cm

20 cm

FIguRE P24.24 

f � 10 cm f � 10 cm

5.0 cm 5.0 cm

Mirror Lens

FIguRE P24.25 

f2 � f1

f1

d

w1 w2

FIguRE P24.26 
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 27. | A common optical instrument in a laser laboratory is a beam 
expander. One type of beam expander is shown in FIguRE P24.27. 
The parallel rays of a laser beam of width w1 enter from the left.

 a. For what lens spacing d does a parallel laser beam exit from 
the right?

 b. What is the width w2 of the exiting laser beam?

 28. ||| A 15-cm-focal-length converging lens is 20 cm to the right of 
a 7.0-cm-focal-length converging lens. A 1.0-cm-tall object is 
distance L to the left of the first lens.

 a. For what value of L is the final image of this two-lens system 
halfway between the two lenses?

 b. What are the height and orientation of the final image?
 29. | A 1.0-cm-tall object is 110 cm from a screen. A diverging lens 

with focal length -20 cm is 20 cm in front of the object. What 
are the focal length and distance from the screen of a second 
lens that will produce a well-focused, 2.0-cm-tall image on the 
screen?

 30. ||| You use your 8*  binoculars to focus on a 14-cm-long bird 
in a tree 18 m away from you. What angle (in degrees) does the 
image of the warbler subtend on your retina?

 31. || Yang can focus on objects 150 cm away with a relaxed eye. 
With full accommodation, she can focus on objects 20 cm away. 
After her eyesight is corrected for distance vision, what will her 
near point be while wearing her glasses?

 32. ||| The cornea, a boundary between the air and the aqueous hu-
mor, has a 3.0 cm focal length when acting alone. What is its 
radius of curvature?

 33. | The objective lens of a telescope is a symmetric glass lens 
with 100 cm radii of curvature. The eyepiece lens is also a sym-
metric glass lens. What are the radii of curvature of the eyepiece 
lens if the telescope’s magnification is 20*?

 34. || You’ve been asked to build a telescope from a 2.0*  magnify-
ing lens and a 5.0*  magnifying lens.

 a. What is the maximum magnification you can achieve?
 b. Which lens should be used as the objective? Explain.
 c. What will be the length of your telescope?
 35. | Marooned on a desert island and with a lot of time on your 

hands, you decide to disassemble your glasses to make a crude 
telescope with which you can scan the horizon for rescuers. 
Luckily you’re farsighted, and, like most people, your two eyes 
have different lens prescriptions. Your left eye uses a lens of 
power +4.5 D, and your right eye’s lens is +3.0 D.

 a. Which lens should you use for the objective and which for the 
eyepiece? Explain.

 b. What will be the magnification of your telescope?
 c. How far apart should the two lenses be when you focus on 

distant objects?
 36. || You’ve been asked to build a 12*  microscope from a 2.0*  

magnifying lens and a 4.0*  magnifying lens.
 a. Which lens should be used as the objective?
 b. What will be the tube length of your microscope?

BIO

BIO

 37. || A microscope with a tube length of 180 mm achieves a total 
magnification of 800*  with a 40*  objective and a 20*  eye-
piece. The microscope is focused for viewing with a relaxed eye. 
How far is the sample from the objective lens?

 38. | High-power lasers are used to cut and weld materials by focus-
ing the laser beam to a very small spot. This is like using a mag-
nifying lens to focus the sun’s light to a small spot that can burn 
things. As an engineer, you have designed a laser cutting device in 
which the material to be cut is placed 5.0 cm behind the lens. You 
have selected a high-power laser with a wavelength of 1.06 mm. 
Your calculations indicate that the laser must be focused to a 
5.0@mm@diameter spot in order to have sufficient power to make 
the cut. What is the minimum diameter of the lens you must install?

 39. ||| Once dark adapted, the pupil of your eye is approximately 
7 mm in diameter. The headlights of an oncoming car are 120 cm 
apart. If the lens of your eye is diffraction limited, at what distance 
are the two headlights marginally resolved? Assume a wavelength 
of 600 nm and that the index of refraction inside the eye is 1.33. 
(Your eye is not really good enough to resolve headlights at this 
distance, due both to aberrations in the lens and to the size of the 
receptors in your retina, but it comes reasonably close.)

 40. || The Hubble Space Telescope has a mirror diameter of 2.4 m. 
Suppose the telescope is used to photograph stars near the center 
of our galaxy, 30,000 light years away, using red light with a 
wavelength of 650 nm.

 a. What’s the distance (in km) between two stars that are mar-
ginally resolved? The resolution of a reflecting telescope is 
calculated exactly the same as for a refracting telescope.

 b. For comparison, what is this distance as a multiple of the dis-
tance of Jupiter from the sun?

 41. || Alpha Centauri, the nearest star to our solar system, is 
4.3 light years away. Assume that Alpha Centauri has a planet 
with an advanced civilization. Professor Dhg, at the planet’s 
Astronomical Institute, wants to build a telescope with which he 
can find out whether any planets are orbiting our sun.

 a. What is the minimum diameter for an objective lens that will 
just barely resolve Jupiter and the sun? The radius of Jupiter’s 
orbit is 780 million km. Assume l = 600 nm.

 b. Building a telescope of the necessary size does not appear to 
be a major problem. What practical difficulties might prevent 
Professor Dhg’s experiment from succeeding?

Challenge Problems

 42. In FIguRE CP24.42, what are the position, height, and orientation 
of the final image? Give the position as a distance to the right or 
left of the lens.

 43. Mars (6800 km diameter) is viewed through a telescope on a 
night when it is 1.1 * 108 km from the earth. Its angular size as 
seen through the eyepiece is 0.50�, the same size as the full moon 
seen by the naked eye. If the eyepiece focal length is 25 mm, 
how long is the telescope?

BIO

f2 � 0  f1 0
f1 � 0

d

w1 w2

FIguRE P24.27 

f1 � 10 cm f2 � �30 cm

5.0 cm 5.0 cm

1.0 cm

FIguRE CP24.42 



 46. FIguRE CP24.46 shows a simple zoom lens in which the magni-
tudes of both focal lengths are f. If the spacing d 6 f, the image 
of the converging lens falls on the right side of the diverging 
lens. Our procedure of letting the image of the first lens act as 
the object of the second lens will continue to work in this case 
if we use a negative object distance for the second lens. This is 
called a virtual object. Consider a very distant object (s � � for 
the first lens) and define the effective focal length as the distance 
from the midpoint between the lenses to the final image.

 a. Show that the effective focal length is

feff =
f 2 - fd +

1
2 d 2

d

 b. What is the zoom for a lens that can be adjusted from d =
1
2 f  

to d =
1
4  f ?

 44. Your task in physics laboratory is to make a microscope from 
two lenses. One lens has a focal length of 2.0 cm, the other 
1.0 cm. You plan to use the more powerful lens as the objective, 
and you want the eyepiece to be 16 cm from the objective.

 a. For viewing with a relaxed eye, how far should the sample be 
from the objective lens?

 b. What is the magnification of your microscope?
 45. The lens shown in FIguRE CP24.45 is called an ach-

romatic doublet, meaning that it has no chromatic 
aberration. The left side is flat, and all other surfaces 
have radii of curvature R.

 a. For parallel light rays coming from the left, show 
that the effective focal length of this two-lens sys-
tem is f = R/(2n2 - n1 - 1), where n1 and n2 are, 
respectively, the indices of refraction of the di-
verging and the converging lenses. Don’t forget to make the 
thin-lens approximation.

 b. Because of dispersion, either lens alone would focus red 
rays and blue rays at different points. Define �n1 and �n2 as 
nblue - nred  for the two lenses. Find an expression for �n2 in 
terms of �n1 that makes fblue = fred  for the two-lens system. 
That is, the two-lens system does not exhibit chromatic 
aberration.

 c. Indices of refraction for two types of glass are given in the 
table. To make an achromatic doublet, which glass should 
you use for the converging lens and which for the diverging 
lens? Explain.

nblue nred

Crown glass 1.525 1.517

Flint glass 1.632 1.616

 d. What value of R gives a focal length of 10.0 cm?

n1 n2

FIguRE 
CP24.45 

�ff

dFIguRE CP24.46 

STOP TO THINK ANSwERS

Stop to Think 24.1: b. A diverging lens refracts rays away from 
the optical axis, so the rays will travel farther down the axis before 
converging.

Stop to Think 24.2: a. Because the shutter speed doesn’t change, the 
f@number must remain unchanged. The f@number is f/D, so increas-
ing f  requires increasing D.

Stop to Think 24.3: a. A magnifier is a converging lens. Converging 
lenses are used to correct hyperopia.

Stop to Think 24.4: b. If the objective magnification is halved, the 
eyepiece magnification must be doubled. Meye = 25 cm/feye, so dou-
bling Meye requires halving feye.

Stop to Think 24.5: wa + wd + wb � wc. The spot size is propor-
tional to f/D.
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P a r t

we end our study of waves a long distance from where we 
started. Who would have guessed, as we examined our first 
pulse on a string, that we would end up discussing the resolu-
tion of microscopes? But despite the wide disparity between 
string waves, sound waves, and light waves, a few key ideas 
have stayed with us throughout Part V: the principle of super-
position, interference and diffraction, and standing waves. As 
part of your final study of waves, you should trace the influ-
ence of these ideas through the chapters of Part V.

One point we have tried to emphasize is the unity of wave 
physics. We did not need separate theories of string waves and 
sound waves and light waves. Instead, a few basic ideas enabled 
us to understand waves of all types. By focusing on similarities, 
we have been able to analyze vibrating guitar strings and anti-
reflection coatings on lenses in a single part of this book.

Unfortunately, the physics of waves is not as easily sum-
marized as the physics of particles. Newton’s laws and the 
conservation laws are two very general sets of principles about 
particles, principles that allowed us to develop the powerful 
problem-solving strategies of Parts I and II. You probably 
noticed that we have not found any general problem-solving 
strategies for wave problems.

This is not to say that wave physics has no structure. Rather, 
the knowledge structure of waves and optics rests more heavily 
on phenomena than on general principles. Unlike the know-
ledge structure of Newtonian mechanics, which was a “pyramid  
of ideas,” the knowledge structure of waves is a logical group-
ing of the major topics you studied. This is a different way of 
structuring knowledge, but it still provides you with a mental 
framework for analyzing and thinking about wave problems.

Waves and OpticsV
SuMMARY

ESSENTIAL CONCEPTS Wave speed, wavelength, frequency, phase, wave front, and ray
BASIC gOALS What are the distinguishing features of waves?
 How does a wave travel through a medium?
 How does a medium respond to the presence of more than one wave?
 What is light and what are its properties?

gENERAL PRINCIPLES Principle of superposition
 v = lf  for periodic waves

KNOwLEdgE STRuCTuRE V  waves and Optics

Standing waves

•	 Standing waves are the super-
position of waves moving in 
opposite directions.

•	 Nodes and antinodes are spaced 
by l/2.

•	 Only certain discrete frequencies 
are allowed, depending on the boundary conditions.

Traveling waves

•	 The wave speed v is a property of the medium.

•	 The motion of particles in the medium is distinct from the 
motion of the wave.

•	 Snapshot graphs and history graphs show the same wave from 
different perspectives.

•	 The Doppler effect of shifted frequencies is observed 
whenever the wave source or the detector is moving.

Interference

•	 Interference is constructive—crests align with crests—if two waves are in phase: �f = 0, 2p, 4p, . p  The wave is enhanced.

•	 Interference is destructive—crests align with troughs—if two waves are out of phase: �f = p, 3p, 5p, . p  The wave is reduced.

•	 The phase difference depends on the path-length difference �r and on any phase difference between the sources.

•	 Beats occur when f1 � f2.

Light and Optics

•	 The wave model, used for interference and diffraction, is appropriate when apertures are comparable in size to the wavelength.

•	 The ray model, used for mirrors and lenses, is appropriate when apertures 
are much larger than the wavelength.

•	 Diffraction, a wave effect, limits the best possible resolution of a lens.

Antinodes

Nodes

Single-slit diffraction: Double-slit interference:

Focal length f

s�s
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Tsunami!

Technically, a tsunami is a “shallow-water wave,” 
even in the deep ocean, because the scale of the wave 
(roughly 100 km) is much larger than the depth of the ocean 
(typically 4 km). Consequently, a tsunami travels differ-
ently than normal ocean waves. Unlike normal waves on 
the surface, whose speed is independent of depth, the speed 
of a shallow-water wave is determined by the depth of the 
ocean: The greater the depth, the greater the speed. In the 
deep ocean, a tsunami travels at hundreds of kilometers per 
hour, about the speed of a jet plane. This great speed allows 
a tsunami to cross oceans in only a few hours.

The height of the tsunami as it raced across the open 
ocean was about half a meter. Why should such a small 
wave—one that ships didn’t even notice as it passed—be 
so fearsome? It’s the width of the wave that matters. The 
wave pulse may have been only half a meter high, but it was 
about 100 km wide. In other words, the tsunami far from 
land was a half-meter-high, 100-km-wide wall of water. 
This is a tremendous amount of water displaced upward, 
and thus the tsunami was carrying a tremendous amount of 
energy.

As a tsunami nears shore, the ocean depth decreases 
and—because its speed is determined by depth—the 
tsunami begins to slow. This is when the awesome power 
of a tsunami begins to become apparent. As the leading 
edge of the wave slows, the trailing edge, still 100 km away 
and traveling much faster in deeper water, quickly begins to 
catch up. Water is nearly incompressible. As the width of 
the wave pulse decreases, the water begins to pile up higher 
and higher and the wave increases dramatically in height. 
The Indian Ocean tsunami had a height of up to 15 m (50 ft) 
as it came ashore.

Despite its height, a tsunami doesn’t break and crash on 
the beach like a normal wave. The wave pulse may have 
narrowed dramatically from its 100 km width in the open 
ocean, but it is still several kilometers wide. Thus a tsunami 
reaching shore is more like a huge water surge than a typical 
wave—a wall of water that moves onto the shore and just 
keeps on coming. In many places, the Indian Ocean tsunami 
reached 2 km inland.

The impact of the Indian Ocean tsunami was devastat-
ing, but it was the first tsunami for which scientists were 
able to use satellites and ocean sensors to make planet-wide 
measurements. An analysis of the data, including computer 
simulations like the one seen here, has helped us better un-
derstand the physics of these ocean waves. We won’t be 
able to stop future tsunamis, but with a better knowledge of 
how they are formed and how they travel, we will be better 
able to warn people to get out of their way.

In December 2004, an earthquake off the Indonesian coast 
produced a devastating water wave, a tsunami, that caused 
tremendous destruction and loss of life around the edges of 
the Indian Ocean, often thousands of miles from the earth-
quake’s epicenter. The tsunami was a dramatic reminder of 
the power of the earth’s forces and an impressive illustra-
tion of the energy carried by waves.

The Indian Ocean tsunami of 2004 was caused when a 
very large earthquake disrupted the seafloor along a fault 
line, pushing one side of the fault up several meters. This 
dramatic shift in the seafloor produced an almost instan-
taneous rise in the surface of the ocean above, much like 
giving a quick shake to one end of a rope. This was the 
disturbance that produced the tsunami. And just as shaking 
one end of rope causes a pulse to travel along it, the result-
ing water wave propagated throughout the Indian Ocean, as 
we see in the figure, carrying energy from the earthquake.

This computer simulation of the tsunami looks much 
like the ripples that spread out when you drop a pebble into 
a pond, but on an immensely larger scale. The individual 
wave pulses are up to 100 km wide, and the leading wave 
front spans more than 5000 km.

ONE STEP bEYOND

Sri Lanka Location of
earthquake

Indonesia

A frame from a computer simulation of the tsunami, showing 
the Indian Ocean about three hours after the earthquake. Notice 
the interference pattern to the east of Sri Lanka, where incoming 
waves and reflected waves are superimposed.
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Phenomena and Theories
Amber, or fossilized tree resin, has long been prized for its beauty. Amber is of scien-
tific interest today because biologists have learned how to recover DNA strands from 
million-year-old insects trapped in the resin. But amber has an ancient scientific con-
nection as well. The Greek word for amber is elektron.

It has been known since antiquity that a piece of amber rubbed with fur can attract 
feathers or straw—seemingly magical powers to a pre-scientific society. It was also 
known to the ancient Greeks that certain stones from the region they called Magnesia 
could pick up pieces of iron. It is from these humble beginnings that we today have 
high-speed computers, lasers, and magnetic resonance imaging as well as such mun-
dane modern-day miracles as the lightbulb.

The basic phenomena of electricity and magnetism are not as familiar as those of 
mechanics. You have spent your entire life exerting forces on objects and watching 
them move, but your experience with electricity and magnetism is probably much 
more limited. We will deal with this lack of experience by placing a large emphasis on 
the phenomena of electricity and magnetism.

We will begin by looking in detail at electric charge and the process of charging an 
object. It is easy to make systematic observations of how charges behave, and we will 
consider the forces between charges and how charges behave in different materials. 
Similarly, we will begin our study of magnetism by observing how magnets stick to 
some metals but not others and how magnets affect compass needles. But our most 
important observation will be that an electric current affects a compass needle in 
exactly the same way as a magnet. This observation, suggesting a close connection 
between electricity and magnetism, will eventually lead us to the discovery of electro-
magnetic waves.

Our goal in Part VI is to develop a theory to explain the phenomena of electricity 
and magnetism. The linchpin of our theory will be the entirely new concept of a field. 
Electricity and magnetism are about the long-range interactions of charges, both static 
charges and moving charges, and the field concept will help us understand how these 
interactions take place. We will want to know how fields are created by charges and 
how charges, in return, respond to the fields. Bit by bit, we will assemble a theory—
based on the new concepts of electric and magnetic fields—that will allow us to under-
stand, explain, and predict a wide range of electromagnetic behavior.

The story of electricity and magnetism is vast. The 19th-century formulation of the 
theory of electromagnetism, which led to sweeping revolutions in science and tech-
nology, has been called by no less than Einstein “the most important event in physics 
since Newton’s time.” Not surprisingly, all we can do in this text is develop some of 
the basic ideas and concepts, leaving many details and applications to later courses. 
Even so, our study of electricity and magnetism will explore some of the most exciting 
and important topics in physics.



Coulomb’s Law
The law governing the electric force is 
called Coulomb’s law. It tells us how 
the force between charged particles 
depends on their charge and on the 
distance between them.

Point Charges
A charged particle, with no physical 
size, is called a point charge. You’ll 
learn that real objects can be modeled as 
point charges if they are very small com-
pared to the distances between them.

Charge Model
Electric phenomena seem mysterious at 
first, but we’ll find that we can under-
stand them in terms of a charge model:
■	 There are two kinds of charge, called 

positive and negative.
■	 Two charges of the same kind repel; 

two opposite charges attract.
■	 Small neutral objects are attracted to a 

charge of either sign.

Electric Charges 
and Forces

25

Electricity is one of the funda-
mental forces of nature. Light-
ning is a vivid manifestation of 
electric charges and forces.

Field Model
How is a long-range force transmitted 
from one charge to another? We’ll develop 
the idea that every charge alters the space 
around it by creating an electric field. It is 
the electric field that then exerts forces on 
other charges.

Conductors and Insulators
There are two types of materials with 
very different electrical properties:
■	 Conductors are materials through or 

along which charge easily moves.
■	 Insulators are materials on or in 

which charge is immobile.

 Looking Ahead  The goal of Chapter 25 is to describe electric phenomena in terms of charges, forces, and fields.

You’ll learn how 
a comb rubbed 
through your hair 
picks up small 
pieces of paper.
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You’ll find that Coulomb’s law, like Newton’s 
law of gravity, is an inverse-square law.

 Looking Back
Sections 3.2–3.4 vector addition
Sections 13.3–13.4 Newton’s theory of 
gravity

The liquid crystal displays
(LCD) of your calculator,
your digital watch, and
your computer screen
use electric fields to turn
the pixels on and off.

Charges and Atoms
Electrons and protons—the constitu-
ents of atoms—are the basic charges of 
ordinary matter.
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ElectronNucleus

Proton

You’ll learn that 
charging an object 
can be understood 
as the transfer of 
electrons from one 
material to another.

An object that is negative has an excess 
of electrons; a positively charged object 
is missing electrons.

The metal wire—a 
conductor—carries 
a current of moving 
charges. it is separated  
from the support by 
a ceramic insulator.

�

The electric field 
of a point charge 
will be important 
throughout our 
study of electricity.
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25.1 Developing a Charge Model
You can receive a mildly unpleasant shock and produce a little spark if you touch 
a metal doorknob after walking across a carpet. Vigorously brushing your freshly 
washed hair makes all the hairs fly apart. A plastic comb that you’ve run through your 
hair will pick up bits of paper and other small objects, but a metal comb won’t.

The common factor in these observations is that two objects are rubbed together. 
Why should rubbing an object cause forces and sparks? What kind of forces are 
these? Why do metallic objects behave differently from nonmetallic? These are the 
questions with which we begin our study of electricity.

Our first goal is to develop a model for understanding electric phenomena in terms 
of charges and forces. We will later use our contemporary knowledge of atoms to un-
derstand electricity on a microscopic level, but the basic concepts of electricity make 
no reference to atoms or electrons. The theory of electricity was well established long 
before the electron was discovered.

Experimenting with Charges
Let us enter a laboratory where we can make observations of electric phenomena. The 
major tools in the lab are:

	■	 A variety of plastic and glass rods, each several centimeters long.
	■	 A few metal rods with wood handles.
	■	 Pieces of wool and silk.
	■	 Small metal spheres, an inch or two in diameter, on wood stands.

Let’s see what we can learn with these tools.

Discovering electricity I

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Take a plastic rod that has been 
undisturbed for a long period 
of time and hang it by a thread. 
Pick up another undisturbed 
plastic rod and bring it close to 
the hanging rod. Nothing hap-
pens to either rod.

Rub both plastic rods with 
wool. Now the hanging rod 
tries to move away from the 
handheld rod when you bring 
the two close together. Two 
glass rods rubbed with silk 
also repel each other.

Bring a glass rod that has been 
rubbed with silk close to a hang-
ing plastic rod that has been 
rubbed with wool. These two 
rods attract each other.

Further observations show that:
■	 	These forces are greater for 

rods that have been rubbed 
more vigorously.

■	 	The strength of the forces 
decreases as the separation 
between the rods increases.

Plastic

Plastic

Rods that haven’t
been rubbed Plastic rubbed

with wool Plastic
rubbed
with
wool

Glass rubbed
with silk

Increased distance

No forces were observed in Experiment 1. We will say that the original objects are 
neutral. Rubbing the rods (Experiments 2 and 3) somehow causes forces to be exerted 
between them. We will call the rubbing process charging and say that a rubbed rod is 
charged. For now, these are simply descriptive terms. The terms don’t tell us anything 
about the process itself.

Experiment 2 shows that there is a long-range repulsive force, requiring no contact, 
between two identical objects that have been charged in the same way. Furthermore, 
Experiment 4 shows that the force between two charged objects depends on the dis-
tance between them. This is the first long-range force we’ve encountered since gravity 
was introduced in Chapter 5. It is also the first time we’ve observed a repulsive force, 
so right away we see that new ideas will be needed to understand electricity.
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Experiment 3 is a puzzle. Two rods seem to have been charged in the same way, by 
rubbing, but these two rods attract each other rather than repel. Why does the outcome 
of Experiment 3 differ from that of Experiment 2? Back to the lab.

Our first set of experiments found that charged objects exert forces on each other. 
The forces are sometimes attractive, sometimes repulsive. Experiments 5 and 6 show 
that there is an attractive force between a charged object and a neutral (uncharged) 
object. This discovery presents us with a problem: How can we tell if an object is 
charged or neutral? Because of the attractive force between a charged and a neutral 
object, simply observing an electric force does not imply that an object is charged.

However, an important characteristic of any charged object appears to be that
a charged object picks up small pieces of paper. This behavior provides a straight-
forward test to answer the question, Is this object charged? An object that passes the 
test by picking up paper is charged; an object that fails the test is neutral.

These observations let us tentatively advance the first stages of a charge model.

Charge model, part I The basic postulates of our model are:

 1. Frictional forces, such as rubbing, add something called charge to an object 
or remove it from the object. The process itself is called charging. More vig-
orous rubbing produces a larger quantity of charge.

Discovering electricity II

Experiment 5

Hold a charged (i.e., rubbed) plastic rod over small pieces of paper on the table. The pieces 
of paper leap up and stick to the rod. A charged glass rod does the same. However, a neu-
tral rod has no effect on the pieces of paper.

Experiment 6

Rub a plastic rod with wool and a glass rod with silk. Hang both by threads, some distance 
apart. Both rods are attracted to a neutral (i.e., unrubbed) plastic rod that is held close. 
Interestingly, both are also attracted to a neutral glass rod. In fact, the charged rods are at-
tracted to any neutral object, such as a finger, a piece of paper, or a metal rod.

Experiment 7

Rub a hanging plastic rod with wool and then hold the wool close to the rod. The rod is 
weakly attracted to the wool. The plastic rod is repelled by a piece of silk that has been 
used to rub glass.

Experiment 8

Further experiments show that:
■	 	Other objects, after being rubbed, attract one of the hanging charged rods (plastic or 

glass) and repel the other. These objects always pick up small pieces of paper.
■	 	There appear to be no objects that, after being rubbed, pick up pieces of paper and attract 

both the charged plastic and glass rods.

Charged rod

Paper

Charged rod
Neutral rod

Charged plastic rod

Silk used to
rub glass

Wool used to
rub plastic

Charged object

Charged
plastic
rod

Charged
glass
rod

A plastic comb that has been charged 
by running it through your hair attracts 
neutral objects—here drops of water.
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 2. There are two and only two kinds of charge. For now we will call these “plastic 
charge” and “glass charge.” Other objects can sometimes be charged by rub-
bing, but the charge they receive is either “plastic charge” or “glass charge.”

 3. Two like charges (plastic/plastic or glass/glass) exert repulsive forces on 
each other. Two opposite charges (plastic/glass) attract each other.

 4. The force between two charges is a long-range force. The size of the force 
increases as the quantity of charge increases and decreases as the distance 
between the charges increases.

 5. Neutral objects have an equal mixture of both “plastic charge” and “glass 
charge.” The rubbing process somehow manages to separate the two.

Discovering electricity III

Experiment 9

Charge a plastic rod by rubbing it with wool. Touch a neutral metal sphere with the 
rubbed area of the rod. The metal sphere then picks up small pieces of paper and repels a 
charged, hanging plastic rod. The metal sphere appears to have acquired “plastic charge.” 

Experiment 10

Charge a plastic rod, then run your finger along it. After you’ve done so, the rod no 
longer picks up small pieces of paper or repels a charged, hanging plastic rod. Similarly, 
the metal sphere of Experiment 9 no longer repels the plastic rod after you touch it with 
your finger.

Experiment 11

Place two metal spheres close together with a plastic rod connecting them. Charge a 
second plastic rod, by rubbing, and touch it to one of the metal spheres. Afterward, the 
metal sphere that was touched picks up small pieces of paper and repels a charged, hang-
ing plastic rod. The other metal sphere does neither.

Experiment 12

Repeat Experiment 11 with a metal rod connecting the two metal spheres. Touch one 
metal sphere with a charged plastic rod. Afterward, both metal spheres pick up small 
pieces of paper and repel a charged, hanging plastic rod.

Metal
Charged
plastic

The metal
sphere acquires
“plastic charge.”

Paper

Rod that had
been charged

MetalMetal

Charged
plasticPlastic rod

This sphere
remains
neutral.

MetalMetal

Charged
plasticMetal rod

This sphere
acquires
“plastic
charge.”

Postulate 2 is based on Experiment 8. If an object is charged (i.e., picks up paper), 
it always attracts one charged rod and repels the other. That is, it acts either “like plas-
tic” or “like glass.” If there were a third kind of charge, different from the first two, an 
object with that charge should pick up paper and attract both the charged plastic and 
glass rods. No such objects have ever been found.

The basis for postulate 5 is the observation in Experiment 7 that a charged plastic 
rod is attracted to the wool used to rub it but repelled by silk that has rubbed glass. It 
appears that rubbing glass causes the silk to acquire “plastic charge.” The easiest way 
to explain this is to hypothesize that the silk starts out with equal amounts of “glass 
charge” and “plastic charge” and that the rubbing somehow transfers “glass charge” 
from the silk to the rod. This leaves an excess of “glass charge” on the rod and an 
excess of “plastic charge” on the silk.

While the charge model is consistent with the observations, it is by no means 
proved. One could easily imagine other hypotheses that are just as consistent with 
the limited observations we have made so far. We still have some large unexplained 
puzzles, such as why charged objects exert attractive forces on neutral objects.

Electric Properties of Materials
We still need to clarify how different types of materials respond to charges.
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Our final set of experiments has shown that

	■ Charge can be transferred from one object to another, but only when the objects 
touch. Contact is required. Removing charge from an object, which you can do by 
touching it, is called discharging.

	■ There are two types or classes of materials with very different electric properties. 
We call these conductors and insulators.

Experiment 12, in which a metal rod is used, is in sharp contrast to Experiment 11. 
Charge somehow moves through or along a metal rod, from one sphere to the other, 
but remains fixed in place on a plastic or glass rod. Let us define conductors as those 
materials through or along which charge easily moves and insulators as those materi-
als on or in which charges remain immobile. Glass and plastic are insulators; metal is 
a conductor.

This information lets us add two more postulates to our charge model:

Charge model, part II

 6. There are two types of materials. Conductors are materials through or along 
which charge easily moves. Insulators are materials on or in which charges 
remain fixed in place.

 7. Charge can be transferred from one object to another by contact.

NoTE  Both insulators and conductors can be charged. They differ in the mobility 
of the charge. 

We have by no means exhausted the number of experiments and observations we 
might try. Early scientific investigators were faced with all of these results, plus many 
others. Moreover, many of these experiments are hard to reproduce with much ac-
curacy. How should we make sense of it all? The charge model seems promising, but 
certainly not proven. We have not yet explained how charged objects exert attractive 
forces on neutral objects, nor have we explained what charge is, how it is transferred, 
or why it moves through some objects but not others. Nonetheless, we will take advan-
tage of our historical hindsight and continue to pursue this model. Homework prob-
lems will let you practice using the model to explain other observations.

Stop to think 25.1 
 To determine if an object has “glass charge,” you need to

 a. See if the object attracts a charged plastic rod.
 b. See if the object repels a charged glass rod.
 c. Do both a and b.
 d. Do either a or b.

The plastic rod was charged by rubbing with wool. The charge 
doesn’t move around on the rod, because it is an insulator, but 
some of the “plastic charge” is transferred to the metal upon con-
tact. Once in the metal, which is a conductor, the charges are free 
to move around. Furthermore, because like charges repel, these 
plastic charges quickly move as far apart as they possibly can. 
Some move through the connecting metal rod to the second sphere. 
Consequently, the second sphere acquires “plastic charge.”

ExAMPLE 25.1  Transferring charge
In Experiment 12, touching one metal sphere with a charged plas-
tic rod caused a second metal sphere to become charged with the 
same type of charge as the rod. Use the postulates of the charge 
model to explain this.

SoLvE We need the following ideas from the charge model:

 1. Charge is transferred upon contact.
 2. Metal is a conductor.
 3. Like charges repel.
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25.2 Charge
As you probably know, the modern names for the two types of charge are positive 
charge and negative charge. You may be surprised to learn that the names were coined 
by Benjamin Franklin. Franklin found that charge behaves like positive and negative 
numbers. If a plastic rod is charged twice, by rubbing, and twice transfers charge to a 
metal sphere, the electric forces exerted by the sphere are doubled. That is, 2 + 2 = 4. 
But the sphere is found to be neutral after receiving equal amounts of “plastic charge” 
and “glass charge.” This is like 2 + (-2) = 0.

So what is positive and what is negative? It’s entirely up to us! Franklin established 
the convention that a glass rod that has been rubbed with silk is positively charged. 
That’s it. Any other object that repels a charged glass rod is also positively charged. 
Any charged object that attracts a charged glass rod is negatively charged. Thus 
a plastic rod rubbed with wool is negative. It was only long afterward, with the dis-
covery of electrons and protons, that electrons were found to be attracted to a charged 
glass rod while protons were repelled. Thus by convention electrons have a negative 
charge and protons a positive charge.

Atoms and Electricity
Now let’s fast forward to the 21st century. The theory of electricity was developed 
without knowledge of atoms, but there is no reason for us to continue to overlook 
this important part of our contemporary perspective. FIgurE 25.1 shows that an atom 
consists of a very small and dense nucleus (diameter �10-14 m) surrounded by 
much less massive orbiting electrons. The electron orbital frequencies are so enor-
mous (�1015 revolutions per second) that the electrons seem to form an electron 
cloud of diameter �10-10 m, a factor 104 larger than the nucleus. In fact, the wave–
particle duality of quantum physics destroys any notion of a well-defined electron 
trajectory, and all we know about the electrons is the size and shape of the electron 
cloud.

Experiments at the end of the 19th century revealed that electrons are particles 
with both mass and a negative charge. The nucleus is a composite structure con-
sisting of protons, positively charged particles, and neutral neutrons. The atom is 
held together by the attractive electric force between the positive nucleus and the 
negative electrons.

One of the most important discoveries is that charge, like mass, is an inher-
ent property of electrons and protons. It’s no more possible to have an electron 
without charge than it is to have an electron without mass. As far as we know today, 
electrons and protons have charges of opposite sign but exactly equal magnitude. 
(Very careful experiments have never found any difference.) This atomic-level unit 
of charge, called the fundamental unit of charge, is represented by the symbol e. 
Table 25.1 shows the masses and charges of protons and electrons. We need to de-
fine a unit of charge, which we will do in Section 25.4, before we can specify how 
much charge e is.

The Micro/Macro Connection
Electrons and protons are the basic charges of ordinary matter. Consequently, the 
various observations we made in Section 25.1 need to be explained in terms of elec-
trons and protons.

NoTE  Electrons and protons are particles of matter. Their motion is governed by 
Newton’s laws. Electrons can move from one object to another when the objects 
are in contact, but neither electrons nor protons can leap through the air from one 
object to another. An object does not become charged simply from being close to 
a charged object. 

FIgurE 25.1 An atom.

The nucleus, exaggerated for
clarity, contains positive protons.

The electron cloud is negatively charged.
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TABLE 25.1 Protons and electrons

Particle Mass (kg) Charge

Proton 1.67 * 10-27 +e

Electron 9.11 * 10-31 -e
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Charge is represented by the symbol q (or sometimes Q). A macroscopic object, 
such as a plastic rod, has charge

 q = Npe - Nee = (Np - Ne)e (25.1)

where Np and Ne are the number of protons and electrons contained in the object. Most 
macroscopic objects have an equal number of protons and electrons and therefore 
have q = 0. An object with no net charge (i.e., q = 0) is said to be electrically neutral.

NoTE  Neutral does not mean “no charges” but, instead, means that there is no 
net charge. 

A charged object has an unequal number of protons and electrons. An object is 
positively charged if Np 7 Ne. It is negatively charged if Np 6 Ne. Notice that an 
object’s charge is always an integer multiple of e. That is, the amount of charge on 
an object varies by small but discrete steps, not continuously. This is called charge 
quantization.

In practice, objects acquire a positive charge not by gaining protons, as you might 
expect, but by losing electrons. Protons are extremely tightly bound within the nucleus 
and cannot be added to or removed from atoms. Electrons, on the other hand, are 
bound rather loosely and can be removed without great difficulty. The process of re-
moving an electron from the electron cloud of an atom is called ionization. An atom 
that is missing an electron is called a positive ion. Its net charge is q = +e.

Some atoms can accommodate an extra electron and thus become a negative ion 
with net charge q = -e. A saltwater solution is a good example. When table salt (the 
chemical sodium chloride, NaCl) dissolves, it separates into positive sodium ions Na+ 
and negative chlorine ions Cl-. FIgurE 25.2 shows positive and negative ions.

All the charging processes we observed in Section 25.1 involved rubbing and fric-
tion. The forces of friction cause molecular bonds at the surface to break as the two 
materials slide past each other. Molecules are electrically neutral, but FIgurE 25.3 shows 
that molecular ions can be created when one of the bonds in a large molecule is bro-
ken. The positive molecular ions remain on one material and the negative ions on the 
other, so one of the objects being rubbed ends up with a net positive charge and the 
other with a net negative charge. This is the way in which a plastic rod is charged by 
rubbing with wool or a comb is charged by passing through your hair.

Charge Conservation and Charge Diagrams
One of the important discoveries about charge is the law of conservation of charge: 
Charge is neither created nor destroyed. Charge can be transferred from one object 
to another as electrons and ions move about, but the total amount of charge remains 
constant. For example, charging a plastic rod by rubbing it with wool transfers elec-
trons from the wool to the plastic as the molecular bonds break. The wool is left with 
a positive charge equal in magnitude but opposite in sign to the negative charge of the 
rod: qwool = -qplastic. The net charge remains zero.

Diagrams are going to be an important tool for understanding and explaining 
charges and the forces on charged objects. As you begin to use diagrams, it will be 
important to make explicit use of charge conservation. The net number of plusses and 
minuses drawn on your diagrams should not change as you show them moving around.

Stop to think 25.2 
 Rank in order, from most positive to most negative, the charges qa 

to qe of these five systems.

FIgurE 25.2 Positive and negative ions.

Positive ion Negative ion 

The atom has gained
one electron, giving it
a net negative charge.

The atom has lost one
electron, giving it a
net positive charge.
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FIgurE 25.3 Charging by friction usually 
creates molecular ions as bonds are 
broken.

Electrically
neutral molecule

Positive
molecular
ion

Negative
molecular
ion

Atoms

Bond

Friction

� �

These bonds were
broken by friction.

This half of the
molecule lost an
electron as the
bond broke.

This half of the
molecule gained an
extra electron as the
bond broke.

(a)

Proton

(b)

Electron

(c)

17 protons
19 electrons

(e)

Glass ball missing
3 electrons

(d)

1,000,000 protons
1,000,000 electrons
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25.3 Insulators and Conductors
You have seen that there are two classes of materials as defined by their electrical 
properties: insulators and conductors. It’s time for a closer look at these materials.

FIgurE 25.4 looks inside an insulator and a metallic conductor. The electrons in the 
insulator are all tightly bound to the positive nuclei and not free to move around. 
Charging an insulator by friction leaves patches of molecular ions on the surface, but 
these patches are immobile.

In metals, the outer atomic electrons (called the valence electrons in chemistry) are 
only weakly bound to the nuclei. As the atoms come together to form a solid, these 
outer electrons become detached from their parent nuclei and are free to wander about 
through the entire solid. The solid as a whole remains electrically neutral, because 
we have not added or removed any electrons, but the electrons are now rather like a 
negatively charged gas or liquid—what physicists like to call a sea of electrons—
permeating an array of positively charged ion cores.

The primary consequence of this structure is that electrons in a metal are highly 
mobile. They can quickly and easily move through the metal in response to electric 
forces. The motion of charges through a material is what we will later call a current, 
and the charges that physically move are called the charge carriers. The charge carri-
ers in metals are electrons.

Metals aren’t the only conductors. Ionic solutions, such as salt water, are also good 
conductors. But the charge carriers in an ionic solution are the ions, not electrons. We’ll 
focus on metallic conductors because of their importance in applications of electricity.

Charging
Insulators are often charged by rubbing. The charge diagrams of FIgurE 25.5 show that 
the charges on the rod are on the surface and that charge is conserved. The charge can 
be transferred to another object upon contact, but it doesn’t move around on the rod.

FIgurE 25.4 A microscopic look at 
insulators and conductors.

Valence electrons form 
a “sea of electrons.”

Insulator

Metal

Positive
ion cores

Nucleus

Core electrons

Valence electrons

Valence electrons
are tightly bound.

FIgurE 25.5 An insulating rod is charged by rubbing.
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Rub the plastic rod
with a piece of wool.

The positive charge on the wool is
equal to the negative charge on the rod.

Negative charges are immobile
on the rod’s surface.This end is 

still neutral.

Metals usually cannot be charged by rubbing, but Experiment 9 showed that a metal 
sphere can be charged by contact with a charged plastic rod. FIgurE 25.6 gives a pictorial 
explanation. An essential idea is that the electrons in a conductor are free to move. 
Once charge is transferred to the metal, repulsive forces between the negative charges 
cause the electrons to move apart from each other.

Note that the newly added electrons do not themselves need to move to the far cor-
ners of the metal. Because of the repulsive forces, the newcomers simply “shove” the 
entire electron sea a little to the side. The electron sea takes an extremely short time 
to adjust itself to the presence of the added charge, typically less than 10-9 s. For all 
practical purposes, a conductor responds instantaneously to the addition or removal 
of charge.

Other than this very brief interval during which the electron sea is adjusting, the 
charges in an isolated conductor are in static equilibrium. That is, the charges are at 
rest and there is no net force on any charge. This condition is called electrostatic 
equilibrium. If there were a net force on one of the charges, it would quickly move to 
an equilibrium point at which the force was zero.

FIgurE 25.6 A conductor is charged by 
contact with a charged plastic rod.
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Charge is
transferred to the
metal upon contact.

These charges
repel each other.

Charge spreads
over the surface
of the metal.

Plastic

Metal

Very
fast
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Electrostatic equilibrium has an important consequence:

In an isolated conductor, any excess charge is located on the surface of the 
conductor.

To see this, suppose there were an excess electron in the interior of an isolated conductor. 
The extra electron would upset the electrical neutrality of the interior and exert forces on 
nearby electrons, causing them to move. But their motion would violate the assumption of 
static equilibrium, so we’re forced to conclude that there cannot be any excess electrons 
in the interior. Any excess electrons push each other apart until they’re all on the surface.

FIgurE 25.7 A charged electroscope.

Metal sphere

Metal post

Very thin
gold leaves

Glass box to 
isolate gold leaves

Charging the
electroscope
causes the gold
leaves to repel
each other.

FIgurE 25.8 The process by which an electroscope is charged.
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Plastic

Electroscope

Very fast

1. Negative charges (i.e., elec-
    trons) are transferred from
    the rod to the metal sphere
    upon contact.

2. Metal is a conductor.
 Therefore charge very quickly
 spreads throughout the entire
 electroscope.

3. Like charges repel. The
 negatively charged leaves exert
 repulsive forces on each other,
 causing them to spread apart.

Discharging
Pure water is not a terribly good conductor, but nearly all water contains a variety of 
dissolved minerals that float around as ions. Dissolved table salt, as we noted previ-
ously, separates into Na+ and Cl- ions. These ions are the charge carriers, allowing salt 
water to be a fairly good conductor.

The human body consists largely of salt water. Consequently, and occasion-
ally tragically, humans are reasonably good conductors. This fact allows us to 
understand how it is that touching a charged object discharges it, as we observed 
in Experiment 10. As FIgurE 25.9 shows, the net effect of touching a charged metal 
is that it and the conducting human together become a much larger conductor 
than the metal alone. Any excess charge that was initially confined to the metal 
can now spread over the larger metal + human conductor. This may not entirely 
discharge the metal, but in typical circumstances, where the human is much larger 
than the metal, the residual charge remaining on the metal is much reduced from 
the original charge. The metal, for most practical purposes, is discharged. In es-
sence, two conductors in contact “share” the charge that was originally on just 
one of them.

Moist air is a conductor, although a rather poor one. Charged objects in air slowly 
lose their charge as the object shares its charge with the air. The earth itself is a giant 

FIgurE 25.9 Touching a charged metal 
discharges it.
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Metal

Charges spread
through  the
metal � human
system. Very
little charge is
left on the metal.

ExAMPLE 25.2  Charging an electroscope
Many electricity demonstrations are carried out with the help of 
an electroscope like the one shown in FIgurE 25.7. Touching the 
sphere at the top of an electroscope with a charged plastic rod 
causes the leaves to fly apart and remain hanging at an angle. Use 
charge diagrams to explain why.

MoDEL We’ll use the charge model and the model of a conductor 
as a material through which electrons move.

vISuALIzE FIgurE 25.8 uses a series of charge diagrams to show the 
charging of an electroscope.



conductor because of its water, moist soil, and a variety of ions. Any object that is 
physically connected to the earth through a conductor is said to be grounded. The 
effect of being grounded is that the object shares any excess charge it has with the 
entire earth! But the earth is so enormous that any conductor attached to the earth will 
be completely discharged.

The purpose of grounding objects, such as circuits and appliances, is to prevent the 
buildup of any charge on the objects. The third prong on appliances and electronics 
that have a three-prong plug is the ground connection. The building wiring physically 
connects that third wire deep into the ground somewhere just outside the building, 
often by attaching it to a metal water pipe that goes underground.

Charge Polarization
One observation from Section 25.1 still needs an explanation. How do charged objects 
of either sign exert an attractive force on a neutral object? To begin answering this 
question, FIgurE 25.10 shows a positively charged rod held close to—but not touching—
a neutral electroscope. The leaves move apart and stay apart as long as you hold 
the rod near, but they quickly collapse when it is removed. Can we understand this 
behavior?

We can, and FIgurE 25.11a shows how. Although the metal as a whole is still elec-
trically neutral, we say that the object has been polarized. Charge polarization is 
a slight separation of the positive and negative charges in a neutral object. Charge 
polarization produces an excess positive charge on the leaves of the electroscope 
shown in FIgurE 25.11b, so they repel each other. But because the electroscope has no 
net charge, the electron sea quickly readjusts once the rod is removed.

FIgurE 25.10 A charged rod held close 
to an electroscope causes the leaves to 
repel each other.

The electroscope is
neutral, yet the leaves
repel each other.
Why?

Bring a positively charged glass rod close to 
an electroscope without touching the sphere.
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FIgurE 25.11 A charged rod polarizes a metal.

The metal’s net charge 
is still zero, but it has been 
polarized by the charged rod.

A deficit of electrons—a net 
positive charge—is created 
on the far surface.
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(a) The sea of electrons is attracted to the rod
and shifts so that there is excess negative
charge on the near surface.
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The electroscope is polarized by the
charged rod. The sea of electrons shifts
toward the positive rod.

Although the net charge on the electroscope is 
still zero, the leaves have excess positive charge 
and repel each other.
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(b) 

Why don’t all the electrons in Figure 25.11a rush to the side near the positive 
charge? Once the electron sea shifts slightly, the stationary positive ions begin to 
exert a force, a restoring force, pulling the electrons back to the right. The equilibrium 
position for the sea of electrons is just far enough to the left that the forces due to the 
external charge and the positive ions are in balance. In practice, the displacement of 
the electron sea is usually less than 10-15 m!

Charge polarization explains not only why the electroscope leaves deflect but also 
how a charged object exerts an attractive force on a neutral object. FIgurE 25.12 on the next 
page shows a positively charged rod near a neutral piece of metal. Because the electric 
force decreases with distance, the attractive force on the electrons at the top surface is 
slightly greater than the repulsive force on the ions at the bottom. The net force toward 
the charged rod is called a polarization force. The polarization force arises because the 
charges in the metal are separated, not because the rod and metal are oppositely charged.

25.3 . Insulators and Conductors    729
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A negatively charged rod would push the electron sea slightly away, polarizing the 
metal to have a positive upper surface charge and a negative lower surface charge. 
Once again, these are the conditions for the charge to exert a net attractive force on 
the metal. Thus our charge model explains how a charged object of either sign attracts 
neutral pieces of metal.

The Electric Dipole
Now let’s consider a slightly trickier situation. Why does a charged rod pick up paper, 
which is an insulator rather than a metal? First consider what happens when we bring 
a positive charge near an atom. As FIgurE 25.13a shows, the charge polarizes the atom. 
The electron cloud doesn’t move far, because the force from the positive nucleus pulls 
it back, but the center of positive charge and the center of negative charge are now 
slightly separated.

FIgurE 25.12 The polarization force on a neutral piece of metal is due to the slight 
charge separation.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Fup

r

Fnet

r

Fdown

r

�������������

1. The charged rod polarizes 
 the neutral metal, causing the 
 top surface to be negative and 
 the bottom surface to be positive.

3. The rod also exerts a 
 downward repulsive force on 
 the excess positive ion cores 
 at the bottom surface.

2. The rod exerts an upward
 attractive force on the excess
 electrons at the top surface.

4. Because electric force 
 decreases with distance, 
 Fup � Fdown. Thus there is 
 a net upward force on the 
 neutral metal that attracts 
 it to the positive rod!

FIgurE 25.13 A neutral atom is polarized by an external charge, forming an electric dipole.
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In an isolated atom, the electron 
cloud is centered on the nucleus.

The polarized atom is an electric dipole.
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(b)

Electric dipoles can be created by either 
positive or negative charges. In both cases, 
there is an attractive net force toward the 
external charge.

Two opposite charges with a slight separation between them form what is called 
an electric dipole. FIgurE 25.13b shows that an external charge of either sign polarizes 
the atom to produce an electric dipole with the near end opposite in sign to the charge. 
(The actual distortion from a perfect sphere is minuscule, nothing like the distortion 
shown in the figure.) The attractive force on the dipole’s near end slightly exceeds 
the repulsive force on its far end because the near end is closer to the charge. The net 
force, an attractive force between the charge and the atom, is another example of a 
polarization force.

An insulator has no sea of electrons to shift if an external charge is brought close. 
Instead, as FIgurE 25.14 shows, all the individual atoms inside the insulator become 
polarized. The polarization force acting on each atom produces a net polarization force 
toward the external charge. This solves the puzzle. A charged rod picks up pieces of 
paper by

	■ Polarizing the atoms in the paper,
	■ Then exerting an attractive polarization force on each atom.

This is important. Make sure you understand all the steps in the reasoning.

FIgurE 25.14 The atoms in an insulator 
are polarized by an external charge.
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Stop to think 25.3
 An electroscope is positively charged by touching it with a posi-

tive glass rod. The electroscope leaves spread apart and the glass rod is removed. Then 
a negatively charged plastic rod is brought close to the top of the electroscope, but it 
doesn’t touch. What happens to the leaves?

 a. The leaves get closer together.
 b. The leaves spread farther apart.
 c. One leaf moves higher, the other lower.
 d. The leaves don’t move.

Charging by Induction
Charge polarization is responsible for an interesting and counterintuitive way of 
charging an electroscope. FIgurE 25.15 shows a positively charged glass rod held near an 
electroscope but not touching it, while a person touches the electroscope with a finger. 
Unlike what happens in Figure 25.10, the electroscope leaves hardly move.

FIgurE 25.15 Charging by induction.
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Charge polarization occurs, as it did in Figure 25.10, but this time in the much 
larger electroscope + person conductor. If the person removes his or her finger while 
the system is polarized, the electroscope is left with a net negative charge and the per-
son has a net positive charge. The electroscope has been charged opposite to the rod 
in a process called charging by induction.

25.4 Coulomb’s Law
The first three sections have established a model of charges and electric forces. This 
model has successfully provided a qualitative explanation of electric phenomena; now 
it’s time to become quantitative. Experiment 4 in Section 25.1 found that the electric 
force decreases with distance. The force law that describes this behavior is known as 
Coulomb’s law.

Charles Coulomb was one of many scientists investigating electricity in the late 
18th century. Coulomb had the idea of studying electric forces using the torsion bal-
ance scheme by which Cavendish had measured the value of the gravitational constant 
G (see Section 13.4). This was a difficult experiment. Despite many obstacles, Cou-
lomb announced in 1785 that the electric force obeys an inverse-square law analogous 
to Newton’s law of gravity. Today we know it as Coulomb’s law.
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Coulomb’s law:

 1. If two charged particles having charges q1 and q2 are a distance r apart, the 
particles exert forces on each other of magnitude

 F1 on 2 = F2 on 1 =
K 0 q1 0 0 q2 0

r2  (25.2)

  where K is called the electrostatic constant. These forces are an action/
reaction pair, equal in magnitude and opposite in direction.

 2. The forces are directed along the line joining the two particles. The forces are 
repulsive for two like charges and attractive for two opposite charges.

We sometimes speak of the “force between charge q1 and charge q2,< but keep in 
mind that we are really dealing with charged objects that also have a mass, a size, and 
other properties. Charge is not some disembodied entity that exists apart from matter. 
Coulomb’s law describes the force between charged particles, which are also called 
point charges. A charged particle, which is an extension of the particle model we used 
in Part I, has a mass and a charge but has no size.

Coulomb’s law looks much like Newton’s law of gravity, but there is one important 
difference: The charge q can be either positive or negative. Consequently, the absolute 
value signs in Equation 25.2 are especially important. The first part of Coulomb’s law 
gives only the magnitude of the force, which is always positive. The direction must 
be determined from the second part of the law. FIgurE 25.16 shows the forces between 
different combinations of positive and negative charges.

units of Charge
Coulomb had no unit of charge, so he was unable to determine a value for K, 
whose numerical value depends on the units of both charge and distance. The SI 
unit of charge, the coulomb (C), is derived from the SI unit of current, so we’ll 
have to await the study of current in Chapter 30 before giving a precise definition. 
For now we’ll note that the fundamental unit of charge e has been measured to 
have the value

 e = 1.60 * 10-19 C

This is a very small amount of charge. Stated another way, 1 C is the net charge of 
roughly 6.25 * 1018 protons.

NoTE  The amount of charge produced by rubbing plastic or glass rods is typically 
in the range 1 nC (10-9 C) to 100 nC (10-7 C). This corresponds to an excess or 
deficit of 1010 to 1012 electrons. 

Once the unit of charge is established, torsion balance experiments such as Cou-
lomb’s can be used to measure the electrostatic constant K. In SI units

 K = 8.99 * 109 N m2/C2

It is customary to round this to K = 9.0 * 109 N m2/C2 for all but extremely precise 
calculations, and we will do so.

Surprisingly, we will find that Coulomb’s law is not explicitly used in much of the 
theory of electricity. While it is the basic force law, most of our future discussion and 
calculations will be of things called fields and potentials. It turns out that we can make 
many future equations easier to use if we rewrite Coulomb’s law in a somewhat more 

FIgurE 25.16 Attractive and repulsive 
forces between charged particles.
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complicated way. Let’s define a new constant, called the permittivity constant P0 
(pronounced “epsilon zero” or “epsilon naught”), as

 P0 =
1

4pK
= 8.85 * 10-12 C2/N m2

Rewriting Coulomb’s law in terms of P0 gives us

 F =
1

4pP0
 
0 q1 0 0 q2 0

r2  (25.3)

It will be easiest when using Coulomb’s law directly to use the electrostatic constant 
K. However, in later chapters we will switch to the second version with P0.

using Coulomb’s Law
Coulomb’s law is a force law, and forces are vectors. It has been many chapters since 
we made much use of vectors and vector addition, but these mathematical techniques 
will be essential in our study of electricity and magnetism.

There are two important observations regarding Coulomb’s law:

 1. Coulomb’s law applies only to point charges. A point charge is an idealized 
material object with charge and mass but with no size or extension. For practical 
purposes, two charged objects can be modeled as point charges if they are much 
smaller than the separation between them.

 2. Electric forces, like other forces, can be superimposed. If multiple charges 
1, 2, 3, . . . are present, the net electric force on charge j due to all other charges is

 F
u

net = F
u

1 on j + F
u

2 on j + F
u

3 on j + g (25.4)

  where each of the F
u

i on j is given by Equation 25.2 or 25.3.

These conditions are the basis of a strategy for using Coulomb’s law to solve elec-
trostatic force problems.

ProBLEM-SoLvINg
STrATEgy 25.1  Electrostatic forces and Coulomb’s law

MoDEL Identify point charges or objects that can be modeled as point charges.

vISuALIzE Use a pictorial representation to establish a coordinate system, show 
the positions of the charges, show the force vectors on the charges, define dis-
tances and angles, and identify what the problem is trying to find. This is the 
process of translating words to symbols.

SoLvE The mathematical representation is based on Coulomb’s law:

 F1 on 2 = F2 on 1 =
K 0 q1 0 0 q2 0

r2

 ■ Show the directions of the forces—repulsive for like charges, attractive for 
opposite charges—on the pictorial representation.

 ■ When possible, do graphical vector addition on the pictorial representation. 
While not exact, it tells you the type of answer you should expect.

 ■ Write each force vector in terms of its x- and y-components, then add the 
components to find the net force. Use the pictorial representation to deter-
mine which components are positive and which are negative.

ASSESS Check that your result has the correct units, is reasonable, and answers 
the question.

Exercise 26  

25.4 . Coulomb’s Law    733
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  F1 on 3 =
K 0 q1 0 0 q3 0

r13 

2

  =
(9.0 * 109 N m2/C2)(50 * 10-9 C)(30 * 10-9 C)

(0.100 m)2  

  = 1.35 * 10-3 N

where we used r13 = 10.0 cm.

FIgurE 25.19 A pictorial representation 
of the charges and forces.

  F1 on 3 =
Kq1 0 q3 0

r13 

2 =
Kq1 0 q3 0

x2

  F2 on 3 =
Kq2 0 q3 0

r23 

2 =
K(3q1) 0 q3 0

(d - x)2

Charges q1 and q2 are positive and do not need absolute value 
signs. Equating the two forces gives

 
Kq1 0 q3 0

x2 =
3Kq1 0 q3 0
(d - x)2

The term Kq1 0 q3 0  cancels. Multiplying by x2(d - x)2 gives

 (d - x)2 = 3x2

which can be rearranged into the quadratic equation

 2x2 + 2dx - d 2 = 2x2 + 20x - 100 = 0

where we used d = 10 cm and x is in cm. The solutions to this 
equation are

x = +3.66 cm and -13.66 cm

Both are points where the magnitudes of the two forces are equal, 
but x = -13.66 cm is a point where the magnitudes are equal 
while the directions are the same. The solution we want, which is 
between the charges, is x = 3.66 cm. Thus the point to place q3 is 
3.66 cm from q1 along the line joining q1 and q2.

ASSESS q1 is smaller than q2, so we expect the point at which the 
forces balance to be closer to q1 than to q2. The solution seems rea-
sonable. Note that the problem statement has no coordinates, so 
;x = 3.66 cm< is not an acceptable answer. You need to describe 
the position relative to q1 and q2.

ExAMPLE 25.3  The point of zero force
Two positively charged particles q1 and q2 = 3q1 are 10.0 cm 
apart on the x-axis. Where (other than at infinity) could a third 
charge q3 be placed so as to experience no net force?

MoDEL Model the charged particles as point charges.

vISuALIzE FIgurE 25.17 establishes a coordinate system with q1 at 
the origin. We first need to identify the region of space in which 
q3 must be located. We have no information about the sign of q3, 
so apparently the position for which we are looking will work for 
either sign. You can see from the figure that the forces at point A, 
above the axis, and at point B, outside the charges, cannot possi-
bly add to zero. However, at point C on the x-axis between the 
charges, the two forces are oppositely directed.

FIgurE 25.17 A pictorial representation of the charges 
and forces.
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Only if q3 is somewhere along
the line between q1 and q2 can
the forces add to zero.

SoLvE The mathematical problem is to find the position for 
which the forces F

u

1 on 3 and F
u

2 on 3 are equal in magnitude. If q3 
is distance x from q1, it is distance d - x from q2. The magnitudes 
of the forces are

ExAMPLE 25.4  Three charges
Three charged particles with q1 =  
-50 nC, q2 = +50 nC, and q3 =  
+30 nC are placed on the corners of 
the 5.0 cm * 10.0 cm rectangle shown 
in FIgurE 25.18. What is the net force 
on charge q3 due to the other two 
charges? Give your answer both in 
component form and as a magnitude 
and direction.

MoDEL Model the charged particles as point charges.

vISuALIzE The pictorial representation of FIgurE 25.19 establishes 
a coordinate system. q1 and q3 are opposite charges, so force vector 

F
u

1 on 3 is an attractive force toward q1. q2 and q3 are like charges, 

so force vector F
u

2 on 3 is a repulsive force away from q2. q1 and q2 

have equal magnitudes, but F
u

2 on 3 has been drawn shorter than 

F
u

1 on 3 because q2 is farther from q3. Vector addition has been used 
to draw the net force vector  and to define the angle f.

SoLvE The question asks for a force, so our answer will be the 
vector sum F

u

3 = F
u

1 on 3 + F
u

2 on 3. We need to write F
u

1 on 3 and 

F
u

2 on 3 in component form. The magnitude of force F
u

1 on 3 can be 
found using Coulomb’s law:

FIgurE 25.18 The 
three charges.

q3 � �30 nC

q1 � �50 nC

q2 � �50 nC

5.0 cm

10.0 cm

�

�

�



 u = tan-1110.0 cm

5.0 cm 2 = tan-1 (2.0) = 63.4�

Thus F
u

2 on 3 = (-4.83 in + 9.66jn) * 10-4 N. Now we can add 
F
u

1 on 3 and F
u

2 on 3 to find

 F
u

3 = F
u

1 on 3 + F
u

2 on 3 = (-4.83 in - 3.84jn) * 10-4 N

This would be an acceptable answer for many problems, but 
sometimes we need the net force as a magnitude and direction. 
With angle f as defined in the figure, these are

  F3 = 2F3x 

2 + F3y 

2 = 6.2 * 10-4 N

  f = tan-1 `
F3y

F3x

` = 38�

Thus F
u

3 = (6.2 * 10-4 N, 38� below the negative x-axis).

ASSESS The forces are not large, but they are typical of electrostatic 
forces. Even so, you’ll soon see that these forces can produce very 
large accelerations because the masses of the charged objects are 
usually very small.

The pictorial representation shows that F
u

1 on 3 points down-
ward, in the negative y-direction, so

 F
u

1 on 3 = -1.35 * 10-3
 jn N

To calculate F
u

2 on 3 we first need the distance r23 between the 
charges:

 r23 = 2(5.0 cm)2 + (10.0 cm)2 = 11.2 cm

The magnitude of F
u

2 on 3 is thus

  F2 on 3 =
K 0 q2 0 0 q3 0

r23 

2

  =
(9.0 * 109 N m2/C2)(50 * 10-9 C)(30 * 10-9 C)

(0.112 m)2

  = 1.08 * 10-3 N

This is only a magnitude. The vector F
u

2 on 3 is

 F
u

2 on 3 = -F2 on 3 cos u in + F2 on 3 sin ujn

where angle u is defined in the figure and the signs (negative 
x-component, positive y-component) were determined from the 
pictorial representation. From the geometry of the rectangle,

ASSESS The values used in this example are realistic for spheres 
�  2 mm in diameter. In general, as in this example, electric forces 
are significantly larger than gravitational forces. Consequently, we 
can neglect gravity when working electric-force problems unless 
the particles are fairly massive.

FIgurE 25.20 A pictorial representation 
of the charges and forces.

Plastic

Glass

F1 on 2

r

q1 � �10 nC

q2 � �10 nC
nr

y

1.0 cm

0

FG

r

ExAMPLE 25.5  Lifting a glass bead
A small plastic sphere charged to -10 nC is held 1.0 cm above a 
small glass bead at rest on a table. The bead has a mass of 15 mg 
and a charge of +10 nC. Will the glass bead “leap up” to the plas-
tic sphere?

MoDEL Model the plastic sphere and glass bead as point charges.

vISuALIzE FIgurE 25.20 establishes a y-axis, identifies the plastic 
sphere as q1 and the glass bead as q2, and shows a free-body 
diagram.

SoLvE If F1 on 2 is less than the gravitational force FG = mbeadg, then 
the bead will remain at rest on the table with F

u

1 on 2 + F
u

G + n
u

= 0
u

. 
But if F1 on 2 is greater than mbeadg, the glass bead will accelerate 
upward from the table. Using the values provided, we have

  F1 on 2 =
K 0 q1 0 0 q2 0

r2 = 9.0 * 10-3 N

  FG = mbeadg = 1.5 * 10-4 N

F1 on 2 exceeds mbeadg by a factor of 60, so the glass bead will leap 
upward.

force on a point charge q is characterized by a power law F � qr n, 
where r is the distance from the wire. To test this hypothesis and, 
if it is correct, to determine the exponent n, you first set up a long, 
straight metal wire and charge it by connecting it to a high-voltage 

ExAMPLE 25.6  A point charge and a charged wire
Coulomb’s inverse-square law applies only to the electric force 
between two point charges. Your lab assignment for the week is 
to discover the law describing the force between a point charge 
and a long, straight, charged metal wire. It is postulated that the 

Continued

25.4 . Coulomb’s Law    735
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Stop to think 25.4 
 Charged spheres A and B exert repulsive 

forces on each other. qA = 4qB. Which statement is true?

 a. FA on B 7 FB on A b. FA on B = FB on A c. FA on B 6 FB on A

25.5 The Field Model
Electric and magnetic forces, like gravity, are long-range forces; no contact is required 
for one charged particle to exert a force on another. But this raises some troubling 
issues. For example, consider the charged particles A and B in FIgurE 25.22. If A sud-
denly starts moving, as shown by the arrow, the force vector on B must pivot to 
follow A. Does this happen instantly? Or is there some delay between when A moves 
and when the force  F

u

A on B responds?
Neither Coulomb’s law nor Newton’s law of gravity is dependent on time, so the 

answer from the perspective of Newtonian physics has to be “instantly.” Yet most 
scientists found this troubling. What if A is 100,000 light years from B? Will B 
respond instantly to an event 100,000 light years away? The idea of instantaneous 
transmission of forces had become unbelievable to most scientists by the beginning 
of the 19th century. But if there is a delay, how long is it? How does the information 
to “change force” get sent from A to B? These were the issues when a young Michael 
Faraday appeared on the scene.

Michael Faraday is one of the most interesting figures in the history of science. 
Because of the late age at which he started his education—he was a teenager—he 

FIgurE 25.21 is a graph of log F versus log r. It is clearly lin-
ear, which validates the postulated power-law force. And because 
distances were measured to only two significant figures, the ex-
perimental slope of -0.997 is consistent with the simpler n = -1. 
Thus our data show that the force between a point charge and a 
long, charged wire can be characterized as F � q/r.

power supply. You then charge a small plastic ball and, using a 
sensitive force probe, measure the force on the ball at different 
distances from the wire. Your data are as follows:

Distance (cm) Force (mN)

2.0 895

4.0 455

6.0 310

8.0 215

10.0 185

Is the force described by a power law? And if so, what is the 
exponent?

MoDEL Model the small plastic ball as a point charge.

SoLvE A power law is represented by a linear log-log graph. To 
see why, we can write the postulated force law as

 F = cqr n

where c is an unknown proportionality constant. If we take the 
logarithm of both sides, applying the rules log(ab) = log a + log b 
and log an = n log a, we get

 log F = log(cqr n) = log(cq) + log r n = log(cq) + n log r

If we plot log F on the y-axis against log r on the x-axis—a log-
log graph—it should be a straight line with slope n. A nonlinear 
log-log graph would disprove the hypothesis that the force is char-
acterized by a power law.

Best-fit line

�2.0 �1.5 �1.0

y � �0.997x � 4.739
�3.0

�3.5

�4.0

log[F (N)]

log[r  (m)]

FIgurE 25.21 A log-log graph of force versus distance.

��

B

���
� �
���

A

FIgurE 25.22 if charge A moves, how 
long does it take the force vector on B 
to respond?

�

�

A B�
Original FA on B

r

FA on B after
charge A moves

r

ASSESS The force depends inversely on the distance. The inverse-
square dependence of Coulomb’s law describes only the force 
between two point charges.
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never became fluent in mathematics. In place of equations, Faraday’s brilliant and 
insightful mind developed many ingenious pictorial methods for thinking about 
and describing physical phenomena. By far the most important of these was the 
field.

The Concept of a Field
Faraday was particularly impressed with the pattern that iron filings make when 
sprinkled around a magnet, as seen in FIgurE 25.23. The pattern’s regularity and the 
curved lines suggested to Faraday that the space itself around the magnet is filled 
with some kind of magnetic influence. Perhaps the magnet in some way alters the 
space around it. In this view, a piece of iron near the magnet responds not directly 
to the magnet but, instead, to the alteration of space caused by the magnet. This 
space alteration, whatever it is, is the mechanism by which the long-range force is 
exerted.

FIgurE 25.24 illustrates Faraday’s idea. The Newtonian view was that A and B inter-
act directly. In Faraday’s view, A first alters or modifies the space around it, and par-
ticle B then comes along and interacts with this altered space. The alteration of space 
becomes the agent by which A and B interact. Furthermore, this alteration could easily 
be imagined to take a finite time to propagate outward from A, perhaps in a wave-like 
fashion. If A changes, B responds only when the new alteration of space reaches it. 
The interaction between B and this alteration of space is a local interaction, rather like 
a contact force.

Faraday’s idea came to be called a field. The term “field,” which comes from math-
ematics, describes a function that assigns a vector to every point in space. When used 
in physics, a field conveys the idea that the physical entity exists at every point in 
space. That is, indeed, what Faraday was suggesting about how long-range forces 
operate. The charge makes an alteration everywhere in space. Other charges then re-
spond to the alteration at their position. The alteration of the space around a mass is 
called the gravitational field. Similarly, the space around a charge is altered to create 
the electric field.

NoTE  The concept of a field is in sharp contrast to the concept of a particle. A 
particle exists at one point in space. The purpose of Newton’s laws of motion is to 
determine how the particle moves from point to point along a trajectory. A field 
exists simultaneously at all points in space. 

Faraday’s idea was not taken seriously at first; it seemed too vague and nonmath-
ematical to scientists steeped in the Newtonian tradition of particles and forces. But 
the significance of the concept of field grew as electromagnetic theory developed 
during the first half of the 19th century. What seemed at first a pictorial “gimmick” 
came to be seen as more and more essential for understanding electric and magnetic 
forces.

Faraday’s field ideas were finally placed on a mathematical foundation in 1865 
by James Clerk Maxwell. Maxwell was able to describe completely all the known 
behaviors of electric and magnetic fields in four equations, known today as Maxwell’s 
equations. We will explore aspects of Maxwell’s theory as we go along, then look at 
the full implications of Maxwell’s equations in Chapter 34.

The Electric Field
We begin our investigation of electric fields by postulating a field model that de-
scribes how charges interact:

 1. Some charges, which we will call the source charges, alter the space around 
them by creating an electric field E

u

.
 2. A separate charge in the electric field experiences a force F

u

exerted by the field.

FIgurE 25.23 iron filings sprinkled 
around the ends of a magnet suggest 
that the influence of the magnet 
extends into the space around it.

FIgurE 25.24 Newton’s and Faraday’s 
ideas about long-range forces.

In the Newtonian view, A
exerts a force directly on B.

In Faraday’s view, A alters
the space around it. (The wavy
lines are poetic license. We
don’t know what the alteration
looks like.)

Particle B  then responds to
the altered space. The altered
space is the agent that exerts
the force on B.

A

A

B

B

Ffield on B

r

FA on B

r
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Suppose some set of charges—the source charges—have created an electric field. 
We can learn about the field by using a different charge q as a probe charge. As we 
move the probe charge around from point to point in space, it experiences a chang-
ing electric force F

u

on q due to the other charges. This suggests that “something” 
is present at each point in space to cause the force that charge q experiences. We 
can use the force on the probe charge to define the electric field E

u

 at the point 
(x, y, z) as

 E
u

(x, y, z) K
F
u

on q at (x, y, z)

q
  (25.5)

We’re defining the electric field as a force-to-charge ratio; hence the units of the elec-
tric field are newtons per coulomb, or N/C. The magnitude E of the electric field is 
called the electric field strength.

If a probe charge q experiences an electric force at a point in space, as FIgurE 25.25a 

shows, we say that there is an electric field at that point causing the force. Further, we 
define the electric field at that point to be the vector given by Equation 25.5. FIgurE  25.25b 
shows the electric field only at two points, but you can imagine “mapping out” the 
electric field by moving charge q all through space.

NoTE  Probe charge q also creates an electric field. But charges don’t exert forces 
on themselves, so q is measuring only the electric field of other charges. 

The basic idea of the field model is that the field is the agent that exerts an elec-
tric force on a charged particle. Notice three important ideas about the field:

 1. Equation 25.5 assigns a vector to every point in space. That is, the electric field 
is a vector field. Electric field diagrams will show a sample of the vectors, but 
there is an electric field vector at every point whether one is shown or not.

 2. If q is positive, the electric field vector points in the same direction as the force 
on the charge.

 3. Because q appears in Equation 25.5, it may seem that the electric field 
depends on the size of the charge used to probe the field. It doesn’t. We 
know from Coulomb’s law that the force F

u

on q is proportional to q. Thus the 
electric field defined in Equation 25.5 is independent of the charge q that 
probes the field. The electric field depends only on the source charges that 
create the field.

In practice we often want to turn Equation 25.5 around and find the force exerted 
by a known field. That is, a charged particle with charge q at a point in space where 
the electric field is E

u

experiences an electric force

 F
u

on q = qE
u

 (25.6)

If q is positive, the force on the particle is in the direction of E
u

. The force on a negative 
charge is opposite the direction of E

u

.

FIgurE 25.25 Charge q is a probe of the 
electric field.

r
Fon q

Point 1

r
Fon q

Point 2

(a)
Charge q is being used as a probe 
charge. The force on q tells us that 
there’s an electric field at point 1.

Now charge q is placed at point 2. 
There’s also an electric field here 
that differs from the field at point 1.

�

�

r
E2

r
E1

The dots are the
points at which
the field is known.

This is the electric
field vector at point 1.

This is the electric
field vector at point 2.

(b)

1

2

ExAMPLE 25.7  Electric forces in a cell
Every cell in your body is electrically active in various ways. For example, nerve 
propagation occurs when large electric fields in the cell membranes of neurons cause 
ions to move through the cell walls. The field strength in a typical cell membrane 
is 1.0 * 107 N/C. What is the magnitude of the electric force on a singly charged 
calcium ion?

MoDEL The ion is a point charge in an electric field. A singly charged ion is missing one 
electron and has net charge q = +e.



Stop to think 25.5 
 An electron is placed at the position marked 

by the dot. The force on the electron is

 a. Zero. b. To the right. c. To the left.
 d. There’s not enough information to tell.

The Electric Field of a Point Charge
We will begin to put the definition of the electric field to full use in the next chapter. 
For now, to develop the ideas, we will determine the electric field of a single point 
charge q. FIgurE 25.26a shows charge q and a point in space at which we would like to 
know the electric field. We need a second charge, shown as q� in FIgurE 25.26b, to serve 
as a probe of the electric field.

For the moment, assume both charges are positive. The force on q�, which is repul-
sive and directed straight away from q, is given by Coulomb’s law:

 F
u

on q� = 1 1

4pP0
 
qq�

r2  , away from q2  (25.7)

It’s customary to use 1/4pP0 rather than K for field calculations. Equation 25.5 defined 
the electric field in terms of the force on a probe charge, thus the electric field at this 
point is

 E
u

=
F
u

on q�

q�
= 1 1

4pP0
 
q

r2 , away from q2  (25.8)

The electric field is shown in FIgurE 25.26c.

NoTE  The expression for the electric field is similar to Coulomb’s law. To dis-
tinguish the two, remember that Coulomb’s law has a product of two charges in 
the numerator. It describes the force between two charges. The electric field has a 
single charge in the numerator. It is the field of a charge. 

If we calculate the field at a sufficient number of points in space, we can draw a 
field diagram such as the one shown in FIgurE 25.27. Notice that the field vectors all 
point straight away from charge q. Also notice how quickly the arrows decrease in 
length due to the inverse-square dependence on r.

Keep these three important points in mind when using field diagrams:

 1. The diagram is just a representative sample of electric field vectors. The field 
exists at all the other points. A well-drawn diagram can tell you fairly well what 
the field would be like at a neighboring point.

 2. The arrow indicates the direction and the strength of the electric field at the point 
to which it is attached—that is, at the point where the tail of the vector is placed. 
In this chapter, we indicate the point at which the electric field is measured with 

E
r

E
r

E
r

E
r

FIgurE 25.26 Charge q� is used to probe 
the electric field of point charge q.

(a) What is the electric
field of q at this point?

�
Point charge

q

(b) 1. Place q� at the point
 to probe the field.

2. Measure the
 force on q�.

�

�

q

q�

r

(c)

3. The electric field is
       E � Fon q�/q�
 It is a vector in the
 direction of Fon q�.

�
q

rr

r

r
Fon q�

r
E

�

FIgurE 25.27 The electric field of a 
positive point charge.

SoLvE A charged particle in an electric field experiences an electric force F
u

on q = qE
u

. In 
this case, the magnitude of the force is

F = eE = (1.6 * 10-19 C)(1.0 * 107  N/C) = 1.6 * 10-12 N

ASSESS This may seem like an incredibly tiny force, but it is applied to a particle with mass 
m � 10-26 kg. The ion would have an unimaginable acceleration (F/m � 1014 m/s2) 
were it not for resistive forces as it moves through the membrane. Even so, an ion can 
cross the cell wall in less than 1 ms.

25.5 . The Field Model    739
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a dot. The length of any vector is significant only relative to the lengths of other 
vectors.

 3. Although we have to draw a vector across the page, from one point to another, 
an electric field vector is not a spatial quantity. It does not “stretch” from one 
point to another. Each vector represents the electric field at one point in space.

unit vector Notation
Equation 25.8 is precise, but it’s not terribly convenient. Furthermore, what happens if 
the source charge q is negative? We need a more concise notation to write the electric 
field, a notation that will allow q to be either positive or negative.

The basic need is to express “away from q” in mathematical notation. “Away from q” 
is a direction in space. To guide us, recall that we already have a notation for express-
ing certain directions—namely, the unit vectors in, jn, and kn. For example, unit vector in  
means “in the direction of the positive x-axis.” With a minus sign, - in  means “in the 
direction of the negative x-axis.” Unit vectors, with a magnitude of 1 and no units, 
provide purely directional information.

With this in mind, let’s define the unit vector rn to be a vector of length 1 that points 
from the origin to a point of interest. Unit vector rn provides no information at all about 
the distance to the point; it merely specifies the direction.

FIgurE 25.28a shows unit vectors rn1, rn2, and rn3 pointing toward points 1, 2, and 3. 
Unlike in  and jn, unit vector rn does not have a fixed direction. Instead, unit vector rn 
specifies the direction “straight outward from this point.” But that’s just what we need 
to describe the electric field vector. FIgurE 25.28b shows the electric fields at points 1, 
2, and 3 due to a positive charge at the origin. No matter which point you choose, the 
electric field at that point is “straight outward” from the charge. In other words, the 
electric field E

u

points in the direction of the unit vector rn.
With this notation, the electric field at distance r from a point charge q is

 E
u

=
1

4pP0
 
q

r2 rn  (electric field of a point charge) (25.9)

where rn is the unit vector from the charge toward the point at which we want to know 
the field. Equation 25.9 is identical to Equation 25.8, but written in a notation in which 
the unit vector rn expresses the idea “away from q.”

Equation 25.9 works equally well if q is negative. A negative sign in front of a 
vector simply reverses its direction, so the unit vector - rn points toward charge q. 
FIgurE 25.29 shows the electric field of a negative point charge. It looks like the electric 
field of a positive point charge except that the vectors point inward, toward the charge, 
instead of outward.

We’ll end this chapter with three examples of the electric field of a point charge. 
Chapter 26 will expand these ideas to the electric fields of multiple charges and of 
extended objects.

FIgurE 25.28 Using the unit vector rn.

3

1

2
The unit vectors specify
the directions to the points.

(a)
r1n

r3
n

r2n

�
E3

E1

E2

3

1

2

(b) r

r

r

Electric field at point 1
is in the direction of r1.n

E2 is in the direction of r2.
r

n

FIgurE 25.29 The electric field of a 
negative point charge.

�

ExAMPLE 25.8  Calculating the electric field
A -1.0 nC charged particle is located at the origin. Points 1, 2, 
and 3 have (x, y) coordinates (1 cm, 0 cm), (0 cm, 1 cm), and 
(1 cm, 1 cm), respectively. Determine the electric field E

u

 at these 
points, then show the vectors on an electric field diagram.

MoDEL The electric field is that of a negative point charge.

vISuALIzE The electric field points straight toward the origin. It 
will be weaker at (1 cm, 1 cm), which is farther from the charge.

SoLvE The electric field is

E
u

=
1

4pP0
 
q

r2 rn

where q = -1.0 nC = -1.0 * 10-9 C. The distance r is 1.0 cm =

0.010 m for points 1 and 2 and 112 * 1.0 cm2 = 0.0141 m for 
point 3. The magnitude of E

u

 at the three points is



Stop to think 25.6 
 Rank in order, from largest to smallest, the electric field strengths Ea 

to Ed at points a to d.

FIgurE 25.30 The electric field diagram 
of a -1.0 nC charged particle.

 E1 = E2 =
1

4pP0
 
0 q 0
r1 

2

 =
(9.0 * 109 N m2/C2)(1.0 * 10-9 C)

(0.010 m)2 = 90,000 N/C

 E3 =
1

4pP0
 
0 q 0
r3 

2

 =
(9.0 * 109 N m2 /C2)(1.0 * 10-9 C)

(0.0141 m)2 = 45,000 N/C

Because q is negative, the field at each of these positions points 
directly at charge q. The electric field vectors, in component 
form, are

  E
u

1 = -90,000 in N/C

  E
u

2 = -90,000jn N/C

  E
u

3 = -E3 cos 45� in - E3 sin 45�jn

  = (-31,800 in - 31,800 jn) N/C

r

q
a

r

2q
b

2r

q
c

2r

2q
d

ExAMPLE 25.9  The electric field of a proton
The electron in a hydrogen atom orbits the proton at a radius of 0.053 nm.

 a. What is the proton’s electric field strength at the position of the electron?
 b. What is the magnitude of the electric force on the electron?

SoLvE a. The proton’s charge is q = e. Its electric field strength at the distance of the 
electron is

 E =
1

4pP0
 
e

r2 =
1

4pP0
 

1.6 * 10-19 C

(5.3 * 10-11 m)2 = 5.1 * 1011 N/C

Notice how large this field is in comparison to the field of Example 25.8.
 b. We could use Coulomb’s law to find the force on the electron, but the whole point of 

knowing the electric field is that we can use it directly to find the force on a charge in 
the field. The magnitude of the force on the electron is

  Fon elec = 0 qe 0Eof proton

  = (1.60 * 10-19 C)(5.1 * 1011 N/C)

  = 8.2 * 10-8 N

These vectors are shown on the electric field diagram of 
FIgurE 25.30.

25.5 . The Field Model    741
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From the y-equation,

 T =
mg

cos u
 

The x-equation is then

 qE - k �x - mg tan u = 0

We can solve this for the electric field strength:

 E =
mg tan u + k �x

q

 =
(0.0030 kg)(9.8 m/s2) tan 15� + (0.050 N/m)(0.16 m)

20 * 10-9 C
 

 = 7.9 * 105 N/C

ASSESS We don’t yet have a way of judging whether this is a rea-
sonable field strength, but we’ll see in the next chapter that this is 
typical of the electric field strength near an object that has been 
charged by rubbing.

FIgurE 25.32 The free-body diagram.

ChALLENgE ExAMPLE 25.10  A charge in static equilibrium
A horizontal electric field causes the charged ball in FIgurE 25.31 
to hang at a 15� angle, as shown. The spring is plastic, so it doesn’t 
discharge the ball, and in its equilibrium position the spring 
extends only to the vertical dashed line. What is the electric field 
strength?

MoDEL Model the ball as a point charge in static equilibrium. The 
electric force on the ball is F

u

E = qE
u

. The charge is positive, so the 
force is in the same direction as the field.

vISuALIzE FIgurE 25.32 is a free-body diagram for the ball.

SoLvE The ball is in static equilibrium, so the net force on the 
ball must be zero. With the field applied, the spring is stretched by 
�x = L sin u = (0.60 m)(sin 15�) = 0.16 m, where L is the string 
length, and exerts a pulling force Fsp = k �x  to the left.

Newton’s first law, which we’ve not used in quite some time, is

 aFx = FE - Fsp - T sin u = 0

 aFy = T cos u - FG = T cos u - mg = 0

FIgurE 25.31 A charged ball 
hanging in static equilibrium.

r
E

3.0 g, 20 nC

60 cm

0.050 N/m

15�
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S u M M A r y
The goal of Chapter 25 has been to describe electric phenomena in terms of charges, forces, and fields.

Coulomb’s Law
The forces between two charged particles q1 and q2 separated by distance r are

F1 on 2 = F2 on 1 =
K 0 q1 0 0 q2 0

r2

These forces are an action/reaction pair directed along the line joining the particles.

• The forces are repulsive for two like charges, attractive for two opposite charges.

• The net force on a charge is the sum of the forces from all other charges.

• The unit of charge is the coulomb (C).

• The electrostatic constant is K = 9.0 * 109 N m2/C2.

general Principles

q1

q2

r

F2 on 1
r

F1 on 2
r

1

2

The Charge Model
There are two kinds of charge, positive and negative.

•	 Fundamental charges are protons and electrons, with charge {e 
where e = 1.60 * 10-19 C.

•	 Objects are charged by adding or removing electrons.

•	 The amount of charge is q = (Np - Ne)e.

•	 An object with an equal number of protons and electrons is neutral, 
meaning no net charge.

Charged objects exert electric forces on each other.

•	 Like charges repel, opposite charges attract.

•	 The force increases as the charge increases.

•	 The force decreases as the distance increases.

There are two types of material, insulators and 
conductors.

•	 Charge remains fixed in or on an insulator.

•	 Charge moves easily through or along conductors.

•	 Charge is transferred by contact between objects.

Charged objects attract neutral objects.

•	 Charge polarizes metal by shifting the electron sea.

•	 Charge polarizes atoms, creating electric dipoles.

•	 The polarization force is always an attractive force.

The Field Model

Charges interact with each other via the electric field E
u

.

•	 Charge A alters the space around it by creating an 
electric field.

•	 The field is the agent that exerts a force. The force on 
charge qB is F

u

on B = qBE
u

.

An electric field is identified and measured in terms of the 
force on a probe charge q:

E
u

= F
u

on q/q

•	 The electric field exists at all points in space.

•	 An electric field vector shows the field only at one point, 
the point at the tail of the vector.

The electric field of a point charge is

 E
u

=
1

4pP0
 
q

r2 rn

Important Concepts

�

�

�

�

Net force

Polarized neutral
objects

External
charges

Net force
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neutral
charging
charge model
charge, q or Q
like charges
opposite charges
discharging
conductor
insulator

electron cloud
fundamental unit of charge, e
charge quantization
ionization
law of conservation of charge
sea of electrons
ion core
current
charge carriers

electrostatic equilibrium
grounded
charge polarization
polarization force
electric dipole
charging by induction
Coulomb’s law
electrostatic constant, K
point charge

coulomb, C
permittivity constant, P0

field
electric field, E

u

field model
source charge
electric field strength, E
field diagram

Terms and Notation

C o N C E P T u A L  Q u E S T I o N S

 1. Can an insulator be charged? If so, how would you charge an 
insulator? If not, why not?

 2. Can a conductor be charged? If so, how would you charge a con-
ductor? If not, why not?

 3. Four lightweight balls A, B, C, and D are suspended by threads. 
Ball A has been touched by a plastic rod that was rubbed with 
wool. When the balls are brought close together, without touch-
ing, the following observations are made:

 • Balls B, C, and D are attracted to ball A.
 •	 Balls B and D have no effect on each other.
 •	 Ball B is attracted to ball C.
  What are the charge states (glass, plastic, or neutral) of balls A, 

B, C, and D? Explain.
 4. Charged plastic and glass rods hang by threads.
 a. An object repels the plastic rod. Can you predict what it will 

do to the glass rod? If so, what? If not, why not?
 b. A different object attracts the plastic rod. Can you predict 

what it will do to the glass rod? If so, what? If not, why not?
 5. A lightweight metal ball hangs by a thread. When a charged rod 

is held near, the ball moves toward the rod, touches the rod, then 
quickly “flies away” from the rod. Explain this behavior.

 6. Suppose there exists a third type of charge in addition to the 
two types we’ve called glass and plastic. Call this third type X 
charge. What experiment or series of experiments would you use 
to test whether an object has X charge? State clearly how each 
possible outcome of the experiments is to be interpreted.

 7. A negatively charged electroscope has separated leaves.
 a. Suppose you bring a negatively charged rod close to the top 

of the electroscope, but not touching. How will the leaves 
respond? Use both charge diagrams and words to explain.

 b. How will the leaves respond if you bring a positively charged 
rod close to the top of the electroscope, but not touching? Use 
both charge diagrams and words to explain.

 8. The two oppositely charged metal spheres in FIgurE Q25.8 have 
equal quantities of charge. They are brought into contact with a 
neutral metal rod. What is the final charge state of each sphere 
and of the rod? Use both charge diagrams and words to explain.

 9. Metal sphere A in FIgurE Q25.9 has 4 units of negative charge and 
metal sphere B has 2 units of positive charge. The two spheres 
are brought into contact. What is the final charge state of each 
sphere? Explain.

 10. Metal spheres A and B in FIgurE Q25.10 are initially neutral and 
are touching. A positively charged rod is brought near A, but 
not touching. Is A now positive, negative, or neutral? Use both 
charge diagrams and words to explain.

 11. If you bring your finger near a lightweight, negatively charged 
hanging ball, the ball swings over toward your finger as shown 
in FIgurE Q25.11. Use charge diagrams and words to explain this 
observation.

 12. Reproduce FIgurE Q25.12 on your paper. Then draw a dot (or 
dots) on the figure to show the position (or positions) where an 
electron would experience no net force.

 13. Charges A and B in 
FIgurE Q25.13 are equal. 
Each charge exerts a force 
on the other of magnitude 
F. Suppose the charge of B 
is increased by a factor of 4, 
but everything else is unchanged. In terms of F, (a) what is the 
magnitude of the force on A, and (b) what is the magnitude of the 
force on B?

 14. The electric field strength at one point near a point charge is 
1000 N/C. What is the field strength if (a) the distance from 
the point charge is doubled, and (b) the distance from the point 
charge is halved?

 15. The electric force on a charged particle in an electric field is F. 
What will be the force if the particle’s charge is tripled and the 
electric field strength is halved?FIgurE Q25.8 
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E x E r C I S E S  A N D  P r o B L E M S
Section 25.4 Coulomb’s Law

 12. || Two 1.0 kg masses are 1.0 m apart (center to center) on a 
frictionless table. Each has +10 mC of charge.

 a. What is the magnitude of the electric force on one of the masses?
 b. What is the initial acceleration of this mass if it is released 

and allowed to move?
 13. || Two small plastic spheres each have a mass of 2.0 g and a charge 

of -50.0 nC. They are placed 2.0 cm apart (center to center).
 a. What is the magnitude of the electric force on each sphere?
 b. By what factor is the electric force on a sphere larger than its 

weight?
 14. || A small glass bead has been charged to +20 nC. A metal ball 

bearing 1.0 cm above the bead feels a 0.018 N downward electric 
force. What is the charge on the ball bearing?

 15. | Two protons are 2.0 fm apart.
 a. What is the magnitude of the electric force on one proton due 

to the other proton?
 b. What is the magnitude of the gravitational force on one pro-

ton due to the other proton?
 c. What is the ratio of the electric force to the gravitational force?
 16. | What is the net electric force on charge A in FIgurE Ex25.16?

 17. | What is the net electric force on charge B in FIgurE Ex25.17?
 18. | Object A, which has been charged to +4.0 nC, is at the 

origin. Object B, which has been charged to -8.0 nC, is at 
(x, y) = (0.0 cm, 2.0 cm). Determine the electric force on each 
object. Write each force vector in component form.

 19. | A small plastic bead has been charged to -15 nC. What are 
the magnitude and direction of the acceleration of (a) a proton 
and (b) an electron that is 1.0 cm from the center of the bead?

Section 25.5 The Field Model

 20. | What are the strength and direction of the electric field 1.0 mm 
from (a) a proton and (b) an electron?

 21. | The electric field at a point in space is E
u 

=

(400 in +  100 jn) N/C.
 a. What is the electric force on a proton at this point? Give your 

answer in component form.
 b. What is the electric force on an electron at this point? Give 

your answer in component form.
 c. What is the magnitude of the proton’s acceleration?
 d. What is the magnitude of the electron’s acceleration?

Problems labeled  integrate material from earlier chapters.

Exercises

Section 25.1 Developing a Charge Model

Section 25.2 Charge

 1. | A plastic rod is charged to -12 nC by rubbing.
 a. Have electrons been added to the rod or protons removed? 

Explain.
 b. How many electrons have been added or protons removed?
 2. | A glass rod is charged to +8.0 nC by rubbing.
 a. Have electrons been removed from the rod or protons added? 

Explain.
 b. How many electrons have been removed or protons added?
 3. | A glass rod that has been charged to +12 nC touches a metal 

sphere. Afterward, the rod’s charge is +8.0 nC.
 a. What kind of charged particle was transferred between the 

rod and the sphere, and in which direction? That is, did it 
move from the rod to the sphere or from the sphere to the rod?

 b. How many charged particles were transferred?
 4. | A plastic rod that has been charged to -15 nC touches a metal 

sphere. Afterward, the rod’s charge is -10 nC.
 a. What kind of charged particle was transferred between the 

rod and the sphere, and in which direction? That is, did it 
move from the rod to the sphere or from the sphere to the rod?

 b. How many charged particles were transferred?
 5. || What is the total charge of all the protons in 1.0 mol of He gas?
 6. ||| What is the total charge of all the electrons in 1.0 L of liquid 

water?

Section 25.3 Insulators and Conductors

 7. | Figure 25.8 showed how an electroscope becomes negatively 
charged. The leaves will also repel each other if you touch the 
electroscope with a positively charged glass rod. Use a series of 
charge diagrams to explain what happens and why the leaves 
repel each other.

 8. | A plastic balloon that has been rubbed with wool will stick to 
a wall.

 a. Can you conclude that the wall is charged? If not, why not? If 
so, where does the charge come from?

 b. Draw a series of charge diagrams showing how the balloon is 
held to the wall.

 9. | Two neutral metal spheres on wood stands are touching. A 
negatively charged rod is held directly above the top of the left 
sphere, not quite touching it. While the rod is there, the right 
sphere is moved so that the spheres no longer touch. Then the rod 
is withdrawn. Afterward, what is the charge state of each sphere? 
Use charge diagrams to explain your answer.

 10. || You have two neutral metal spheres on wood stands. Devise 
a procedure for charging the spheres so that they will have like 
charges of exactly equal magnitude. Use charge diagrams to ex-
plain your procedure.

 11. || You have two neutral metal spheres on wood stands. Devise 
a procedure for charging the spheres so that they will have op-
posite charges of exactly equal magnitude. Use charge diagrams 
to explain your procedure.

FIgurE Ex25.16 
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 35. || What is the force F
u

on the -10 nC charge in FIgurE P25.35? 
Give your answer as a magnitude and an angle measured cw or 
ccw (specify which) from the +x@axis.

 36. || What is the force F
u

on the -10 nC charge in FIgurE P25.36? 
Give your answer as a magnitude and an angle measured cw or 
ccw (specify which) from the +x@axis.

 37. || What is the force F
u

on the 5.0 nC charge in FIgurE P25.37? 
Give your answer as a magnitude and an angle measured cw or 
ccw (specify which) from the +x@axis.

 38. || What is the force F
u

on the 5.0 nC charge in FIgurE P25.38? 
Give your answer as a magnitude and an angle measured cw or 
ccw (specify which) from the +x@axis.

 39. ||| What is the force F
u

on the 1.0 nC charge in the middle of 
FIgurE P25.39 due to the four other charges? Give your answer in 
component form.

 40. || What is the force F
u

on the 1.0 nC charge at the bottom in 
FIgurE P25.40? Give your answer in component form.

 41. || What is the force F
u

on the 1.0 nC charge at the bottom in 
FIgurE P25.41? Give your answer in component form.

 22. || What magnitude charge creates a 1.0 N/C electric field at a 
point 1.0 m away?

 23. | What are the strength and direction of the electric field 4.0 cm 
from a small plastic bead that has been charged to -8.0 nC?

 24. || The electric field 2.0 cm from a small object points away from 
the object with a strength of 270,000 N/C. What is the object’s 
charge?

 25. || What are the strength and direction of an electric field that will 
balance the weight of a 1.0 g plastic sphere that has been charged 
to -3.0 nC?

 26. || A +12 nC charge is located at the origin.
 a. What are the electric fields at the positions (x, y) =  

(5.0 cm, 0 cm), (-5.0 cm, 5.0 cm), and (-5.0 cm,-5.0 cm)? 
Write each electric field vector in component form.

 b. Draw a field diagram showing the electric field vectors at 
these points.

 27. || A –12 nC charge is located at (x, y) = (1.0 cm, 0 cm). What 
are the electric fields at the positions (x, y) =  (5.0 cm, 0 cm), 
(-5.0 cm, 0 cm), and (0 cm, 5.0 cm)? Write each electric field 
vector in component form.

Problems

 28. ||| Pennies today are copper-covered zinc, but older pennies 
are 3.1 g of solid copper. What are the total positive charge 
and total negative charge in a solid copper penny that is elec-
trically neutral?

 29. | A 2.0 g plastic bead charged to -4.0 nC and a 4.0 g glass bead 
charged to +8.0 nC are 2.0 cm apart (center to center). What are 
the accelerations of (a) the plastic bead and (b) the glass bead?

 30. || The nucleus of a 125Xe atom (an isotope of the element xenon 
with mass 125 u) is 6.0 fm in diameter. It has 54 protons and 
charge q = +54e.

 a. What is the electric force on a proton 2.0 fm from the surface 
of the nucleus?

 b. What is the proton’s acceleration?
Hint: Treat the spherical nucleus as a point charge.

 31. || Two 1.0 g spheres are charged equally and placed 2.0 cm 
apart. When released, they begin to accelerate at 150 m/s2. What 
is the magnitude of the charge on each sphere?

 32. || Objects A and B are both positively charged. Both have a 
mass of 100 g, but A has twice the charge of B. When A and B 
are placed 10 cm apart, B experiences an electric force of 0.45 N.

 a. What is the charge on A?
 b. If the objects are released, what is the initial acceleration of A?

 33. || What is the force F
u

 on the 1.0 nC charge in FIgurE P25.33? 
Give your answer as a magnitude and a direction.

 34. || What is the force F
u

 on the 1.0 nC charge in FIgurE P25.34? 
Give your answer as a magnitude and a direction.

FIgurE P25.33 

� �

�

2.0 nC2.0 nC

1.0 nC

1.0 cm

1.0 cm 1.0 cm

60� 60�

FIgurE P25.34 

�

�

2.0 nC �2.0 nC

1.0 nC

1.0 cm

1.0 cm 1.0 cm

60� 60�

�

FIgurE P25.36 FIgurE P25.35 

�

15 nC �5.0 nC

�10 nC

1.0 cm

3.0 cm
�

� �

�

10 nC

8.0 nC

�10 nC

1.0 cm

3.0 cm

�

FIgurE P25.38FIgurE P25.37 

�

�

5.0 nC

10 nC

�5.0 nC

4.0 cm

3.0 cm

� �

5.0 nC

�

10 nC

4.0 cm

3.0 cm
�

�10 nC

FIgurE P25.39 

�

�

�

2.0 nC�2.0 nC

2.0 nC

1.0 nC

�2.0 nC
1.0 cm

1.0 cm

�

�

FIgurE P25.41 FIgurE P25.40 

�

� �

1.0 nC

2.0 nC 2.0 nC

�6.0 nC

5.0 cm5.0 cm

�

45�45�

�

�

1.0 nC

2.0 nC �2.0 nC

�6.0 nC

5.0 cm5.0 cm

�

�

45� 45�



 42. ||| A +2.0 nC charge is at the origin and a -4.0 nC charge is at 
x = 1.0 cm.

 a. At what x-coordinate could you place a proton so that it 
would experience no net force?

 b. Would the net force be zero for an electron placed at the same 
position? Explain.

 43. || The net force on the 1.0 nC charge in FIgurE P25.43 is zero. 
What is q?

 44. || Charge q2  in FIgurE P25.44 is in static equilibrium. What is q1?
 45. || A positive point charge Q is located at x = a and a nega-

tive point charge -Q is at x = -a. A positive charge q can be 
placed anywhere on the y-axis. Find an expression for (Fnet)x, 
the x-component of the net force on q.

 46. || A positive point charge Q is located at x = a and a nega-
tive point charge -Q is at x = -a. A positive charge q can be 
placed anywhere on the x-axis. Find an expression for (Fnet)x, 
the x-component of the net force on q, when (a) 0 x 0 6 a and 
(b) 0 x 0 7 a.

 47. ||| FIgurE P25.47 shows four charges at the corners of a square of 
side L. What is the magnitude of the net force on q?

 48. || FIgurE P25.48 shows three charges and the net force on charge 
-q. Charge Q is some multiple a of q. What is a?

 49. || Two positive point charges q and 4q are at x = 0 and x = L, 
respectively, and free to move. A third charge is placed so that 
the entire three-charge system is in static equilibrium. What are 
the magnitude, sign, and x-coordinate of the third charge?

 50. ||| Suppose the magnitude of the proton charge differs from the 
magnitude of the electron charge by a mere 1 part in 109.

 a. What would be the force between two 2.0-mm-diameter cop-
per spheres 1.0 cm apart? Assume that each copper atom has 
an equal number of electrons and protons.

 b. Would this amount of force be detectable? What can you con-
clude from the fact that no such forces are observed?

 51. || In a simple model of the hydrogen atom, the electron moves 
in a circular orbit of radius 0.053 nm around a stationary proton. 
How many revolutions per second does the electron make?

 52. || You have two small, 2.0 g balls that have been given equal 
but opposite charges, but you don’t know the magnitude of the 
charge. To find out, you place the balls distance d apart on a slip-
pery horizontal surface, release them, and use a motion detector 
to measure the initial acceleration of one of the balls toward the 
other. After repeating this for several different separation dis-
tances, your data are as follows:

Distance (cm) Acceleration (m/s2)

2.0 0.74

3.0 0.30

4.0 0.19

5.0 0.10

  Use an appropriate graph of the data to determine the magnitude 
of the charge.

 53. || A 0.10 g honeybee acquires a charge of +23 pC while flying.
  a. The earth’s electric field near the surface is typically 

(100 N/C, downward). What is the ratio of the electric force 
on the bee to the bee’s weight?

 b. What electric field (strength and direction) would allow the 
bee to hang suspended in the air?

 54. || As a science project, you’ve invented an “electron pump” that 
moves electrons from one object to another. To demonstrate your 
invention, you bolt a small metal plate to the ceiling, connect the 
pump between the metal plate and yourself, and start pumping 
electrons from the metal plate to you. How many electrons must 
be moved from the metal plate to you in order for you to hang 
suspended in the air 2.0 m below the ceiling? Your mass is 60 kg.
Hint: Assume that both you and the plate can be modeled as 
point charges.

 55. || You have a lightweight spring whose unstretched length is 
4.0 cm. First, you attach one end of the spring to the ceiling and 
hang a 1.0 g mass from it. This stretches the spring to a length of 
5.0 cm. You then attach two small plastic beads to the opposite ends 
of the spring, lay the spring on a frictionless table, and give each 
plastic bead the same charge. This stretches the spring to a length of 
4.5 cm. What is the magnitude of the charge (in nC) on each bead?

 56. || An electric dipole consists of two opposite charges {q  sepa-
rated by a small distance s. The product p = qs  is called the 
 dipole moment. FIgurE P25.56 shows an electric dipole perpendic-

ular to an electric field E
u

. Find an expression in terms of p and 
E for the magnitude of the torque that the electric field exerts on 
the dipole.

 57. || You sometimes create a spark when you touch a doorknob 
after shuffling your feet on a carpet. Why? The air always has a 
few free electrons that have been kicked out of atoms by cosmic 
rays. If an electric field is present, a free electron is accelerated 
until it collides with an air molecule. It will transfer its kinetic 
energy to the molecule, then accelerate, then collide, then ac-
celerate, collide, and so on. If the electron’s kinetic energy just 
before a collision is 2.0 * 10-18 J or more, it has sufficient en-
ergy to kick an electron out of the molecule it hits. Where there 
was one free electron, now there are two! Each of these can then 
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accelerate, hit a molecule, and kick out another electron. Then 
there will be four free electrons. In other words, as FIgurE P25.57 
shows, a sufficiently strong electric field causes a “chain reac-
tion” of electron production. This is called a breakdown of the 
air. The current of moving electrons is what gives you the shock, 
and a spark is generated when the electrons recombine with the 
positive ions and give off excess energy as a burst of light.

 a. The average distance an electron travels between collisions 
is 2.0 mm. What acceleration must an electron have to gain 
2.0 * 10-18 J of kinetic energy in this distance?

 b. What force must act on an electron to give it the acceleration 
found in part a?

 c. What strength electric field will exert this much force on an 
electron? This is the breakdown field strength. Note: The 
measured breakdown field strength is a little less than your 
calculated value because our model of the process is a bit too 
simple. Even so, your calculated value is close.

 d. Suppose a free electron in air is 1.0 cm away from a point 
charge. What minimum charge must this point charge have to 
cause a breakdown of the air and create a spark?

 58. || Two 5.0 g point charges on 1.0-m-long threads repel each 
other after being charged to +100 nC, as shown in FIgurE P25.58. 
What is the angle u? You can assume that u is a small angle.

 59. || Two 3.0 g point charges on 1.0-m-long threads repel each 
other after being equally charged, as shown in FIgurE P25.59. 
What is the charge q?

 60. || What are the electric fields at points 1, 2, and 3 in FIgurE P25.60? 
Give your answer in component form.

 61. || What are the electric fields at points 1 and 2 in FIgurE P25.61? 
Give your answer as a magnitude and direction.

 62. || What are the electric fields at points 1, 2, and 3 in FIgurE P25.62? 
Give your answer in component form.

 63. || A -10.0 nC charge is located at position (x, y) = (2.0 cm, 
1.0 cm). At what (x, y) position(s) is the electric field

 a. -225,000 in N/C?
 b. (161,000 in - 80,500 jn) N/C?
 c. (28,800 in + 21,600 jn) N/C?
 64. || A 10.0 nC charge is located at position (x, y) = (1.0 cm, 

2.0 cm). At what (x, y) position(s) is the electric field
 a. -225,000 in N/C?
 b. (161,000 in + 80,500 jn) N/C?
 c. (21,600 in - 28,800 jn) N/C?
 65. || Three 1.0 nC charges are placed as shown in FIgurE P25.65. 

Each of these charges creates 
an electric field E

u

 at a point 
3.0 cm in front of the middle 
charge.

 a. What are the three fields 
E
u

1, E
u

2, and E
u

3 created by 
the three charges? Write 
your answer for each as a 
vector in component form.

 b. Do you think that electric fields obey a principle of super-
position? That is, is there a “net field” at this point given by 
E
u

net = E
u

1 + E
u

2 + E
u

3? Use what you learned in this chapter 
and previously in our study of forces to argue why this is or 
is not true.

 c. If it is true, what is E
u

net?
 66. || An electric field E

u

= 100,000 in N/C causes the 5.0 g point 
charge in FIgurE P25.66 to hang at a 20� angle. What is the charge 
on the ball?

 67. || An electric field E
u

= 200,000 in N/C causes the point charge 
in FIgurE P25.67 to hang at an angle. What is u?
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In Problems 68 through 71 you are given the equation(s) used to solve 
a problem. For each of these,
 a. Write a realistic problem for which this is the correct equation(s).
 b. Finish the solution of the problem.

 68.	  
(9.0 * 109 N m2/C2) * N * (1.60 * 10-19 C)

(1.0 * 10-6 m)2  

   = 1.5 * 106 N/C

 69.	
(9.0 * 109 N m2/C2)q2

(0.0150 m)2 = 0.020 N

 70.	
(9.0 * 109 N m2/C2)(15 * 10-9 C)

r2 = 54,000 N/C

 71.	  aFx = 2 *
(9.0 * 109 N m2/C2)(1.0 * 10-9 C)q

1(0.020 m)/sin 30�2 2
* cos 30�

   = 5.0 * 10-5 N

   aFy = 0 N

Challenge	Problems

 72.	 A 2.0-mm-diameter copper ball is charged to +50 nC. What 
fraction of its electrons have been removed?

 73.	 Three 3.0 g balls are tied to 80-cm-long threads and hung from a 
single fixed point. Each of the balls is given the same charge q. 
At equilibrium, the three balls form an equilateral triangle in a 
horizontal plane with 20 cm sides. What is q?

 74.	 The identical small spheres shown in Figure	CP25.74 are charged 
to +100 nC and -100 nC. They hang as shown in a 100,000 N/C 
electric field. What is the mass of each sphere?

 75.	 The force on the -1.0 nC charge is as shown in Figure	CP25.75. 
What is the magnitude of this force?

 76.	 In Section 25.3 we claimed that a charged object exerts a 
net attractive force on an electric dipole. Let’s investigate this. 
Figure	CP25.76 shows a permanent electric dipole consisting of 
charges +q and -q separated by the fixed distance s. Charge 
+Q is distance r from the center of the dipole. We’ll assume, as 
is usually the case in practice, that s V r.

 a. Write an expression for the net force exerted on the dipole by 
charge +Q.

 b. Is this force toward +Q or away from +Q? Explain.
 c. Use the binomial approximation (1 + x)-n � 1 - nx if 

x V 1 to show that your expression from part a can be writ-
ten Fnet = 2KqQs/r3.

 d. How can an electric force have an inverse-cube dependence? 
Doesn’t Coulomb’s law say that the electric force depends on 
the inverse square of the distance? Explain.

Figure	CP25.74	
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StoP	to	think	AnSwerS

Stop to Think 25.1: b. Charged objects are attracted to neutral ob-
jects, so an attractive force is inconclusive. Repulsion is the only sure 
test.

Stop to Think 25.2: qe(� 3e) + qa(�1e) + qd(0) + qb(�1e) +
qc(�2e).

Stop to Think 25.3: a. The negative plastic rod will polarize the 
electroscope by pushing electrons down toward the leaves. This will 
partially neutralize the positive charge the leaves had acquired from 
the glass rod.

Stop to Think 25.4: b. The two forces are an action/reaction pair, 
opposite in direction but equal in magnitude.

Stop to Think 25.5: c. There’s an electric field at all points, whether 
an E

u

vector is shown or not. The electric field at the dot is to the right. 
But an electron is a negative charge, so the force of the electric field 
on the electron is to the left.

Stop to Think 25.6: Eb + Ea + Ed + Ec.
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Uniform Electric Fields
Two parallel conduct-
ing plates with equal 
but opposite charges 
are called a parallel-
plate capacitor.

Dipoles in Electric Fields
You learned in Chapter 25 that charged 
objects of either sign attract a neutral 
object. We’ll understand better why this 
happens.

An electric field exerts 
a torque on a dipole, 
causing it to align with 
the field.

Fields of Multiple Charges
You’ll learn that the electric field due to 
several point charges is the vector sum 
of the individual fields.

The Electric Field26

In a plasma ball, electrons follow 
the electric field lines outward 
from the center electrode. The 
streamers appear where gas 
atoms emit light after the 
high-speed electrons collide 
with them.

 Looking Ahead The goal of Chapter 26 is to learn how to calculate and use the electric field.

The Field of a Continuous Distribution of Charge
You’ll learn a strategy for computing the electric  
field of a macroscopic charged object, such as a  
charged rod or a disk of charge.
■	 A charged object can be described by its 

charge density, the charge per unit length, 
area, or volume.

■	 The vector sum of electric fields will become 
an integral. We’ll develop a step-by-step  
approach to setting up and evaluating these  
integrals.

 Looking Back
Section 4.3 Projectile motion

Charges in Electric Fields
Electric fields exert forces on charged 
particles. You’ll learn to calculate the 
trajectories of charged particles moving 
in electric fields.
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You’ll also learn to use 
electric field lines. 
This figure shows the 
electric field lines of a 
dipole, two equal but 
opposite point charges.

 Looking Back
Section 25.5 The electric field of a point 
charge

You’ll learn that parallel
plate capacitors are 
important for creating a 
uniform electric field.

�

�

�
�

�

The electric field of a plane of charge 
is perpendicular to the plane. Many 
practical devices can be modeled as 
planes or lines of charge.

Older televisions and 
computer monitors use 
a cathode-ray tube. The 
picture is formed as a 
changing electric field 
sweeps an electron 
beam back and forth 
across the screen.

A nonuniform field 
exerts a force on a 
dipole, drawing it 
toward the stron
ger field.

We’ll calculate the electric field of charged 
wires, charged disks, planes of charge, and 
spheres of charge.
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26.1 Electric Field Models
Chapter 25 made a distinction between those charged particles that are the sources of an 
electric field and other charged particles that experience and move in the electric field. 
This is a very important distinction. Most of this chapter will be concerned with the 
sources of the electric field. Only at the end, once we know how to calculate the electric 
field, will we look at what happens to charges that find themselves in an electric field.

The electric fields used in science and engineering are often caused by fairly com-
plicated distributions of charge. Sometimes these fields require exact calculations, but 
much of the time we can understand the essential physics on the basis of simplified 
models of the electric field.

Four widely used electric field models, illustrated in FIgUrE 26.1, are:

	■	 The electric field of a point charge.
	■	 The electric field of an infinitely long charged wire.
	■	 The electric field of an infinitely wide charged plane.
	■	 The electric field of a charged sphere.

Small charged objects can often be modeled as point charges or charged spheres. Real 
wires aren’t infinitely long, but in many practical situations this approximation is per-
fectly reasonable. As we derive and use these electric fields, we’ll consider the condi-
tions under which they are appropriate models.

Our starting point is the electric field of a point charge q:

 E
u

=
1

4pP0
 
q

r2 rn  (electric field of a point charge) (26.1)

where rn is a unit vector pointing away from q and P0 = 8.85 * 10-12  C2/N m2 is the 
permittivity constant. FIgUrE 26.2 reminds you of the electric fields of point charges. 
Although we have to give each vector we draw a length, keep in mind that each arrow 
represents the electric field at a point. The electric field is not a spatial quantity that 
“stretches” from one end of the arrow to the other.

The electric field was defined as E
u

= F
u

on q /q, where F
u

on q is the electric force on 
charge q. Forces add as vectors, so the net force on q due to a group of point charges 
is the vector sum

 F
u

on q = F
u

1 on q + F
u

2 on q + g
Consequently, the net electric field due to a group of point charges is

 E
u

net =
F
u

on q

q
=

F
u

1 on q

q
+

F
u

2 on q

q
+ g = E

u

1 + E
u

2 + g = a
i

E
u

i (26.2)

where E
u

i is the field from point charge i.
Equation 26.2, which is the primary tool for calculating electric fields, tells us that 

the net electric field is the vector sum of the electric fields due to each charge. In 
other words, electric fields obey the principle of superposition.

Knowing typical electric field strengths will also be helpful. The values in Table 26.1 
on the next page will help you judge the reasonableness of your solutions to problems.

FIgUrE 26.1 Four basic electric field models.
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FIgUrE 26.2 The electric field of a 
positive and a negative point charge.
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26.2  The Electric Field of Multiple
Point Charges

Suppose the source of an electric field is a group of point charges q1, q2, p . According 
to Equation 26.2, the net electric field E

u

net at each point in space is a superposition of 
the electric fields due to each individual charge:

  (Enet)x = (E1)x + (E2)x + g = a (Ei)x

  (Enet)y = (E1)y + (E2)y + g = a (Ei)y (26.3)

  (Enet)z = (E1)z + (E2)z + g = a (Ei)z

Sometimes you’ll want to write E
u

net  in component form:

 E
u

net = (Enet)x in + (Enet)y jn + (Enet)z kn

At other times you will give E
u

net  as a magnitude and a direction.

TABLE 26.1 Typical electric field strengths

 
Field location

Field strength 
(N/C)

Inside a current-
carrying wire

10-3-10-1

Near the earth’s 
surface

1029104

Near objects charged 
by rubbing

1039106

Electric breakdown in 
air, causing a spark

3 * 106

Inside an atom 1011

    The electric field of multiple  
point charges

MoDEL Model charged objects as point charges.

VIsUALIzE For the pictorial representation:

 ■ Establish a coordinate system and show the locations of the charges.
 ■ Identify the point P at which you want to calculate the electric field.
 ■ Draw the electric field of each charge at P.
 ■ Use symmetry to determine if any components of E

u

net  are zero.

soLVE The mathematical representation is E
u

net = gE
u

i.

 ■ For each charge, determine its distance from P and the angle of E
u

i from the axes.
 ■ Calculate the field strength of each charge’s electric field.
 ■ Write each vector E

u

i in component form.
 ■ Sum the vector components to determine E

u

net.
 ■ If needed, determine the magnitude and direction of E

u

net.

AssEss Check that your result has the correct units, is reasonable, and agrees 
with any known limiting cases.

Exercise 16 

ProBLEM-soLVIng
sTrATEgy 26.1

ExAMPLE 26.1   The electric field of three equal point charges
Three equal point charges q are located on the y-axis at y = 0 and 
at y = {d. What is the electric field at a point on the x-axis?

MoDEL This problem is a step along the way to understanding the 
electric field of a charged wire. We’ll assume that q is positive 
when drawing pictures, but the solution should allow for the pos-
sibility that q is negative. The question does not ask about any 
specific point, so we will be looking for a symbolic expression in 
terms of the unspecified position x.

VIsUALIzE FIgUrE 26.3 shows the charges, the coordinate system, and 
the three electric field vectors E

u

1, E
u

2, and E
u

3. Each of these fields 
points away from its source charge because of the assumption that q 
is positive. We need to find the vector sum E

u

net =  E
u

1 + E
u

2 + E
u

3.
Before rushing into a calculation, we can make our task 

much easier by first thinking qualitatively about the situation. 
For example, the fields E

u

1, E
u

2, and E
u

3 all lie in the xy-plane, hence 
we can conclude without any calculations that (Enet)z = 0. Next, 

FIgUrE 26.3 
Calculating the 
electric field of 
three equal point 
charges.

This is the point at which we
will calculate the electric field.

look at the y-components of the fields. The fields E
u

1 and E
u

3 
have equal magnitudes and are tilted away from the x-axis by 
the same angle u. Consequently, the y-components of E

u

1 and 
E
u

3 will cancel when added. E
u

2 has no y-component, so we can 
conclude that (Enet)y = 0. The only component we need to cal-
culate is (Enet)x.
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Let’s explore this example a bit more. There are two limiting cases for which we 
know what the result should be. First, let x become really, really small. As the point in 
Figure 26.3 approaches the origin, the fields E

u

1 and E
u

3 become opposite to each other 
and cancel. Thus as x S 0, the field should be that of the single point charge q at the 
origin, a field we already know. Is it? Notice that

 lim
xS0

  
2x

(x2 + d 2)3/2 = 0 (26.4)

Thus Enet S q/4pP0 x2 as x S 0, the expected field of a single point charge.
Now consider the opposite situation, where x becomes extremely large. From very 

far away, the three source charges will seem to merge into a single charge of size 3q, 
just as three very distant lightbulbs appear to be a single light. Thus the field for x W d 
should be that of a point charge 3q. Is it?

The field is zero in the limit x S �. That doesn’t tell us much, so we don’t want 
to go that far away. We simply want x to be very large in comparison to the spacing d 
between the source charges. If x W d, then the denominator of the second term of E

u

net  
is well approximated by (x2 + d 2)3/2 � (x2)3/2 = x3. Thus

 lim
x W d

 c 1

x2 +
2x

(x2 + d 2)3/2 d =
1

x2 +
2x

x3 =
3

x2 (26.5)

Consequently, the net electric field far from the source charges is

 E
u

net(x W d) =
1

4pP0
 
(3q)

x2  in  (26.6)

As expected, this is the field of a point charge 3q. These checks of limiting cases pro-
vide confidence in the result of the calculation.

FIgUrE 26.4 is a graph of the field strength Enet  for the three charges of Example 26.1. 
Although we don’t have any numerical values, we can specify x as a multiple of the 
charge separation d. Notice how the graph matches the field of a single point charge 
when x V d and matches the field of a point charge 3q when x W d.

This expression is a bit complex, but notice that the dimensions 
of x/(x2 + d 2)3/2 are 1/m2, as they must be for the field of a point 
charge. Checking dimensions is a good way to verify that you 
haven’t made algebra errors.

We can now combine (E1)x and (E2)x to write the x-component 

of E
u

net  as

 (Enet)x = 2(E1)x + (E2)x =
q

4pP0
 c 1

x2 +
2x

(x2 + d 2)3/2 d

The other two components of E
u

net  are zero, hence the electric field 
of the three charges at a point on the x-axis is

 E
u

net =
q

4pP0 
c 1

x2 +
2x

(x2 + d 2)3/2 d  in

AssEss This is the electric field only at points on the x-axis. Fur-
thermore, this expression is valid only for x 7 0. The electric 
field to the left of the charges points in the opposite direction, 
but our expression doesn’t change sign for negative x. (This is 
a consequence of how we wrote (E2)x.) We would need to mod-
ify this expression to use it for negative values of x. The good 
news, though, is that our expression is valid for both positive 
and negative q. A negative value of q makes (Enet)x negative, 
which would be an electric field pointing to the left, toward the 
negative charges.

soLVE We’re ready to calculate. The x-component of the field is

 (Enet)x = (E1)x + (E2)x + (E3)x = 2(E1)x + (E2)x

where we used the fact that fields E
u

1 and E
u

3 have equal
x-components. Vector E

u

2 has only the x-component

 (E2)x = E2 =
1

4pP0
 
q2

r2 

2 =
1

4pP0
 
q

x2

where r2 = x is the distance from q2 to the point at which we are 
calculating the field. Vector E

u

1 is at angle u from the x-axis, so its 
x-component is

 (E1)x = E1 cos u =
1

4pP0
 
q1

r1 

2  cos u

where r1 is the distance from q1. This expression for (E1)x is cor-
rect, but it is not yet sufficient. Both the distance r1 and the angle u 
vary with the position x and need to be expressed as functions of x. 
From the Pythagorean theorem, r1 = (x2 + d 2)1/2. Then from trigo-
nometry,

 cos u =
x

r1
=

x

(x2 + d 2)1/2

By combining these pieces, we see that (E1)x is

 (E1)x =
1

4pP0
 

q

x2 + d 2 
x

(x2 + d 2)1/2 =
1

4pP0
 

xq

(x2 + d 2)3/2

FIgUrE 26.4 The electric field strength 
along a line perpendicular to three 
equal point charges.

x

Enet

Electric field of
point charge 3q

Electric field of
point charge q

2dd0 3d 4d
0

The electric field matches
that of a single point charge
q when x V d.

The electric field matches
that of point charge 3q
when x W d.
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The Electric Field of a Dipole
Two equal but opposite charges separated by a small distance form an electric dipole. 
FIgUrE 26.5 shows two examples. In a permanent electric dipole, such as the water 
molecule, the oppositely charged particles maintain a small permanent separation. We 
can also create an electric dipole, as you learned in Chapter 25, by polarizing a neutral 
atom with an external electric field. This is an induced electric dipole.

FIgUrE 26.6 shows that we can represent an electric dipole, whether permanent or 
induced, by two opposite charges {q separated by the small distance s. The dipole 
has zero net charge, but it does have an electric field. Consider a point on the positive 
y-axis. This point is slightly closer to +q than to -q, so the fields of the two charges 
do not cancel. You can see in the figure that E

u

dipole  points in the positive y-direction. 
Similarly, vector addition shows that E

u

dipole  points in the negative y-direction at points 
along the x-axis.

Let’s calculate the electric field of a dipole at a point on the axis of the dipole. This 
is the y-axis in Figure 26.6. The point is distance r+ = y - s/2 from the positive charge 
and r- = y + s/2 from the negative charge. The net electric field at this point has only 
a y-component, and the sum of the fields of the two point charges gives

 (Edipole)y = (E+)y + (E-)y =
1

4pP0
 

q

( y -
1
2 s)2

+
1

4pP0
 

(-q)

( y +
1
2 s)2

 =
q

4pP0
 c 1

( y -
1
2 s)2

 -
1

( y +
1
2 s)2

d
 (26.7)

Combining the two terms over a common denominator, we find

 (Edipole)y =
q

4pP0
 c 2ys

( y -
1
2 s)2( y +

1
2 s)2

d  (26.8)

We omitted some of the algebraic steps, but be sure you can do this yourself. Some of 
the homework problems will require similar algebra.

In practice, we almost always observe the electric field of a dipole only for dis-
tances y W s—that is, for distances much larger than the charge separation. In such 
cases, the denominator can be approximated ( y -

1
2 s)2 ( y +

1
2 s)2 � y4. With this 

ap proximation, Equation 26.8 becomes

 (Edipole)y �
1

4pP0
 
2qs

y3  (26.9)

It is useful to define the dipole moment p
u
, shown in FIgUrE 26.7, as the vector

 p
u

= (qs, from the negative to the positive charge) (26.10)

The direction of p
u

 identifies the orientation of the dipole, and the dipole-moment 
magnitude p = qs determines the electric field strength. The SI units of the dipole 
moment are C m.

We can use the dipole moment to write a succinct expression for the electric field 
at a point on the axis of a dipole:

 E
u

dipole �
1

4pP0
 
2p

u

r3   (on the axis of an electric dipole) (26.11)

where r is the distance measured from the center of the dipole. We’ve switched from 
y to r because we’ve now specified that Equation 26.11 is valid only along the axis 
of the dipole. Notice that the electric field along the axis points in the direction of the 
dipole moment p

u
.

A homework problem will let you calculate the electric field in the plane that 
bisects the dipole. This is the field shown on the x-axis in Figure 26.6, but it could 

FIgUrE 26.5 Permanent and induced 
electric dipoles.
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This dipole is induced, or stretched, by
the electric field acting on the � and �
charges.

A water molecule is a permanent dipole
because the negative electrons spend
more time with the oxygen atom.

FIgUrE 26.6 The dipole electric field at 
two points.
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FIgUrE 26.7 The dipole moment.
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equally well be the field on the z-axis as it comes out of the page. The field, for 
r W s, is

 E
u

dipole � -  
1

4pP0
 

p
u

r3 
   (bisecting plane) (26.12)

This field is opposite to p
u
, and it is only half the strength of the on-axis field at the 

same distance.

noTE  Do these inverse-cube equations violate Coulomb’s law? Not at all. 
Coulomb’s law describes the force between two point charges, and from 
Coulomb’s law we found that the electric field of a point charge varies with the in-
verse square of the distance. But a dipole is not a point charge. The field of a dipole 
decreases more rapidly than that of a point charge, which is to be expected because 
the dipole is, after all, electrically neutral. 

TACTICs
B o x  2 6 . 1 

  Drawing and using electric field lines

Exercises 2–4, 10–12  

Field line

Field vector

Electric field lines are continuous curves drawn tangent to
the electric field vectors. Conversely, the electric field
vector at any point is tangent to the field line at that point.

1

Closely spaced field lines represent a larger field strength,
with longer field vectors. Widely spaced lines indicate a
smaller field strength.

2

Electric field lines never cross.3

Electric field lines start from positive charges and end on negative charges.4

Step 3 is required to make sure that E
u

 has a unique direction at every point in space. 
Step 4 follows from the fact that electric fields are created by charges. However, we 
will have to modify step 4 in Chapter 33 when we find another way to create an 
electric field.

FIgUrE 26.8a on the next page represents the electric field of a dipole as a field-vector 
diagram. FIgUrE 26.8b shows the same field using electric field lines. Notice how the 
on-axis field points in the direction of p

u
, both above and below the dipole, while the 

field in the bisecting plane points opposite to p
u
. At most points, however, E

u

 has com-
ponents both parallel to p

u
 and perpendicular to p

u
.

 E �
1

4pP0
 
2p

r3 = (9.0 * 109  N m2/C2) 
2(6.2 * 10-30 C m)

(1.0 * 10-9 m)3

 = 1.1 * 108  N/C

AssEss By referring to Table 26.1 you can see that the field 
strength is “strong” compared to our everyday experience with 
charged objects but “weak” compared to the electric field inside 
the atoms themselves. This seems reasonable.

ExAMPLE 26.2  The electric field of a water molecule
The water molecule H2O has a permanent dipole moment of mag-
nitude 6.2 * 10-30 C m. What is the electric field strength 1.0 nm 
from a water molecule at a point on the dipole’s axis?

MoDEL The size of a molecule is �  0.1 nm. Thus r W s, and we 
can use Equation 26.11 for the on-axis electric field of the mol-
ecule’s dipole moment.

soLVE The on-axis electric field strength at r = 1.0 nm is

Picturing the Electric Field
We can’t see the electric field. Consequently, we need pictorial tools to help us visu-
alize it in a region of space. One method, introduced in Chapter 25, is to picture the 
electric field by drawing electric field vectors at various points in space. Another way 
to picture the field is to draw electric field lines.

26.2 . The Electric Field of Multiple Point Charges    755



756    c h a p t e r  26 . The Electric Field

FIgUrE 26.9 shows the electric field of two same-sign charges. A careful comparison 
of Figures 26.8b and 26.9 is worthwhile. Make sure you can explain the similarities 
and differences.

Neither field-vector diagrams nor field-line diagrams are perfect pictorial repre-
sentations of an electric field. The field vectors are somewhat harder to draw, and 
they show the field at only a few points, but they do clearly indicate the direction and 
strength of the electric field at those points. Field-line diagrams perhaps look more 
elegant, and they’re sometimes easier to sketch, but there’s no formula for knowing 
where to draw the lines. We’ll use both field-vector diagrams and field-line diagrams, 
depending on the circumstances.

FIgUrE 26.8 The electric field of a dipole: (a) field vectors, (b) field lines.

�

(a)

�

(b)

�

The electric
field vectors
are tangent to
the electric
field lines.

��

�

FIgUrE 26.9 The electric field of two 
equal positive charges.

�

�

Stop to think 26.1 
 At the dot, the electric field points

 a. Left. b. Right.
 c. Up. d. Down.
 e. The electric field is zero.

��

�

26.3  The Electric Field of a Continuous 
Charge Distribution

Ordinary objects—tables, chairs, beakers of water—seem to our senses to be con-
tinuous distributions of matter. There is no obvious evidence for an atomic struc-
ture, even though we have good reasons to believe that we would find atoms if 
we subdivided the matter sufficiently far. Thus it is easier, for many practical 
purposes, to consider matter to be continuous and to talk about the density of 
matter. Density—the number of kilograms of matter per cubic meter—allows us 
to describe the distribution of matter as if the matter were continuous rather than 
atomic.

Much the same situation occurs with charge. If a charged object contains a large 
number of excess electrons—for example, 1012 extra electrons on a metal rod—it is 
not practical to track every electron. It makes more sense to consider the charge to 
be continuous and to describe how it is distributed over the object.

FIgUrE 26.10a shows an object of length L, such as a plastic rod or a metal wire, with 
charge Q spread uniformly along it. (We will use an uppercase Q for the total charge 
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of an object, reserving lowercase q for individual point charges.) The linear charge 
density l is defined to be

 l =
Q

L
 (26.13)

Linear charge density, which has units of C/m, is the amount of charge per meter 
of length. The linear charge density of a 20-cm-long wire with 40 nC of charge is 
2.0 nC/cm or 2.0 * 10-7 C/m.

noTE  The linear charge density l is analogous to the linear mass density m that 
you used in Chapter 20 to find the speed of a wave on a string. 

We’ll also be interested in charged surfaces. FIgUrE 26.10b shows a two-dimensional 
distribution of charge across a surface of area A. We define the surface charge 
density h (lowercase Greek eta) to be

 h =
Q

A
 (26.14)

Surface charge density, with units of C/m2, is the amount of charge per square 
meter. A 1.0 mm * 1.0 mm square on a surface with h = 2.0 * 10-4 C/m2 contains 
2.0 * 10-10 C or 0.20 nC of charge. (The volume charge density r = Q/V, measured 
in C/m3, will be used in Chapter 27.)

Figure 26.10 and the definitions of Equations 26.13 and 26.14 assume that the ob-
ject is uniformly charged, meaning that the charges are evenly spread over the object. 
We will assume objects are uniformly charged unless noted otherwise.

FIgUrE 26.10 Onedimensional and 
twodimensional continuous charge 
distributions.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

(a) Charge Q on a rod of
length L. The linear
charge density is
l � Q/L.

The charge in a small
length �L is �Q � l�L.

L

�L

� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �

(b) Charge Q on a surface of area A. The
surface charge density is h � Q/A.

The charge in a small
area �A is �Q � h�A.

Area A

noTE  Some textbooks represent the surface charge density with the symbol s. Be-
cause s is also used to represent conductivity, an idea we’ll introduce in Chapter 30, 
we’ve selected a different symbol for surface charge density. 

Stop to think 26.2 
 A piece of plastic is uniformly charged with surface 

charge density ha . The plastic is then broken into a large piece with surface 
charge density hb  and a small piece with surface charge density hc . Rank in 
order, from largest to smallest, the surface charge densities ha  to hc .

ha hb hc

A Problem-solving strategy
Our goal is to find the electric field of a continuous distribution of charge, such as a 
charged rod or a charged disk. We have two basic tools to work with:

	■ The electric field of a point charge, and
	■ The principle of superposition.

We can apply these tools to a continuous distribution of charge if we follow a three-
step strategy:

 1. Divide the total charge Q into many small point-like charges �Q.
 2. Use our knowledge of the electric field of a point charge to find the electric field 

of each �Q.
 3. Calculate the net field E

u

net by summing the fields of all the �Q.

In practice, as you may have guessed, we’ll let the sum become an integral.
The difficulty with electric field calculations is not the summation or integration 

itself, which is the last step, but setting up the calculation and knowing what to inte-
grate. We will go step by step through several examples to illustrate the procedures. 
However, we first need to flesh out the steps of the problem-solving strategy. The aim 
of this problem-solving strategy is to break a difficult problem down into small steps 
that are individually manageable.
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  The electric field of a continuous 
distribution of charge

MoDEL Model the distribution as a simple shape, such as a line of charge or a 
disk of charge. Assume the charge is uniformly distributed.

VIsUALIzE For the pictorial representation:

 ●1 Draw a picture and establish a coordinate system.
 ●2 Identify the point P at which you want to calculate the electric field.
 ●3 Divide the total charge Q into small pieces of charge �Q, using shapes for 

which you already know how to determine E
u

. This is often, but not always, a 
division into point charges.

 ●4 Draw the electric field vector at P for one or two small pieces of charge. This 
will help you identify distances and angles that need to be calculated.

 ●5 Look for symmetries of the charge distribution that simplify the field. You 
may conclude that some components of E

u

 are zero.

soLVE The mathematical representation is E
u

net = gE
u

i.

 ■ Use superposition to form an algebraic expression for each of the three com-
ponents of E

u

 (unless you are sure one or more is zero) at point P.
 ■ Let the (x, y, z) coordinates of the point remain variables.
 ■ Replace the small charge �Q with an equivalent expression involving a 

charge density and a coordinate, such as dx, that describes the shape of charge 
�Q. This is the critical step in making the transition from a sum to an 
integral because you need a coordinate to serve as the integration variable.

 ■ Express all angles and distances in terms of the coordinates.
 ■ Let the sum become an integral. The integration will be over the one coor-

dinate variable that is related to �Q. The integration limits for this variable 
must “cover” the entire charged object.

AssEss Check that your result is consistent with any limits for which you know 
what the field should be.

ProBLEM-soLVIng
sTrATEgy 26.2

charge distribution that models the electric field of a charged rod or 
a charged metal wire. The rod’s linear charge density is l = Q/L.

VIsUALIzE FIgUrE 26.12 illustrates the five steps of the problem-
solving strategy. We’ve chosen a coordinate system in which the 
rod lies along the y-axis and point P, in the bisecting plane, is on the 
x-axis. We’ve then divided the rod into N small segments of charge 
�Q, each of which can be modeled as a point charge. For every �Q 
in the bottom half of the wire with a field that points to the right and 
up, there’s a matching �Q in the top half whose field points to the 
right and down. The y-components of these two fields cancel, hence 
the net electric field on the x-axis points straight away from the rod. 
The only component we need to calculate is Ex. (This is the same 
reasoning on the basis of symmetry that we used in Example 26.1.)

soLVE Each of the little segments of charge can be modeled as a 
point charge. We know the electric field of a point charge, so we 
can write the x-component of E

u

i, the electric field of segment i, as

 (Ei)x = Ei cos ui =
1

4pP0
 
�Q

ri 

2   cos ui

ExAMPLE 26.3  The electric field of a line of charge
FIgUrE 26.11 shows a thin, uniformly charged rod of length L with 
total charge Q. Find the electric field strength at radial distance r 
in the plane that bisects the rod.

FIgUrE 26.11 A thin, uniformly charged rod.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

L r

Total charge Q

What is the electric
field at this point?

The linear charge
density is l � Q/L.

MoDEL The rod is thin, so we’ll assume the charge lies along a 
line and forms what we call a line of charge. This is an important 



 Ex =
Q/L

4pP0
 3

L/2

-L/2

  
r dy

(y2 + r2 )3/2

This is a standard integral that you have learned to do in calculus 
and that can be found in Appendix A. Note that r is a constant as 
far as this integral is concerned. Integrating gives

 Ex =
Q/L

4pP0
 

y

r 2y2 + r2
 `

L/2

-L/2

 =
Q/L

4pP0
 c L /2

r 2(L /2)2 + r2
 -

-L /2

r 2(-L /2)2 + r2
d

 =
1

4pP0
 

Q

r 2r2 + (L /2)2

Because Ex is the only component of the field, the electric field 
strength Erod  at distance r from the center of a charged rod is

 Erod =
1

4pP0
 

0Q 0
r 2r2 + (L/2)2

The field strength must be positive, so we added absolute value 
signs to Q to allow for the possibility that the charge could be 
negative. The only restriction is to remember that this is the elec-
tric field at a point in the plane that bisects the rod.

AssEss Suppose we are at a point very far from the rod. If r W L, 
the length of the rod is not relevant and the rod appears to be a 
point charge Q in the distance. Thus in the limiting case r W L, 
we expect the rod’s electric field to be that of a point charge. If 
r W L, the square root becomes (r2 + (L/2)2)1/2 � (r2)1/2 = r and 
the electric field strength at distance r becomes Erod � Q/4pP0r

2, 
the field of a point charge. The fact that our expression of Erod  
has the correct limiting behavior gives us confidence that we 
haven’t made any mistakes in its derivation.

where ri is the distance from charge i to point P. You can see from 
the figure that ri = ( yi 

2 + r2)1/2 and cos ui = r/ri = r/( yi 

2 + r2)1/2. 
With these, (Ei)x is

  (Ei)x =
1

4pP0
 

�Q

yi 

2 + r2 
r2yi 

2 + r2

  =
1

4pP0
 

r �Q

(yi 

2 + r2)3/2

Compare this result to the very similar calculation we did 
in Example 26.1. If we now sum this expression over all the charge 
segments, the net x-component of the electric field is

 Ex = a
N

i=1
(Ei)x =

1

4pP0
 a

N

i=1
 

r �Q

( yi 

2 + r2 )3/2

This is the same superposition we did for the N = 3 case in 
Example 26.1. The only difference is that we have now written 
the result as an explicit summation so that N can have any value. 
We want to let N S � and to replace the sum with an integral, 
but we can’t integrate over Q; it’s not a geometric quantity. This 
is where the linear charge density enters. The quantity of charge in 
each segment is related to its length �y by �Q = l �y = (Q/L)�y. 
In terms of the linear charge density, the electric field is

 Ex =
Q/L

4pP0
 a

N

i=1
 

r �y

(yi 

2 + r2 )3/2

Now we’re ready to let the sum become an integral. If we let N S �, 
then each segment becomes an infinitesimal length �y S dy while 
the discrete position variable yi becomes the continuous integra-
tion variable y. The sum from i = 1 at the bottom end of the line 
of charge to i = N  at the top end will be replaced with an integral 
from y = -L/2 to y = +L/2. Thus in the limit N S �,

FIgUrE 26.12 Calculating the electric field of a line of charge.

Choose a coordinate system with
the origin at the center of the rod.

Identify the point at which we’re
going to calculate the field.

Divide the rod into N small segments
of length �y and charge �Q � l�y.

Note that the field from a symmetrically
located charge segment will cancel (Ei)y.

Draw the field vector
of charge segment i.

3

1

2

4

5

An Infinite Line of Charge
What if the rod or wire becomes very long, becoming a line of charge, while the 
linear charge density l remains constant? To answer this question, we can rewrite the 
expression for Erod by factoring (L/2)2 out of the denominator:

 Erod =
1

4pP0
 
0Q 0

r # L/2
 

121 + 4r2/L2 
=

1

4pP0
 
2 0 l 0

r
 

121 + 4r2/L2 
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where 0 l 0 = 0Q 0 /L is the magnitude of the linear charge density. If we now let L S �, 
the last term becomes simply 1 and we’re left with

 Eline =
1

4pP0
 
2 0 l 0

r
  (26.15)

FIgUrE 26.13 shows the electric field vectors of an infinite line of positive charge. The 
vectors would point inward for a negative line of charge.

noTE  Unlike a point charge, for which the field decreases as 1/r2, the field of an 
infinitely long charged wire decreases more slowly—as only 1/r. 

Although no real wire is infinitely long, the fact that the field of a point charge 
decreases inversely with the square of the distance means that the electric field at 
any point is determined primarily by the nearest charges. Consequently, the field of 
a realistic finite-length wire is well approximated by Equation 26.15, the field of an 
infinitely long line of charge, except at points near the end of the wire.

FIgUrE 26.13 The electric field of an 
infinite line of charge.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Infinite line of charge

The field points straight away
from the line at all points.

The field strength decreases
with distance.

Charged rod

Stop to think 26.3 
 Which of the following actions will increase the electric field 

strength at the position of the dot?

 a. Make the rod longer without changing the charge.
 b. Make the rod shorter without changing the charge.
 c. Make the rod wider without changing the charge.
 d. Make the rod narrower without changing the charge.
 e. Add charge to the rod.
 f. Remove charge from the rod.
 g. Move the dot farther from the rod.
 h. Move the dot closer to the rod.

26.4  The Electric Fields of rings, Disks, 
Planes, and spheres

In this section we’ll derive the electric fields for several important charge distributions.

ExAMPLE 26.4  The electric field of a ring of charge
A thin ring of radius R is uniformly charged with total charge Q. 
Find the electric field at a point on the axis of the ring (perpen-
dicular to the ring).

MoDEL Because the ring is thin, we’ll assume the charge lies 
along a circle of radius R. You can think of this as a line of charge 
of length 2pR wrapped into a circle. The linear charge density 
along the ring is l = Q/2pR.

VIsUALIzE FIgUrE 26.14 shows the ring and illustrates the five 
steps of the problem-solving strategy. We’ve chosen a coordinate 
system in which the ring lies in the xy-plane and point P is on the
z-axis. We’ve then divided the ring into N small segments of 
charge �Q, each of which can be modeled as a point charge. As 
you can see from the figure, the component of the field perpendic-
ular to the axis cancels for two diametrically opposite segments. 
Thus we need to calculate only the z-component Ez.

soLVE The z-component of the electric field due to segment i is

 (Ei)z = Ei  cos ui =
1

4pP0
 
�Q

ri 

2   cos ui

FIgUrE 26.14 Calculating the onaxis electric field of a ring of charge.

P

ui

ri

ui z

z

y

x

R

Segment i
with charge
�Q

Choose a coordinate system.

Divide the ring into segments.

Identify the
point at which to
calculate the field.

Draw the field vector
of charge segment i.

Note that the field from
a symmetrically located
charge segment will
cancel (Ei)y.

1

3

2

45

Ei

r
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FIgUrE 26.15 shows two representations of the on-axis electric field of a positively 
charged ring. FIgUrE 26.15a shows that the electric field vectors point away from the 
ring, increasing in length until reaching a maximum when 0 z 0 � R, then decreasing. 
The graph of (Ering)z in FIgUrE 26.15b confirms that the field strength has a maximum on 
either side of the ring. Notice that the electric field at the center of the ring is zero, even 
though this point is surrounded by charge. You might want to spend a minute thinking 
about why this has to be the case.

A Disk of Charge
FIgUrE 26.16 shows a disk of radius R that is uniformly charged with charge Q. This is a 
mathematical disk, with no thickness, and its surface charge density is

 h =
Q

A
=

Q

pR2 (26.16)

We would like to calculate the on-axis electric field of this disk. Our problem-solving 
strategy tells us to divide a continuous charge into segments for which we already 
know how to find E

u

. Because we now know the on-axis electric field of a ring of 
charge, let’s divide the disk into N very narrow rings of radius r and width �r. One 
such ring, with radius ri and charge �Qi, is shown.

We need to be careful with notation. The R in Example 26.4 was the radius of the 
ring. Now we have many rings, and the radius of ring i is ri. Similarly, Q was the 
charge on the ring. Now the charge on ring i is �Qi, a small fraction of the total charge 
on the disk. With these changes, the electric field of ring i, with radius ri, is

 (Ei)z =
1

4pP0
 

z �Qi

(z 2 + ri 

2)3/2 (26.17)

The on-axis electric field of the charged disk is the sum of the electric fields of all 
of the rings:

 (Edisk)z = a
N

i=1
(Ei)z =

z

4pP0
 a

N

i=1
 

�Qi

(z 2 + ri 

2)3/2 (26.18)

The critical step, as always, is to relate �Q to a coordinate. Because we now have 
a surface, rather than a line, the charge in ring i is �Q = h �Ai, where �Ai is the 
area of ring i. We can find �Ai, as you’ve learned to do in calculus, by “unrolling” 
the ring to form a narrow rectangle of length 2pri and height �r. Thus the area of 
ring i is �Ai = 2pri �r and the charge is �Qi = 2phri �r. With this substitu-
tion, Equation 26.18 becomes

 (Edisk)z =
h z

2P0
 a

N

i=1
 

ri �r

(z 2 + ri 

2)3/2 (26.19)

We were able to bring all terms involving z to the front because z 
is a constant as far as the summation is concerned. Surprisingly, 
we don’t need to convert the sum to an integral to complete this 
calculation. The sum of all the �Q around the ring is simply the 
ring’s total charge, g�Q = Q, hence the field on the axis is

 (Ering)z =
1

4pP0
 

zQ

(z 2 + R2)3/2

This expression is valid for both positive and negative z (i.e., on 
either side of the ring) and for both positive and negative charge.

AssEss It will be left as a homework problem to show that this 
result gives the expected limit when z W R.

You can see from the figure that every segment of the ring, 
independent of i, has

  ri = 2z 2 + R2

  cos ui =
z

ri
=

z2z 2 + R2

Consequently, the field of segment i is

 (Ei)z =
1

4pP0
 

�Q

z 2 + R2 
z2z 2 + R2

=
1

4pP0
 

z

(z 2 + R2)3/2 �Q

The net electric field is found by summing (Ei)z due to all 
N segments:

 Ez = a
N

i=1
(Ei)z =

1

4pP0
 

z

(z 2 + R2)3/2 a
N

i=1
�Q

FIgUrE 26.15 The onaxis electric field of 
a ring of charge.

(a)

Maximum
field strength

The field is zero
in the center.

z

Ering

R�R�2R�3R�4R 3R2R 4R

(b)

FIgUrE 26.16 Calculating the onaxis 
field of a charged disk.

z

2pri

Area �Ai � 2pri�r
�r

�r

Field due
to ring i

Ring i with radius ri and
area �Ai. If we unroll the
ring it looks as shown below.

Ei

z

R

ri

Disk with
radius R and
charge Q

The charge of
the ring is �Qi.

r
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As N S �, �r S dr and the sum becomes an integral. Adding all the rings means 
integrating from r = 0 to r = R; thus

 (Edisk)z =
h z

2P0
 3

R

0

r dr

(z 2 + r2)3/2 (26.20)

All that remains is to carry out the integration. This is straightforward if we make 
the variable change u = z 2 + r2. Then du = 2r dr or, equivalently, r dr =

1
2 du. At the 

lower integration limit r = 0, our new variable is u = z 2. At the upper limit r = R, the 
new variable is u = z 2 + R2.

noTE  When changing variables in a definite integral, you must also change the 
limits of integration. 

With this variable change the integral becomes

(Edisk)z =
h z

2P0
 
1

2
 3

z2+R2

z2

du

u3/2 =
h z

4P0
 
-2

u1/2 `
z2+R2

z2

=
h z

2P0
 c 1

z
 -

12z 2 + R2
d  (26.21)

If we multiply through by z, the on-axis electric field of a charged disk with surface 
charge density h = Q/pR2 is

 (Edisk)z =
h

2P0
 c 1 -

z2z 2 + R2
d  (26.22)

noTE  This expression is valid only for z 7 0. The field for z 6 0 has the same 
magnitude but points in the opposite direction. 

It’s a bit difficult see what Equation 26.22 is telling us, so let’s compare it to what 
we already know. First, you can see that the quantity in square brackets is dimension-
less. The surface charge density h = Q/A has the same units as q/r2, so h/2P0 has the 
same units as q/4pP0  r2. This tells us that h/2P0 really is an electric field.

Next, let’s move very far away from the disk. At distance z W R, the disk appears 
to be a point charge Q in the distance and the field of the disk should approach that 
of a point charge. If we let z S � in Equation 26.22, so that z 2 + R2 � z 2, we find 
(Edisk)z S 0. This is true, but not quite what we wanted. We need to let z be very large 
in comparison to R, but not so large as to make Edisk vanish. That requires a little more 
care in taking the limit.

We can cast Equation 26.22 into a somewhat more useful form by factoring the z 2 
out of the square root to give

 (Edisk)z =
h

2P0
 c 1 -

121 + R2/z 2
d  (26.23)

Now R2/z 2
V 1 if z W R, so the second term in the square brackets is of the form 

(1 + x)-1/2 where x V 1. We can then use the binomial approximation

 (1 + x)n � 1 + nx if x V 1  (binomial approximation)

to simplify the expression in square brackets:

1 -
121 + R2/z 2

= 1 - (1 + R2/z 2)-1/2 � 1 - 11 + 1-  
1

2 2  
R2

z 2 2 =
R2

2z 2 (26.24)

This is a good approximation when z W R. Substituting this approximation 
into Equation 26.23, we find that the electric field of the disk for z W R is

 (Edisk)z �
h

2P0
 
R2

2z 2 =
Q/pR2

4P0
 
R2

z 2 =
1

4pP0
 
Q

z 2 if z W R (26.25)

This is, indeed, the field of a point charge Q, giving us confidence in Equation 26.22 
for the on-axis electric field of a disk of charge.



noTE  The binomial approximation is an important tool for looking at the limiting 
cases of electric fields. 

The electric field at z = 0.0010 m, given by Equation 26.23, is

 Ez =
h

2P0
 c 1 -

121 + R2/z 2
d = -1.1 * 105  N/C

The minus sign indicates that the field points toward, rather than 
away from, the disk. As a vector,

 E
u

= (1.1 * 105 N/C, toward the disk)

AssEss The total charge, -16 nC, is typical of the amount of 
charge produced on a small plastic object by rubbing or friction. 
Thus 105 N/C is a typical electric field strength near an object that 
has been charged by rubbing.

ExAMPLE 26.5  The electric field of a charged disk
A 10-cm-diameter plastic disk is charged uniformly with an extra 
1011 electrons. What is the electric field 1.0 mm above the surface 
at a point near the center?

MoDEL Model the plastic disk as a uniformly charged disk. We 
are seeking the on-axis electric field. Because the charge is nega-
tive, the field will point toward the disk.

soLVE The total charge on the plastic square is Q = N(-e) =

-1.60 * 10-8 C. The surface charge density is

 h =
Q

A
=

Q

pR2 =
-1.60 * 10-8 C

p(0.050 m)2 = -2.04 * 10-6 C/m2

A Plane of Charge
Many electronic devices use charged, flat surfaces—disks, squares, rectangles, and 
so on—to steer electrons along the proper paths. These charged surfaces are called 
electrodes. Although any real electrode is finite in extent, we can often model an 
electrode as an infinite plane of charge. As long as the distance z to the electrode is 
small in comparison to the distance to the edges, we can reasonably treat the edges 
as if they are infinitely far away.

The electric field of a plane of charge is found from the on-axis field of a charged 
disk by letting the radius R S �. That is, a disk with infinite radius is an infinite plane. 
From Equation 26.22, we see that the electric field of a plane of charge with surface 
charge density h is:

 Eplane =
h

2P0
= constant (26.26)

This is a simple result, but what does it tell us? First, the field strength is directly 
proportional to the charge density h: More charge, bigger field. Second, and more 
interesting, the field strength is the same at all points in space, independent of the 
distance z. The field strength 1000 m from the plane is the same as the field strength 
1 mm from the plane.

How can this be? It seems that the field should get weaker as you move away 
from the plane of charge. But remember that we are dealing with an infinite plane 
of charge. What does it mean to be “close to” or “far from” an infinite object? 
For a disk of finite radius R, whether a point at distance z is “close to” or “far 
from” the disk is a comparison of z to R. If z V R, the point is close to the disk. 
If z W R, the point is far from the disk. But as R S �, we have no scale for dis-
tinguishing near and far. In essence, every point in space is “close to” a disk of 
infinite radius.

No real plane is infinite in extent, but we can interpret Equation 26.26 as saying that 
the field of a surface of charge, regardless of its shape, is a constant h/2P0 for those 
points whose distance z to the surface is much smaller than their distance to the edge. 
Eventually, when z W R, the charged surface will begin to look like a point charge Q 
and the field will have to decrease as 1/z 2.

We do need to note that the derivation leading to Equation 26.26 considered only 
z 7 0. For a positively charged plane, with h 7 0, the electric field points away from 
the plane on both sides of the plane. This requires Ez 6 0 (E

u

 pointing in the negative 
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z-direction) on the side with z 6 0. Thus a complete description of the electric field, 
valid for both sides of the plane and for either sign of h, is

 (Eplane)z = d +  
h

2P0
  z 7 0

-  
h

2P0
  z 6 0

 (26.27)

FIgUrE 26.17 shows two views of the electric field of a positively charged plane. 
All the arrows would be reversed for a negatively charged plane. It would have been 
very difficult to anticipate this result from Coulomb’s law or from the electric field 
of a single point charge, but step by step we have been able to use the concept of the 
electric field to look at increasingly complex distributions of charge.

A sphere of Charge
The one last charge distribution for which we need to know the electric field is a 
sphere of charge. This problem is analogous to wanting to know the gravitational 
field of a spherical planet or star. The procedure for calculating the field of a sphere of 
charge is the same as we used for lines and planes, but the integrations are significantly 
more difficult. We will skip the details of the calculations and, for now, simply assert 
the result without proof. In Chapter 27 we’ll use an alternative procedure to find the 
field of a sphere of charge.

A sphere of charge Q and radius R, be it a uniformly charged sphere or just a spheri-
cal shell, has an electric field outside the sphere (r Ú R) that is exactly the same as 
that of a point charge Q located at the center of the sphere:

 E
u

sphere =
Q

4pP0r
2 rn  for r Ú R (26.28)

This assertion is analogous to our earlier assertion that the gravitational force between 
stars and planets can be computed as if all the mass is at the center.

FIgUrE 26.18 shows the electric field of a sphere of positive charge. The field of a 
negative sphere would point inward.

FIgUrE 26.17 Two views of the electric 
field of a plane of charge.

Perspective view E

�� �
�� �

�� �
�� �

�� �
�� �

�� �

r

Edge view

����������� ����������

E
r

FIgUrE 26.18 The electric field of a 
sphere of positive charge.

�Q

The electric field outside a sphere or spherical
shell is the same as the field of a point charge
Q at the center.

Stop to think 26.4 
 Rank in order, from largest to smallest, the electric field strengths 

Ea to Ee at these five points near a plane of charge.

c

������ � � � � �

a

b

d e

26.5 The Parallel-Plate Capacitor
FIgUrE 26.19 shows two electrodes, one with charge +Q and the other with -Q, placed 
face-to-face a distance d apart. This arrangement of two electrodes, charged equally 
but oppositely, is called a parallel-plate capacitor. Capacitors play important roles in 
many electric circuits. Our goal is to find the electric field both inside the capacitor 
(i.e., between the plates) and outside the capacitor.

noTE  The net charge of a capacitor is zero. Capacitors are charged by transferring 
electrons from one plate to the other. The plate that gains N electrons has charge 
-Q = N(-e). The plate that loses electrons has charge +Q. 

FIgUrE 26.19 A parallelplate capacitor.

d

Area A

�Q �Q
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Let’s begin with a qualitative investigation. FIgUrE 26.20 is an enlarged view of the 
capacitor plates, seen from the side. Because opposite charges attract, all of the charge 
is on the inner surfaces of the two plates. Thus the inner surfaces of the plates can be 
modeled as two planes of charge with equal but opposite surface charge densities. As 
you can see from the figure, at all points in space the electric field E

u

+ of the positive plate 
points away from the plane of positive charges. Similarly, the field E

u

- of the negative 
plate everywhere points toward the plane of negative charges.

noTE  You might think the right capacitor plate would somehow “block” the 
electric field created by the positive plate and prevent the presence of an E

u

+ field 
to the right of the capacitor. To see that it doesn’t, consider an analogous situation 
with gravity. The strength of gravity above a table is the same as its strength below 
it. Just as the table doesn’t block the earth’s gravitational field, intervening matter 
or charges do not alter or block an object’s electric field. 

Inside the capacitor, E
u

+ and E
u

- are parallel and of equal strength. Their superposition 
creates a net electric field inside the capacitor that points from the positive plate to the 
negative plate. Outside the capacitor, E

u

+ and E
u

- point in opposite directions and, because 
the field of a plane of charge is independent of the distance from the plane, have equal 
magnitudes. Consequently, the fields E

u

+ and E
u

- add to zero outside the capacitor plates.
We can calculate the fields between the capacitor plates from the field of an infi-

nite charged plane. Between the electrodes, E
u

+ is of magnitude h/2P0 and points from 
the positive toward the negative side. The field E

u

- is also of magnitude h/2P0 and 
also points from positive to negative. Thus the electric field inside the capacitor is

 E
u

capacitor = E
u

+ + E
u

- = 1 hP0
 , from positive to negative2

 = 1 Q

P0 A
 , from positive to negative2  

(26.29)

where A is the surface area of each electrode. Outside the capacitor plates, where E
u

+ and 
E
u

- have equal magnitudes but opposite directions, E
u

= 0
u

.
FIgUrE 26.21a shows the electric field of an ideal parallel-plate capacitor constructed 

from two infinite charged planes. Now, it’s true that no real capacitor is infinite in ex-
tent, but the ideal parallel-plate capacitor is a very good approximation for all but the 
most precise calculations as long as the electrode separation d is much smaller than the 
electrodes’ size. FIgUrE 26.21b shows that the interior field of a real capacitor is virtually 
identical to that of an ideal capacitor but that the exterior field isn’t quite zero. This 
weak field outside the capacitor is called the fringe field. We will keep things simple 
by always assuming the plates are very close together and using Equation 26.29 for the 
field inside a parallel-plate capacitor.

noTE  The shape of the electrodes—circular or square or any other shape—is not 
relevant as long as the electrodes are very close together. 

FIgUrE 26.20 The electric fields inside 
and outside a parallelplate capacitor.
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Inside the capacitor,
E� and E� are parallel,
so the net field is large.
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The capacitor’s charge resides on the
inner surfaces as planes of charge.

Outside the capacitor,
E� and E� are opposite,
so the net field is zero.
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Side view of
electrodes
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FIgUrE 26.21 The electric field of a 
capacitor.
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The field is uniform, pointing from
the positive to the negative electrode.

This is
an edge
view of the
electrodes.

(a) Ideal capacitor
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A weak fringe field extends
outside the electrodes.

(b) Real capacitor

soLVE The electric field strength inside the capacitor is E =

Q/P0 A. Thus the charge to produce a field of strength E is

  Q = (8.85 * 10-12 C2/N m2)(2.0 * 10-4 m2)(2.0 * 106 N/C)

 = 3.5 * 10-9 C = 3.5 nC

The positive plate must be charged to +3.5 nC and the negative 
plate to -3.5 nC. In practice, the plates are charged by using a 

ExAMPLE 26.6  The electric field inside a capacitor
Two 1.0 cm * 2.0 cm rectangular electrodes are 1.0 mm apart. 
What charge must be placed on each electrode to create a 
uniform electric field of strength 2.0 * 106 N/C? How many 
electrons must be moved from one electrode to the other to 
accomplish this?

MoDEL The electrodes can be modeled as a parallel-plate capaci-
tor because the spacing between them is much smaller than their 
lateral dimensions.

Continued
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Stop to think 26.5 
 Rank in order, from largest to smallest, the 

forces Fa  to Fe  a proton would experience if placed at points a 
to e in this parallel-plate capacitor.
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a

b c d

e

Uniform Electric Fields
FIgUrE 26.22 shows an electric field that is the same—in strength and direction—at 
every point in a region of space. This is called a uniform electric field. A uniform 
electric field is analogous to the uniform gravitational field near the surface of the 
earth. Uniform fields are of great practical significance because, as you will see in 
the next section, computing the trajectory of a charged particle moving in a uniform 
electric field is a straightforward process.

The easiest way to produce a uniform electric field is with a parallel-plate capaci-
tor, as you can see in Figure 26.21a. Indeed, our interest in capacitors is due in large 
measure to the fact that the electric field is uniform. Many electric field problems refer 
to a uniform electric field. Such problems carry an implicit assumption that the action 
is taking place inside a parallel-plate capacitor.

FIgUrE 26.22 A uniform electric field.

E
r

Thus 2.2 * 1010 electrons are moved from one electrode to the 
other. Note that the capacitor as a whole has no net charge.

AssEss The plate spacing does not enter the result. As long as the 
spacing is much smaller than the plate dimensions, as is true in this 
example, the field is independent of the spacing.

battery to move electrons from one plate to the other. The number 
of electrons in 3.5 nC is

 N =
Q

e
=

3.5 * 10-9 C

1.60 * 10-19 C/electron
= 2.2 * 1010 electrons

AssEss The charge density may seem rather large, but cells are 
very small. A typical cell is �10 mm in diameter, with a sur-
face area of �3 * 10-10 m2. At a surface charge density of 

9 * 10-5 C/m2, the total charge on the outer surface of the cell 
is �3 * 10-14 C, or � 200,000 ions.

ExAMPLE 26.7  Charge density on a cell wall
Example 25.7 noted that the electric field strength in the cell wall 
of a neuron is typically 1.0 * 107  N/C. This electric field is estab-
lished because the outer surface of the cell wall is positive and the 
inner surface negative. What is a typical surface charge density on 
the surface of a cell wall?

MoDEL Although cells are roughly spherical, the wall thickness is 
much less than the radius of the cell. Locally, at a point inside the 
cell wall, the curvature is negligible, so we can model the cell wall 
as a parallel-plate capacitor.

VIsUALIzE FIgUrE 26.23 shows a section of the cell wall. The 
charges are due to ions, not electrons, but that doesn’t affect our 
analysis.

soLVE The electric field strength inside a capacitor is E = h/P0. 
The surface charge density needed to produce a known field is

 h = P0 E = (8.85 * 10-12 C2/N m2)(1.0 * 107 N/C)

 = 8.9 * 10-5 C/m2

FIgUrE 26.23 The electric field inside the cell wall is due to 
charges on the surfaces.

r
E

Outside of cell

Inside of cell

Cell wall

Surface charge
density h

� � � � � � � � � � �

� � � � � � � � � � �
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26.6  Motion of a Charged Particle
in an Electric Field

Our motivation for introducing the concept of the electric field was to understand 
the long-range electric interaction of charges. We said that some charges, the source 
charges, create an electric field. Other charges then respond to that electric field. 
The first five sections of this chapter have focused on the electric field of the source 
charges. Now we turn our attention to the second half of the interaction.

FIgUrE 26.24 shows a particle of charge q and mass m at a point where an electric 
field E

u

 has been produced by other charges, the source charges. The electric field 
exerts a force

 F
u

on q = qE
u

on the charged particle. Notice that the force on a negatively charged particle is opposite 
in direction to the electric field vector. Signs are important!

FIgUrE 26.24 The electric field exerts a force on a charged particle.

�

E
r

E
r

E
r

The vector is the electric
field at this point.

Fon q

r

Fon q

r

The force on a negative charge is
opposite the direction of E.

r
The force on a positive charge
is in the direction of E.

r

�

If F
u

on q is the only force acting on q, it causes the charged particle to accelerate with

 a
u

=
F
u

on q

m
=

q

m
 E
u

 (26.30)

This acceleration is the response of the charged particle to the source charges that 
created the electric field. The ratio q/m is especially important for the dynamics of 
charged-particle motion. It is called the charge-to-mass ratio. Two equal charges, 
say a proton and a Na+ ion, will experience equal forces F

u

= qE
u

 if placed at the 
same point in an electric field, but their accelerations will be different because they 
have different masses and thus different charge-to-mass ratios. Two particles with 
different charges and masses but with the same charge-to-mass ratio will undergo the 
same acceleration and follow the same trajectory.

Motion in a Uniform Field
The motion of a charged particle in a uniform electric field is especially important for 
its basic simplicity and because of its many valuable applications. A uniform field is 
constant at all points—constant in both magnitude and direction—within the region 
of space where the charged particle is moving. It follows, from Equation 26.30, that 
a charged particle in a uniform electric field will move with constant acceleration. 
The magnitude of the acceleration is

 a =
qE

m
= constant (26.31)

where E is the electric field strength, and the direction of a
u

 is parallel or antiparallel to 
E
u

, depending on the sign of q.

“DNA fingerprints” are measured with the 
technique of gel electrophoresis. A solu
tion of DNA fragments is placed in a well 
at one end of a plate covered with gel. The 
fragments are negatively charged when 
in solution, and they begin to migrate 
through the gel when a uniform electric 
field is established parallel to the surface 
of the plate. Because the gel exerts a drag 
force, the fragments move at a terminal 
speed inversely proportional to their size. 
Thus gel electrophoresis sorts the DNA 
fragments by size, and fluorescent markers 
allow the results to be seen.
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Identifying the motion of a charged particle in a uniform field as being one of 
constant acceleration brings into play all the kinematic machinery that we devel-
oped in Chapters 2 and 4 for constant-acceleration motion. The basic trajectory 
of a charged particle in a uniform field is a parabola, analogous to the projectile 
motion of a mass in the near-earth uniform gravitational field. In the special case 
of a charged particle moving parallel to the electric field vectors, the motion is one-
dimensional, analogous to the one-dimensional vertical motion of a mass tossed 
straight up or falling straight down.

noTE  The gravitational acceleration a
u

grav always points straight down. The 
electric field acceleration a

u

elec can point in any direction. You must determine the 
electric field E

u

 in order to learn the direction of a
u
. 

analyze the electron’s motion in terms of the electric field inside 
the capacitor. The field is the agent that exerts the force on the 
electron, causing it to accelerate. The electric field strength inside 
a parallel-plate capacitor with charge Q = Ne is

 E =
h

P0
=

Q

P0A
=

Ne

P0pR2 = 639,000 N/C

The electron’s acceleration in this field is

 a =
eE

m
= 1.1 * 1017 m/s2

where we used the electron mass m = 9.11 * 10-31 kg. This is an 
enormous acceleration compared to accelerations we’re familiar 
with for macroscopic objects. We can use one-dimensional kine-
matics, with xi = 0 and vi = 0, to find the time required for the 
electron to cross the capacitor:

  xf = d =
1

2
 a(�t)2

  �t = A2d

a
= 3.0 * 10-10 s = 0.30 ns

The electron’s speed as it reaches the positive electrode is

 v = a �t = 3.3 * 107 m/s

AssEss We used e rather than -e to find the acceleration because 
we already knew the direction; we needed only the magnitude. The 
electron’s speed, after traveling a mere 5 mm, is approximately 
10% the speed of light.

ExAMPLE 26.8  An electron moving across a capacitor
Two 6.0-cm-diameter electrodes are spaced 5.0 mm apart. They are 
charged by transferring 1.0 * 1011 electrons from one electrode to 
the other. An electron is released from rest at the surface of the neg-
ative electrode. How long does it take the electron to cross to the 
positive electrode? What is its speed as it collides with the positive 
electrode? Assume the space between the electrodes is a vacuum.

MoDEL The electrodes form a parallel-plate capacitor. The elec-
tric field inside a parallel-plate capacitor is a uniform field, so the 
electron will have constant acceleration.

VIsUALIzE FIgUrE 26.25 shows an edge view of the capacitor and 
the electron. The force on the negative electron is opposite the 
electric field, so the electron is repelled by the negative electrode 
as it accelerates across the gap of width d.

FIgUrE 26.25 An electron accelerates across a capacitor (plate 
separation exaggerated).

d � 5.0 mm

2R � 6.0 cm

The capacitor was charged by transferring 1011 electrons 
from the right electrode to the left electrode.
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Parallel electrodes such as those in Example 26.8 are often used to accelerate 
charged particles. If the positive plate has a small hole in the center, a beam of elec-
trons will pass through the hole, after accelerating across the capacitor gap, and emerge 
with a speed of 3.3 * 107 m/s. This is the basic idea of the electron gun used until quite 
recently in cathode-ray tube (CRT) devices such as televisions and computer display 
terminals. (A negatively charged electrode is called a cathode, so the physicists who 
first learned to produce electron beams in the late 19th century called them cathode 
rays.) The following example shows that parallel electrodes can also be used to deflect 
charged particles sideways.

soLVE The electrodes are not point charges, so we cannot use 
Coulomb’s law to find the force on the electron. Instead, we must 



Example 26.9 demonstrates how an electron beam is steered to a point on the screen 
of a cathode-ray tube. First, a high-speed electron beam is created by an electron gun 
like that of Example 26.8. The beam then passes first through a set of vertical deflection 
plates, as in Example 26.9, then through a second set of horizontal deflection plates. 
After leaving the deflection plates, it travels in a straight line (through vacuum, to 
eliminate collisions with air molecules) to the screen of the CRT, where it strikes a 
phosphor coating on the inside surface and makes a dot of light. Properly choosing the 
electric fields within the deflection plates steers the electron beam to any point on the 
screen.

This is the deflection angle. To find u we must compute the final 
velocity vector v

u

1.
There is no horizontal force on the electron, so v1x =  

v0x = 3.3 * 107 m/s. The electron’s upward acceleration has 
magnitude

 a =
eE

m
=

(1.60 * 10-19 C)(5.0 * 104 N/C)

9.11 * 10-31 kg
 

 = 8.78 * 1015 m/s2 

We can use the fact that the horizontal velocity is constant to de-
termine the time interval �t needed to travel length 2.0 cm:

 �t =
L

v0x
=

0.020 m

3.3 * 107 m/s
= 6.06 * 10-10 s

Vertical acceleration will occur during this time interval, resulting 
in a final vertical velocity

 v1y = v0y + a �t = 5.3 * 106 m/s

The electron’s velocity as it leaves the capacitor is thus

 v  

u

1 = (3.3 * 107 in + 5.3 * 106 jn) m/s

and the deflection angle u is

 u = tan-11v1y

v1x
2 = 9.1�

AssEss We know that the electron beam in a cathode-ray tube can 
be deflected enough to cover the screen, so a deflection angle of 9� 
seems reasonable. Our neglect of the gravitational force is seen to 
be justified because the acceleration of the electrons is enormous 
in comparison to the free-fall acceleration g.

ExAMPLE 26.9  Deflecting an electron beam
An electron gun creates a beam of electrons moving horizon- 
tally with a speed of 3.3 * 107 m/s. The electrons enter a 2.0-cm-
long gap between two parallel electrodes where the electric field 

is E
u

= (5.0 * 104 N/C, down). In which direction, and by what 
angle, is the electron beam deflected by these electrodes?

MoDEL The electric field between the electrodes is uniform. As-
sume that the electric field outside the electrodes is zero.

VIsUALIzE FIgUrE 26.26 shows an electron moving through the 
electric field. The electric field points down, so the force on the 
(negative) electrons is upward. The electrons will follow a para-
bolic trajectory, analogous to that of a ball thrown horizontally, 
except that the electrons “fall up” rather than down.

FIgUrE 26.26 The deflection of an electron beam in a uniform 
electric field.

�����������

����������� v1
r

v0
r

r
E � (5.0 � 104 N/C, down)

L � 2.0 cm

u

Deflection plates

soLVE This is a two-dimensional motion problem. The electron en-
ters the capacitor with velocity vector v  

u

0 = v0xin = 3.3 *  107 in m/s 
and leaves with velocity v  

u

1 = v1xin + v1yjn. The electron’s angle of 
travel upon leaving the electric field is

 u = tan-11v1y

v1x
2

Stop to think 26.6 
 Which electric field is responsible for the proton’s trajectory?

�

Parabolic
trajectory

(a) (b) (c) (d) (e)
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26.7 Motion of a Dipole in an Electric Field
Let us conclude this chapter by returning to one of the more striking puzzles we faced 
when making the observations at the beginning of Chapter 25. There you found that 
charged objects of either sign exert forces on neutral objects, such as when a comb 
used to brush your hair picks up pieces of paper. Our qualitative understanding of the 
polarization force was that it required two steps:

	■ The charge polarizes the neutral object, creating an induced electric dipole.
	■ The charge then exerts an attractive force on the near end of the dipole that is 

slightly stronger than the repulsive force on the far end.

We are now in a position to make that understanding more quantitative.

Dipoles in a Uniform Field
FIgUrE 26.27a shows an electric dipole in a uniform external electric field E

u

 that has 
been created by source charges we do not see. That is, E

u

 is not the field of the dipole 
but, instead, is a field to which the dipole is responding. In this case, because the field 
is uniform, the dipole is presumably inside an unseen parallel-plate capacitor.

The net force on the dipole is the sum of the forces on the two charges forming the 
dipole. Because the charges {q are equal in magnitude but opposite in sign, the two 
forces F

u

+ = +qE
u

 and F
u

- = -qE
u

, are also equal but opposite. Thus the net force on 
the dipole is

 F
u

net = F
u

+ + F
u

- = 0
u

 (26.32)

There is no net force on a dipole in a uniform electric field.
There may be no net force, but the electric field does affect the dipole. Because the 

two forces in Figure 26.27a are in opposite directions but not aligned with each other, 
the electric field exerts a torque on the dipole and causes the dipole to rotate.

The torque causes the dipole to rotate until it is aligned with the electric field, as 
shown in FIgUrE 26.27b. In this position, the dipole experiences not only no net force but 
also no torque. Thus Figure 26.27b represents the equilibrium position for a dipole in 
a uniform electric field. Notice that the positive end of the dipole is in the direction in 
which E

u

 points.
FIgUrE 26.28 shows a sample of permanent dipoles, such as water molecules, in an 

external electric field. All the dipoles rotate until they are aligned with the electric 
field. This is the mechanism by which the sample becomes polarized. Once the dipoles 
are aligned, there is an excess of positive charge at one end of the sample and an excess 
of negative charge at the other end. The excess charges at the ends of the sample are 
the basis of the polarization forces we discussed in Section 25.3.

It’s not hard to calculate the torque. Recall from Chapter 12 that the magnitude of a 
torque is the product of the force and the moment arm. FIgUrE 26.29 shows that there are 
two forces of the same magnitude (F+ = F- = qE ), each with the same moment arm 
(d =

1
2 s sin u). Thus the torque on the dipole is

 t = 2 * dF+ = 2(1
2s sin u)(qE ) = pE sin u (26.33)

where p = qs was our definition of the dipole moment. The torque is zero when the 
dipole is aligned with the field, making u = 0.

Recall from Chapter 12 that the torque can be written in a compact mathematical 
form as the cross product between two vectors. The terms p and E in Equation 26.33 
are the magnitudes of vectors, and u is the angle between them. Thus in vector notation, 
the torque exerted on a dipole moment p

u
 by an electric field E

u

 is

 t
u

= p
u

* E
u

 (26.34)

The torque is greatest when p
u

 is perpendicular to E
u

, zero when p
u

 is aligned with or 
opposite to E

u

.

FIgUrE 26.27 A dipole in a uniform 
electric field.
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FIgUrE 26.28 A sample of permanent 
dipoles is polarized in an electric field.
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FIgUrE 26.29 The torque on a dipole.
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Dipoles in a nonuniform Field
Suppose that a dipole is placed in a nonuniform electric field, one in which the field 
strength changes with position. For example, FIgUrE 26.31 shows a dipole in the non-
uniform field of a point charge. The first response of the dipole is to rotate until it is 
aligned with the field, with the dipole’s positive end pointing in the same direction 
as the field. Now, however, there is a slight difference between the forces acting on 
the two ends of the dipole. This difference occurs because the electric field, which 
depends on the distance from the point charge, is stronger at the end of the dipole 
nearest the charge. This causes a net force to be exerted on the dipole.

Which way does the force point? FIgUrE 26.31a shows a positive point charge. Once 
the dipole is aligned, the leftward attractive force on its negative end is slightly 
stronger than the rightward repulsive force on its positive end. This causes a net 
force to the left, toward the point charge. The dipole in FIgUrE 26.31b aligns in the 
opposite orientation in the field of a negative point charge, but the net force is still 
to the left.

As you can see, the net force on a dipole is toward the direction of the strongest 
field. Because any finite-size charged object, such as a charged rod or a charged disk, 
has a field strength that increases as you get closer to the object, we can conclude that 
a dipole will experience a net force toward any charged object.

soLVE The dipole moment is p = qs = (1.0 * 10-8 C) *

(0.020 m) = 2.0 * 10-10 C m. The torque exerted on the dipole 
moment by the electric field is

  t = pE sin u = (2.0 * 10-10 C m)(1.0 * 104 N/C) sin 30�

  = 1.0 * 10-6 N m

You learned in Chapter 12 that a torque causes an angular acceler-
ation a = t/I, where I is the moment of inertia. The dipole rotates 
about its center of mass, which is at the center of the rod, so the 
moment of inertia is

 I = m1r1 

2 + m2r2 

2 = 2m11

2
 s2 2

=
1

2
 ms2 = 2.0 * 10-7 kg m2

Thus the rod’s angular acceleration is

 a =
t

I
=

1.0 * 10-6 N m

2.0 * 10-7 kg m2 = 5.0 rad/s2

AssEss This value of a is the initial angular acceleration, when 
the rod is first released. The torque and the angular acceleration 
will decrease as the rod rotates toward alignment with E

u

.

ExAMPLE 26.10  The angular acceleration of a dipole dumbbell
Two 1.0 g balls are connected by a 2.0-cm-long insulating rod 
of negligible mass. One ball has a charge of +10 nC, the other 
a charge of -10 nC. The rod is held in a 1.0 * 104 N/C uniform 
electric field at an angle of 30� with respect to the field, then 
released. What is its initial angular acceleration?

MoDEL The two oppositely charged balls form an electric dipole. 
The electric field exerts a torque on the dipole, causing an angular 
acceleration.

VIsUALIzE FIgUrE 26.30 shows the dipole in the electric field. 

FIgUrE 26.30 The dipole of Example 26.10.

s � 2.0 cm

1.0 g
�10 nC
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FIgUrE 26.31 An aligned dipole is drawn toward a point charge.
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nitude as the force F
u

ion on dipole that we are seeking. We calculated 
the on-axis field of a dipole in Section 26.2. An ion of charge 
q = e will experience a force of magnitude F = qEdipole = eEdipole 
when placed in that field. The dipole’s electric field, which we 
found in Equation 26.11, is

 Edipole =
1

4pP0
 
2p

r3

The force on the ion at distance r = 1.0 * 10-8 m is

 Fdipole on ion = eEdipole =
1

4pP0
 
2ep

r3 = 1.8 * 10-14 N

Thus the force on the water molecule is Fion on dipole = 1.8 *

10-14 N.

AssEss While 1.8 * 10-14 N may seem like a very small force, 
it is �1011 times larger than the size of the earth’s gravitational 
force on these atomic particles. Forces such as these cause water 
molecules to cluster around any ions that are in solution. This 
clustering plays an important role in the microscopic physics of 
solutions studied in chemistry and biochemistry.

ExAMPLE 26.11  The force on a water molecule
The water molecule H2O has a permanent dipole moment of mag-
nitude 6.2 * 10-30 C m. A water molecule is located 10 nm from 
a Na+ ion in a saltwater solution. What force does the ion exert on 
the water molecule?

VIsUALIzE FIgUrE 26.32 shows the ion and the dipole. The forces 
are an action/reaction pair.

FIgUrE 26.32 The interaction between 
an ion and a permanent dipole.

�� �
Fdipole on ion

r
Fion on dipole

r

r � 10 nm

Na� ion Water molecule

soLVE A Na+ ion has charge q = +e. The electric field of the 
ion aligns the water’s dipole moment and exerts a net force on it. 
We could calculate the net force on the dipole as the small dif-
ference between the attractive force on its negative end and the 
repulsive force on its positive end. Alternatively, we know from 
Newton’s third law that the force F

u

dipole on ion has the same mag-

exactly the necessary condition for uniform circular motion. 
Recall from Chapter 8 that Newton’s second law for uniform 
circular motion is (Fnet)r = mv 2/r. Here the only radial force has 
magnitude Felec = eE, so the proton will move in a circular orbit if

 eE =
mv 2

r

The electric field strength of a sphere of charge Q at distance r 
is E = Q/4pP0r2. From Chapter 4, orbital speed and period 
are related by v = circumference/period = 2pr/T. With these 
substitutions, Newton’s second law becomes

 
eQ

4pP0r2 =
4p2m

T 2  r

Solving for Q, we find

 Q =
16p3P0 mr3

eT 2 = 9.9 * 10-12  C

where we used r = 6.0 mm as the radius of the proton’s orbit. Q 
is the magnitude of the charge on the ball. Including the sign, we 
have

 Qball = - 9.9 * 10-12 C

AssEss This is not a lot of charge, but it shouldn’t take much 
charge to affect the motion of something as light as a proton.

ChALLEngE ExAMPLE 26.12  An orbiting proton
In a vacuum chamber, a proton orbits a 1.0-cm-diameter metal 
ball 1.0 mm above the surface with a period of 1.0 ms. What is the 
charge on the ball?

MoDEL Model the ball as a charged sphere. The electric field of a 
charged sphere is the same as that of a point charge at the center, 
so the radius of the ball is irrelevant. Assume that the gravitational 
force on the proton is extremely small compared to the electric 
force and can be neglected.

VIsUALIzE FIgUrE 26.33 shows the orbit and the force on the proton.

FIgUrE 26.33 An orbiting proton.

soLVE The ball must be negative, with an inward electric field 
exerting an inward electric force on the positive proton. This is 
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Consequences of E 
u

The electric field exerts a force on 
a charged particle:

  F
u

= qE
u

The force causes acceleration:

  a
u

= (q/m)E
u

Trajectories of charged particles are calculated with kinematics.

The electric field exerts a torque on 
a dipole:

  t = pE sin u

The torque tends to align the dipoles with the field.

In a nonuniform electric field, a 
dipole has a net force in the direction 
of increasing field strength.

sources of E 
u

Electric fields are created by charges.

Two major tools for calculating E
u

 are

• The field of a point charge:

 E
u

=
1

4pP0
  
q

r2 rn

• The principle of superposition

Multiple point charges

Use superposition: E
u

= E
u

1 + E
u

2 + E
u

3 + # # #

Continuous distribution of charge

• Divide the charge into segments �Q for which you already 
know the field.

• Find the field of each �Q.

• Find E
u

 by summing the fields of all �Q.

The summation usually becomes an integral. A critical step is 
replacing �Q with an expression involving a charge density 
(l or h) and an integration coordinate.

s U M M A r y
The goal of Chapter 26 has been to learn how to calculate and use the electric field.

general Principles
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Electric dipole

The electric dipole moment is

p
u

= (qs, from negative to positive)

Field on axis: E
u

=
1

4pP0
  
2p

u

r3

Field in bisecting plane: E
u

= -
1

4pP0
  
p
u

r3

Infinite line of charge with linear charge 
density l

 E
u

= 1 1

4pP0
  
2l
r

, perpendicular to line2

Infinite plane of charge with surface 
charge density h

 E
u

= 1 h

2P0
, perpendicular to plane2

Sphere of charge

Same as a point charge Q for r 7 R

Parallel-plate capacitor

The electric field inside an ideal 
capacitor is a uniform electric field:

 E
u

= 1 hP0
, from positive to negative2

A real capacitor has a weak fringe field 
around it.
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C o n C E P T U A L  Q U E s T I o n s

uniformly charged
line of charge
electrode

plane of charge
sphere of charge
parallel-plate capacitor

fringe field
uniform electric field
charge-to-mass ratio, q/m

Terms and notation
dipole moment, p

u

electric field line
linear charge density, l
surface charge density, h

 1. You’ve been assigned the task of determining the magnitude and 
direction of the electric field at a point in space. Give a step-by-
step procedure of how you will do so. List any objects you will 
use, any measurements you will make, and any calculations you 
will need to perform. Make sure that your measurements do not 
disturb the charges that are creating the field.

 2. Reproduce FIgUrE Q26.2 on your paper. For each part, draw a dot 
or dots on the figure to show any position or positions (other than 
infinity) where E

u

= 0
u

.

 3. Rank in order, from largest to smallest, the electric field strengths 
E1 to E4 at points 1 to 4 in FIgUrE Q26.3. Explain.

 4. A small segment of wire in FIgUrE Q26.4 contains 10 nC of charge.
 a. The segment is shrunk to one-third of its original length. 

What is the ratio lf/li, where li and lf are the initial and 
final linear charge densities?

 b. A proton is very far from the wire. What is the ratio Ff/Fi of 
the electric force on the proton after the segment is shrunk to 
the force before the segment was shrunk?

 c. Suppose the original segment of wire is stretched to 10 times 
its original length. How much charge must be added to the 
wire to keep the linear charge density unchanged?

 5. An electron experiences a force of magnitude F when it is 1 cm 
from a very long, charged wire with linear charge density l. If 
the charge density is doubled, at what distance from the wire will 
a proton experience a force of the same magnitude F?

 6. FIgUrE Q26.6 shows a hollow soda 
straw that has been uniformly 
charged with positive charge. What 
is the electric field at the center 
(inside) of the straw? Explain.

 7. The irregularly shaped area of charge in 
FIgUrE Q26.7 has surface charge density 
hi. Each dimension (x and y) of the area 
is reduced by a factor of 3.163.

 a. What is the ratio hf/hi, where hf is the 
final surface charge density?

 b. An electron is very far from the area. 
What is the ratio Ff/Fi of the electric 
force on the electron after the area is reduced to the force 
before the area was reduced?

 8. A circular disk has surface charge density 8 nC/cm2. What 
will the surface charge density be if the radius of the disk is 
doubled?

 9. A sphere of radius R has charge Q. The electric field strength at 
distance r 7 R is Ei. What is the ratio Ef/Ei of the final to initial 
electric field strengths if (a) Q is halved, (b) R is halved, and (c) r 
is halved (but is still 7 R)? Each part changes only one quantity; 
the other quantities have their initial values.

 10. The ball in FIgUrE Q26.10 is suspended from a large, uniformly 
charged positive plate. It swings with period T. If the ball is dis-
charged, will the period increase, decrease, or stay the same? 
Explain.

 11. Rank in order, from largest to smallest, the electric field strengths 
E1 to E5 at the five points in FIgUrE Q26.11. Explain.

 12. A parallel-plate capacitor consists of two square plates, size 
L * L, separated by distance d. The plates are given charge {Q. 
What is the ratio Ef/Ei of the final to initial electric field strengths 
if (a) Q is doubled, (b) L is doubled, and (c) d is doubled? Each 
part changes only one quantity; the other quantities have their 
initial values.

 13. A small object is released at point 3 in the center of the capacitor 
in FIgUrE Q26.11. For each situation, does the object move to the 
right, to the left, or remain in place? If it moves, does it acceler-
ate or move at constant speed?

 a. A positive object is released from rest.
 b. A neutral but polarizable object is released from rest.
 c. A negative object is released from rest.
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 15. Three charges are placed at the corners 
of the triangle in FIgUrE Q26.15. The ++ 
charge has twice the quantity of charge 
of the two – charges; the net charge is 
zero. Is the triangle in equilibrium? If so, 
explain why. If not, draw the equilibrium 
orientation.

 14. A proton and an electron are released from rest in the center of a 
capacitor.

 a. Is the force ratio Fp/Fe greater than 1, less than 1, or equal to 
1? Explain.

 b. Is the acceleration ratio ap/ae greater than 1, less than 1, or 
equal to 1? Explain.
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Problems labeled  integrate material from earlier chapters.

Exercises

Section 26.2 The Electric Field of Multiple Point Charges

 1. || What are the strength and direction of the electric field at the 
position indicated by the dot in FIgUrE Ex26.1? Specify the direc-
tion as an angle above or below horizontal.

 2. || What are the strength and direction of the electric field at the 
position indicated by the dot in FIgUrE Ex26.2? Specify the direc-
tion as an angle above or below horizontal.

 3. || What are the strength and direction of the electric field at the 
position indicated by the dot in FIgUrE Ex26.3? Specify the direc-
tion as an angle above or below horizontal.

 4. || What are the strength and direction of the electric field at the 
position indicated by the dot in FIgUrE Ex26.4? Specify the direc-
tion as an angle above or below horizontal.

 5. || An electric dipole is formed from {1.0 nC charges spaced 
2.0 mm apart. The dipole is at the origin, oriented along the 
x-axis. What is the electric field strength at the points (a) (x, y) =  
(10 cm, 0 cm) and (b) (x, y) = (0 cm, 10 cm)?

 6. || An electric dipole is formed from two charges, {q, spaced 1.0 
cm apart. The dipole is at the origin, oriented along the y-axis. 

The electric field strength at the point (x, y) = (0 cm, 10 cm) is 
360 N/C.

 a. What is the charge q? Give your answer in nC.
 b. What is the electric field strength at the point (x, y) =

(10 cm, 0 cm)?

Section 26.3 The Electric Field of a Continuous Charge Distribution

 7. | The electric field strength 10.0 cm from a very long charged wire 
is 2000 N/C. What is the electric field strength 5.0 cm from the 
wire?

 8. || A 10-cm-long thin glass rod uniformly charged to +10 nC 
and a 10-cm-long thin plastic rod uniformly charged to 
-10 nC are placed side by side, 4.0 cm apart. What are the 
electric field strengths E1 to E3 at distances 1.0 cm, 2.0 cm, 
and 3.0 cm from the glass rod along the line connecting the 
midpoints of the two rods?

 9. || Two 10-cm-long thin glass rods uniformly charged to +10 nC 
are placed side by side, 4.0 cm apart. What are the electric field 
strengths E1 to E3 at distances 1.0 cm, 2.0 cm, and 3.0 cm to the 
right of the rod on the left along the line connecting the mid-
points of the two rods?

 10. || A small glass bead charged to +6.0 nC is 4.0 cm from a thin, 
uniformly charged, 10-cm-long glass rod. The bead is repelled from 
the rod with a force of 840 mN. What is the total charge on the rod?

Section 26.4 The Electric Fields of Rings, Disks, Planes, and Spheres

 11. | Two 10-cm-diameter charged rings face each other, 20 cm 
apart. The left ring is charged to -20 nC and the right ring is 
charged to +20 nC.

 a. What is the electric field E
u

, both magnitude and direction, at 
the midpoint between the two rings?

 b. What is the force F
u

 on a -1.0 nC charge placed at the 
midpoint?

 12. || Two 10-cm-diameter charged rings face each other, 20 cm 
apart. Both rings are charged to +20 nC. What is the electric 
field strength at (a) the midpoint between the two rings and 
(b) the center of the left ring?

 13. || Two 10-cm-diameter charged disks face each other, 20 cm 
apart. The left disk is charged to -50 nC and the right disk is 
charged to +50 nC.

 a. What is the electric field E
u

, both magnitude and direction, at 
the midpoint between the two disks?

 b. What is the force F
u

 on a -1.0 nC charge placed at the 
midpoint?
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 14. || Two 10-cm-diameter charged disks face each other, 20 cm 
apart. Both disks are charged to +50 nC. What is the electric 
field strength at (a) the midpoint between the two disks and (b) a 
point on the axis 5.0 cm from one disk?

 15. || The electric field strength 2.0 cm from a 10-cm-diameter 
metal ball is 50,000 N/C. What is the charge (in nC) on the ball?

 16. || A 20 cm * 20 cm horizontal metal electrode is uniformly 
charged to +80 nC. What is the electric field strength 2.0 mm 
above the center of the electrode?

Section 26.5 The Parallel-Plate Capacitor

 17. || Two circular disks spaced 0.50 mm apart form a parallel-plate 
capacitor. Transferring 3.0 * 109 electrons from one disk to the 
other causes the electric field strength to be 2.0 * 105 N/C. What 
are the diameters of the disks?

 18. || A parallel-plate capacitor is formed from two 6.0-cm-diameter 
electrodes spaced 2.0 mm apart. The electric field strength inside 
the capacitor is 1.0 * 106 N/C. What is the charge (in nC) on 
each electrode?

 19. || Air “breaks down” when the electric field strength reaches 
3.0 * 106 N/C, causing a spark. A parallel-plate capacitor is 
made from two 4.0 cm * 4.0 cm disks. How many electrons 
must be transferred from one disk to the other to create a spark 
between the disks?

Section 26.6 Motion of a Charged Particle in an Electric Field

 20. || A 0.10 g glass bead is charged by the removal of 1.0 * 1010 
electrons. What electric field E

u

 (strength and direction) will 
cause the bead to hang suspended in the air?

 21. | Two 2.0-cm-diameter disks face each other, 1.0 mm apart. 
They are charged to {10 nC.

 a. What is the electric field strength between the disks?
 b. A proton is shot from the negative disk toward the positive 

disk. What launch speed must the proton have to just barely 
reach the positive disk?

 22. || An electron in a uniform electric field increases its speed from 
2.0 * 107 m/s to 4.0 * 107 m/s over a distance of 1.2 cm. What 
is the electric field strength?

 23. || The surface charge density on an infinite charged plane is 
-2.0 * 10-6 C/m2. A proton is shot straight away from the plane 
at 2.0 * 106 m/s. How far does the proton travel before reaching 
its turning point?

 24. || A 1.0-mm-diameter oil droplet (density 900 kg/m3) is nega-
tively charged with the addition of 25 extra electrons. It is 
released from rest 2.0 mm from a very wide plane of positive 
charge, after which it accelerates toward the plane and collides 
with a speed of 3.5 m/s. What is the surface charge density of 
the plane?

Section 26.7 Motion of a Dipole in an Electric Field

 25. | The permanent electric dipole moment of the water molecule 
(H2O) is 6.2 * 10-30 C m. What is the maximum possible torque 
on a water molecule in a 5.0 * 108 N/C electric field?

 26. ||| A point charge Q is distance r from the center of a dipole 
consisting of charges {q separated by distance s. The charge is 
located in the plane that bisects the dipole. At this instant, what 
are (a) the force (magnitude and direction) and (b) the magnitude 
of the torque on the dipole? You can assume r W s.

 27. || An ammonia molecule (NH3) has a permanent electric dipole 
moment 5.0 * 10-30 C m. A proton is 2.0 nm from the molecule 
in the plane that bisects the dipole. What is the electric force of 
the molecule on the proton?

Problems

 28. || What are the strength and direction of the electric field at the 
position indicated by the dot in FIgUrE P26.28? Give your answer 
(a) in component form and (b) as a magnitude and angle mea-
sured cw or ccw (specify which) from the positive x-axis.

 29. || What are the strength and direction of the electric field at the 
position indicated by the dot in FIgUrE P26.29? Give your answer 
(a) in component form and (b) as a magnitude and angle mea-
sured cw or ccw (specify which) from the positive x-axis.

 30. || What are the strength and direction of the electric field at 
the position indicated by the dot in FIgUrE P26.30? Give your 
answer (a) in component form and (b) as a magnitude and angle 
measured cw or ccw (specify which) from the positive x-axis.

 31. || FIgUrE P26.31 shows three charges at the corners of a square. 
Write the electric field at point P in component form.

 32. || Charges -q and +2q in FIgUrE P26.32 are located at x = {a. 
Determine the electric field at points 1 to 4. Write each field in 
component form.

 33. || Two positive charges q are on the y-axis at y = {1
2 s.

 a. Find an expression for the electric field strength at distance x 
on the axis that bisects the two charges.

 b. For q = 1.0 nC and s = 6.0 mm, evaluate E at x = 0, 2, 4, 6, 
and 10 mm.
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 a. Find an expression for the electric field E
u

 at the center of the 
semicircle.

Hint: A small piece of arc length �s spans a small angle �u =  
 �s/R, where R is the radius.

 b. Evaluate the field strength if L = 10 cm and Q = 30 nC.

 45. || A plastic rod with linear charge density l is bent into the quar-
ter circle shown in FIgUrE P26.45. We want to find the electric 
field at the origin.

 a. Write expressions for the x- and y-components of the electric 
field at the origin due to a small piece of charge at angle u.

 b. Write, but do not evaluate, definite integrals for the x- and 
y-components of the net electric field at the origin.

 c. Evaluate the integrals and write E
u

net in component form.
 46. || You’ve hung two very large 

sheets of plastic facing each 
other with distance d between 
them, as shown in FIgUrE P26.46. 
By rubbing them with wool and 
silk, you’ve managed to give one 
sheet a uniform surface charge 
density h1 = -h0 and the other a 
uniform surface charge density 
h2 = +3h0. What are the electric 
field vectors at points 1, 2, and 3?

 47. || Two 2.0-cm-diameter insulating spheres have a 6.0 cm space 
between them. One sphere is charged to +10 nC, the other to 
-15 nC. What is the electric field strength at the midpoint be-
tween the two spheres?

 48. || Two parallel plates 1.0 cm apart are equally and oppositely 
charged. An electron is released from rest at the surface of the 
negative plate and simultaneously a proton is released from rest at 
the surface of the positive plate. How far from the negative plate 
is the point at which the electron and proton pass each other?

 49. || A parallel-plate capacitor has 2.0 cm * 2.0 cm electrodes with 
surface charge densities {1.0 * 10-6 C/m2. A proton traveling 
parallel to the electrodes at 1.0 * 106 m/s enters the center of 
the gap between them. By what distance has the proton been 
deflected sideways when it reaches the far edge of the capacitor? 
Assume the field is uniform inside the capacitor and zero outside 
the capacitor.

 50. || An electron is launched at a 45� angle 
and a speed of 5.0 * 106 m/s from the 
positive plate of the parallel-plate capacitor 
shown in FIgUrE P26.50. The electron lands 
4.0 cm away.

 a. What is the electric field strength inside 
the capacitor?

 b. What is the smallest possible spacing 
between the plates?

 34. || Derive Equation 26.12 for the field E
u

dipole in the plane that 
bisects an electric dipole.

 35. || Three charges are on the y-axis. Charges -q are at y = {d 
and charge +2q is at y = 0.

 a. Find an expression for the electric field E
u

 at a point on the 
x-axis.

 b. Verify that your answer to part a has the expected behavior as 
x becomes very small and very large.

 36. || FIgUrE P26.36 is a cross section of two infinite lines of charge 
that extend out of the page. Both have linear charge density l. 
Find an expression for the electric field strength E at height y 
above the midpoint between the lines.

 37. ||| FIgUrE P26.37 is a cross section of two infinite lines of charge 
that extend out of the page. The linear charge densities are {l. 
Find an expression for the electric field strength E at height y 
above the midpoint between the lines.

 38. || Two infinite lines of charge, each with linear charge density l, 
lie along the x- and y-axes, crossing at the origin. What is the 
electric field strength at position (x, y)?

 39. || The electric field 5.0 cm from a very long charged wire is 
(2000 N/C, toward the wire). What is the charge (in nC) on a 
1.0-cm-long segment of the wire?

 40. || FIgUrE P26.40 shows a thin rod of length L with total charge Q.
 a. Find an expression for the electric field strength at point P on 

the axis of the rod at distance r from the center.
 b. Verify that your expression has the expected behavior if 

r W L.
 c. Evaluate E at r = 3.0 cm if L = 5.0 cm and Q = 3.0 nC.

 41. ||| FIgUrE P26.41 shows a thin rod of length L with total charge Q. 
Find an expression for the electric field E

u

 at point P. Give your 
answer in component form.

 42. || Show that the on-axis electric field of a ring of charge has the 
expected behavior when z V R and when z W R.

 43. || A ring of radius R has total charge Q.
 a. At what distance along the z-axis is the electric field strength 

a maximum?
 b. What is the electric field strength at this point?
 44. || Charge Q is uniformly distributed along a thin, flexible rod 

of length L. The rod is then bent into the semicircle shown in 
FIgUrE P26.44.
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 51. ||| The two parallel plates in FIgUrE P26.51 are 2.0 cm apart and 
the electric field strength between them is 1.0 * 104 N/C. An 
electron is launched at a 45� angle from the positive plate. What 
is the maximum initial speed v0 the electron can have without 
hitting the negative plate?

 52. || A problem of practical interest is to make a beam of electrons 
turn a 90� corner. This can be done with the parallel-plate ca-
pacitor shown in FIgUrE P26.52. An electron with kinetic energy 
3.0 * 10-17 J enters through a small hole in the bottom plate of 
the capacitor.

 a. Should the bottom plate be charged positive or negative rela-
tive to the top plate if you want the electron to turn to the 
right? Explain.

 b. What strength electric field is needed if the electron is to 
emerge from an exit hole 1.0 cm away from the entrance 
hole, traveling at right angles to its original direction?

Hint: The difficulty of this problem depends on how you choose 
your coordinate system.

 c. What minimum separation dmin must the capacitor plates have?
 53. || The combustion of fossil fuels produces micron-sized par-

ticles of soot, one of the major components of air pollution. The 
terminal speeds of these particles are extremely small, so they 
remain suspended in air for very long periods of time. Further-
more, very small particles almost always acquire small amounts 
of charge from cosmic rays and various atmospheric effects, so 
their motion is influenced not only by gravity but also by the 
earth’s weak electric field. Consider a small spherical particle 
of radius r, density r, and charge q. A small sphere moving with 
speed v experiences a drag force Fdrag = 6phrv, where h is the 
viscosity of the air. (This differs from the drag force you learned 
in Chapter 6 because there we considered macroscopic rather 
than microscopic objects.)

 a. A particle falling at its terminal speed vterm is in dynamic 
equilibrium with no net force. Write Newton’s first law for 
this particle falling in the presence of a downward electric 
field of strength E, then solve to find an expression for vterm.

 b. Soot is primarily carbon, and carbon in the form of graph-
ite has a density of 2200 kg/m3. In the absence of an elec-
tric field, what is the terminal speed in mm/s of a 1.0-mm-
diameter graphite particle? The viscosity of air at 20�C is 
1.8 * 10-5 kg/m s.

 c. The earth’s electric field is typically (150 N/C, downward). 
In this field, what is the terminal speed in mm/s of a 1.0-mm-
diameter graphite particle that has acquired 250 extra electrons?

 54. || A 2.0-mm-diameter glass sphere has a charge of +1.0 nC. 
What speed does an electron need to orbit the sphere 1.0 mm 
above the surface?

 55. || In a classical model of the hydrogen atom, the electron orbits 
the proton in a circular orbit of radius 0.053 nm. What is the 

orbital frequency? The proton is so much more massive than the 
electron that you can assume the proton is at rest.

 56. ||| In a classical model of the hydrogen atom, the electron orbits 
a stationary proton in a circular orbit. What is the radius of the 
orbit for which the orbital frequency is 1.0 * 1012 s-1?

 57. || An electric field can induce an electric dipole in a neutral 
atom or molecule by pushing the positive and negative charges 
in opposite directions. The dipole moment of an induced dipole 
is directly proportional to the electric field. That is, p

u
= aE

u

, 
where a is called the polarizability of the molecule. A bigger 
field stretches the molecule farther and causes a larger dipole 
moment.

 a. What are the units of a?
 b. An ion with charge q is distance r from a molecule with 

polarizability a. Find an expression for the force F
u

ion on dipole.
 58. || Show that an infinite line of charge with linear charge density 

l exerts an attractive force on an electric dipole with magnitude 
F = 2lp/4pP0r

2. Assume that r is much larger than the charge 
separation in the dipole.

In Problems 59 through 62 you are given the equation(s) used to solve 
a problem. For each of these
 a. Write a realistic problem for which this is the correct  

equation(s).
 b. Finish the solution of the problem.

 59. (9.0 * 109 N m2/C2) 
(2.0 * 10-9 C) s

(0.025 m)3 = 1150 N/C

 60. (9.0 * 109 N m2/C2) 
2(2.0 * 10-7 C/m)

r
= 25,000 N/C

 61. 
h

2P0
 c 1 -

z2z 2 + R2
d =

1

2
 
h

2P0

 62. 2.0 * 1012 m/s2 =
(1.60 * 10-19 C)E

(1.67 * 10-27 kg)

E =
Q

(8.85 * 10-12 C2/N m2)(0.020 m)2 

Challenge Problems

 63. Your physics assignment is to figure out a way to use electricity 
to launch a small 6.0-cm-long plastic drink stirrer. You decide 
that you’ll charge the little plastic rod by rubbing it with fur, then 
hold it near a long, charged wire, as shown in FIgUrE CP26.63. 
When you let go, the electric force of the wire on the plastic rod 
will shoot it away. Suppose you can uniformly charge the plastic 
stirrer to 10 nC and that the linear charge density of the long wire 
is 1.0 * 10-7 C/m. What is the net electric force on the plastic 
stirrer if the end closest to the wire is 2.0 cm away?
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	64.	 Three	10-cm-long	rods	form	an	equilateral	 triangle	 in	a	plane.	
Two	of	 the	 rods	are	charged	 to	 +10	nC,	 the	 third	 to	 -10	nC.	
What	is	the	electric	field	strength	at	the	center	of	the	triangle?

	65.	 A	rod	of	length	L	lies	along	the	y-axis	with	its	center	at	the	ori-
gin.	The	rod	has	a	nonuniform	linear	charge	density	l = a 0 y 0 ,	
where	a	is	a	constant	with	the	units	C/m2.

	 a.	 Draw	a	graph	of	l	versus	y	over	the	length	of	the	rod.
	 b.	 Determine	 the	 constant	 a	 in	 terms	 of	 L	 and	 the	 rod’s	 total	

charge	Q.
Hint:	This	requires	an	integration.	Think	about	how	to	handle	
the	absolute	value	sign.

	 c.	 Find	the	electric	field	strength	of	the	rod	at	distance	x	on	the	
x-axis.

	66.	 a.		An	infinitely	 long	sheet	of	charge	of	width	L	 lies	 in	 the	xy-
plane	 between	 x = -L	/2	 and	 x = L	/2.	 The	 surface	 charge	
density	is	h.	Derive	an	expression	for	the	electric	field	 E

u

	at	
height	z	above	the	centerline	of	the	sheet.

	 b.	 Verify	 that	 your	 expression	 has	 the	 expected	 behavior	 if	
z V L	and	if	z W L.

	 c.	 Draw	a	graph	of	field	strength	E	versus	z.
	67.	 a.		An	infinitely	 long	sheet	of	charge	of	width	L	 lies	 in	 the	xy-

plane	 between	 x = -L	/2	 and	 x = L	/2.	 The	 surface	 charge	
density	 is	 h.	 Derive	 an	 expression	 for	 the	 electric	 field	 E

u

	
along	the	x-axis	for	points	outside	the	sheet	(x 7 L	/2).

	 b.	 Verify	 that	 your	 expression	 has	 the	 expected	 behavior	 if	
x W L.

Hint:	ln(1 + u) � u	if	u V 1.
	 c.	 Draw	a	graph	of	field	strength	E	versus	x	for	x 7 L	/2.
	68.	 One	type	of	ink-jet	printer,	called	an	electrostatic	ink-jet	printer,	

forms	the	letters	by	using	deflecting	electrodes	to	steer	charged	
ink	drops	up	and	down	vertically	as	the	ink	jet	sweeps	horizon-
tally	across	the	page.	The	ink	jet	forms	30@mm@diameter	drops	of	
ink,	charges	them	by	spraying	800,000	electrons	on	the	surface,	
and	 shoots	 them	 toward	 the	page	at	 a	 speed	of	 20	m/s.	Along	
the	 way,	 the	 drops	 pass	 through	 two	 horizontal,	 parallel	 elec-
trodes	that	are	6.0	mm	long,	4.0	mm	wide,	and	spaced	1.0	mm	

apart.	The	distance	from	the	center	of	the	electrodes	to	the	pa-
per	is	2.0	cm.	To	form	the	tallest	letters,	which	have	a	height	of	
6.0	mm,	the	drops	need	to	be	deflected	upward	(or	downward)	
by	3.0	mm.	What	electric	field	strength	is	needed	between	the	
electrodes	to	achieve	this	deflection?	Ink,	which	consists	of	dye	
particles	suspended	in	alcohol,	has	a	density	of	800	kg/m3.

	69.	 A	proton	orbits	a	long	charged	wire,	making	1.0 * 106	revolu-
tions	per	second.	The	radius	of	the	orbit	is	1.0	cm.	What	is	the	
wire’s	linear	charge	density?

	70.	 A	 positron	 is	 an	 elementary	 particle	 identical	 to	 an	 electron	
except	that	its	charge	is	+e.	An	electron	and	a	positron	can	rotate	
about	their	center	of	mass	as	if	they	were	a	dumbbell	connected	
by	a	massless	rod.	What	is	the	orbital	frequency	for	an	electron	
and	a	positron	1.0	nm	apart?

	71.	 You	have	a	summer	intern	position	with	a	company	that	designs	
and	builds	nanomachines.	An	engineer	with	the	company	is	de-
signing	a	microscopic	oscillator	to	help	keep	time,	and	you’ve	
been	 assigned	 to	 help	 him	 analyze	 the	 design.	 He	 wants	 to	
place	a	negative	charge	at	the	center	of	a	very	small,	positively	
charged	 metal	 ring.	 His	 claim	 is	 that	 the	 negative	 charge	 will	
undergo	simple	harmonic	motion	at	a	frequency	determined	by	
the	amount	of	charge	on	the	ring.

	 a.	 Consider	 a	 negative	 charge	 near	 the	 center	 of	 a	 positively	
charged	ring	centered	on	the	z-axis.	Show	that	there	is	a	re-
storing	force	on	the	charge	 if	 it	moves	along	the	z-axis	but	
stays	close	to	the	center	of	the	ring.	That	is,	show	there’s	a	
force	that	tries	to	keep	the	charge	at	z = 0.

	 b.	 Show	 that	 for	 small	 oscillations,	 with	 amplitude V R,	 a	
particle	 of	 mass	 m	 with	 charge	 -q	 undergoes	 simple	 har-
monic	motion	with	frequency

	 f =
1

2p
	A qQ

4pP0mR3

	 	 R	and	Q	are	the	radius	and	charge	of	the	ring.
	 c.	 Evaluate	the	oscillation	frequency	for	an	electron	at	the	cen-

ter	of	a	2.0@mm@diameter	ring	charged	to	1.0 * 10-13	C.

Stop to think AnSwerS

Stop to Think 26.1:	 c. From	 symmetry,	 the	 fields	 of	 the	 positive	
charges	cancel.	The	net	field	is	that	of	the	negative	charge,	which	is	
toward	the	charge.

Stop to Think 26.2:	 Hc � Hb � Ha 	

.	 All	 pieces	 of	 a	 uniformly	
charged	surface	have	the	same	surface	charge	density.

Stop to Think 26.3:	 b,	 e,	 and	 h.	 b	 and	 e	 both	 increase	 the	 linear	
charge	density	l.

Stop to Think 26.4:	 Ea � Eb � Ec � Ed � Ee	

.	The	field	strength	
of	a	charged	plane	is	the	same	at	all	distances	from	the	plane.	An	electric	

field	diagram	shows	the	electric	field	vectors	at	only	a	few	points;	the	
field	exists	at	all	points.

Stop to Think 26.5:	 Fa � Fb � Fc � Fd � Fe	

.	The	field	strength	
inside	a	capacitor	is	the	same	at	all	points,	hence	the	force	on	a	charge	
is	the	same	at	all	points.	The	electric	field	exists	at	all	points	whether	
or	not	a	vector	is	shown	at	that	point.

Stop to Think 26.6:	 c.	Parabolic	trajectories	require	constant	accel-
eration	 and	 thus	 a	 uniform	 electric	 field.	 The	 proton	 has	 an	 initial	
velocity	component	to	the	left,	but	it’s	being	pushed	back	to	the	right. 
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Electric Flux
The amount of electric field passing 
through a surface is called the electric 
flux. You’ll learn how to calculate the 
flux through open and closed surfaces.

Conductors
Gauss’s law can be used to establish 
several important properties of conduc-
tors in electrostatic equilibrium.
■	 Excess charge is on the surface.
■	 The interior electric field is zero.

Using Gauss’s Law
You’ll learn how Gauss’s law can be 
used to find the electric field both inside 
and outside of charged spheres, cylin-
ders, and planes. In these highly sym-
metric situations, Gauss’s law is much 
easier to use than superposition.

To find the field 
of a sphere of 
charge, you’ll draw 
a Gaussian surface 
around the sphere 
and then calculate 
the electric flux 
through the 
surface.

The metal grid in the 
door of a microwave 
oven shields the room  
because the electric 
field inside the 
metal must be zero. 
It turns out that the 
holes don’t matter 
because they are very small compared to the 
wavelength of the microwaves.

Symmetry
You’ll learn how the shape of some 
important electric fields, those with a high 
degree of symmetry, can be deduced 
from the shape of the charge distribution. 
The idea of symmetry plays an important 
role in science and mathematics.

Gauss’s Law27

Gauss’s Law
In Chapter 26, you learned to calculate 
electric fields based on the superposi-
tion of the fields of point charges. In this 
chapter, you’ll learn a different way to 
calculate electric fields based on the idea 
of electric flux.

Gauss’s law says that the electric flux 
through a closed surface is proportional 
to the charge Qin enclosed within the 
surface. This will be the basis of a 
powerful problem-solving strategy for 
finding the electric fields of highly sym-
metric charge distributions.

Gauss’s law is a more general statement 
about the nature of electric fields than is 
Coulomb’s law. It is the first of the four 
equations that we’ll later call Maxwell’s 
equations, the governing equations of 
electricity and magnetism.

An electric field image of blood 
plasma from healthy blood.  
The wire in the center creates 
the electric field. Variations 
in the shape and color of the 
pattern can give early warning 
of cancer.

 Looking Ahead The goal of Chapter 27 is to understand and apply Gauss’s law.
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An infinitely long 
charged wire has 
cylindrical symmetry. 
The electric field 
of the wire must 
have the same 
symmetry.
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The electric flux 
is analogous to 
the amount of air 
or water flowing 
through a loop.

 Looking Back
Section 11.3 The vector dot product

 Looking Back
Section 25.5 The field of a point charge
Section 26.2 Electric field lines
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27.1 Symmetry
Suppose we knew only two things about electric fields:

 1. The field points away from positive charges, toward negative charges, and
 2. An electric field exerts a force on a charged particle.

From this information alone, what can we deduce about the electric field of the infinitely 
long charged cylinder shown in FiGUrE 27.1?

We don’t know if the cylinder’s diameter is large or small. We don’t know if the 
charge density is the same at the outer edge as along the axis. All we know is that the 
charge is positive and the charge distribution has cylindrical symmetry. We say that 
a charge distribution is symmetric if there is a group of geometric transformations that 
don’t cause any physical change.

To make this idea concrete, suppose you close your eyes while a friend transforms 
a charge distribution in one of the following three ways. He or she can

	■ Translate (that is, displace) the charge parallel to an axis,
	■ Rotate the charge about an axis, or
	■ Reflect the charge in a mirror.

When you open your eyes, will you be able to tell if the charge distribution has been 
changed? You might tell by observing a visual difference in the distribution. Or the 
results of an experiment with charged particles could reveal that the distribution has 
changed. If nothing you can see or do reveals any change, then we say that the charge 
distribution is symmetric under that particular transformation.

FiGUrE 27.2 shows that the charge distribution of Figure 27.1 is symmetric with 
respect to

	■ Translation parallel to the cylinder axis. Shifting an infinitely long cylinder by 
1 mm or 1000 m makes no noticeable or measurable change.

	■ Rotation by any angle about the cylinder axis. Turning a cylinder about its axis by 
1� or 100� makes no detectable change.

	■ Reflections in any plane containing or perpendicular to the cylinder axis. Exchang-
ing top and bottom, front and back, or left and right makes no detectable change.

A charge distribution that is symmetric under these three groups of geometric trans-
formations is said to be cylindrically symmetric. Other charge distributions have other 
types of symmetries. Some charge distributions have no symmetry at all.

Our interest in symmetry can be summed up in a single statement:

The symmetry of the electric field must match the symmetry of the charge 
distribution.

If this were not true, you could use the electric field to test whether the charge distribu-
tion had undergone a transformation.

Now we’re ready to see what we can learn about the electric field in Figure 27.1. 
Could the field look like FiGUrE 27.3a? (Imagine this picture rotated about the axis.) That 
is, is this a possible field? This field looks the same if it’s translated parallel to the 

FiGUrE 27.1 A charge distribution with 
cylindrical symmetry.

Infinitely long
charged cylinder

� � � � � � � � � � � � � � � �

FiGUrE 27.2 Transformations that don’t 
change an infinite cylinder of charge.

Rotation
about the
axis

Translation
parallel to
the axis

Reflection
perpendicular
to the axis

Reflection
in plane
containing
the axis

Original
cylinder

FiGUrE 27.3 Could the field of a cylindrical charge distribution look like this?

Reflection plane

(a)
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Is this a possible electric field of an infinitely
long charged cylinder? Suppose the charge and
the field are reflected in a plane perpendicular
to the axis.

E
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(b)
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The charge distribution is not changed by the
reflection, but the field is. This field doesn’t
match the symmetry of the cylinder, so the
cylinder’s field can’t look like this.

E
r

E
r



782    c h a p t e r  27 . Gauss’s Law

cylinder axis, if up and down are exchanged by reflecting the field in a plane coming 
out of the page, or if you rotate the cylinder about its axis.

But the proposed field fails one test: reflection in a plane perpendicular to the axis, 
a reflection that exchanges left and right. This reflection, which would not make any 
change in the charge distribution itself, produces the field shown in FiGUrE 27.3b. This 
change in the field is detectable because a positively charged particle would now have 
a component of motion to the left instead of to the right.

The field of Figure 27.3a, which makes a distinction between left and right, is not 
cylindrically symmetric and thus is not a possible field. In general, the electric field 
of a cylindrically symmetric charge distribution cannot have a component parallel 
to the cylinder axis.

Well then, what about the electric field shown in FiGUrE 27.4a? Here we’re looking 
down the axis of the cylinder. The electric field vectors are restricted to planes per-
pendicular to the cylinder and thus do not have any component parallel to the cylinder 
axis. This field is symmetric for rotations about the axis, but it’s not symmetric for a 
reflection in a plane containing the axis.

The field of FiGUrE 27.4b, after this reflection, is easily distinguishable from the field 
of Figure 27.4a. Thus the electric field of a cylindrically symmetric charge distribu-
tion cannot have a component tangent to the circular cross section.

FiGUrE 27.5 shows the only remaining possible field shape. The electric field is radial, 
pointing straight out from the cylinder like the bristles on a bottle brush. This is the one 
electric field shape matching the symmetry of the charge distribution.

FiGUrE 27.4 Or might the field of a 
cylindrical charge distribution look like 
this?
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It doesn’t match
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FiGUrE 27.5 This is the only shape for the electric field that matches the symmetry of the 
charge distribution.
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What Good is Symmetry?
Given how little we assumed about Figure 27.1—that the charge distribution is cylin-
drically symmetric and that electric fields point away from positive charges—we’ve 
been able to deduce a great deal about the electric field. In particular, we’ve deduced 
the shape of the electric field.

Now, shape is not everything. We’ve learned nothing about the strength of the field 
or how strength changes with distance. Is E constant? Does it decrease like 1/r or 1/r2? 
We don’t yet have a complete description of the field, but knowing what shape the 
field has to have will make finding the field strength a much easier task.

That’s the good of symmetry. Symmetry arguments allow us to rule out many con-
ceivable field shapes as simply being incompatible with the symmetry of the charge 
distribution. Knowing what doesn’t happen, or can’t happen, is often as useful as 
knowing what does happen. By the process of elimination, we’re led to the one and 
only shape the field can possibly have. Reasoning on the basis of symmetry is a some-
times subtle but always powerful means of reasoning.

Three Fundamental Symmetries
Three fundamental symmetries appear frequently in electrostatics. The first row of 
FiGUrE 27.6 shows the simplest form of each symmetry. The second row shows a more 
complex, but more realistic, situation with the same symmetry.
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NoTE  Figures must be finite in extent, but the planes and cylinders in Figure 27.6 
are assumed to be infinite. 

Objects do exist that are extremely close to being perfect spheres, but no real cylin-
der or plane can be infinite in extent. Even so, the fields of infinite planes and cylinders 
are good models for the fields of finite planes and cylinders at points not too close to 
an edge or an end. The fields that we’ll study in this chapter, even if idealized, have 
many important applications.

FiGUrE 27.6 Three fundamental symmetries.

Planar symmetry

Basic
symmetry:

� � � � � � � � �
� � � � � � � � �

� � � � � � � � �

The field is
perpendicular
to the plane.

Infinite
plane

Cylindrical symmetry

The field is radial
toward or away
from the axis.

�
�

�
�

�
�

�
�

�
�

Infinite
cylinder

Spherical symmetry

The field is radial
toward or away
from the center.

More
complex
example:

Infinite parallel-plate capacitor

�������������

� � � � � � � � � � � � �

Coaxial cylinders Concentric spheres

Stop to think 27.1 
 A uniformly charged rod has a finite length L. The 

rod is symmetric under rotations about the axis and under reflection in 
any plane containing the axis. It is not symmetric under translations or 
under reflections in a plane perpendicular to the axis unless that plane 
bisects the rod. Which field shape or shapes match the symmetry of 
the rod?

� � � � � � � � � �

(a)

� � � � � � � � � �

(b)

� � � � � � � � � �

(c)

� � � � � � � � � �

(d)

� � � � � � � � � �

(e)

27.2 The Concept of Flux
FiGUrE 27.7a on the next page shows an opaque box surrounding a region of space. We 
can’t see what’s in the box, but there’s an electric field vector coming out of each face 
of the box. Can you figure out what’s in the box?
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Of course you can. Because electric fields point away from positive charges, and 
the electric field is coming out of every face of the box, it seems clear that the box con-
tains a positive charge or charges. Similarly, the box in FiGUrE 27.7b certainly contains 
a negative charge.

What can we tell about the box in FiGUrE 27.7c? The electric field points into the box 
on the left. An equal electric field points out on the right. This might be the electric 
field between a large positive electrode somewhere out of sight on the left and a large 
negative electrode off to the right. An electric field passes through the box, but we see 
no evidence there’s any charge (or at least any net charge) inside the box.

These examples suggest that the electric field as it passes into, out of, or through 
the box is in some way connected to the charge within the box. However, these simple 
pictures don’t tell us how much charge there is or where within the box the charge is 
located. Perhaps a better box would be more informative.

Suppose we surround a region of space with a closed surface, a surface that divides 
space into distinct inside and outside regions. Within the context of electrostatics, a 
closed surface through which an electric field passes is called a Gaussian surface, 
named after the 19th-century mathematician Karl Gauss who developed the mathe-
matical foundations of geometry. This is an imaginary, mathematical surface, not a 
physical surface, although it might coincide with a physical surface. For example, 
FiGUrE 27.8a shows a spherical Gaussian surface surrounding a charge.

A closed surface must, of necessity, be a surface in three dimensions. But three-
dimensional pictures are hard to draw, so we’ll often look at two-dimensional cross 
sections through a Gaussian surface, such as the one shown in FiGUrE 27.8b. Now we 
can tell from the spherical symmetry of the electric field vectors poking through the 
surface that the positive charge inside must be spherically symmetric and centered at 
the center of the sphere. Notice two features that will soon be important: The electric 
field is everywhere perpendicular to the spherical surface and has the same magnitude 
at each point on the surface.

A Gaussian surface is most useful when it matches the shape and symmetry of 
the field. For example, FiGUrE 27.9a shows a cylindrical Gaussian surface—a closed 
cylinder—surrounding some kind of cylindrical charge distribution, such as a charged 
wire. FiGUrE 27.9b simplifies the drawing by showing two-dimensional end and side 
views. Because the Gaussian surface matches the symmetry of the charge distribu-
tion, the electric field is everywhere perpendicular to the side wall and no field passes 
through the top and bottom surfaces.

FiGUrE 27.7 Although we can’t see into the boxes, the electric fields passing through the 
faces tell us something about what’s in them.
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(c) A field passing
through the box
implies there’s
no net charge
in the box.

FiGUrE 27.8 Gaussian surface 
surrounding a charge. A two-dimensional 
cross section is usually easier to draw.
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a spherical Gaussian
surface is easier to draw.

FiGUrE 27.9 A Gaussian surface is most useful when it matches the shape of the field.
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For contrast, consider the spherical surface in FiGUrE 27.10a. This is also a Gaussian 
surface, and the protruding electric field tells us there’s a positive charge inside. It 
might be a point charge located on the left side, but we can’t really say. A Gaussian 
surface that doesn’t match the symmetry of the charge distribution isn’t terribly useful.

The nonclosed surface of FiGUrE 27.10b doesn’t provide much help either. What 
appears to be a uniform electric field to the right could be due to a large positive plate 
on the left, a large negative plate on the right, or both. A nonclosed surface doesn’t 
provide enough information.

These examples lead us to two conclusions:

 1. The electric field, in some sense, “flows” out of a closed surface surrounding a 
region of space containing a net positive charge and into a closed surface sur-
rounding a net negative charge. The electric field may flow through a closed 
surface surrounding a region of space in which there is no net charge, but the net 
flow is zero.

 2. The electric field pattern through the surface is particularly simple if the closed 
surface matches the symmetry of the charge distribution inside.

The electric field doesn’t really flow like a fluid, but the metaphor is a useful one. 
The Latin word for flow is flux, and the amount of electric field passing through a sur-
face is called the electric flux. Our first conclusions, stated in terms of electric flux, are

	■ There is an outward flux through a closed surface around a net positive charge.
	■ There is an inward flux through a closed surface around a net negative charge.
	■ There is no net flux through a closed surface around a region of space in which 

there is no net charge.

This chapter has been entirely qualitative thus far as we’ve established pictorially 
what we mean by symmetry, the idea of flux, and the fact that the electric flux through 
a closed surface has something to do with the charge inside. Understanding these 
qualitative ideas is essential, but to go further we need to make these ideas quantitative 
and precise. In the next section, you’ll learn how to calculate the electric flux through 
a surface. Then, in the section following that, we’ll establish a precise relationship 
between the net flux through a Gaussian surface and the enclosed charge. That rela-
tionship, Gauss’s law, will allow us to determine the electric fields of some interesting 
and useful charge distributions.

FiGUrE 27.10 Not every surface is useful 
for learning about charge.
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Stop to think 27.2 
 This box contains

 a. A positive charge. b. A negative charge.
 c. No charge. d. A net positive charge.
 e. A net negative charge. f. No net charge.

27.3 Calculating Electric Flux
Let’s start with a brief overview of where this section will take us. We’ll begin with a 
definition of flux that is easy to understand, then we’ll turn that simple definition into 
a formidable-looking integral. We need the integral because the simple definition ap-
plies only to uniform electric fields and flat surfaces. Those are good starting points, 
but we’ll soon need to calculate the flux of nonuniform fields through curved surfaces.

Mathematically, the flux of a nonuniform field through a curved surface is described 
by a special kind of integral called a surface integral. It’s quite possible that you have 
not yet encountered surface integrals in your calculus course, and the “novelty factor” 
contributes to making this integral look worse than it really is. We will emphasize over 
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and over the idea that an integral is just a fancy way of doing a sum, in this case the 
sum of the small amounts of flux through many small pieces of a surface.

The good news is that every surface integral we need to evaluate in this chapter, or that 
you will need to evaluate for the homework problems, is either zero or is so easy that you 
will be able to do it in your head. This seems like an astounding claim, but you will soon 
see it is true. The key will be to make effective use of the symmetry of the electric field.

Now that you’ve been warned, you needn’t panic at the sight of the mathematical 
notation that will be introduced. We’ll go step by step, and you’ll see that, at least as 
far as electrostatics is concerned, calculating the electric flux is not difficult.

The Basic Definition of Flux
Imagine holding a rectangular wire loop of area A in front of a fan. As FiGUrE 27.11 shows, 
the volume of air flowing through the loop each second depends on the angle between 
the loop and the direction of flow. The flow is maximum through a loop that is perpen-
dicular to the airflow; no air goes through the same loop if it lies parallel to the flow.

FiGUrE 27.11 The amount of air flowing through a loop depends on the angle between 
v
u and nn.

nnvr

Loop

Air
flow

(a)

The air flowing through the
loop is maximum when u � 0�.

n̂

vr

Unit vector
normal to loop

(b)

No air flows through
the loop when u � 90�.

u

u

u

v}

v#

nn

vr

(c) The loop is
tilted by angle u.

v# � v cos u is the component of the
air velocity perpendicular to the loop.

The flow direction is identified by the velocity vector v  

u
. We can identify the loop’s 

orientation by defining a unit vector nn normal to the plane of the loop. Angle u is then 
the angle between v  

u
 and nn. The loop perpendicular to the flow in FiGUrE 27.11a has 

u = 0�; the loop parallel to the flow in FiGUrE 27.11b has u = 90�. You can think of u as 
the angle by which a loop has been tilted away from perpendicular.

NoTE  A surface has two sides, so nn could point either way. We’ll choose the side 
that makes u … 90�. 

You can see from FiGUrE 27.11c that the velocity vector v  

u
 can be decomposed into 

components v# = v cos u perpendicular to the loop and v} = v sin u parallel to the loop. 
Only the perpendicular component v# carries air through the loop. Consequently, the 
volume of air flowing through the loop each second is

 volume of air per second (m3/s) = v #A = vA cos u (27.1)

u = 0� is the orientation for maximum flow through the loop, as expected, and no air 
flows through the loop if it is tilted 90�.

An electric field doesn’t flow in a literal sense, but we can apply the same idea to an 
electric field passing through a surface. FiGUrE 27.12 shows a surface of area A in a uni-
form electric field E

u

. Unit vector nn is normal to the surface, and u is the angle between 
nn and E

u

. Only the component E# = E cos u passes through the surface.
With this in mind, and using Equation 27.1 as an analog, let’s define the electric 

flux �e (uppercase Greek phi) as

 �e = E#A = EA cos u (27.2)

The electric flux measures the amount of electric field passing through a surface of 
area A if the normal to the surface is tilted at angle u from the field.

FiGUrE 27.12 An electric field passing 
through a surface.
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Equation 27.2 looks very much like a vector dot product: E
u # A

u

= EA cos u. For this 
idea to work, let’s define an area vector A

u

= Ann to be a vector in the direction of nn—that 
is, perpendicular to the surface—with a magnitude A equal to the area of the surface. 
Vector A

u

 has units of m2. FiGUrE 27.13a shows two area vectors.

FiGUrE 27.13 The electric flux can be defined in terms of the area vector A
u
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FiGUrE 27.13b shows an electric field passing through a surface of area A. The angle 
between vectors A

u

 and E
u

 is the same angle used in Equation 27.2 to define the electric 
flux, so Equation 27.2 really is a dot product. We can define the electric flux more 
concisely as

 �e = E
u # A

u

 (electric flux of a constant electric field) (27.3)

Writing the flux as a dot product helps make clear how angle u is defined: u is the 
angle between the electric field and a line perpendicular to the plane of the surface.

NoTE  Figure 27.13b shows a circular area, but the shape of the surface is not 
relevant. However, Equation 27.3 is restricted to a constant electric field passing 
through a planar surface. 

The Electric Flux of a Nonuniform Electric Field
Our initial definition of the electric flux assumed that the electric field E

u

 was constant 
over the surface. How should we calculate the electric flux if E

u

 varies from point to 
point on the surface? We can answer this question by returning to the analogy of air 
flowing through a loop. Suppose the airflow varies from point to point. We can still 
find the total volume of air passing through the loop each second by dividing the loop 
into many small areas, finding the flow through each small area, then adding them. 
Similarly, the electric flux through a surface can be calculated as the sum of the 
fluxes through smaller pieces of the surface. Because flux is a scalar, adding fluxes 
is easier than adding electric fields.

  E =
Q

P0 Aplates 
=

5.0 * 10-9 C

(8.85 * 10-12 C2/N m2)(1.0 * 10-2 m2)
 

  = 5.65 * 104 N/C

A 1.0 cm * 1.0 cm surface has A = 1.0 * 10-4 m2. The electric 
flux through this surface is

  �e = E
u # A

u

= EA cos u

  = (5.65 * 104 N/C)(1.0 * 10-4 m2 ) cos 45�

  = 4.0 N m2/C

ASSESS The units of electric flux are the product of electric field 
and area units: N m2/C.

ExAmpLE 27.1  The electric flux inside a parallel-plate capacitor
Two 100 cm2 parallel electrodes are spaced 2.0 cm apart. One is 
charged to +5.0 nC, the other to -5.0 nC. A 1.0 cm * 1.0 cm sur-
face between the electrodes is tilted to where its normal makes a 
45� angle with the electric field. What is the electric flux through 
this surface?

moDEL Assume the surface is located near the center of the capac-
itor where the electric field is uniform. The electric flux doesn’t 
depend on the shape of the surface.

ViSUALizE The surface is square, rather than circular, but other-
wise the situation looks like Figure 27.13b.

SoLVE In Chapter 26, we found the electric field inside a parallel-
plate capacitor to be

27.3 . Calculating Electric Flux    787
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FiGUrE 27.14 shows a surface in a nonuniform electric field. Imagine dividing the 
surface into many small pieces of area dA. Each little area has an area vector dA

u

 per-
pendicular to the surface. Two of the little pieces are shown in the figure. The electric 
fluxes through these two pieces differ because the electric fields are different.

Consider the small piece i where the electric field is E
u

i. The small electric flux d�i 
through area (dA

u

)i is

 d�i = E
u

i
# (dA

u

)i (27.4)

The flux through every other little piece of the surface is found the same way. The 
total electric flux through the entire surface is then the sum of the fluxes through each 
of the small areas:

 �e = a
i

d�i = a
i

E
u

i
# (dA

u

)i (27.5)

Now let’s go to the limit dA
u

S dA
u

. That is, the little areas become infinitesimally 
small, and there are infinitely many of them. Then the sum becomes an integral, and 
the electric flux through the surface is

 �e = 3
surface

E
u # dA

u

 (27.6)

The integral in Equation 27.6 is called a surface integral.
Equation 27.6 may look rather frightening if you haven’t seen surface integrals 

before. Despite its appearance, a surface integral is no more complicated than integrals 
you know from calculus. After all, what does 1 f (x) dx really mean? This expression 
is a shorthand way to say “Divide the x-axis into many little segments of length dx, 
evaluate the function f (x) in each of them, then add up f (x) dx for all the segments 
along the line.” The integral in Equation 27.6 differs only in that we’re dividing a 
surface into little pieces instead of a line into little segments. In particular, we’re sum-
ming the fluxes through a vast number of very tiny pieces.

You may be thinking, “OK, I understand the idea, but I don’t know what to do. In 
calculus, I learned formulas for evaluating integrals such as 1x2 dx. How do I evaluate 
a surface integral?” This is a good question. We’ll deal with evaluation shortly, and it 
will turn out that the surface integrals in electrostatics are quite easy to evaluate. But 
don’t confuse evaluating the integral with understanding what the integral means. The 
surface integral in Equation 27.6 is simply a shorthand notation for the summation of 
the electric fluxes through a vast number of very tiny pieces of a surface.

The electric field might be different at every point on the surface, but suppose 
it isn’t. That is, suppose the surface is in a uniform electric field E

u

. A field that is 
the same at every single point on a surface is a constant as far as the integration of 
Equation 27.6 is concerned, so we can take it outside the integral. In that case,

 �e = 3
surface

E
u # dA

u

= 3
surface

E cos u dA = E cos u 3
surface

dA (27.7)

The integral that remains in Equation 27.7 tells us to add up all the little areas into 
which the full surface was subdivided. But the sum of all the little areas is simply the 
area of the surface:

 3
surface

dA = A (27.8)

This idea—that the surface integral of dA is the area of the surface—is one we’ll use to 
evaluate most of the surface integrals of electrostatics. If we substitute Equation 27.8 into 
Equation 27.7, we find that the electric flux in a uniform electric field is �e = EA cos u. 
We already knew this, from Equation 27.2, but it was important to see that the surface 
integral of Equation 27.6 gives the correct result for the case of a uniform electric field.

FiGUrE 27.14 A surface in a nonuniform 
electric field.

Ei

r

Ej

r

Piece j

Piece i

(dA)i

r

The total area A can be divided
into many small pieces of area dA.
E may be different at each piece.
r

(dA)j

r



The Flux Through a Curved Surface
Most of the Gaussian surfaces we considered in the last section were curved surfaces. 
FiGUrE 27.15 shows an electric field passing through a curved surface. How do we find 
the electric flux through this surface? Just as we did for a flat surface!

Divide the surface into many small pieces of area dA. For each, define the area vec-
tor dA

u

 perpendicular to the surface at that point. Compared to Figure 27.14, the only 
difference that the curvature of the surface makes is that the dA

u

 are no longer parallel 
to each other. Find the small electric flux d�i = E

u

i
# (dA

u

)i through each little area, then 
add them all up. The result, once again, is

 �e = 3
surface

E
u # dA

u

 (27.9)

We assumed, in deriving this expression the first time, that the surface was flat and 
that all the dA

u

 were parallel to each other. But that assumption wasn’t necessary. The 
meaning of Equation 27.9—a summation of the fluxes through a vast number of very 
tiny pieces—is unchanged if the pieces lie on a curved surface.

We seem to be getting more and more complex, using surface integrals first for 
nonuniform fields and now for curved surfaces. But consider the two situations shown 
in FiGUrE 27.16. The electric field E

u

 in FiGUrE 27.16a is everywhere tangent, or parallel, 
to the curved surface. We don’t need to know the magnitude of E

u

 to recognize that 
E
u # dA

u

 is zero at every point on the surface because E
u

 is perpendicular to dA
u

 at every 
point. Thus �e = 0. A tangent electric field never pokes through the surface, so it has 
no flux through the surface.

The electric field in FiGUrE 27.16b is everywhere perpendicular to the surface and has the 
same magnitude E at every point. E

u

 differs in direction at different points on a curved sur-
face, but at any particular point E

u

 is parallel to dA
u

 and E
u # dA

u

 is simply EdA. In this case,

 �e = 3
surface

E
u # dA

u

= 3
surface

E dA = E 3
surface

dA = EA (27.10)

As we evaluated the integral, the fact that E has the same magnitude at every point on 
the surface allowed us to bring the constant value outside the integral. We then used 
the fact that the integral of dA over the surface is the surface area A.

We can summarize these two situations with a Tactics Box.

FiGUrE 27.15 A curved surface in an 
electric field.

The flux through
this little piece is
d�i � Ei # (dA)i.
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FiGUrE 27.16 Electric fields that are 
everywhere tangent to or everywhere 
perpendicular to a curved surface.
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These two results will be of immeasurable value for using Gauss’s law because 
every flux we’ll need to calculate will be one of these situations. This is the basis for 
our earlier claim that the evaluation of surface integrals is not going to be difficult.

The Electric Flux Through a Closed Surface
Our final step, to calculate the electric flux through a closed surface such as a box, a 
cylinder, or a sphere, requires nothing new. We’ve already learned how to calculate 
the electric flux through flat and curved surfaces, and a closed surface is nothing more 
than a surface that happens to be closed.

However, the mathematical notation for the surface integral over a closed surface 
differs slightly from what we’ve been using. It is customary to use a little circle on 

TACTiCS
B o x  2 7 . 1 

  Evaluating surface integrals

 ●1 If the electric field is everywhere tangent to a surface, the electric flux through 
the surface is �e = 0.

 ●2 If the electric field is everywhere perpendicular to a surface and has the same 
magnitude E at every point, the electric flux through the surface is �e = EA.

27.3 . Calculating Electric Flux    789
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the integral sign to indicate that the surface integral is to be performed over a closed 
surface. With this notation, the electric flux through a closed surface is

 �e = C E
u # dA

u

 (27.11)

Only the notation has changed. The electric flux is still the summation of the fluxes 
through a vast number of tiny pieces, pieces that now cover a closed surface.

NoTE  A closed surface has a distinct inside and outside. The area vector dA
u

 is 
defined to always point toward the outside. This removes an ambiguity that was 
present for a single surface, where dA

u

 could point to either side. 

Example 27.2 illustrated a two-step approach to performing a flux integral over a 
closed surface. In summary:

If we add the three pieces, the net flux through the closed surface is

  �e = C E
u # dA

u

= �top + �bottom + �wall = 0 + 0 + EAwall

  = EAwall

We’ve evaluated the surface integral, using the two steps in 
Tactics Box 27.1, and there was nothing to it! To finish, all we 
need to recall is that the surface area of a cylindrical wall is 
circumference * height, or Awall = 2pRL. Thus

 �e = 1E0 
R2

r0 

2 2  (2pRL) =
2pLR3

r0 

2  E0

ASSESS LR3/r0 

2 has units of m2, an area, so this expression for 
�e has units of N m2/C. These are the correct units for electric 
flux, giving us confidence in our answer. Notice the important 
role played by symmetry. The electric field was perpendicular to 
the wall and of constant value at every point on the wall because 
the Gaussian surface had the same symmetry as the charge dis-
tribution. We would not have been able to evaluate the surface 
integral in such an easy way for a surface of any other shape. 
Symmetry is the key.

ExAmpLE 27.2  Calculating the electric flux through a closed cylinder
A charge distribution with cylindrical symmetry has created the 
electric field E

u

= E0(r
2/r0 

2)rn, where E0 and r0 are constants and 
where unit vector rn lies in the xy-plane. Calculate the electric flux 
through a closed cylinder of length L and radius R that is centered 
along the z-axis.

moDEL The electric field extends radially outward from the z-axis 
with cylindrical symmetry. The z-component is Ez = 0. The cylin-
der is a Gaussian surface.

ViSUALizE FiGUrE 27.17a is a view of the electric field looking 
along the z-axis. The field strength increases with increasing radial 
distance, and it’s symmetric about the z-axis. FiGUrE 27.17b is the 
closed Gaussian surface for which we need to calculate the electric 
flux. We can place the cylinder anywhere along the z-axis because 
the electric field extends forever in that direction.

SoLVE To calculate the flux, we divide the closed cylinder into 
three surfaces: the top, the bottom, and the cylindrical wall. The 
electric field is tangent to the surface at every point on the top and 
bottom surfaces. Hence, according to step 1 in Tactics Box 27.1, 
the flux through those two surfaces is zero. For the cylindrical 
wall, the electric field is perpendicular to the surface at every point 
and has the constant magnitude E = E0(R

2/r0 

2) at every point on 
the surface. Thus, from step 2 in Tactics Box 27.1,

 �wall = EAwall 

FiGUrE 27.17 The electric field and the closed surface through which we will 
calculate the electric flux.

Electric field, looking along the z-axis

(a)

x

y (b)

y

x

z

Radius R

Gaussian surface
There is no field
through the end.

The field is
everywhere
perpendicular
to the wall.

L
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TACTiCS
B o x  2 7 . 2 

  Finding the flux through a closed surface

 ●1 Divide the closed surface into pieces that are everywhere tangent to the elec-
tric field and everywhere perpendicular to the electric field.

 ●2 Use Tactics Box 27.1 to evaluate the surface integrals over these surfaces, 
then add the results.

Exercise 11 

27.4 Gauss’s Law
The last section was long, but knowing how to calculate the electric flux through a closed 
surface is essential for the main topic of this chapter: Gauss’s law. Gauss’s law is equiva-
lent to Coulomb’s law for static charges, although Gauss’s law will look very different.

The purpose of learning Gauss’s law is twofold:

	■ Gauss’s law allows the electric fields of some continuous distributions of charge to 
be found much more easily than does Coulomb’s law.

	■ Gauss’s law is valid for moving charges, but Coulomb’s law is not (although it’s a 
very good approximation for velocities that are much less than the speed of light). 
Thus Gauss’s law is ultimately a more fundamental statement about electric fields 
than is Coulomb’s law.

Let’s start with Coulomb’s law for the electric field of a point charge. FiGUrE 27.18 
shows a spherical Gaussian surface of radius r centered on a positive charge q. Keep 
in mind that this is an imaginary, mathematical surface, not a physical surface. There 
is a net flux through this surface because the electric field points outward at every 
point on the surface. To evaluate the flux, given formally by the surface integral of 
Equation 27.11, notice that the electric field is perpendicular to the surface at every 
point on the surface and, from Coulomb’s law, it has the same magnitude E = q/4pP0r

2 
at every point on the surface. This simple situation arises because the Gaussian sur-
face has the same symmetry as the electric field.

Thus we know, without having to do any hard work, that the flux integral is

 �e = C E
u # dA

u

= EAsphere (27.12)

The surface area of a sphere of radius r is Asphere = 4pr2. If we use Asphere and the 
Coulomb-law expression for E in Equation 27.12, we find that the electric flux through 
the spherical surface is

 �e =
q

4pP0r
2  4pr2 =

q
P0

 (27.13)

Stop to think 27.3 
 The total electric flux 

through this box is

 a. 0 N m2/C
 b. 1 N m2/C
 c. 2 N m2/C
 d. 4 N m2/C
 e. 6 N m2/C
 f. 8 N m2/C

Plane of charge

Cross section of a
1 m � 1 m � 1 m box

��� � � � �� �� ��� ���������

E � (1 N/C, down)
r

E � (1 N/C, up)
r

FiGUrE 27.18 A spherical Gaussian 
surface surrounding a point charge.

E
r

E
r

�

Point charge q
r

Cross section of a Gaussian sphere of
radius r. This is a mathematical surface,
not a physical surface.

The electric field is everywhere
perpendicular to the surface and has
the same magnitude at every point.
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You should examine the logic of this calculation closely. We really did evaluate the 
surface integral of Equation 27.11, although it may appear, at first, as if we didn’t do much. 
The integral was easily evaluated, we reiterate for emphasis, because the closed surface 
on which we performed the integration matched the symmetry of the charge distribution.

NoTE  We found Equation 27.13 for a positive charge, but it applies equally to 
negative charges. According to Equation 27.13, �e  is negative if q is negative. And 
that’s what we would expect from the basic definition of flux, E

u # A
u

. The electric 
field of a negative charge points inward, while the area vector of a closed surface 
points outward, making the dot product negative. 

Electric Flux is independent of Surface Shape and radius
Notice something interesting about Equation 27.13. The electric flux depends on the 
amount of charge but not on the radius of the sphere. Although this may seem a bit 
surprising, it’s really a direct consequence of what we mean by flux. Think of the fluid 
analogy with which we introduced the term “flux.” If fluid flows outward from a cen-
tral point, all the fluid crossing a small-radius spherical surface will, at some later time, 
cross a large-radius spherical surface. No fluid is lost along the way, and no new fluid 
is created. Similarly, the point charge in FiGUrE 27.19 is the only source of electric field. 
Every electric field line passing through a small-radius spherical surface also passes 
through a large-radius spherical surface. Hence the electric flux is independent of r.

NoTE  This argument hinges on the fact that Coulomb’s law is an inverse-square 
force law. The electric field strength, which is proportional to 1/r2, decreases with 
distance. But the surface area, which increases in proportion to r2, exactly compen-
sates for this decrease. Consequently, the electric flux of a point charge through a 
spherical surface is independent of the radius of the sphere. 

This conclusion about the flux has an extremely important generalization. FiGUrE 27.20a 
shows a point charge and a closed Gaussian surface of arbitrary shape and dimensions. 
All we know is that the charge is inside the surface. What is the electric flux through 
this arbitrary surface?

One way to answer the question is to approximate the surface as a patchwork of 
spherical and radial pieces. The spherical pieces are centered on the charge and the 
radial pieces lie along lines extending outward from the charge. (Figure 27.20 is a two-
dimensional drawing so you need to imagine these arcs as actually being pieces of a 
spherical shell.) The figure, of necessity, shows fairly large pieces that don’t match the 
actual surface all that well. However, we can make this approximation as good as we 
want by letting the pieces become sufficiently small.

The electric field is everywhere tangent to the radial pieces. Hence the electric flux 
through the radial pieces is zero. The spherical pieces, although at varying distances 
from the charge, form a complete sphere. That is, any line drawn radially outward 
from the charge will pass through exactly one spherical piece, and no radial lines 
can avoid passing through a spherical piece. You could even imagine, as FiGUrE 27.20b 
shows, sliding the spherical pieces in and out without changing the angle they subtend 
until they come together to form a complete sphere.

Consequently, the electric flux through these spherical pieces that, when assem-
bled, form a complete sphere must be exactly the same as the flux q/P0 through a 
spherical Gaussian surface. In other words, the flux through any closed surface sur-
rounding a point charge q is

 �e = C E
u # dA

u

=
q
P0

 (27.14)

This surprisingly simple result is a consequence of the fact that Coulomb’s law is an 
inverse-square force law. Even so, the reasoning that got us to Equation 27.14 is rather 
subtle and well worth reviewing.

FiGUrE 27.19 The electric flux is the 
same through every sphere centered on 
a point charge.

Every field line passing through the
smaller sphere also passes through the
larger sphere. Hence the flux through
the two spheres is the same.

�

FiGUrE 27.20 An arbitrary Gaussian 
surface can be approximated with 
spherical and radial pieces.

�

(a) Point charge The spherical pieces are
centered on the charge.

Gaussian surface
of arbitrary shape

The radial pieces are along
lines extending out from
the charge. There’s no flux
through these.

(b)

�

The spherical pieces can slide in or out to form
a complete sphere. Hence the flux through the
pieces is the same as the flux through a sphere.



Charge outside the Surface
The closed surface shown in FiGUrE 27.21a has a point charge q outside the surface but 
no charges inside. Now what can we say about the flux? By approximating this surface 
with spherical and radial pieces centered on the charge, as we did in Figure 27.20, 
we can reassemble the surface into the equivalent surface of FiGUrE 27.21b. This closed 
surface consists of sections of two spherical shells, and it is equivalent in the sense 
that the electric flux through this surface is the same as the electric flux through the 
original surface of Figure 27.21a.

FiGUrE 27.21 A point charge outside a Gaussian surface.

Point charge
outside surface

Closed
surface

�

E
r

(a)

The flux is negative
on some pieces of
the surface.

Approximating this surface with spherical
and radial pieces allows it to be reassembled
as the surface in part (b) that has the same flux.

The flux is positive
on some pieces of
the surface.

�

Two-dimensional
cross section

E
r

The fluxes through these surfaces are
equal but opposite. The net flux is zero.

A
r

A
r

A is parallel to E, so
the flux is positive.

r r

A is opposite to E, so
the flux is negative.

r r

(b)

If the electric field were a fluid flowing outward from the charge, all the fluid 
entering the closed region through the first spherical surface would later exit the 
region through the second spherical surface. There is no net flow into or out of the 
closed region. Similarly, every electric field line entering this closed volume through 
one spherical surface exits through the other spherical surface.

Mathematically, the electric fluxes through the two spherical surfaces have the same 
magnitude because �e is independent of r. But they have opposite signs because the 
outward-pointing area vector A

u

 is parallel to E
u

 on one surface but opposite to E
u

 on the 
other. The sum of the fluxes through the two surfaces is zero, and we are led to the con-
clusion that the net electric flux is zero through a closed surface that does not contain 
any net charge. Charges outside the surface do not produce a net flux through the surface.

This isn’t to say that the flux through a small piece of the surface is zero. In fact, 
as Figure 27.21a shows, nearly every piece of the surface has an electric field either 
entering or leaving and thus has a nonzero flux. But some of these are positive and 
some are negative. When summed over the entire surface, the positive and negative 
contributions exactly cancel to give no net flux.

multiple Charges
Finally, consider an arbitrary Gaussian surface and a group of charges q1, q2, q3, p  
such as those shown in FiGUrE 27.22. What is the net electric flux through the surface?

By definition, the net flux is

 �e = C E
u # dA

u

From the principle of superposition, the electric field is E
u

= E
u

1 + E
u

2 +  E
u

3 + g, 
where E

u

1, E
u

2, E
u

3, p  are the fields of the individual charges. Thus the flux is

  �e = C E
u

1
# dA

u

+ C E
u

2
# dA

u

+ C E
u

3
# dA

u

+ g (27.15)

  = �1 + �2 + �3 + g

FiGUrE 27.22 Charges both inside and 
outside a Gaussian surface.

�

�

�

�

�

�

�

�
�

�

�

�

Two-dimensional
cross section of a
Gaussian surface

The fluxes due to charges
inside the surface add.

q1

q2

q3

Total charge
inside is Qin.

The fluxes due to charges
outside the surface are all zero.
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Stop to think 27.4 
 These are two-dimensional cross sections through three-dimensional closed 

spheres and a cube. Rank in order, from largest to smallest, the electric fluxes �a to �e through 
surfaces a to e.

(a) (b) (c) (d) (e)

�q

R

�q

2R 2R

�q
R�2q �2q

R

where �1, �2, �3, p  are the fluxes through the Gaussian surface due to the individual 
charges. That is, the net flux is the sum of the fluxes due to individual charges. But we 
know what those are: q/P0 for the charges inside the surface and zero for the charges 
outside. Thus

  �e = 1q1

P0
+

q2

P0
+ g +

qi

P0
 for all charges inside the surface2  

(27.16)

  +(0 + 0 + g + 0 for all charges outside the surface)

We define

 Qin = q1 + q2 + g + qi for all charges inside the surface (27.17)

as the total charge enclosed within the surface. With this definition, we can write our 
result for the net electric flux in a very neat and compact fashion. For any closed sur-
face enclosing total charge Qin, the net electric flux through the surface is

 �e = C E
u # dA

u

=
Qin 
P0

 (27.18)

This result for the electric flux is known as Gauss’s law.

What Does Gauss’s Law Tell Us?
In one sense, Gauss’s law doesn’t say anything new or anything that we didn’t already 
know from Coulomb’s law. After all, we derived Gauss’s law from Coulomb’s law. But 
in another sense, Gauss’s law is more important than Coulomb’s law. Gauss’s law states a 
very general property of electric fields—namely, that charges create electric fields in just 
such a way that the net flux of the field is the same through any surface surrounding the 
charges, no matter what its size and shape may be. This fact may have been implied by 
Coulomb’s law, but it was by no means obvious. And Gauss’s law will turn out to be par-
ticularly useful later when we combine it with other electric and magnetic field equations.

Gauss’s law is the mathematical statement of our observations in Section 27.2. 
There we noticed a net “flow” of electric field out of a closed surface containing 
charges. Gauss’s law quantifies this idea by making a specific connection between the 
“flow,” now measured as electric flux, and the amount of charge.

But is it useful? Although to some extent Gauss’s law is a formal statement about 
electric fields, not a tool for solving practical problems, there are exceptions: Gauss’s 
law will allow us to find the electric fields of some very important and very practical 
charge distributions much more easily than if we had to rely on Coulomb’s law. We’ll 
consider some examples in the next section.
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27.5 Using Gauss’s Law
In this section, we’ll use Gauss’s law to determine the electric fields of several impor-
tant charge distributions. Some of these you already know, from Chapter 26; others 
will be new. Three important observations can be made about using Gauss’s law:

 1. Gauss’s law applies only to a closed surface, called a Gaussian surface.
 2. A Gaussian surface is not a physical surface. It need not coincide with the bound-

ary of any physical object (although it could if we wished). It is an imaginary, 
mathematical surface in the space surrounding one or more charges.

 3. We can’t find the electric field from Gauss’s law alone. We need to apply 
Gauss’s law in situations where, from symmetry and superposition, we already 
can guess the shape of the field.

These observations and our previous discussion of symmetry and flux lead to the 
following strategy for solving electric field problems with Gauss’s law.

proBLEm-SoLViNG
STrATEGy 27.1  Gauss’s law

moDEL Model the charge distribution as a distribution with symmetry.

ViSUALizE Draw a picture of the charge distribution.

 ■ Determine the symmetry of its electric field.
 ■ Choose and draw a Gaussian surface with the same symmetry.
 ■ You need not enclose all the charge within the Gaussian surface.
 ■ Be sure every part of the Gaussian surface is either tangent to or perpendicular 

to the electric field.

SoLVE The mathematical representation is based on Gauss’s law

 �e = C E
u # dA

u

=
Qin 
P0

 ■ Use Tactics Boxes 27.1 and 27.2 to evaluate the surface integral.

ASSESS Check that your result has the correct units, is reasonable, and answers 
the question.

Exercise 19 

ExAmpLE 27.3  outside a sphere of charge
In Chapter 26 we asserted, without proof, that the electric field 
outside a sphere of total charge Q is the same as the field of a point 
charge Q at the center. Use Gauss’s law to prove this result.

moDEL The charge distribution within the sphere need not be 
uniform (i.e., the charge density might increase or decrease with r), 
but it must have spherical symmetry in order for us to use Gauss’s 
law. We will assume that it does.

ViSUALizE FiGUrE 27.23 shows a sphere of charge Q and radius R. 

We want to find E
u

 outside this sphere, for distances r 7 R. 
The spherical symmetry of the charge distribution tells us that 
the electric field must point radially outward from the sphere. 
Although Gauss’s law is true for any surface surrounding the 
charged sphere, it is useful only if we choose a Gaussian surface 
to match the spherical symmetry of the charge distribution and 
the field. Thus a spherical surface of radius r 7 R concentric with 

FiGUrE 27.23 A spherical Gaussian surface surrounding a 
sphere of charge.

�

E
r

E is everywhere 
perpendicular to 
the surface.

r

E
r

E
r

dA
r

dA
r

dA
r

��

�
�R

r

Gaussian
surface

Sphere of
total charge Q

�

Continued
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the charged sphere will be our Gaussian surface. Because this 
surface surrounds the entire sphere of charge, the enclosed charge 
is simply Qin = Q.

SoLVE Gauss’s law is

 �e = C E
u # dA

u

=
Qin 

P0
=

Q

P0

To calculate the flux, notice that the electric field is everywhere 
perpendicular to the spherical surface. And although we don’t 
know the electric field magnitude E, spherical symmetry dictates 
that E must have the same value at all points equally distant from 
the center of the sphere. Thus we have the simple result that the net 
flux through the Gaussian surface is

 �e = EAsphere = 4pr2E

where we used the fact that the surface area of a sphere is 
Asphere = 4pr2. With this result for the flux, Gauss’s law is

 4pr2E =
Q

P0

Thus the electric field at distance r outside a sphere of charge is

 Eoutside =
1

4pP0
 
Q

r2

Or in vector form, making use of the fact that E
u

 is radially outward,

 E
u

outside =
1

4pP0
  
Q

r2 rn

where rn  is a radial unit vector.

ASSESS The field is exactly that of a point charge Q, which is what 
we wanted to show.

The derivation of the electric field of a sphere of charge depended crucially on a 
proper choice of the Gaussian surface. We would not have been able to evaluate the 
flux integral so simply for any other choice of surface. It’s worth noting that the result 
of Example 27.3 can also be proven by the superposition of point-charge fields, but 
it requires a difficult three-dimensional integral and about a page of algebra. We ob-
tained the answer using Gauss’s law in just a few lines. Where Gauss’s law works, it 
works extremely well! However, it works only in situations, such as this, with a very 
high degree of symmetry.

SoLVE The flux integral is identical to that of Example 27.3:

 �e = EAsphere = 4pr2E

Consequently, Gauss’s law is

 �e = 4pr2E =
Qin 

P0

The difference between this example and Example 27.3 is that 
Qin is no longer the total charge of the sphere. Instead, Qin is the 
amount of charge inside the Gaussian sphere of radius r. Because 
the charge distribution is uniform, the volume charge density is

 r =
Q

VR

=
Q

4
3 pR3

The charge enclosed in a sphere of radius r is thus

 Qin = rVr = 1 Q
4
3 pR3 2 14

3 pr32 =
r3

R3 Q

The amount of enclosed charge increases with the cube of the dis-
tance r from the center and, as expected, Qin = Q if r = R. With 
this expression for Qin, Gauss’s law is

 4pr2E =
(r3/R3)Q

P0

ExAmpLE 27.4  inside a sphere of charge
What is the electric field inside a uniformly charged sphere?

moDEL We haven’t considered a situation like this before. To 
begin, we don’t know if the field strength is increasing or de-
creasing as we move outward from the center of the sphere. 
But the field inside must have spherical symmetry. That is, 
the field must point radially inward or outward, and the field 
strength can depend only on r. This is sufficient information 
to solve the problem because it allows us to choose a Gaussian 
surface.

ViSUALizE FiGUrE 27.24 shows a spherical Gaussian surface with 
radius r … R inside, and concentric with, the sphere of charge. 
This surface matches the symmetry of the charge distribution, 
hence E

u

 is perpendicular to this surface and the field strength E 
has the same value at all points on the surface.

FiGUrE 27.24 A spherical Gaussian surface inside a 
uniform sphere of charge.
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the sphere of charge
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FiGUrE 27.25 The electric field strength of 
a uniform sphere of charge of radius R.

r
0

0
R

E

R

Q
4pP0R2

The field inside the sphere
increases linearly with distance.

The field outside the
sphere decreases as 1/r2.

charge is inside the closed surface. The wire has linear charge 
density l, so the amount of charge inside a cylinder of length L 
is simply

 Qin = lL

Finding the net flux is just as straightforward. We can divide the 
flux through the entire closed surface into the flux through each 
end plus the flux through the cylindrical wall. The electric field E

u

, 
pointing straight out from the wire, is tangent to the end surfaces 
at every point. Thus the flux through these two surfaces is zero. 
On the wall, E

u

 is perpendicular to the surface and has the same 
strength E at every point. Thus

 �e = �top + �bottom + �wall = 0 + 0 + EAcyl = 2prLE

where we used Acyl = 2prL as the surface area of a cylindrical 
wall of radius r and length L. Once again, the proper choice of 
the Gaussian surface reduces the flux integral merely to finding 
a surface area. With these expressions for Qin and �e, Gauss’s 
law is

 �e = 2prLE =
Qin 

P0
=

lL
P0

Thus the electric field at distance r from a long, charged wire is

 Ewire =
l

2pP0r

ASSESS This agrees exactly with the result of the more complex 
derivation in Chapter 26. Notice that the result does not depend on 
our choice of L. A Gaussian surface is an imaginary device, not a 
physical object. We needed a finite-length cylinder to do the flux 
calculation, but the electric field of an infinitely long wire can’t 
depend on the length of an imaginary cylinder.

ExAmpLE 27.5  The electric field of a long, charged wire
In Chapter 26, we used superposition to find the electric field 
of an infinitely long line of charge with linear charge density 
(C/m) l. It was not an easy derivation. Find the electric field 
using Gauss’s law.

moDEL A long, charged wire can be modeled as an infinitely long 
line of charge.

ViSUALizE FiGUrE 27.26 shows an infinitely long line of charge. 
We can use the symmetry of the situation to see that the only pos-
sible shape of the electric field is to point straight into or out from 
the wire, rather like the bristles on a bottle brush. The shape of 
the field suggests that we choose our Gaussian surface to be a 
cylinder of radius r and length L, centered on the wire. Because 
Gauss’s law refers to closed surfaces, we must include the ends of 
the cylinder as part of the surface.

FiGUrE 27.26 A Gaussian surface around a 
charged wire.

The field is tangent to
the surface on the ends.
The flux is zero.

The field is perpendicular to
the surface on the cylinder wall.

SoLVE Gauss’s law is

 �e = C E
u # dA

u

=
Qin 

P0

where Qin is the charge inside the closed cylinder. We have two 
tasks: to evaluate the flux integral, and to determine how much 

Thus the electric field at radius r inside a uniformly charged 
sphere is

 Einside =
1

4pP0
 
Q

R3 r

The electric field strength inside the sphere increases linearly with 
the distance r from the center.

ASSESS The field inside and the field outside a sphere of charge 
match at the boundary of the sphere, r = R, where both give 
E = Q/4pP0R2. In other words, the field strength is continuous 
as we cross the boundary of the sphere. These results are shown 
graphically in FiGUrE 27.25.
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ExAmpLE 27.6  The electric field of a plane of charge
Use Gauss’s law to find the electric field of an infinite plane of 
charge with surface charge density (C/m2) h.

moDEL A uniformly charged flat electrode can be modeled as an 
infinite plane of charge.

ViSUALizE FiGUrE 27.27 shows a uniformly charged plane with 
surface charge density h. We will assume that the plane extends 
infinitely far in all directions, although we obviously have to 
show “edges” in our drawing. The planar symmetry allows the 
electric field to point only straight toward or away from the plane. 
With this in mind, choose as a Gaussian surface a cylinder with 
length L and faces of area A centered on the plane of charge. 
Although we’ve drawn them as circular, the shape of the faces 
is not relevant.

SoLVE The electric field is perpendicular to both faces of the 
cylinder, so the total flux through both faces is �faces = 2EA. (The 
fluxes add rather than cancel because the area vector A

u

 points out-
ward on each face.) There’s no flux through the wall of the cylin-
der because the field vectors are tangent to the wall. Thus the net 
flux is simply

 �e = 2EA

The charge inside the cylinder is the charge contained in area A of 
the plane. This is

 Qin = hA

With these expressions for Qin and �e, Gauss’s law is

 �e = 2EA =
Qin 

P0
=

hA

P0

Thus the electric field of an infinite charged plane is

 Eplane =
h

2P0

This agrees with the result in Chapter 26.

ASSESS This is another example of a Gaussian surface enclosing 
only some of the charge. Most of the plane’s charge is outside the 
Gaussian surface and does not contribute to the flux, but it does 
affect the shape of the field. We wouldn’t have planar symmetry, 
with the electric field exactly perpendicular to the plane, without 
all the rest of the charge on the plane.

FiGUrE 27.27 The Gaussian surface extends to 
both sides of a plane of charge.
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The plane of charge is an especially good example of how powerful Gauss’s law 
can be. Finding the electric field of a plane of charge via superposition was a difficult 
and tedious derivation. With Gauss’s law, once you see how to apply it, the problem 
is simple enough to solve in your head!

You might wonder, then, why we bothered with superposition at all. The reason is 
that Gauss’s law, powerful though it may be, is effective only in a limited number of 
situations where the field is highly symmetric. Superposition always works, even if the 
derivation is messy, because superposition goes directly back to the fields of individual 
point charges. It’s good to use Gauss’s law when you can, but superposition is often 
the only way to attack real-world charge distributions.

Example 27.5, for the electric field of a long, charged wire, contains a subtle 
but important idea, one that often occurs when using Gauss’s law. The Gaussian 
cylinder of length L encloses only some of the wire’s charge. The pieces of 
the charged wire outside the cylinder are not enclosed by the Gaussian surface 
and consequently do not contribute anything to the net flux. Even so, they are 
essential to the use of Gauss’s law because it takes the entire charged wire to pro-
duce an electric field with cylindrical symmetry. In other words, the wire outside 
the cylinder may not contribute to the flux, but it affects the shape of the electric 
field. Our ability to write �e = EAcyl depended on knowing that E is the same at 
every point on the wall of the cylinder. That would not be true for a charged wire 
of finite length, so we cannot use Gauss’s law to find the electric field of a finite-
length charged wire.
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Stop to think 27.5 
 Which Gaussian surface would allow you to use Gauss’s law to 

determine the electric field outside a uniformly charged cube?

 a. A sphere whose center coincides with the center of the charged cube
 b. A cube whose center coincides with the center of the charged cube and that has 

parallel faces
 c. Either a or b
 d. Neither a nor b

27.6 Conductors in Electrostatic Equilibrium
Consider a charged conductor, such as a charged metal electrode, in electrostatic equi-
librium. That is, there is no current through the conductor and the charges are all sta-
tionary. One very important conclusion is that the electric field is zero at all points 
within a conductor in electrostatic equilibrium. That is, E

u

in = 0
u

. If this weren’t true, 
the electric field would cause the charge carriers to move and thus violate the assump-
tion that all the charges are at rest. Let’s use Gauss’s law to see what else we can learn.

At the Surface of a Conductor
FiGUrE 27.28 shows a Gaussian surface just barely inside the physical surface of a con-
ductor that’s in electrostatic equilibrium. The electric field is zero at all points within 
the conductor, hence the electric flux �e through this Gaussian surface must be zero. 
But if �e = 0, Gauss’s law tells us that Qin = 0. That is, there’s no net charge within 
this surface. There are charges—electrons and positive ions—but no net charge.

If there’s no net charge in the interior of a conductor in electrostatic equilibrium, 
then all the excess charge on a charged conductor resides on the exterior surface 
of the conductor. Any charges added to a conductor quickly spread across the surface 
until reaching positions of electrostatic equilibrium, but there is no net charge within 
the conductor.

There may be no electric field within a charged conductor, but the presence of net 
charge requires an exterior electric field in the space outside the conductor. FiGUrE 27.29 
shows that the electric field right at the surface of the conductor has to be perpen-
dicular to the surface. To see that this is so, suppose E

u

surface had a component tangent 
to the surface. This component of E

u

surface would exert a force on the surface charges 
and cause a surface current, thus violating the assumption that all charges are at rest. 
The only exterior electric field consistent with electrostatic equilibrium is one that is 
perpendicular to the surface.

We can use Gauss’s law to relate the field strength at the surface to the charge 
density on the surface. FiGUrE 27.30 shows a small Gaussian cylinder with faces very 
slightly above and below the surface of a charged conductor. The charge inside this 
Gaussian cylinder is hA, where h is the surface charge density at this point on the con-
ductor. There’s a flux � = AEsurface through the outside face of this cylinder but, unlike 
Example 27.6 for the plane of charge, no flux through the inside face because E

u

in = 0
u

 
within the conductor. Furthermore, there’s no flux through the wall of the cylinder 
because E

u

surface is perpendicular to the surface. Thus the net flux is �e = AEsurface. 
Gauss’s law is

 �e = AEsurface =
Qin

P0
=

hA
P0

 (27.19)

from which we can conclude that the electric field at the surface of a charged conductor is

 E
u

surface = 1 hP0
, perpendicular to surface2  (27.20)

FiGUrE 27.28 A Gaussian surface just 
inside a conductor that’s in electrostatic 
equilibrium.
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The electric field inside
the conductor is zero.

FiGUrE 27.29 The electric field at the 
surface of a charged conductor.
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FiGUrE 27.30 A Gaussian surface 
extending through the surface of the 
conductor has a flux only through the 
outer face.
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In general, the surface charge density h is not constant on the surface of a con-
ductor but depends on the shape of the conductor. If we can determine h, by either 
calculating it or measuring it, then Equation 27.20 tells us the electric field at that 
point on the surface. Alternatively, we can use Equation 27.20 to deduce the charge 
density on the conductor’s surface if we know the electric field just outside the 
conductor.

Charges and Fields Within a Conductor
FiGUrE 27.31 shows a charged conductor with a hole inside. Can there be charge on 
this interior surface? To find out, we place a Gaussian surface around the hole, 
infinitesimally close but entirely within the conductor. The electric flux �e through 
this Gaussian surface is zero because the electric field is zero everywhere inside the 
conductor. Thus we must conclude that Qin = 0. There’s no net charge inside this 
Gaussian surface and thus no charge on the surface of the hole. Any excess charge 
resides on the exterior surface of the conductor, not on any interior surfaces.

Furthermore, because there’s no electric field inside the conductor and no charge 
inside the hole, the electric field inside the hole must also be zero. This conclusion 
has an important practical application. For example, suppose we need to exclude the 
electric field from the region in FiGUrE 27.32a enclosed within dashed lines. We can do 
so by surrounding this region with the neutral conducting box of FiGUrE 27.32b.

FiGUrE 27.32 The electric field can be excluded from a region of space by surrounding it 
with a conducting box.
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(b) The conducting box has been polarized
and has induced surface charges.

The electric field is perpendicular
to all conducting surfaces.

FiGUrE 27.31 A Gaussian surface 
surrounding a hole inside a conductor in 
electrostatic equilibrium.
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This region of space is now a hole inside a conductor, thus the interior electric field 
is zero. The use of a conducting box to exclude electric fields from a region of space 
is called screening. Solid metal walls are ideal, but in practice wire screen or wire 
mesh—sometimes called a Faraday cage—provides sufficient screening for all but 
the most sensitive applications. The price we pay is that the exterior field is now very 
complicated.

Finally, FiGUrE 27.33 shows a charge q inside a hole within a neutral conductor. 
The electric field within the conductor is still zero, hence the electric flux through 
the Gaussian surface is zero. But �e = 0 requires Qin = 0. Consequently, the charge 
inside the hole attracts an equal charge of opposite sign, and charge -q now lines the 
inner surface of the hole.

The conductor as a whole is neutral, so moving -q to the surface of the hole must 
leave +q behind somewhere else. Where is it? It can’t be in the interior of the conduc-
tor, as we’ve seen, and that leaves only the exterior surface. In essence, an internal 
charge polarizes the conductor just as an external charge would. Net charge -q moves 
to the inner surface and net charge +q is left behind on the exterior surface.

In summary, conductors in electrostatic equilibrium have the properties described 
in Tactics Box 27.3.

FiGUrE 27.33 A charge in the hole 
causes a net charge on the interior and 
exterior surfaces.
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The flux through the Gaussian surface is zero,
hence there’s no net charge inside this surface.
There must be charge �q on the inside
surface to balance point charge q.

The outer surface must have charge �q
so that the conductor remains neutral.
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  Finding the electric field of a conductor in
electrostatic equilibrium

 ●1 The electric field is zero at all points within the volume of the conductor.
 ●2 Any excess charge resides entirely on the exterior surface.
 ●3 The external electric field at the surface of a charged conductor is perpen-

dicular to the surface and of magnitude h/P0, where h is the surface charge 
density at that point.

 ●4 The electric field is zero inside any hole within a conductor unless there is a 
charge in the hole.

Exercises 20–24  

 Esurface =
h

P0
=

1.59 * 10-6 C/m2

8.85 * 10-12 C2/N m2 = 1.8 * 105 N/C

Alternatively, we could have used the result, obtained earlier in the 
chapter, that the electric field strength outside a sphere of charge Q 
is Eoutside = Qin/(4pP0r

2). But Qin = q and, at the surface, r = R. 
Thus

  Esurface =
1

4pP0
 

q

R2 = (9.0 * 109 N m2/C2) 
2.0 * 10-9 C

(0.010 m)2

  = 1.8 * 105 N/C

As we can see, both methods lead to the same result.

ExAmpLE 27.7  The electric field at the surface of a charged metal sphere
A 2.0-cm-diameter brass sphere has been given a charge of 2.0 nC. 
What is the electric field strength at the surface?

moDEL Brass is a conductor. The excess charge resides on the 
surface.

ViSUALizE The charge distribution has spherical symmetry. The 
electric field points radially outward from the surface.

SoLVE We can solve this problem in two ways. One uses the fact 
that a sphere is the one shape for which any excess charge will 
spread out to a uniform surface charge density. Thus

 h =
q

Asphere 
=

q

4pR2 =
2.0 * 10-9 C

4p(0.010 m)2 = 1.59 * 10-6 C/m2

From Equation 27.20, we know the electric field at the surface 
has strength

SoLVE Gauss’s law is

 �e = C E
u # dA

u

=
Qin 

P0

With symmetry, finding the net flux is straightforward. The electric 
field is perpendicular to the faces of the cylinders and pointing 
outward, so the total flux through the faces is �faces = 2EA, where 
E may depend on distance z. The field is parallel to the walls of the 
cylinders, so �wall = 0. Thus the net flux is simply

 �e = 2EA

Because the charge density is not uniform, we need to inte-
grate to find Qin, the charge inside the cylinder. We can slice the 
cylinder into small slabs of infinitesimal thickness dz and volume 
dV = A dz. Figure 27.34 shows one such little slab at distance z 
from the xy-plane. The charge in this little slab is

 dq = r dV = r011 -
z

a 2A dz

where we assumed that z is positive. Because the charge is 
symmetric about z = 0, we can avoid difficulties with the abso-
lute value sign in the charge density by integrating from 0 and 

ChALLENGE ExAmpLE 27.8  The electric field of a slab of charge

FiGUrE 27.34 Two cylindrical Gaussian surfaces for an infinite 
slab of charge.

An infinite slab of charge of thickness 2a is centered in the 
xy-plane. The charge density is r = r0(1 - 0 z 0 /a). Find the electric 
field strengths inside and outside this slab of charge.

moDEL The charge density is not uniform. Starting at r0 in the 
xy-plane, it decreases linearly with distance above and below the 
xy-plane until reaching zero at z = {a, the edges of the slab.

ViSUALizE FiGUrE 27.34 shows an edge view of the slab of charge 
and, as Gaussian surfaces, side views of two cylinders with cross-
section area A. By symmetry, the electric field must point away 
from the xy-plane; the field cannot have an x- or y-component.

Continued

Challenge Example    801
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multiplying by 2. For the Gaussian cylinder that ends inside the 
slab of charge, at distance z, the total charge inside is

  Qin = 3dq = 23
z

0

r011 -
z

a 2A dz

  = 2r0 A c z `
0

z

-
1

2a
 z 2 `

0

z

d

  = 2r0 Az11 -
z

2a 2
Gauss’s law inside the slab is then

 �e = 2Einside A =
Qin

P0
=

2r0 Az

P0
11 -

z

2a 2
The area A cancels, as it must because it was an arbitrary choice, 
leaving

 Einside =
r0z

P0
11 -

z

2a 2
The field strength is zero at z = 0, then increases as z increases. 
This expression is valid only above the xy-plane, for z 7 0, but the 
field strength is symmetric on the other side.

For the Gaussian cylinder that extends outside the slab of 
charge, the integral for Q has to end at z = a. Thus

 Qin = 2r0 Aa11 -
a

2a 2 = r0 Aa

independent of distance z. With this, Gauss’s law gives

 Eoutside =
Qin 

2P0A
=

r0a

2P0

This matches Einside at the surface, z = a, so the field is continuous 
as it crosses the boundary.

ASSESS Outside a sphere of charge, the field is the same as that of 
a point charge at the center. Similarly, the field outside an infinite 
slab of charge should be the same as that of an infinite charged 
plane. We found, by integration, that the total charge in an area A 
of the slab is Q = r0 Aa. If we squished this charge into a plane, 
the surface charge density would be h = Q/A = r0a. Thus our ex-
pression for Eoutside could be written h/2P0, which matches the field 
we found in Example 27.6 for a plane of charge.



Summary    803

S U m m A r y
The goal of Chapter 27 has been to understand and apply Gauss’s law.

Gauss’s Law
For any closed surface enclosing net charge Qin, the net electric flux through 
the surface is

 �e = C E
u # dA

u

=
Qin 

P0
 

The electric flux �e is the same for any closed surface enclosing charge Qin.

Symmetry
The symmetry of the electric field must match the 
symmetry of the charge distribution.

In practice, �e is computable only if the symmetry 
of the Gaussian surface matches the symmetry of the 
charge distribution.

General principles

symmetric
Gaussian surface

electric flux, �e 

area vector, A
u

surface integral
Gauss’s law

screening

Terms and Notation

Charge creates the electric field that 
is responsible for the electric flux.

important Concepts

Charges outside the surface
contribute to the electric field, but
they don’t contribute to the flux.

Qin is the sum of all enclosed
charges. This charge contributes
to the flux.

Gaussian surface

� �

�

�

�

�

Flux is the amount of electric field 
passing through a surface of area A:

 �e = E
u # A

u

where A
u

 is the area vector.

For closed surfaces:
A net flux in or out indicates that  
the surface encloses a net charge.  

Field lines through but with no  
net flux mean that the surface 
encloses no net charge.

Surface integrals calculate the flux by summing the fluxes 
through many small pieces of the surface:

 �e = a E
u # dA

u

 S 3E
u # dA

u

Two important situations:
If the electric field is everywhere  
tangent to the surface, then

 �e = 0

If the electric field is everywhere  
perpendicular to the surface and has 
the same strength E at all points, then

 �e = E A

u

A

E

r

r dA
E

r

r

Conductors in electrostatic equilibrium

•	 The electric field is zero at all points within the conductor.

•	 Any excess charge resides entirely on the exterior surface.

•	 The external electric field is perpendicular to the surface and of magnitude h/P0, where h is the 
surface charge density.

•	 The electric field is zero inside any hole within a conductor unless there is a charge in the hole.

Applications
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 6. What is the electric flux through each of the surfaces A to E in 
FiGUrE Q27.6? Give each answer as a multiple of q/P0.

 7. The charged balloon in FiGUrE Q27.7 expands as it is blown 
up, increasing in size from the initial to final diameters 
shown. Do the electric field strengths at points 1, 2, and 3 
increase, decrease, or stay the same? Explain your reasoning 
for each.

 8. The two spheres in FiGUrE Q27.8 surround equal charges. Three 
students are discussing the situation.

  Student 1: The fluxes through spheres A and B are equal be-
cause they enclose equal charges.

  Student 2: But the electric field on sphere B is weaker than the 
electric field on sphere A. The flux depends on the electric 
field strength, so the flux through A is larger than the flux 
through B.

  Student 3: I thought we learned that flux was about surface area. 
Sphere B is larger than sphere A, so I think the flux through B is 
larger than the flux through A.

  Which of these students, if any, do you agree with? Explain.

C o N C E p T U A L  Q U E S T i o N S

 1. Suppose you have the uniformly charged cube 
in FiGUrE Q27.1. Can you use symmetry alone to 
deduce the shape of the cube’s electric field? If 
so, sketch and describe the field shape. If not, 
why not?

 2. FiGUrE Q27.2 shows cross sections of three-dimensional closed 
surfaces. They have a flat top and bottom surface above and 
below the plane of the page. However, the electric field is 
everywhere parallel to the page, so there is no flux through the 
top or bottom surface. The electric field is uniform over each 
face of the surface. For each, does the surface enclose a net posi-
tive charge, a net negative charge, or no net charge? Explain.

 3. The square and circle in FiGUrE Q27.3 are in the same uniform field. 
The diameter of the circle equals the edge length of the square. Is 
�square larger than, smaller than, or equal to �circle? Explain.

 4. In FiGUrE Q27.4, where the field is uniform, is �1 larger than, 
smaller than, or equal to �2? Explain.

 5. What is the electric flux through each of the surfaces in 
FiGUrE Q27.5? Give each answer as a multiple of q/P0.
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 10. A small, metal sphere hangs by an insulating thread within the 
larger, hollow conducting sphere of FiGUrE Q27.10. A conducting 
wire extends from the small sphere through, but not touching, a 
small hole in the hollow sphere. A charged rod is used to transfer 
positive charge to the protruding wire. After the charged rod has 
touched the wire and been removed, are the following surfaces 
positive, negative, or not charged? Explain.

 a. The small sphere.
 b. The inner surface of the hollow sphere.
 c. The outer surface of the hollow sphere.

E x E r C i S E S  A N D  p r o B L E m S

Exercises

Section 27.1 Symmetry

 1. | FiGUrE Ex27.1 shows two cross sections of two infinitely long 
coaxial cylinders. The inner cylinder has a positive charge, the 
outer cylinder has an equal negative charge. Draw this figure on 
your paper, then draw electric field vectors showing the shape of 
the electric field.

 2. | FiGUrE Ex27.2 shows a cross section of two concentric 
spheres. The inner sphere has a negative charge. The outer 
sphere has a positive charge larger in magnitude than the 
charge on the inner sphere. Draw this figure on your paper, 
then draw electric field vectors showing the shape of the 
electric field.

 3. | FiGUrE Ex27.3 shows a cross section of two infinite parallel 
planes of charge. Draw this figure on your paper, then draw elec-
tric field vectors showing the shape of the electric field.

Section 27.2 The Concept of Flux

 4. | The electric field is constant over each face of the cube shown 
in FiGUrE Ex27.4. Does the box contain positive charge, negative 
charge, or no charge? Explain.

 5. | The electric field is constant over each face of the cube shown 
in FiGUrE Ex27.5. Does the box contain positive charge, negative 
charge, or no charge? Explain.

 6. | The cube in FiGUrE Ex27.6 contains negative charge. The elec-
tric field is constant over each face of the cube. Does the miss-
ing electric field vector on the front face point in or out? What 
strength must this field exceed?

FiGUrE Q27.10 

Wire

FiGUrE Ex27.1 

End viewSide view

FiGUrE Ex27.2 

 9. The sphere and ellipsoid in FiGUrE Q27.9 surround equal charges. 
Four students are discussing the situation.

  Student 1: The fluxes through A and B are equal because the 
average radius is the same.

  Student 2: I agree that the fluxes are equal, but that’s because 
they enclose equal charges.

  Student 3: The electric field is not perpendicular to the sur-
face for B, and that makes the flux through B less than the flux 
through A.

  Student 4: I don’t think that Gauss’s law even applies to a 
situation like B, so we can’t compare the fluxes through A 
and B.

  Which of these students, if any, do you agree with? Explain.
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 7. | The cube in FiGUrE Ex27.7 contains negative charge. The elec-
tric field is constant over each face of the cube. Does the missing 
electric field vector on the front face point in or out? What 
strength must this field exceed?

 8. | The cube in FiGUrE Ex27.8 contains no net charge. The electric 
field is constant over each face of the cube. Does the missing 
electric field vector on the front face point in or out? What is the 
field strength?

Section 27.3 Calculating Electric Flux

 9. || What is the electric flux through the surface shown in 
FiGUrE Ex27.9?

 10. || What is the electric flux through the surface shown in 
FiGUrE Ex27.10?

 11. || The electric flux through the surface shown in FiGUrE Ex27.11 
is 25 N m2/C. What is the electric field strength?

 12. || A 2.0 cm * 3.0 cm rectangle lies in the xy-plane. What is the 
electric flux through the rectangle if

 a. E
u

= (100 in + 50kn) N/C?
 b. E

u

= (100 in + 50jn) N/C?
 13. || A 2.0 cm * 3.0 cm rectangle lies in the xz-plane. What is the 

electric flux through the rectangle if
 a. E

u

= (100 in + 50kn) N/C?
 b. E

u

= (100 in + 50jn) N/C?
 14. || A 3.0-cm-diameter circle lies in the xz-plane in a region where 

the electric field is E
u

= (1500 in + 1500jn - 1500kn) N/C. What is 
the electric flux through the circle?

 15. || A 1.0 cm * 1.0 cm * 1.0 cm box with its edges aligned with 
the xyz-axes is in the electric field E

u

= (350x + 150) in N/C, 
where x is in meters. What is the net electric flux through the box?

 16. | What is the net electric flux through the two cylinders shown 
in FiGUrE Ex27.16? Give your answer in terms of R and E.

Section 27.4 Gauss’s Law

Section 27.5 Using Gauss’s Law

 17. | FiGUrE Ex27.17 shows three charges. Draw these charges on 
your paper four times. Then draw two-dimensional cross sec-
tions of three-dimensional closed surfaces through which the 
electric flux is (a) 2q/P0, (b) q/P0, (c) 0, and (d) 5q/P0.

 18. | FiGUrE Ex27.18 shows three charges. Draw these charges on 
your paper four times. Then draw two-dimensional cross sec-
tions of three-dimensional closed surfaces through which the 
electric flux is (a) -q/P0, (b) q/P0, (c) 3q/P0, and (d) 4q/P0.

 19. | FiGUrE Ex27.19 shows three Gaussian surfaces and the electric 
flux through each. What are the three charges q1, q2, and q3?

 20. || What is the net electric flux through the torus (i.e., doughnut 
shape) of FiGUrE Ex27.20?

 21. | What is the net electric flux through the cylinder of FiG-

 UrE Ex27.21?

 22. || The net electric flux through an octahedron is -1000 N m2/C. 
How much charge is enclosed within the octahedron?

 23. || 55.3 million excess electrons are inside a closed surface. What 
is the net electric flux through the surface?
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Section 27.6 Conductors in Electrostatic Equilibrium

 24. || The electric field strength just above one face of a copper 
penny is 2000 N/C. What is the surface charge density on this 
face of the penny?

 25. | A spark occurs at the tip of a metal needle if the electric field 
strength exceeds 3.0 * 106 N/C, the field strength at which air 
breaks down. What is the minimum surface charge density for 
producing a spark?

 26. | The conducting box in FiG UrE 

Ex27.26 has been given an excess neg-
ative charge. The surface density of 
excess electrons at the center of the top 
surface is 5.0 * 1010 electrons/m2. 
What are the electric field strengths 
E1 to E3 at points 1 to 3?

 27. | A thin, horizontal, 10-cm-diameter copper plate is charged to 
3.5 nC. If the electrons are uniformly distributed on the surface, 
what are the strength and direction of the electric field

 a. 0.1 mm above the center of the top surface of the plate?
 b. at the plate’s center of mass?
 c. 0.1 mm below the center of the bottom surface of the plate?
 28. || FiGUrE Ex27.28 shows a hollow 

cavity within a neutral conduc-
tor. A point charge Q is inside the 
cavity. What is the net electric 
flux through the closed surface 
that surrounds the conductor?

problems

 29. | FiGUrE p27.29 shows four sides of a 3.0 cm * 3.0 cm * 3.0 cm 
cube.

 a. What are the electric fluxes �1 to �4 through sides 1 to 4?
 b. What is the net flux through these four sides?

 30. ||| Find the electric fluxes �1 to �5 through surfaces 1 to 5 in 
FiGUrE p27.30.

 31. || A tetrahedron has an equilateral triangle base with 20-cm-long 
edges and three equilateral triangle sides. The base is parallel 
to the ground, and a vertical uniform electric field of strength 
200 N/C passes upward through the tetrahedron.

 a. What is the electric flux through the base?
 b. What is the electric flux through each of the three sides?

 32. | Charges q1 = -4Q and q2 = +2Q are located at x = -a and 
x = +a, respectively. What is the net electric flux through a 
sphere of radius 2a centered (a) at the origin and (b) at x = 2a?

 33. || A 10 nC point charge is at the center of a 2.0 m * 2.0 m *
2.0 m cube. What is the electric flux through the top surface of 
the cube?

 34. || The electric flux is 300 N m2/C through two opposing faces 
of a 2.0 cm *  2.0 cm *  2.0 cm box. The flux through each 
of the other faces is 100 N m2/C. How much charge is inside 
the box?

 35. || A spherically symmetric charge distribution produces the 
electric field E

u

= (200/r)rn N/C, where r is in m.
 a. What is the electric field strength at r = 10 cm?
 b. What is the electric flux through a 20-cm-diameter spherical 

surface that is concentric with the charge distribution?
 c. How much charge is inside this 20-cm-diameter spherical 

surface?
 36. || A spherically symmetric charge distribution produces the 

electric field E
u

= (5000r2)rn N/C, where r is in m.
 a. What is the electric field strength at r = 20 cm?
 b. What is the electric flux through a 40-cm-diameter spherical 

surface that is concentric with the charge distribution?
 c. How much charge is inside this 40-cm-diameter spherical 

surface?
 37. || A neutral conductor contains a hollow cavity in which there is 

a +100 nC point charge. A charged rod then transfers -50 nC 
to the conductor. Afterward, what is the charge (a) on the inner 
wall of the cavity wall, and (b) on the exterior surface of the 
conductor?

 38. || A hollow metal sphere has inner radius a and outer radius b. 
The hollow sphere has charge +2Q. A point charge +Q sits at 
the center of the hollow sphere.

 a. Determine the electric fields in the three regions r … a, 
a 6 r 6 b, and r Ú b.

 b. How much charge is on the inside surface of the hollow 
sphere? On the exterior surface?

 39. || A 20-cm-radius ball is uniformly charged to 80 nC.
 a. What is the ball’s volume charge density (C/m3)?
 b. How much charge is enclosed by spheres of radii 5, 10, and 

20 cm?
 c. What is the electric field strength at points 5, 10, and 20 cm 

from the center?
 40. || FiGUrE p27.40 shows a solid metal sphere at the center of a hol-

low metal sphere. What is the total charge on (a) the exterior of 
the inner sphere, (b) the inside surface of the hollow sphere, and 
(c) the exterior surface of the hollow sphere?

 41. || The earth has a vertical electric field at the surface, pointing 
down, that averages 100 N/C. This field is maintained by various 
atmospheric processes, including lightning. What is the excess 
charge on the surface of the earth?
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FiGUrE Cp27.55 
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x
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r
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 42. || Figure 27.32b showed a conducting box inside a parallel-plate 
capacitor. The electric field inside the box is E

u

= 0
u

. Suppose the 
surface charge on the exterior of the box could be frozen. Draw 
a picture of the electric field inside the box after the box, with its 
frozen charge, is removed from the capacitor.
Hint: Superposition.

 43. || A hollow metal sphere has 6 cm and 10 cm inner and outer 
radii, respectively. The surface charge density on the inside 
surface is -100 nC/m2. The surface charge density on the ex-
terior surface is +100 nC/m2. What are the strength and direc-
tion of the electric field at points 4, 8, and 12 cm from the 
center?

 44. || A positive point charge q sits at the center of a hollow spheri-
cal shell. The shell, with radius R and negligible thickness, has 
net charge -2q. Find an expression for the electric field strength 
(a) inside the sphere, r 6 R, and (b) outside the sphere, r 7 R. In 
what direction does the electric field point in each case?

 45. || Find the electric field inside and outside a hollow plastic ball 
of radius R that has charge Q uniformly distributed on its outer 
surface.

 46. || A uniformly charged ball of radius a and charge -Q is at the 
center of a hollow metal shell with inner radius b and outer radius 
c. The hollow sphere has net charge +2Q. Determine the electric 
field strength in the four regions r … a, a 6 r 6 b, b … r … c, 
and r 7 c.

 47. | The three parallel planes of charge shown in FiGUrE p27.47 
have surface charge densities -  12 h, h, and -  12 h. Find the elec-
tric fields E

u

1 to E
u

4 in regions 1 to 4.

 48. || An infinite slab of charge of thickness 2z0 lies in the xy-plane 
between z = -z0 and z = +z0. The volume charge density 
r (C/m3) is a constant.

 a. Use Gauss’s law to find an expression for the electric field 
strength inside the slab (-z0 … z … z0).

 b. Find an expression for the electric field strength above the 
slab (z Ú z0).

 c. Draw a graph of E from z = 0 to z = 3z0.
 49. || FiGUrE p27.49 shows an infinitely wide conductor parallel to 

and distance d from an infinitely wide plane of charge with sur-
face charge density h. What are the electric fields E

u

1 to E
u

4 in 
regions 1 to 4?

 50. || FiGUrE p27.50 shows two very large slabs of metal that are 
parallel and distance l apart. Each slab has a total surface area 
(top + bottom) A. The thickness of each slab is so small in com-
parison to its lateral dimensions that the surface area around the 
sides is negligible. Metal 1 has total charge Q1 = Q and metal 2 

has total charge Q2 = 2Q. Assume Q is positive. In terms of Q 
and A, determine

 a. The electric field strengths E1 to E5 in regions 1 to 5.
 b. The surface charge densities ha to hd on the four surfaces a 

to d.
 51. || A long, thin straight wire with linear charge density l runs 

down the center of a thin, hollow metal cylinder of radius R. 
The cylinder has a net linear charge density 2l. Assume l is 
positive. Find expressions for the electric field strength (a) inside 
the cylinder, r 6 R, and (b) outside the cylinder, r 7 R. In what 
direction does the electric field point in each of the cases?

 52. || A very long, uniformly charged cylinder has radius R and lin-
ear charge density l. Find the cylinder’s electric field (a) outside 
the cylinder, r Ú R, and (b) inside the cylinder, r … R. (c) Show 
that your answers to parts a and b match at the boundary, r = R.

 53. || A spherical shell has inner radius Rin and outer radius Rout. 
The shell contains total charge Q, uniformly distributed. The in-
terior of the shell is empty of charge and matter.

 a. Find the electric field outside the shell, r Ú Rout.
 b. Find the electric field in the interior of the shell, r … Rin.
 c. Find the electric field within the shell, Rin … r … Rout.
 d. Show that your solutions match at both the inner and outer 

boundaries.
 54. || An early model of the atom, proposed by Rutherford after his 

discovery of the atomic nucleus, had a positive point charge +Ze 
(the nucleus) at the center of a sphere of radius R with uniformly 
distributed negative charge -Ze. Z is the atomic number, the 
number of protons in the nucleus and the number of electrons in 
the negative sphere.

 a. Show that the electric field inside this atom is

 Ein =
Ze

4pP0
 1 1

r2 -
r

R3 2
 b. What is E at the surface of the atom? Is this the expected 

value? Explain.
 c. A uranium atom has Z = 92 and R = 0.10 nm. What is the 

electric field strength at r =
1
2 R?

Challenge problems

 55. All examples of Gauss’s law have used highly symmetric sur-
faces where the flux integral is either zero or EA. Yet we’ve 
claimed that the net �e = Qin/P0 is independent of the surface. 
This is worth checking. FiGUrE Cp27.55 shows a cube of edge 
length L centered on a long thin wire with linear charge den-
sity l. The flux through one face of the cube is not simply EA 
because, in this case, the electric field varies in both strength 
and direction. But you can calculate the flux by actually doing 
the flux integral.
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	 a.	 Consider	the	face	parallel	to	the	yz-plane.	Define	area	dA
u

	as	
a	strip	of	width	dy	and	height	L	with	the	vector	pointing	in	
the	x-direction.	One	such	strip	 is	 located	at	position	y.	Use	
the	known	electric	field	of	a	wire	to	calculate	the	electric	flux	
d�	through	this	little	area.	Your	expression	should	be	written	
in	 terms	of	y,	which	 is	a	variable,	and	various	constants.	 It	
should	not	explicitly	contain	any	angles.

	 b.	 Now	integrate	d�	to	find	the	total	flux	through	this	face.
	 c.	 Finally,	 show	 that	 the	 net	 flux	 through	 the	 cube	 is	 �e	= 	

Qin/P0.
	56.	 An	 infinite	cylinder	of	 radius	R	has	a	 linear	charge	density	l.	

The	volume	charge	density	(C/m3)	within	the	cylinder	(r … R)	
is	r(r) = rr0/R,	where	r0	is	a	constant	to	be	determined.

	 a.	 Draw	a	graph	of	r	versus	x	for	an	x-axis	that	crosses	the	cyl-
inder	 perpendicular	 to	 the	 cylinder	 axis.	 Let	 x	 range	 from	
-2R	to	2R.

	 b.	 The	charge	within	a	small	volume	dV	is	dq = r	dV.	The	integral	
of	r	dV 	over	a	cylinder	of	length	L	is	the	total	charge	Q = lL	
within	the	cylinder.	Use	this	fact	to	show	that	r0 = 3l/2pR2.

Hint:	 Let	 dV	 be	 a	 cylindrical	 shell	 of	 length	 L,	 radius	 r,	 and	
thickness	dr.	What	is	the	volume	of	such	a	shell?

	 c.	 Use	Gauss’s	law	to	find	an	expression	for	the	electric	field	E	
inside	the	cylinder,	r … R.

	 d.	 Does	your	expression	have	the	expected	value	at	the	surface,	
r = R?	Explain.

	57.	 A	sphere	of	radius	R	has	total	charge	Q.	The	volume	charge	den-
sity	(C/m3)	within	the	sphere	is	r(r) = C/r2,	where	C	is	a	con-
stant	to	be	determined.

	 a.	 The	charge	within	a	small	volume	dV	is	dq = r	dV.	The	inte-
gral	of	r	dV 	over	the	entire	volume	of	the	sphere	is	the	total	
charge	Q.	Use	this	fact	to	determine	the	constant	C	in	terms	
of	Q	and	R.

Hint:	Let	dV	be	a	spherical	shell	of	radius	r	and	thickness	dr.	
What	is	the	volume	of	such	a	shell?

	 b.	 Use	Gauss’s	law	to	find	an	expression	for	the	electric	field	E	
inside	the	sphere,	r … R.

	 c.	 Does	your	expression	have	the	expected	value	at	the	surface,	
r = R?	Explain.

	58.	 A	sphere	of	radius	R	has	total	charge	Q.	The	volume	charge	den-
sity	(C/m3)	within	the	sphere	is

	 r = r011 -
r

R 2
	 	 This	charge	density	decreases	 linearly	from	r0	at	 the	center	 to	

zero	at	the	edge	of	the	sphere.
	 a.	 Show	that	r0 = 3Q/pR3.
	 b.	 Show	that	the	electric	field	inside	the	sphere	points	radially	

outward	with	magnitude

	 E =
Qr

4pP0R314 - 3	
r

R 2
	 c.	 Show	 that	 your	 result	 of	 part	 b	 has	 the	 expected	 value	 at	

r = R.
	59.	 A	 spherical	 ball	 of	 charge	 has	 radius	 R	 and	 total	 charge	 Q.	

The	 electric	 field	 strength	 inside	 the	 ball	 (r … R)	 is	 E(r)	=
Emax(r4/R4).

	 a.	 What	is	Emax	in	terms	of	Q	and	R?
	 b.	 Find	an	expression	for	the	volume	charge	density	r(r)	inside	

the	ball	as	a	function	of	r.
	 c.	 Verify	that	your	charge	density	gives	the	total	charge	Q	when	

integrated	over	the	volume	of	the	ball.

Stop to think AnSwerS

Stop to Think 27.1:	a	and	d.	Symmetry	 requires	 the	electric	 field	
to	be	unchanged	if	front	and	back	are	reversed,	if	 left	and	right	are	
reversed,	or	if	the	field	is	rotated	about	the	wire’s	axis.	Fields	a	and	d	
both	have	the	proper	symmetry.	Other	factors	would	now	need	to	be	
considered	to	determine	the	correct	field.

Stop to Think 27.2:	e.	The	net	flux	is	into	the	box.

Stop to Think 27.3:	c.	There’s	no	flux	through	the	four	sides.	The	
flux	is	positive	1	N	m2/C	through	both	the	top	and	bottom	because	E

u

	
and	A

u

	both	point	outward.

Stop to Think 27.4:	 �b � �e + �a � �c � �d.	 The	 flux	
through	 a	 closed	 surface	 depends	 only	 on	 the	 amount	 of	 enclosed	
charge,	not	the	size	or	shape	of	the	surface.

Stop to Think 27.5:	d.	A	cube	doesn’t	have	enough	symmetry	to	use	
Gauss’s	law.	The	electric	field	of	a	charged	cube	is	not	constant	over	
the	face	of	a	cubic	Gaussian	surface,	so	we	can’t	evaluate	the	surface	
integral	for	the	flux.
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You’ll learn to calculate the electric 
potential energy of charged particles and 
to solve problems using conservation of 
mechanical energy.

Sources of Electric  
Potential
In practice, electric potential is created 
by separating positive and negative 
charges—an idea we’ll explore more 
thoroughly in Chapter 29.

Calculating Electric  
Potential
You’ll learn how to calculate the electric 
potential for several important charge 
distributions.

You’ll also learn to use several different 
representations of the electric potential.

Electric Energy
Energy allows things to happen. You 
want your lights to light, your computer 
to compute, and your stereo to keep 
your neighbors awake. All these require 
energy—electric energy.

This is the first of two chapters that ex-
plore electric energy and its connection 
to electric forces and fields.

The Electric Potential28

City lights seen from space show 
where millions of lightbulbs are 
transforming electric energy into 
light and thermal energy.

The Electric Potential
Just as source charges create an electric 
field, they also create an electric poten
tial. A charge moving in an electric 
potential has an electric potential energy.

 Looking Back
Section 10.6 Energy diagrams

The unit of electric potential is the volt, 
perhaps the most well known of all electrical 
units. A voltmeter reads the potential differ-
ence between two points.

Using Electric Potential
Charged particles accelerate as they 
move through a potential difference.

 Looking Ahead The goals of Chapter 28 are to calculate and use the electric potential and electric potential energy.

A battery is the most 
common source of 
electric potential. 
As you’ll learn, its 
voltage is the potential 
difference between 
separated charges—
the plus and minus 
terminals.
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Equipotential surfacesElevation graph

�

Lightning is a dramatic 
example of the transfor
mation of electric 
ener gy into light, sound, 
and thermal energy.

There’s a close connection 
between electric potential 
energy and gravitational 
potential energy because 
both forces obey inverse
square laws.

 Looking Back
Sections 11.2–11.5 Work and potential 
energy

 Looking Back
Sections 10.2–10.5 Kinetic energy, 
potential energy, and conservation

You’ll learn to use 
the electric potential 
and a conservation 
of energy problem
solving strategy 
to solve problems 
about the motion of 
charged particles.

 Looking Back
Section 26.3 Calculating electric fields
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28.1 Electric Potential Energy
In electricity, just as in mechanics, it takes energy to make things happen. It’s been 
many chapters since we dealt much with work and energy, but these ideas will now 
be essential to our story. Consequently, the Looking Back recommendations in the 
chapter preview are especially important. You will recall that a system’s mechanical 
energy Emech = K + U is conserved for particles that interact with each other via con-
servative forces, where K and U are the kinetic and potential energy. That is,

 �Emech = �K + �U = 0 (28.1)

We need to be careful with notation because we are now using E to represent the elec-
tric field strength. To avoid confusion, we will represent mechanical energy either as 
the explicit sum K + U or as Emech, with an explicit subscript.

NoTE  Recall that for any X, the change in X is �X = Xfinal - Xinitial. 

The kinetic energy K = gKi, where Ki =
1
2 mivi 

2, is the sum of the kinetic energies 
of all the particles in the system. The potential energy U is the interaction energy of 
the system. In particular, we defined the change in potential energy in terms of the 
work W done by the forces of interaction as the system moves from an initial position 
or configuration i to a final position or configuration f:

 �U = Uf - Ui = -Winteraction forces  (position i S position f) (28.2)

This formal definition of �U is rather abstract and will make more sense when we see 
specific applications.

A constant force does work

 W = F
u # �r 

u
= F �r cos u (28.3)

on a particle that undergoes a linear displacement �r 
u

, where u is the angle between 
the force F

u

 and �r 
u

. FigUrE 28.1 reminds you of the three special cases u = 0�, 90�, and 
180�. It also shows that, in general, the work is done by the force component Fr in the 
direction of motion.

NoTE  Work is not the oft-remembered “force times distance.” Work is force 
times distance only in the one very special case in which the force is both constant 
and parallel to the displacement. 

If the force is not constant or the displacement is not along a linear path, we can 
calculate the work by dividing the path into many small segments. FigUrE 28.2 shows 
how this is done. The work done as the particle moves distance ds is Fs ds, where Fs is 
the force component parallel to ds (i.e., the component in the direction of motion). The 
total work done on the particle is

 W = a
j

 (Fs)j �sj S 3
sf

si

 Fs ds = 3
f

i

 F
u # ds

u
 (28.4)

The second integral recognizes that Fs ds = F cos u ds is equivalent to the dot product 
F
u # ds

u
, allowing us to write the work in vector notation. As with Gauss’s law, this inte-

gral looks more formidable than it really is. We’ll look at examples shortly.
Finally, recall that a conservative force is one for which the work done as a particle 

moves from position i to position f is independent of the path followed. In other words, 
the integral in Equation 28.4 gives the same value for any path between points i and f. 
We’ll assert for now, and prove later, that the electric force is a conservative force.

Uniform Fields
Gravity, like electricity, is a long-range force. Much as we defined the electric field 
E
u

= F
u

on q/q, we can also define a gravitational field—the agent that exerts gravita-
tional forces on masses—as F

u

on m/m. But F
u

on m = mg
u

 near the earth’s surface; thus 

The particle undergoes
displacement �r.
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FigUrE 28.1 The work done by a 
constant force.

The work done in this
small segment of the
motion is Fs ds � F # ds.
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The force is
not constant.

The path is curved.

FigUrE 28.2 The work done along a 
curved path or by a variable force.
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the familiar g
u

= (9.80 N/kg, down) is really the gravitational field! Notice how we’ve 
written the units of g

u
 as N/kg, as is appropriate for a field, but you can easily show that 

N/kg = m/s2. The gravitational field near the earth’s surface is a uniform field in the 
downward direction.

FigUrE 28.3 shows a particle of mass m falling in the gravitational field. The gravita-
tional force is in the same direction as the particle’s displacement, so the gravitational 
field does a positive amount of work on the particle. The gravitational force is con-
stant, hence the work done by gravity is

 Wgrav = FG �r cos 0� = mg 0 yf - yi 0 = mgyi - mgyf  (28.5)

We have to be careful with signs because �r, the magnitude of the displacement vec-
tor, must be a positive number.

Now we can see how the definition of �U in Equation 28.2 makes sense. The 
change in gravitational potential energy is

 �Ugrav = Uf - Ui = -Wgrav(i S f ) = mgyf - mgyi  (28.6)

Comparing the initial and final terms on the two sides of the equation, we see that the 
gravitational potential energy near the earth is the familiar quantity

 Ugrav = U0 + mgy (28.7)

where U0 is the value of Ugrav at y = 0. We usually choose U0 = 0, in which case 
Ugrav = mgy, but such a choice is not necessary. The zero point of potential energy is 
an arbitrary choice because we have defined �U rather than U.

The uniform electric field between the plates of the parallel-plate capacitor of 
FigUrE 28.4 looks very much like the uniform gravitational field near the earth’s surface. 
The one difference is that g

u
 always points down whereas the positive-to-negative 

electric field can point in any direction. To deal with this, let’s define a coordinate axis s 
that points from the negative plate, which we define to be s = 0, toward the positive 
plate. The electric field E

u

 then points in the negative s-direction, just as the gravita-
tional field g

u
 points in the negative y-direction. This s-axis, which is valid no matter 

how the capacitor is oriented, is analogous to the y-axis used for gravitational potential 
energy.

A positive charge q inside the capacitor speeds up and gains kinetic energy as 
it “falls” toward the negative plate. Is the charge losing potential energy as it gains 
kinetic energy? Indeed it is, and the calculation of the potential energy is just like the 
calculation of gravitational potential energy. The electric field exerts a constant force 
F = qE on the charge in the direction of motion; thus the work done on the charge by 
the electric field is

 Welec = F �r cos 0� = qE 0 sf - si 0 = qEsi - qEsf (28.8)

where we again have to be careful with the signs because sf 6 si.
The work done by the electric field causes the charge to experience a change in 

electric potential energy given by

 �Uelec = Uf - Ui = -Welec(i S f) = qEsf - qEsi (28.9)

Comparing the initial and final terms on the two sides of the equation, we see that the 
electric potential energy of charge q in a uniform electric field is

 Uelec = U0 + qEs (28.10)

where s is measured from the negative plate and U0 is the potential energy at the nega-
tive plate (s = 0). It will often be convenient to choose U0 = 0, but the choice has 
no physical consequences because it doesn’t affect �Uelec, the change in the electric 
potential energy. Only the change is significant.
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field�rr

grgrgr

The gravitational field does work
on the particle. We can express the
work as a change in gravitational
potential energy.

The net force on the particle is down.
It gains kinetic energy (i.e., speeds up)
as it loses potential energy.

r

r

FigUrE 28.3 Potential energy is 
transformed into kinetic energy as a 
particle moves in a gravitational field.

The particle is “falling”
in the direction of E. 
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FigUrE 28.4 The electric field does work 
on the charged particle.
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Equation 28.10 was derived with the assumption that q is positive, but it is valid for 
either sign of q. A negative value for q in Equation 28.10 causes the potential energy 
Uelec to become more negative as s increases. As FigUrE 28.5 shows, a negative charge 
gains kinetic energy as it moves away from the negative plate of the capacitor.

The potential energy of a positive
charge decreases in the direction of E.
The charge gains kinetic energy as it
moves toward the negative plate.
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The potential energy of a negative
charge decreases in the direction
opposite to E. The charge gains
kinetic energy as it moves away
from the negative plate.

FigUrE 28.5 A charged particle of either sign gains kinetic energy as it moves in the 
direction of decreasing potential energy.

NoTE  Although Equation 28.10 is often called “the potential energy of charge q,” 
it is really the potential energy of the charge + capacitor system. To the extent that 
the charges on the capacitor plate stay fixed, we’re justified in thinking of this as 
the potential energy of just the charge q. 

FigUrE 28.6 is the energy diagram for a positively charged particle in a uniform 
electric field. Recall that an energy diagram is a graphical representation of how the 
kinetic and potential energy are transformed as a particle moves. The potential energy, 
given by Equation 28.10, increases linearly with distance, but the particle’s total me-
chanical energy Emech is fixed. If a positively charged particle is projected against a 
uniform field, it gradually slows (transforming kinetic to potential energy) until reach-
ing the turning point where Uelec = Emech.

s
smax0

0

Energy

Emech

U0 U

K

Kinetic and potential
energy can be trans-
formed into each other.

The particle reaches
a turning point
where Uelec � Emech.

The potential-
energy graph is
a straight line.

The mechanical energy
is constant.

FigUrE 28.6 The energy diagram for a 
positively charged particle in a uniform 
electric field.

as it moves toward the negative plate. For the proton, with 
q = +e and sf = 0, the change in potential energy is

�Up = Uf - Ui = (U0 + 0) - 1U0 + eE 
d

2 2 = -  
1

2
 eEd

Continued

ExAmPLE 28.1  Conservation of energy
A 2.0 cm * 2.0 cm parallel-plate capacitor with a 2.0 mm spac-
ing is charged to {1.0 nC. First a proton, then an electron are 
released from rest at the midpoint of the capacitor.

 a. What is each particle’s change in electric potential energy from 
its release until it collides with one of the plates?

 b. What is each particle’s speed as it reaches the plate?

modEL The mechanical energy of each particle is conserved. A 
parallel-plate capacitor has a uniform electric field.

ViSUALizE FigUrE 28.7 is a before-and-after pictorial representa-
tion, as you learned to draw in Part II. On the energy diagram 
of Figure 28.6, each particle is released at the turning point 
(K = 0) and moves toward lower potential energy. Thus the 
proton moves toward the negative plate, the electron toward the 
positive plate.

SoLVE a. The s-axis was defined to point from the negative to-
ward the positive plate of the capacitor. Both charged particles 
have si =

1
2 d, where d = 2.0 mm is the plate separation. The 

positive proton loses potential energy and gains kinetic energy 
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FigUrE 28.7 A proton and an electron in a capacitor.
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where we used the electric potential energy for a charge in a 
uniform electric field. �Up is negative, as expected. Notice 
that U0 cancels when �U is calculated.

The electron moves toward the positive plate, which is the 
direction of decreasing potential energy for a negative charge. 
The electron has q = -e and ends at sf = d. Thus

 �Ue = Uf - Ui = (U0 + (-e)Ed ) - 1U0 + (-e)E 
d

2 2
 = -  

1

2
 eEd

Both particles have the same change in potential energy. The 
capacitor’s electric field is

E =
h

P0
=

Q

P0 A
= 2.82 * 105 N/C

Using d = 0.0020 m, we find

�Up = �Ue = -4.5 * 10-17 J

 b. The law of conservation of energy is �K + �U = 0. Both 
particles are released from rest; hence �K = Kf - 0 =

1
2 mvf 

2. 
Thus 12 mvf 

2 = - �U, or

vf = B -2 �U

m
= b 2.3 * 105 m/s for the proton

1.0 * 107 m/s for the electron

where we used the masses of the proton and the electron.

ASSESS Even though both particles have the same �U, the 
electron reaches a much faster final speed due to its much smaller 
mass.

Stop to think 28.1  A glass rod is posi-
tively charged. The figure shows an end 
view of the rod. A negatively charged 
particle moves in a circular arc around the 
glass rod. Is the work done on the charged 
particle by the rod’s electric field positive, 
negative, or zero?

End view of
charged rod

Motion of negatively
charged particle

� �

28.2 The Potential Energy of Point Charges
Now that we’ve introduced the idea of electric potential energy, let’s look at the fun-
damental interaction of electricity—the force between two point charges. This force, 
given by Coulomb’s law, varies with the distance between the two charges; hence we 
need to use the integral expression of Equation 28.4 to calculate the work done.

FigUrE 28.8a shows two charges q1 and q2, which we will assume to be like charges. 
The potential energy of their interaction can be found by calculating the work done by 
the electric field of q1 on q2 as q2 moves from position xi to position xf. We’ll assume 
that q1 has been glued down and is unable to move, as shown in FigUrE 28.8b.

The force is entirely in the direction of motion, so Fs ds = F1 on 2 dx. Thus

Welec = 3
xf

xi

 F1 on 2  dx = 3
xf

xi

 
Kq1q2

x2   dx = Kq1q2 
-1
x

 `
xf

xi

= -  
Kq1q2

xf
+

Kq1q2

xi
 (28.11)

The potential energy of the two charges is related to the work done by

 �Uelec = Uf - Ui = -Welec(i S f) =
Kq1q2

xf
-

Kq1q2

xi
 (28.12)

By comparing the left and right sides of the equation we see that the potential energy 
of the two-point-charge system is

 Uelec =
Kq1q2

x
 (28.13)

We could include a constant U0, as we did in Equation 28.10, for the potential energy 
of a charge in a uniform electric field, but it is customary to set U0 = 0.

q1 q2F2 on 1

r
F1 on 2

r

q1

Fixed in
position

q2

F
r

F
r

xi0 xf

x�rr

(a)

(b)

The electric field of q1 does work
on q2 as q2 moves from xi to xf .

Like charges exert repulsive forces.

The force changes
with distance.

FigUrE 28.8 The interaction between 
two point charges.
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We chose to integrate along the x-axis for convenience, but what is really important 
is the distance between the charges. Thus a more general expression for the electric 
potential energy is

 Uelec =
Kq1q2

r
=

1

4pP0
 
q1q2

r
  (two point charges) (28.14)

This is explicitly the energy of the system, not the energy of just q1 or q2.

NoTE  The electric potential energy of two point charges looks almost the same 
as the force between the charges. The difference is the r in the denominator of the 
potential energy compared to the r2 in Coulomb’s law. 

Three important points need to be noted:

	■	 The choice U0 = 0 is equivalent to saying that the potential energy of two 
charged particles is zero only when they are infinitely far apart. This makes sense 
because two charged particles cease interacting only when they are infinitely far 
apart.

	■	 We derived Equation 28.14 for two like charges, but it is equally valid for two 
opposite charges. The potential energy of two like charges is positive and of two 
opposite charges is negative.

	■	 Because the electric field outside a sphere of charge is the same as that of a point 
charge at the center, Equation 28.14 is also the electric potential energy of two 
charged spheres. Distance r is the distance between their centers.

FigUrE 28.9a shows the potential-energy curve—a hyperbola—for two like charges 
as a function of the distance r between them. Distances must be positive numbers, 
so the graph shows only r 7 0. Also shown is the total energy line for two charged 
particles shot toward each other with equal but opposite momenta. Recall, from 
Chapter 10, that the total energy line is horizontal because the mechanical energy is 
conserved.

You can see that the total energy line crosses the potential-energy curve at rmin. 
This is a turning point. The two charges gradually slow down, because of the re-
pulsive force between them, until the distance separating them is rmin. At this point, 
the kinetic energy is zero and both particles are instantaneously at rest. Both then 
reverse direction and move apart, speeding up as they go. rmin is the distance of 
closest approach.

Two opposite charges are a little trickier because of the negative energies. Negative 
total energies seem troubling at first, but they characterize bound systems. FigUrE 28.9b 
shows two oppositely charged particles shot apart from each other with equal but 
opposite momenta. If Emech 6 0, as shown, then their total energy line crosses the 
potential-energy curve at rmax. That is, the particles slow down, lose kinetic energy, 
reverse directions at maximum separation rmax, and then “fall” back together. They 
cannot escape from each other. Although moving in three dimensions rather than one, 
the electron and proton of a hydrogen atom are a realistic example of a bound system, 
and their mechanical energy is negative.

Two oppositely charged particles can escape from each other if Emech 7 0. They’ll 
slow down, but eventually the potential energy vanishes and the particles still have 
kinetic energy. The threshold condition for escape is Emech = 0, which will allow the 
particles to reach infinite separation (U S 0) at infinitesimally slow speed (K S 0). 
The initial speed that gives Emech = 0 is called the escape speed.

NoTE  Real particles can’t be infinitely far apart, but because Uelec decreases with 
distance, there comes a point when Uelec = 0 is an excellent approximation. Two 
charged particles for which Uelec � 0 are sometimes described as “far apart” or “far 
away.” 
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Uelec
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rmin0
0

Energy

(a) Like charges

Distance of closest
approach for two like
charges with total
energy Emech

Emech
Uelec
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(b) Opposite charges

rmax

rmax0
0

Energy

� �

Distance of
maximum
separation for
two opposite
charges

FigUrE 28.9 The potentialenergy 
diagrams for two like charges and two 
opposite charges.
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The Electric Force is a Conservative Force
Potential energy can be defined only if the force is conservative, meaning that the 
work done on the particle as it moves from position i to position f is independent of 
the path followed between i and f. FigUrE 28.10 demonstrates that electric force is indeed 
conservative.

i f i f i f
The electric force is a central force. As a result,
zero work is done as q2 moves along a circular
arc because the force is perpendicular to the
displacement.

Approximate the path using circular arcs
and radial lines centered on q1. 

q1 q1 q1

F
r

Consider an alternative path for
q2 to move from i to f.

All the work is done along the radial line
segments, which are equivalent to a straight
line from i to f. This is the work that was
calculated in Equation 28.11.

q2

FigUrE 28.10 The work done on q2 is independent of the path from i to f.

The proton charge is qp = e. With this, we can solve for the pro-
ton’s initial speed:

 vi = B2Keqsphere

mrf
= 1.86 * 107 m/s

ExAmPLE 28.2  Approaching a charged sphere
A proton is fired from far away at a 1.0-mm-diameter glass sphere 
that has been charged to  +100 nC. What initial speed must the 
proton have to just reach the surface of the glass?

modEL Energy is conserved. The glass sphere can be treated as 
a charged particle, so the potential energy is that of two point 
charges. The proton starts “far away,” which we interpret as suf-
ficiently far to make Ui � 0.

ViSUALizE FigUrE 28.11 shows the before-and-after pictorial repre-
sentation. To “just reach” the glass sphere means that the proton 
comes to rest, vf = 0, as it reaches rf = 0.50 mm, the radius of 
the sphere.

SoLVE Conservation of energy Kf + Uf = Ki + Ui is

 0 +
Kqpqsphere

rf
=

1

2
 mvi 

2 + 0

�

�

vi

rf � R
vf � 0

ri � � so Ui � 0

Before:

After:

R

FigUrE 28.11 A proton approaching a glass sphere.

SoLVE Here it is essential to interpret Uelec as the potential energy 
of the electron + positron system. Similarly, K is the total kinetic 
energy of the system. The electron and the positron, with equal 
masses and equal speeds, have equal kinetic energies. Conserva-
tion of energy Kf + Uf = Ki + Ui is

 0 + 0 + 0 =
1

2
 mvi 

2 +
1

2
 mvi 

2 +
Kqeqp

ri
= mvi 

2 -
Ke2

ri

Using ri = 100 fm = 1.0 * 10-13 m, we can calculate the mini-
mum initial speed to be

 vi = BKe2

mri
= 5.0 * 107 m/s

ASSESS vi is a little more than 10% the speed of light, just about 
the limit of what a “classical” calculation can predict. We would 
need to use the theory of relativity if vi were any larger.

ExAmPLE 28.3  Escape velocity
An interaction between two elementary particles causes an elec-
tron and a positron (a positive electron) to be shot out back to back 
with equal speeds. What minimum speed must each have when 
they are 100 fm apart in order to escape each other?

modEL Energy is conserved. The particles end “far apart,” which 
we interpret as sufficiently far to make Uf � 0.

ViSUALizE FigUrE 28.12 shows the before-and-after pictorial repre-
sentation. The minimum speed to escape is the speed that allows 
the particles to reach rf = � with vf = 0.

FigUrE 28.12 An electron and a positron flying apart.
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multiple Point Charges
If more than two charges are present, the potential energy is the sum of the potential 
energies due to all pairs of charges:

 Uelec = a
i6 j

 
Kqiqj

rij
 (28.15)

where rij is the distance between qi and qj. The summation contains the i 6 j restriction 
to ensure that each pair of charges is counted only once.

NoTE  For energy conservation problems, it’s necessary to calculate only the potential 
energy for those pairs of charges for which the distance rij changes. The potential energy 
of charges that don’t move is an additive constant with no physical consequences. 

SoLVE a. The center electron is in equilibrium exactly in the center 
because the two electric forces on it balance. But if it moves a 
little to the right or left, no matter how little, then the horizontal 
components of the forces from both outer electrons will push 
the center electron farther away. This is an unstable equilibrium 
for horizontal displacements, like being on the top of a hill.

 b. A small displacement will cause the electron to move away. If 
the displacement is only infinitesimal, the initial conditions are 
(r12)i = (r23)i = 1.0 mm and vi = 0. “Far away” is interpreted 
as rf S �, where Uf � 0. There are now two terms in the poten-
tial energy, so conservation of energy Kf + Uf = Ki + Ui gives

 
1

2
 mvf 

2 + 0 + 0 = 0 + c Kq1q2

(r12)i
+

Kq2q3

(r23)i
d

 = c Ke2

(r12)i
+

Ke2

(r23)i
d

This is easily solved to give

vf = B 2
m

 c Ke2

(r12)i
+

Ke2

(r23)i
d = 1000 m/s

ExAmPLE 28.4  Launching an electron
Three electrons are spaced 1.0 mm apart along a vertical line. The 
outer two electrons are fixed in position.

 a. Is the center electron at a point of stable or unstable equilibrium?
 b. If the center electron is displaced horizontally by a small dis-

tance, what will its speed be when it is very far away?

modEL Energy is conserved. The outer two electrons don’t move, 
so we don’t need to include the potential energy of their interaction.

ViSUALizE FigUrE 28.13 shows the situation.

FigUrE 28.13 Three electrons.

(r12)i � 1.0 mm

vi � 0
vf

1

2

3

(r23)i � 1.0 mm

(r12)f � �

(r23)f � �

Before: After:

�

� �

� �

�

Stop to think 28.2 
 Rank in order, from largest to smallest, the potential energies Ua to 

Ud of these four pairs of charges. Each +  symbol represents the same amount of charge.

28.3 The Potential Energy of a dipole
The electric dipole has been our model for understanding how charged objects interact 
with neutral objects. In Chapter 26 we found that an electric field exerts a torque on a 
dipole. We can complete the picture by calculating the potential energy of an electric 
dipole in a uniform electric field.

FigUrE 28.14 shows a dipole in an electric field E
u

. Recall that the dipole moment p
u

 is 
a vector that points from -q to q with magnitude p = qs. The forces F

u

+ and F
u

- exert 
a torque on the dipole, but now we’re interested in calculating the work done by these 
forces as the dipole rotates from angle fi to angle ff.

� �
r

(a)

��� r

(b)

� �� 2r

(c)

� �� �2r

(d)

FigUrE 28.14 The electric field does 
work as a dipole rotates.
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When a force component Fs acts through a small displacement ds, the force does 
work dW = Fs  ds. If we exploit the rotational-linear motion analogy from Chapter 12, 
where torque t is the analog of force and angular displacement �f is the analog of linear 
displacement, then a torque acting through a small angular displacement df does work 
dW = t df. From Chapter 26, the torque on the dipole in Figure 28.14 is t = -pE sinf, 
where the minus sign is due to the torque trying to cause a clockwise rotation. Thus the 
work done by the electric field on the dipole as it rotates through the small angle df is

 dWelec = -pE sin f df (28.16)

The total work done by the electric field as the dipole turns from fi to ff is

 Welec = -pE3
ff

fi

 sin f df = pE cos ff - pE cos fi (28.17)

The potential energy associated with the work done on the dipole is

 �Udipole = Uf - Ui = -Welec(i S f) = -pE cos ff + pE cos fi (28.18)

By comparing the left and right sides of Equation 28.18, we see that the potential en-
ergy of an electric dipole p

u
 in a uniform electric field E

u

 is

 Udipole = -pE cos f = -p
u # E

u

 (28.19)

FigUrE 28.15 shows the energy diagram of a dipole. The potential energy is minimum 
at f = 0� where the dipole is aligned with the electric field. This is a point of stable 
equilibrium. A dipole exactly opposite E

u

, at f = {180�, is at a point of unstable 
equilibrium. Any disturbance will cause it to flip around. A frictionless dipole with 
mechanical energy Emech will oscillate back and forth between turning points on either 
side of f = 0�.

FigUrE 28.15 The energy of a dipole in 
an electric field.

pE

�pE

�180� 180�0�
0 f

Energy

Emech

Stable
equilibrium
at f � 0�

Unstable
equilibrium
at f � �180�

Turning points for
oscillation with
energy Emech

  �Udipole = Uf - Ui = -pE cos 90� - (-pE cos 0�)

  = pE = 6.2 * 10-23 J

This is the energy needed to rotate the molecule 90�.
ASSESS �Udipole is significantly less than kBT  at room tempera-
ture. Thus collisions with other molecules can easily supply the 
energy to rotate the water molecules and keep them from staying 
aligned with the electric field.

ExAmPLE 28.5  rotating a molecule
The water molecule is a permanent electric dipole with dipole mo-
ment 6.2 * 10-30 C m. A water molecule is aligned in an electric 
field with field strength 1.0 * 107 N/C. How much energy is need-
ed to rotate the molecule 90�?

modEL The molecule is at the point of minimum energy. It won’t 
spontaneously rotate 90�. However, an external force that supplies 
energy, such as a collision with another molecule, can cause the 
water molecule to rotate.

SoLVE The molecule starts at fi = 0� and ends at ff = 90�. The 
increase in potential energy is

28.4 The Electric Potential
We introduced the concept of the electric field in Chapter 25 because action at a distance 
raised concerns and difficulties. The field provides an intermediary through which two 
charges exert forces on each other. Charge q1 somehow alters the space around it by 
creating an electric field E

u

1. Charge q2 then responds to the field, experiencing force 
F
u

= q2E
u

1.
We face the same kinds of difficulties when we try to understand electric potential 

energy. For a mass on a spring, we can see how the energy is stored in the stretched 
or compressed spring. But when we say two charged particles have a potential energy, 
an energy that can be converted to a tangible kinetic energy of motion, where is the 
energy? It’s indisputable that two positive charges fly apart when you release them, 
gaining kinetic energy, but there’s no obvious place that the energy had been stored.

This battery is labeled 1.5 Volts. As we’ll 
soon see, a battery is a source of electric 
potential.
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In defining the electric field, we chose to separate the charges that are the source 
of the field from the charge in the field. The force on charge q is related to the electric 
field of the source charges by

 force on q by sources = [charge q] * [alteration of space by the source charges]

Let’s try a similar procedure for the potential energy. The electric potential energy is 
due to the interaction of charge q with other charges, so let’s write

 potential energy of q + sources

 = [charge q] * [potential for interaction of the source charges]

FigUrE 28.16 shows this idea schematically.
In analogy with the electric field, we will define the electric potential V (or, for 

brevity, just the potential) as

 V K
Uq +sources

q
 (28.20)

Charge q is used as a probe to determine the electric potential, but the value of V is 
independent of q. The electric potential, like the electric field, is a property of the 
source charges.

In practice, we’re usually more interested in knowing the potential energy if a charge 
q happens to be at a point in space where the electric potential of the source charges is 
V. Turning Equation 28.20 around, we see that the electric potential energy is

 Uq + sources = qV  (28.21)

Once the potential has been determined, it’s very easy to find the potential energy.
The unit of electric potential is the joule per coulomb, which is called the volt V:

 1 volt = 1 V K 1 J/C

This unit is named for Alessandro Volta, who invented the electric battery in the year 
1800. Microvolts (mV), millivolts (mV), and kilovolts (kV) are commonly used units.

NoTE  Once again, commonly used symbols are in conflict. The symbol V is 
widely used to represent volume, and now we’re introducing the same symbol to 
represent potential. To make matters more confusing, V is the abbreviation for 
volts. In printed text, V for potential is italicized and V for volts is not, but you 
can’t make such a distinction in handwritten work. This is not a pleasant state of 
affairs, but these are the commonly accepted symbols. It’s incumbent upon you to 
be especially alert to the context in which a symbol is used. 

Using the Electric Potential
The electric potential is an abstract idea, and it will take some practice to see just what 
it means and how it is useful. We’ll use multiple representations—words, pictures, 
graphs, and analogies—to explain and describe the electric potential.

NoTE  It is unfortunate that the terms potential and potential energy are so much 
alike. Despite the similar names, they are very different concepts and are not inter-
changeable. Table 28.1 will help you to distinguish between the two. 

Basically, knowing the electric potential in a region of space allows us to determine 
whether a charged particle speeds up or slows down as it moves through that region. 
FigUrE 28.17 on the next page illustrates this idea. Here a group of source charges, which 
remains hidden offstage, has created an electric potential V that increases from left to 
right. A charged particle q, which for now we’ll assume to be positive, has electric 

FigUrE 28.16 Source charges alter the 
space around them by creating an 
electric potential.

Source charges

The source charges alter
the space around them by
creating an electric potential.

If charge q is in the potential,
the electric potential energy is
Uq�sources � qV.

�
� �

The potential at
this point is V.

TABLE 28.1 Distinguishing electric 
potential and potential energy

The electric potential is a property of the 
source charges and, as you’ll soon see, is 
related to the electric field. The electric 
potential is present whether or not a 
charged particle is there to experience it. 
Potential is measured in J/C, or V.

The electric potential energy is the interac-
tion energy of a charged particle with 
the source charges. Potential energy is 
measured in J.
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FigUrE 28.17 A charged particle speeds up or slows down as it moves through a potential 
difference.

A positive charge speeds up
as it moves toward lower
electric potential. Potential
energy is transformed into
kinetic energy. A positive charge slows

down as it moves toward
higher electric potential.
Kinetic energy is transformed
into potential energy.

�V � 0

�V � 0

� �

� �

Direction of increasing V

if

fi

Lower potential Higher potential

potential energy U = qV. If the particle moves to the right, its potential energy in-
creases and so, by energy conservation, its kinetic energy must decrease. A positive 
charge slows down as it moves into a region of higher electric potential.

It is customary to say that the particle moves through a potential difference 
�V = Vf - Vi. The potential difference between two points is often called the 
voltage. The particle moving to the right moves through a positive potential differ-
ence (�V 7 0 because Vf 7 Vi), so we can say that a positively charged particle slows 
down as it moves through a positive potential difference.

The particle moving to the left in Figure 28.17 travels in the direction of decreas-
ing electric potential—through a negative potential difference—and is losing potential 
energy. It speeds up as it transforms potential energy into kinetic energy. A negatively 
charged particle would slow down because its potential energy qV  would increase as 
V decreases. Table 28.2 summarizes these ideas.

If a particle moves through a potential difference �V, its electric potential energy 
changes by �U = q �V. We can write the conservation of energy equation in terms 
of the electric potential as �K + �U = �K + q �V = 0 or, as is often more practical,

 Kf + qVf = Ki + qVi (28.22)

Conservation of energy is the basis of a powerful problem-solving strategy.

TABLE 28.2 Charged particles moving in 
an electric potential

Electric potential

Increasing 
(�V 7 0)

Decreasing 
(�V 6 0)

+  charge Slows down Speeds up

-  charge Speeds up Slows down

ProBLEm-SoLViNg
STrATEgy 28.1

  Conservation of energy in 
charge interactions

modEL Check whether there are any dissipative forces that would keep the me-
chanical energy from being conserved.

ViSUALizE Draw a before-and-after pictorial representation. Define symbols that 
will be used in the problem, list known values, and identify what you’re trying 
to find.

SoLVE The mathematical representation is based on the law of conservation of 
mechanical energy:

 Kf + qVf = Ki + qVi

 ■	 Is the electric potential given in the problem statement? If not, you’ll need to 
use a known potential, such as that of a point charge, or calculate the potential 
using the procedure given later, in Problem-Solving Strategy 28.2.

 ■	 Ki and Kf are the sums of the kinetic energies of all moving particles.
 ■	 Some problems may need additional conservation laws, such as conservation 

of charge or conservation of momentum.

ASSESS Check that your result has the correct units, is reasonable, and answers 
the question.

Exercise 22 
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Stop to think 28.3 
 A proton is released from rest at point B, where the potential is 0 V. 

Afterward, the proton

 a. Remains at rest at B.
 b. Moves toward A with a steady speed.
 c. Moves toward A with an increasing speed.
 d. Moves toward C with a steady speed.
 e. Moves toward C with an increasing speed.

28.5  The Electric Potential inside
a Parallel-Plate Capacitor

We began this chapter with the potential energy of a charge inside a parallel-plate 
capacitor. Now let’s investigate the electric potential. FigUrE 28.19 shows two parallel 
electrodes, separated by distance d, with surface charge density {h. As a specific 
example, we’ll let d = 3.00 mm and h = 4.42 * 10-9 C/m2. The electric field inside 
the capacitor, as you learned in Chapter 26, is

  E
u

= 1 hP0
 , from positive toward negative2

  = (500 N/C, from right to left)  
(28.23)

This electric field is due to the source charges on the capacitor plates.

where �V = Vf - Vi is the potential difference through which the 
particle moves. In terms of the speeds, energy conservation is

 
1

2
 mvf 

2 =
1

2
 mvi 

2 - q �V

We can solve this for the final speed:

 vf = Bvi 

2 -
2q

m
 �V

For a proton, with q = e, the final speed is

  (vf)p = B (2.0 * 105 m/s)2 -
2(1.60 * 10-19 C)(100 V)

1.67 * 10-27 kg

  = 1.4 * 105 m/s

An electron, though, with q = -e and a different mass, speeds up 
to (vf)e = 5.9 * 106 m/s.

ASSESS The electric potential already existed in space due to 
other charges that are not explicitly seen in the problem. The 
electron and proton have nothing to do with creating the poten-
tial. Instead, they respond to the potential by having potential 
energy U = qV.

ExAmPLE 28.6  moving through a potential difference
A proton with a speed of 2.0 * 105 m/s enters a region of space 
in which source charges have created an electric potential. What is 
the proton’s speed after it moves through a potential difference of 
100 V? What will be the final speed if the proton is replaced by an 
electron?

modEL Energy is conserved. The electric potential determines the 
potential energy.

ViSUALizE FigUrE 28.18 is a before-and-after pictorial representa-
tion of a charged particle moving through a potential difference. 
A positive charge slows down as it moves into a region of higher 
potential (K S U). A negative charge speeds up (U S K).

FigUrE 28.18 A charged particle moving 
through a potential difference.

Before: After:

Potential difference
�V � Vf � Vi

qq
vi vf

� �

SoLVE The potential energy of charge q is U = qV. Conservation 
of energy, now expressed in terms of the electric potential V, is 
Kf + qVf = Ki + qVi, or

 Kf = Ki - q �V

�100 V 0 V �100 V

A B C

FigUrE 28.19 A parallelplate capacitor.
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In Section 28.1, we found that the electric potential energy of a charge q in the 
uniform electric field of a parallel-plate capacitor is

 Uelec = Uq + sources = qEs (28.24)

We’ve set the constant term U0 to zero. Uelec is the energy of q interacting with the 
source charges on the capacitor plates.

Our new view of the interaction is to separate the role of charge q from the role of 
the source charges by defining the electric potential V = Uq + sources/q. Thus the electric 
potential inside a parallel-plate capacitor is

 V = Es  (electric potential inside a parallel@plate capacitor) (28.25)

where s is the distance from the negative electrode. The electric potential, like the 
electric field, exists at all points inside the capacitor. The electric potential is created 
by the source charges on the capacitor plates and exists whether or not charge q is 
inside the capacitor.

FigUrE 28.20 illustrates the important point that the electric potential increases 
linearly from the negative plate, where V- = 0, to the positive plate, where V+ = Ed. 
Let’s define the potential difference �VC between the two capacitor plates to be

 �VC = V+ - V- = Ed (28.26)

In our specific example, �VC = (500 N/C)(0.0030 m) = 1.5 V. The units work out 
because 1.5 (N m)/C = 1.5 J/C = 1.5 V.

NoTE  People who work with circuits would call �VC “the voltage across the 
capacitor” or simply “the capacitor voltage.” 

Equation 28.26 has an interesting implication. Thus far, we’ve determined the elec-
tric field inside a capacitor by specifying the surface charge density h on the plates. 
Alternatively, we could specify the capacitor voltage �VC (i.e., the potential differ-
ence between the capacitor plates) and then determine the electric field strength as

 E =
�VC

d
 (28.27)

In fact, this is how E is determined in practical applications because it’s easy to mea-
sure �VC with a voltmeter but difficult, in practice, to know the value of h.

Equation 28.27 implies that the units of electric field are volts per meter, or V/m. 
We have been using electric field units of newtons per coulomb. In fact, as you can 
show as a homework problem, these units are equivalent to each other. That is,

 1 N/C = 1 V/m

NoTE  Volts per meter are the electric field units used by scientists and engineers 
in practice. We will now adopt them as our standard electric field units. 

Returning to the electric potential, we can substitute Equation 28.27 for E into 
Equation 28.25 for V. Thus the electric potential inside the capacitor is

 V = Es =
s

d
  �VC (28.28)

The potential increases linearly from V- = 0 V at the negative plate (s = 0) to V+ =

�VC at the positive plate (s = d).
Let’s explore the electric potential inside the capacitor by looking at several differ-

ent, but related, ways that the potential can be represented graphically.

FigUrE 28.20 The electric potential of a 
parallelplate capacitor increases linearly 
from the negative to the positive plate.
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These four graphical representations show the same information from different 
perspectives, and the connecting lines help you see how they are related. If you think 
of the elevation graph as a “mountain,” then the contour lines on the contour map are 
like the lines of a topographic map.

The potential graph and the contour map are the two representations most widely 
used in practice because they are easy to draw. Their limitation is that they are trying 
to convey three-dimensional information in a two-dimensional presentation. When 
you see graphs or contour maps, you need to imagine the three-dimensional equipo-
tential surfaces or the three-dimensional elevation graph.

There’s nothing special about showing equipotential surfaces or contour lines 
every 0.5 V. We chose these intervals because they were convenient. As an alterna-
tive, FigUrE 28.21 shows how the contour map looks if the contour lines are spaced 
every 0.3 V. Contour lines and equipotential surfaces are imaginary lines and surfaces 
drawn to help us visualize how the potential changes in space. Drawing the map more 
than one way reinforces the idea that there is an electric potential at every point inside 
the capacitor, not just at the points where we happened to draw a contour line or an 
equipotential surface.

Figure 28.21 also shows the electric field vectors. Notice that

	■ The electric field vectors are perpendicular to the equipotential surfaces.
	■ The electric field points in the direction of decreasing potential. In other words, the 

electric field points “downhill” on a graph or map of the electric potential.

Chapter 29 will present a more in-depth exploration of the connection between the 
electric field and the electric potential. There you will find that these observations are 
always true. They are not unique to the parallel-plate capacitor.

Finally, you might wonder how we can arrange a capacitor to have a surface charge 
density of precisely 4.42 * 10-9 C/m2. Simple! As FigUrE 28.22 shows, we use wires to 
attach the capacitor plates to a 1.5 V battery. This is another topic that we’ll explore in 
Chapter 29, but it’s worth noting now that a battery is a source of potential. That’s 
why batteries are labeled in volts, and it’s a major reason we need to thoroughly un-
derstand the concept of potential.

graphical representations of the electric potential inside a capacitor

A graph of potential versus s. 
You can see the potential 
increasing from 0.0 V at the neg-
ative plate to 1.5 V at the positive 
plate.

A three-dimensional view show-
ing equipotential surfaces. 
These are mathematical sur-
faces, not physical surfaces, with 
the same value of V at every 
point. The equipotential surfaces 
of a capacitor are planes parallel 
to the capacitor plates. The 
capacitor plates are also equipo-
tential surfaces.

A two-dimensional contour 
map. The capacitor plates and 
the equipotential surfaces are 
seen edge-on, so you need to 
imagine them extending above 
and below the plane of the page. 

A three-dimensional elevation 
graph. The potential is graphed 
vertically versus the s-coordinate 
on one axis and a generalized 
“yz-coordinate” on the other 
axis. Viewing the right face of 
the elevation graph gives you the 
potential graph.
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FigUrE 28.21 The contour lines of the 
electric potential and the electric field 
vectors inside a parallelplate capacitor.
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FigUrE 28.22 Using a battery to charge a 
capacitor to a precise value of �VC.
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In writing the electric potential inside a parallel-plate capacitor, we made the 
choice that V- = 0 V at the negative plate. But that is not the only possible choice. 
FigUrE 28.25 shows three parallel-plate capacitors, each having the same capacitor volt-
age �VC = V+ - V- = 100 V, but each with a different choice for the location of 
the zero point of the electric potential. Notice the terminal symbols (lines with small 
circles at the end) showing how the potential, from a battery or a power supply, is ap-
plied to each plate; these symbols are common in electronics.

si = 0, and the final kinetic energy is zero. Using Equation 28.28 
for the potential inside the capacitor, we have

 eVf = e1sf

d
 �VC 2 = Ki =

1

2
 mvi 

2

Solving for the distance traveled, we find

 sf =
dmvi 

2

2e
 

1

�VC

Thus a graph of the distance traveled versus the inverse of the 
capacitor voltage should be a straight line with zero y-intercept 
and slope dmvi 

2/2e. We can use the experimentally determined 
slope to find the proton speed.

FigUrE 28.24 is a graph of sf versus 1/�VC. It has the expected 
shape, and the slope of the best-fit line is seen to be 1.72 V m. The 
units are those of the rise-over-run. Using the slope, we calculate 
the proton speed:

  vi = B 2e

dm
* slope = B 2(1.60 * 10-19 C)(1.72 V m)

(0.0020 m)(1.67 * 10-27 kg)

  = 4.1 * 105 m/s

ExAmPLE 28.7  measuring the speed of a proton
The lab in which you work has a small proton accelerator. You’ve 
been assigned the task of measuring the speed of the protons as 
they emerge from the accelerator. To do so, you decide to measure 
how much voltage is needed across a parallel-plate capacitor to 
stop the protons. The capacitor you choose has a 2.0 mm plate 
separation and a small hole in one plate that you shoot the protons 
through. By filling the space between the plates with a low-density 
gas, you can see (with a microscope) a slight glow from the region 
where the protons collide with and excite the gas molecules. The 
width of the glow tells you how far the protons travel before being 
stopped and reversing direction. Varying the voltage across the 
capacitor gives the following data:

Capacitor voltage (V) Glow width (mm)

1000 1.7

1250 1.3

1500 1.1

1750 1.0
2000 0.8

What value will you report for the speed of the protons?

modEL Energy is conserved. The proton’s potential energy can be 
found from the capacitor’s electric potential.

ViSUALizE FigUrE 28.23 shows a before-and-after pictorial repre-
sentation of the proton entering the capacitor with speed vi, which 
we want to find, and later reaching a turning point with vf = 0 m/s 
after traveling distance sf = glow width. For the protons to slow 
and stop, the hole through which they pass has to be in the negative 
plate. We’ve established an s-axis with s = 0 at this point.

FigUrE 28.23 A proton being stopped in a capacitor.
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FigUrE 28.24 A graph of the data.

sf (m � 10�3)

Best-fit line

1/�VC (V �1 � 10�3)

y � 1.72x � 3.0E�05
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1.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2

SoLVE The conservation of energy equation, with the proton 
having charge q = e, is Kf + eVf = Ki + eVi. The initial potential 
energy is zero, because the capacitor’s electric potential is zero at 

ASSESS This would be a very high speed for a macroscopic object 
but is quite typical of the speeds of charged particles.



The important thing to notice is that the three contour maps in Figure 28.25 repre-
sent the same physical situation. The potential difference between any two points is 
the same in all three maps. The electric field is the same in all three. We may prefer 
one of these figures over the others, but there is no measurable physical difference 
between them.

FigUrE 28.25 These three choices for V = 0 represent the same physical situation. These 
are contour maps, showing the edges of the equipotential surfaces.
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The potential difference between two
points is the same in all three cases.
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The electric field inside is
the same in all three cases.

(a) (b) (c)

SoLVE The force on a charged particle is F
u

= qE
u

. The electric 
field strength inside the parallel-plate capacitor of the cell wall is

 E =
�VC

d
=

0.070 V

5.0 * 10-9 m
= 1.4 * 107 V/m

Notice that we’re now using V/m rather than N/C as the units of 
electric field. Because the field points from positive to negative, 
the field vector is E

u

= (1.4 * 107 V/m, toward inside). Thus the 
force on an ion with q = 5e = 8.0 * 10-19 C is

 F
u

= qE
u

= (1.1 * 10-11 N, toward inside)

ASSESS For cells to function, a steady flow of molecules must pass 
back and forth through the cell wall. Although the details of how 
this happens are very complex, a key idea is that a potential differ-
ence between the inside and outside of the cell creates an electric 
field that pushes positive ions toward the inside, negative ions to-
ward the outside.

ExAmPLE 28.8  The force on an ion
Example 26.7 noted that a cell wall can be modeled as a parallel-
plate capacitor, with the outer surface of the cell wall being 
positive while the inner surface is negative. The potential differ-
ence between the inside of the cell and the outside is called the 
membrane potential. Suppose a molecular ion with charge 5e is 
embedded within the 5.0-nm-thick wall of a cell with a membrane 
potential of -70 mV, typical for a nerve cell in its resting state. 
What is the force on the molecular ion?

modEL Model the cell wall as a parallel-plate capacitor with the 
inner surface being the negative plate. Although the walls are actu-
ally curved, and not large flat planes, the parallel-plate approxima-
tion is valid if the wall thickness is much less than the radius of 
the cell. The capacitor voltage is �VC = 70 mV =  0.070 V. The 
membrane potential is negative because the potential inside the 
cell is less than the potential outside, but �VC, the capacitor volt-
age, is the magnitude of the potential difference and thus always 
positive.

Stop to think 28.4 
 Rank in order, from largest to 

smallest, the potentials Va to Ve at the points a to e.
� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

E
r

ba

e

c

d
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28.6 The Electric Potential of a Point Charge
Another important electric potential is that of a point charge. Let q in FigUrE 28.26 be 
the source charge, and let a second charge q� probe the electric potential of q. The 
potential energy of the two point charges is

 Uq�+ q =
1

4pP0
 
qq�

r
 (28.29)

Thus, by definition, the electric potential of charge q is

 V =
Uq�+ q

q�
=

1

4pP0
 
q

r
  (electric potential of a point charge) (28.30)

The potential of Equation 28.30 extends through all of space, showing the influence 
of charge q, but it weakens with distance as 1/r. This expression for V assumes that 
we have chosen V = 0 V to be at r = �. This is the most logical choice for a point 
charge because the influence of charge q ends at infinity.

The expression for the electric potential of charge q is similar to that for the electric 
field of charge q. The difference most quickly seen is that V depends on 1/r whereas 
E
u

 depends on 1/r2. But it is also important to notice that the potential is a scalar 
whereas the field is a vector. Thus the mathematics of using the potential are much 
easier than the vector mathematics using the electric field requires.

FigUrE 28.26 Measuring the electric 
potential of charge q.

q

q

q�

r

To determine the potential
of q at this point . . .

. . . place charge q� at the point
as a probe and measure the
potential energy Uq��q .

Visualizing the Potential of a Point Charge
FigUrE 28.27 shows four graphical representations of the electric potential of a point 
charge. These match the four representations of the electric potential inside a capaci-
tor, and a comparison of the two is worthwhile. This figure assumes that q is positive; 
you may want to think about how the representations would change if q were negative.

FigUrE 28.27 Four graphical representations of the electric potential of a point charge.
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We can similarly calculate V3 cm = 300 V. Thus the potential dif-
ference between these two points is �V = V1 cm - V3 cm =  600 V.

ASSESS 1 nC is typical of the electrostatic charge produced by 
rubbing, and you can see that such a charge creates a fairly large 
potential nearby. Why are we not shocked and injured when work-
ing with the “high voltages” of such charges? The sensation of 
being shocked is a result of current, not potential. Some high-
potential sources simply do not have the ability to generate much 
current. We will look at this issue in Chapter 31.

ExAmPLE 28.9  Calculating the potential of a point charge
What is the electric potential 1.0 cm from a +1.0 nC charge? 
What is the potential difference between a point 1.0 cm away and 
a second point 3.0 cm away?

SoLVE The potential at r = 1.0 cm is

  V1 cm =
1

4pP0
 
q

r
= (9.0 * 109 N m2/C2) 

1.0 * 10-9 C

0.010 m

  = 900 V



Stop to think 28.5 
 Rank in order, from largest to smallest, 

the potential differences �Vab, �Vac, and �Vbc between 
points a and b, points a and c, and points b and c.

The Electric Potential of a Charged Sphere
In practice, you are more likely to work with a charged sphere, of radius R and total 
charge Q, than with a point charge. Outside a uniformly charged sphere, the electric 
potential is identical to that of a point charge Q at the center. That is,

 V =
1

4pP0
 
Q
r
  (sphere of charge, r Ú R) (28.31)

We can cast this result in a more useful form. It is customary to speak of charging 
an electrode, such as a sphere, “to” a certain potential, as in “Bob charged the sphere 
to a potential of 3000 volts.” This potential, which we will call V0, is the potential right 
on the surface of the sphere. We can see from Equation 28.31 that

 V0 = V(at r = R) =
Q

4pP0R
 (28.32)

Consequently, a sphere of radius R that is charged to potential V0 has total charge

 Q = 4pP0RV0 (28.33)

If we substitute this expression for Q into Equation 28.31, we can write the potential 
outside a sphere that is charged to potential V0 as

 V =
R
r

 V0  (sphere charged to potential V0) (28.34)

Equation 28.34 tells us that the potential of a sphere is V0 on the surface and decreases 
inversely with the distance. The potential at r = 3R is 13 V0.

�
q

a b

c

A plasma ball consists of a small metal ball 
charged to a potential of about 2000 V 
inside a hollow glass sphere. The glass 
sphere is filled with gas—typically neon or 
argon because of the colors they produce—
at a pressure of about 0.01 atm. The electric 
field of the highvoltage ball is sufficient 
to cause a gas breakdown at this pressure, 
creating “lightning bolts” between the ball 
and the glass sphere.

 b. A sphere charged to V0 = +1000 V is positively charged. The 
proton will be repelled by this charge and move away from 
the sphere. The conservation of energy equation Kf + eVf =
Ki + eVi, with Equation 28.34 for the potential of a sphere, is

1

2
 mvf 

2 +
eR

rf
 V0 =

1

2
 mvi 

2 +
eR

ri
 V0

The proton starts from the surface of the sphere, ri = R, with 
vi = 0. When the proton is 1.0 cm from the surface of the 
sphere, it has rf = 1.0 cm + R = 1.5 cm. Using these, we can 
solve for vf:

vf = B 2eV0

m
 11 -

R

rf
2 = 3.6 * 105 m/s

ASSESS This example illustrates how the ideas of electric poten-
tial and potential energy work together, yet they are not the same 
thing.

ExAmPLE 28.10  A proton and a charged sphere
A proton is released from rest at the surface of a 1.0-cm-diameter 
sphere that has been charged to +1000 V.

 a. What is the charge of the sphere?
 b. What is the proton’s speed at 1.0 cm from the sphere?

modEL Energy is conserved. The potential outside the charged 
sphere is the same as the potential of a point charge at the center.

ViSUALizE FigUrE 28.28 shows the situation.

FigUrE 28.28 A sphere and a proton.

Before: After:

1.0 cm �1000 V
vi � 0

ri � R

vf

rf � R � 1.0 cm

SoLVE a. The charge of the sphere is

Q = 4pP0RV0 = 0.56 * 10-9 C = 0.56 nC

28.6 . The Electric Potential of a Point Charge    827
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28.7 The Electric Potential of many Charges
Suppose there are many source charges q1, q2, p . The electric potential V at a point in 
space is the sum of the potentials due to each charge:

 V = a
i

 
1

4pP0
 
qi

ri
 (28.35)

where ri is the distance from charge qi to the point in space where the potential is be-
ing calculated. In other words, the electric potential, like the electric field, obeys the 
principle of superposition.

As an example, the contour map and elevation graph in FigUrE 28.29 show that the 
potential of an electric dipole is the sum of the potentials of the positive and nega-
tive charges. Potentials such as these have many practical applications. For example, 
electrical activity within the body can be monitored by measuring equipotential lines 
on the skin. Figure 28.29c shows that the equipotentials near the heart are a slightly 
distorted but recognizable electric dipole.

Equipotentials on the chest of a human 
are a slightly distorted electric dipole.

FigUrE 28.29 The electric potential of an electric dipole.

(c)(a) Contour map

Equipotential surfaces

��

V

x

(b) Elevation graph

y

modEL The potential is the sum of the potentials due to each 
charge.

SoLVE The potential at the indicated point is

  V =
1

4pP0
 
q1

r1
+

1

4pP0
 
q2

r2

  = (9.0 * 109 N m2/C2) 12.0 * 10-9 C

0.050 m
+

-1.0 * 10-9 C

0.040 m 2
  = 135 V

ASSESS The potential is a scalar, so we found the net potential by 
adding two numbers. We don’t need any angles or components to 
calculate the potential.

ExAmPLE 28.11  The potential of two charges
What is the electric potential at the point indicated in FigUrE 28.30?

FigUrE 28.30 Finding the 
potential of two charges.

� �

4.0 cm5.0 cm

3.0 cm
�2.0 nC �1.0 nC

A Continuous distribution of Charge
Equation 28.35 is the basis for determining the potential of a continuous distribution of 
charge, such as a charged rod or a charged disk. The procedure is much like the one you 
learned in Chapter 26 for calculating the electric field of a continuous distribution of 
charge, but easier because the potential is a scalar. We will continue to assume that the 
object is uniformly charged, meaning that the charges are evenly spaced over the object.
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ProBLEm-SoLViNg
STrATEgy 28.2

  The electric potential of a continuous
distribution of charge

modEL Model the charges as a simple shape, such as a line or a disk. Assume the 
charge is uniformly distributed.

ViSUALizE For the pictorial representation:

 ●1 Draw a picture and establish a coordinate system.
 ●2 Identify the point P at which you want to calculate the electric potential.
 ●3 Divide the total charge Q into small pieces of charge �Q, using shapes for 

which you already know how to determine V. This division is often, but not 
always, into point charges.

 ●4 Identify distances that need to be calculated.

SoLVE The mathematical representation is V = gVi.

 ■ Use superposition to form an algebraic expression for the potential at P.
 ■ Let the (x, y, z) coordinates of the point remain as variables.
 ■ Replace the small charge �Q with an equivalent expression involving a 

charge density and a coordinate, such as dx, that describes the shape of 
charge �Q. This is the critical step in making the transition from a sum 
to an integral because you need a coordinate to serve as the integration 
variable.

 ■ All distances must be expressed in terms of the coordinates.
 ■ Let the sum become an integral. The integration will be over the coordinate 

variable that is related to �Q. The integration limits for this variable will 
depend on the coordinate system you have chosen. Carry out the integration 
and simplify the result.

ASSESS Check that your result is consistent with any limits for which you know 
what the potential should be.

Exercise 29 

ExAmPLE 28.12  The potential of a ring of charge
A thin, uniformly charged ring of radius R has total charge Q. Find 
the potential at distance z on the axis of the ring.

modEL Because the ring is thin, we’ll assume the charge lies 
along a circle of radius R.

ViSUALizE FigUrE 28.31 illustrates the four steps of the problem-
solving strategy. We’ve chosen a coordinate system in which the 
ring lies in the xy-plane and point P is on the z-axis. We’ve then 
divided the ring into N small segments of charge �Q, each of 
which can be modeled as a point charge. The distance ri between 
segment i and point P is

 ri = 2R2 + z 2

Note that ri is a constant distance, the same for every charge 
segment.

SoLVE The potential V at P is the sum of the potentials due to each 
segment of charge:

 V = a
N

i=1
Vi = a

N

i=1
 

1

4pP0
 
�Q

ri
=

1

4pP0
 

12R2 + z 2
 a

N

i=1
�Q

FigUrE 28.31 Finding the potential of a ring of charge.

P z

z

y

x

R

Segment i
with charge
�Q

Choose a coordinate system.

Divide the ring
into segments.

Identify the
point at which to
calculate the potential.

1

3

2

Identify distances
that need to be calculated.

4

ri � "R2 � z2

Continued
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We were able to bring all terms involving z to the front because z is 
a constant as far as the summation is concerned. Surprisingly, we 
don’t need to convert the sum to an integral to complete this cal-
culation. The sum of all the �Q charge segments around the ring 
is simply the ring’s total charge, g(�Q) = Q; hence the electric 
potential on the axis of a charged ring is

 Vring on axis =
1

4pP0
 

Q2R2 + z 2

ASSESS From far away, the ring appears as a point charge Q in 
the distance. Thus we expect the potential of the ring to be that of 
a point charge when z W R. You can see that Vring � Q/4pP0z 
when z W R, which is, indeed, the potential of a point charge Q.

rectangle of length 2pri and height �r. Thus the area of ring i is 
�Ai = 2pri �r and the charge is

 �Qi = h �Ai =
Q

pR2 2pri �r =
2Q

R2  ri �r

With this substitution, the potential at P is

 V =
1

4pP0
 a

N

i=1
 
2Q

R2  
ri �ri2ri 

2 + z 2
S

Q

2pP0R
2 3

R

0

  
r dr2r2 + z 2

where, in the last step, we let N S � and the sum become an inte-
gral. This integral can be found in Appendix A, but it’s not hard to 
evaluate with a change of variables. Let u = r2 + z 2, in which case 
r dr =

1
2 du. Changing variables requires that we also change the 

integration limits. You can see that u = z 2 when r = 0, and u =

R2 + z 2 when r = R. With these changes, the on-axis potential of 
a charged disk is

  Vdisk on axis =
Q

2pP0R2 3
R2+z2

z2

  
1
2 du

u1/2 =
Q

2pP0R2 u1/2 `
R2+z2

z2

  =
Q

2pP0R2 ¢2R2 + z 2 - z≤
We can find the potential V0 of the disk itself by setting z = 0, 
giving V0 =  Q/2pP0R. In other words, placing charge Q on a disk 
of radius R charges it to potential V0. The on-axis potential of the 
disk can be written in terms of V0 as

  Vdisk on axis = V0321 + (z/R)2 - (z/R)4
Now we can evaluate the case of the charged dime.

 a. The potential of the dime is the potential of a disk at z = 0:

 V0 =
Q

2pP0R
= 10,300 V

 b. To calculate the potential energy U = qV  of charge q, we first 
need to determine the potential of the disk at z = 1.0 cm. This is

 V = V0321 + (z/R)2 - (z/R)4 = 3870 V

The electron’s charge is q = -e = -1.60 * 10-19 C, so its 
potential energy at z = 1.00 cm is U = qV = -6.19 * 10-16 J.

ASSESS Although we had to go through a number of steps, this 
procedure is easier than evaluating the electric field because we 
do not have to worry about vector components.

ChALLENgE ExAmPLE 28.13  The potential of a charged dime

FigUrE 28.32 Finding the potential of a disk of charge.

Disk with
radius R and
charge Q

The potential at this point is
the sum of the potentials due
to all the thin rings in the disk.

SoLVE We can use the result of Example 28.12 to write the poten-
tial at distance z of ring i as

 Vi =
1

4pP0
 

�Qi2ri 

2 + z 2

The potential at P due to all the rings is the sum

 V = a
i

 Vi =
1

4pP0
 a

N

i=1
 

�Qi2ri 

2 + z 2

The critical step is to relate �Qi to a coordinate. Because we now 
have a surface, rather than a line, the charge in ring i is �Qi =
h �Ai, where �Ai is the area of ring i. We can find �Ai, as you’ve 
learned to do in calculus, by “unrolling” the ring to form a narrow 

A 17.5-mm-diameter dime is charged to +5.00 nC.

 a. What is the potential of the dime?
 b. What is the potential energy of an electron 1.00 cm above the 

dime?

modEL Model the dime as a thin, uniformly charged disk of ra-
dius R and charge Q. The disk has uniform surface charge density 
h = Q/A= Q/pR2. We can take advantage of now knowing the 
on-axis potential of a ring of charge.

ViSUALizE Orient the disk in the xy-plane, as shown in FigUrE 28.32, 
with point P at distance z. Then divide the disk into rings of equal 
width �r. Ring i has radius ri and charge �Qi.
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S U m m A r y
The goals of Chapter 28 have been to calculate and use the electric potential and electric potential energy.

Sources of V
The electric potential, like the electric field, is created by 
charges.

Two major tools for calculating V are

•	 The potential of a point charge V =
1

4pP0
 
q

r

•	 The principle of superposition

Multiple point charges

Use superposition: V = V1 + V2 + V3 + g

Continuous distribution of charge

•	 Divide the charge into point-like �Q.

•	 Find the potential of each �Q.

•	 Find V by summing the potentials of all �Q.

The summation usually becomes an integral. A critical step is 
replacing �Q with an expression involving a charge density and 
an integration coordinate. Calculating V is usually easier than 
calculating E

u

 because the potential is a scalar.

Consequences of V
A charged particle has potential energy

U = qV

at a point where source charges have created an electric potential V.

The electric force is a conservative force, so the mechanical 
energy is conserved for a charged particle in an electric potential:

Kf + qVf = Ki + qVi

The potential energy of two point charges separated by 
distance r is

Uq1 + q2
=

Kq1q2

r
=

1

4pP0
 
q1q2

r

The zero point of potential and potential energy is chosen to be 
convenient. For point charges, we let U = 0 when r S �.

The potential energy in an electric field of an electric dipole with 
dipole moment p

u
 is

Udipole = -pE cos u = -p
u # E

u

general Principles

electric potential energy, U
electric potential, V
volt, V

potential difference, �V
voltage, �V
equipotential surface

contour map
elevation graph

Terms and Notation

Units

Electric potential: 1 V = 1 J/C

Electric field: 1 V/m = 1 N/C

Graphical representations of the potential: Sphere of charge Q

Same as a point charge  
if r Ú R

Parallel-plate capacitor

V = Es, where s is measured 
from the negative plate. The  
electric field inside is

 E =
�VC

d

Applications

r

V

Equipotential surfaces

Contour map Elevation graph

Potential graph

�

�

s

�VC

0

�

��
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C o N C E P T U A L  Q U E S T i o N S

 1. a. Charge q1 is distance r from a positive point charge Q. Charge 
q2 = q1/3 is distance 2r from Q. What is the ratio U1/U2 of 
their potential energies due to their interactions with Q?

 b. Charge q1 is distance s from the negative plate of a parallel-
plate capacitor. Charge q2 = q1/3 is distance 2s from the neg-
ative plate. What is the ratio U1/U2 of their potential energies?

 2. FigUrE Q28.2 shows the potential energy of a proton (q = +e) 
and a lead nucleus (q = +82e). The horizontal scale is in units 
of femtometers, where 1 fm = 10-15 m.

 a. A proton is fired toward a lead nucleus from very far away. 
How much initial kinetic energy does the proton need to 
reach a turning point 10 fm from the nucleus? Explain.

 b. How much kinetic energy does the proton of part a have when 
it is 20 fm from the nucleus and moving toward it, before the 
collision?

 3. An electron moves along the trajectory of FigUrE Q28.3 from i to f.
 a. Does the electric potential energy increase, decrease, or stay 

the same? Explain.
 b. Is the electron’s speed at f greater than, less than, or equal to 

its speed at i? Explain.
 4. Two protons are launched with the same speed from point 1 in-

side the parallel-plate capacitor of FigUrE Q28.4. Points 2 and 3 
are the same distance from the negative plate.

 a. Is �U1S2, the change in potential energy along the path 
1 S 2, larger than, smaller than, or equal to �U1S3?

 b. Is the proton’s speed v2 at point 2 larger than, smaller than, or 
equal to v3? Explain.

 5. Rank in order, from most positive to most negative, the potential 
energies Ua to Uf of the six electric dipoles in the uniform elec-
tric field of FigUrE Q28.5. Explain.

 6. FigUrE Q28.6 shows the elec-
tric potential along the x-axis.

 a. Draw a graph of the poten-
tial energy of a 0.1 C 
charged particle. Provide 
a nu mer i cal scale for both 
axes.

 b. If the charged particle is 
shot toward the right from x = 1 m with 1.0 J of kinetic en-
ergy, where is its turning point? Use your graph to explain.

 7. A capacitor with plates separated by distance d is charged 
to a potential difference �VC. All wires and batteries are 
discon nected, then the two plates are pulled apart (with insulated 
handles) to a new separation of distance 2d.

 a. Does the capacitor charge Q change as the separation increas-
es? If so, by what factor? If not, why not?

 b. Does the electric field strength E change as the separation 
increases? If so, by what factor? If not, why not?

 c. Does the potential difference �VC change as the separation 
increases? If so, by what factor? If not, why not?

 8. Rank in order, from largest to smallest, the electric potentials Va 
to Ve at points a to e in FigUrE Q28.8. Explain.

 9. FigUrE Q28.9 shows two points inside a capacitor. Let V = 0 V at 
the negative plate.

 a. What is the ratio V2/V1 of the electric potentials? Explain.
 b. What is the ratio E2/E1 of the electric field strengths?
 10. FigUrE Q28.10 shows two points near a 

positive point charge.
 a. What is the ratio V2/V1 of the electric 

potentials? Explain.
 b. What is the ratio E2/E1 of the electric 

field strengths?
 11. FigUrE Q28.11 shows three points in the vicinity of two point 

charges. The charges have equal magnitudes. Rank in order, 
from most positive to most negative, the potentials Va to Vc.

 12. Reproduce FigUrE Q28.12 on your paper. Then draw a dot (or 
dots) on the figure to show the position (or positions) at which 
the electric potential is zero.
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E x E r C i S E S  A N d  P r o B L E m S

Problems labeled  integrate material from earlier chapters.

Exercises

Section 28.1 Electric Potential Energy

 1. || The electric field strength is 50,000 N/C inside a parallel-plate 
capacitor with a 2.0 mm spacing. A proton is released from rest 
at the positive plate. What is the proton’s speed when it reaches 
the negative plate?

 2. || The electric field strength is 20,000 N/C inside a parallel-plate 
capacitor with a 1.0 mm spacing. An electron is released from 
rest at the negative plate. What is the electron’s speed when it 
reaches the positive plate?

 3. || A proton is released from rest at the positive plate of a parallel-
plate capacitor. It crosses the capacitor and reaches the negative 
plate with a speed of 50,000 m/s. What will be the final speed of 
an electron released from rest at the negative plate?

 4. | A proton is released from rest at the positive plate of a parallel-
plate capacitor. It crosses the capacitor and reaches the negative 
plate with a speed of 50,000 m/s. The experiment is repeated 
with a He+ ion (charge e, mass 4 u). What is the ion’s speed at 
the negative plate?

Section 28.2 The Potential Energy of Point Charges

 5. || What is the electric potential energy of the proton in 
Fig UrE Ex28.5? The electrons are fixed and cannot move.

 6. || What is the electric potential energy of the group of charges in 
FigUrE Ex28.6?

 7. || What is the electric potential energy of the group of charges in 
FigUrE Ex28.7?

Section 28.3 The Potential Energy of a Dipole

 8. | A water molecule perpendicular to an electric field has 1.0 *  
10-21 J more potential energy than a water molecule aligned 
with the field. The dipole moment of a water molecule is 
6.2 * 10-30 C m. What is the strength of the electric field?

 9. | FigUrE Ex28.9 shows the po-
tential energy of an electric 
dipole. Consider a dipole that 
oscillates between {60�.

 a. What is the dipole’s mechan-
ical energy?

 b. What is the dipole’s kinetic 
energy when it is aligned 
with the electric field?

Section 28.4 The Electric Potential

 10. | What is the speed of a proton that has been accelerated from 
rest through a potential difference of -1000 V?

 11. | What is the speed of an electron that has been accelerated 
from rest through a potential difference of 1000 V?

 12. || What potential difference is needed to accelerate an electron 
from rest to a speed of 2.0 * 106 m/s?

 13. || What potential difference is needed to accelerate a He+ ion 
(charge +e, mass 4 u) from rest to a speed of 2.0 * 106 m/s?

 14. | A proton with an initial speed of 800,000 m/s is brought to 
rest by an electric field.

 a. Did the proton move into a region of higher potential or lower 
potential?

 b. What was the potential difference that stopped the proton?
 15. || An electron with an initial speed of 500,000 m/s is brought to 

rest by an electric field.
 a. Did the electron move into a region of higher potential or 

lower potential?
 b. What was the potential difference that stopped the electron?

Section 28.5 The Electric Potential Inside a ParallelPlate  
Capacitor

 16. | Show that 1 V/m = 1 N/C.
 17. | a.  What is the potential of an ordinary AA or AAA battery? 

(If you’re not sure, find one and look at the label.)
   b.  An AA battery is connected to a parallel-plate capacitor 

having 4.0 cm * 4.0 cm plates spaced 1.0 mm apart. How 
much charge does the battery supply to each plate?

 18. | Two 2.00 cm * 2.00 cm plates that form a parallel-plate 
capacitor are charged to {0.708 nC. What are the electric 
field strength inside and the potential difference across the 
capacitor if the spacing between the plates is (a) 1.00 mm and 
(b) 2.00 mm?

 19. | A 3.0-cm-diameter parallel-plate capacitor has a 2.0 mm 
spacing. The electric field strength inside the capacitor is 
1.0 * 105 V/m.

 a. What is the potential difference across the capacitor?
 b. How much charge is on each plate?

�
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 20. || Two 2.0-cm-diameter disks spaced 2.0 mm apart form a 
parallel-plate capacitor. The electric field between the disks is 
5.0 * 105 V/m.

 a. What is the voltage across the capacitor?
 b. An electron is launched from the negative plate. It strikes the 

positive plate at a speed of 2.0 * 107 m/s. What was the elec-
tron’s speed as it left the negative plate?

Section 28.6 The Electric Potential of a Point Charge

 21. |  a.  What is the electric potential 
at points A, B, and C in Fig -

UrE Ex28.21?
    b.  What are the potential differ-

ences �VAB and �VBC?

 22. || A 1.0-mm-diameter ball bearing has 2.0 * 109 excess elec-
trons. What is the ball bearing’s potential?

 23. | In a semiclassical model of the hydrogen atom, the electron 
orbits the proton at a distance of 0.053 nm.

 a. What is the electric potential of the proton at the position of 
the electron?

 b. What is the electron’s potential energy?

Section 28.7 The Electric Potential of Many Charges

 24. | What is the electric potential at the point indicated with the dot 
in FigUrE Ex28.24?

 25. | What is the electric potential at the point indicated with the dot 
in FigUrE Ex28.25?

 26. || The electric potential at the dot in FigUrE Ex28.26 is 3140 V. 
What is charge q?

 27. || A -2.0 nC charge and a +2.0 nC charge are located on the 
x-axis at x = -1.0 cm and x = +1.0 cm, respectively.

 a. Other than at infinity, is there a position or positions on the 
x-axis where the electric field is zero? If so, where?

 b. Other than at infinity, at what position or positions on the  
x-axis is the electric potential zero?

 c. Sketch graphs of the electric field strength and the electric 
potential along the x-axis.

 28. || Two point charges qa and qb are located on the x-axis at x = a 
and x = b. FigUrE Ex28.28 is a graph of Ex, the x-component of 
the electric field.

 a. What are the signs of qa and qb?
 b. What is the ratio � qa/qb �?
 c. Draw a graph of V, the electric potential, as a function of x.

 29. || Two point charges qa and qb are located on the x-axis at x = a 
and x = b. FigUrE Ex28.29 is a graph of V, the electric potential.

 a. What are the signs of qa and qb?
 b. What is the ratio � qa/qb �?
 c. Draw a graph of Ex, the x-component of the electric field, as 

a function of x.

 30. | The two halves of the rod in FigUrE Ex28.30 are uniformly 
charged to {Q. What is the electric potential at the point indi-
cated by the dot?

Problems

 31. | Two positive point charges are 5.0 cm apart. If the electric 
potential energy is 72 mJ, what is the magnitude of the force be-
tween the two charges?

 32. ||| Two point charges 2.0 cm apart have an electric potential energy 
-180 mJ. The total charge is 30 nC. What are the two charges?

 33. || A -10.0 nC point charge and a +20.0 nC point charge are 
15.0 cm apart on the x-axis.

 a. What is the electric potential at the point on the x-axis where 
the electric field is zero?

 b. What is the magnitude of the electric field at the point on the 
x-axis, between the charges, where the electric potential is zero?

 34. ||| A +3.0 nC charge is at x = 0 cm and a -1.0 nC charge is at 
x = 4 cm. At what point or points on the x-axis is the electric 
potential zero?

 35. ||| A -3.0 nC charge is on the x-axis at x = -9 cm and a 
+4.0 nC charge is on the x-axis at x = 16 cm. At what point or 
points on the y-axis is the electric potential zero?
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 36. || Two small metal cubes with masses 2.0 g and 4.0 g are tied 
together by a 5.0-cm-long massless string and are at rest on a 
frictionless surface. Each is charged to +2.0 mC.

 a. What is the energy of this system?
 b. What is the tension in the string?
 c. The string is cut. What is the speed of each cube when they 

are far apart?
Hint: There are two conserved quantities. Make use of both.

 37. || The four 1.0 g spheres shown in FigUrE P28.37 are released 
simultaneously and allowed to move away from each other. 
What is the speed of each sphere when they are very far apart?

 38. || A proton’s speed as it passes point A is 50,000 m/s. It follows 
the trajectory shown in FigUrE P28.38. What is the proton’s speed 
at point B?

 39. || Living cells “pump” singly ionized sodium ions, Na+, from 
the inside of the cell to the outside to maintain a membrane po-
tential �Vmembrane = Vin - Vout = - 70 mV. It is called pump-
ing because work must be done to move a positive ion from the 
negative inside of the cell to the positive outside, and it must go 
on continuously because sodium ions “leak” back through the 
cell wall by diffusion.

 a. How much work must be done to move one sodium ion from 
the inside of the cell to the outside?

 b. At rest, the human body uses energy at the rate of approxi-
mately 100 W to maintain basic metabolic functions. It has 
been estimated that 20% of this energy is used to operate 
the sodium pumps of the body. Estimate—to one significant 
figure—the number of sodium ions pumped per second.

 40. || An arrangement of source charges produces the electric 
potential V = 5000x2 along the x-axis, where V is in volts and 
x is in meters. What is the maximum speed of a 1.0 g, 10 nC 
charged particle that moves in this potential with turning points 
at {8.0 cm?

 41. || A proton moves along the x-axis, where an arrangement of 
source charges has created the electric potential V = 6000x2, 
where V is in volts and x is in meters. By exploiting the analogy 
with the potential energy of a mass on a spring, determine the 
proton’s oscillation frequency.

BIO

 42. || In FigUrE P28.42, a proton is fired with a speed of 200,000 m/s 
from the midpoint of the capacitor toward the positive plate.

 a. Show that this is insufficient speed to reach the positive plate.
 b. What is the proton’s speed as it collides with the negative plate?

 43. || The electron gun in an old TV picture tube accelerates elec-
trons between two parallel plates 1.2 cm apart with a 25 kV po-
tential difference between them. The electrons enter through a 
small hole in the negative plate, accelerate, then exit through a 
small hole in the positive plate. Assume that the holes are small 
enough not to affect the electric field or potential.

 a. What is the electric field strength between the plates?
 b. With what speed does an electron exit the electron gun if its 

entry speed is close to zero?
NoTe  The exit speed is so fast that we really need to use the 
theory of relativity to compute an accurate value. Your answer to 
part b is in the right range but a little too big. 

 44. || An uncharged parallel-plate capacitor with spacing d is hori-
zontal. A small bead with mass m and positive charge q is shot 
straight up from the bottom plate with speed v0. It reaches 
maximum height ymax before falling back. Then the capacitor is 
charged with the bottom plate negative. Find an expression for 
the capacitor voltage �VC for which the bead’s maximum height 
is reduced to 12 ymax. Ignore air resistance.

 45. || A room with 3.0-m-high ceilings has a metal plate on the floor 
with V = 0 V and a separate metal plate on the ceiling. A 1.0 g 
glass ball charged to +4.9 nC is shot straight up at 5.0 m/s. How 
high does the ball go if the ceiling voltage is (a) +3.0 * 106  V 
and (b) -3.0 * 106  V?

 46. || In proton-beam therapy, a high-energy beam of protons is 
fired at a tumor. As the protons stop in the tumor, their kinetic 
energy breaks apart the tumor’s DNA, thus killing the tumor 
cells. For one patient, it is desired to deposit 0.10 J of proton en-
ergy in the tumor. To create the proton beam, protons are accel-
erated from rest through a 10,000 kV potential difference. What 
is the total charge of the protons that must be fired at the tumor?

 47. || What is the escape speed of an electron launched from the 
surface of a 1.0-cm-diameter glass sphere that has been charged 
to 10 nC?

 48. || An electric dipole consists of 1.0 g spheres charged to {2.0 nC 
at the ends of a 10-cm-long massless rod. The dipole rotates on 
a frictionless pivot at its center. The dipole is held perpendicular 
to a uniform electric field with field strength 1000 V/m, then 
released. What is the dipole’s angular velocity at the instant it is 
aligned with the electric field?

 49. ||| Three electrons form an equilateral triangle 1.0 nm on each 
side. A proton is at the center of the triangle. What is the poten-
tial energy of this group of charges?

 50. ||| A 2.0-mm-diameter glass bead is positively charged. The po-
tential difference between a point 2.0 mm from the bead and a 
point 4.0 mm from the bead is 500 V. What is the charge on the 
bead?
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 51. ||| Your lab assignment for the week is to measure the amount of 
charge on the 6.0-cm-diameter metal sphere of a Van de Graaff 
generator. To do so, you’re going to use a spring with spring 
constant 0.65 N/m to launch a small, 1.5 g bead horizontally to-
ward the sphere. You can reliably charge the bead to 2.5 nC, and 
your plan is to use a video camera to measure the bead’s closest 
approach to the sphere as you change the compression of the 
spring. Your data are as follows:

Compression (cm) Closest approach (cm)

1.6 5.5

1.9 2.6

2.2 1.6

2.5 0.4

  Use an appropriate graph of the data to determine the sphere’s 
charge in nC. You can assume that the bead’s motion is entirely 
horizontal and that the spring is so far away that the bead has no 
interaction with the sphere as it’s launched.

 52. || A proton is fired from far away toward the nucleus of an iron 
atom. Iron is element number 26, and the diameter of the nucleus 
is 9.0 fm. What initial speed does the proton need to just reach 
the surface of the nucleus? Assume the nucleus remains at rest.

 53. || A proton is fired from far away toward the nucleus of a mer-
cury atom. Mercury is element number 80, and the diameter 
of the nucleus is 14.0 fm. If the proton is fired at a speed of 
4.0 * 107 m/s, what is its closest approach to the surface of the 
nucleus? Assume the nucleus remains at rest.

 54. || In the form of radioactive decay known as alpha decay, an 
unstable nucleus emits a helium-atom nucleus, which is called an 
alpha particle. An alpha particle contains two protons and two 
neutrons, thus having mass m = 4 u and charge q = 2e. Sup-
pose a uranium nucleus with 92 protons decays into thorium, 
with 90 protons, and an alpha particle. The alpha particle is ini-
tially at rest at the surface of the thorium nucleus, which is 15 fm 
in diameter. What is the speed of the alpha particle when it is 
detected in the laboratory? Assume the thorium nucleus remains 
at rest.

 55. || One form of nuclear radiation, beta decay, occurs when a neu-
tron changes into a proton, an electron, and a neutral particle 
called a neutrino: n S p+ + e- + n where n is the symbol for 
a neutrino. When this change happens to a neutron within the 
nucleus of an atom, the proton remains behind in the nucleus 
while the electron and neutrino are ejected from the nucleus. The 
ejected electron is called a beta particle. One nucleus that ex-
hibits beta decay is the isotope of hydrogen 3H, called tritium, 
whose nucleus consists of one proton (making it hydrogen) and 
two neutrons (giving tritium an atomic mass m = 3 u). Tritium 
is radioactive, and it decays to helium: 3H S 3He + e- + n.

 a. Is charge conserved in the beta decay process? Explain.
 b. Why is the final product a helium atom? Explain.
 c. The nuclei of both 3H and 3He have radii of 1.5 * 10-15 m. 

With what minimum speed must the electron be ejected if it 
is to escape from the nucleus and not fall back?

 56. || The sun is powered by fusion, with four protons fusing together 
to form a helium nucleus (two of the protons turn into neutrons) 
and, in the process, releasing a large amount of thermal energy. 
The process happens in several steps, not all at once. In one step, 
two protons fuse together, with one proton then becoming a 
neutron, to form the “heavy hydrogen” isotope deuterium ( 2H). 

A proton is essentially a 2.4-fm-diameter sphere of charge, and 
fusion occurs only if two protons come into contact with each 
other. This requires extraordinarily high temperatures due to the 
strong repulsion between the protons. Recall that the average ki-
netic energy of a gas particle is 32 kBT.

 a. Suppose two protons, each with exactly the average kinetic 
energy, have a head-on collision. What is the minimum tem-
perature for fusion to occur?

 b. Your answer to part a is much hotter than the 15 million K in 
the core of the sun. If the temperature were as high as you cal-
culated, every proton in the sun would fuse almost instantly 
and the sun would explode. For the sun to last for billions of 
years, fusion can occur only in collisions between two pro-
tons with kinetic energies much higher than average. Only a 
very tiny fraction of the protons have enough kinetic energy 
to fuse when they collide, but that fraction is enough to keep 
the sun going. Suppose two protons with the same kinetic en-
ergy collide head-on and just barely manage to fuse. By what 
factor does each proton’s energy exceed the average kinetic 
energy at 15 million K?

 57. || Two 10-cm-diameter electrodes 0.50 cm apart form a parallel-
plate capacitor. The electrodes are attached by metal wires to 
the terminals of a 15 V battery. After a long time, the capacitor 
is disconnected from the battery but is not discharged. What are 
the charge on each electrode, the electric field strength inside the 
capacitor, and the potential difference between the electrodes

 a. Right after the battery is disconnected?
 b. After insulating handles are used to pull the electrodes away 

from each other until they are 1.0 cm apart?
 c. After the original electrodes (not the modified electrodes of 

part b) are expanded until they are 20 cm in diameter?
 58. || Two 10-cm-diameter electrodes 0.50 cm apart form a parallel-

plate capacitor. The electrodes are attached by metal wires to 
the terminals of a 15 V battery. What are the charge on each 
electrode, the electric field strength inside the capacitor, and the 
potential difference between the electrodes

 a. While the capacitor is attached to the battery?
 b. After insulating handles are used to pull the electrodes away 

from each other until they are 1.0 cm apart? The electrodes 
remain connected to the battery during this process.

 c. After the original electrodes (not the modified electrodes of 
part b) are expanded until they are 20 cm in diameter while 
remaining connected to the battery?

 59. || a.  Find an algebraic expression for the electric field strength 
E0 at the surface of a charged sphere in terms of the sphere’s 
potential V0 and radius R.

   b.  What is the electric field strength at the surface of a 1.0-cm-
diameter marble charged to 500 V?

 60. || Two spherical drops of mercury each have a charge of 0.10 nC 
and a potential of 300 V at the surface. The two drops merge to form 
a single drop. What is the potential at the surface of the new drop?

 61. || A Van de Graaff generator is a device for generating a large 
electric potential by building up charge on a hollow metal 
sphere. A typical classroom-demonstration model has a diameter 
of 30 cm.

 a. How much charge is needed on the sphere for its potential to 
be 500,000 V?

 b. What is the electric field strength just outside the surface of 
the sphere when it is charged to 500,000 V?

 62. || A thin spherical shell of radius R has total charge Q. What is 
the electric potential at the center of the shell?



 63. | FigUrE P28.63 shows two uniformly charged spheres. What is 
the potential difference between points a and b? Which point is 
at the higher potential?

Hint: The potential at any point is the superposition of the poten-
tials due to all charges.

 64. || An electric dipole with dipole moment p is oriented along the 
y-axis.

 a. Find an expression for the electric potential on the y-axis at a 
point where y is much larger than the charge spacing s. Write 
your expression in terms of the dipole moment p.

 b. The dipole moment of a water molecule is 6.2 * 10-30 C m. 
What is the electric potential 1.0 nm from a water molecule 
along the axis of the dipole?

 65. || Two positive point charges q are located on the y-axis at 
y = {1

2 s.
 a. Find an expression for the potential along the x-axis.
 b. Draw a graph of V versus x for - � 6 x 6 �. For compari-

son, use a dotted line to show the potential of a point charge 
2q located at the origin.

 66. || The arrangement of charges shown in FigUrE P28.66 is called 
a linear electric quadrupole. The positive charges are located at 
y = {s. Notice that the net charge is zero. Find an expression 
for the electric potential on the y-axis at distances y W s.

 67. || FigUrE P28.67 shows a thin rod of length L and charge Q. Find 
an expression for the electric potential a distance x away from 
the center of the rod on the axis of the rod.

 68. ||| FigUrE P28.67 showed a thin rod of length L and charge Q. Find 
an expression for the electric potential a distance z away from the 
center of rod on the line that bisects the rod.

 69. | FigUrE P28.69 shows a thin rod with 
charge Q that has been bent into a semi-
circle of radius R. Find an expression 
for the electric potential at the center.

 70. || A disk with a hole has inner radius Rin and outer radius Rout. 
The disk is uniformly charged with total charge Q. Find an ex-
pression for the on-axis electric potential at distance z from the 
center of the disk. Verify that your expression has the correct 
behavior when Rin S 0.

In Problems 71 through 73 you are given the equation(s) used to solve 
a problem. For each of these,
 a. Write a realistic problem for which this is the correct  

equation(s).
 b. Finish the solution of the problem.

 71. 
(9.0 * 109 N m2/C2)q1q2

0.030 m
= 90 * 10-6 J

  q1 + q2 = 40 nC

 72. 1
2 (1.67 * 10-27 kg)(2.5 * 106 m/s)2 + 0 =

  1
2 (1.67 * 10-27 kg)vi 

2 +

  
(9.0 * 109 N m2/C2)(2.0 * 10-9 C)(1.60 * 10-19 C)

0.0010 m

 73. 
(9.0 * 109 N m2/C2)(3.0 * 10-9 C)

0.030 m
+

  
(9.0 * 109 N m2/C2)(3.0 * 10-9 C)

(0.030 m) + d
= 1200 V

Challenge Problems

 74. A proton and an alpha particle (q = +2e, m = 4 u) are fired 
directly toward each other from far away, each with an initial 
speed of 0.010c. What is their distance of closest approach, as 
measured between their centers?

 75. Bead A has a mass of 15 g and a charge of -5.0 nC. Bead B has 
a mass of 25 g and a charge of -10.0 nC. The beads are held 
12 cm apart (measured between their centers) and released. What 
maximum speed is achieved by each bead?

 76. Two 2.0-mm-diameter beads, C and D, are 10 mm apart, mea-
sured between their centers. Bead C has mass 1.0 g and charge 
2.0 nC. Bead D has mass 2.0 g and charge -1.0 nC. If the beads 
are released from rest, what are the speeds vC and vD at the in-
stant the beads collide?

 77. An electric dipole has dipole moment p. If r W s, where s is the 
separation between the charges, show that the electric potential 
of the dipole can be written

 V =
1

4pP0
 
p cos u

r2

  where r is the distance from the center of the dipole and u is the 
angle from the dipole axis.

 78. Electrodes of area A are spaced distance d apart to form a 
parallel-plate capacitor. The electrodes are charged to {q.

 a. What is the infinitesimal increase in electric potential energy 
dU if an infinitesimal amount of charge dq is moved from the 
negative electrode to the positive electrode?

 b. An uncharged capacitor can be charged to {Q by transfer-
ring charge dq over and over and over. Use your answer to 
part a to show that the potential energy of a capacitor charged 
to {Q is Ucap =

1
2 Q �VC.
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 79.  A sphere of radius R has charge q.
  a.  What is the infinitesimal increase in electric potential energy 

dU if an infinitesimal amount of charge dq is brought from 
infinity to the surface of the sphere?

  b.  An uncharged sphere can acquire total charge Q by the trans-
fer of  charge dq  over  and over  and over. Use your  answer 
to part a  to find an expression for the potential energy of a 
sphere of radius R with total charge Q.

  c.  Your answer to part b is the amount of energy needed to as-
semble a charged sphere. It is often called the self-energy of 
the sphere. What is the self-energy of a proton, assuming it to 
be a charged sphere with a diameter of 1.0 * 10-15 m?

 80.  The wire in Figure CP28.80 has linear charge density l. What is 
the electric potential at the center of the semicircle?

 81.  A  circular  disk  of  radius  R  and  total  charge  Q  has  the  charge 
distributed with surface charge density h = cr, where c is a con-
stant. Find an expression for the electric potential at distance z 
on the axis of the disk. Your expression should include R and Q, 
but not c.

 82.  A hollow cylindrical shell of length L and radius R has charge Q 
uniformly distributed along its length. What is the electric poten-
tial at the center of the cylinder?

StoP to think AnSwerS

Stop to Think 28.1: Zero. The motion is always perpendicular to the 
electric force.

Stop to Think 28.2:  Ub � Ud + Ua � Uc.  The  potential  energy 
depends inversely on r. The effects of doubling the charge and doub- 
ling the distance cancel each other.

Stop to Think 28.3: c. The proton gains  speed by  losing potential 
energy.  It  loses  potential  energy  by  moving  in  the  direction  of  de-
creasing electric potential.

Stop to Think 28.4: Va � Vb + Vc + Vd � Ve. The potential de-
creases  steadily  from  the  positive  to  the  negative  plate.  It  depends 
only on the distance from the positive plate.

Stop to Think 28.5: �Vac � �Vbc + �Vab. The potential depends 
only on the distance from the charge, not the direction. �Vab = 0 be-
cause these points are at the same distance.

R
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These solar cells are photovoltaic 
cells, meaning that light creates a 
voltage—a potential difference.

Potential and Field

 Looking Ahead  The goal of Chapter 29 is to understand how the electric potential is related to the electric field.

You’ll also learn that:
■	 The electric field is always perpendic

ular to equipotential surfaces.
■	 The electric field points “downhill” in 

the direction of decreasing potential.
■	 The electric field is stronger where 

equipotential lines are closer together.

Field and Potential
The electric potential and the electric 
field are intimately connected. They are 
two different perspectives of how source 
charges alter the space around them.

You’ll learn to:
■	 Use the electric potential to find the 

electric field.
■	 Use the electric field to find the elec

tric potential.
The mathematical connection is analo
gous to that between force and potential 
energy.

Capacitors
Capacitors are circuit elements that store 
charge and energy. They are used in 
devices ranging from highspeed com
puters to heart defibrillators.

The flash on your camera uses energy stored 
in a capacitor. The capacitor can discharge 
in a few microseconds, much faster than a 
battery can provide energy.

You’ll learn to:
■	 Work with combinations of capacitors 

called in series and in parallel.
■	 Calculate the energy stored in a 

capac itor’s electric field.
■	 Understand capacitors with dielectrics.

An insulator between 
the capacitor plates is 
called a dielectric. It 
changes the capacitor 
properties in many 
useful ways.

Conductors
You’ll learn several important character
istics of conductors in electrostatic 
equilibrium, with stationary charges.

Sources of Potential
A potential difference—a voltage—is 
created by separating positive and neg
ative charges.

You’ll learn that any nonelectrical means 
of separating charge—in batteries, pho
tocells, and generators—does work and 
develops what we’ll call an emf.
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The electric field 
and the electric 
potential can be 
related to each 
other geometrically.

 Looking Back
Sections 28.4–28.6 Electric potential  
and its graphical representations

�

�
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�
We’ll develop a charge 
escalator model of a 
battery in which chemical 
reactions separate charge 
to create a potential 
difference.

■	 Any excess charge is on the surface.
■	 The interior electric field is zero.
■	 The exterior electric field is perpen

dicular to the surface.
■	 The entire conductor is an equipotential.

 Looking Back
Section 26.5 Parallel-plate capacitors
Section 26.7 Dipoles in electric fields
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29.1 Connecting Potential and Field
Figure 29.1 shows the four key ideas of force, field, potential energy, and potential. The 
electric field and the electric potential were based on force and potential energy. We 
know, from Chapters 10 and 11, that force and potential energy are closely related. 
The focus of this chapter is to establish a similar relationship between the electric field 
and the electric potential. The electric potential and electric field are not two dis-
tinct entities but, instead, two different perspectives or two different mathemati-
cal representations of how source charges alter the space around them.

If this is true, we should be able to find the electric potential from the electric field. 
Chapter 28 introduced all the pieces we need to do so. We used the potential energy of 
charge q and the source charges to define the electric potential as

 V K
Uq +  sources

q
 (29.1)

Potential energy is defined in terms of the work done by force F
u

 on charge q as it 
moves from position i to position f:

 �U = -W(i S f) = - 3
sf

si

Fs ds = - 3
f

i

F
u # ds

u
 (29.2)

But the force exerted on charge q by the electric field is F
u

= qE
u

. Putting these three 
pieces together, you can see that the charge q cancels out and the potential difference 
between two points in space is

 �V = Vf - Vi = - 3
sf

si

Es ds = - 3
f

i

E
u # ds

u
 (29.3)

where s is the position along a line from point i to point f. That is, we can find the 
potential difference between two points if we know the electric field.

We can think of an integral as an area under a curve. Thus a graphical interpretation 
of Equation 29.3 is

 Vf = Vi - (area under the Es@versus@s curve between si and sf) (29.4)

Notice, because of the minus sign in Equation 29.3, that the area is subtracted from Vi.

Acts locally

Everywhere
in space

Force
concept

Energy
concept

F

E

U

V

r

r

Figure 29.1 The four key ideas.

Ex curve. We can see that Ex = 1000x V/m, where x is in m. Thus

  Vf = V(x) = 0 - (area under the Ex curve)

  = -
1
2 * base * height = -

1
2 (x)(1000x) = -500x2 V

Figure 29.3 shows that the electric potential in this region of space is 
parabolic, decreasing from 0 V at x = 0 m to -2000 V at x = 2 m.

exAmPLe 29.1  Finding the potential
Figure 29.2 is a graph of Ex, the xcomponent of the electric field, 
versus position along the xaxis. Find and graph V(x). Assume 
V = 0 V at x = 0 m.

x (m)

Ex (V/m)

0 1 2
0

1000

2000

x

�V � �area

Figure 29.2 Graph of Ex versus x.

modeL The potential difference is the negative of the area under 
the curve.

ViSuALize Ex is positive throughout this region of space, meaning 
that E

u

 points in the positive xdirection.

SoLVe If we integrate from x = 0, then Vi = V(x = 0) = 0. The 
potential for x 7 0 is the negative of the triangular area under the 

x (m)

V (V)

1 2
0

�2000

�1000

V(x) � �500x2 V

Figure 29.3 Graph of V versus x.

ASSeSS The electric field points in the direction in which V is 
decreasing. We’ll soon see that this is a general rule.
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TACTiCS
B o x  2 9 . 1 

 Finding the potential from the electric field

 ●1 Draw a picture and identify the point at which you wish to find the potential. 
Call this position f.

 ●2 Choose the zero point of the potential, often at infinity. Call this position i.
 ●3 Establish a coordinate axis from i to f along which you already know or can 

easily determine the electric field component Es.
 ●4 Carry out the integration of Equation 29.3 to find the potential.

To see how this works, let’s use the electric field of a point charge to find its electric 
potential. Figure 29.4 identifies a point P at sf = r at which we want to know the poten
tial and calls this position f. We’ve chosen position i to be at si = � and identified that 
as the zero point of the potential. The integration of Equation 29.3 is straight inward 
along the radial line from i to f:

 �V = V (r) - V (�) = - 3
r

�

Es ds = 3
�

r

Es ds (29.5)

The electric field is radially outward. Its scomponent is

 Es =
1

4pP0
 
q

s2

Thus the potential at distance r from a point charge q is

 V(r) = V(�) +
q

4pP0
 3

�

r

 
ds

s2 = V(�) +
q

4pP0
 
-1
s

`
�

r

= 0 +
1

4pP0
 
q

r
 (29.6)

We’ve rediscovered the potential of a point charge that you learned in Chapter 28:

 Vpoint charge =
1

4pP0
 
q

r
 (29.7)

s

i at �

�

fP

E
r

r
E
r

r

q

Identify the point at which
to find the potential. This
is position f at sf � r.

Establish a coordinate axis
along which E is known.

Choose a zero point of
the potential. In this case,
position i is at si � �.

1

3

2

Integrate along the s-axis.4

Figure 29.4 Finding the potential of a 
point charge.

potential increases linearly from V = 0 at the negative plate to 
V = Ed at the positive plate. Here we found the potential by ex
plicitly recognizing the connection between the potential and the 
field.

exAmPLe 29.2  The potential of a parallel-plate capacitor
In Chapter 26, the electric field inside a capacitor was found to be

 E
u

= 1 Q

P0 A
, from positive to negative2

Find the electric potential inside the capacitor. Let V = 0 V at the 
negative plate.

modeL The electric field inside a capacitor is a uniform field.

ViSuALize Figure 29.5 shows the capacitor and establishes a point 
P where we want to find the potential. We’ve chosen an saxis 
measured from the negative plate, which is the zero point of the 
potential.

SoLVe We’ll integrate along the saxis from si = 0 (where 
Vf = 0 V) to sf = s. Notice that E

u

 points in the negative sdirection, 
so Es = -Q/P0 A. Q/P0 A is a constant, so

 V(s) = Vf = Vi - 3
s

0

Es ds = - 1-
Q

P0 A
2 3 s

0

 ds =
Q

P0 A
 s = Es

ASSeSS V = Es is the capacitor potential we deduced in 
Chapter 28 by working directly with the potential energy. The 
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V � 0 V

0

i f
P

ds
s

�
�
�
�
�
�
�
�
�
�
�
�
�
�
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Choose a zero point
of the potential.

2 Establish a
coordinate axis.

r
E points in the
negative s-direction.

3

Find the potential here.1

Figure 29.5 Finding the potential inside a capacitor.
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29.2 Sources of electric Potential
A separation of charge creates an electric potential difference. Shuffling your feet on 
the carpet transfers electrons from the carpet to you, creating a potential difference 
between you and a doorknob that causes a spark and a shock as you touch it. Charging 
a capacitor by moving electrons from one plate to the other creates a potential differ
ence across the capacitor.

In fact, as Figure 29.6 shows, any separation of charge causes a potential difference. 
The charge separation between the two electrodes creates an electric field E

u

 pointing 
from the positive toward the negative electrode. As a consequence, there is a potential 
difference between the electrodes that is given by

 �V = Vpos - Vneg = - 3
pos

neg

Es ds

where the integral runs from any point on the negative electrode to any point on the 
positive. The key idea is that we can create a potential difference by creating a 
charge separation.

The Van de graaff generator shown in Figure 29.7a is a mechanical charge separator—
essentially a fancy foot shuffler. A moving plastic or leather belt is charged, then the 
charge is mechanically transported via the conveyor belt to the spherical electrode at the 
top of the insulating column. The charging of the belt could be done by friction, but in 
practice a corona discharge created by the strong electric field at the tip of a needle is 
more efficient and reliable.

3. Because of the electric field, there’s a
 potential difference between the electrodes.
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1. Charge is separated by
 moving electrons from
 one electrode to the other.

2. The charge separation
 creates an electric field 
 from � to �.

Figure 29.6 A charge separation creates 
a potential difference.
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Hollow metal sphere(a)

Electric motor

Insulating plastic tube

2. The plastic or leather
 belt is the conveyor
 belt that mechanically
 transports charge to the top. 3. A pointed wire draws

 charge off the belt and
 charges the sphere.

1. A corona discharge
 charges the belt
 positively.

(b)

Figure 29.7 A Van de Graaff generator.

A Van de Graaff generator has two noteworthy features:

	■ Charge is mechanically transported from the negative side to the positive side. This 
charge separation creates a potential difference between the spherical electrode and 
its surroundings.

	■ The electric field of the spherical electrode exerts a downward force on the positive 
charges moving up the belt. Consequently, work must be done to “lift” the positive 
charges. The work is done by the electric motor that runs the belt.

A classroomdemonstration Van de Graaff generator like the one shown 
in Figure 29.7b creates a potential difference of several hundred thousand volts between 
the upper sphere and its surroundings. The maximum potential is reached when the 
electric field near the sphere becomes large enough to cause a breakdown of the air. 
This produces a spark and temporarily discharges the sphere. A large Van de Graaff 
generator surrounded by vacuum can reach a potential of 20 MV or more. These 
generators are used to accelerate protons for nuclear physics experiments.
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Batteries and emf
The most common source of electric potential is a battery. A battery consists of chem
icals, called electrolytes, sandwiched between two electrodes made of different met
als. Chemical reactions in the electrolytes separate charge by moving positive ions to 
one electrode and negative ions to the other. In other words, chemical reactions, rather 
than a mechanical conveyor belt, transport charge from one electrode to the other. The 
procedure is different, but the outcome is the same: a potential difference.

We can sidestep the chemistry details by introducing the charge escalator model 
of a battery shown in Figure 29.8. The escalator separates charge by “lifting” positive 
charges from the negative terminal to the positive terminal. Lifting positive charges to 
a positive terminal requires that work be done, and the chemical reactions within the 
battery provide the energy to do this work. When the chemicals are used up, the reac
tions cease, and the battery is dead.

By separating the charge, the charge escalator establishes a potential difference 
�Vbat between the terminals. The value of �Vbat is determined by the specific chemical 
reactions employed by the battery. To see how, suppose the chemical reactions do work 
Wchem to move charge q from the negative to the positive terminal. In an ideal battery, 
in which there are no internal energy losses, the charge gains electric potential energy 
�U = Wchem. This is analogous to a book gaining gravitational potential energy as you 
do work to lift it from the floor to a shelf.

The quantity Wchem/q, which is the work done per charge by the charge escalator, is 
called the emf of the battery, pronounced as the sequence of three letters “emf.” The 
symbol for emf is E, a script E, and the units are those of the electric potential: joules 
per coulomb, or volts. The rating of a battery, such as 1.5 V or 9 V, is the battery’s 
emf. Originally the term emf was an abbreviation of “electromotive force.” That is an 
outdated term (work per charge is not a force!), so today we just call it emf and it is 
not an abbreviation of anything.

By definition, the electric potential is related to the electric potential energy of 
charge q by �V = �U/q. But �U = Wchem for the charges in a battery, hence the 
potential difference between the terminals of an ideal battery is

 �Vbat =
Wchem

q
= E  (ideal battery) (29.8)

In other words, a battery constructed to have an emf of 1.5 V (i.e., the chemical reactions 
do 1.5 J of work to separate 1 C of charge) creates a 1.5 V potential difference between 
its positive and negative terminals. In practice, the measured potential difference �Vbat 
between the terminals of a real battery, called the terminal voltage, is usually slightly 
less than E. You will learn the reason for this in Chapter 31.

Many consumer goods, from flashlights to digital cameras, use more than one 
battery. Why? A particular type of battery, such as an AA or AAA battery, produces 
a fixed emf determined by the chemical reactions inside. The emf of one battery, 
often 1.5 V, is not sufficient to light a lightbulb or power a camera. But just as you 
can reach the third floor of a building by taking three escalators in succession, we 
can produce a larger potential difference by placing two or more batteries in series. 
Figure 29.9 shows two batteries with the positive terminal of one literally touching 
the negative terminal of the next. Flashlight batteries usually are arranged like this. 
Other devices, such as cameras, achieve the same effect by using conducting metal 
wires between one battery and the next. Either way, the total potential difference of 
batteries in series is simply the sum of their individual terminal voltages:

 �Vseries = �V1 + �V2 + g  (batteries in series) (29.9)

Electric generators, photocells, and other sources of potential difference use dif
ferent means to separate charges, but otherwise they function exactly the same as a 
battery. The common feature of all such devices is that they use a nonelectrical means 
to separate charge and, thus, to create a potential difference. The emf E of any device 
is the work done per charge to separate the charge.

�
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�

Ion
flow

Negative terminal
U � 0

Positive terminal
U � q�Vbat

The charge escalator “lifts” charge from the 
negative side to the positive side. Charge q
gains energy �U � q�Vbat.

In
cr

ea
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ng
 U�Vbat

Figure 29.8 The charge escalator model 
of a battery.

Flashlight batteries are placed in series to 
create twice the potential difference of 
one battery.
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�Vseries � �V1 � �V2

Figure 29.9 Batteries in series.
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Stop to think 29.1 
 What total potential difference is created by these three batteries?

�� ��3.0 V �� 1.0 V 3.0 V

A very small
displacement
of charge q

Es

q
E

�s

r

f

i

r

�

Es, the component of E
in the direction of motion,
is essentially constant over
the small distance �s.

r

Figure 29.10 The electric field does 
work on charge q.

  Ez = -  
dV

dz
= -  

d

dz
 1 1

4pP0
 

Q2z 2 + R2 2
  =

1

4pP0
 

zQ

(z 2 + R2)3/2

ASSeSS This result is in perfect agreement with the electric field 
we found in Chapter 26, but this calculation was easier because we 
didn’t have to deal with angles.

exAmPLe 29.3  The electric field of a ring of charge
In Chapter 28, we found the onaxis potential of a ring of radius R 
and charge Q to be

 Vring =
1

4pP0
 

Q2z 2 + R2

Find the onaxis electric field of a ring of charge.

SoLVe Symmetry requires the electric field along the axis to point 
straight outward from the ring with only a zcomponent Ez. The 
electric field at position z is

29.3  Finding the electric Field
from the Potential

Figure 29.10 shows two points i and f separated by a very small distance �s, so small that 
the electric field is essentially constant over this very short distance. The work done by 
the electric field as a charge q moves through this small distance is W = Fs �s = qEs �s. 
Consequently, the potential difference between these two points is

 �V =
�Uq +  sources

q
=

-W
q

= -Es �s (29.10)

In terms of the potential, the component of the electric field in the sdirection is 
Es = - �V/�s. In the limit �s S 0,

 Es = -  
dV

ds
 (29.11)

Now we have reversed Equation 29.3 and can find the electric field from the potential. 
We’ll begin with examples where the field is parallel to a coordinate axis, then we’ll 
look at what Equation 29.11 tells us about the geometry of the field and the potential.

Field Parallel to a Coordinate Axis
The derivative in Equation 29.11 gives Es, the component of the electric field parallel 
to the displacement � s

u
. It doesn’t tell us about the electric field component perpen

dicular to � s
u
. Thus Equation 29.11 is most useful if we can use symmetry to select a 

coordinate axis that is parallel to E
u

 and along which the perpendicular component of 
E
u

 is known to be zero.
For example, suppose we knew the potential of a point charge to be V = q/4pP0r 

but didn’t remember the electric field. Symmetry requires that the field point 
straight outward from the charge, with only a radial component Er. If we choose the 
saxis to be in the radial direction, parallel to E

u

, we can use Equation 29.11 to find

 Er = -  
dV

dr
= -  

d

dr
 1 q

4pP0r 2 =
1

4pP0
 
q

r2 (29.12)

This is, indeed, the wellknown electric field of a point charge.
Equation 29.11 is especially useful for a continuous distribution of charge because 

calculating V, which is a scalar, is usually much easier than calculating the vector E
u

 
directly from the charge. Once V is known, E

u

 is found simply by taking a derivative.
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A geometric interpretation of Equation 29.11 is that the electric field is the negative 
of the slope of the Vversuss graph. This interpretation should be familiar. You 
learned in Chapter 11 that the force on a particle is the negative of the slope of the 
potentialenergy graph: F = -dU/ds. In fact, Equation 29.11 is simply F = -dU/ds 
with both sides divided by q to yield E and V. This geometric interpretation is an im
portant step in developing an understanding of potential.

exAmPLe 29.4  Finding E from the slope of V
Figure 29.11 is a graph of the electric potential in a region of space 
where E

u

 is parallel to the xaxis. Draw a graph of Ex versus x.

Figure 29.11 Graph of V versus position x.
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Figure 29.12 Graph of Ex versus position x.
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0
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4

The value of Ex is the negative
of the slope of the potential graph.

6 8

Ex (V/m)

x (cm)
2modeL The electric field is the negative of the slope of the 

potential graph.

SoLVe There are three regions of different slope:

  0 6 x 6 2 cm b �V/�x = (20 V)/(0.020 m) = 1000 V/m

Ex = -1000 V/m

 2 6 x 6 4 cm b �V/�x = 0 V/m

Ex = 0 V/m

 4 6 x 6 8 cm b �V/�x = (-20 V)/(0.040 m) = -500 V/m

Ex = 500 V/m

The results are shown in Figure 29.12.

ASSeSS The electric field E
u

 points to the left (Ex is negative) for 
0 6 x 6 2 cm and to the right (Ex is positive) for 4 6 x 6 8 cm. 
Notice that the electric field is zero in a region of space where 
the potential is not changing.

Stop to think 29.2 
 Which potential graph describes the electric field at the left?

E
r
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x
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y

(a)
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y

(b)

V

y

(c)

V

y

(d)

V

y

(e)

The geometry of Potential and Field
Equations 29.3 for V in terms of Es and 29.11 for Es in terms of V have profound 
impli cations for the geometry of the potential and the field. Figure 29.13 shows two 
equipo tential surfaces, with V+ positive relative to V-. To learn about the electric 
field E

u

 at point P, allow a charge to move through the two displacements � s
u

1 and 
� s

u

2. Displacement � s
u

1 is tangent to the equipotential surface, hence a charge 
moving in this direction experiences no potential difference. According to Equa
tion 29.11, the electric field component along a direction of constant potential 
is Es = -dV/ds = 0. In other words, the electric field component tangent to the 
equipotential is E} = 0.

P 

Direction of
decreasing
potential

Equipotential
surfaces

Maximum change
in potential

No change in
potential

�s1
r

�s2
r

V�

V�

Figure 29.13 The electric field at P is 
related to the shape of the equipotential 
surfaces.
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Displacement � s
u

2 is perpendicular to the equipotential surface. There is a poten
tial difference along � s

u

2, hence the electric field component is

 E # = -  
dV

ds
� -  

�V

�s
= -  

V+ - V-

�s2

You can see that the electric field is inversely proportional to �s2, the spacing be
tween the equipotential surfaces. Furthermore, because (V+ - V-) 7 0, the minus sign 
tells us that the electric field is opposite in direction to � s

u

2. In other words, E
u

 is 
perpendicular to the equipotential surfaces and points “downhill” in the direction 
of decreasing potential.

These important ideas about the geometry of the potential and the field are sum
marized in Figure 29.14.

Direction of
decreasing
potential

rr

E
r

E
r

E
r

V�

V�

V�

V�

1. E is everywhere
 perpendicular to the
 equipotential surfaces.

4. Equipotential surfaces
 have equal potential
 differences between
 them.

2. E points “downhill,”
 in the direction of
 decreasing V.

3. The field strength is
 inversely proportional to
 the spacing �s between
 the equipotential surfaces.�s

Figure 29.14 The geometry of the potential and the field.

Mathematically, we can calculate the individual components of E
u

 at any point by 
extending Equation 29.11 to three dimensions:

 E
u

= Ex in + Ey jn + Ez kn = - 1 0V

0x
 in +

0V

0y
 jn +

0V

0z
 kn 2  (29.13)

where 0V/0x is the partial derivative of V with respect to x while y and z are held 
constant. You may recognize from calculus that the expression in parentheses is the 
gradient of V, written �V. Thus, E

u

= - �V. More advanced treatments of the electric 
field make extensive use of this mathematical relationship, but for the most part we’ll 
limit our investigations to those we can analyze graphically.

exAmPLe 29.5  Finding the electric field from the equipotential surfaces
In Figure 29.15 a 1 cm * 1 cm grid is superimposed on a contour 
map of the potential. Estimate the strength and direction of the 
electric field at points 1, 2, and 3. Show your results graphically by 
drawing the electric field vectors on the contour map.

Figure 29.15 Equipotential lines.

1 cm

1 cm

0 V

0 V
2

3

1

50 V 100 V

50 V

100 V

modeL The electric field is perpendicular to the equipotential 
lines, points “downhill,” and depends on the slope of the potential 
hill.

ViSuALize The potential is highest on the bottom and the right. An 
elevation graph of the potential would look like the lowerright 
quarter of a bowl or a football stadium.

SoLVe Some distant but unseen source charges have created an 
electric field and potential. We do not need to see the source 
charges to relate the field to the potential. Because E � - �V/�s, 
the electric field is stronger where the equipotential lines are 
closer together and weaker where they are farther apart. If 
Figure 29.15 were a topographic map, you would interpret the 
closely spaced contour lines at the bottom of the figure as a 
steep slope.



Kirchhoff’s Loop Law
Figure 29.17 shows two points, 1 and 2, in a region of electric field and potential. You 
learned in Chapter 28 that the work done in moving a charge between points 1 and 2 is 
independent of the path. Consequently, the potential difference between points 1 and 2 
along any two paths that join them is �V = 20 V. This must be true in order for the 
idea of an equipotential surface to make sense.

Now consider the path 1–a–b–c–2–d–1 that ends where it started. What is the po
tential difference “around” this closed path? The potential increases by 20 V in moving 
from 1 to 2, but then decreases by 20 V in moving from 2 back to 1. Thus �V = 0 V 
around the closed path.

The numbers are specific to this example, but the idea applies to any loop (i.e., a 
closed path) through an electric field. The situation is analogous to hiking on the side 
of a mountain. You may walk uphill during parts of your hike and downhill during 
other parts, but if you return to your starting point your net change of elevation is zero. 
So for any path that starts and ends at the same point, we can conclude that

 �Vloop = a
i

(�V)i = 0 (29.14)

Stated in words, the sum of all the potential differences encountered while moving 
around a loop or closed path is zero. This statement is known as Kirchhoff’s loop law.

Kirchhoff’s loop law is a statement of energy conservation because a charge that 
moves around a loop and returns to its starting point has �U = q �V = 0. Kirchhoff’s 
loop law and a second Kirchhoff’s law you’ll meet in the next chapter will turn out to 
be the two fundamental principles of circuit analysis.

Stop to think 29.3 
 Which set of equipotential 

surfaces matches this electric field?

Figure 29.16 shows how measurements of �s from the grid are 
combined with values of �V  to determine E

u

. Point 3 requires an 
estimate of the spacing between the 0 V and the 100 V surfaces. 
Notice that we’re using the 0 V and 100 V equipotential surfaces 
to determine E

u

 at a point on the 50 V equipotential.

ASSeSS The directions of E
u

 are found by drawing downhill vectors 
perpendicular to the equipotentials. The distances between the 
equipotential surfaces are needed to determine the field strengths.

Figure 29.16 The electric field at points 1 to 3.
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Figure 29.17 The potential difference 
between points 1 and 2 is the same 
along either path.
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29.4 A Conductor in electrostatic equilibrium
The basic relationships between potential and field allow us to draw some interesting and 
important conclusions about conductors. Consider a conductor, such as a metal, that is in 
electrostatic equilibrium. The conductor may be charged, but all the charges are at rest.

You learned in Chapter 25 that any excess charges on a conductor in electrostatic 
equilibrium are always located on the surface of the conductor. Using similar reason
ing, we can conclude that the electric field is zero at any interior point of a conduc-
tor in electrostatic equilibrium. Why? If the field were other than zero, then there 
would be a force F

u

= qE
u

 on the charge carriers and they would move, creating a 
current. But there are no currents in a conductor in electrostatic equilibrium, so it must 
be that E

u

= 0
u

 at all interior points.
The two points inside the conductor in Figure 29.18 are connected by a line that 

remains entirely inside the conductor. We can find the potential difference �V =
V2 - V1 between these points by using Equation 29.3 to integrate Es along the line 
from 1 to 2. But Es = 0 at all points along the line, because E

u

= 0
u

; thus the value of 
the integral is zero and �V = 0. In other words, any two points inside a conductor 
in electrostatic equilibrium are at the same potential.

When a conductor is in electrostatic equilibrium, the entire conductor is at the same 
potential. If we charge a metal sphere, then the entire sphere is at a single potential. Simi
larly, a charged metal rod or wire is at a single potential if it is in electrostatic equilibrium.

If E
u

= 0
u

 inside a charged conductor but E
u

� 0
u

 outside, what happens right at the 
surface? If the entire conductor is at the same potential, then the surface is an equi
potential surface. You have seen that the electric field is always perpendicular to an 
equipotential surface, hence the exterior electric field E

u

 of a charged conductor is 
perpendicular to the surface.

We can also conclude that the electric field, and thus the surface charge density, 
is largest at sharp points. This follows from our earlier discovery that the field at 
the surface of a sphere of radius R can be written E = V0/R. If we approximate the 
rounded corners of a conductor with sections of spheres, all of which are at the same 
potential V0, the field strength will be largest at the corners with the smallest radii of 
curvature—the sharpest points.

A corona discharge, with crackling noises 
and glimmers of light, occurs at pointed 
metal tips where the electric field can be 
very strong.

1

Conductor

2
s

E � 0
r r

�V � 0

Figure 29.18 All points inside a 
conductor in electrostatic equilibrium are 
at the same potential.

Figure 29.19 Electric properties of a conductor in electrostatic equilibrium.
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Figure 29.19 summarizes what we know about conductors in electrostatic equilibrium. 
These are important and practical conclusions because conductors are the primary 
components of electrical devices.

We can use similar reasoning to estimate the electric field and potential between 
two charged conductors. As an example, Figure 29.20 shows a negatively charged metal 
sphere near a flat metal plate. The surfaces of the sphere and the flat plate are equipo
tentials, hence the electric field must be perpendicular to both. Close to a surface, the 
electric field is still nearly perpendicular to the surface. Consequently, an equipoten-
tial surface close to an electrode must roughly match the shape of the electrode.

Figure 29.20 Estimating the field 
and potential between two charged 
conductors.

10 V

0 V 50 V

20 V
30 V

40 V

The equipotential surfaces gradually
change from the shape of one electrode
to that of the other.

The field lines are perpendicular to 
the equipotential surfaces.
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In between, the equipotential surfaces gradually change as they “morph” from one 
electrode shape to the other. It’s not hard to sketch a contour map showing a plausible 
set of equipotential surfaces. You can then draw electric field lines (field lines are 
easier to draw than field vectors) that are perpendicular to the equipotentials, point 
“downhill,” and are closer together where the contour line spacing is smaller.

Stop to think 29.4 
 Three charged metal spheres of different radii are connected by a 

thin metal wire. The potential and electric field at the surface of each sphere are V and E. 
Which of the following is true?

 a. V1 = V2 = V3 and E1 = E2 = E3 b. V1 = V2 = V3 and E1 7 E2 7 E3

 c. V1 7 V2 7 V3 and E1 = E2 = E3 d. V1 7 V2 7 V3 and E1 7 E2 7 E3

 e. V3 7 V2 7 V1 and E3 = E2 = E1 f. V3 7 V2 7 V1 and E3 7 E2 7 E1

Wire

1 2 3

29.5 Capacitance and Capacitors
We introduced the parallelplate capacitor in Chapter 26 and have made frequent use 
of it since. We’ve assumed that the capacitor is charged, but we haven’t really ad
dressed the issue of how it gets charged. Figure 29.21 shows the two plates of a capaci
tor connected with conducting wires to the two terminals of a battery. What happens? 
And how is the potential difference �VC across the capacitor related to the battery’s 
potential difference �Vbat?

Figure 29.21a shows the situation shortly after the capacitor is connected to the battery 
and before it is fully charged. The battery’s charge escalator is moving charge from 
one capacitor plate to the other, and it is this work done by the battery that charges 
the capacitor. (The connecting wires are conductors, and you learned in Chapter 25 
that charges can move through conductors as a current.) The capacitor voltage �VC 
steadily increases as the charge separation continues.

Capacitors are important elements in 
electric circuits. They come in a variety of 
sizes and shapes.

Figure 29.21 A parallel-plate capacitor is charged by a battery.
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But this process cannot continue forever. The growing positive charge on the up
per capacitor plate exerts a repulsive force on new charges coming up the escalator, 
and eventually the capacitor charge gets so large that no new charges can arrive. The 
capacitor in Figure 29.21b is now fully charged. In Chapter 31 we’ll analyze how long 
the charging process takes, but it is typically less than a nanosecond for a capacitor 
connected directly to a battery with copper wires.

Once the capacitor is fully charged, with charges no longer in motion, the positive 
capacitor plate, the upper wire, and the positive terminal of the battery form a single 
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conductor in electrostatic equilibrium. This is an important idea, and it wasn’t true 
while the capacitor was charging. As you just learned, any two points in a conductor 
in electrostatic equilibrium are at the same potential. Thus the positive plate of a fully 
charged capacitor is at the same potential as the positive terminal of the battery.

Similarly, the negative plate of a fully charged capacitor is at the same potential 
as the negative terminal of the battery. Consequently, the potential difference �VC  
between the capacitor plates exactly matches the potential difference �Vbat  between 
the battery terminals. A capacitor attached to a battery charges until �VC � �Vbat. 
Once the capacitor is charged, you can disconnect it from the battery; it will maintain 
this charge and potential difference until and unless something—a current—allows 
positive charge to move back to the negative plate. An ideal capacitor in vacuum 
would stay charged forever.

You learned in Chapter 28 that a parallelplate capacitor’s potential difference is 
related to the electric field inside by �VC = Ed, where d is the separation between the 
plates. And you know from Chapter 26 that a capacitor’s electric field is

 E =
Q

P0 A
 (29.15)

where A is the surface area of the plates. Combining these gives

 Q =
P0 A

d
 �VC (29.16)

In other words, the charge on the capacitor plates is directly proportional to the 
potential difference between the plates.

The ratio of the charge Q to the potential difference �VC is called the capacitance C:

 C K
Q

�VC
=

P0 A

d
  (parallel@plate capacitor) (29.17)

Capacitance is a purely geometric property of two electrodes because it depends only 
on their surface area and spacing. The SI unit of capacitance is the farad, named in 
honor of Michael Faraday. One farad is defined as

 1 farad = 1 F K 1 C/V

One farad turns out to be an enormous amount of capacitance. Practical capacitors are 
usually measured in units of microfarads (mF) or picofarads (1 pF = 10-12 F).

With this definition of capacitance, Equation 29.17 can be written

 Q = C �VC  (charge on a capacitor) (29.18)

The charge on a capacitor is determined jointly by the potential difference supplied by 
a battery and a property of the electrodes called capacitance.

The keys on most computer keyboards 
are capacitor switches. Pressing the 
key pushes two capacitor plates closer 
together, increasing their capacitance. 
A larger capacitor can hold more charge, 
so a momentary current carries charge 
from the battery (or power supply) to 
the capacitor. This current is sensed, and 
the keystroke is then recorded. Capacitor 
switches are much more reliable than 
make-and-break contact switches.

exAmPLe 29.6  Charging a capacitor
The spacing between the plates of a 1.0 mF capacitor is 0.050 mm.

 a. What is the surface area of the plates?
 b. How much charge is on the plates if this capacitor is attached to a 1.5 V battery?

modeL Assume the battery is ideal and the capacitor is a parallelplate capacitor.

SoLVe a. From the definition of capacitance,

A =
dC
P0

= 5.65 m2

 b. The charge is Q = C �VC = 1.5 * 10-6 C = 1.5 mC.

ASSeSS The surface area needed to construct a 1.0 mF capacitor (a fairly typical value) is 
enormous. We’ll see in Section 29.7 how the area can be reduced by inserting an insula
tor between the capacitor plates.



Forming a Capacitor
The parallelplate capacitor is important because it is straightforward to analyze and 
it produces a uniform electric field. But capacitors and capacitance are not limited 
to flat, parallel electrodes. Any two electrodes, regardless of their shape, form a 
capacitor.

Figure 29.22 shows two arbitrary electrodes charged to {Q. The net charge, as was 
the case with a parallelplate capacitor, is zero. By definition, the capacitance of the 
two electrodes is

 C =
Q

�VC
 (29.19)

where �VC is the potential difference between the positive and negative electrodes. It 
might appear that the capacitance depends on the amount of charge, but the potential 
difference is proportional to Q. Consequently, the capacitance depends only on the 
geometry of the electrodes.

To make use of Equation 29.19, you must be able to determine the potential dif
ference between the electrodes when they are charged to {Q. You can do so if you 
know the electric field—say from Gauss’s law—by carrying out the integration of 
Equation 29.3. Several homework problems will let you try this to calculate the 
capacitance of electrodes with other geometries.

Combinations of Capacitors
In practice, two or more capacitors are sometimes joined together. Figure 29.23 illus
trates two basic combinations: parallel capacitors and series capacitors. Notice that a 
capacitor, no matter what its actual geometric shape, is represented in circuit diagrams 
by two parallel lines.

Figure 29.22 Any two electrodes form a 
capacitor.

�Q

�Q

No net
charge

Potential difference �VC

Capacitance C � Q/�VC

Figure 29.23 Parallel and series capacitors.

�

�

E C1 C2 C3

Parallel capacitors are joined 
top to top and bottom to bottom.

The circuit symbol for a
capacitor is two parallel lines.

�

�

C1

C2

C3

Series capacitors
are joined end to
end in a row.

E

NoTe  The terms “parallel capacitors” and “parallelplate capacitor” do not 
des cribe the same thing. The former term describes how two or more capaci
tors are connected to each other, the latter describes how a particular capacitor is 
constructed. 

As we’ll show, parallel or series capacitors (or, as is sometimes said, capacitors 
“in parallel” or “in series”) can be represented by a single equivalent capacitance. 
We’ll demonstrate this first with the two parallel capacitors C1 and C2 of Figure 29.24a. 
Because the two top electrodes are connected by a conducting wire, they form a single 
conductor in electrostatic equilibrium. Thus the two top electrodes are at the same 
potential. Similarly, the two connected bottom electrodes are at the same potential. 
Consequently, two (or more) capacitors in parallel each have the same potential dif
ference �VC between the two electrodes.

The charges on the two capacitors are Q1 = C1 �VC and Q2 = C2 �VC. Altogether, 
the battery’s charge escalator moved total charge Q = Q1 + Q2 from the negative 

Figure 29.24 Replacing two parallel 
capacitors with an equivalent capacitor.

�

�

C1 C2

Parallel capacitors
have the same �VC.

Q1 � C1�VC Q2 � C2�VC

(a)

E

�

�

Ceq

Same �VC as C1 and C2

Q � Q1 � Q2

(b)

E

Same total charge as C1 and C2
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electrodes to the positive electrodes. Suppose, as in Figure 29.24b, we replaced the two 
capacitors with a single capacitor having charge Q = Q1 + Q2 and potential difference 
�VC. This capacitor is equivalent to the original two in the sense that the battery can’t 
tell the difference. In either case, the battery has to establish the same potential differ
ence and move the same amount of charge.

By definition, the capacitance of this equivalent capacitor is

 Ceq =
Q

�VC
=

Q1 + Q2

�VC
=

Q1

�VC
+

Q2

�VC
= C1 + C2 (29.20)

This analysis hinges on the fact that parallel capacitors each have the same poten-
tial difference �VC. We could easily extend this analysis to more than two capacitors. 
If capacitors C1, C2, C3, p  are in parallel, their equivalent capacitance is

 Ceq = C1 + C2 + C3 + g  (parallel capacitors) (29.21)

Neither the battery nor any other part of a circuit can tell if the parallel capacitors are 
replaced by a single capacitor having capacitance Ceq.

Now consider the two series capacitors in Figure 29.25a. The center section, consist
ing of the bottom plate of C1, the top plate of C2, and the connecting wire, is electri
cally isolated. The battery cannot remove charge from or add charge to this section. If 
it starts out with no net charge, it must end up with no net charge. As a consequence, 
the two capacitors in series have equal charges {Q. The battery transfers Q from the 
bottom of C2 to the top of C1. This transfer polarizes the center section, as shown, but 
it still has Qnet = 0.

The potential differences across the two capacitors are �V1 = Q/C1 and �V2 =
Q/C2. The total potential difference across both capacitors is �VC = �V1 + �V2. 
Suppose, as in Figure 29.25b, we replaced the two capacitors with a single capacitor 
having charge Q and potential difference �VC = �V1 + �V2. This capacitor is equiv
alent to the original two because the battery has to establish the same potential differ
ence and move the same amount of charge in either case.

By definition, the capacitance of this equivalent capacitor is Ceq = Q/�VC. The 
inverse of the equivalent capacitance is thus

 
1

Ceq
=

�VC

Q
=

�V1 + �V2

Q
=

�V1

Q
+

�V2

Q
=

1

C1
+

1

C2
 (29.22)

This analysis hinges on the fact that series capacitors each have the same charge Q. 
We could easily extend this analysis to more than two capacitors. If capacitors C1, C2, 
C3, p  are in series, their equivalent capacitance is

 Ceq = 1 1

C1
+

1

C2
+

1

C3
+ g 2 -1

  (series capacitors) (29.23)

NoTe  Be careful to avoid the common error of adding the inverses but forgetting 
to invert the sum. 

Let’s summarize the key facts before looking at a numerical example:

	■	 Parallel capacitors all have the same potential difference �VC. Series capacitors all 
have the same amount of charge {Q.

	■	 The equivalent capacitance of a parallel combination of capacitors is larger than 
any single capacitor in the group. The equivalent capacitance of a series combina
tion of capacitors is smaller than any single capacitor in the group.

Figure 29.25 Replacing two series 
capacitors with an equivalent capacitor.

Series capacitors have the same Q.

No net charge
on this isolated
segment
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E Ceq

Same Q as C1 and C2

�VC � �V1 � �V2

(b)

Same total potential difference as C1 and C2



Stop to think 29.5 
 Rank in order, from largest to smallest, the equivalent capacitance 

(Ceq)a to (Ceq)d of circuits a to d.

modeL Assume the battery is ideal, with �Vbat = E = 12 V. Use 
the results for parallel and series capacitors.

SoLVe The three capacitors are neither in parallel nor in series, 
but we can break them down into smaller groups that are. A useful 
method of circuit analysis is first to combine elements until reach
ing a single equivalent element, then to reverse the process and 
calculate values for each element. Figure 29.27 shows the analysis 
of this circuit. Notice that we redraw the circuit after every step. 
The equivalent capacitance of the 3 mF and 6 mF capacitors in se
ries is found from

 Ceq = 1 1

3 mF
 +

1

6 mF 2 -1

= 12

6
+

1

6 2 -1

 mF = 2 mF

exAmPLe 29.7  A capacitor circuit
Find the charge on and the potential difference across each of the 
three capacitors in Figure 29.26.

Figure 29.26 A capacitor circuit.

�

�

C1 � 3 mF

12 V
C3 � 1 mFC2 � 5 mF

E

Figure 29.27 Analyzing the capacitor circuit.

3 mF
1

2 3
1 mF5 mF

3 mF

12 V

1 mF5 mF

3 mF

6 mF
12 V

3 mF

6 mF
12 V2 mF12 V

�V2 � 4 V
Q2 � C2 �V2 � 20 mC

�V3 � 4 V
Q3 � C3 �V3 � 4 mC

Check: 20 mC � 4 mC
   � 24 mC

Q1 � 24 mC
�V1 � 8 V

Q1 � 24 mC
�V1 � Q1/C1 � 8 V

�VC � �Vbat � 12 V

Q � C �VC � 24 mC

In series

Ceq � 2 mF

In parallel

Ceq � 6 mF

Q2�3 � 24 mC

�V2�3 � Q2�3 /C2�3 

            � 4 V

Check: 8 V � 4 V � 12 V

Equivalent
capacitance

�� ���

�� ���

12 V

Once we get to the single equivalent capacitance, we find that 
�VC = �Vbat = 12 V and Q = C �VC = 24 mC. Now we can 
reverse direction. Capacitors in series all have the same charge, so 
the charge on C1 and on C2+3 is {24 mC. This is enough to deter
mine that �V1 = 8 V and �V2+3 = 4 V. Capacitors in parallel all 
have the same potential difference, so �V2 = �V3 = 4 V. This is 
enough to find that Q2 = 20 mC and Q3 = 4 mC. The charge on 
and the potential difference across each of the three capacitors are 
shown in the final step of Figure 29.27.

ASSeSS Notice that we had two important checks of internal consis
tency. �V1 + �V2+3 = 8 V + 4 V add up to the 12 V we had found 
for the 2 mF equivalent capacitor. Then Q2 + Q3 = 20 mC + 4 mC 
add up to the 24 mC we had found for the 6 mF equivalent ca
pacitor. We’ll do much more circuit analysis of this type in the 
next chapter, but it’s worth noting now that circuit analysis be
comes nearly foolproof if you make use of these checks of internal 
consistency.

(a)

5 mF

(b) (c) (d)

3 mF 3 mF 3 mF
4 mF

4 mF

3 mF

3 mF
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29.6 The energy Stored in a Capacitor
Capacitors are important elements in electric circuits because of their ability to store 
energy. Figure 29.28 shows a capacitor being charged. The instantaneous value of the 
charge on the two plates is {q, and this charge separation has established a potential 
difference �V = q/C between the two electrodes.

An additional charge dq is in the process of being transferred from the negative to the 
positive electrode. The battery’s charge escalator must do work to lift charge dq “uphill” 
to a higher potential. Consequently, the potential energy of dq + capacitor increases by

 dU = dq �V =
q dq

C
 (29.24)

NoTe  Energy must be conserved. This increase in the capacitor’s potential energy 
is provided by the battery. 

The total energy transferred from the battery to the capacitor is found by integrating 
Equation 29.24 from the start of charging, when q = 0, until the end, when q = Q. 
Thus we find that the energy stored in a charged capacitor is

 UC =
1

C
 3

Q

0

q dq =
Q 2

2C
 (29.25)

In practice, it is often easier to write the stored energy in terms of the capacitor’s po
tential difference �VC = Q/C. This is

 UC =
Q 2

2C
=

1

2
 C (�VC)2 (29.26)

The potential energy stored in a capacitor depends on the square of the potential dif
ference across it. This result is reminiscent of the potential energy U =

1
2 k (�x)2 stored 

in a spring, and a charged capacitor really is analogous to a stretched spring. A stretched 
spring holds the energy until we release it, then that potential energy is transformed into 
kinetic energy. Likewise, a charged capacitor holds energy until we discharge it. Then the 
potential energy is transformed into the kinetic energy of moving charges (the current).

 P =
�E

�t
=

25 J

1.0 * 10-5 s
= 2.5 * 106 W = 2.5 MW

ASSeSS The stored energy is equivalent to raising a 1 kg mass 
2.5 m. This is a rather large amount of energy, which you can see 
by imagining the damage a 1 kg mass could do after falling 2.5 m. 
When this energy is released very quickly, which is possible in an 
electric circuit, it provides an enormous amount of power.

exAmPLe 29.8  Storing energy in a capacitor
How much energy is stored in a 2.0 mF capacitor that has been 
charged to 5000 V? What is the average power dissipation if this 
capacitor is discharged in 10 ms?

SoLVe The energy stored in the charged capacitor is

 UC =
1

2
 C (�VC)2 =

1

2
 (2.0 * 10-6 F)(5000 V)2 = 25 J

If this energy is released in 10 ms, the average power dissipation is

The usefulness of a capacitor stems from the fact that it can be charged slowly (the 
charging rate is usually limited by the battery’s ability to transfer charge) but then can 
release the energy very quickly. A mechanical analogy would be using a crank to slowly 
stretch the spring of a catapult, then quickly releasing the energy to launch a massive rock.

The capacitor described in Example 29.8 is typical of the capacitors used in high
power pulsed lasers. The capacitor is charged relatively slowly, in about 0.1 s, then 
quickly discharged into the laser tube to generate a highpower laser pulse. Exactly 
the same thing occurs, only on a smaller scale, in the flash unit of a camera. The 
camera batteries charge a capacitor, then the energy stored in the capacitor is quickly 
discharged into a flashlamp. The charging process in a camera takes several seconds, 
which is why you can’t fire a camera flash twice in quick succession.

An important medical application of capacitors is the defibrillator. A heart attack or a 
serious injury can cause the heart to enter a state known as fibrillation in which the heart 
muscles twitch randomly and cannot pump blood. A strong electric shock through the 
chest completely stops the heart, giving the cells that control the heart’s rhythm a chance to 

Figure 29.28 The charge escalator does 
work on charge dq as the capacitor is 
being charged.

�

�

�

The instantaneous charge
on the plates is �q.

The charge escalator does work 
dq �V to move charge dq from the 
negative plate to the positive plate.

�V

� � ���

� � � � ��q

�q

dq

A defibrillator, which can restore a normal 
heartbeat, discharges a capacitor through 
the patient’s chest.
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restore the proper heartbeat. A defibrillator has a large capacitor that can store up to 360 J 
of energy. This energy is released in about 2 ms through two “paddles” pressed against the 
patient’s chest. It takes several seconds to charge the capacitor, which is why, on television 
medical shows, you hear an emergency room doctor or nurse shout “Charging!”

The energy in the electric Field
We can “see” the potential energy of a stretched spring in the tension of the coils. If a 
charged capacitor is analogous to a stretched spring, where is the stored energy? It’s 
in the electric field!

Figure 29.29 shows a parallelplate capacitor in which the plates have area A and are 
separated by distance d. The potential difference across the capacitor is related to the 
electric field inside the capacitor by �VC = Ed. The capacitance, which we found in 
Equation 29.17, is C = P0 A/d. Substituting these into Equation 29.26, we find that the 
energy stored in the capacitor is

 UC =
1

2
 C (�VC)2 =

1

2
 
P0 A

d
 (Ed)2 =

P0

2
 (Ad)E2 (29.27)

The quantity Ad is the volume inside the capacitor, the region in which the capaci tor’s 
electric field exists. (Recall that an ideal capacitor has E

u

= 0
u

 everywhere except between 
the plates.) Although we talk about “the energy stored in the capacitor,” Equation 29.27 
suggests that, strictly speaking, the energy is stored in the capacitor’s electric field.

Because Ad is the volume in which the energy is stored, we can define an energy 
density uE of the electric field:

 uE =
energy stored

volume in which it is stored
=

UC

Ad
=

P0

2
 E2 (29.28)

The energy density has units J/m3. We’ve derived Equation 29.28 for a parallelplate 
capacitor, but it turns out to be the correct expression for any electric field.

From this perspective, charging a capacitor stores energy in the capacitor’s electric 
field as the field grows in strength. Later, when the capacitor is discharged, the energy 
is released as the field collapses.

We first introduced the electric field as a way to visualize how a longrange force 
operates. But if the field can store energy, the field must be real, not merely a pictorial 
device. We’ll explore this idea further in Chapter 34, where we’ll find that the energy 
transported by a light wave—the very real energy of warm sunshine—is the energy of 
electric and magnetic fields.

29.7 dielectrics
Figure 29.30a shows a parallelplate capacitor with the plates separated by vacuum, the 
perfect insulator. Suppose the capacitor is charged to voltage (�VC)0, then discon
nected from the battery. The charge on the plates will be {Q0, where Q0 = C0(�VC)0. 
We’ll use a subscript 0 in this section to refer to a vacuuminsulated capacitor.

Figure 29.29 A capacitor’s energy is 
stored in the electric field.

Capacitor plate with area A

d

The capacitor’s energy is stored in the electric
field in volume Ad between the plates.

Figure 29.30 Vacuum-insulated and dielectric-filled capacitors.
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Now suppose, as in Figure 29.30b, an insulating material, such as oil or glass or plastic, 
is slipped between the capacitor plates. We’ll assume for now that the insulator is of thick
ness d and completely fills the space. An insulator in an electric field is called a dielectric, 
for reasons that will soon become clear, so we call this a dielectric-filled capacitor. How 
does a dielectricfilled capacitor differ from the vacuuminsulated capacitor?

The charge on the capacitor plates does not change. The insulator doesn’t allow 
charge to move through it, and the capacitor has been disconnected from the battery, 
so no charge can be added to or removed from either plate. That is, Q = Q0. None
theless, measurements of the capacitor voltage with a voltmeter would find that the  
voltage has decreased: �VC 6 (�VC)0. Consequently, based on the definition of capac
itance, the capacitance has increased:

 C =
Q

�VC
7

Q0

(�VC)0
= C0

Example 29.6 found that the plate size needed to make a 1 mF capacitor is unreason
ably large. It appears that we can get more capacitance with the same plates by filling 
the capacitor with an insulator.

We can utilize two tools you learned in Chapter 26, superposition and polariza
tion, to understand the properties of dielectricfilled capacitors. Figure 26.28 showed 
how an insulating material becomes polarized in an external electric field. Figure 29.31a 
reproduces the basic ideas from that earlier figure. The electric dipoles in Figure 29.31a 
could be permanent dipoles, such as water molecules, or simply induced dipoles due to 
a slight charge separation in the atoms. However the dipoles originate, their alignment 
in the electric field—the polarization of the material—produces an excess positive 
charge on one surface, an excess negative charge on the other. The insulator as a whole 
is still neutral, but the external electric field separates positive and negative charge.

Figure 29.31b represents the polarized insulator as simply two sheets of charge with 
surface charge densities {hinduced. The size of hinduced depends both on the strength of 
the electric field and on the properties of the insulator. These two sheets of charge cre
ate an electric field—a situation we analyzed in Chapter 26. In essence, the two sheets 
of induced charge act just like the two charged plates of a parallelplate capacitor. The 
induced electric field (keep in mind that this field is due to the insulator responding 
to the external electric field) is

 
E
u

induced = c  1hinduced

P0
, from positive to negative2 inside the insulator

0
u

 outside the insulator
  (29.29)

It is because an insulator in an electric field has two sheets of induced electric charge 
that we call it a dielectric, with the prefix di, meaning two, the same as in “diatomic” 
and “dipole.”

Figure 29.32 shows what happens when you insert a dielectric into a capacitor. The 
capacitor plates have their own surface charge density h0 = Q0/A. This creates the 
electric field E

u

0 = (h0/P0, from positive to negative) into which the dielectric is placed. 
The dielectric responds with induced surface charge density hinduced and the induced 
electric field E

u

induced. Notice that E
u

induced points opposite to E
u

0. By the principle of su
perposition, another important lesson from Chapter 26, the net electric field between 
the capacitor plates is the vector sum of these two fields:

 E
u

= E
u

0 + E
u

induced = (E0 - Einduced, from positive to negative) (29.30)

The presence of the dielectric weakens the electric field, from E0 to E0 - Einduced, 
but the field still points from the positive capacitor plate to the negative capacitor 
plate. The field is weakened because the induced surface charge in the dielectric acts 
to counter the electric field of the capacitor plates.

Figure 29.31 An insulator in an external 
electric field.
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Let’s define the dielectric constant k (Greek kappa) as

 k K
E0

E
 (29.31)

Equivalently, the field strength inside a dielectric in an external field is E = E0/k. 
The dielectric constant is the factor by which a dielectric weakens an electric field, so 
k Ú 1. You can see from the definition that k is a pure number with no units.

The dielectric constant, like density or specific heat, is a property of a material. 
Easily polarized materials have larger dielectric constants than materials not easily 
polarized. Vacuum has k = 1 exactly, and lowpressure gases have k � 1. (Air has 
kair = 1.00 to three significant figures, so we won’t worry about the very slight effect 
air has on capacitors.) Table 29.1 lists the dielectric constants for different materials.

The electric field inside the capacitor, although weakened, is still uniform. Conse
quently, the potential difference across the capacitor is

 �VC = Ed =
E0

k
 d =

(�VC)0

k
 (29.32)

where (�VC)0 = E0d was the voltage of the vacuuminsulated capacitor. The presence 
of a dielectric reduces the capacitor voltage, the observation with which we started 
this section. Now we see why; it is due to the polarization of the material. Further, the 
new capacitance is

 C =
Q

�VC
=

Q0

(�VC)0/k
= k 

Q0

(�VC)0
= kC0 (29.33)

Filling a capacitor with a dielectric increases the capacitance by a factor equal to 
the dielectric constant. This ranges from virtually no increase for an airfilled capaci
tor to a capacitance 300 times larger if the capacitor is filled with strontium titanate.

We’ll leave it as a homework problem to show that the induced surface charge 
density is

 hinduced = h011 -
1
k 2  (29.34)

hinduced ranges from nearly zero when k � 1 to �h0 when k W 1.

NoTe  We assumed that the capacitor was disconnected from the battery after 
being charged, so Q couldn’t change. If you insert a dielectric while a capacitor 
is attached to a battery, then it will be �VC, fixed at the battery voltage, that can’t 
change. In this case, more charge will flow from the battery until Q = kQ0. In both 
cases, the capacitance increases to C = kC0. 

Figure 29.32 The consequences of filling a capacitor with a dielectric.
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TABLe 29.1 Properties of dielectrics

Material

Dielectric 
constant  

K

Dielectric 
strength 

Emax (106 V/m)

Vacuum   1 —

Air (1 atm)   1.0006  3

Teflon   2.1 60

Polystyrene 
plastic

  2.6 24

Mylar   3.1  7

Paper   3.7 16

Pyrex glass   4.7 14

Pure water 
(20�C)

 80 —

Titanium 
dioxide

110  6

Strontium 
titanate

300  8

29.7 . Dielectrics    857
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Solid or liquid dielectrics allow a set of electrodes to have more capacitance than 
they would if filled with air. Not surprisingly, as Figure 29.33 shows, this is important 
in the production of practical capacitors. In addition, dielectrics allow capacitors to 
be charged to higher voltages. All materials have a maximum electric field they can 
sustain without breakdown—the production of a spark. The breakdown electric field of 
air, as we’ve noted previously, is about 3 * 106 V/m. In general, a material’s maximum 
sustainable electric field is called its dielectric strength. Table 29.1 includes dielectric 
strengths for air and the solid dielectrics. (The breakdown of water is extremely sensi
tive to ions and impurities in the water, so water doesn’t have a welldefined dielectric 
strength.)

Many materials have dielectric strengths much larger than air. Teflon, for an ex
ample, has a dielectric strength 20 times that of air. Consequently, a Teflonfilled 
capacitor can be safely charged to a voltage 20 times larger than an airfilled capacitor 
with the same plate separation. An airfilled capacitor with a plate separation of 
0.2 mm can be charged only to 600 V, but a capacitor with a 0.2mmthick Teflon 
sheet could be charged to 12,000 V.

 b. The presence of a dielectric does not alter the derivation leading 
to Equation 29.26 for the energy stored in a capacitor. Right 
after being disconnected from the battery, the stored energy was

(UC)0 =
1

2
 C0 (�VC) 2

0 =
1

2
(5.0 * 10-9 F)(160 V)2 = 6.4 * 10-5 J

After being immersed, the stored energy is

 UC =
1

2
 C (�VC)2 =

1

2
 (400 * 10-9 F)(2.0 V)2 = 8.0 * 10-7 J

ASSeSS Water, with its large dielectric constant, has a big effect 
on the capacitor. But where did the energy go? We learned in 
Chapter 26 that a dipole is drawn into a region of stronger electric 
field. The electric field inside the capacitor is much stronger than 
just outside the capacitor, so the polarized dielectric is actually 
pulled into the capacitor. The “lost” energy is the work the capaci
tor’s electric field did pulling in the dielectric.

exAmPLe 29.9  A water-filled capacitor
A 5.0 nF parallelplate capacitor is charged to 160 V. It is then dis
connected from the battery and immersed in distilled water. What 
are (a) the capacitance and voltage of the waterfilled capacitor 
and (b) the energy stored in the capacitor before and after its im
mersion?

modeL Pure distilled water is a good insulator. (The conductivity 
of tap water is due to dissolved ions.) Thus the immersed capacitor 
has a dielectric between the electrodes.

SoLVe a. From Table 29.1, the dielectric constant of water is k = 80. 
The presence of the dielectric increases the capacitance to

 C = kC0 = 80 * 5.0 nF =  400 nF

At the same time, the voltage decreases to

 �VC =
(�VC)0

k
=

160 V

80
= 2.0 V

 b. The energy stored in the capacitor is

 Uc =
1

2
 C (�VC)2 =

1

2
 (150 * 10-6 F)(2100 V)2 = 330 J

Because the dielectric has increased C by a factor of k, the 
energy density of Equation 29.28 is increased by a factor of k 
to uE =

1
2kP0E2. The electric field strength in the capacitor is

 E =
�VC

d
=

2100 V

5.0 * 10-5 m
= 4.2 * 107 V/m

Consequently, the energy density is

  uE =
1

2
 (120)(8.85 * 10-12 C2/N m2)(4.2 * 107 V/m)2

  = 9.4 * 105 J/m3

ASSeSS 330 J is a substantial amount of energy—equivalent to that 
of a 1 kg mass traveling at 25 m/s. And it can be delivered very 
quickly as the capacitor is discharged through the patient’s chest.

exAmPLe 29.10  energy density of a defibrillator
A defibrillator unit contains a 150 mF capacitor that is charged to 
2100 V. The capacitor plates are separated by a 0.050mmthick 
insulator with dielectric constant 120.

 a. What is the area of the capacitor plates?
 b. What are the stored energy and the energy density in the elec

tric field when the capacitor is charged?

modeL Model the defibrillator as a parallelplate capacitor with 
a dielectric.

SoLVe a. The capacitance of a parallelplate capacitor in a vacuum 
is C0 = P0 A/d. A dielectric increases the capacitance by the 
factor k, to C = kC0, so the area of the capacitor plates is

 A =
Cd
kP0

=
(150 * 10-6 F)(5.0 * 10-5 m)

120 (8.85 * 10-12 C2/N m2)
= 7.1 m2

Although the surface area is very large, Figure 29.33 below 
shows how very large sheets of very thin metal can be rolled 
up into capacitors that you hold in your hand.

Figure 29.33 A practical capacitor.

Many real capacitors are a
rolled-up sandwich of metal
foils and thin, insulating dielectrics.

Metal foil

Dielectric



We’ll integrate along a radial line from si = R1 on the surface of 
the inner cylinder to sf = R2 at the outer cylinder. The field com
ponent Es is negative because the field points inward. Thus the 
potential difference is

  �V = - 3
R2

R1

1 -
l

2pP0s 2ds =
l

2pP0
 3

R2

R1

 
ds

s

  =
l

2pP0
 ln s `

R2

R1

=
l

2pP0
 ln1R2

R1
2

We see that the applied potential difference and the linear charge 
density are related by

 
l

2pP0
=

�V

ln(R2/R1)

Using this in the expression for E
u

, we find the electric field 
strength at distance r is

 E =
�V

r ln (R2/R1)

The field strength is a maximum at the surface of the wire, where 
it reaches

 Emax =
�V

R1ln(R2/R1)

The maximum applied voltage will bring Emax to the dielectric 
strength, Emax = 1.0 * 106 V/m. Thus the maximum potential dif
ference between the wire and the tube is

  �Vmax = R1Emaxln1R2

R1
2

  = (5.0 * 10-4 m)(1.0 * 106 V/m)ln (25)

  = 1600 V

ASSeSS This is the maximum possible voltage, but it’s not practi
cal to operate right at the maximum. Real Geiger counters operate 
with typically a 1000 V potential difference to avoid an accidental 
breakdown of the gas. If a highspeed charged particle from a ra
dioactive decay then happens to pass through the tube, it will col
lide with and ionize a number of the gas atoms. Because the tube 
is already very close to breakdown, the addition of these extra ions 
and electrons is enough to push it over the edge: A breakdown of 
the gas occurs, with a spark jumping across the tube. The “click
ing” sounds of a Geiger counter are made by amplifying the cur
rent pulses associated with the sparks.

ChALLeNge  exAmPLe 29.11  A geiger counter
The radiation detector known as a Geiger counter consists of a 
25mmdiameter cylindrical metal tube, sealed at the ends, with 
a 1.0mmdiameter wire along its axis. The wire and cylinder 
are separated by a lowpressure gas whose dielectric strength is 
1.0 * 106 V/m. What is the maximum potential difference be
tween the wire and the tube?

modeL Model the Geiger counter as two long, concentric, con
ducting cylinders. To avoid breakdown of the gas, the field 
strength at the surface of the wire—the point of maximum field 
strength—must not exceed the dielectric strength.

ViSuALize Figure 29.34 shows a cross section of the Geiger 
counter tube. Applying a potential difference between the inner 
and outer cylinders charges it like a capacitor; indeed, it is a cylin
drical capacitor. We’ve chosen to let the outer cylinder be positive, 
with an inwardpointing electric field, but a negative outer cylin
der would lead to the same answer since it’s only the field strength 
that we’re interested in.

Figure 29.34 Cross section of a Geiger counter tube.

SoLVe Gauss’s law tells us that the electric field between the cyl
inders is due only to the charge on the inner cylinder. Thus E

u

 is 
the field of a long, charged wire—a field we found in Chapter 26 
using superposition and again in Chapter 27 using Gauss’s law. 
It is

 E
u

= 1 l

2pP0r
, inward2

where l is the magnitude of the linear charge density. We need to 
connect this field to the potential difference between the wire and 
the outer cylinder. For that, we need to use Equation 29.3:

 �V = Vf - Vi = - 3
sf

si

 Es ds

Challenge Example    859
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Capacitors

The capacitance of two conductors 
charged to {Q is

 C =
Q

�VC
 

A parallelplate capacitor has

 C =
P0 A

d

Filling the space between the plates with a dielectric of dielectric 
constant k increases the capacitance to C = kC0.

The energy stored in a capacitor is uC =
1
2 C (�VC)2.

This energy is stored in the electric field at density uE =
1
2 kP0 E

2.

Combinations of capacitors

Series capacitors

Ceq = 1 1

C1
+

1

C2
+

1

C3
+ g 2 -1

Parallel capacitors

Ceq = C1 + C2 + C3 + g

A battery is a source of potential. 
The charge escalator in a battery uses  
chemical reactions to move charges  
from the negative terminal to the posi
tive terminal:

 �Vbat = E

where the emf E is the work per 
charge done by the charge escalator.

For a conductor in electrostatic equilibrium

•	 The interior electric field is zero.

•	 The exterior electric field is 
perpendicular to the surface.

•	 The surface is an equipotential.

•	 The interior is at the same 
potential as the surface.

Connecting V and E 
u

The electric potential and the electric field are two different 
perspectives of how source charges alter the space around 
them. V and E

u

 are related by

 �V = Vf - Vi = - 3
sf

si

Es ds

where s is measured from point i to point f and Es is the
component of E

u

 parallel to the line of integration.

Graphically

   �V =  the negative of the area under the Es graph

and

  Es = -
dV

ds

  =  the negative of the slope of the potential graph

The geometry of Potential and Field
The electric field

•	 Is perpendicular to the 
equipotential surfaces.

•	 Points “downhill” in the 
direction of decreasing V.

•	 Is inversely proportional to the 
spacing �s between the equipotential surfaces.

S u m m A r y
The goal of Chapter 29 has been to understand how the electric potential is related to the electric field.

general Principles

important Concepts

Applications

Conservation of energy
The sum of all potential differences  
around a closed path is zero.

  g(�V)i = 0

E
r

E
r

E
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r
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Conceptual Questions    861

Van de Graaff generator
battery
charge escalator model
ideal battery
emf, E

terminal voltage, �Vbat 
Kirchhoff’s loop law
capacitance, C
farad, F
parallel capacitors

series capacitors
equivalent capacitance, Ceq 
energy density, uE

dielectric
induced electric field

dielectric constant, k
dielectric strength

Terms and Notation

C o N C e P T u A L  Q u e S T i o N S

 1. Figure Q29.1 shows the xcomponent of E
u

 as a function of x. 
Draw a graph of V versus x in this same region of space. Let V =  
0 V at x = 0 m and include an appropriate vertical scale.

 2. Figure Q29.2 shows the electric potential as a function of x. Draw 
a graph of Ex versus x in this same region of space.

 3. a.  Suppose that E
u

= 0
u

 V/m throughout some region of space. 
Can you conclude that V = 0 V in this region? Explain.

 b. Suppose that V = 0 V throughout some region of space. Can 
you conclude that E

u

= 0
u

 V/m in this region? Explain.
 4. For each contour map in Figure Q29.4, estimate the electric fields 

E
u

1 and E
u

2 at points 1 and 2. Don’t forget that E
u

 is a vector.

 5. An electron is released from 
rest at x = 2 m in the potential 
shown in Figure Q29.5. Does 
it move? If so, to the left or to 
the right? Explain.

 6. Figure Q29.6 shows an electric field diagram. Dashed lines 1 and 
2 are two surfaces in space, not physical objects.

 a. Is the electric potential at point a higher than, lower than, or 
equal to the electric potential at point b? Explain.

 b. Rank in order, from largest to smallest, the magnitudes of the 
potential differences �Vab, �Vcd, and �Vef.

 c. Is surface 1 an equipotential surface? What about surface 2? 
Explain why or why not.

 7. Figure Q29.7 shows a negatively charged electroscope. The gold 
leaf stands away from the rigid metal post. Is the electric poten
tial of the leaf higher than, lower than, or equal to the potential 
of the post? Explain.

 8. The two metal spheres in Figure Q29.8 are connected by a metal 
wire with a switch in the middle. Initially the switch is open. 
Sphere 1, with the larger radius, is given a positive charge. 
Sphere 2, with the smaller radius, is neutral. Then the switch 
is closed. Afterward, sphere 1 has charge Q1, is at potential V1, 
and the electric field strength at its surface is E1. The values for 
sphere 2 are Q2, V2, and E2.

 a. Is V1 larger than, smaller than, or equal to V2? Explain.
 b. Is Q1 larger than, smaller than, or equal to Q2? Explain.
 c. Is E1 larger than, smaller than, or equal to E2? Explain.
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 9. Figure Q29.9 shows a 3 V battery with metal wires attached to 
each end. What are the potential differences �V12, �V23, �V34, 
and �V14?

 10. The parallelplate capacitor in Figure Q29.10 is connected to a 
battery having potential difference �Vbat. Without breaking any 
of the connections, insulating handles are used to increase the 
plate separation to 2d.

 a. Does the potential difference �VC change as the separation 
increases? If so, by what factor? If not, why not?

 b. Does the capacitance change? If so, by what factor? If not, 
why not?

 c. Does the capacitor charge Q change? If so, by what factor? If 
not, why not?

 11. Rank in order, from largest to smallest, the potential differences 
(�VC)1 to (�VC)4 of the four capacitors in Figure Q29.11. Ex
plain.
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e x e r C i S e S  A N d  P r o B L e m S

Problems labeled  integrate material from earlier chapters.

exercises

Section 29.1 Connecting Potential and Field

 1. || What is the potential difference between xi = 10 cm and xf =
30 cm in the uniform electric field Ex = 1000 V/m?

 2. || What is the potential difference between yi = -5 cm and yf =
5 cm in the uniform electric field E

u

= (20,000 in - 50,000jn) V/m?
 3. || Figure ex29.3 is a graph of Ex. What is the potential difference 

between xi = 1.0 m and xf = 3.0 m?

 4. || Figure ex29.4 is a graph of Ex. The potential at the origin is 
-50 V. What is the potential at x = 3.0 m?

Section 29.2 Sources of Electric Potential

 5. | How much work does the charge escalator do to move 1.0 mC 
of charge from the negative terminal to the positive terminal of a 
1.5 V battery?

 6. || How much work does the electric motor of a Van de Graaff 
generator do to lift a positive ion (q = e) if the potential of the 
spherical electrode is 1.0 MV?

 7. || How much charge does a 9.0 V battery transfer from the nega
tive to the positive terminal while doing 27 J of work?

 8. | Light from the sun allows a solar cell to move electrons from 
the positive to the negative terminal, doing 2.4 * 10-19 J of work 
per electron. What is the emf of this solar cell?

Section 29.3 Finding the Electric Field from the Potential

 9. | What are the magnitude and direction of the electric field at 
the dot in Figure ex29.9?

 10. | What are the magnitude and direction of the electric field at 
the dot in Figure ex29.10?

 11. || Figure ex29.11 is a graph of V versus x. Draw the correspond
ing graph of Ex versus x.

 12. || Figure ex29.12 is a graph of V versus x. Draw the correspond
ing graph of Ex versus x.
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 13. || The electric potential in a region of uniform electric field is 
-1000 V at x = -1.0 m and +1000 V at x = +1.0 m. What 
is Ex?

 14. || The electric potential along the xaxis is V = 100x2 V, where 
x is in meters. What is Ex at (a) x = 0 m and (b) x = 1 m?

 15. || The electric potential along the xaxis is V = 100e-2x  V, where 
x is in meters. What is Ex at (a) x = 1.0 m and (b) x = 2.0 m?

 16. | What is the potential difference �V34 in Figure ex29.16?

Section 29.5 Capacitance and Capacitors

 17. | Two 3.0@cm@diameter aluminum electrodes are spaced 
0.50 mm apart. The electrodes are connected to a 100 V battery.

 a. What is the capacitance?
 b. What is the magnitude of the charge on each electrode?
 18. || You need to construct a 100 pF capacitor for a science proj

ect. You plan to cut two L * L metal squares and insert small 
spacers between their corners. The thinnest spacers you have are 
0.20 mm thick. What is the proper value of L?

 19. | A switch that connects a battery to a 10 mF capacitor is 
closed. Several seconds later you find that the capacitor plates 
are charged to {30 mC. What is the emf of the battery?

 20. | A 6 mF capacitor, a 10 mF capacitor, and a 16 mF capacitor 
are connected in series. What is their equivalent capacitance?

 21. | A 6 mF capacitor, a 10 mF capacitor, and a 16 mF capacitor 
are connected in parallel. What is their equivalent capacitance?

 22. | You need a capacitance of 50 mF, but you don’t happen to 
have a 50 mF capacitor. You do have a 30 mF capacitor. What 
additional capacitor do you need to produce a total capacitance 
of 50 mF? Should you join the two capacitors in parallel or in 
series?

 23. | You need a capacitance of 50 mF, but you don’t happen to 
have a 50 mF capacitor. You do have a 75 mF capacitor. What 
additional capacitor do you need to produce a total capacitance of 
50 mF? Should you join the two capacitors in parallel or in series?

 24. || What is the capacitance of 
the two metal spheres shown in 
Figure ex29.24?

Section 29.6 The Energy Stored in a Capacitor

 25. || To what potential should you charge a 1.0 mF capacitor to 
store 1.0 J of energy?

 26. || Figure ex29.26 shows Q versus t for a 2.0 mF capacitor. Draw a 
graph showing UC versus t.

 27. | Capacitor 2 has half the capacitance and twice the potential 
difference as capacitor 1. What is the ratio UC1/UC2?

 28. || 50 pJ of energy is stored in a 2.0 cm * 2.0 cm * 2.0 cm 
region of uniform electric field. What is the electric field  
strength?

 29. || A 2.0cmdiameter parallelplate capacitor with a spacing of 
0.50 mm is charged to 200 V. What are (a) the total energy stored 
in the electric field and (b) the energy density?

Section 29.7 Dielectrics

 30. || Two 4.0 cm * 4.0 cm metal plates are separated by a 0.20mm
thick piece of Teflon.

 a. What is the capacitance?
 b. What is the maximum potential difference between the 

plates?
 31. || Two 5.0 mm *  5.0 mm electrodes with a 0.10mmthick 

sheet of Mylar between them are attached to a 9.0 V battery. 
Without disconnecting the battery, the Mylar is withdrawn. 
(Very small spacers keep the electrode separation unchanged.) 
What are the charge, potential difference, and electric field 
(a) before and (b) after the Mylar is withdrawn?

 32. || A typical cell has a layer of negative charge on the inner 
surface of the cell wall and a layer of positive charge on the 
outside surface, thus making the cell wall a capacitor. What is 
the capacitance of a 50μmdiameter cell with a 7.0nmthick 
cell wall whose dielectric constant is 9.0? Because the cell’s 
diameter is much larger than the wall thickness, it is reasonable 
to ignore the curvature of the cell and think of it as a parallel
plate capacitor.

Problems

 33. || a.  Which point in Figure P29.33, A or B, has a larger electric 
potential?

   b. What is the potential difference between A and B?

 34. ||| The electric field in a region of space is Ex = -1000x V/m, 
where x is in meters.

 a. Graph Ex versus x over the region -1 m … x … 1 m.
 b. What is the potential difference between xi = -20 cm and 

xf = 30 cm?
 35. || The electric field in a region of space is Ex = 5000x V/m, 

where x is in meters.
 a. Graph Ex versus x over the region -1 m … x … 1 m.
 b. Find an expression for the potential V at position x. As a ref

erence, let V = 0 V at the origin.
 c. Graph V versus x over the region -1 m … x … 1 m.
 36. || An infinitely long cylinder of radius R has linear charge den

sity l. The potential on the surface of the cylinder is V0, and 
the electric field outside the cylinder is Er = l/2pP0 r. Find the 
potential relative to the surface at a point that is distance r from 
the axis, assuming r 7 R.
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 37. || Figure P29.37 is an edge view of three charged metal elec
trodes. Let the left electrode be the zero point of the electric po
tential. What are V and E

u

 at (a) x = 0.5 cm, (b) x = 1.5 cm, and 
(c) x = 2.5 cm?

 38. || Figure P29.38 shows a graph of V versus x in a region of 
space. The potential is independent of y and z. What is Ex at 
(a) x = -2 cm, (b) x = 0 cm, and (c) x = 2 cm?

 39. || Use the onaxis potential of a charged disk from Chapter 28 to 
find the onaxis electric field of a charged disk.

 40. || a.  Use the methods of Chapter 28 to find the potential at dis
tance x on the axis of the charged rod shown in Figure P29.40.

   b.  Use the result of part a to find the electric field at distance 
x on the axis of a rod.

 41. | Determine the magnitude and direction of the electric field at 
points 1 and 2 in Figure P29.41.

 42. || It is postulated that the radial electric field of a group of charges 
falls off as Er = C/rn, where r is the distance from the center of the 
group and n is an unknown exponent. To test this hypothesis, you 
make a field probe consisting of two needle tips spaced 1.00 mm 
apart. You orient the needles so that a line between the tips points to 
the center of the charges, then use a voltmeter to read the potential 
difference between the tips. After you take measurements at several 
distances from the center of the group, your data are as follows:

Distance (cm) Potential difference (mV)

2.0 34.7

4.0 6.6

6.0 2.1

8.0 1.2

10.0 0.6

  Use an appropriate graph of the data to determine the constants 
C and n.

 43. || The electric potential in a region of space is V = (150x2 -
200y2) V, where x and y are in meters. What are the strength and 
direction of the electric field at (x, y) = (2.0 m, 2.0 m)? Give the 
direction as an angle cw or ccw (specify which) from the positive 
xaxis.

 44. || The electric potential in a region of space is V = 200/ 2x2 + y2, where x and y are in meters. What are the strength 
and direction of the electric field at (x, y) = (2.0 m, 1.0 m)? 
Give the direction as an angle cw or ccw (specify which) from 
the positive xaxis.

 45. || Metal sphere 1 has a positive charge of 6.0 nC. Metal sphere 
2, which is twice the diameter of sphere 1, is initially uncharged. 
The spheres are then connected together by a long, thin metal 
wire. What are the final charges on each sphere?

 46. || The metal spheres in Figure P29.46 are charged to {300 V. 
Draw this figure on your paper, then draw a plausible contour 
map of the potential, showing and labeling the -300 V, -200 V, 
-100 V, p , 300 V equipotential surfaces.

 47. || The potential at the center of a 4.0cmdiameter copper sphere 
is 500 V, relative to V = 0 V at infinity. How much excess 
charge is on the sphere?

 48. || Two 2.0 cm * 2.0 cm metal electrodes are spaced 1.0 mm 
apart and connected by wires to the terminals of a 9.0 V battery.

 a. What are the charge on each electrode and the potential dif
ference between them?

  The wires are disconnected, and insulated handles are used to 
pull the plates apart to a new spacing of 2.0 mm.

 b. What are the charge on each electrode and the potential dif
ference between them?

 49. | Two 2.0 cm * 2.0 cm metal electrodes are spaced 1.0 mm 
apart and connected by wires to the terminals of a 9.0 V battery.

 a. What are the charge on each electrode and the potential dif
ference between them?

  While the plates are still connected to the battery, insulated han
dles are used to pull them apart to a new spacing of 2.0 mm.

 b. What are the charge on each electrode and the potential dif
ference between them?

 50. | Find expressions for the equivalent capacitance of (a) N iden
tical capacitors C in parallel and (b) N identical capacitors C in 
series.

 51. | What is the equivalent capacitance of the three capacitors in 
Figure P29.51?

 52. | What is the equivalent capacitance of the three capacitors in 
Figure P29.52?

 53. | What are the charge on and the 
potential difference across each 
capacitor in Figure P29.53?
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 54. || What are the charge on and the potential difference across 
each capacitor in Figure P29.54?

 55. || What are the charge on and the potential difference across 
each capacitor in Figure P29.55?

 56. | You have three 12 mF capacitors. Draw diagrams showing 
how you could arrange all three so that their equivalent capaci
tance is (a) 4.0 mF, (b) 8.0 mF, (c) 18 mF, and (d) 36 mF.

 57. | Six identical capacitors with capacitance C are connected as 
shown in Figure P29.57.

 a. What is the equivalent capacitance of these six capacitors?
 b. What is the potential difference between points a and b?

 58. || What is the capacitance of the two electrodes in Figure P29.58?
  Hint: Can you think of this as a combination of capacitors?
 59. || Initially, the switch in Figure P29.59 is in position A and ca

pacitors C2 and C3 are uncharged. Then the switch is flipped to 
position B. Afterward, what are the charge on and the potential 
difference across each capacitor?

 60. || A battery with an emf of 60 V is connected to the two capaci
tors shown in Figure P29.60. Afterward, the charge on capacitor 2 
is 450 mC. What is the capacitance of capacitor 2?

 61. || Capacitors C1 = 10 mF and C2 = 20 mF are each charged 
to 10 V, then disconnected from the battery without chang
ing the charge on the capacitor plates. The two capacitors are 
then connected in parallel, with the positive plate of C1 con
nected to the negative plate of C2 and vice versa. Afterward, 
what are the charge on and the potential difference across each 
capacitor?

 62. || An isolated 5.0 mF parallelplate capacitor has 4.0 mC of 
charge. An external force changes the distance between the elec
trodes until the capacitance is 2.0 mF. How much work is done 
by the external force?

 63. || A parallelplate capacitor is constructed from two 10 cm *  
10 cm electrodes spaced 1.0 mm apart. The capacitor plates are 
charged to {10 nC, then disconnected from the battery.

 a. How much energy is stored in the capacitor?
 b. Insulating handles are used to pull the capacitor plates apart 

until the spacing is 2.0 mm. Now how much energy is stored 
in the capacitor?

 c. Energy must be conserved. How do you account for the dif
ference between a and b?

 64. || What is the energy density in the electric field at the surface of 
a 1.0cmdiameter sphere charged to a potential of 1000 V?

 65. || The 90 mF capacitor in a defibrillator unit supplies an average 
of 6500 W of power to the chest of the patient during a discharge 
lasting 5.0 ms. To what voltage is the capacitor charged?

 66. | The flash unit in a camera uses a 3.0 V battery to charge a 
capacitor. The capacitor is then discharged through a flash
lamp. The discharge takes 10 ms, and the average power dis
sipated in the flashlamp is 10 W. What is the capacitance of 
the capacitor?

 67. || You need to use a motor and lightweight cable to lift a 2.0 kg 
copper weight to a height of 3.0 m. To do so, you’ve decided to 
use a 1000 V power supply to charge a capacitor, then run the 
motor by letting the capacitor discharge through it. If the mo
tor is 90% efficient (that is, 10% of the energy supplied to the 
motor is dissipated as heat), what minimum capacitance do you 
need?

 68. || Two 5.0cmdiameter metal disks separated by a 0.50mm
thick piece of Pyrex glass are charged to a potential difference of 
1000 V. What are (a) the surface charge density on the disks and 
(b) the surface charge density on the glass?

 69. || A typical cell has a membrane potential of -70 mV, mean
ing that the potential inside the cell is 70 mV less than the 
potential outside due to a layer of negative charge on the inner 
surface of the cell wall and a layer of positive charge on the 
outer surface. This effectively makes the cell wall a charged 
capacitor. Because a cell’s diameter is much larger than the 
wall thickness, it is reasonable to ignore the curvature of the 
cell and think of it as a parallelplate capacitor. How much 
energy is stored in the electric field of a 50mmdiameter 
cell with a 7.0nmthick cell wall whose dielectric constant 
is 9.0?

 70. ||| A nerve cell in its resting state has a membrane potential of 
-70 mV, meaning that the potential inside the cell is 70 mV 
less than the potential outside due to a layer of negative charge 
on the inner surface of the cell wall and a layer of positive 
charge on the outer surface. This effectively makes the cell 
wall a charged capacitor. When the nerve cell fires, sodium 
ions, Na+ , flood through the cell wall to briefly switch the 
membrane potential to +40 mV. Model the central body of 
a nerve cell—the soma—as a 50mmdiameter sphere with 
a 7.0nmthick cell wall whose dielectric constant is 9.0. 
Because a cell’s diameter is much larger than the wall thick
ness, it is reasonable to ignore the curvature of the cell and 
think of it as a parallelplate capacitor. How many sodium ions 
enter the cell as it fires?

 71. || Derive Equation 29.34 for the induced surface charge density 
on the dielectric in a capacitor.

 72. || A vacuuminsulated parallelplate capacitor with plate separa
tion d has capacitance C0. What is the capacitance if an insulator 
with dielectric constant k and thickness is d/2 slipped between 
the electrodes?
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In Problems 73 through 75 you are given the equation(s) used to solve 
a problem. For each of these, you are to
 a. Write a realistic problem for which this is the correct equation(s).
 b. Finish the solution of the problem.

 73. 2az V/m = -  
dV

dz
, where a is a constant with units of V/m2

  V(z = 0) = 10 V

 74. 400 nC = (100 V) C

  C =
(8.85 * 10-12 C2/N m2)(0.10 m * 0.10 m)

d

 75. 1 1

3 mF
+

1

6 mF 2 -1

+ C = 4 mF

Challenge Problems

 76. The electric potential in a region of space is V = 100(x2 - y2) V, 
where x and y are in meters.

 a. Draw a contour map of the potential, showing and labeling 
the -400 V, -100 V, 0 V, +100 V, and +400 V equipoten
tial surfaces.

 b. Find an expression for the electric field E
u

 at position (x, y).
 c. Draw the electric field lines on your diagram of part a.
 77. An electric dipole at the origin consists of two charges {q 

spaced distance s apart along the yaxis.
 a. Find an expression for the potential V(x, y) at an arbitrary 

point in the xyplane. Your answer will be in terms of q, s, x, 
and y.

 b. Use the binomial approximation to simplify your result of 
part a when s V x and s V y.

 c. Assuming s V x and y, find expressions for Ex and Ey, the 
components of E

u

 for a dipole.
 d. What is the onaxis field E

u

? Does your result agree with 
Equation 26.11?

 e. What is the field E
u

 on the bisecting axis? Does your result 
agree with Equation 26.12?

 78. Charge is uniformly distributed with charge density r inside a 
very long cylinder of radius R. Find the potential difference be
tween the surface and the axis of the cylinder.

 79. Consider a uniformly charged sphere of radius R and total 
charge Q. The electric field Eout  outside the sphere (r Ú R) is 
simply that of a point charge Q. In Chapter 27, we used Gauss’s 

law to find that the electric field Ein inside the sphere (r … R) is 
radially outward with field strength

 Ein =
1

4pP0
 
Q

R3 r

 a. The electric potential Vout  outside the sphere is that of a point 
charge Q. Find an expression for the electric potential Vin at 
position r inside the sphere. As a reference, let Vin = Vout  at 
the surface of the sphere.

 b. What is the ratio Vcenter /Vsurface?
 c. Graph V versus r for 0 … r … 3R.
 80. a.  Find an expression for the capacitance of a spherical capaci-

tor, consisting of concentric spherical shells of radii R1 (inner 
shell) and R2 (outer shell).

 b. A spherical capacitor with a 1.0 mm gap between the shells 
has a capacitance of 100 pF. What are the diameters of the 
two spheres?

 81. Highfrequency signals are often trans
mitted along a coaxial cable, such as 
the one shown in Figure CP29.81. For 
example, the cable TV hookup coming 
into your home is a coaxial cable. The 
signal is carried on a wire of radius R1 
while the outer conductor of radius R2 
is grounded (i.e., at V = 0 V). An in
sulating material fills the space between 
them, and an insulating plastic coating goes around the outside.

 a. Find an expression for the capacitance per meter of a coaxial 
cable. Assume that the insulating material between the cylin
ders is air.

 b. Evaluate the capacitance per meter of a cable having R1 =  
0.50 mm and R2 = 3.0 mm.

 82. Each capacitor in Figure CP29.82 has capacitance C. What is the 
equivalent capacitance between points a and b?

SToP To ThiNK ANSwerS

Stop to Think 29.1: 5.0 V. The potentials add, but �V2 = -1.0 V 
because the charge escalator goes down by 1.0 V.

Stop to Think 29.2: c. Ey is the negative of the slope of the Vversusy 
graph. Ey is positive because E

u

 points up, so the graph has a negative 
slope. Ey has constant magnitude, so the slope has a constant value.

Stop to Think 29.3: c. E
u

 points “downhill,” so V must decrease from 
right to left. E is larger on the left than on the right, so the contour 
lines must be closer together on the left.

Stop to Think 29.4: b. Because of the connecting wire, the three 
spheres form a single conductor in electrostatic equilibrium. Thus all 

points are at the same potential. The electric field of a sphere is related 
to the sphere’s potential by E = V/R, so a smallerradius sphere has 
a larger E.

Stop to Think 29.5: (Ceq)b + (Ceq)a � (Ceq)d + (Ceq)c. (Ceq)b =   
3 mF + 3 mF = 6 mF. The equivalent capacitance of series capacitors 
is less than any capacitor in the group, so (Ceq)c 6 3 mF. Only d re
quires any real calculation. The two 4 mF capacitors are in series and 
are equivalent to a single 2 mF capacitor. The 2 mF equivalent capaci
tor is in parallel with 3 mF, so (Ceq)d = 5 mF.

R1

Coaxial cable

R2

Figure CP29.81 

a

b

Figure CP29.82 



Conservation of Current
Any charge entering one end of a wire 
must be balanced by an equal charge 
leaving the other end.

Same I

Iin
Iout

As a consequence, you’ll learn that the current 
is the same from one end of a wire to the 
other. At a junction, the sum of the currents 
entering must equal the sum of the currents 
leaving.

30 Current and Resistance

 Looking Ahead The goal of Chapter 30 is to learn how and why charge moves through a conductor as what we call a current.

A lightbulb filament is a very thin 
tungsten wire—coiled repeatedly 
to increase its length—heated 
until it glows by passing a current 
through it.

A Model of Conduction
You’ll learn to use a model of conduction 
to understand many of the properties of 
current.
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A nonuniform surface charge 
distribution, typically estab-
lished when the ends of a wire 
are connected to the terminals 
of a battery, creates an electric 
field in the wire.

The electric field pushes the sea of electrons 
opposite the field direction, but the electrons 
undergo frequent collisions with the positive 
ions of the crystal lattice. The net result is a 
slow but sustained flow of charges at the 
drift speed vd. This is the electron current.

For historical reasons, current is defined to be 
in the direction that positive charges would 
move. Current is measured in amperes, 
where one ampere (or one amp) is a charge 
flow rate of 1 coulomb per second.

Current
Current is the flow of charge through a 
conductor. But we can’t see the charges 
moving, so how do we know they do? 

You’ll learn that the flow of charge can be 
recognized by its effects. These include heat-
ing wires and deflecting compass needles. 
These are indicators of a current.

 Looking Back
Section 26.6 The motion of charge in  
an electric field

Resistance
Collisions of electrons with the crystal 
lattice cause conductors to resist the flow 
of charges. You’ll learn to use:
■	 Resistivity, an electric property of a 

material, such as copper.
■	 Resistance, a property of a specific 

wire based on its geometry and the 
material of which it is made.

Heater wires, such as 
those in toasters, are 
made of an alloy called 
nichrome because 
its resistivity is larger 
than that of ordinary 
metals.

Ohm’s Law
You’ll discover 
that the current I 
through a conduc-
tor is determined 
by the potential 
difference �V  across 
the conductor and 
the conductor’s 
resistance R.

Ohm’s law is I =
�V

 R

R�V

I

I
�

�

 Looking Back
Section 29.2 Sources of potential
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30.1 The Electron Current
We’ve focused thus far on situations in which charges are in static equilibrium. Now 
it’s time to explore the controlled motion of charges—currents. Let’s begin with a 
simple question: How does a capacitor get discharged? FiguRE 30.1a shows a charged 
capacitor. If, as in FiguRE 30.1b, we connect the two capacitor plates with a metal wire, 
a conductor, the plates quickly become neutral; that is, the capacitor has been dis-
charged. Charge has somehow moved from one plate to the other.

In Chapter 25, we defined current as the motion of charges. It would seem that the 
capacitor is discharged by a current in the connecting wire. Let’s see what else we can  
observe. FiguRE 30.1c shows that the connecting wire gets warm. If the wire is very thin 
in places, such as the thin filament in a lightbulb, the wire gets hot enough to glow. 
The current-carrying wire also deflects a compass needle, an observation we’ll explore 
further in Chapter 32. For now, we will use “makes the wire warm” and “deflects a 
compass needle” as indicators that a current is present in a wire.

Charge Carriers
The charges that move in a conductor are called the charge carriers. FiguRE 30.2 
reminds you of the microscopic model of a metallic conductor that we introduced 
in Chapter 25. The outer electrons of metal atoms—the valence electrons—are only 
weakly bound to the nuclei. When the atoms come together to form a solid, the 
outer electrons become detached from their parent nuclei to form a fluid-like sea of 
electrons that can move through the solid. That is, electrons are the charge carriers 
in metals. Notice that the metal as a whole remains electrically neutral. This is not a 
perfect model because it overlooks some quantum effects, but it provides a reason-
ably good description of current in a metal.

NOTE  Electrons are the charge carriers in metals. Other conductors, such as 
ionic solutions or semiconductors, have different charge carriers. We will focus 
on metals because of their importance to circuits, but don’t think that electrons are 
always the charge carrier. 

The conduction electrons in a metal, like molecules in a gas, undergo random ther-
mal motions, but there is no net motion. We can change that by pushing on the sea 
of electrons with an electric field, causing the entire sea of electrons to move in one 
direction like a gas or liquid flowing through a pipe. This net motion, which takes 
place at what we’ll call the drift speed vd, is superimposed on top of the random 
thermal motions of the individual electrons. The drift speed is quite small. As we’ll 
establish later, 10-4 m/s is a fairly typical value for vd.

As FiguRE 30.3 shows, the entire sea of electrons moves from left to right at the drift 
speed. Suppose an observer could count the electrons as they pass through this cross 
section of the wire. Let’s define the electron current ie to be the number of electrons 
per second that pass through a cross section of a wire or other conductor. The units 

Ions (the metal atoms minus valence 
electrons) occupy fixed positions in the lattice.

The conduction electrons are free to move 
around. They are bound to the solid as a 
whole, not to any particular atom.

The metal 
as a whole is
electrically
neutral.

FiguRE 30.2 The sea of electrons is a 
model of how conduction electrons 
behave in a metal.

FiguRE 30.1 A capacitor is discharged by a metal wire.
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of electron current are s-1. Stated another way, the number Ne of electrons that pass 
through the cross section during the time interval �t is

 Ne = ie �t (30.1)

Increasing the drift speed will increase the number of electrons passing through a 
wire each second—that is, will increase the electron current. To quantify this idea, 
FiguRE 30.4 shows the sea of electrons moving through a wire at the drift speed vd. The 
electrons passing through a particular cross section of the wire during the interval �t 
are shaded. How many of them are there?

vd

Electrons

Wire

The electron current ie is the number of
electrons passing through this cross section
of the wire per second.

The sea of electrons flows through a
wire at the drift speed vd, much
like a fluid flowing through a pipe.

FiguRE 30.3 The electron current.

vd

There are ne electrons
per cubic meter of wire.

The sea of electrons
is moving to the right
with drift speed vd.

Wire at time t
A cross section
of the wire

The sea of electrons has moved
forward distance �x � vd �t.
The shaded volume is V � A � x.

Wire at time t � �t

Cross-section area A �x

FiguRE 30.4 The sea of electrons moves to the right with drift speed vd.

TABLE 30.1 Conduction-electron 
density in metals

Metal
Electron  

density (m�3)

Aluminum 6.0 * 1028

Copper 8.5 * 1028

Iron 8.5 * 1028

Gold 5.9 * 1028

Silver 5.8 * 1028

Stop to think 30.1  These four wires are made of the same metal. Rank in order, from 
largest to smallest, the electron currents ia to id.

(a) (c)(b) (d)

r1
22r

2v 2vv
v

rr

The electrons travel distance � x = vd �t to the right during the interval �t, form-
ing a cylinder of charge with volume V = A � x. If the number density of conduction 
electrons is ne electrons per cubic meter, then the total number of electrons in the 
cylinder is

 Ne = neV = ne A � x = ne Avd �t (30.2)

Comparing Equations 30.2 and 30.1, you can see that the electron current in the wire is

 ie = ne Avd (30.3)

You can increase the electron current—the number of electrons per second moving 
through the wire—by making them move faster, by having more of them per cubic meter, 
or by increasing the size of the pipe they’re flowing through. That all makes sense.

In most metals, each atom contributes one valence electron to the sea of electrons. 
Thus the number of conduction electrons per cubic meter is the same as the number of 
atoms per cubic meter, a quantity that can be determined from the metal’s mass density. 
Table 30.1 gives values of the conduction-electron density ne for several metals.

AssEss This is an incredible number of electrons to pass through a 
section of the wire every second. The number is high not because 
the sea of electrons moves fast—in fact, it moves at literally a 
snail’s pace—but because the density of electrons is so enormous. 
This is a fairly typical electron current.

ExAMpLE 30.1  The size of the electron current
What is the electron current in a 2.0-mm-diameter copper wire if 
the electron drift speed is 1.0 * 10-4 m/s?

sOLvE This is a straightforward calculation. The wire’s cross-
section area is A = pr2 = 3.14 * 10-6 m2. Table 30.1 gives the 
electron density for copper as 8.5 * 1028 m-3. Thus we find 

 ie = ne Avd = 2.7 * 1019 s-1
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Discharging a Capacitor
FiguRE 30.5 shows a capacitor charged to {16 nC as it is being discharged by a 2.0-mm-
diameter, 20-cm-long copper wire. How long does it take to discharge the capacitor? 
We’ve noted that a fairly typical drift speed of the electron current through a wire is 
10-4 m/s. At this rate, it would take 2000 s, or about a half hour, for an electron to 
travel 20 cm. We should have time to go for a cup of coffee while we wait for the 
discharge to occur!

But this isn’t what happens. As far as our senses are concerned, the discharge 
of a capacitor by a copper wire is instantaneous. So what’s wrong with our simple 
calculation?

The important point we overlooked is that the wire is already full of electrons. As an 
analogy, think of water in a hose. If the hose is already full of water, adding a drop to 
one end immediately (or very nearly so) pushes a drop out the other end. Likewise with 
the wire. As soon as the excess electrons move from the negative capacitor plate into the 
wire, they immediately (or very nearly so) push an equal number of electrons out the other 
end of the wire and onto the positive plate, thus neutralizing it. We don’t have to wait for 
electrons to move all the way through the wire from one plate to the other. Instead, we just 
need to slightly rearrange the charges on the plates and in the wire.

Let’s do a rough estimate of how much rearrangement is needed and how long the 
discharge takes. Using the conduction-electron density of copper in Table 30.1, we can 
calculate that there are 5 * 1022 conduction electrons in the wire. The negative plate 
in FiguRE 30.6, with Q = -16 nC, has 1011 excess electrons, far fewer than in the wire. 
In fact, the length of copper wire needed to hold 1011 electrons is a mere 4 * 10-13 m, 
only about 1% the diameter of an atom.

The instant the wire joins the capacitor plates together, the repulsive forces between 
the excess 1011 electrons on the negative plate cause them to push their way into the 
wire. As they do, 1011 electrons are squeezed out of the final 4 * 10-13 m of the wire 
and onto the positive plate. If the electrons all move together, and if they move at the 
typical drift speed of 10-4 m/s—both less than perfect assumptions but fine for mak-
ing an estimate—it takes 4 * 10-9 s, or 4 ns, to move 4 * 10-13 m and discharge the 
capacitor. And, indeed, this is the right order of magnitude for how long the electrons 
take to rearrange themselves so that the capacitor plates are neutral.

Stop to think 30.2  Why does the light in a room come on instantly when you flip a 
switch several meters away?

30.2 Creating a Current
Suppose you want to slide a book across the table to your friend. You give it a quick 
push to start it moving, but it begins slowing down because of friction as soon as you 
take your hand off. The book’s kinetic energy is transformed into thermal energy, 
leaving the book and the table slightly warmer. The only way to keep the book moving 
at a constant speed is to continue pushing it.

As FiguRE 30.7 shows, the sea of electrons is similar to the book. If you push the sea 
of electrons, you create a current of electrons moving through the conductor. But the 
electrons aren’t moving in a vacuum. Collisions between the electrons and the atoms of 
the metal transform the electrons’ kinetic energy into the thermal energy of the metal, 
making the metal warmer. (Recall that “makes the wire warm” is one of our indicators 
of a current.) Consequently, the sea of electrons will quickly slow down and stop unless 
you continue pushing. How do you push on electrons? With an electric field!

One of the important conclusions of Chapter 27 was that E
u

= 0
u

 inside a conduc-
tor in electrostatic equilibrium. But a conductor with electrons moving through it is 
not in electrostatic equilibrium. An electron current is a nonequilibrium motion of 
charges sustained by an internal electric field.
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FiguRE 30.5 How long does it take to 
discharge this capacitor?
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FiguRE 30.6 The sea of electrons needs 
only a minuscule rearrangement to 
discharge the capacitor.
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sustained by pushing on the sea of 
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Thus the quick answer to  “What creates a current?” is “An electric field.” But why 
is there an electric field in a current-carrying wire?

Establishing the Electric Field in a Wire
FiguRE 30.8a shows two metal wires attached to the plates of a charged capacitor. The 
wires are conductors, so some of the charges on the capacitor plates become spread out 
along the wires as a surface charge. (Remember that all excess charge on a conductor 
is located on the surface.)

This is an electrostatic situation, with no current and no charges in motion. 
Consequently—because this is always true in electrostatic equilibrium—the electric 
field inside the wire is zero. Symmetry requires there to be equal amounts of charge to 
either side of each point to make E

u

= 0
u

 at that point; hence the surface charge density 
must be uniform along each wire except near the ends (where the details need not con-
cern us). We implied this uniform density in Figure 30.8a by drawing equally spaced 
+  and -  symbols along the wire. Remember that a positively charged surface is a 

surface that is missing electrons.

���

��

�

��

���

���

�

�

�

�

�

�

� � �

� �

�

� �

� � �

� � �

�

�

�

�

�

�

Negative plate

Positive plate(a)

There is no current 
because electrons can’t 
move across the gap.

Uniform surface
charge density

E � 0
r r

E � 0 at all points
inside the wire.

r r

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��

��

����

����

����

����

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(b)

The surface charge
density now varies
along the wire.

The wire is neutral at
the midpoint between
the capacitor plates.

The nonuniform surface charge density
creates an electric field inside the wire.

E
r

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

FiguRE 30.8 The surface charge on the wires before and after they are connected.

Now we connect the ends of the wires together. What happens? The excess electrons 
on the negative wire suddenly have an opportunity to move onto the positive wire that is 
missing electrons. Within a very brief interval of time (�10-9 s), the sea of electrons shifts 
slightly and the surface charge is rearranged into a nonuniform distribution like that shown 
in FiguRE 30.8b. The surface charge near the positive and negative plates remains strongly 
positive and negative because of the large amount of charge on the capacitor plates, but the 
midpoint of the wire, halfway between the positive and negative plates, is now electrically 
neutral. The new surface charge density on the wire varies from positive at the positive 
capacitor plate through zero at the midpoint to negative at the negative plate.

This nonuniform distribution of surface charge has an extremely important conse-
quence. FiguRE 30.9 shows a section from a wire on which the surface charge density 
becomes more positive toward the left and more negative toward the right. Calculating 
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FiguRE 30.9 A varying surface charge distribution creates an internal electric field inside 
the wire.
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the exact electric field is complicated, but we can understand the basic idea if we model 
this section of wire with four circular rings of charge.

In Chapter 26, we found that the on-axis field of a ring of charge

	■ Points away from a positive ring, toward a negative ring;
	■ Is proportional to the amount of charge on the ring; and
	■ Decreases with distance away from the ring.

The field at the midpoint between rings A and B is well approximated as E
u

net � E
u

A + E
u

B. 
Ring A has more charge than ring B, so E

u

net points away from A.
The analysis of Figure 30.9 leads to a very important conclusion:

A nonuniform distribution of surface charges along a wire creates a net electric 
field inside the wire that points from the more positive end of the wire toward 
the more negative end of the wire. This is the internal electric field E

u

 that 
pushes the electron current through the wire.

Note that the surface charges are not the moving charges of the current. Further, the 
current—the moving charges—is inside the wire, not on the surface. In fact, as the 
next example shows, the electric field inside a current-carrying wire can be established 
with an extremely small amount of surface charge.

positive ring is E+ = 0.0050 V/m. The distance z = 1.0 mm is 
half the ring spacing.

sOLvE Chapter 26 found the on-axis electric field of a ring of 
charge Q to be

 E+ =
1

4pP0
 

zQ

(z 2 + R2)3/2

Thus the charge needed to produce the desired field is

  Q =
4pP0(z

2 + R2)3/2

z
 E+

  =
((0.0010 m)2 + (0.0010 m)2)3/2

(9.0 * 109 N m2/C2)(0.0010 m)
 (0.0050 V/m)

  = 1.6 * 10-18 C

AssEss The electric field of a ring of charge is largest at z � R, so 
these two rings are a simple but reasonable model for estimating 
the electric field inside a 2.0-mm-diameter wire. We find that the 
surface charge needed to establish the electric field is very small. 
A mere 10 electrons have to be moved from one ring to the other 
to charge them to {1.6 * 10-18 C. The resulting electric field is 
sufficient to drive a sizable electron current through the wire.

ExAMpLE 30.2  The surface charge on a current-carrying wire
Table 26.1 in Chapter 26 gave a typical electric field strength in 
a current-carrying wire as 0.01 N/C or, as we would now say, 
0.01 V/m. (We’ll verify this value later in this chapter.) Two 
2.0-mm-diameter rings are 2.0 mm apart. They are charged to 
{Q. What value of Q causes the electric field at the midpoint to 
be 0.010 V/m?

MODEL Use the on-axis electric field of a ring of charge from 
Chapter 26.

visuALizE FiguRE 30.10 shows the two rings. Both contribute 
equally to the field strength, so the electric field strength of the 

FiguRE 30.10 The electric field of two charged rings.
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A Model of Conduction
Electrons don’t just magically move through a wire as a current. They move because 
an electric field inside the wire—a field created by a nonuniform surface charge 
density on the wire—pushes on the sea of electrons to create the electron current. 
The field has to keep pushing because the electrons continuously lose energy in 
collisions with the positive ions that form the structure of the solid. These collisions 
provide a drag force, much like friction.

We will model the conduction electrons—those electrons that make up the sea of 
electrons—as free particles moving through the lattice of the metal. In the absence of 
an electric field, the electrons, like the molecules in a gas, move randomly in all direc-
tions with a distribution of speeds. If we assume that the average thermal energy of the 
electrons is given by the same 3

2 kBT  that applies to an ideal gas, we can calculate that 
the average electron speed at room temperature is �105 m/s. This estimate turns out, 
for quantum physics reasons, to be not quite right, but it correctly indicates that the 
conduction electrons are moving very fast.

However, an individual electron does not travel far before colliding with an ion and 
being scattered to a new direction. FiguRE 30.11a shows that an electron bounces back 
and forth between collisions, but its average velocity is zero, and it undergoes no net 
displacement. This is similar to molecules in a container of gas.

Suppose we now turn on an electric field. FiguRE 30.11b shows that the steady electric 
force causes the electrons to move along parabolic trajectories between collisions. 
Because of the curvature of the trajectories, the negatively charged electrons begin 
to drift slowly in the direction opposite the electric field. The motion is similar to a 
ball moving in a pinball machine with a slight downward tilt. An individual electron 
ricochets back and forth between the ions at a high rate of speed, but now there is a 
slow net motion in the “downhill” direction. Even so, this net displacement is a very 
small effect superimposed on top of the much larger thermal motion. Figure 30.11b 
has greatly exaggerated the rate at which the drift would occur.

Suppose an electron just had a collision with an ion and has rebounded with veloc-
ity v

u

0. The acceleration of the electron between collisions is

 ax =
F
m

=
eE
m

 (30.4)

where E is the electric field strength inside the wire and m is the mass of the electron. 
(We’ll assume that E

u

 points in the negative x-direction.) The field causes the 
x-component of the electron’s velocity to increase linearly with time:

 vx = v0x + ax �t = v0x +
eE
m

 �t (30.5)

The electron speeds up, with increasing kinetic energy, until its next collision with 
an ion. The collision transfers much of the electron’s kinetic energy to the ion and thus 
to the thermal energy of the metal. This energy transfer is the “friction” that raises 
the temperature of the wire. The electron then rebounds, in a random direction, with 
a new initial velocity v

u

0, and starts the process all over.
FiguRE 30.12a on the next page shows how the velocity abruptly changes due to a col-

lision. Notice that the acceleration (the slope of the line) is the same before and after the 
collision. FiguRE 30.12b follows an electron through a series of collisions. You can see 
that each collision “resets” the velocity. The primary observation we can make from 
Figure 30.12b is that this repeated process of speeding up and colliding gives the elec-
tron a nonzero average velocity. The magnitude of the electron’s average velocity, 
due to the electric field, is the drift speed vd of the electron.

If we observe all the electrons in the metal at one instant of time, their average 
velocity is

 vd = vx = v0x +
eE
m

 �t (30.6)

FiguRE 30.11 A microscopic view of a 
conduction electron moving through a 
metal.
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where a bar over a quantity indicates an average value. The average value of v0x, 
the velocity with which an electron rebounds after a collision, is zero. We know this 
because, in the absence of an electric field, the sea of electrons moves neither right 
nor left.

The quantity �t is the time between collisions, so the average value of �t is the mean 
time between collisions, which we designate t. The mean time between collisions, anal-
ogous to the mean free path between collisions in the kinetic theory of gases, depends on 
the metal’s temperature but can be considered a constant in the equations below.

Thus the average speed at which the electrons are pushed along by the electric field is

 vd =
et
m

 E (30.7)

We can complete our model of conduction by using Equation 30.7 for vd in the 
electron-current equation ie = ne Avd. Upon doing so, we find that an electric field 
strength E in a wire of cross-section area A causes an electron current

 ie =
neetA

m
 E (30.8)

The electron density ne and the mean time between collisions t are properties of the 
metal.

Equation 30.8 is the main result of this model of conduction. We’ve found that the 
electron current is directly proportional to the electric field strength. A stronger 
electric field pushes the electrons faster and thus increases the electron current.

FiguRE 30.12 The electron velocity as a function of time.
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t

�t

 t =
mvd

eE
= 2.8 * 10-14 s

The average number of collisions per second is the inverse:

 Collision rate =  
1
t

= 3.5 * 1013 s-1

AssEss This was another straightforward calculation simply to il-
lustrate the incredibly large collision rate of conduction electrons.

ExAMpLE 30.3  Collisions in a copper wire
Example 30.1 found the electron current to be 2.7 * 1019 s-1 
for a 2.0-mm-diameter copper wire in which the electron drift 
speed is 1.0 * 10-4 m/s. If an internal electric field of 0.020 V/m 
is needed to sustain this current, a typical value, how many col-
lisions per second, on average, do electrons in copper undergo?

MODEL Use the model of conduction.

sOLvE From Equation 30.7, the mean time between collisions is

30.3 Current and Current Density
We have developed the idea of a current as the motion of electrons through metals. 
But the properties of currents were known and used for a century before the discovery 
that electrons are the charge carriers in metals. We need to connect our ideas about the 
electron current to the conventional definition of current.
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Because the coulomb is the unit of charge, and because currents are charges in 
motion, it seemed quite natural in the 19th century to define current as the rate, in 
coulombs per second, at which charge moves through a wire. If Q is the total amount 
of charge that has moved past a point in the wire, we define the current I in the wire to 
be the rate of charge flow:

 I K
dQ

dt
 (30.9)

For a steady current, which will be our primary focus, the amount of charge delivered 
by current I during the time interval �t is

 Q = I �t (30.10)

The SI unit for current is the coulomb per second, which is called the ampere A:

 1 ampere = 1 A K 1 coulomb per second = 1 C/s

The current unit is named after the French scientist André Marie Ampère, who made 
major contributions to the study of electricity and magnetism in the early 19th century. 
The amp is an informal abbreviation of ampere. Household currents are typically � 1 A. 
For example, the current through a 100 watt lightbulb is 0.85 A, meaning that 0.85 C 
of charge flow through the bulb every second. Currents in consumer electronics, such 
as stereos and computers, are much less. They are typically measured in milliamps 
(1 mA = 10-3 A) or microamps (1 mA = 10-6 A).

Equation 30.10 is closely related to Equation 30.1, which said that the number of 
electrons delivered during a time interval �t is Ne = ie �t. Each electron has charge 
of magnitude e; hence the total charge of Ne electrons is Q = eNe. Consequently, the 
conventional current I and the electron current ie are related by

 I =
Q

�t
=

eNe 

�t
= eie (30.11)

Because electrons are the charge carriers, the rate at which charge moves is e times the 
rate at which the electrons move.

 I = eie = (1.60 * 10-19 C)(2.7 * 1019 s-1) = 4.3 A

The amount of charge passing through the wire in 1 h = 3600 s is

 Q = I �t = (4.3 A)(3600 s) = 16,000 C

ExAMpLE 30.4  The current in a copper wire
The electron current in the copper wire of Examples 30.1 and 
30.3 was 2.7 * 1019 electrons/s. What is the current I? How much 
charge flows through a cross section of the wire each hour?

sOLvE The current in the wire is

In one sense, the current I and the electron current ie differ by only a scale 
factor. The electron current ie, the rate at which electrons move through a wire, is more 
fundamental because it looks directly at the charge carriers. The current I, the rate at 
which the charge of the electrons moves through the wire, is more practical because 
we can measure charge more easily than we can count electrons.

Despite the close connection between ie and I, there’s one extremely important 
distinction. Because currents were known and studied before it was known what the 
charge carriers are, the direction of current is defined to be the direction in which 
positive charges seem to move. Thus the direction of the current I is the same as that 
of the internal electric field E

u

. But because the charge carriers turned out to be nega-
tive, at least for a metal, the direction of the current I in a metal is opposite the 
direction of motion of the electrons.
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The situation shown in FiguRE 30.13 may seem disturbing, but it makes no real differ-
ence. A capacitor is discharged regardless of whether positive charges move toward 
the negative plate or negative charges move toward the positive plate. The primary 
application of current is the analysis of circuits, and in a circuit—a macroscopic de-
vice—we simply can’t tell what is moving through the wires. All of our calculations 
will be correct and all of our circuits will work perfectly well if we choose to think of 
current as the flow of positive charge. The distinction is important only at the micro-
scopic level.

The Current Density in a Wire
We found the electron current in a wire of cross-section area A to be ie = ne Avd. Thus 
the current I is

 I = eie = neevd A (30.12)

The quantity neevd depends on the charge carriers and on the internal electric field that 
determines the drift speed, whereas A is simply a physical dimension of the wire. It 
will be useful to separate these quantities by defining the current density J in a wire 
as the current per square meter of cross section:

 J = current density K
I

A
= neevd (30.13)

The current density has units of A/m2. A specific piece of metal, shaped into a wire 
with cross-section area A, carries current I = JA.

FiguRE 30.13 The current I is opposite 
the direction of motion of the electrons 
in a metal.
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The electron drift speed is thus

 vd =
J

nee
= 1.3 * 10-4 m/s = 0.13 mm/s

where the conduction-electron density for aluminum was taken 
from Table 30.1.

AssEss We earlier used 1.0 * 10-4 m/s as a typical electron drift 
speed. This example shows where that value comes from.

ExAMpLE 30.5  Finding the electron drift speed
A 1.0 A current passes through a 1.0-mm-diameter aluminum 
wire. What are the current density and the drift speed of the elec-
trons in the wire?

sOLvE We can find the drift speed from the current density. The 
current density is

 J =
I

A
=

I

pr2 =
1.0 A

p(0.00050 m)2 = 1.3 * 106 A/m2

Conservation of Current
FiguRE 30.14 shows two lightbulbs in the wire connecting two charged capacitor plates. 
Both bulbs glow as the capacitor is discharged. How do you think the brightness of 
bulb A compares to that of bulb B? Is one brighter than the other? Or are they equally 
bright? Think about this before going on.

You might have predicted that B is brighter than A because the current I, which 
carries positive charges from plus to minus, reaches B first. In order to be glowing, 
B must use up some of the current, leaving less for A. Or perhaps you realized that 
the actual charge carriers are electrons, moving from minus to plus. The conventional 
current I may be mathematically equivalent, but physically it’s the negative electrons 
rather than positive charge that actually move. Because the electron current gets to A 
first, you might have predicted that A is brighter than B.

In fact, both bulbs are equally bright. This is an important observation, one that demands 
an explanation. After all, “something” gets used up to make the bulb glow, so why don’t 
we observe a decrease in the current? Current is the amount of charge moving through 
the wire per second. There are only two ways to decrease I: either decrease the amount of 
charge, or decrease the charge’s drift speed through the wire. Electrons, the charge carriers, 
are charged particles. The lightbulb can’t destroy electrons without violating both the law 

FiguRE 30.14 How does the brightness 
of bulb A compare to that of bulb B?
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of conservation of mass and the law of conservation of charge. Thus the amount of charge 
(i.e., the number of electrons) cannot be changed by a lightbulb.

Do charges slow down after passing through the bulb? This is a little trickier, so 
consider the fluid analogy shown in FiguRE 30.15. Suppose the water flows into one end 
at a rate of 2.0 kg/s. Is it possible that the water, after turning a paddle wheel, flows out 
the other end at a rate of only 1.5 kg/s? That is, does turning the paddle wheel cause 
the water current to decrease?

We can’t destroy water molecules any more than we can destroy electrons, we can’t 
increase the density of water by pushing the molecules closer together, and there’s nowhere 
to store extra water inside the pipe. Each drop of water entering the left end pushes a drop 
out the right end; hence water flows out at the exactly the same rate it flows in.

The same is true for electrons in a wire. The rate of electrons leaving a light-
bulb (or any other device) is exactly the same as the rate of electrons entering the 
lightbulb. The current does not change. A lightbulb doesn’t “use up” current, but it 
does—like the paddlewheel in the fluid analogy—use energy. The kinetic energy of 
the electrons is dissipated by their collisions with the ions in the lattice of the metal 
(the atomic-level friction) as the electrons move through the atoms, making the wire 
hotter until, in the case of the lightbulb filament, it glows. The lightbulb affects the 
amount of current everywhere in the wire, a process we’ll examine later in the chapter, 
but the current doesn’t change as it passes through the bulb.

There are many issues that we’ll need to look at before we can say that we under-
stand how currents work, and we’ll take them one at a time. For now, we draw a first 
important conclusion:

Law of conservation of current  The current is the same at all points in a current-
carrying wire.

The law of conservation of current is really a practical application of the law of con-
servation of charge.

FiguRE 30.15 Water flowing through a 
pipe.

If water flows
in at 2.0 kg/s . . .

. . . it also must
flow out at 2.0 kg/s.

Paddle wheel

FiguRE 30.16 The sum of the currents into a junction must equal the sum of the currents 
leaving the junction.

I

The current in a wire is
the same at all points.

I � constant

(a)

Input currents

Output currents

Junction

(b)

� Iin � � Iout

FiguRE 30.16a summarizes the law of conservation in a single wire. But what about 
FiguRE 30.16b, where two wires merge into one and another wire splits into two? A point 
where a wire branches is called a junction. The presence of a junction doesn’t change 
our basic reasoning. We cannot create or destroy electrons in the wire, and neither can 
we store them in the junction. The rate at which electrons flow into one or many wires 
must be exactly balanced by the rate at which they flow out of others. For a junction, 
the law of conservation of charge requires that

 a Iin = a Iout (30.14)

where, as usual, the � symbol means summation.

30.3 . Current and Current Density    877
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This basic conservation statement—that the sum of the currents into a junction 
equals the sum of the currents leaving—is called Kirchhoff’s junction law. The junc-
tion law, together with Kirchhoff’s loop law that you met in Chapter 29, will play an 
important role in circuit analysis in the next chapter.

Stop to think 30.4 
 What are the magnitude and the 

direction of the current in the fifth wire?
6 A

4 A

3 A

2 A

?

30.4 Conductivity and Resistivity
The current density J = neevd is directly proportional to the electron drift speed vd. 
We earlier used the microscopic model of conduction to find that the drift speed is 
vd = etE/m, where t is the mean time between collisions and m is the mass of an 
electron. Combining these, we find the current density is

 J = neevd = nee1etE
m 2 =

nee
2t

m
 E (30.15)

The quantity nee
2t/m depends only on the conducting material. According to Equa-

tion 30.15, a given electric field strength will generate a larger current density in a 
material with a larger electron density ne or longer times t between collisions than in 
materials with smaller values. In other words, such a material is a better conductor of 
current.

It makes sense, then, to define the conductivity s of a material as

 s = conductivity =
nee

2t

m
 (30.16)

Conductivity, like density, characterizes a material as a whole. All pieces of copper 
(at the same temperature) have the same value of s, but the conductivity of copper is 
different from that of aluminum. Notice that the mean time between collisions t can 
be inferred from measured values of the conductivity.

With this definition of conductivity, Equation 30.15 becomes

 J = sE (30.17)

This is a result of fundamental importance. Equation 30.17 tells us three things:

 1. Current is caused by an electric field exerting forces on the charge carriers.
 2. The current density, and hence the current I = JA, depends linearly on the 

strength of the electric field. To double the current, you must double the strength 
of the electric field that pushes the charges along.

 3. The current density also depends on the conductivity of the material. Different 
conducting materials have different conductivities because they have different 
values of the electron density and, especially, different values of the mean time 
between electron collisions with the lattice of atoms.

The value of the conductivity is affected by the structure of a metal, by any impuri-
ties, and by the temperature. As the temperature increases, so do the thermal vibrations 
of the lattice atoms. This makes them “bigger targets” and causes collisions to be more 
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frequent, thus lowering t and decreasing the conductivity. Metals conduct better at 
low temperatures than at high temperatures.

For many practical applications of current it will be convenient to use the inverse 
of the conductivity, called the resistivity:

 r = resistivity =
1
s

=
m

nee
2t

 (30.18)

The resistivity of a material tells us how reluctantly the electrons move in response to 
an electric field. Table 30.2 gives measured values of the resistivity and conductivity 
for several metals and for carbon. You can see that they vary quite a bit, with copper 
and silver being the best two conductors.

The units of conductivity, from Equation 30.17, are those of J/E, namely A C/N m2. 
These are clearly awkward. In the next section we will introduce a new unit called the 
ohm, symbolized by � (uppercase Greek omega). It will then turn out that resistivity 
has units of � m and conductivity has units of �-1 m-1.

This woman is measuring her percentage 
body fat by gripping a device that sends 
a small electric current through her body. 
Because muscle and fat have different 
resistivities, the amount of current allows 
the fat-to-muscle ratio to be determined.

TABLE 30.2 Resistivity and conductivity of conducting 
materials

Material
Resistivity 

 (�  m)
Conductivity 

(��1 m�1)

Aluminum 2.8 * 10-8 3.5 * 107

Copper 1.7 * 10-8 6.0 * 107

Gold 2.4 * 10-8 4.1 * 107

Iron 9.7 * 10-8 1.0 * 107

Silver 1.6 * 10-8 6.2 * 107

Tungsten 5.6 * 10-8 1.8 * 107

Nichrome* 1.5 * 10-6 6.7 * 105

Carbon 3.5 * 10-5 2.9 * 104

*Nickel-chromium alloy used for heating wires.

ExAMpLE 30.6  The electric field in a wire
A 2.0-mm-diameter aluminum wire carries a current of 800 mA. What is 
the electric field strength inside the wire?

sOLvE The electric field strength is

E =
J

s
=

I

spr2 =
0.80 A

(3.5 * 107 �-1 m-1)p(0.0010 m)2 = 0.0072 V/m

where the conductivity of aluminum was taken from Table 30.2.

AssEss This is a very small field in comparison with those we calculated 
in Chapters 25 and 26. This calculation justifies the claim in Table 26.1 
that a typical electric field strength inside a current-carrying wire is 
�0.01 V/m. It takes very few surface charges on a wire to create the 
weak electric field necessary to push a considerable current through the 
wire. The reason, once again, is the enormous value of the charge-carrier 
density ne. Even though the electric field is very tiny and the drift speed 
is agonizingly slow, a wire can carry a substantial current due to the vast 
number of charge carriers able to move.

superconductivity
In 1911, the Dutch physicist Kamerlingh Onnes was studying the conductivity of metals 
at very low temperatures. Scientists had just recently discovered how to liquefy helium, 
and this opened a whole new field of low-temperature physics. As we noted above, metals 
become better conductors (i.e., they have higher conductivity and lower resistivity) at 
lower temperatures. But the effect is gradual. Onnes, however, found that mercury sud-
denly and dramatically loses all resistance to current when cooled below a temperature of 
4.2 K. This complete loss of resistance at low temperatures is called superconductivity.

Later experiments established that the resistivity of a superconducting metal is not 
just small, it is truly zero. The electrons are moving in a frictionless environment, 
and charge will continue to move through a superconductor without an electric field. 
Superconductivity was not understood until the 1950s, when it was explained as being 
a specific quantum effect.

Superconducting wires can carry enormous currents because the wires are not 
heated by electrons colliding with the atoms. Very strong magnetic fields can be 
created with superconducting electromagnets, but applications remained limited 
for many decades because all known superconductors required temperatures less 
than 20 K. This situation changed dramatically in 1986 with the discovery of high-
temperature superconductors. These ceramic-like materials are superconductors at 
temperatures as “high” as 125 K. Although -150�C may not seem like a high tem-

Superconductors have unusual magnetic 
properties. Here a small permanent 
magnet levitates above a disk of the high-
temperature superconductor YBa2Cu3O7 
that  has been cooled to liquid-nitrogen 
temperature.
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perature to you, the technology for producing such temperatures is simple and inex-
pensive. Thus many new superconductor applications are likely to appear in coming 
years.

FiguRE 30.17 The current I is related to 
the potential difference �V.

�V

L

I

Area A

E
r

E
r

The potential difference
creates an electric field
inside the conductor
and causes charges to
flow through it.

Equipotential surfaces
are perpendicular to the
electric field.

V� V�

Stop to think 30.5 
 Rank in order, from largest to smallest, the current densities Ja to Jd 

in these four wires.

30.5 Resistance and Ohm’s Law
FiguRE 30.17 shows a section of a conductor in which an electric field E

u

 is creating 
current I by pushing the charge carriers. We found in Chapter 29 that an electric field 
requires a potential difference. Further, the electric field points “downhill” and is per-
pendicular to the equipotential surfaces. Thus it should come as no surprise that cur-
rent is related to potential difference.

Recall that the electric field component Es is related to the potential by Es = -dV/ds. 
We’re interested in only the electric field strength E = � Es �, so the minus sign isn’t 
relevant. The field strength is constant inside a constant-diameter conductor (a conse-
quence of conservation of current); thus

 E =
�V

�s
=

�V

L
 (30.19)

where �V = V+ - V- is the potential difference between the ends of a conductor of 
length L. Equation 30.19 is an important result: The electric field strength inside a 
constant-diameter conductor—the field that drives the current forward—is simply the 
potential difference between the ends of the conductor divided by its length.

Now we can use E to find the current I in the conductor. We found earlier that the 
current density is J = sE, and the current in a wire of cross-section area A is related 
to the current density by I = JA. Thus

 I = JA = AsE =
A
r

 E (30.20)

where r = 1/s is the resistivity.
Combining Equations 30.19 and 30.20, we see that the current is

 I =
A

rL
 �V  (30.21)

That is, the current is proportional to the potential difference between the ends 
of a conductor. We can cast Equation 30.21 into a more useful form if we define the 
resistance of a conductor to be

 R =
rL

A
 (30.22)

The resistance is a property of a specific conductor because it depends on the conductor’s 
length and diameter as well as on the resistivity of the material from which it is made.

The SI unit of resistance is the ohm, defined as

 1 ohm = 1 � K 1 V/A

The ohm is the basic unit of resistance, although kilohms (1 k� = 103 �) and meg-
ohms (1 M� = 106 �) are widely used. You can now see from Equation 30.22 why 
the resistivity r has units of � m while the units of conductivity s are �-1 m-1.

(a) (c)(b) (d)

r2rrr I 2I 2I I

s 2ss
s



30.5 . Resistance and Ohm’s Law    881

The resistance of a wire or conductor increases as the length increases. This seems 
reasonable because it should be harder to push electrons through a longer wire than a 
shorter one. Decreasing the cross-section area also increases the resistance. This again 
seems reasonable because the same electric field can push more electrons through a 
fat wire than a skinny one.

NOTE  It is important to distinguish between resistivity and resistance. Resistivity 
describes just the material, not any particular piece of it. Resistance characterizes a 
specific piece of the conductor with a specific geometry. The relationship between 
resistivity and resistance is analogous to that between mass density and mass. 

The definition of resistance allows us to write the current through a conductor as

 I =
�V

R
  (Ohm>s law) (30.23)

In other words, establishing a potential difference �V  between the ends of a conductor 
of resistance R creates an electric field that, in turn, causes a current I = �V/R through 
the conductor. The smaller the resistance, the larger the current. This simple relation-
ship between potential difference and current is known as Ohm’s law.

the data in FiguRE 30.18 is as expected. Using the slope of the best-
fit line, 0.50 mA/V, we find the leaf’s resistance to be

 R =
1

0.50 mA/V
= 2.0 * 106 

V

A
= 2.0 * 106 �

We can now use Equation 30.22 to find the resistivity:

 r =
AR

L
=

(5.0 * 10-6 m2)(2.0 * 106 �)

0.20 m
= 50 �  m

ExAMpLE 30.7  The resistivity of a leaf
Resistivity measurements on the leaves of corn plants are a good 
way to assess stress and the plant’s overall health. To determine 
resistivity, the current is measured when a voltage is applied be-
tween two electrodes placed 20 cm apart on a leaf that is 2.5 cm 
wide and 0.20 mm thick. The following data are obtained by using 
several different voltages:

Voltage (V) Current (μA)

 5.0  2.3

10.0  5.1

15.0  7.5

20.0 10.3

25.0 12.2

What is the resistivity of the leaf tissue?

MODEL Model the leaf as a bar of length L =  0.20 m with a 
rectangular cross-section area A = (0.025 m)(2.0 * 10-4 m) =  
5.0 * 10-6 m2. The potential difference creates an electric field 
inside the leaf and causes a current. The current and the potential 
difference are related by Ohm’s law.

sOLvE We can find the leaf’s resistivity r from its resistance R. 
Ohm’s law

 I =
1

R
 �V

tells us that a graph of current versus potential difference should 
be a straight line through the origin with slope 1/R. The graph of 

�V (V)

3

0
0 5 10 15

Best-fit line

y � 0.50x � 0.02

20 25

6

9

12

I (mA)

FiguRE 30.18 A graph of current versus potential difference.

AssEss This is a huge resistivity compared to metals, but that’s 
not surprising; the conductivity of the salty fluids in a leaf is cer-
tainly much less than that of a metal. In fact, this value is typical 
of the resistivities of plant and animal tissues.

Batteries and Current
Our study of current has focused on the discharge of a capacitor because we can 
understand where all the charges are and how they move. By contrast, we can’t easily 
see what’s happening to the charges inside a battery. Nonetheless, current in most 
“real” circuits is driven by a battery rather than by a capacitor. Just like the wire 
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discharging a capacitor, a wire connecting two battery terminals gets warm, deflects 
a compass needle, and makes a lightbulb glow brightly. These indicators tell us that 
charges flow through the wire from one terminal to the other.

The one major difference between a capacitor and a battery is the duration of the 
current. The current discharging a capacitor is transient, ceasing as soon as the excess 
charge on the capacitor plates is removed. In contrast, the current supplied by a battery 
is sustained.

We can use the charge escalator model of a battery to understand why. FiguRE 30.19 
shows the charge escalator creating a potential difference �Vbat by lifting positive 
charge from the negative terminal to the positive terminal. Once at the positive termi-
nal, positive charges can move through the wire as current I. In essence, the charges 
are “falling downhill” through the wire, losing the energy they gained on the escalator. 
This energy transfer to the wire warms the wire.

Eventually the charges find themselves back at the negative terminal of the bat-
tery, where they can ride the escalator back up and repeat the journey. A battery, 
unlike a charged capacitor, has an internal source of energy (the chemical reactions) 
that keeps the charge escalator running. It is the charge escalator that sustains the 
current in the wire by providing a continually renewed supply of charge at the battery 
terminals.

An important consequence of the charge escalator model, one you learned in 
the previous chapter, is that a battery is a source of potential difference. It is true 
that charges flow through a wire connecting the battery terminals, but current is a 
consequence of the battery’s potential difference. The battery’s emf is the cause; 
current, heat, light, sound, and so on are all effects that happen when the battery is 
used in certain ways.

Distinguishing cause and effect will be vitally important for understanding how a 
battery functions in a circuit. The reasoning is as follows:

 1. A battery is a source of potential difference �Vbat. An ideal battery has �Vbat = E.
 2. The battery creates a potential difference �Vwire = �Vbat between the ends of a 

wire.
 3. The potential difference �Vwire causes an electric field E = �Vwire /L in the wire.
 4. The electric field establishes a current I = JA = sAE in the wire.
 5. The magnitude of the current is determined jointly by the battery and the wire’s 

resistance R to be I = �Vwire/R.

More on Ohm’s Law
Circuit textbooks often write Ohm’s law as V = IR rather than I = �V/R. This can 
be misleading until you have sufficient experience with circuit analysis. First, Ohm’s 
law relates the current to the potential difference between the ends of the conductor. 
Engineers and circuit designers mean “potential difference” when they use the symbol 
V, but the symbol is easily misinterpreted as simply “the potential.” Second, V = IR or 
even �V = IR suggests that a current I causes a potential difference �V. As you have 
seen, current is a consequence of a potential difference; hence I = �V/R is a better 
description of cause and effect.

Despite its name, Ohm’s law is not a law of nature. It is limited to those materials 
whose resistance R remains constant—or very nearly so—during use. The materials to 
which Ohm’s law applies are called ohmic. FiguRE 30.20a shows that the current through 
an ohmic material is directly proportional to the potential difference. Doubling the po-
tential difference doubles the current. Metal and other conductors are ohmic devices.

Because the resistance of metals is small, a circuit made exclusively of metal wires 
would have enormous currents and would quickly deplete the battery. It is useful to 
limit the current in a circuit with ohmic devices, called resistors, whose resistance 
is significantly larger than the metal wires. Resistors are made with poorly conduct-
ing materials, such as carbon, or by depositing very thin metal films on an insulating 
substrate.

FiguRE 30.19 A battery’s charge escalator 
causes a sustained current in a wire.
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FiguRE 30.20 Current-versus-potential-
difference graphs for ohmic and 
nonohmic materials.
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Some materials and devices are nonohmic, meaning that the current through 
the device is not directly proportional to the potential difference. For example, 
FiguRE 30.20b shows the I@versus@�V  graph of a commonly used semiconductor 
device called a diode. Diodes do not have a well-defined resistance. Batteries, 
where �V = E is determined by chemical reactions, and capacitors, where the 
relationship between I and �V  differs from that of a resistor, are important 
nonohmic devices.

We can identify three important classes of ohmic circuit materials:

 1. Wires are metals with very small resistivities r and thus very small resistances 
(R V 1 �). An ideal wire has R = 0 �; hence the potential difference between 
the ends of an ideal wire is �V = 0 V even if there is a current in it. We will 
usually adopt the ideal-wire model of assuming that any connecting wires in a 
circuit are ideal.

 2. Resistors are poor conductors with resistances usually in the range 101 to 106 �. 
They are used to control the current in a circuit. Most resistors in a circuit have 
a specified value of R, such as 500 �. The filament in a lightbulb (a tungsten 
wire with a high resistance due to an extremely small cross-section area A) func-
tions as a resistor as long as it is glowing, but the filament is slightly nonohmic 
because the value of its resistance when hot is larger than its room-temperature 
value.

 3. Insulators are materials such as glass, plastic, or air. An ideal insulator has 
R = � �; hence there is no current in an insulator even if there is a potential 
difference across it (I = �V/R = 0 A). This is why insulators can be used to 
hold apart two conductors at different potentials. All practical insulators have 
R W 109 � and can be treated, for our purposes, as ideal.

NOTE  Ohm’s law will be an important part of circuit analysis in the next chapter 
because resistors are essential components of almost any circuit. However, it is 
important that you apply Ohm’s law only to the resistors and not to anything 
else. 

FiguRE 30.21a shows a resistor connected to a battery with current-carrying wires. 
Current must be conserved; hence the current I through the resistor is the same as the 
current in each wire. Because the wire’s resistance is much less than that of the resis-
tor, Rwire V Rresist, the potential difference �Vwire = IRwire between the ends of each 
wire is much less than the potential difference �Vresist = IRresist across the resistor. 
FiguRE 30.21b shows the potential along the wire-resistor-wire combination. You can see 
the large voltage drop, or potential difference, across the resistor. The voltage drops 
across the two wires are much smaller.

If we assume ideal wires with Rwire = 0 �, then �Vwire = 0 V and all the voltage 
drop occurs across the resistor. In this ideal-wire model, shown in FiguRE 30.21c, the 
segments of the graph corresponding to the wires are horizontal. As we begin circuit 
analysis in the next chapter, we will assume that all wires are ideal unless stated 
otherwise. Thus our analysis will be focused on the resistors.

The resistors used in circuits range from 
a few ohms to millions of ohms of 
resistance.

FiguRE 30.21 The potential along a wire-
resistor-wire combination.
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The current is constant along the
wire-resistor-wire combination.
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V
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(c)

The voltage drop along the wires is much
less than across the resistor because the
wires have much less resistance.

In the ideal-wire model, with Rwire � 0 �,
there is no voltage drop along the wires.
All the voltage drop is across the resistor;
thus �Vresist � �Vbat.  

Wire Resistor Wire

V

Wire Resistor Wire

�Vresist�Vbat

�Vbat

�

�

E

ExAMpLE 30.8  A battery and a resistor
What resistor would have a 15 mA current if connected across the terminals of a 
9.0 V battery?

MODEL Assume the resistor is connected to the battery with ideal wires.

sOLvE Connecting the resistor to the battery with ideal wires makes �Vresist =  
�Vbat = 9.0 V. From Ohm’s law, the resistance giving a 15 mA current is

R =
�Vresist

I
=

9.0 V

0.015 A
= 600 �

30.5 . Resistance and Ohm’s Law    883
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Stop to think 30.6 
 A wire connects the 

positive and negative terminals of a battery. 
Two identical wires connect the positive 
and negative terminals of an identical bat-
tery. Rank in order, from largest to smallest, 
the currents Ia to Id at points a to d.

�

�

E

�

�a

b

c

Identical wires

Identical batteries

dE

sOLvE The measured current of 0.87 mA is Itotal, the current trav-
eling from the battery to the arm and later back to the battery. This 
current splits at the junction between the two resistors. Kirchhoff’s 
junction law, for the conservation of current, requires

 Itotal = Imuscle + Ifat

The current through each resistor can be found from Ohm’s law: 
I = �V/R. Each resistor has �V = 0.60 V because each is con-
nected to the battery terminals by lossless, ideal wires, but they 
have different resistances.

Let the fraction of muscle tissue be x; the fraction of fat is 
then 1 - x. If the cross-section area of the upper arm is A = pr2, 
then the muscle resistor has Amuscle = xA while the fat resistor has 
Afat = (1 - x)A. The resistances are related to the resistivities and 
the geometry by

 Rmuscle =
rmuscle L

Amuscle
=

rmuscle L

xpr2

 Rfat =
rfat L

Afat
=

rfat L

(1 - x)pr2

The currents are thus

 Imuscle =
�V

Rmuscle
=

xpr2�V

rmuscle L
= 0.93x mA

 Ifat =
�V

Rfat
=

(1 - x)pr2�V

rfat L
= 0.48(1 - x) mA

The sum of these is the total current:

  Itotal = 0.87mA = 0.93x mA + 0.48(1 - x) mA

  = (0.48 + 0.45x) mA

Solving, we find x = 0.87. This subject’s upper arm is 87% mus-
cle tissue, 13% fat tissue.

AssEss The percentages seem reasonable for a healthy adult. A 
real measurement of body fat requires a more detailed model of 
the human body, because the current passes through both arms and 
across the chest, but the principles are the same.

ChALLENgE ExAMpLE 30.9  Measuring body composition
The woman in the photo on page 879 is gripping a device that 
measures body fat. To illustrate how this works, FiguRE 30.22 
models an upper arm as part muscle and part fat, showing the 
resistivities of each. Nonconductive elements, such as skin and 
bone, have been ignored. This is obviously not a picture of the 
actual structure, but gathering all the fat tissue together and all the 
muscle tissue together is a model that predicts the arm’s electrical 
character quite well.

A 0.87 mA current is recorded when a 0.60 V potential differ-
ence is applied across an upper arm having the dimensions shown 
in the figure. What are the percentages of muscle and fat in this 
person’s upper arm?

FiguRE 30.22 A simple model for the resistance of an arm.

Fat tissue
25 � m

Muscle tissue
13 � m

8.0 cm

25 cm

FiguRE 30.23 Circuit for passing current 
through the upper arm.

MODEL Model the muscle and the fat as separate resistors con-
nected to a 0.60 V battery. Assume the connecting wires to be 
ideal, with no “loss” of potential along the wires.

visuALizE FiguRE 30.23 shows the circuit, with the side-by-side 
muscle and fat resistors connected to the two terminals of the 
battery.
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s u M M A R y
The goal of Chapter 30 has been to learn how and why charge moves through a conductor as what we call a current.

current, I
drift speed, vd

electron current, ie

mean time between  
collisions, t

ampere, A
current density, J
law of conservation of current
junction
Kirchhoff’s junction law

conductivity, s
resistivity, r
superconductivity
resistance, R
ohm, �

Ohm’s law
resistor
ideal wire
ideal insulator

Terms and Notation

Current is a nonequilibrium motion of 
charges sustained by an electric field.  
Nonuniform surface charge density creates  
an electric field in a wire. The electric field  
pushes the electron current ie in a direction 
opposite to E

u

. The conventional current I is 
in the direction in which positive charge  
seems to move.

Conservation of Current
The current is the same at any two  
points in a wire.
At a junction,

 a Iin = a Iout

This is Kirchhoff’s junction law.

Electron current

 ie = rate of electron flow
 Ne = ie �t

Conventional current

 I = rate of charge flow = eie

 Q = I �t

Current density

 J = I/A

general principles

E

I

ie

A

r

�
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An electric field E in a conductor causes a current density 
J = neevd = sE, where the conductivity is

s =
nee

2t

m

The resistivity is r = 1/s.

Sea of electrons

Conduction electrons move freely  
around the positive ions that form  
the atomic lattice.

Conduction

An electric field causes a slow drift  
at speed vd to be superimposed on 
the rapid but random thermal  
motions of the electrons.

Collisions of electrons with the ions transfer energy 
to the atoms. This makes the wire warm and lightbulbs  
glow. More collisions mean a higher resistivity r and 
a lower conductivity s.

The drift speed is vd =
et

m
 E, where t is the mean time between 

collisions. 

The electron current is related to the drift speed by

ie = ne Avd

where ne is the electron density.

important Concepts
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Resistors
A potential difference �Vwire between the ends 
of a wire creates an electric field inside the wire:

Ewire =
�Vwire

L
The electric field causes a current in the direction  
of decreasing potential. 

The size of the current is

I =
�Vwire

R

where R =
rL

A
 is the wire’s resistance.

This is Ohm’s law.

Applications
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C O N C E p T u A L  Q u E s T i O N s

 1. Suppose a time machine has just brought you forward from 
1750 (post-Newton but pre-electricity) and you’ve been shown 
the lightbulb demonstration of FiguRE Q30.1. Do observations or 
simple measurements you might make—measurements that must 
make sense to you with your 1700s knowledge—prove that some-
thing is flowing through the wires? Or might you advance an alter-
native hypothesis for why the bulb is glowing? If your answer to 
the first question is yes, state what observations and/or measure-
ments are relevant and the reasoning from which you can infer that 
something must be flowing. If not, can you offer an alternative 
hypothesis about why the bulb glows that could be tested?

 2. Consider a lightbulb circuit such as the one in FiguRE Q30.1.
 a. From the simple observations and measurements you can 

make on this circuit, can you distinguish a current composed 
of positive charge carriers from a current composed of nega-
tive charge carriers? If so, describe how you can tell which it 
is. If not, why not?

 b. One model of current is the motion of discrete charged par-
ticles. Another model is that current is the flow of a continu-
ous charged fluid. Do simple observations and measurements 
on this circuit provide evidence in favor of either one of these 
models? If so, describe how.

 3. The electron drift speed in a wire is exceedingly slow—typically 
only a fraction of a millimeter per second. Yet when you turn on 
a flashlight switch, the light comes on almost instantly. Resolve 
this apparent paradox.

 4. Is FiguRE Q30.4 a possible surface charge distribution for a 
current-carrying wire? If so, in which direction is the current? If 
not, why not?

 5. What is the difference between current and current density?
 6. All the wires in FiguRE Q30.6 are made 

of the same material and have the same 
diameter. Rank in order, from largest to 
smallest, the currents Ia to Id. Explain.

 7. Both batteries in FiguRE Q30.7 are identical and all lightbulbs are 
the same. Rank in order, from brightest to least bright, the bright-
ness of bulbs a to c. Explain.

 8. Both batteries in FiguRE Q30.8 are identical and all lightbulbs are 
the same. Rank in order, from brightest to least bright, the bright-
ness of bulbs a to c. Explain.

 9. The wire in FiguRE Q30.9 consists of 
two segments of different diame-
ters but made from the same metal. 
The current in segment 1 is I1.

 a. Compare the currents in the two 
segments. That is, is I2 greater than, less than, or equal to I1? 
Explain.

 b. Compare the current densities J1 and J2 in the two segments.
 c. Compare the electric field strengths E1 and E2 in the two 

segments.
 d. Compare the drift speeds (vd)1 and (vd)2 in the two segments.
 10. The current in a wire is doubled. What happens to (a) the current 

density, (b) the conduction-electron density, (c) the mean time 
between collisions, and (d) the electron drift speed? Are each of 
these doubled, halved, or unchanged? Explain.

 11. The wires in FiguRE Q30.11 are all made of the same material. 
Rank in order, from largest to smallest, the resistances Ra to Re 
of these wires. Explain.

 12. Which, if any, of these statements are true? (More than one may 
be true.) Explain.

 a. A battery supplies the energy to a circuit.
 b. A battery is a source of potential difference; the potential 

difference between the terminals of the battery is always the 
same.

 c. A battery is a source of current; the current leaving the bat-
tery is always the same.
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E x E R C i s E s  A N D  p R O B L E M s

Problems labeled  integrate material from earlier chapters.

Exercises

Section 30.1 The Electron Current

 1. || The electron drift speed in a 1.0-mm-diameter gold wire is 
5.0 * 10-5 m/s. How long does it take 1 mole of electrons to 
flow through a cross section of the wire?

 2. || 1.0 * 1020 electrons flow through a cross section of a 2.0-mm-
diameter iron wire in 5.0 s. What is the electron drift speed?

 3. || Electrons flow through a 1.6-mm-diameter aluminum wire at 
2.0 * 10-4 m/s. How many electrons move through a cross sec-
tion of the wire each day?

 4. || 1.0 * 1016 electrons flow through a cross section of silver 
wire in 320 ms with a drift speed of 8.0 * 10-4 m/s. What is the 
diameter of the wire?

Section 30.2 Creating a Current

 5. | The electron drift speed is 2.0 * 10-4 m/s in a metal with a 
mean time between collisions of 5.0 * 10-14 s. What is the elec-
tric field strength?

 6. || a.  How many conduction electrons are there in a 1.0-mm-
diameter gold wire that is 10 cm long?

   b.  How far must the sea of electrons in the wire move to de-
liver -32 nC of charge to an electrode?

 7. || The mean time between collisions in iron is 4.2* 10-15 s. 
What electron current is driven through a 1.8-mm-diameter iron 
wire by a 0.065 V/m electric field?

 8. || A 2.0 * 10-3 V/m electric field creates a 3.5 * 1017  electrons/s 
current in a 1.0-mm-diameter aluminum wire. What are (a) the 
drift speed and (b) the mean time between collisions for electrons 
in this wire?

Section 30.3 Current and Current Density

 9. | The wires leading to and from a 0.12-mm-diameter lightbulb 
filament are 1.5 mm in diameter. The wire to the filament carries 
a current with a current density of 4.5 * 105 A/m2. What are 
(a) the current and (b) the current density in the filament?

 10. || The current in a 100 watt lightbulb is 0.85 A. The filament 
inside the bulb is 0.25 mm in diameter.

 a. What is the current density in the filament?
 b. What is the electron current in the filament?
 11. || In an integrated circuit, the current density in a 2.5@mm@thick *  

75@mm@wide gold film is 7.5 * 105 A/m2. How much charge 
flows through the film in 15 min?

 12. | When a nerve cell fires, charge is transferred across the cell 
membrane to change the cell’s potential from negative to posi-
tive. For a typical nerve cell, 9.0 pC of charge flows in a time of 
0.50 ms. What is the average current through the cell membrane?

 13. | The current in an electric hair dryer is 10.0 A. How many 
electrons flow through the hair dryer in 5.0 min?

 14. || 2.0 * 1013 electrons flow through a transistor in 1.0 ms. What 
is the current through the transistor?
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 15. | In an ionic solution, 5.0 * 1015 positive ions with charge +2e 
pass to the right each second while 6.0 * 1015 negative ions with 
charge -e pass to the left. What is the current in the solution?

 16. | A hollow copper wire with an inner diameter of 1.0 mm and 
an outer diameter of 2.0 mm carries a current of 10 A. What is 
the current density in the wire?

 17. || The current in a 2.0 mm * 2.0 mm square aluminum wire is 
2.5 A. What are (a) the current density and (b) the electron drift 
speed?

Section 30.4 Conductivity and Resistivity

 18. | What is the mean time between collisions for electrons in an 
aluminum wire and in an iron wire?

 19. | The electric field in a 2.0 mm * 2.0 mm square aluminum 
wire is 0.012 V/m. What is the current in the wire?

 20. | A 15-cm-long nichrome wire is connected across the termi-
nals of a 1.5 V battery.

 a. What is the electric field inside the wire?
 b. What is the current density inside the wire?
 c. If the current in the wire is 2.0 A, what is the wire’s diameter?
 21. || A 3.0-mm-diameter wire carries a 12 A current when the elec-

tric field is 0.085 V/m. What is the wire’s resistivity?
 22. | A 0.0075 V/m electric field creates a 3.9 mA current in a 

1.0-mm-diameter wire. What material is the wire made of?
 23. || A 0.50-mm-diameter silver wire carries a 20 mA current. What 

are (a) the electric field and (b) the electron drift speed in the wire?
 24. | The two segments of the wire in 

FiguRE Ex30.24 have equal diame-
ters but different conductivities s1 
and s2. Current I passes through 
this wire. If the conductivities 
have the ratio s2/s1 = 2, what is the ratio E2/E1 of the electric 
field strengths in the two segments of the wire?

 25. | A metal cube 1.0 cm on each side is sandwiched between two 
electrodes. The electrodes create a 0.0050 V/m electric field in 
the metal. A current of 9.0 A passes through the cube, from the 
positive electrode to the negative electrode. Identify the metal.

Section 30.5 Resistance and Ohm’s Law

 26. | A 1.5 V battery provides 0.50 A of current.
 a. At what rate (C/s) is charge lifted by the charge escalator?
 b. How much work does the charge escalator do to lift 1.0 C of 

charge?
 c. What is the power output of the charge escalator?
 27. || Wires 1 and 2 are made of the same metal. Wire 2 has twice 

the length and twice the diameter of wire 1. What are the ratios 
(a) r2/r1 of the resistivities and (b) R2/R1 of the resistances of the 
two wires?

 28. | What is the resistance of
 a. A 2.0-m-long gold wire that is 0.20 mm in diameter?
 b. A 10-cm-long piece of carbon with a 1.0 mm * 1.0 mm 

square cross section?
 29. || A 10-m-long wire with a diameter of 0.80 mm has a resistance 

of 1.1 �. Of what material is the wire made?

s1 Is2

FiguRE Ex30.24 
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 30. | The electric field inside a 30-cm-long copper wire is 5.0 mV/m. 
What is the potential difference between the ends of the wire?

 31. | a.  How long must a 0.60-mm-diameter aluminum wire be to 
have a 0.50 A current when connected to the terminals of a 
1.5 V flashlight battery?

   b.  What is the current if the wire is half this length?
 32. || The terminals of a 0.70 V watch battery are connected by a 

100-m-long gold wire with a diameter of 0.10 mm. What is the 
current in the wire?

 33. | The femoral artery is the large artery that carries blood to the 
leg. What is the resistance of a 20-cm-long column of blood in 
a 1.0-cm-diameter femoral artery? The conductivity of blood is 
0.63 �-1 m-1.

 34. || Pencil “lead” is actually carbon. What is the current if a 9.0 V 
potential difference is applied between the ends of a 0.70-mm-
diameter, 6.0-cm-long lead from a mechanical pencil?

 35. || The resistance of a very fine aluminum wire with a 10 mm *
10 mm square cross section is 1000 �. A 1000 �  resistor is 
made by wrapping this wire in a spiral around a 3.0-mm-diame-
ter glass core. How many turns of wire are needed?

 36. | FiguRE Ex30.36 is a current-versus-
potential-difference graph for a ma-
terial. What is the material’s resis-
tance?

 37. || A circuit calls for a 0.50-mm-diameter copper wire to be 
stretched between two points. You don’t have any copper wire, 
but you do have aluminum wire in a wide variety of diameters. 
What diameter aluminum wire will provide the same resistance?

problems

 38. || For what electric field strength would the current in a 2.0-mm-
diameter nichrome wire be the same as the current in a 1.0-mm-
diameter aluminum wire in which the electric field strength is 
0.0080 V/m?

 39. || You’ve been asked to determine whether a new material your 
company has made is ohmic and, if so, to measure its electrical 
conductivity. Taking a 0.50 mm * 1.0 mm * 45 mm sample, 
you wire the ends of the long axis to a power supply and then 
measure the current for several different potential differences. 
Your data are as follows:

Voltage (V) Current (A)

0.200 0.47

0.400 1.06

0.600 1.53

0.800 1.97

  Use an appropriate graph of the data to determine whether the 
material is ohmic and, if so, its conductivity.

 40. || The electron beam inside a television picture tube is 0.40 mm 
in diameter and carries a current of 50 mA. This electron beam 
impinges on the inside of the picture tube screen.

 a. How many electrons strike the screen each second?
 b. What is the current density in the electron beam?
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 c. The electrons move with a velocity of 4.0 * 107 m/s. What 
electric field strength is needed to accelerate electrons from 
rest to this velocity in a distance of 5.0 mm?

 d. Each electron transfers its kinetic energy to the picture tube 
screen upon impact. What is the power delivered to the screen 
by the electron beam?

 41. || FiguRE p30.41 shows a 4.0-cm-
wide plastic film being wrapped 
onto a 2.0-cm-diameter roller that 
turns at 90 rpm. The plastic has a 
uniform surface charge density of 
-2.0 nC/cm2.

 a. What is the current of the moving film?
 b. How long does it take the roller to accumulate a charge of 

-10 mC?
 42. || A sculptor has asked you to help electroplate gold onto a brass 

statue. You know that the charge carriers in the ionic solution are 
gold ions, and you’ve calculated that you must deposit 0.50 g of 
gold to reach the necessary thickness. How much current do you 
need, in mA, to plate the statue in 3.0 hours?

 43. || In a classic model of the hydrogen atom, the electron moves 
around the proton in a circular orbit of radius 0.053 nm.

 a. What is the electron’s orbital frequency?
 b. What is the effective current of the electron?
 44. | The biochemistry that takes place inside cells depends on vari-

ous elements, such as sodium, potassium, and calcium, that are 
dissolved in water as ions. These ions enter cells through narrow 
pores in the cell membrane known as ion channels. Each ion 
channel, which is formed from a specialized protein molecule, 
is selective for one type of ion. Measurements with microelec-
trodes have shown that a 0.30-nm-diameter potassium ion (K+) 
channel carries a current of 1.8 pA.

 a. How many potassium ions pass through if the ion channel 
opens for 1.0 ms?

 b. What is the current density in the ion channel?
 45. || The starter motor of a car engine draws a current of 150 A 

from the battery. The copper wire to the motor is 5.0 mm in 
diameter and 1.2 m long. The starter motor runs for 0.80 s until 
the car engine starts.

 a. How much charge passes through the starter motor?
 b. How far does an electron travel along the wire while the 

starter motor is on?
 46. | A car battery is rated at 90 A h, meaning that it can supply a 

90 A current for 1 h before being completely discharged. If you 
leave your headlights on until the battery is completely dead, 
how much charge leaves the battery?

 47. || Variations in the resistivity of blood can give valuable clues 
about changes in various properties of the blood. Suppose a med-
ical device attaches two electrodes into a 1.5-mm-diameter vein 
at positions 5.0 cm apart. What is the blood resistivity if a 9.0 V 
potential difference causes a 230 mA current through the blood 
in the vein?

 48. || The conducting path between the right hand and the left hand 
can be modeled as a 10-cm-diameter, 160-cm-long cylinder. The 
average resistivity of the interior of the human body is 5.0 �  m. 
Dry skin has a much higher resistivity, but skin resistance can be 
made negligible by soaking the hands in salt water. If skin resis-
tance is neglected, what potential difference between the hands 
is needed for a lethal shock of 100 mA across the chest? Your 
result shows that even small potential differences can produce 
dangerous currents when the skin is wet.

BIO

BIO

BIO

�V (V)

1

0
0 50 100

2

I (A)

FiguRE Ex30.36 

2.0 cm

4.0 cm

�

�

�
�

�

�

�
�

�

�

�
�

�

�

�
�

FiguRE p30.41 



 49. || You need to design a 1.0 A fuse that “blows” if the current 
exceeds 1.0 A. The fuse material in your stockroom melts at a 
current density of 500 A/cm2. What diameter wire of this mate-
rial will do the job?

 50. || A hollow metal cylinder has inner radius a, outer radius b, 
length L, and conductivity s. The current I is radially outward 
from the inner surface to the outer surface.

 a. Find an expression for the electric field strength inside the 
metal as a function of the radius r from the cylinder’s axis.

 b. Evaluate the electric field strength at the inner and outer 
surfaces of an iron cylinder if a = 1.0 cm, b = 2.5 cm, 
L = 10 cm, and I = 25 A.

 51. || A hollow metal sphere has inner radius a, outer radius b, and 
conductivity s. The current I is radially outward from the inner 
surface to the outer surface.

 a. Find an expression for the electric field strength inside the 
metal as a function of the radius r from the center.

 b. Evaluate the electric field strength at the inner and outer 
surfaces of a copper sphere if a = 1.0 cm, b = 2.5 cm, and 
I = 25 A.

 52. || The total amount of charge in coulombs that has entered a 
wire at time t is given by the expression Q = 4t - t 2, where t is 
in seconds and t Ú 0.

 a. Find an expression for the current in the wire at time t.
 b. Graph I versus t for the interval 0 … t … 4 s.
 53. || The total amount of charge that has entered a wire at time t is 

given by the expression Q = (20 C)(1 - e-t/(2.0 s)), where t is in 
seconds and t Ú 0.

 a. Find an expression for the current in the wire at time t.
 b. What is the maximum value of the current?
 c. Graph I versus t for the interval 0 … t … 10 s.
 54. || The current in a wire at time t is given by the expression 

I = (2.0 A)e-t/(2.0 ms), where t is in microseconds and t Ú 0.
 a. Find an expression for the total amount of charge (in cou-

lombs) that has entered the wire at time t. The initial condi-
tions are Q = 0 C at t = 0 ms.

 b. Graph Q versus t for the interval 0 … t … 10 ms.
 55. || The two wires in FiguRE p30.55 are made of the same material. 

What are the current and the electron drift speed in the 2.0-mm-
diameter segment of the wire?

 56. || What is the electron drift speed at the 3.0-mm-diameter end 
(the left end) of the wire in FiguRE p30.56?

 57. | What diameter should the nichrome wire in FiguRE p30.57 be 
in order for the electric field strength to be the same in both 
wires?

 58. || An aluminum wire consists of the 
three segments shown in FiguRE p30.58. 
The current in the top segment is 10 A. 
For each of these three segments, find the

 a. Current I.
 b. Current density J.
 c. Electric field E.
 d. Drift velocity vd.
 e. Electron current i.
  Place your results in a table for easy 

viewing.
 59. || What electric field strength is needed to create a 5.0 A current 

in a 2.0-mm-diameter iron wire?
 60. || A 20-cm-long hollow nichrome tube of inner diameter 

2.8 mm, outer diameter 3.0 mm is connected to a 3.0 V battery. 
What is the current in the tube?

 61. || The batteries in FiguRE p30.61 are identical. Both resistors 
have equal currents. What is the resistance of the resistor on the 
right?

 62. || A 1.5 V flashlight battery is connected to a wire with a resis-
tance of 3.0 �. FiguRE p30.62 shows the battery’s potential dif-
ference as a function of time. What is the total charge lifted by 
the charge escalator?

 63. || Two 10-cm-diameter metal plates 1.0 cm apart are charged 
to   {12.5 nC. They are suddenly connected together by a 
0.224-mm-diameter copper wire stretched taut from the center 
of one plate to the center of the other.

 a. What is the maximum current in the wire?
 b. Does the current increase with time, decrease with time, or 

remain steady? Explain.
 c. What is the total amount of energy dissipated in the wire?
 64. || A long, round wire has resistance R. What will the wire’s 

resistance be if you stretch it to twice its initial length?

I � 2.0 A

vd � 2.0 � 10�4 m/s
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 65. || FiguRE p30.65 shows the potential 
along a tungsten wire. What is the cur-
rent density in the wire?

 66. || Household wiring often uses 2.0-mm-diameter copper wires. 
The wires can get rather long as they snake through the walls 
from the fuse box to the farthest corners of your house. What 
is the potential difference across a 20-m-long, 2.0-mm-diameter 
copper wire carrying an 8.0 A current?

 67. || You’ve decided to protect your house by placing a 5.0-m-tall 
iron lightning rod next to the house. The top is sharpened to a 
point and the bottom is in good contact with the ground. From 
your research, you’ve learned that lightning bolts can carry up to 
50 kA of current and last up to 50 ms.

 a. How much charge is delivered by a lightning bolt with these 
parameters?

 b. You don’t want the potential difference between the top and 
bottom of the lightning rod to exceed 100 V. What minimum 
diameter must the rod have?

Challenge problems

 68. The conductive tissues of the upper leg can be modeled as a 
40-cm-long, 12-cm-diameter cylinder of muscle and fat. The re-
sistivities of muscle and fat are 13 �  m and 25 �  m, respectively. 
One person’s upper leg is 82% muscle, 18% fat. What current is 
measured if a 1.5 V potential difference is applied between the 
person’s hip and knee?

 69. The current supplied by a battery slowly decreases as the bat-
tery runs down. Suppose that the current as a function of time is 
I = (0.75 A)e-t/(6 h). What is the total number of electrons trans-
ported from the positive electrode to the negative electrode by 
the charge escalator from the time the battery is first used until it 
is completely dead?
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 70. The electric field in a current-carrying wire can be modeled as the 
electric field at the midpoint between two charged rings. Model a 
3.0-mm-diameter aluminum wire as two 3.0-mm-diameter rings 
2.0 mm apart. What is the current in the wire after 20 electrons 
are transferred from one ring to the other?

 71. A 5.0-mm-diameter proton beam carries a total current of 
1.5 mA. The current density in the proton beam, which increases 
with distance from the center, is given by J = Jedge(r/R), where 
R is the radius of the beam and Jedge is the current density at the 
edge.

 a. How many protons per second are delivered by this proton 
beam?

 b. Determine the value of Jedge.
 72. A metal wire connecting the terminals of a battery with potential 

difference �Vbat gets warm as it draws a current I.
 a. What is �U, the change in potential energy of charge Q as it 

passes through the wire?
 b. Where does this energy go?
 c. Power is the rate of transfer of energy. Based on your answer 

to part a, find an expression for the power supplied by the 
battery to warm the wire.

 d. What power does a 1.5 V battery supply to a wire drawing a 
1.2 A current?

 73. FiguRE Cp30.73 shows a wire that 
is made of two equal-diameter 
segments with conductivities s1 
and s2. When current I passes 
through the wire, a thin layer of 
charge appears at the boundary 
between the segments.

 a. Find an expression for the surface charge density h on the 
boundary. Give your result in terms of I, s1, s2, and the 
wire’s cross-section area A.

 b. A 1.0-mm-diameter wire made of copper and iron segments 
carries a 5.0 A current. How much charge accumulates at the 
boundary between the segments?
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sTOp TO ThiNK ANsWERs

Stop to Think 30.1: ic + ib + ia + id. The electron current is pro-
portional to r2vd. Changing r by a factor of 2 has more influence than 
changing vd by a factor of 2.

Stop to Think 30.2: The electrons don’t have to move from the 
switch to the bulb, which could take hours. Because the wire be-
tween the switch and the bulb is already full of electrons, a flow of 
electrons from the switch into the wire immediately causes electrons 
to flow from the other end of the wire into the lightbulb.

Stop to Think 30.3: Ed + Eb + Ee + Ea � Ec. The electric field 
strength depends on the difference in the charge on the two wires. The 
electric fields of the rings in a and c are opposed to each other, so the 
net field is zero. The rings in d have the largest charge difference.

Stop to Think 30.4: 1 A into the junction. The total current entering 
the junction must equal the total current leaving the junction.

Stop to Think 30.5: Jb + Ja � Jd + Jc . The current density 
J = I/pr2 is independent of the conductivity s, so a and d are the 
same. Changing r by a factor of 2 has more influence than changing 
I by a factor of 2.

Stop to Think 30.6: Ia � Ib � Ic � Id . Conservation of current 
requires Ia = Ib. The current in each wire is I = �Vwire/R. All the 
wires have the same resistance because they are identical, and they all 
have the same potential difference because each is connected directly 
to the battery, which is a source of potential.
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A microprocessor, the heart 
of a powerful computer, is a 
complex device. Even so, a 
microprocessor operates on the 
basis of just a few fundamental 
physical principles.

Fundamentals of Circuits

Energy and Power
Circuits do things by using energy. 
You’ll learn to calculate power, the rate 
at which the battery supplies energy to 
a circuit and the rate at which a resistor 
dissipates it.

The power delivered 
by these photo-
voltaic cells is the 
product of their 
emf and the current 
they deliver. One 
solar panel provides 
about 200 W at 
midday on a sunny 
day.

RC Circuits
A capacitor is charged or discharged by 
current through a resistor. These important 
circuits are called RC circuits. Applications 
range from defibrillators to timing circuits.

Combining Resistors
Resistors often occur in series or in 
parallel.

 Looking Back
Sections 30.3–30.5 Current, resistance, 
and Ohm’s law

Analyzing Circuits
Circuits consist of many elements— 
batteries, resistors, capacitors, and 
more—connected together. Two basic 
tools will help you find the potential dif-
ference across and current through each 
element:
■	 Kirchhoff’s junction law.
■	 Kirchhoff’s loop law.

 Looking Back
Section 29.5 Capacitors

Also important will 
be Ohm’s law, for 
resistors, and the 
properties of batteries 
and capacitors.

Resistors connected in 
series and in parallel

You’ll learn that these combinations of 
resistors can be “simplified” by replac-
ing them with one equivalent resistor.

Q

t
0 t

You’ll learn that the 
capacitor charge 
decays exponentially. 
The time to decay 
to e-1 of the initial 
value is called the 
time constant t.

Circuit Diagrams
You will learn how to use symbols of cir-
cuit elements to draw a circuit diagram. 
This is a logical picture of how the 
circuit elements are related rather than a 
literal picture of how they look.

�

�
E R

This is the circuit diagram of a 
simple circuit in which a resistor 
is connected to a battery.

DC Circuits
Circuits—from a simple lightbulb to 
a supercomputer—are based on the 
controlled motion of charges. You will 
learn about the fundamental physical 
principles by which circuits operate.

This chapter will focus on DC circuits, 
meaning direct current, in which poten-
tials and currents are steady. Chapter 35 
will extend these ideas to AC circuits in 
which the potential difference oscillates 
sinusoidally.

 Looking Back
Section 29.2 Sources of potential

 Looking Ahead The goal of Chapter 31 is to understand the fundamental physical principles that govern electric circuits.



892    c h a p t e r  31 . Fundamentals of Circuits

31.1 Circuit Elements and Diagrams
FiguRE 31.1 shows an electric circuit in which a resistor and a capacitor are connected by 
wires to a battery. To understand the functioning of this circuit, we do not need to know 
whether the wires are bent or straight, or whether the battery is to the right or to the left 
of the resistor. The literal picture of Figure 31.1 provides many irrelevant details. It is 
customary when describing or analyzing circuits to use a more abstract picture called 
a circuit diagram. A circuit diagram is a logical picture of what is connected to what.

A circuit diagram also replaces pictures of the circuit elements with symbols. 
FiguRE 31.2 shows the basic symbols that we will need. The longer line at one end of the 
battery symbol represents the positive terminal of the battery. Notice that a lightbulb, 
like a wire or a resistor, has two “ends,” and current passes through the bulb. It is often 
useful to think of a lightbulb as a resistor that gives off light when a current is present. 
A lightbulb filament is not a perfectly ohmic material, but the resistance of a glowing 
lightbulb remains reasonably constant if you don’t change �V  by much.

�

�
Resistor Capacitor

FiguRE 31.1 An electric circuit.

Battery

�

�

�

�

Wire JunctionResistor Bulb Capacitor Switch

FiguRE 31.2 A library of basic symbols used for electric circuit drawings.

FiguRE 31.3 is a circuit diagram of the circuit shown in Figure 31.1. Notice how the 
circuit elements are labeled. The battery’s emf E is shown beside the battery, and +  
and -  symbols, even though somewhat redundant, are shown beside the terminals. 
We would use numerical values for E, R, and C if we knew them. The wires, which in 
practice may bend and curve, are shown as straight-line connections between the circuit 
elements.

RE C
�

�

FiguRE 31.3 A circuit diagram for the 
circuit of Figure 31.1.

Stop to think 31.1  Which of these diagrams represent the same circuit?

�

�

�

�

�

�

�

�

(a) (b) (c) (d)

31.2 Kirchhoff’s Laws and the Basic Circuit
We are now ready to begin analyzing circuits. To analyze a circuit means to find:

 1. The potential difference across each circuit component.
 2. The current in each circuit component.

Because charge and current are conserved, the total current into the junction of 
FiguRE 31.4 must equal the total current leaving the junction. That is,

 a Iin = a Iout (31.1)

This statement, which you met in Chapter 30, is Kirchhoff’s junction law.

Iout

Iin

I3

I1 I2

Junction law:  I1 � I2 � I3

Junction

FiguRE 31.4 Kirchhoff’s junction law.
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An important property of the electric potential is that the sum of the potential dif-
ferences around any loop or closed path is zero. This is a statement of energy conser-
vation, because a charge that moves around a closed path and returns to its starting 
point has �U = 0. We apply this idea to the circuit of FiguRE 31.5 by adding all of the 
potential differences around the loop formed by the circuit. Doing so gives

 �Vloop = a (�V)i = 0 (31.2)

where (�V)i is the potential difference of the ith component in the loop. This state-
ment, introduced in Chapter 29, is Kirchhoff’s loop law.

Kirchhoff’s loop law can be true only if at least one of the (�V)i is negative. To ap-
ply the loop law, we need to explicitly identify which potential differences are positive 
and which are negative.

Start and
end here.

Loop

Loop law:  �V1 � �V2 � �V3 � �V4 � 0

�V4 �V2

�V1

�V3

Add the potential
differences around
the loop.

FiguRE 31.5 Kirchhoff’s loop law.

TACTiCs
Box 31.1 

 using Kirchhoff’s loop law

 ●1 Draw a circuit diagram. Label all known and unknown quantities.
 ●2 Assign a direction to the current. Draw and label a current arrow I to show your choice.

■	 If you know the actual current direction, choose that direction.

■	 If you don’t know the actual current direction, make an arbitrary choice. All that will 
happen if you choose wrong is that your value for I will end up negative.

 ●3 “Travel” around the loop. Start at any point in the circuit, then go all the way around 
the loop in the direction you assigned to the current in step 2. As you go through each 
circuit element, �V  is interpreted to mean

�V = Vdownstream - Vupstream

■	 For an ideal battery in the negative-to-positive direction:

�Vbat = +E

■	 For an ideal battery in the positive-to-negative direction:

�Vbat = -E

■	 For a resistor: �Vres = - �VR = -IR

 ●4 Apply the loop law: a (�V)i = 0

Exercises 4–7 

��

Potential increases

Travel

� �

Potential decreases

Travel

� �

Potential decreases

I

NoTE  Ohm’s law gives us only the magnitude �VR = IR of the potential dif-
ference across a resistor. Kirchhoff’s law requires us to recognize that the elec-
tric potential inside a resistor decreases in the direction of the current. Thus 
�Vres = Vdownstream - Vupstream =  - �VR. 

The Basic Circuit
The most basic electric circuit is a single resistor connected to the two terminals of a 
battery. FiguRE 31.6a on the next page shows a literal picture of the circuit elements and 
the connecting wires; FiguRE 31.6b is the circuit diagram. Notice that this is a complete 
circuit, forming a continuous path between the battery terminals.
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The resistor might be a known resistor, such as “a 10 � resistor,” or it might be 
some other resistive device, such as a lightbulb. Regardless of what the resistor is, it is 
called the load. The battery is called the source.

FiguRE 31.7 shows the use of Kirchhoff’s loop law to analyze this circuit. Two things 
are worth noting:

 1. This circuit has no junctions, so the current I is the same in all four sides of the 
circuit. Kirchhoff’s junction law is not needed.

 2. We’re assuming the ideal-wire model, in which there are no potential differ-
ences along the connecting wires.

Kirchhoff’s loop law, with two circuit elements, is

 �Vloop = a (�V)i = �Vbat + �Vres = 0 (31.3)

Let’s look at each of the two terms in Equation 31.3:

 1. The potential increases as we travel through the battery on our clockwise jour-
ney around the loop. We enter the negative terminal and, farther downstream, 
exit the positive terminal after having gained potential E. Thus

 �Vbat = +E

 2. The potential of a conductor decreases in the direction of the current, which 
we’ve indicated with the +  and -  signs in Figure 31.7. Thus

 �Vres = Vdownstream - Vupstream = -IR

NoTE  Determining which potential differences are positive and which are nega-
tive is perhaps the most important step in circuit analysis. 

With this information, the loop equation becomes

 E - IR = 0 (31.4)

We can solve the loop equation to find that the current in the circuit is

 I =
E

R
 (31.5)

We can then use the current to find that the magnitude of the resistor’s potential dif-
ference is

 �VR = IR = E (31.6)

This result should come as no surprise. The potential energy that the charges gain in 
the battery is subsequently lost as they “fall” through the resistor.

NoTE  The current that the battery delivers depends jointly on the emf of the bat-
tery and the resistance of the load. 

FiguRE 31.6 The basic circuit of a 
resistor connected to a battery.

Load

(a)

�

�

Source

R

(b)

E
�

�

FiguRE 31.7 Analysis of the basic circuit 
using Kirchhoff’s loop law.

RE

The orientation of the battery
indicates a clockwise current, so
assign a clockwise direction to I.

I

�

�

�

�
�Vbat � �E

�Vres � �IR

Determine �V for each circuit element.3

2

Draw a circuit diagram.1

ExAmPLE 31.1  Two resistors and two batteries
Analyze the circuit shown in FiguRE 31.8.

 a. Find the current in and the potential difference across each re-
sistor.

 b. Draw a graph showing how the potential changes around the 
circuit, starting from V = 0 V at the negative terminal of the 
6 V battery.

moDEL Assume ideal connecting wires and ideal batteries, for 
which �Vbat = E.

FiguRE 31.8 Circuit for Example 31.1.

2 �

9 V6 V

4 �

�

�

�

�
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direction we assigned to the current, so �Vres 1 = - IR1 and 
�Vres 2 = - IR2. Thus Kirchhoff’s loop law becomes

 a (�V)i = E1 - IR1 - E2 - IR2

 = E1 - E2 - I(R1 + R2) = 0

We can solve this equation to find the current in the loop:

I =
E1 - E2

R1 + R2
=

6 V - 9 V

4 � + 2 �
= -0.50 A

The value of I is negative; hence the actual current in this cir-
cuit is 0.50 A counterclockwise. You perhaps anticipated this 
from the orientation of the 9 V battery with its larger emf.

 b. The potential difference across the 4 �  resistor is

�Vres 1 = - IR1 = - (-0.50 A)(4 �) = +2.0 V

Because the current is actually ccw, the resistor’s potential in-
creases in the cw direction of our travel around the loop. Simi-
larly, the potential difference across the 2 � resistor is �Vres 2 =
1.0 V. FiguRE 31.10 shows the potential experienced by charges 
flowing around the circuit. The distance s is measured from 
the 6 V battery’s negative terminal, and we have chosen to let 
V = 0 V at that point. The potential ends at the value from which 
it started.

VisuALizE In FiguRE 31.9, we’ve redrawn the circuit and defined 
E1, E2, R1, and R2. Because there are no junctions, the current 
is the same through each component in the circuit. With some 
thought, we might deduce whether the current is cw or ccw, 
but we do not need to know in advance of our analysis. We 
will choose a clockwise direction and solve for the value of I. 
If our solution is positive, then the current really is cw. If the 
solution should turn out to be negative, we will know that the 
current is ccw.

FiguRE 31.9 Analyzing the circuit.

soLVE a. How do we deal with two batteries? Can charge flow 
“backward” through a battery, from positive to negative? 
Consider the charge escalator analogy. Left to itself, a charge 
escalator lifts charge from lower to higher potential. But it is 
possible to run down an up escalator, as many of you have 
probably done. If two escalators are placed “head to head,” 
whichever is stronger will, indeed, force the charge to run 
down the up escalator of the other battery. The current in a 
battery can be from positive to negative if driven in that direc-
tion by a larger emf from a second battery. Indeed, this is how 
rechargeable batteries are recharged.

Kirchhoff’s loop law, going clockwise from the negative 
terminal of battery 1, is

 �Vclosed loop = a (�V )i = �Vbat 1 + �Vres 1

 + �Vbat 2 + �Vres 2 = 0

All the signs are +  because this is a formal statement of add-
ing potential differences around the loop. Next we can evalu-
ate each �V. As we go cw, the charges gain potential in 
battery 1 but lose potential in battery 2. Thus �Vbat 1 = +E1 
and �Vbat 2 = -E2. There is a loss of potential in traveling 
through each resistor, because we’re traversing them in the 

FiguRE 31.10 A graphical presentation of how 
the potential changes around the loop.

V

s0 V

�2 V

4 V

8 V

Gain 6 V in battery 1.
Gain 1 V in 2 �.

Lose 9 V in
battery 2.

There’s no potential change
along an ideal wire.

Gain 2 V
in 4 �. 

AssEss Notice how the potential drops 9 V upon passing through 
battery 2 in the cw direction. It then gains 1 V upon passing 
through R2 to end at the starting potential.

Stop to think 31.2  What is �V  across the 
unspecified circuit element? Does the potential 
increase or decrease when traveling through 
this element in the direction assigned to I? 6 V

�

�

�

�

� �

I

12 V

8 V

?
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31.3 Energy and Power
The circuit of FiguRE 31.11 has two identical lightbulbs, A and B. Which is brighter? Or 
are they equally bright? Think about this before going on.

You might have been tempted to say that A is brighter. After all, the current gets to 
A first, so A might “use up” some of the current and leave less for B. But this would 
violate the laws of conservation of charge and conservation of current. There are no 
junctions between A and B, so the current through the two bulbs must be the same. 
Hence the bulbs are equally bright.

It’s not current that the bulbs use up, it’s energy. Because a battery supplies a po-
tential difference, it also supplies energy to a circuit. The charge escalator is an energy-
transfer process, transferring chemical energy Echem stored in the battery to the potential 
energy U of the charges. That energy is then dissipated as the charges move through 
the wires and resistors, increasing their thermal energy until, in the case of the lightbulb 
filaments, they glow.

A charge gains potential energy �U = q �Vbat as it moves up the charge escalator in 
the battery. For an ideal battery, with �Vbat = E, the battery supplies energy �U = qE 
as it lifts charge q from the negative to the positive terminal.

It is useful to know the rate at which the battery supplies energy to the charges. 
Recall from Chapter 11 that the rate at which energy is transferred is power, measured 
in joules per second or watts. If energy �U = qE is transferred to charge q, then the 
rate at which energy is transferred from the battery to the moving charges is

 Pbat = rate of energy transfer =
dU

dt
=

dq

dt
 E (31.7)

But dq/dt, the rate at which charge moves through the battery, is the current I. Hence 
the power supplied by a battery, or the rate at which the battery (or any other source of 
emf ) transfers energy to the charges passing through it, is

 Pbat = IE  (power delivered by an emf) (31.8)

IE has units of J/s, or W.

FiguRE 31.11 Which lightbulb is brighter?

Identical
bulbs

E
�

�

B

A

 I =
E

R
=

120 V

90 �
= 1.33 A

Thus the power delivered by the battery is

 Pbat = IE = (1.33 A)(120 V) = 160 W

ExAmPLE 31.2  Delivering power
A 90 �  load is connected to a 120 V battery. How much power is 
delivered by the battery?

soLVE This is our basic battery-and-resistor circuit, which we 
analyzed earlier. In this case

Pbat is the energy transferred per second from the battery’s store of chemicals 
to the moving charges that make up the current. But what happens to this energy? 
Where does it end up? FiguRE 31.12, a section of a current-carrying resistor, reminds 
you of our microscopic model of conduction. The electrons accelerate in the electric 
field, then collide with atoms in the lattice. The acceleration phase is a transforma-
tion of potential to kinetic energy. The collisions then transfer the electron’s kinetic 
energy to the thermal energy of the lattice. The potential energy was acquired in the 
battery, from the conversion of chemical energy, so the entire energy-transfer process 
looks like

 Echem S U S K S Eth

The net result is that the battery’s chemical energy is transferred to the thermal 
energy of the resistors, raising their temperature.

FiguRE 31.12 A current-carrying resistor 
dissipates power because the electric 
force does work on the charges.

I

Atoms in
the lattice

Electron
current

Current

E
r

Collisions transfer energy to the lattice.
The energy transformation is K S Eth.

The electric field causes electrons to speed
up. The energy transformation is U S K.

L
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Suppose the average distance between collisions is d. The electric force F
u

= qE
u

 
exerted on charge q does work as it pushes the charge through distance d. The field is 
constant inside the resistor, so the work is simply

 W = F �s = qEd (31.9)

According to the work-kinetic energy theorem, this work increases the kinetic 
energy of charge q by �K = W = qEd. This kinetic energy is transferred to the lat-
tice when charge q collides with a lattice atom, causing the energy of the lattice to 
increase by

 �Eper collision = �K = qEd

Collisions occur over and over as the charge makes its way through the resistor. 
After many such collisions, the total energy that charge q transfers while traveling 
distance L, the length of the resistor, is

 �Eth = qEL (31.10)

But EL is the potential difference �VR between the two ends of the resistor. Thus each 
charge q, as it travels the length of the resistor, transfers energy to the atomic lattice 
in the amount

 �Eth = q �VR (31.11)

The rate at which energy is transferred from the current to the resistor is thus

 PR =
dEth

dt
=

dq

dt
�VR = I �VR (31.12)

We say that this power—so many joules per second—is dissipated by the resistor as 
charge flows through it. The resistor, in turn, transfers this energy to the air and to the 
circuit board on which it is mounted, causing the circuit and all its surroundings to 
heat up.

From our analysis of the basic circuit, in which a single resistor is connected to a 
battery, we learned that �VR = E. That is, the potential difference across the resistor 
is exactly the emf supplied by the battery. But then Equations 31.8 and 31.12, for Pbat 
and PR, are numerically equal, and we find that

 PR = Pbat (31.13)

The answer to the question “What happens to the energy supplied by the battery?” is 
“The battery’s chemical energy is transformed into the thermal energy of the resistor.” 
The rate at which the battery supplies energy is exactly equal to the rate at which the 
resistor dissipates energy. This is, of course, exactly what we would have expected 
from energy conservation.

soLVE Because the lightbulb is operating as intended, it will dis-
sipate 100 W of power. Thus

 I =
PR

�VR
=

100 W

120 V
= 0.833 A

AssEss A current of 0.833 A in this lightbulb transfers 100 J/s 
to the thermal energy of the filament, which, in turn, dissipates 
100 J/s as heat and light to its surroundings.

ExAmPLE 31.3  The power of light
How much current is “drawn” by a 100 W lightbulb connected to 
a 120 V outlet?

moDEL Most household appliances, such as a 100 W lightbulb or a 
1500 W hair dryer, have a power rating. The rating does not mean 
that these appliances always dissipate that much power. These appli-
ances are intended for use at a standard household voltage of 120 V, 
and their rating is the power they will dissipate if operated with a 
potential difference of 120 V. Their power consumption will differ 
from the rating if they are operated at any other potential difference.
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A resistor obeys Ohm’s law, �VR = IR. (Remember that Ohm’s law gives only the 
magnitude of �VR.) This gives us two alternative ways of writing the power dissipated 
by a resistor. We can either substitute IR for �VR or substitute �VR/R for I. Thus

PR = I �VR = I 2R =
(�VR)2

R
  (power dissipated by a resistor) (31.14)

If the same current I passes through several resistors in series, then PR = I 2R tells 
us that most of the power will be dissipated by the largest resistance. This is why a 
lightbulb filament glows but the connecting wires do not. Essentially all of the power 
supplied by the battery is dissipated by the high-resistance lightbulb filament and es-
sentially no power is dissipated by the low-resistance wires. The filament gets very 
hot, but the wires do not.

soLVE The loudspeaker is a resistive load. The maximum current 
to the loudspeaker occurs when the amplifier delivers maximum 
power Pmax = (Imax)

2R. Thus

 Imax = BPmax

R
= B 100 W

8 �
= 3.5 A

ExAmPLE 31.4  The power of sound
Most loudspeakers are designed to have a resistance of 8 �. If an 
8 �  loudspeaker is connected to a stereo amplifier with a rating of 
100 W, what is the maximum possible current to the loudspeaker?

moDEL The rating of an amplifier is the maximum power it can 
deliver. Most of the time it delivers far less, but the maximum 
might be reached for brief, intense sounds like cymbal crashes.

Kilowatt Hours
The energy dissipated (i.e., transformed into thermal energy) by a resistor during time 
�t is Eth = PR�t. The product of watts and seconds is joules, the SI unit of energy. 
However, your local electric company prefers to use a different unit, the kilowatt hour, 
to measure the energy you use each month.

A load that consumes PR kW of electricity for �t hours has used PR �t kilowatt 
hours of energy, abbreviated kWh. For example, a 4000 W electric water heater uses 
40 kWh of energy in 10 hours. A 1500 W hair dryer uses 0.25 kWh of energy in 
10 minutes. Despite the rather unusual name, a kilowatt hour is a unit of energy. A 
homework problem will let you find the conversion factor from kilowatt hours to joules.

Your monthly electric bill specifies the number of kilowatt hours you used last 
month. This is the amount of energy that the electric company delivered to you, via 
an electric current, and that you transformed into light and thermal energy inside your 
home. The cost of electricity varies throughout the country, but the average cost of 
electricity in the United States is approximately 10. per kWh ($0.10/kWh). Thus it 
costs about $4.00 to run your water heater for 10 hours, about 2.5. to dry your hair.The electric meter on the side of your 

house or apartment records the kilowatt 
hours of electric energy that you use.

Stop to think 31.3  Rank in order, from largest to smallest, the powers Pa to Pd dissi-
pated in resistors a to d.

� �

R

(a)
�V � �

R

(b)
2�V � �

2R

(c)
�V � �

R

(d)
�V

1
2

31.4 series Resistors
Consider the three lightbulbs in FiguRE 31.13. The batteries are identical and the bulbs 
are identical. You learned in the previous section that B and C are equally bright, be-
cause of conservation of current, but how does the brightness of B compare to that of 
A? Think about this before going on.
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FiguRE 31.14a shows two resistors placed end to end between points a and b. Resistors 
that are aligned end to end, with no junctions between them, are called series resistors 
or, sometimes, resistors “in series.” Because there are no junctions and because current 
is conserved, the current I must be the same through each of these resistors. That is, the 
current out of the last resistor in a series is equal to the current into the first resistor.

The potential differences across the two resistors are �V1 = IR1 and �V2 = IR2. 
The total potential difference �Vab between points a and b is the sum of the individual 
potential differences:

 �Vab = �V1 + �V2 = IR1 + IR2 = I(R1 + R2) (31.15)

Suppose, as in FiguRE 31.14b, we replaced the two resistors with a single resistor 
having current I and potential difference �Vab = �V1 + �V2. We can then use Ohm’s 
law to find that the resistance Rab between points a and b is

 Rab =
�Vab

I
=

I(R1 + R2)

I
= R1 + R2 (31.16)

Because the battery has to establish the same potential difference across the load and 
provide the same current in both cases, the two resistors R1 and R2 act exactly the same 
as a single resistor of value R1 + R2. We can say that the single resistor Rab is equiva-
lent to the two resistors in series.

There was nothing special about having only two resistors. If we have N resistors 
in series, their equivalent resistance is

 Req = R1 + R2 + g+ RN  (series resistors) (31.17)

The current and the power output of the battery will be unchanged if the N series resis-
tors are replaced by the single resistor Req. The key idea in this analysis is that resis-
tors in series all have the same current.

NoTE  Compare this idea to what you learned in Chapter 29 about capacitors in 
series. The end-to-end connections are the same, but the equivalent capacitance is 
not the sum of the individual capacitances. 

Now we can answer the lightbulb question posed at the beginning of this section. 
Suppose the resistance of each lightbulb is R. The battery drives current IA = E/R 
through bulb A. Bulbs B and C are in series, with an equivalent resistance Req = 2R, 
but the battery has the same emf E. Thus the current through bulbs B and C is IB+C =  
E/Req = E/2R =

1
2 IA. Bulb B has only half the current of bulb A, so B is dimmer.

Many people predict that A and B should be equally bright. It’s the same battery, 
so shouldn’t it provide the same current to both circuits? No! A battery is a source of 
emf, not a source of current. In other words, the battery’s emf is the same no matter 
how the battery is used. When you buy a 1.5 V battery you’re buying a device that 
provides a specified amount of potential difference, not a specified amount of current.
The battery does provide the current to the circuit, but the amount of current depends 
on the resistance of the load. Your 1.5 V battery causes 1 A to pass through a 1.5 � 
load but only 0.1 A to pass through a 15 � load. As an analogy, think about a water 

FiguRE 31.13 How does the brightness 
of bulb B compare to that of A?

Identical
bulbs

Identical
batteries

E
�

�

C

B

E
�

�
A

FiguRE 31.14 Replacing two series resistors with an equivalent resistor.

R1

a b

R2
II

�V1 �V2

(a)  Two resistors in series (b)  An equivalent resistor

�Vab � �V1 � �V2

Rab � R1 � R2

a b
II

�Vab

Same current

Same potential difference
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Ammeters
A device that measures the current in a circuit element is called an ammeter. Because 
charge flows through circuit elements, an ammeter must be placed in series with the 
circuit element whose current is to be measured.

FiguRE 31.16a shows a simple one-resistor circuit with an unknown emf E. We can 
measure the current in the circuit by inserting the ammeter as shown in FiguRE 31.16b. 
Notice that we have to break the connection between the battery and the resistor in 
order to insert the ammeter. Now the current in the resistor has to first pass through 
the ammeter.

Because the ammeter is now in series with the resistor, the total resistance seen 
by the battery is Req = 6 � + Rammeter. In order that the ammeter measure the current 
without changing the current, the ammeter’s resistance must, in this case, be V 6 �. 
Indeed, an ideal ammeter has Rammeter = 0 � and thus has no effect on the current. 
Real ammeters come very close to this ideal.

The ammeter in Figure 31.16b reads 0.50 A, meaning that the current through the 6 � 
resistor is I = 0.50 A. Thus the resistor’s potential difference is �VR = IR = 3.0 V. If 
the ammeter is ideal, with no resistance and thus no potential difference across it, then, 
from Kirchhoff’s loop law, the battery’s emf is E = �VR = 3.0 V.

FiguRE 31.15 Analyzing a circuit with series resistors.

27 �9 V
�

�

I

9 V
�

�
4 �

8 �

15 �

(b) (c)(a)
V

0 V

3 V

6 V

9 V

Battery

15 �

4 �

8 �

s

FiguRE 31.16 An ammeter measures the 
current in a circuit element.

6 �

(a)

E
�

�

6 �

Ammeter(b)

�

�

0.50 A

I

A

The current being 
measured must pass 
through an ammeter.

E

This is shown as an equivalent circuit in FiguRE 31.15b. Now 
we have a circuit with a single battery and a single resistor, for 
which we know the current to be

I =
E

Req
=

9 V

27 �
= 0.333 A

 b. I = 0.333 A is the current in each of the three resistors in the 
original circuit. Thus the potential differences across the resis-
tors are �Vres 1 = - IR1 = -5.0 V, �Vres 2 = - IR2 = -1.3 V, 
and �Vres 3 = - IR3 = -2.7 V for the 15 �, the 4 �, and the 
8 �  resistors, respectively. FiguRE 31.15c shows that the poten-
tial increases by 9 V due to the battery’s emf, then decreases by 
9 V in three steps.

ExAmPLE 31.5  A series resistor circuit
 a. What is the current in the circuit of FiguRE 31.15a?
 b. Draw a graph of potential versus position in the circuit, going 

cw from V = 0 V at the battery’s negative terminal.

moDEL The three resistors are end to end, with no junctions be-
tween them, and thus are in series. Assume ideal connecting wires 
and an ideal battery.

soLVE a. The battery “acts” the same—it provides the same cur-
rent at the same potential difference—if we replace the three 
series resistors by their equivalent resistance

Req = 15 � + 4 � + 8 � = 27 �

faucet. The pressure in the water main underneath the street is a fixed and unvarying 
quantity set by the water company, but the amount of water coming out of a faucet 
depends on how far you open it. A faucet opened slightly has a “high resistance,” so 
only a little water flows. A wide-open faucet has a “low resistance,” and the water 
flow is large.

In summary, a battery provides a fixed and unvarying emf (potential differ-
ence). It does not provide a fixed and unvarying current. The amount of current 
depends jointly on the battery’s emf and the resistance of the circuit attached to 
the battery.
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31.5 Real Batteries
Let’s look at how real batteries differ from the ideal battery we have been assuming. 
Real batteries, like ideal batteries, separate charge and create a potential difference. 
However, real batteries also provide a slight resistance to the charges on the charge 
escalator. They have what is called an internal resistance, which is symbolized by r. 
FiguRE 31.17 shows both an ideal and a real battery.

From our vantage point outside a battery, we cannot see E and r separately. To the 
user, the battery provides a potential difference �Vbat called the terminal voltage. 
�Vbat = E for an ideal battery, but the presence of the internal resistance affects �Vbat. 
Suppose the current in the battery is I. As charges travel from the negative to the posi-
tive terminal, they gain potential E but lose potential �Vint = -Ir due to the internal 
resistance. Thus the terminal voltage of the battery is

 �Vbat = E - Ir … E (31.18)

Only when I = 0, meaning that the battery is not being used, is �Vbat = E.
FiguRE 31.18 shows a single resistor R connected to the terminals of a battery having 

emf E and internal resistance r. Resistances R and r are in series, so we can replace 
them, for the purpose of circuit analysis, with a single equivalent resistor Req = R + r. 
Hence the current in the circuit is

 I =
E

Req
=

E

R + r
 (31.19)

If r V R, so that the internal resistance of the battery is negligible, then I � E/R, ex-
actly the result we found before. But the current decreases significantly as r increases.

Stop to think 31.4  What are the current and the potential at points a to e?

a b

2 �2 A 3 �

c d

1 � 4 �

e

V � 0 V

FiguRE 31.17 An ideal battery and a real 
battery.

�

�

r

E

�

�

I

I

�Vbat � E � IrReal
battery

�

�
E

�

�

I

I

�Vbat � EIdeal
battery

Internal
resistance

FiguRE 31.18 A single resistor connected to a real battery is in series with the battery’s 
internal resistance, giving Req = R + r.

�

�

r

E

�R
�

�
E R � r

Although physically separated, the internal
resistance r is electrically in series with R.

This means the two circuits are equivalent.

I

I

We can use Ohm’s law to find that the potential difference across the load resistor R is

 �VR = IR =
R

R + r
 E (31.20)

Similarly, the potential difference across the terminals of the battery is

 �Vbat = E - Ir = E -
r

R + r
 E =

R

R + r
 E (31.21)
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The potential difference across the resistor is equal to the potential difference between 
the terminals of the battery, where the resistor is attached, not equal to the battery’s 
emf. Notice that �Vbat = E only if r = 0 (an ideal battery with no internal resistance).

This is 15% less than the 0.5 A an ideal battery would supply. The 
potential difference across the resistor is �VR = IR = 2.6 V, thus 
the power dissipation is

 PR = I �VR = 1.1 W

The battery’s terminal voltage is

 �Vbat =
R

R + r
 E =

6 �

6 � + 1 �
 3 V = 2.6 V

AssEss 1 �  is a typical internal resistance for a flashlight battery. 
The internal resistance causes the battery’s terminal voltage to be 
0.4 V less than its emf in this circuit.

ExAmPLE 31.6  Lighting up a flashlight
A 6 �  flashlight bulb is powered by a 3 V battery with an internal 
resistance of 1 �. What are the power dissipation of the bulb and 
the terminal voltage of the battery?

moDEL Assume ideal connecting wires but not an ideal battery.

VisuALizE The circuit diagram looks like Figure 31.18. R is the 
resistance of the bulb’s filament.

soLVE Equation 31.19 gives us the current:

 I =
E

R + r
=

3 V

6 � + 1 �
= 0.43 A

A short Circuit
In FiguRE 31.19 we’ve replaced the resistor with an ideal wire having Rwire = 0 �. When 
a connection of very low or zero resistance is made between two points in a circuit that 
are normally separated by a higher resistance, we have what is called a short circuit. 
The wire in Figure 31.19 is shorting out the battery.

If the battery were ideal, shorting it with an ideal wire (R = 0 �) would cause 
the current to be I = E/0 = �. The current, of course, cannot really become infinite. 
Instead, the battery’s internal resistance r becomes the only resistance in the circuit. If 
we use R = 0 � in Equation 31.19, we find that the short-circuit current is

 Ishort =
E

r
 (31.22)

A 3 V battery with 1 � internal resistance generates a short circuit current of 3 A. This 
is the maximum possible current that this battery can produce. Adding any external 
resistance R will decrease the current to a value less than 3 A.

FiguRE 31.19 The short-circuit current of 
a battery.

�

�

r

E

Ishort

This wire is shorting
out the battery.

Most of the time a battery is used under conditions in which r V R and the internal 
resistance is negligible. The ideal battery model is fully justified in that case. Thus 
we will assume that batteries are ideal unless stated otherwise. But keep in mind that 
batteries (and other sources of emf) do have an internal resistance, and this internal 
resistance limits the current of the battery.

ExAmPLE 31.7  A short-circuited battery
What is the short-circuit current of a 12 V car battery with an internal resistance of 
0.020 �? What happens to the power supplied by the battery?

soLVE The short-circuit current is

Ishort =
E

r
=

12 V

0.02 �
= 600 A

Power is generated by chemical reactions in the battery and dissipated by the load re-
sistance. But with a short-circuited battery, the load resistance is inside the battery! The 
“shorted” battery has to dissipate power P = I 2r = 7200 W internally.

AssEss This value is realistic. Car batteries are designed to drive the starter motor, 
which has a very small resistance and can draw a current of a few hundred amps. That 
is why the battery cables are so thick. A shorted car battery can produce an enormous 
amount of current. The normal response of a shorted car battery is to explode; it simply 
cannot dissipate this much power. Shorting a flashlight battery can make it rather hot, 
but your life is not in danger. Although the voltage of a car battery is relatively small, a 
car battery can be dangerous and should be treated with great respect.
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31.6 Parallel Resistors
FiguRE 31.20 is another lightbulb puzzle. Initially the switch is open. The current is the 
same through bulbs A and B, because of conservation of current, and they are equally 
bright. Bulb C is not glowing. What happens to the brightness of A and B when the 
switch is closed? And how does the brightness of C then compare to that of A and B? 
Think about this before going on.

FiguRE 31.21a shows two resistors aligned side by side with their ends connected at 
c and d. Resistors connected at both ends are called parallel resistors or, sometimes, 
resistors “in parallel.” The left ends of both resistors are at the same potential Vc. Like-
wise, the right ends are at the same potential Vd. Thus the potential differences �V1 
and �V2 are the same and are simply �Vcd.

Kirchhoff’s junction law applies at the junctions. The input current I splits into cur-
rents I1 and I2 at the left junction. On the right, the two currents are recombined into 
current I. According to the junction law,

 I = I1 + I2 (31.23)

We can apply Ohm’s law to each resistor, along with �V1 = �V2 = �Vcd, to find that 
the current is

 I =
�V1

R1
+

�V2

R2
=

�Vcd

R1
+

�Vcd

R2 
= �Vcd 1 1

R1
+

1

R2
2  (31.24)

Suppose, as in FiguRE 31.21b, we replaced the two resistors with a single resistor 
having current I and potential difference �Vcd. This resistor is equivalent to the origi-
nal two because the battery has to establish the same potential difference and provide 
the same current in either case. A second application of Ohm’s law shows that the 
resistance between points c and d is

 Rcd =
�Vcd

I
= 1 1

R1
+

1

R2
2 -1

 (31.25)

The single resistor Rcd draws the same current as resistors R1 and R2, so, as far as the 
battery is concerned, resistor Rcd is equivalent to the two resistors in parallel.

There is nothing special about having chosen two resistors to be in parallel. If we 
have N resistors in parallel, the equivalent resistance is

 Req = 1 1

R1
+

1

R2
+ g +

1

RN
2 -1

  (parallel resistors) (31.26)

The behavior of the circuit will be unchanged if the N parallel resistors are replaced 
by the single resistor Req. The key idea of this analysis is that resistors in parallel all 
have the same potential difference.

NoTE  Don’t forget to take the inverse—the -1 exponent in Equation 31.26—
after adding the inverses of all the resistances. 

FiguRE 31.20 What happens to the 
brightness of the bulbs when the switch 
is closed?

E
�

�
CB

A

Identical bulbs

FiguRE 31.21 Replacing two parallel 
resistors with an equivalent resistor.

R1

R2

c d

�V1 � �V2 � �Vcd

�Vcd

I I

c d
I I

I1

I2

Same
potential
difference

Same
current

Rcd �      � 1
R1 R2

1 ) ( �1

(a)  Two resistors in parallel

(b)  An equivalent resistor

moDEL The resistors are in parallel. Assume an ideal battery and 
ideal connecting wires.

soLVE The three parallel resistors can be replaced by a single 
equivalent resistor

 Req = 1 1

15 �
+

1

4 �
+

1

8 � 2 -1

= (0.4417 �-1)-1 = 2.26 �

The equivalent circuit is shown in FiguRE 31.23a on the next page, 
from which we find the current to be

 I =
E

Req
=

9 V

2.26 �
= 3.98 A

ExAmPLE 31.8  A parallel resistor circuit
The three resistors of FiguRE 31.22 are connected to a 9 V battery. Find 
the potential difference across and the current through each resistor.

FiguRE 31.22 Parallel resistor circuit of Example 31.8.

8 �
�

�
9 V 4 �15 �

Continued

Two identical resistors*

In series Req = 2R

In parallel Req =
R

2

*R1 = R2 = R
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The result of Example 31.8 seems surprising. The equivalent of a parallel com-
bination of 15 �, 4 �, and 8 �  was found to be 2.26 �. How can the equivalent of 
a group of resistors be less than any single resistance in the group? Shouldn’t more 
resistors imply more resistance? The answer is yes for resistors in series but not 
for resistors in parallel. Even though a resistor is an obstacle to the flow of charge, 
parallel resistors provide more pathways for charge to get through. Consequently, 
the equivalent of several resistors in parallel is always less than any single resistor 
in the group.

Complex combinations of resistors can often be reduced to a single equivalent re-
sistance through a step-by-step application of the series and parallel rules. The final 
example in this section illustrates this idea.

The potential difference across Req is �Veq = E = 9.0 V. Now 
we have to be careful. Current I divides at the junction into the 
smaller currents I1, I2, and I3 shown in FiguRE 31.23b. However, the 
division is not into three equal currents. According to Ohm’s law, 
resistor i has current Ii = �Vi /Ri. Because the three resistors are 
each connected to the battery by ideal wires, as is the equivalent 
resistor, their potential differences are equal:

 �V1 = �V2 = �V3 = �Veq = 9.0 V

Thus the currents are

 I1 =
9 V

15 �
= 0.60 A  I2 =

9 V

4 �
= 2.25 A

 I3 =
9 V

8 �
= 1.13 A

AssEss The sum of the three currents is 3.98 A, as required by 
Kirchhoff’s junction law.

FiguRE 31.23 The parallel resistors can be replaced by a single equivalent resistor.

8 �
�

�
9 V

3.98 A
I1 I2 I3

3.98 A

4 �15 �

(b)

2.26 �
�

�
9 V

I
(a)

summary of series and parallel resistors

I �V

Series Same Add

Parallel Add Same

resistors are not in parallel. They are connected at their top ends 
but not at their bottom ends. Resistors must be connected to each 
other at both ends to be in parallel. Similarly, the 10 �  and 45 �  
resistors are not in series because of the junction between them. If 
the original group of four resistors occurred within a larger circuit, 
they could be replaced with a single 15.4 �  resistor without hav-
ing any effect on the rest of the circuit.

ExAmPLE 31.9  A combination of resistors
What is the equivalent resistance of the group of resistors shown 
in FiguRE 31.24?

FiguRE 31.24 A combination of resistors.

25 �

45 �90 �

10 �

moDEL This circuit contains both series and parallel resistors.

soLVE Reduction to a single equivalent resistance is best done in a 
series of steps, with the circuit being redrawn after each step. The 
procedure is shown in FiguRE 31.25. Note that the 10 �  and 25 �  

FiguRE 31.25 The combination is reduced to a 
single equivalent resistor.

25 � 15.4 ��
30 �

10 �

�
25 �

40 �



To return to the lightbulb question that began this section, FiguRE 31.26 has redrawn 
the circuit with each bulb shown as a resistance R. Initially, before the switch is 
closed, bulbs A and B are in series with equivalent resistance 2R. The current from 
the battery is

 Ibefore =
E

2R
=

1

2
 
E

R

This is the current in both bulbs.
Closing the switch places bulbs B and C in parallel. The equivalent resistance of 

two identical resistors in parallel is Req =
1
2 R. This equivalent resistance of B and C 

is in series with bulb A; hence the total resistance of the circuit is 3
2 R and the current 

leaving the battery is

 Iafter =
E

3R/2
=

2

3
 
E

R
7 Ibefore

Closing the switch decreases the circuit resistance and thus increases the current 
leaving the battery.

All the charge flows through A, so A increases in brightness when the switch is 
closed. The current Iafter then splits at the junction. Bulbs B and C have equal resis-
tance, so the current splits equally. The current in B is 13 (E/R), which is less than Ibefore. 
Thus B decreases in brightness when the switch is closed. Bulb C has the same bright-
ness as bulb B.

Voltmeters
A device that measures the potential difference across a circuit element is called a 
voltmeter. Because potential difference is measured across a circuit element, from 
one side to the other, a voltmeter is placed in parallel with the circuit element whose 
potential difference is to be measured.

FiguRE 31.27a shows a simple circuit in which a 17 � resistor is connected across a 
9 V battery with an unknown internal resistance. By connecting a voltmeter across the 
resistor, as shown in FiguRE 31.27b, we can measure the potential difference across the 
resistor. Unlike an ammeter, using a voltmeter does not require us to break the con-
nections.

Because the voltmeter is now in parallel with the resistor, the total resistance seen 
by the battery is Req = (1/17 � + 1/Rvoltmeter )

-1. In order that the voltmeter measure 
the voltage without changing the voltage, the voltmeter’s resistance must, in this case, 
be W 17 �. Indeed, an ideal voltmeter has Rvoltmeter = � �, and thus has no effect on 
the voltage. Real voltmeters come very close to this ideal, and we will always assume 
them to be so.

The voltmeter in Figure 31.27b reads 8.5 V. This is less than E because of the 
battery’s internal resistance. Equation 31.20 found an expression for the resistor’s 
potential difference �VR. That equation is easily solved for the internal resistance r:

 r =
E - �VR

�VR
 R =

0.5 V

8.5 V
 17 � = 1.0 �

Here a voltmeter reading was the one piece of experimental data we needed in order to 
determine the battery’s internal resistance.

FiguRE 31.26 The lightbulbs of 
Figure 31.20 with the switch open and 
closed.

Total
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�

�

FiguRE 31.27 A voltmeter measures the 
potential difference across an element.

Stop to think 31.5  Rank in order, from 
brightest to dimmest, the identical bulbs 
A to D.

�

� A

B

C

D

E
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31.7 Resistor Circuits
We can use the information in this chapter to analyze a variety of more complex but 
more realistic circuits.

PRoBLEm-soLViNg
sTRATEgy 31.1  Resistor circuits

moDEL Assume that wires are ideal and, where appropriate, that batteries are ideal.

VisuALizE Draw a circuit diagram. Label all known and unknown quantities.

soLVE Base your mathematical analysis on Kirchhoff’s laws and on the rules for 
series and parallel resistors.

■	 Step by step, reduce the circuit to the smallest possible number of equivalent 
resistors.

■	 Write Kirchhoff’s loop law for each independent loop in the circuit.
■	 Determine the current through and the potential difference across the equiva-

lent resistors.
■	 Rebuild the circuit, using the facts that the current is the same through all 

resistors in series and the potential difference is the same for all parallel resistors.

AssEss Use two important checks as you rebuild the circuit.

■	 Verify that the sum of the potential differences across series resistors matches 
�V  for the equivalent resistor.

■	 Verify that the sum of the currents through parallel resistors matches I for the 
equivalent resistor.

Exercise 26 

Second, we rebuild the circuit, step by step, finding the cur-
rents and potential differences at each step. FiguRE 31.29b repeats 
the steps of Figure 31.29a exactly, but in reverse order. The 400 �  
resistor came from two 800 � resistors in parallel. Because �V400 =  
12 V, it must be true that each �V800 = 12 V. The current through 
each 800 � is then I = �V/R = 15 mA. The checkpoint is to note 
that 15 mA + 15 mA = 30 mA.

The right 800 �  resistor was formed by 240 �  and 560 �  in 
series. Because I800 = 15 mA, it must be true that I240 = I560 =
15 mA. The potential difference across each is �V = IR, so 
�V240 = 3.6 V and �V560 = 8.4 V. Here the checkpoint is to note 
that 3.6 V + 8.4 V = 12 V = �V800, so the potential differences 
add as they should.

Finally, the 240 �  resistor came from 600 �  and 400 �  in par-
allel, so they each have the same 3.6 V potential difference as their 
240 �  equivalent. The currents are I600 = 6 mA and I400 = 9 mA. 
Note that 6 mA + 9 mA = 15 mA, which is our third checkpoint. 
We now know all currents and potential differences.

AssEss We checked our work at each step of the rebuilding pro-
cess by verifying that currents summed properly at junctions and 
that potential differences summed properly along a series of resis-
tances. This “check as you go” procedure is extremely important. 
It provides you, the problem solver, with a built-in error finder that 
will immediately inform you if a mistake has been made.

ExAmPLE 31.10  Analyzing a complex circuit
Find the current through and the potential difference across each 
of the four resistors in the circuit shown in FiguRE 31.28.

FiguRE 31.28 A complex resistor circuit.

�

� 400 �

600 �

560 �800 �12 V

moDEL Assume an ideal battery, with no internal resistance, and 
ideal connecting wires.

VisuALizE Figure 31.28 shows the circuit diagram. We’ll keep 
redrawing the diagram as we analyze the circuit.

soLVE First, we break the circuit down, step by step, into one with 
a single resistor. FiguRE 31.29a shows this done in three steps. The 
final battery-and-resistor circuit is our basic circuit, with current

 I =
E

R
=

12 V

400 �
= 0.030 A = 30 mA

The potential difference across the 400 �  resistor is �V400 =

�Vbat = E = 12 V.
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FiguRE 31.29 The step-by-step circuit analysis.

(a) Break down the circuit.

400 �

560 �800 �
12 V

600 �

240 �

560 �
800 �

800 �

800 �
400 �12 V

Reduce parallel
combination.

Reduce series
combination.

Reduce parallel
combination.

Equivalent
resistor

�

�

�

�

(b) Rebuild the circuit.

400 �
3.6 V 560 �

8.4 V

3.6 V
600 �

6.0 mA

12 V

9.0 mA

560 �
8.4 V

15 mA

240 �
3.6 V

15 mA 15 mA
30 mA

800 �
12 V

800 �
12 V

800 �
12 V

800 �
12 V

30 mA

15 mA 15 mA

30 mA30 mA

15 mA 15 mA15 mA
12 V

400 �
12 V

Parallel resistors have the
same potential difference.

Parallel resistors have the
same potential difference.

Series resistors have
the same current.

�

�

�

�

Kirchhoff’s loop law for the left loop, going clockwise from 
the lower-left corner, is

 a (�V)i = 19 V - (300 �)I1 - (100 �)I3 - 12 V = 0

We’re traveling through the 100 �  resistor in the direction of I3, 
the “downhill” direction, so the potential decreases. The 12 V 
battery is traversed positive to negative, so there we have �V =
-E = -12 V. For the right loop, we’re going to travel “uphill” 
through the 100 �  resistor, opposite to I3, and gain potential. Thus 
the loop law for the right loop is

 a (�V)i = 12 V + (100 �)I3 - (200 �)I2 = 0

ExAmPLE 31.11  Analyzing a two-loop circuit
Find the current through and the potential difference across the 
100 �  resistor in the circuit of FiguRE 31.30.

FiguRE 31.30 A two-loop circuit.

200 �

100 �300 �

�
19 V

�

�
12 V

�

moDEL Assume ideal batteries and ideal connecting wires.

VisuALizE Figure 31.30 shows the circuit diagram. None of the 
resistors are connected in series or in parallel, so this circuit can-
not be reduced to a simpler circuit.

soLVE Kirchhoff’s loop law applies to any loop. To analyze a 
multiloop problem, we need to write a loop-law equation for each 
loop. FiguRE 31.31 redraws the circuit and defines clockwise cur-
rents I1 in the left loop and I2 in the right loop. But what about the 
middle branch? Let’s assign a downward current I3 to the middle 
branch. If we apply Kirchhoff’s junction law g I in = g Iout  to 
the junction above the 100 �  resistor, as shown in the blow-up 
of Figure 31.31, we see that I1 = I2 + I3 and thus I3 = I1 - I2. If 
I3 ends up being a positive number, then the current in the middle 
branch really is downward. A negative I3 will signify an upward 
current.

FiguRE 31.31 Applying Kirchhoff’s laws.

200 �

100 �300 �

�
19 V

�

�
12 V

� I2I1

I2

I3

I1

I3

Kirchhoff’s junction law 
requires I1 � I2 � I3.  

Continued
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31.8 getting grounded
People who work with electronics are often heard to talk about things being “grounded.” 
It always sounds quite serious, perhaps somewhat mysterious. What is it?

The circuit analysis procedures we have discussed so far deal only with potential 
differences. Although we are free to choose the zero point of potential anywhere that is 
convenient, our analysis of circuits has not revealed any need to establish a zero point. 
Potential differences are all we have needed.

Difficulties can begin to arise, however, if you want to connect two different cir-
cuits together. Perhaps you would like to connect your CD player to your amplifier or 
your computer monitor to the computer itself. Incompatibilities can arise unless all the 
circuits to be connected have a common reference point for the potential.

You learned previously that the earth itself is a conductor. Suppose we have two 
circuits. If we connect one point of each circuit to the earth by an ideal wire, and we also 
agree to call the potential of the earth Vearth = 0 V, then both circuits have a common 
reference point. But notice something very important: one wire connects the circuit to 
the earth, but there is not a second wire returning to the circuit. That is, the wire con-
necting the circuit to the earth is not part of a complete circuit, so there is no current in 
this wire! Because the wire is an equipotential, it gives one point in the circuit the same 
potential as the earth, but it does not in any way change how the circuit functions. A 
circuit connected to the earth in this way is said to be grounded, and the wire is called 
the ground wire.

FiguRE 31.32a shows a fairly simple circuit with a 10 V battery and two resistors in 
series. The symbol beneath the circuit is the ground symbol. It indicates that a wire 
has been connected between the negative battery terminal and the earth, but the pres-
ence of the ground wire does not affect the circuit’s behavior. The total resistance 
is 8 � + 12 � = 20 �, so the current in the loop is I = (10 V)/(20 �) = 0.50 A. 
The potential differences across the two resistors are found, using Ohm’s law, to be 
�V8 = 4 V and �V12 = 6 V. These are the same values that we would find if the 
ground wire were not present. So what has grounding the circuit accomplished?

FiguRE 31.32b shows the actual potential at several points in the circuit. By definition, 
Vearth = 0 V. The negative battery terminal and the bottom of the 12 � resistor are con-
nected by ideal wires to the earth, so the potential at these two points must also be zero. 
The positive terminal of the battery is 10 V more positive than the negative terminal, 
so Vneg = 0 V implies Vpos = +10 V. Similarly, the fact that the potential decreases by 
6 V as charge flows through the 12 � resistor now implies that the potential at the junc-
tion of the resistors must be +6 V. The potential difference across the 8 � resistor is 
4 V, so the top has to be at +10 V. This agrees with the potential at the positive battery 
terminal, as it must because these two points are connected by an ideal wire.

All that grounding the circuit does is allow us to have specific values for the poten-
tial at each point in the circuit. Now we can say “The voltage at the resistor junction is 
6 V,” whereas before all we could say was “There is a 6 V potential difference across 
the 12 � resistor.”

the current through the 100 �  resistor is I3 = I1 - I2 = -20 mA, 
or, because of the minus sign, 20 mA upward. The potential dif-
ference across the 100 �  resistor is �V100 � = I3R = 2.0 V, with 
the bottom end more positive.

AssEss The three “legs” of the circuit are in parallel, so they 
must have the same potential difference across them. The left leg 
has �V = 19 V - (0.030 A)(300 �) = 10 V, the middle leg has 
�V = 12 V - (0.020 A)(100 �) = 10 V, and the right leg has 
�V = (0.050 A)(200 �) = 10 V.  Consistency checks such as 
these are very important. Had we made a numerical error in our 
circuit analysis, we would have caught it at this point.

If we substitute I3 = I1 - I2 and then rearrange the terms, we find 
that the two independent loops have given us two simultaneous 
equations in the two unknowns I1 and I2:

  400I1 - 100I2 = 7

  -100I1 + 300I2 = 12

We can eliminate I2 by multiplying through the first equation by 3 
and then adding the two equations. This gives 1100I1 = 33, from 
which I1 = 0.030 A = 30 mA. Using this value in either of the 
two loop equations gives I2 = 0.050 A = 50 mA. Because I2 7 I1, 

The circular prong of a three-prong plug is 
a connection to ground.

FiguRE 31.32 A circuit that is grounded 
at one point.

�

� �

�
8 � �V � 4 V

�V � 6 V

�

�
12 �

Potential
differences

The circuit is grounded
at this point.

0.50 A(a)

10 V

Ground symbol

�

�
8 �

12 �

6 V

There is no current
in the ground wire.

10 V is the potential
at the dot.

0.50 A

(b)

10 V

10 V

0 V 0 V

10 V
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There is one important lesson from this: Being grounded does not affect the cir-
cuit’s behavior under normal conditions. You cannot use “because it is grounded” 
to explain anything about a circuit’s behavior.

We added “under normal conditions” because there is one exception. Most circuits 
are enclosed in a case of some sort that is held away from the circuit with insulators. 
Sometimes a circuit breaks or malfunctions in such a way that the case comes into elec-
trical contact with the circuit. If the circuit uses high voltage, or even ordinary 120 V 
household voltage, anyone touching the case could be injured or killed by electrocution. 
To prevent this, many appliances or electrical instruments have the case itself grounded. 
Grounding ensures that the potential of the case will always remain at 0 V and be safe. 
If a malfunction occurs that connects the case to the circuit, a large current will pass 
through the ground wire to the earth and cause a fuse to blow. This is the only time the 
ground wire would ever have a current, and it is not a normal operation of the circuit.

across the two resistors are still 4 V and 6 V. All that has happened is 
that we have moved the V = 0 V reference point. Because the earth 
has Vearth = 0 V, the junction itself now has a potential of 0 V. The 
potential decreases by 4 V as charge flows through the 8 � resistor. 
Because it ends at 0 V, the potential at the top of the 8 � resistor must 
be +4 V. Similarly, the potential decreases by 6 V through the 12 �  
resistor. Because it starts at 0 V, the bottom of the 12 � resistor must 
be at -6 V. The negative battery terminal is at the same potential 
as the bottom of the 12 � resistor, because they are connected by a 
wire, so Vneg = -6 V. Finally, the potential increases by 10 V as the 
charge flows through the battery, so Vpos = +4 V, in agreement, as it 
should be, with the potential at the top of the 8 � resistor.

AssEss A negative voltage means only that the potential at 
that point is less than the potential at some other point that we 
chose to call V = 0 V. Only potential differences are physically 
meaningful, and only potential differences enter into Ohm’s law: 
I = �V/R. The potential difference across the 12 �  resistor in 
this example is 6 V, decreasing from top to bottom, regardless of 
which point we choose to call V = 0 V.

ExAmPLE 31.12  A grounded circuit
Suppose the circuit of Figure 31.32 were grounded at the junction 
between the two resistors instead of at the bottom. Find the poten-
tial at each corner of the circuit.

VisuALizE FiguRE 31.33 shows the new circuit. (It is customary to 
draw the ground symbol so that its “point” is always down.)

FiguRE 31.33 Circuit of Figure 31.32 grounded 
at the point between the resistors.

�

�
8 �

12 �

0 V
0 V

0.50 A

10 V

4 V

�6 V�6 V

4 V

soLVE Changing the ground point does not affect the circuit’s 
behavior. The current is still 0.50 A, and the potential differences 

31.9 RC Circuits
Thus far we’ve considered only circuits in which the current is steady and continuous. 
There are many circuits in which the time dependence of the current is a crucial fea-
ture. Charging and discharging a capacitor is an important example.

FiguRE 31.34a shows a charged capacitor, a switch, and a resistor. The capacitor has 
charge Q0 and potential difference �V0 = Q0/C. There is no current, so the potential 
difference across the resistor is zero. Then, at t = 0, the switch closes and the capaci-
tor begins to discharge through the resistor. A circuit such as this, with resistors and 
capacitors, is called an RC circuit.

How long does the capacitor take to discharge? How does the current through the 
resistor vary as a function of time? To answer these questions, FiguRE 31.34b shows the 
circuit at some point in time after the switch was closed.

Kirchhoff’s loop law is valid for any circuit, not just circuits with batteries. The 
loop law applied to the circuit of Figure 31.34b, going around the loop cw, is

 �Vcap + �Vres =
Q

C
- IR = 0 (31.27)

Q and I in this equation are the instantaneous values of the capacitor charge and the 
resistor current.

FiguRE 31.34 An RC circuit.

The switch will
close at t � 0.

(a) Before the switch closes

Charge Q0

�V0 � Q0/C

R
�VR � 0I � 0C

�

�

�

�

�

�

�

�

(b) After the switch closes

Charge Q
�Vcap � Q/C

R
�Vres � �IRIC

�

�

�

�

The current is reducing the 
charge on the capacitor.
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The current I is the rate at which charge flows through the resistor: I = dq/dt. But 
the charge flowing through the resistor is charge that was removed from the capaci-
tor. That is, an infinitesimal charge dq flows through the resistor when the capacitor 
charge decreases by dQ. Thus dq = -dQ, and the resistor current is related to the 
instantaneous capacitor charge by

 I = -  
dQ

dt
 (31.28)

Now I is positive when Q is decreasing, as we would expect. The reasoning that has 
led to Equation 31.28 is rather subtle but very important. You’ll see the same reason-
ing later in other contexts.

If we substitute Equation 31.28 into Equation 31.27 and then divide by R, the loop 
law for the RC circuit becomes

 
dQ

dt
+

Q

RC
= 0 (31.29)

Equation 31.29 is a first-order differential equation for the capacitor charge Q, but one 
that we can solve by direct integration. First, we rearrange Equation 31.29 to get all 
the charge terms on one side of the equation:

 
dQ

Q
= -  

1

RC
 dt

The product RC is a constant for any particular circuit.
The capacitor charge was Q0 at t = 0 when the switch was closed. We want to inte-

grate from these starting conditions to charge Q at a later time t. That is,

 3
Q

Q0

 
dQ

Q
= -  

1

RC
 3

t

0

 dt (31.30)

Both are well-known integrals, giving

 ln Q `
Q

Q0

= ln Q - ln Q0 = ln1 Q

Q0
2 = -  

t

RC

We can solve for the capacitor charge Q by taking the exponential of both sides, 
then multiplying by Q0. Doing so gives

 Q = Q0e
-t/RC (31.31)

Notice that Q = Q0 at t = 0, as expected.
The argument of an exponential function must be dimensionless, so the quantity RC 

must have dimensions of time. It is useful to define the time constant t of the RC circuit as

 t = RC (31.32)

We can then write Equation 31.31 as

 Q = Q0e
-t/t (31.33)

And because the capacitor voltage is directly proportional to the charge, it also decays 
exponentially as

 �VC = �V0e - t/t (31.34)

The meaning of Equation 31.33 is easier to understand if we portray it graphically. 
FiguRE 31.35a shows the capacitor charge as a function of time. The charge decays expo-
nentially, starting from Q0 at t = 0 and asymptotically approaching zero as t S �. 
The time constant t is the time at which the charge has decreased to e-1 (about 37%) 
of its initial value. At time t = 2t, the charge has decreased to e-2 (about 13%) of its 
initial value. A voltage graph would have the same shape.

NoTE  The shape of the graph of Q is always the same, regardless of the specific 
value of the time constant t. 

The rear flasher on a bike helmet flashes 
on and off. The timing is controlled by an 
RC circuit.

FiguRE 31.35 The decay curves of the 
capacitor charge and the resistor current.

Q0

(a)

0.13Q0

Charge Q

The charge has
decreased to
37% of its initial
value at t � t.

An exponential
decay curve

The charge has
decreased to
13% of its initial
value at t � 2t.

t

0.37Q0

0
0

2tt 3t

(b)
Current I

The current has decreased to
37% of its initial value at t � t.

t

0.37I0

I0

2tt 3t0
0



We find the resistor current by using Equation 31.28:

 I = -  
dQ

dt
=

Q0

t
 e-t/t =

Q0

RC
 e-t/t =

�V0

R
 e-t/t = I0e-t/t (31.35)

where I0 = �V0/R is the initial current, immediately after the switch closes. FiguRE 31.35b 

is a graph of the resistor current versus t. You can see that the current undergoes the 
same exponential decay, with the same time constant, as the capacitor charge.

NoTE  There’s no specific time at which the capacitor has been discharged, because 
Q approaches zero asymptotically, but the charge and current have dropped to less 
than 1% of their initial values at t = 5t. Thus 5t is a reasonable answer to the ques-
tion “How long does it take to discharge a capacitor?” 

This result tells us that a graph of ln(�VR) versus t—a semi-log 
graph—should be linear with y-intercept ln(�V0) and slope -1/t. 
If this turns out to be true, we can determine t and hence C from 
an experimental measurement of the slope.

FiguRE 31.37 is a graph of ln(�VR) versus t. It is, indeed, linear 
with a negative slope. From the y-intercept of the best-fit line, we 
find �V0 = e2.20 = 9.0 V, as expected. This gives us confidence 
in our analysis. Using the slope, we find

 t = -
1

slope
= -

1

- 0.28 s -1 = 3.6 s

With this, we can calculate

 C =
t

R
=

3.6 s

25,000 �
= 1.4 * 10-4 F = 140 mF

The initial current is I0 = (9.0 V)/(25,000 �) = 360 mA. Current 
also decays exponentially with the same time constant, so the cur-
rent after 5.0 s is

 I = I0e - t/t = (360 mA)e -(5.0 s)/(3.6 s) = 90 mA

ExAmPLE 31.13  measuring capacitance
To determine the capacitance of an unmarked capacitor, you set 
up the circuit shown in FiguRE 31.36. After holding the switch in 
position a for several seconds, you suddenly flip it—at a time 
you choose to call t = 0 s—to position b while monitoring the 
resistor voltage with a voltmeter. Your measurements are as 
follows:

FiguRE 31.36 An RC circuit for measuring capacitance.

�

�
9 V 25 k�C

a b

V

What is the capacitance? And what was the resistor current 5.0 s 
after the switch changed position?

moDEL The battery charges the capacitor to 9.0 V. Then, when the 
switch is flipped to position b, the capacitor discharges through the 
25,000 �  resistor with time constant t = RC.

soLVE With the switch in position b, the resistor is in parallel 
with the capacitor and both have the same potential difference 
�VR = �VC = Q/C at all times. The capacitor charge decays 
exponentially as

 Q = Q0e - t/t

Consequently, the resistor (and capacitor) voltage also decays ex-
ponentially:

 �VR =
Q0

C
 e - t/t = �V0e - t/t

where �V0 = 9.0 V is the potential difference at the instant the 
switch closes. To analyze exponential decays, we take the natural 
logarithm of both sides. This gives

 ln(�VR) = ln(�V0) + ln(e - t/t) = ln(�V0) -
1
t

 t

Time (s) Voltage (V)

0.0 9.0

2.0 5.4

4.0 2.7

6.0 1.6

8.0 1.0

FiguRE 31.37 A semi-log graph of the data.

y � �0.28x � 2.20

8

0.5

1.0

1.5

2.0

2.5
ln(�VR)

t (s)
2 4 6

Best-fit line

0.0
0

AssEss The time constant of an exponential decay can be 
estimated as the time required to decay to one-third of the initial 
value. Looking at the data, we see that the voltage drops to one-
third of the initial 9.0 V in just under 4 s. This is consistent with 
the more precise t = 3.6 s, so we have confidence in our results.

31.9 . RC Circuits    911
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Charging a Capacitor
FiguRE 31.38a shows a circuit that charges a capacitor. After the switch is closed, the 
battery’s charge escalator moves charge from the bottom electrode of the capacitor to 
the top electrode. The resistor, by limiting the current, slows the process but doesn’t 
stop it. The capacitor charges until �VC = E; then the charging current ceases. The 
full charge of the capacitor is Qmax = C(�VC)max = CE.

As a homework problem, you can show that the capacitor charge at time t is

 Q = Qmax(1 - e-t/t) (31.36)

where again t = RC. This “upside-down decay” to Qmax is shown graphically in 
FiguRE 31.38b. RC circuits that alternately charge and discharge a capacitor are at the 
heart of time-keeping circuits in computers and other digital electronics.

Stop to think 31.6  The time constant for the discharge of this capacitor is

 a.  5 s.
 b. 4 s.
 c. 2 s.
 d. 1 s.
 e. The capacitor doesn’t discharge because 

the resistors cancel each other.

FiguRE 31.38 A circuit for charging a 
capacitor.

(a) Switch closes at t � 0 s.

�

�
E C

R

(b)

Charge Q

t

Qmax

2tt 3t0
0

2 �2 �

1 F

There are two ways to determine the energy dissipated in the  
resistor. We learned in Section 31.3 that a resistor dissipates energy  
at the rate dE/dt = PR = I 2R. The current decays exponentially as 
I = I0 exp(- t/t), with I0 = �V0/R = 9.09 mA. We can find the 
energy dissipated during a time T  by integrating:

  �E = 3
T

0

I 2R dt = I0 

2 R3
T

0

 e -2t/t dt = -
1

2
 tI0 

2 Re -2t/t `
T

0

  =
1

2
 tI0 

2 R11 - e -2T/t2

The 2 in the exponent appears because we squared the expression 
for I. Evaluating for T = 1.0 s, we find

�E =
1

2
 (1.1 s)(0.00909 A)2 (5500 �)11 - e -(2.0 s)/(1.1 s)2 = 0.21 J

Alternatively, we can use the known capacitor voltages at t = 0 s 
and t = 1.0 s and UC =

1
2 C(�VC)2 to calculate the energy stored 

in the capacitor at these times:

 UC (t = 0.0 s) =
1

2
 (2.0 * 10-4 F)(50 V)2 = 0.25 J

 UC (t = 1.0 s) =
1

2
 (2.0 * 10-4 F)(20 V)2 = 0.04 J

The capacitor has lost �E = 0.21 J of energy, and this energy was 
dissipated by the current through the resistor.

AssEss Not every problem can be solved two ways, but doing so 
when it’s possible gives us great confidence in our result.

CHALLENgE ExAmPLE 31.14  Energy dissipated during a capacitor discharge
The switch in FiguRE 31.39 has been in position a for a long time. 
It is suddenly switched to position b for 1.0 s, then back to a. How 
much energy is dissipated by the 5500 �  resistor?

FiguRE 31.39 Circuit of a switched capacitor.

50 V 200 mF 5500 �

ba

1200 �

�

�

moDEL With the switch in position a, the capacitor charges 
through the 1200 �  resistor with time constant tcharge =  
(1200 �)(2.0 * 10-4 F) =  0.24 s. Because the switch has been in 
position a for a “long time,” which we interpret as being much lon-
ger than 0.24 s, we will assume that the capacitor is fully charged 
to 50 V when the switch is changed to position b. The capacitor 
then discharges through the 5500 �  resistor until the switch is 
returned to position a. Assume ideal wires.

soLVE Let t = 0 s be the time when the switch is moved from a 
to b, initiating the discharge. The battery and 1200 �  resistor are 
irrelevant during the discharge, so the circuit looks like that of 
Figure 31.34b. The time constant is t = (5500 �)(2.0 * 10-4 F) =  
1.1 s, so the capacitor voltage decreases from 50 V at t = 0 s to

 �V C = (50 V)e -(1.0 s)/(1.1 s) = 20 V

at t = 1.0 s.
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s u m m A R y
The goal of Chapter 31 has been to understand the fundamental physical principles that govern electric circuits.

moDEL Assume that wires and, where appropriate, batteries are ideal.

VisuALizE Draw a circuit diagram. Label all known and unknown 
quantities.

soLVE Base the solution on Kirchhoff’s laws.

•	 Reduce the circuit to the smallest possible number of equivalent 
resistors.

•	 Write one loop equation for each independent loop.

•	 Find the current and the potential difference.

•	 Rebuild the circuit to find I and �V  for each resistor.

AssEss Verify that

•	 The sum of potential differences across series resistors matches 
�V  for the equivalent resistor.

•	 The sum of the currents through parallel resistors matches I for 
the equivalent resistor.

Kirchhoff’s loop law

For a closed loop:

•	 Assign a direction to 
the current I.

•	 g(�V)i = 0

Kirchhoff’s junction law

For a junction:

•	 gIin = gIout

general strategy

�V4

�V1

�V2

�V3

I 

Iin

Iout

The energy used by a circuit is supplied by the emf E of the 
battery through the energy transformations

Echem S U S K S Eth

The battery supplies energy at the rate

Pbat = IE

The resistors dissipate energy at the rate

PR = I �VR = I 2R =
(�VR)2

R
 

Ohm’s Law

A potential difference �V  between the ends of a conductor with 
resistance R creates a current

  I =
�V

R

Signs of �V  for Kirchhoff’s loop law

 �Vbat = +E �Vbat = -E �Vres = - IR

important Concepts

Travel I

� � RE

Travel

��
E

Series resistors

 Req = R1 + R2 + R3 + g

Parallel resistors

 Req = 1 1

R1
+

1

R2
+

1

R3
+ g 2 -1

Applications

R1 R3R2

R2

R1

R3

RC circuits

The discharge of a capacitor 
through a resistor satisfies:

 Q = Q0 e-t/t

 I = -
dQ

dt
=

Q0

t
 e-t/t = I0e-t/t

where t = RC is the time 
constant.

RIC
Q �

�

�

�

Q

t0
0

Q0

t
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C o N C E P T u A L  Q u E s T i o N s

circuit diagram
Kirchhoff’s junction law
Kirchhoff’s loop law
complete circuit
load

source
kilowatt hour, kWh
series resistors
equivalent resistance, Req

ammeter

internal resistance, r
terminal voltage, �Vbat

short circuit
parallel resistors
voltmeter

grounded
RC circuit
time constant, t

Terms and Notation

 1. Rank in order, from largest to smallest, the currents Ia to Id 
through the four resistors in FiguRE Q31.1.

 2. The tip of a flashlight bulb is touching the top of the 3 V battery 
in FiguRE Q31.2. Does the bulb light? Why or why not?

 3. The wire is broken on the right side of the circuit in FiguRE Q31.3. 
What is the potential difference �V12 between points 1 and 2? 
Explain.

 4. The circuit of FiguRE Q31.4 has two resistors, with R1 7 R2. 
Which of the two resistors dissipates the larger amount of 
power? Explain.

 5. The circuit of FiguRE Q31.5 has two resistors, with R1 7 R2. 
Which of the two resistors dissipates the larger amount of 
power? Explain.

 6. Rank in order, from largest to smallest, the powers Pa to Pd dis-
sipated by the four resistors in FiguRE Q31.6.

 7. Are the two resistors in FiguRE Q31.7 
in series or in parallel? Explain.

 8. A battery with internal resistance r is connected to a load resis-
tance R. If R is increased, does the terminal voltage of the battery 
increase, decrease, or stay the same? Explain.

 9. Initially bulbs A and B in FiguRE Q31.9 are glowing. What hap-
pens to each bulb if the switch is closed? Does it get brighter, 
stay the same, get dimmer, or go out? Explain.

 10. Bulbs A, B, and C in FiguRE Q31.10 are identical, and all are glowing.
 a. Rank in order, from most to least, the brightnesses of the 

three bulbs. Explain.
 b. Suppose a wire is connected between points 1 and 2. What 

happens to each bulb? Does it get brighter, stay the same, get 
dimmer, or go out? Explain.

 11. Bulbs A and B in FiguRE Q31.11 are identical, and both are glow-
ing. Bulb B is removed from its socket. Does the potential dif-
ference �V12 between points 1 and 2 increase, stay the same, 
decrease, or become zero? Explain.

 12. Bulbs A and B in FiguRE Q31.12 are identical, and both are glowing. 
What happens to each bulb when the switch is closed? Does its 
brightness increase, stay the same, decrease, or go out? Explain.

 13. FiguRE Q31.13 shows the voltage 
as a function of time of a ca-
pacitor as it is discharged (sepa-
rately) through three different 
resistors. Rank in order, from 
largest to smallest, the values of 
the resistances R1 to R3.
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Problems labeled  integrate material from earlier chapters.

Exercises

Section 31.1 Circuit Elements and Diagrams

 1. | Draw a circuit diagram for the circuit of FiguRE Ex31.1.

 2. | Draw a circuit diagram for the circuit of FiguRE Ex31.2.

Section 31.2 Kirchhoff’s Laws and the Basic Circuit

 3. || In FiguRE Ex31.3, what is the current in the wire to the right of 
the junction? Does the charge in this wire flow to the right or to 
the left?

 4. | a.  What are the magnitude and direction of the current in the 
18 �  resistor in FiguRE Ex31.4?

 b.  Draw a graph of the potential as a function of the distance 
traveled through the circuit, traveling cw from V = 0 V at 
the lower left corner.

 5. | a.  What are the magnitude and direction of the current in the 
10 �  resistor in FiguRE Ex31.5?

 b.  Draw a graph of the potential as a function of the distance 
traveled through the circuit, traveling cw from V = 0 V at 
the lower left corner.

 6. | What is the potential difference across each resistor in 
FiguRE  Ex31.6?

Section 31.3 Energy and Power

 7. | What is the resistance of a 1500 W (120 V) hair dryer? What 
is the current in the hair dryer when it is used?

 8. | How much power is dissipated by each resistor in FiguRE Ex31.8?

 9. || A 60 W lightbulb and a 100 W lightbulb are placed one 
after the other in the circuit of FiguRE Ex31.9. The battery’s 
emf is large enough that both bulbs are glowing. Which is the 
true statement?

 A. The 60 W bulb is brighter.
 B. Both bulbs are equally bright.
 C. The 100 W bulb is brighter.
 D. There’s not enough information to tell which bulb is brighter.
 10. || A standard 100 W (120 V) lightbulb contains a 7.0-cm-long 

tungsten filament. The high-temperature resistivity of tungsten is 
9.0 * 10-7 �  m. What is the diameter of the filament?

 11. || A typical American family uses 1000 kWh of electricity a 
month.

 a. What is the average current in the 120 V power line to the 
house?

 b. On average, what is the resistance of a household?
 12. | A waterbed heater uses 450 W of power. It is on 25% of the 

time, off 75%. What is the annual cost of electricity at a billing 
rate of $0.12/kWh?

Section 31.4 Series Resistors

Section 31.5 Real Batteries

 13. | Two of the three resistors in FiguRE Ex31.13 are unknown but 
equal. The total resistance between points a and b is 200 �. 
What is the value of R?

 14. | What is the value of resistor R in FiguRE Ex31.14?
 15. | The battery in FiguRE Ex31.15 is 

short-circuited by an ideal ammeter 
having zero resistance.

 a. What is the battery’s internal 
resistance?

 b. How much power is dissipated 
inside the battery?

 16. || The voltage across the terminals of a 9.0 V battery is 8.5 V 
when the battery is connected to a 20 �  load. What is the 
battery’s internal resistance?
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 17. || Compared to an ideal battery, by what percentage does the 
battery’s internal resistance reduce the potential difference 
across the 20 �  resistor in FiguRE Ex31.17? 

Section 31.6 Parallel Resistors

 18. || A metal wire of resistance R is cut into two pieces of equal 
length. The two pieces are connected together side by side. What 
is the resistance of the two connected wires?

 19. | Two of the three resistors in FiguRE Ex31.19 are unknown but 
equal. The total resistance between points a and b is 75 �. What 
is the value of R?

 20. | What is the value of resistor R in FiguRE Ex31.20?
 21. | What is the equivalent resistance between points a and b in 

FiguRE Ex31.21?

 22. | What is the equivalent resistance between points a and b in 
FiguRE Ex31.22?

 23. | What is the equivalent resistance between points a and b in 
FiguRE Ex31.23?

 24. | What is the equivalent resistance between points a and b in 
FiguRE Ex31.24?
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Section 31.8 Getting Grounded

 25. || In FiguRE Ex31.25, what is the value of the potential at points 
a and b?

 26. ||| In FiguRE Ex31.26, what is the value of the potential at points 
a and b?

Section 31.9 RC Circuits

 27. | Show that the product RC has units of s.
 28. | What is the time constant for the discharge of the capacitors in 

FiguRE Ex31.28?

 29. || What is the time constant for the discharge of the capacitors in 
FiguRE Ex31.29?

 30. || A 10 mF capacitor initially charged to 20 mC is discharged 
through a 1.0 k�  resistor. How long does it take to reduce the 
capacitor’s charge to 10 mC?

 31. | The switch in FiguRE Ex31.31 
has been in position a for a long 
time. It is changed to position b 
at t =  0 s. What are the charge Q 
on the capacitor and the current I 
through the resistor (a) immedi-
ately after the switch is closed? 
(b) at t = 50 ms? (c) at t = 200 ms?

 32. || What value resistor will discharge a 1.0 mF capacitor to 10% 
of its initial charge in 2.0 ms?

 33. || A capacitor is discharged through a 100 �  resistor. The dis-
charge current decreases to 25% of its initial value in 2.5 ms. 
What is the value of the capacitor?

Problems

 34. || The five identical bulbs in FiguRE P31.34 are all glowing. The 
battery is ideal. What is the order of brightness of the bulbs, from 
brightest to dimmest? Some may be equal.

 A. P = S 7 Q = R = T
 B. P = S = T 7 Q = R
 C. P 7 S = T 7 Q = R
 D. P 7 Q = R 7 S = T
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 35. || The five identical bulbs in FiguRE P31.35 are all glowing. The 
battery is ideal. What is the order of brightness of the bulbs, from 
brightest to dimmest? Some may be equal.

 A. P = T 7 Q = R = S
 B. P 7 Q = R = S 7 T
 C. P = T 7 Q 7 R = S
 D. P 7 Q 7 T 7 R = S
 36. ||| Two 75 W (120 V) lightbulbs are wired in series, then the 

combination is connected to a 120 V supply. How much power 
is dissipated by each bulb?

 37. ||| The corroded contacts in a lightbulb socket have 5.0 �  resis-
tance. How much actual power is dissipated by a 100 W (120 V) 
lightbulb screwed into this socket?

 38. || An electric eel develops a 450 V potential difference between 
its head and tail. The eel can stun a fish or other prey by using 
this potential difference to drive a 0.80 A current pulse for 1.0 ms. 
What are (a) the energy delivered by this pulse and (b) the total 
charge that flows?

 39. || You have a 2.0 �  resistor, a 3.0 �  resistor, a 6.0 �  resistor, 
and a 6.0 V battery. Draw a diagram of a circuit in which all 
three resistors are used and the battery delivers 9.0 W of power.

 40. | You have three 12 �  resistors. Draw diagrams showing 
how you could arrange all three so that their equivalent resis-
tance is (a) 4.0 �, (b) 8.0 �, (c) 18 �, and (d) 36 �.

 41. || What is the equivalent resistance between points a and b in 
FiguRE P31.41?

 42. | There is a current of 0.25 A in the circuit of FiguRE P31.42. 
What is the power dissipated by R?

 43. || A variable resistor R is connected across the terminals of a 
battery. FiguRE P31.43 shows the current in the circuit as R is var-
ied. What are the emf and internal resistance of the battery?
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 44. | The 10 �  resistor in FiguRE P31.44 is dissipating 40 W of 
power. How much power are the other two resistors dissipating?

 45. || What are the emf and internal resistance of the battery in 
FiguRE P31.45?

 46. | What is the emf of the battery in FiguRE P31.46?
 47. || A 2.5 V battery with 0.70 �  internal resistance is connected 

in parallel with a 1.5 V battery having 0.30 �  internal resistance. 
That is, their positive terminals are connected by a wire and their 
negative terminals are connected by a wire. What is the terminal 
voltage of the 2.5 V battery?

 48. || a.  Load resistor R is attached to a battery of emf E and inter-
nal resistance r. For what value of the resistance R, in terms 
of E and r, will the power dissipated by the load resistor be 
a maximum?

 b.   What is the maximum power that the load can dissipate if 
the battery has E = 9.0 V and r = 1.0 �?

 c.  Why should the power dissipated by the load have a maxi-
mum value? Explain.

Hint: What happens to the power dissipation when R is either 
very small or very large?

 49. | The ammeter in FiguRE P31.49 reads 3.0 A. Find I1, I2, and E.

 50. || What is the current in the 2 �  resistor in FiguRE P31.50?
 51. | It seems hard to justify spending $5 for a compact fluorescent 

lightbulb when an ordinary incandescent bulb costs 50¢. To see 
if this makes sense, compare a 60 W incandescent bulb lasting 
1000 hours to a 15 W compact fluorescent bulb having a life-
time of 10,000 hours. Both bulbs produce the same amount 
of visible light and are interchangeable. If electricity costs 
$0.10/kWh, what is the total cost—purchase plus energy—to 
obtain 10,000 hours of light from each type of bulb? This is 
called the life-cycle cost.

 52. || A refrigerator has a 1000 W compressor, but the compressor 
runs only 20% of the time.

 a. If electricity costs $0.10/kWh, what is the monthly (30 day) 
cost of running the refrigerator?

 b. A more energy-efficient refrigerator with an 800 W compressor 
costs $100 more. If you buy the more expensive refrigerator, 
how many months will it take to recover your additional cost?
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 53. | For an ideal battery (r = 0 �), closing the switch in FiguRE P31.53 
does not affect the brightness of bulb A. In practice, bulb A dims 
just a little when the switch closes. To see why, assume that the 
1.50 V battery has an internal resistance r = 0.50 �  and that the 
resistance of a glowing bulb is R = 6.00 �.

 a. What is the current through bulb A when the switch is open?
 b. What is the current through bulb A after the switch has 

closed?
 c. By what percentage does the current through A change when 

the switch is closed?

 54. | What are the battery current Ibat and the potential difference 
�Vab between points a and b when the switch in FiguRE P31.54 is 
(a) open and (b) closed?

 55. || The circuit in FiguRE P31.55 is called a voltage divider. What 
value of R will make Vout = Vin/10?

 56. || A circuit you’re building needs a voltmeter that goes from 
0 V to a full-scale reading of 5.0 V. Unfortunately, the only 
meter in the storeroom is an ammeter that goes from 0 mA to a 
full-scale reading of 500 mA. Fortunately, you’ve just finished 
a physics class, and you realize that you can convert this meter 
to a voltmeter by putting a resistor in series with it, as shown 
in FiguRE P31.56. You’ve measured that the resistance of the 
ammeter is 50.0 �, not the 0 �  of an ideal ammeter. What 
value of R must you use so that the meter will go to full scale 
when the potential difference across the object being measured 
is 5.0 V?

 57. || A circuit you’re building needs an ammeter that goes from 
0 mA to a full-scale reading of 50 mA. Unfortunately, the only 
ammeter in the storeroom goes from 0 mA to a full-scale read-
ing of only 500 mA. Fortunately, you’ve just finished a physics 
class, and you realize that you can make this ammeter work by 
putting a resistor in parallel with it, as shown in FiguRE P31.57. 
You’ve measured that the resistance of the ammeter is 50.0 �, 
not the 0 �  of an ideal ammeter.

 a. What value of R must you use so that the meter will go to full 
scale when the current I is 50 mA?

 b. What is the effective resistance of your ammeter?

 58. || For the circuit shown in FiguRE P31.58, find the current through 
and the potential difference across each resistor. Place your re-
sults in a table for ease of reading.

 59. || For the circuit shown in FiguRE P31.59, find the current through 
and the potential difference across each resistor. Place your re-
sults in a table for ease of reading.

 60. || For the circuit shown in FiguRE P31.60, find the current through 
and the potential difference across each resistor. Place your 
results in a table for ease of reading.

 61. || For the circuit shown in FiguRE P31.61, find the current 
through and the potential difference across each resistor. Place 
your results in a table for ease of reading.

 62. || What is the current through the 20 �  resistor in FiguRE P31.62?
 63. || What is the current through the 10 �  resistor in FiguRE P31.63? 

Is the current from left to right or right to left?

 64. || What power is dissipated by the 2 �  resistor in FiguRE P31.64?

FiguRE P31.56 FiguRE P31.55 

R

100 �

Vin

Vout

R

A

Your voltmeter

500 mA ammeter
�V

FiguRE P31.58 FiguRE P31.57 

R

I

A

Your ammeter

500 mA ammeter

�

�

6 �

4 �

24 V
5 �

10 �

FiguRE P31.60 FiguRE P31.59 

�

�
12 V

3 � 16 �

4 � 48 �

4 �

�

�
24 V 8 �

2 �

12 �6 �

FiguRE P31.62 FiguRE P31.61 

�

�
12 V

�

�
3 V

24 �

3 �

5 �
4 �

12 �
�

�
20 �

2 �

100 V

4 �

5 �

FiguRE P31.63 

��
12 V 5 �

5 � 9 V
� �

10 � 3 V
� �

FiguRE P31.64 

�

�

� �

12 V

15 V
4 �

2 �

4 �

FiguRE P31.54 FiguRE P31.53 

r

E

BA

�

�

5 �3 �

1 �3 �
�

�
24 V ba



 65. || For what emf E does the 200 �  resistor in FiguRE P31.65 
dissipate no power? Should the emf be oriented with its positive 
terminal at the top or at the bottom?

 66. || A 12 V car battery dies not so much because its voltage drops 
but because chemical reactions increase its internal resistance. 
A good battery connected with jumper cables can both start the 
engine and recharge the dead battery. Consider the automotive 
circuit of FiguRE P31.66.

 a. How much current could the good battery alone drive through 
the starter motor?

 b. How much current is the dead battery alone able to drive 
through the starter motor?

 c. With the jumper cables attached, how much current passes 
through the starter motor?

 d. With the jumper cables attached, how much current passes 
through the dead battery, and in which direction?

 67. || How much current flows through the bottom wire 
in FiguRE P31.67, and in which direction?

 68. || The capacitor in an RC circuit is discharged with a time 
constant of 10 ms. At what time after the discharge begins are 
(a) the charge on the capacitor reduced to half its initial value 
and (b) the energy stored in the capacitor reduced to half its 
initial value?

 69. || A circuit you’re using discharges a 20 mF capacitor through 
an unknown resistor. After charging the capacitor, you close a 
switch at t = 0 s and then monitor the resistor current with an 
ammeter. Your data are as follows:

Time (s) Current (mA)

0.5 890

1.0 640

1.5 440

2.0 270

2.5 200

  Use an appropriate graph of the data to determine (a) the resis-
tance and (b) the initial capacitor voltage.

 70. || A 150 mF defibrillator capacitor is charged to 1500 V. When 
fired through a patient’s chest, it loses 95% of its charge in 
40 ms. What is the resistance of the patient’s chest?
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 71. || A 50 mF capacitor that had been charged to 30 V is discharged 
through a resistor. FiguRE P31.71 shows the capacitor voltage as a 
function of time. What is the value of the resistance?

 72. || A 0.25 mF capacitor is charged to 50 V. It is then connected 
in series with a 25 �  resistor and a 100 �  resistor and allowed 
to discharge completely. How much energy is dissipated by the 
25 �  resistor?

 73. || The capacitor in FiguRE P31.73 
begins to charge after the switch 
closes at t = 0 s.

 a. What is �VC a very long time 
after the switch has closed?

 b. What is Qmax in terms of E, R, 
and C?

 c. In this circuit, does I = +dQ/dt 
or -dQ/dt? Explain.

 d. Find an expression for the cur-
rent I at time t. Graph I from t = 0 to t = 5t.

 74. || The capacitors in FiguRE P31.74 are charged and the switch 
closes at t = 0 s. At what time has the current in the 8 �  resistor 
decayed to half the value it had immediately after the switch was 
closed?

Challenge Problems

 75. You’ve made the finals of the Science Olympics! As one of your 
tasks, you’re given 1.0 g of aluminum and asked to make a wire, 
using all the aluminum, that will dissipate 7.5 W when connected 
to a 1.5 V battery. What length and diameter will you choose for 
your wire?

 76. The switch in FiguRE CP31.76 has been closed for a very long time.
 a. What is the charge on the capacitor?
 b. The switch is opened at t = 0 s. At what time has the charge 

on the capacitor decreased to 10% of its initial value?

FiguRE P31.66 FiguRE P31.65 

200 �

100 � 300 �

�

�
50 V E?

�

�
12 V

0.01 �

0.05 �

�

�
8 V

0.50 �

Good
battery

Dead
battery

Jumpers

Starter
motor

FiguRE P31.67 

�

�

�

�
9 V 15 V

6 � 10 �

12 �

Bottom wire

24 �

FiguRE P31.71 
t (ms)

�VC (V)

20
0

10

20

30

4 6

FiguRE P31.73 

�

�
E

R

C

Closes at t � 0 s

FiguRE P31.74 

8 �

30 �

60 mF

60 mF

20 mF
(�VC)0 � 10 V 20 �

FiguRE CP31.76 

�

�
100 V

2.0 mF

Opens at t � 0 s

60 �

40 �

10 �

Exercises and Problems    919



920    c h a p t e r  31 . Fundamentals of Circuits

the  electric  field  inside  the  tube  becomes  too  weak  to  sustain 
the  ionization and  the neon  light  turns off. The capacitor  then 
starts to charge again. The capacitor voltage oscillates between 
Voff, when it starts charging, and Von, when the light comes on to 
discharge it.

  a.  Show that the oscillation period is

  T = RC ln1E - Voff 

E - Von 
2

  b.  A neon gas tube has Von = 80 V and Voff = 20 V. What resis-
tor value should you choose to go with a 10 mF capacitor and 
a 90 V battery to make a 10 Hz oscillator?

 81.  A 2.0-m-long, 1.0-mm-diameter wire has a variable  resistivity 
given by

  r(x) = (2.5 * 10-6) c 1 + 1 x

1.0  m 2 2

d  �  m

    where x is measured from one end of the wire. What is the cur-
rent if this wire is connected to the terminals of a 9.0 V battery?

 77.  A capacitor-charging circuit has a time constant of 40 ms. When 
the switch is closed, the initial current to the 50 mF capacitor is 
65 mA. What is the capacitor’s voltage after 20 ms? Assume the 
capacitor was completely uncharged when the switch closed.

 78.  The capacitor in Figure 31.38a begins to charge after the switch 
closes  at  t = 0 s.  Analyze  this  circuit  and  show  that  Q =  
Qmax(1 - e-t/t), where Qmax = CE.

 79.  The switch in Figure 31.38a closes at  t = 0 s and, after a very 
long time,  the capacitor  is fully charged. Find expressions for 
(a)  the  total energy supplied by  the battery as  the capacitor  is 
being charged, (b) total energy dissipated by the resistor as the 
capacitor is being charged, and (c) the energy stored in the ca-
pacitor  when  it  is  fully  charged.  Your  expressions  will  be  in 
terms of E, R, and C. (d) Do your results for parts a to c show 
that energy is conserved? Explain.

 80.  An oscillator circuit is important to many applications. A simple 
oscillator circuit  can be built by adding a neon gas  tube  to an 
RC circuit, as shown in Figure CP31.80. Gas is normally a good 
insulator,  and  the  resistance of  the gas  tube  is essentially  infi-
nite when  the  light  is off. This allows  the capacitor  to charge. 
When the capacitor voltage reaches a value Von, the electric field 
inside the tube becomes strong enough to  ionize the neon gas. 
Visually,  the  tube lights with an orange glow. Electrically,  the 
ionization of the gas provides a very-low-resistance path through 
the tube. The capacitor very rapidly (we can think of it as instan-
taneously) discharges through the tube and the capacitor voltage 
drops. When the capacitor voltage has dropped to a value Voff, 

Figure CP31.80 
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Stop to Think 31.1: a, b, and d. These  three  are  the  same circuit 
because the logic of the connections is the same. In c, the functioning 
of the circuit is changed by the extra wire connecting the two sides 
of the capacitor.

Stop to Think 31.2:  �V  increases by 2 V in the direction of  I. 
Kirchhoff’s loop law, starting on the left side of the battery, is then 
+12 V + 2 V - 8 V - 6 V = 0 V.

Stop to Think 31.3:  Pb + Pd + Pa + Pc.  The  power  dissipated 
by a resistor is PR = (�VR)2/R. Increasing R decreases PR; increasing 
�VR  increases  PR. But  the potential has a  larger effect because  PR 
depends on the square of �VR.

Stop to Think 31.4: I � 2 A for all. Va � 20 V, Vb � 16 V, Vc �
10 V,  Vd � 8 V,  Ve � 0 V.  Current  is  conserved.  The  potential  is 
0 V on the right and increases by IR for each resistor going to the left.

Stop to Think 31.5:  A + B + C � D. All  the  current  from  the 
battery goes through A, so it is brightest. The current divides at the 
junction, but not equally. Because B is in parallel with C + D but has 
half the resistance, twice as much current travels through B as through 
C + D. So B is dimmer than A but brighter than C and D. C and D are 
equal because of conservation of current.

Stop to Think 31.6: b. The two 2 �  resistors are in series and equiva-
lent to a 4 �  resistor. Thus t = RC = 4 s.
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32

The aurora occurs when  
high-energy charged particles 
from the sun are steered into 
the upper atmosphere by the 
earth’s magnetic field.

The Magnetic Field

 Looking Ahead The goal of Chapter 32 is to learn how to calculate and use the magnetic field.

One of our key tasks will be to understand 
the connection between electromagnets 
and permanent magnets.

Magnetic Fields
Magnetism has been known since antiq-
uity. Whereas electricity is understood 
in terms of electric charges, magnetism 
is based on magnetic poles. You’ll learn 
how to use the magnetic field, with 
symbol B

u

, to work with the long-range 
interactions of magnetism.

Iron filings, like little compasses, show 
the shape of the magnetic field.

Motion of Charges
The magnetic force causes charged 
particles to move in circular orbits in a 
magnetic field. This cyclotron motion 
has many important applications, from 
particle accelerators to the aurora.

Magnetic Materials
Iron and a few other materials exhibit 
pronounced magnetic properties, includ-
ing the ability to form permanent mag-
nets. You’ll learn that ferromagnetism 
arises because electrons have an inherent 
magnetic moment called electron spin.

Magnetic Torque
Magnetic forces exert a torque on a cur-
rent traveling around a closed loop.

You’ll learn that motors work because of 
magnetic torque.

 Looking Back
Sections 12.5 and 12.10 Torque and the 
vector cross product

Magnetic Forces
Magnetic fields exert forces on moving 
charged particles. The force is perpen-
dicular to the plane of v  

u
 and B

u

.

Currents are moving charged particles. You’ll 
learn that currents create magnetic fields, 
and currents exert magnetic forces on each 
other. Opposite currents repel, parallel cur-
rents attract.
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This bar magnet—
a dipole, with a 
north and a south 
pole—is a perma-
nent magnet.

A loop of current 
also creates a 
dipole magnetic 
field.

Compasses work 
because the earth is a 
large magnet. It is an 
electromagnet, with 
circulating currents in 
its molten iron core.
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rv 
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F 

r
B 

r
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Magnetism is three 
dimensional. You’ll learn 
how to represent vectors 
perpendicular to a plane. 
Here the :’s show a mag-
netic field into the page.

 Looking Back
Sections 8.2–8.3 Circular motion

This hard disk is made 
of nickel, a magnetic 
material. It stores 
digital data—1’s and 
0’s—in the alignment 
of microscopic 
magnetic domains.
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32.1 Magnetism
We began our investigation of electricity in Chapter 25 by looking at the results of 
simple experiments with charged rods. We’ll do the same with magnetism.

Experiment 1

If a bar magnet is taped to 
a piece of cork and allowed 
to float in a dish of water, it 
always turns to align itself in 
an approximate north-south 
direction. The end of a magnet 
that points north is called the 
north-seeking pole, or simply 
the north pole. The other end 
is the south pole.

Experiment 2

If the north pole of one magnet is brought near the north pole of 
another magnet, they repel each other. Two south poles also repel 
each other, but the north pole of one magnet exerts an attractive 
force on the south pole of another magnet.

Experiment 3

The north pole of a bar magnet attracts 
one end of a compass needle and re-
pels the other. Apparently the compass 
needle itself is a little bar magnet with 
a north pole and a south pole.

Experiment 4

Cutting a bar magnet in half produces two weaker but still complete 
magnets, each with a north pole and a south pole. No matter how 
small the magnets are cut, even down to microscopic sizes, each 
piece remains a complete magnet with two poles.

Experiment 5

Magnets can pick up some objects, such as 
paper clips, but not all. If an object is attracted 
to one end of a magnet, it is also attracted to 
the other end. Most materials, including cop-
per (a penny), aluminum, glass, and plastic, 
experience no force from a magnet.

Experiment 6

A magnet does not affect an elec-
troscope. A charged rod exerts a 
weak attractive force on both ends 
of a magnet. However, the force is 
the same as the force on a metal bar 
that isn’t a magnet, so it is simply a 
polarization force like the ones we 
studied in Chapter 25. Other than 
polarization forces, charges have no 
effects on magnets.

Discovering magnetism
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The needle of a 
compass is a small
magnet.
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No effect

What do these experiments tell us?

 1. First, magnetism is not the same as electricity. Magnetic poles and electric 
charges share some similar behavior, but they are not the same.

 2. Magnetism is a long-range force. Paper clips leap upward to a magnet.
 3. Magnets have two poles, called north and south poles, and thus are magnetic 

dipoles. Two like poles exert repulsive forces on each other; two opposite poles 
attract. The behavior is analogous to electric charges, but, as noted, magnetic 
poles and electric charges are not the same. Unlike charges, isolated north or 
south poles do not exist.

 4. The poles of a bar magnet can be identified by using it as a compass. The poles 
of other magnets, such as flat refrigerator magnets, can be identified by testing 
them against a bar magnet. A pole that attracts a known north pole and repels a 
known south pole must be a south magnetic pole.

 5. Materials that are attracted to a magnet are called magnetic materials. The most 
common magnetic material is iron. Magnetic materials are attracted to both 
poles of a magnet. This attraction is analogous to how neutral objects are at-
tracted to both positively and negatively charged rods by the polarization force. 
The difference is that all neutral objects are attracted to a charged rod whereas 
only a few materials are attracted to a magnet.

Our goal is to develop a theory of magnetism to explain these observations.
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Compasses and Geomagnetism
The north pole of a compass needle is attracted toward the geographic north pole of 
the earth. Apparently the earth itself is a large magnet, as shown in FiGure 32.1. The 
reasons for the earth’s magnetism are complex, but geophysicists think that the earth’s 
magnetic poles arise from currents in its molten iron core. Two interesting facts about 
the earth’s magnetic field are (1) that the magnetic poles are offset slightly from the 
geographic poles of the earth’s rotation axis, and (2) that the geographic north pole is 
actually a south magnetic pole! You should be able to use what you have learned thus 
far to convince yourself that this is the case.

FiGure 32.1 The earth is a large magnet.
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Stop to think 32.1 
 Does the compass needle 

rotate clockwise (cw), counterclockwise (ccw), 
or not at all?

PivotPositive
rod
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32.2 The Discovery of the Magnetic Field
As electricity began to be seriously studied in the 18th century, some scientists specu-
lated that there might be a connection between electricity and magnetism. Interest-
ingly, the link between electricity and magnetism was discovered in the midst of 
a classroom lecture demonstration in 1819 by the Danish scientist Hans Christian 
Oersted. Oersted was using a battery—a fairly recent invention—to produce a large 
current in a wire. By chance, a compass was sitting next to the wire, and Oersted no-
ticed that the current caused the compass needle to turn. In other words, the compass 
responded as if a magnet had been brought near.

Oersted had long been interested in a possible connection between electricity and 
magnetism, so the significance of this serendipitous observation was immediately ap-
parent to him. Oersted’s discovery that magnetism is caused by an electric current 
is illustrated in FiGure 32.2. Part c of the figure demonstrates an important right-hand 
rule that relates the orientation of the compass needles to the direction of the current.

FiGure 32.2 Response of compass needles to a current in a straight wire.

(a)

North

South

No
current

With no current, the
compass needles
point north.

Current-
carrying
wire

(b)

With a strong current, the
compass needles are tangent
to a circle around the wire.

I
(c)

I
The compass needles
are tangent to the circle
with the north pole in the
direction your fingers
are pointing.

Right-hand rule:
Point your right
thumb in the direc-
tion of the current.

Magnetism is more demanding than electricity in requiring a three-dimensional 
perspective of the sort shown in Figure 32.2. But since two-dimensional figures are 
easier to draw, we will make as much use of them as we can. Consequently, we will 
often need to indicate field vectors or currents that are perpendicular to the page. 
FiGure 32.3 shows the notation we will use. FiGure 32.4 on the next page demonstrates 
this notation by showing the compasses around a current that is directed into the page. 
To use the right-hand rule, point your right thumb in the direction of the current (into 
the page). Your fingers will curl cw, and that is the direction in which the north poles 
of the compass needles point.

FiGure 32.3 The notation for vectors 
and currents perpendicular to the page.

Vectors into page

Vectors out of page

Current into page

Current out of page

The magnetic field is revealed by the 
pattern of  iron filings around a current-
carrying wire.
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The Magnetic Field
We introduced the idea of a field as a way to understand the long-range electric force. 
Although this idea appeared rather far-fetched, it turned out to be very useful. We need a 
similar idea to understand the long-range force exerted by a current on a compass needle.

Let us define the magnetic field B
u

 as having the following properties:

 1. A magnetic field is created at all points in space surrounding a current-carrying 
wire.

 2. The magnetic field at each point is a vector. It has both a magnitude, which we 
call the magnetic field strength B, and a direction.

 3. The magnetic field exerts forces on magnetic poles. The force on a north pole is 
parallel to B

u

; the force on a south pole is opposite B
u

.

FiGure 32.5 shows a compass needle in a magnetic field. The field vectors are shown 
at several points, but keep in mind that the field is present at all points in space. A 
magnetic force is exerted on each of the two poles of the compass, parallel to B

u

 for the 
north pole and opposite B

u

 for the south pole. This pair of opposite forces exerts a torque 
on the needle, rotating the needle until it is parallel to the magnetic field at that point.

Notice that the north pole of the compass needle, when it reaches the equilibrium 
position, is in the direction of the magnetic field. Thus a compass needle can be used 
as a probe of the magnetic field, just as a charge was a probe of the electric field. 
Magnetic forces cause a compass needle to become aligned parallel to a magnetic 
field, with the north pole of the compass showing the direction of the magnetic 
field at that point.

Look back at the compass alignments around the current-carrying wire in Figure 32.4. 
Because compass needles align with the magnetic field, the magnetic field at each point 
must be tangent to a circle around the wire. FiGure 32.6a shows the magnetic field by 
drawing field vectors. Notice that the field is weaker (shorter vectors) at greater dis-
tances from the wire.

Another way to picture the field is with the use of magnetic field lines. These are 
imaginary lines drawn through a region of space so that

 ■ A tangent to a field line is in the direction of the magnetic field, and
	■ The field lines are closer together where the magnetic field strength is larger.

FiGure 32.6b shows the magnetic field lines around a current-carrying wire. Notice 
that magnetic field lines form loops, with no beginning or ending point. This is in 
contrast to electric field lines, which stop and start on charges.

FiGure 32.4 The orientation of the 
compasses around a current is given by 
the right-hand rule.

I

Current into page

FiGure 32.5 The magnetic field exerts 
forces on the poles of a compass, causing 
the needle to align with the field.
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FiGure 32.6 The magnetic field around a 
current-carrying wire.

(a) The magnetic field vectors are
tangent to circles around the wire,
pointing in the direction given by
the right-hand rule. The field is
weaker farther from the wire.

B
r

B
rCurrent-carrying

wire

(b) Magnetic field lines are circles.

TACTiCs
B o x  3 2 . 1 

  right-hand rule for fields

Exercises 6–8 

IPoint your right thumb in
the direction of the current.

Curl your fingers around the
wire to indicate a circle.

1

2

Your fingers point in the
direction of the magnetic
field lines around the wire.

3

NoTe  The magnetic field of a current-carrying wire is very different from the 
electric field of a charged wire. The electric field of a charged wire points radially 
outward (positive wire) or inward (negative wire). 
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Two Kinds of Magnetism?
You might be concerned that we have introduced two kinds of magnetism. We opened 
this chapter discussing permanent magnets and their forces. Then, without warning, 
we switched to the magnetic forces caused by a current. It is not at all obvious that 
these forces are the same kind of magnetism as that exhibited by stationary chunks of 
metal called “magnets.” Perhaps there are two different types of magnetic forces, one 
having to do with currents and the other being responsible for permanent magnets. 
One of the major goals for our study of magnetism is to see that these two quite differ-
ent ways of producing magnetic effects are really just two different aspects of a single 
magnetic force.

Stop to think 32.2 
 The magnetic field at position P points

 a. Up. b. Down.
 c. Into the page. d. Out of the page. I

P

32.3  The source of the Magnetic Field: 
Moving Charges

Figure 32.6 is a qualitative picture of the wire’s magnetic field. Our first task is to 
turn that picture into a quantitative description. Because current in a wire generates a 
magnetic field, and a current is a collection of moving charges, our starting point is 
the idea that moving charges are the source of the magnetic field. FiGure 32.7 shows 
a charged particle q moving with velocity v  

u
. The magnetic field of this moving charge 

is found to be

 B
u

point charge = 1 m0

4p
 
qv sin u

r2 , direction given by the right@hand rule2  (32.1)

where r is the distance from the charge and u is the angle between v  

u
 and r 

u
.

Equation 32.1 is called the Biot-savart law for a point charge (rhymes with Leo 
and bazaar), named for two French scientists whose investigations were motivated 
by Oersted’s observations. It is analogous to Coulomb’s law for the electric field of a 
point charge. Notice that the Biot-Savart law, like Coulomb’s law, is an inverse-square 
law. However, the Biot-Savart law is somewhat more complex than Coulomb’s law 
because the magnetic field depends on the angle u between the charge’s velocity and 
the line to the point where the field is evaluated.

NoTe  A moving charge has both a magnetic field and an electric field. What you 
know about electric fields has not changed. 

The SI unit of magnetic field strength is the tesla, abbreviated as T. The tesla is 
defined as

 1 tesla = 1 T K 1 N/A m

You will see later in the chapter that this definition is based on the magnetic force on a 
current-carrying wire. One tesla is quite a large field; most magnetic fields are a small 
fraction of a tesla. Table 32.1 lists a few magnetic field strengths.

The constant m0 in Equation 32.1 is called the permeability constant. Its value is

 m0 = 4p * 10-7 T m/A = 1.257 * 10-6 T m/A

This constant plays a role in magnetism similar to that of the permittivity constant P0 
in electricity.

FiGure 32.7 The magnetic field of a 
moving point charge.

This is the point
at which we want
to find B.
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r

r

B
r

r

Magnetic field
of the moving
point charge

Velocity of the
charged particle

Point
charge q 

u

�

TABLe 32.1 Typical magnetic field 
strengths

Field source Field strength (T)

Surface of the earth 5 * 10-5

Refrigerator magnet 5 * 10-3

Laboratory magnet 0.1 to 1

Superconducting magnet 10
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The right-hand rule for finding the direction of B
u

 is similar to the rule used for a 
current-carrying wire: Point your right thumb in the direction of v  

u
. The magnetic field 

vector B
u

 is perpendicular to the plane of r 
u

 and v  

u
, pointing in the direction in which 

your fingers curl. In other words, the B
u

 vectors are tangent to circles drawn about the 
charge’s line of motion. FiGure 32.8 shows a more complete view of the magnetic field 
of a moving positive charge. Notice that B

u

 is zero along the line of motion, where 
u = 0� or 180�, due to the sin u term in Equation 32.1.

NoTe  The vector arrows in Figure 32.8 would have the same lengths but be re-
versed in direction for a negative charge. 

The requirement that a charge be moving to generate a magnetic field is explicit in 
Equation 32.1. If the speed v of the particle is zero, the magnetic field (but not the elec-
tric field!) is zero. This helps to emphasize a fundamental distinction between electric 
and magnetic fields: All charges create electric fields, but only moving charges cre-
ate magnetic fields.

 FiGure 32.8 Two views of the magnetic field of a moving positive charge.
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soLve Position 1, which is along the line of motion, has u1 = 0�. 
Thus B

u

1 = 0
u

. Position 2 (at 0 mm, 1 mm, 0 mm) is at distance 
r2 = 1 mm = 0.001 m. Equation 32.1, the Biot-Savart law, gives 
us the magnetic field strength at this point as

 B =
m0

4p
 
qv sin u2

r2 

2

 =
4p * 10-7 T m/A

4p

(1.60 * 10-19 C)(1.0 * 107 m/s)sin 90�

(0.0010 m)2

 = 1.60 * 10-13 T

According to the right-hand rule, the field points in the positive 
z-direction. Thus

 B
u

2 = 1.60 * 10-13 kn T

where kn is the unit vector in the positive z-direction. The field at po-
sition 3, at (1 mm, 1 mm, 0 mm), also points in the z-direction, but 
it is weaker than at position 2 both because r is larger and because 
u is smaller. From geometry we know r3 = 12  mm = 0.00141 m 
and u3 = 45�. Another calculation using Equation 32.1 gives

 B
u

3 = 0.57 * 10-13 kn
 
T

Assess The magnetic field of a single moving charge is very small.

exAMpLe 32.1  The magnetic field of a proton
A proton moves with velocity v  

u
= 1.0 * 107 in m/s. As it passes the 

origin, what is the magnetic field at the (x, y, z) positions (1 mm, 
0 mm, 0 mm), (0 mm, 1 mm, 0 mm), and (1 mm, 1 mm, 0 mm)?

MoDeL The magnetic field is that of a moving charged particle.

visuALize FiGure 32.9 shows the geometry. The first point is on 
the x-axis, directly in front of the proton, with u1 = 0�. The sec-
ond point is on the y-axis, with u2 = 90�, and the third is in the 
xy-plane.

FiGure 32.9 The magnetic field of Example 32.1.
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superposition
The Biot-Savart law is the starting point for generating all magnetic fields, just as our 
earlier expression for the electric field of a point charge was the starting point for gen-
erating all electric fields. Magnetic fields, like electric fields, have been found experi-
mentally to obey the principle of superposition. If there are n moving point charges, 
the net magnetic field is given by the vector sum

 B
u

total = B
u

1 + B
u

2 + g+ B
u

n (32.2)

where each individual B
u

 is calculated with Equation 32.1. The principle of superposi-
tion will be the basis for calculating the magnetic fields of several important current 
distributions.
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The vector Cross product
In Chapter 25, we found that the electric field of a point charge could be written con-
cisely and accurately as

 E
u

=
1

4pP0
 
q

r2 rn

where rn is a unit vector that points from the charge to the point at which we wish to 
calculate the field. Unit vector rn expresses the idea “away from q.”

The unit vector rn also allows us to write the Biot-Savart law more concisely, but 
we’ll need to use the form of vector multiplication called the cross product. To remind 
you, FiGure 32.10 shows two vectors, C

u

 and D
u

, with angle a between them. The cross 
product of C

u

 and D
u

 is defined to be the vector

 C
u

* D
u

= (CD sin a, direction given by the right@hand rule) (32.3)

The symbol *  between the vectors is required to indicate a cross product.

NoTe  The cross product of two vectors and the right-hand rule used to determine 
the direction of the cross product were introduced in Section 12.10 to describe 
torque and angular momentum. If you omitted that section, you will want to turn to 
it now to read about the cross product. A review is worthwhile even if you did learn 
about the cross product earlier. 

The Biot-Savart law, Equation 32.1, can be written in terms of the cross product as

 B
u

point charge =
m0

4p
 
qv  

u
* rn

r2   (magnetic field of a point charge) (32.4)

where unit vector rn, shown in FiGure 32.11, points from charge q to the point at which 
we want to evaluate the field. This expression for the magnetic field B

u

 has magnitude 
(m0/4p)qv sin u/r2 (because the magnitude of rn is 1) and points in the correct direction 
(given by the right-hand rule), so it agrees completely with Equation 32.1.

FiGure 32.10 The cross product C
u

* D
u

 is 
a vector perpendicular to the plane of 
vectors C

u

 and D
u

.
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FiGure 32.11 Unit vector rn defines the 
direction from the moving charge to the 
point at which we want to evaluate the 
magnetic field.

vr

B is in the direction
of v � r.
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r
Point at which field
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Velocity of the
charged particle

rn

Unit vector r n

n

�

visuALize Because the charge is negative, the magnetic field 
points in the direction of - (v  

u
* rn), or opposite the direction of 

v  

u
* rn. Unit vector rn points from the charge toward the dot. We 

can use the right-hand rule to find that v  

u
* rn points into the 

page. Thus the electron’s magnetic field at the dot points out 
of the page.

exAMpLe 32.2  The magnetic field direction of a moving electron
The electron in FiGure 32.12 is moving 
to the right. What is the direction of the 
electron’s magnetic field at the posi-
tion indicated with a dot?

FiGure 32.12 
A moving electron.

vr
�

rn

Stop to think 32.3 
 The positive charge is moving 

straight out of the page. What is the direction of the 
magnetic field at the position of the dot?

 a. Up b. Down c. Left d. Right

v out of pager

�

32.4 The Magnetic Field of a Current
In practice we’re more interested in the magnetic field of a current—a collection of 
moving charges—than in the very small magnetic fields of individual charges. The 
Biot-Savart law and the principle of superposition will be our primary tools for calcu-
lating magnetic fields. First, however, it will be useful to rewrite the Biot-Savart law 
in terms of current.
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FiGure 32.13a shows a current-carrying wire. The wire as a whole is electrically 
neutral, but current I represents the motion of positive charge carriers through the 
wire. Suppose the small amount of moving charge �Q spans the small length �s. 
The charge has velocity v  

u
= �s

u
/�t, where the vector �s

u
, which is parallel to v  

u
, is 

the charge’s displacement vector. If �Q is small enough to treat as a point charge, the 
magnetic field it creates at a point in space is proportional to (�Q)v  

u
. We can write 

(�Q)v  

u
 in terms of the wire’s current I as

 (�Q)v  

u
= �Q 

�s
u

�t
=

�Q

�t
 �s

u
= I �s

u
 (32.5)

where we used the definition of current, I = �Q/�t.
If we replace qv  

u
 in the Biot-Savart law with I �s

u
, we find that the magnetic field of 

a very short segment of wire carrying current I is

 

B
u

current segment =
m0

4p
 
I �s

u
* rn

r2

(magnetic field of a very short segment of current)
  

(32.6)

Equation 32.6 is still the Biot-Savart law, only now written in terms of current rather 
than the motion of an individual charge. FiGure 32.13b shows the direction of the current 
segment’s magnetic field as determined by using the right-hand rule.

Equation 32.6 is the basis of a strategy for calculating the magnetic field of a 
current-carrying wire. You will recognize that it is the same basic strategy you learned 
for calculating the electric field of a continuous distribution of charge. The goal is to 
break a problem down into small steps that are individually manageable.

FiGure 32.13 Relating the charge 
velocity v  

u  to the current I.

�sr

vr
I

Charge �Q in a
small length �s of a
current-carrying wire

(a)

B
r

The magnetic field of the
short segment of current is
in the direction of �s � r.r

n

(b)

I

�sr

rn

proBLeM-soLviNG
sTrATeGy 32.1   The magnetic field of a current

MoDeL Model the wire as a simple shape, such as a straight line or a loop.

visuALize For the pictorial representation:

 ●1 Draw a picture and establish a coordinate system.
 ●2 Identify the point P at which you want to calculate the magnetic field.
 ●3 Divide the current-carrying wire into small segments for which you already 

know how to determine B
u

. This is usually, though not always, a division into 
very short segments of length �s.

 ●4 Draw the magnetic field vector for one or two segments. This will help you 
identify distances and angles that need to be calculated.

 ●5 Look for symmetries that simplify the field. You may conclude that some 
components of B

u

 are zero.

soLve The mathematical representation is B
u

net = gB
u

i.

 ■ Use superposition to form an algebraic expression for each of the three com-
ponents of B

u

 (unless you are sure one or more is zero) at point P.
 ■ Let the (x, y, z)-coordinates of the point remain as variables.
 ■ Express all angles and distances in terms of the coordinates.
 ■ Let �s S ds and the sum become an integral. Think carefully about the inte-

gration limits for this variable; they will depend on the boundaries of the wire 
and on the coordinate system you have chosen to use. Carry out the integra-
tion and simplify the results as much as possible.

Assess Check that your result is consistent with any limits for which you know 
what the field should be.



With this expression for sin ui, the magnetic field of segment i is

 (Bi)z =
m0

4p
 

Id

(xi 

2 + d 2)3/2 �x

Now we’re ready to sum the magnetic fields of all the segments. 
The superposition is a vector sum, but in this case only the z-com-
ponents are nonzero. Summing all the (Bi)z gives

 Bwire =
m0 Id

4p
 a

i

 
�x

(xi 

2 + d 2)3/2
S

m0 Id

4p
 3

�

-�

 
dx

(x2 + d 2)3/2

Only at the very last step did we convert the sum to an integral. 
Then our model of the wire as being infinitely long sets the inte-
gration limits at {�. This is a standard integral that can be found 
in Appendix A or with integration software. Evaluation gives

 Bwire =
m0 Id

4p
 

x

d 2 (x2 + d 2)1/2 `
�

-�

=
m0

2p
 
I

d

This is the magnitude of the field. The field direction is deter-
mined by using the right-hand rule. We can combine these two 
pieces of information to write

 B
u

wire = 1 m0

2p
 
I

d
 , 

tangent to a circle around the wire
in the right@hand direction 2

Assess FiGure 32.15 shows the magnetic field of a current-
carrying wire. Compare this to Figure 32.2 and convince yourself 
that the direction shown agrees with the right-hand rule.

exAMpLe 32.3  The magnetic field of a long, straight wire
A long, straight wire carries current I in the positive x-direction. 
Find the magnetic field at a point that is distance d from the wire.

MoDeL Because the wire is “long,” let’s model it as being infi-
nitely long.

visuALize FiGure 32.14 illustrates the steps in the problem-solving 
strategy. We’ve chosen a coordinate system with point P on the 
y-axis. We’ve then divided the wire into small segments, labeled 
with index i, each containing a small amount �Q of moving 
charge. Unit vector rn and angle ui are shown for segment i. You 
should use the right-hand rule to convince yourself that B

u

i points 
out of the page, in the positive z-direction. This is the direction 
no matter where segment i happens to be along the x-axis. Conse-
quently, Bx (the component of B

u

 parallel to the wire) and By (the 
component of B

u

 straight away from the wire) are zero. The only 
component of B

u

 we need to evaluate is Bz, the component tangent 
to a circle around the wire.

FiGure 32.14 Calculating the magnetic field of a long, 
straight wire carrying current I.

y

d

P

x
0

Identify the point at which to calculate the field.2

Bi due to segment i is
out of the page at point P.

r
4

Divide the wire into segments.3Establish a coordinate system.1

ri

xi

rn

�x

180� � ui

ui Segment i
charge �Q

I

soLve We can use the Biot-Savart law to find the field (Bi)z of 
segment i. The cross product �s

u

i * rn has magnitude (�x)(1)sin ui, 
hence

(Bi)z =
m0

4p
 
I �x sin ui

ri 

2 =
m0

4p
 
I sin ui

ri 

2  �x =
m0

4p
 

I sin ui

xi 

2 + d 2 �x

where we wrote the distance ri in terms of xi and d. We also need to 
express ui in terms of xi and d. Because sin(180� - u) = sin u, this is

sin ui = sin(180� - ui) =
d

ri
=

d2xi 

2 + d 2

FiGure 32.15 The magnetic field of a long, straight 
wire carrying current I.

I

B
r

B
r

B
r

NoTe  The difficulty magnetic field calculations present is not doing the integra-
tion itself, which is the last step, but setting up the calculation and knowing what to 
integrate. The purpose of the problem-solving strategy is to guide you through the 
process of setting up the integral. 

soLve The current through the wire is I = �Vbat/R, where the 
wire’s resistance R is

 R =
rL

A
=

rL

pr2 = 1.91 �

exAMpLe 32.4  The magnetic field strength near a heater wire
A 1.0-m-long, 1.0-mm-diameter nichrome heater wire is connected 
to a 12 V battery. What is the magnetic field strength 1.0 cm away 
from the wire?

MoDeL 1 cm is much less than the 1 m length of the wire, so 
model the wire as infinitely long.

Continued
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The direction of B
u

i, the magnetic field due to the current in 
segment i, is given by the cross product �s

u

i * rn. B
u

i must be per-
pendicular to �s

u

i and perpendicular to rn. You should convince 
yourself that B

u

i in Figure 32.17 points in the correct direction. 
Notice that the y-component of B

u

i is canceled by the y-component 
of magnetic field B

u

j due to the current segment at the bottom of the 
loop, 180� away. In fact, every current segment on the loop can be 
paired with a segment 180� away, on the opposite side of the loop, 
such that the x- and y-components of B

u

 cancel and the components 
of B

u

 parallel to the z-axis add. In other words, the symmetry of the 
loop requires the on-axis magnetic field to point along the z-axis. 
Knowing that we need to sum only the z-components will simplify 
our calculation.

soLve We can use the Biot-Savart law to find the z-component 
(Bi)z = Bi cos f of the magnetic field of segment i. The cross prod-
uct �s

u

i * rn has magnitude (�s)(1) sin 90� = �s, thus

 (Bi)z =
m0

4p
 
I �s

r2  cos f =
m0 I cos f

4p(z 2 + R2)
 �s

where we used r = (z 2 + R2)1/2. You can see, because f + g =
90�, that angle f is also the angle between rn and the radius of the 
loop. Hence cos f = R/r, and

 (Bi)z =
m0IR

4p(z 2 + R2)3/2 �s

The final step is to sum the magnetic fields due to all the segments:

 Bloop = a
i

 (Bi)z =
m0IR

4p(z 2 + R2)3/2 a
i

�s

In this case, unlike the straight wire, none of the terms multiplying 
�s depends on the position of segment i, so all these terms can be 
factored out of the summation. We’re left with a summation that 
adds up the lengths of all the small segments. But this is just the 
total length of the wire, which is the circumference 2pR. Thus the 
on-axis magnetic field of a current loop is

 Bloop =
m0IR

4p(z 2 + R2)3/2 2pR =
m0

2
 

IR2

(z 2 + R2)3/2

exAMpLe 32.5  The magnetic field of a current loop
FiGure 32.16a shows a current loop, a circular loop of wire with ra-
dius R that carries current I. Find the magnetic field of the current 
loop at distance z on the axis of the loop.

FiGure 32.16 A current loop.

I

I

(a)  A practical current loop

I

I

(b)  An ideal current loop

MoDeL Real coils need wires to bring the current in and out, but 
we’ll model the coil as a current moving around the full circle 
shown in FiGure 32.16b.

visuALize FiGure 32.17 shows a loop for which we’ve assumed 
that the current is circulating ccw. We’ve chosen a coordinate sys-
tem in which the loop lies at z = 0 in the xy-plane. Let segment i 
be the segment at the top of the loop. Vector �s

u

i is parallel to the 
x-axis and unit vector rn is in the yz-plane, thus angle ui, the angle 
between �s

u

i and rn, is 90�.

FiGure 32.17 Calculating the magnetic field of a 
current loop.
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�sj
r
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r

g f
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r
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r
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r
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r

  Bwire =
m0

2p
 
I

d
= (2.0 * 10-7 T m/A) 

6.28 A

0.010 m
 

  = 1.3 * 10-4 T

Assess The magnetic field of the wire is slightly more than twice 
the strength of the earth’s magnetic field.

The nichrome resistivity r = 1.50 * 10-6 �  m was taken from 
Table 30.2. Thus the current is I = (12 V)/(1.91 �) = 6.28 A. The 
magnetic field strength at distance d = 1.0 cm = 0.010 m from the 
wire is

Motors, loudspeakers, metal detectors, and many other devices generate magnetic 
fields with coils of wire. The simplest coil is a single-turn circular loop of wire. A 
circular loop of wire with a circulating current is called a current loop.

In practice, current often passes through a coil consisting of  N turns of wire. If the 
turns are all very close together, so that the magnetic field of each is essentially the 
same, then the magnetic field of a coil is N times the magnetic field of a current loop. 
The magnetic field at the center (z = 0) of an N-turn coil is

 Bcoil center =
m0

2
 
NI

R
 (32.7)
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32.5 Magnetic Dipoles
We were able to calculate the on-axis magnetic field of a current loop, but determining 
the field at off-axis points requires either numerical integrations or an experimental 
mapping of the field. FiGure 32.19 shows the full magnetic field of a current loop. This is 
a field with rotational symmetry, so to picture the full three-dimensional field, imagine 
FiGure 32.19a rotated about the axis of the loop. FiGure 32.19b shows the magnetic field 
in the plane of the loop as seen from the right. There is a clear sense, seen in the photo 
of FiGure 32.19c, that the magnetic field leaves the loop on one side, “flows” around the 
outside, then returns to the loop.

Assess A 0.80 A current is easily produced. Although there are 
better ways to cancel the earth’s field than using a simple coil, this 
illustrates the idea.

exAMpLe 32.6  Matching the earth’s magnetic field
What current is needed in a 5-turn, 10-cm-diameter coil to cancel 
the earth’s magnetic field at the center of the coil?

MoDeL One way to create a zero-field region of space is to gener-
ate a magnetic field equal to the earth’s field but pointing in the 
opposite direction. The vector sum of the two fields is zero.

visuALize FiGure 32.18 shows a five-turn coil of wire. The mag-
netic field is five times that of a single current loop.

soLve The earth’s magnetic field, from Table 32.1, is 5 * 10-5 T. 
We can use Equation 32.7 to find that the current needed to 
generate a 5 * 10-5 T field is

 I =
2RB

m0N
=

2(0.050 m)(5.0 * 10-5 T)

5(4p * 10-7 T m/A)
= 0.80 A

FiGure 32.18 A coil of wire.

I

I

r
B

FiGure 32.19 The magnetic field of a current loop.

(a) Cross section through the current loop (b) The current loop seen from the right

I

I

The field emerges
from the center of
the loop.

The field returns
around the outside
of the loop.

(c) A photo of iron filings

There are two versions of the right-hand rule that you can use to determine which 
way a loop’s field points. Try these in Figure 32.19. Being able to quickly ascertain 
the field direction of a current loop is an important skill.

TACTiCs
B o x  3 2 . 2 

  Finding the magnetic field direction of a current loop

Use either of the following methods to find the magnetic field direction:

 ●1 Point your right thumb in the direction of the current at any point on the loop 
and let your fingers curl through the center of the loop. Your fingers are then 
pointing in the direction in which B

u

 leaves the loop.
 ●2 Curl the fingers of your right hand around the loop in the direction of the cur-

rent. Your thumb is then pointing in the direction in which B
u

 leaves the loop.

Exercises 18–20 
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A Current Loop is a Magnetic Dipole
A current loop has two distinct sides. Bar magnets and flat refrigerator magnets also 
have two distinct sides or ends, so you might wonder if current loops are related to 
these permanent magnets. Consider the following experiments with a current loop. 
Notice that we’re using a simplified picture that shows the magnetic field only in the 
plane of the loop.

investigating current loops

A current loop hung by a thread  
aligns itself with the magnetic  
field pointing north.

The north pole of a permanent magnet repels the  
side of a current loop from which the magnetic  
field is emerging.

The south pole of a permanent magnet 
attracts the side of a current loop from 
which the magnetic field is emerging.

B
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I
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r
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r
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F
r

F
r

F
r

B

I

I
r

Attracts

S N

These investigations show that a current loop is a magnet, just like a permanent 
magnet. A magnet created by a current in a coil of wire is called an electromagnet. 
An electromagnet picks up small pieces of iron, influences a compass needle, and acts 
in every way like a permanent magnet.

In fact, FiGure 32.20 shows that a flat permanent magnet and a current loop generate 
the same magnetic field—the field of a magnetic dipole. For both, you can identify 
the north pole as the face or end from which the magnetic field emerges. The mag-
netic fields of both point into the south pole.

FiGure 32.20 A current loop has magnetic poles and generates the same magnetic field 
as a flat permanent magnet.

(b) Permanent magnet(a) Current loop

S N

Whether it’s a current loop or a permanent magnet,
the magnetic field emerges from the north pole.

S N

One of the goals of this chapter is to show that magnetic forces exerted by cur-
rents and magnetic forces exerted by permanent magnets are just two different 
aspects of a single magnetism. We’ve now found a strong connection between per-
manent magnets and current loops, and this connection will turn out to be a big piece 
of the puzzle.

The Magnetic Dipole Moment
The expression for the electric field of an electric dipole was considerably simpli-
fied when we considered the field at distances significantly larger than the size of the 



charge separation s. The on-axis field of an electric dipole when z W s is

 E
u

dipole =
1

4pP0
 
2p

u

z 3

where the electric dipole moment p
u

= (qs, from negative to positive charge).
The on-axis magnetic field of a current loop is

 Bloop =
m0

2
 

IR2

(z 2 + R2)3/2

If z is much larger than the diameter of the current loop, z W R, we can make the 
approximation (z 2 + R2)3/2 S z 3. Then the loop’s field is

 Bloop �
m0

2
 
IR2

z 3 =
m0

4p
 
2(pR2)I

z 3 =
m0

4p
 
2AI

z 3  (32.8)

where A = pR2 is the area of the loop.
A more advanced treatment of current loops shows that, if z is much larger than the 

size of the loop, Equation 32.8 is the on-axis magnetic field of a current loop of any shape, 
not just a circular loop. The shape of the loop affects the nearby field, but the distant field 
depends only on the current I and the area A enclosed within the loop. With this in mind, 
let’s define the magnetic dipole moment m

u
 of a current loop enclosing area A to be

 m
u

= (AI, from the south pole to the north pole)

The SI units of the magnetic dipole moment are A m2.

NoTe  Don’t confuse the magnetic dipole moment m
u

 with the constant m0 in the 
Biot-Savart law. 

The magnetic dipole moment, like the electric dipole moment, is a vector. It has the 
same direction as the on-axis magnetic field. Thus the right-hand rule for determining 
the direction of B

u

 also shows the direction of m
u

. FiGure 32.21 shows the magnetic dipole 
moment of a circular current loop.

Because the on-axis magnetic field of a current loop points in the same direction as 
m
u

, we can combine Equation 32.8 and the definition of m
u

 to write the on-axis field of 
a magnetic dipole as

 B
u

dipole =
m0

4p
 
2m

u

z 3  (on the axis of a magnetic dipole) (32.9)

If you compare B
u

dipole  to E
u

dipole  , you can see that the magnetic field of a magnetic 
dipole has the same basic shape as the electric field of an electric dipole.

A permanent magnet also has a magnetic dipole moment and its on-axis magnetic 
field is given by Equation 32.9 when z is much larger than the size of the magnet. 
Equation 32.9 and laboratory measurements of the on-axis magnetic field can be used 
to determine a permanent magnet’s dipole moment.

FiGure 32.21 The magnetic dipole 
moment of a circular current loop.

The magnetic dipole moment is perpendicular
to the loop, in the direction of the right-hand
rule. The magnitude of m is AI.

Loop area A

r

mr

I

I

Distance (cm) Magnetic field (mT)

1.0 130

1.5  35

2.0  19 

2.5   9

3.0   5

exAMpLe 32.7  Measuring current in a superconducting loop
You’ll learn in Chapter 33 that a current can be induced in a closed loop 
of wire. If the loop happens to be made of a superconducting material, 
with zero resistance, the induced current will—in principle—persist 
forever. The current cannot be measured with an ammeter because any 
real ammeter has resistance that will quickly stop the current. Instead, 
physicists measure the persistent current in a superconducting loop by 
measuring its magnetic field. In one experiment, the axial magnetic 
field of a 3.0-mm-diameter superconducting loop is measured at sev-
eral distances from the center of the loop, yielding the following data:

Continued
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With this, we can determine the current:

 I =
2

m0 R2 * slope = 91 A

To measure such small magnetic fields requires careful shielding 
from the earth’s magnetic field. Based on these data, what is the 
current in the loop?

MoDeL The measurements are made far enough from the loop in 
comparison to its radius (z W R) that we can approximate the loop 
as a magnetic dipole rather than using the exact expression for the 
on-axis field of a current loop.

soLve The axial magnetic field strength of a dipole is

 B =
m0

4p
 
2m

z 3 =
m0

4p
 
2pR2I

z 3 =
m0R

2I

2
 
1

z 3

where we used m = AI = pR2I for the magnetic dipole moment 
of a circular loop of radius R. If we graph B versus 1/z 3 the result 
should be a straight line whose slope can be used to determine I.

The graph of FiGure 32.22 is a straight line passing through the 
origin, as expected. The best-fit line has slope 129 mT cm3, where 
the rather unusual units are determined by rise over run. Convert-
ing to SI units, we find

  slope = 129 mT cm3 *
10-6 T

1 mT
* 1 1 m

100 cm 2 3

  = 1.29 * 10-10 T m3

FiGure 32.22 A graph of the data.
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Assess This would be a very large current for ordinary wire. An 
important property of superconducting wires is their ability to 
carry current that would melt an ordinary wire.

Stop to think 32.4 
 What is the current direction in this loop? 

And which side of the loop is the north pole?

 a. Current cw; north pole on top
 b. Current cw; north pole on bottom
 c. Current ccw; north pole on top
 d. Current ccw; north pole on bottom

32.6 Ampère’s Law and solenoids
In principle, the Biot-Savart law can be used to calculate the magnetic field of any cur-
rent distribution. In practice, the integrals are difficult to evaluate for anything other 
than very simple situations. We faced a similar situation for calculating electric fields, 
but we discovered an alternative method—Gauss’s law—for calculating the electric 
field of charge distributions with a high degree of symmetry.

Likewise, there’s an alternative method, called Ampère’s law, for calculating the 
magnetic fields of current distributions with a high degree of symmetry. Ampère’s 
law, like Gauss’s law, doesn’t work in all situations, but it is simple and elegant where 
it does. Whereas Gauss’s law is written in terms of a surface integral, Ampère’s law is 
based on the mathematical procedure called a line integral.

Line integrals
We’ve flirted with the idea of a line integral ever since introducing the concept of 
work in Chapter 11, but now we need to take a more serious look at what a line integral 
represents and how it is used. FiGure 32.23a shows a curved line that goes from an initial 
point i to a final point f.

FiGure 32.23 Integrating along a line 
from i to f.

f

i

(a)

A line from i to f

f

i

(b)

The line can be divided into many small
segments. The sum of all the �s’s is the
length l of the line.

�s �s
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Suppose, as shown in FiGure 32.23b, we divide the line into many small segments 
of length �s. The first segment is �s1, the second is �s2, and so on. The sum of all 
the �s>s is the length l of the line between i and f. We can write this mathemati-
cally as

 l = a
k

�sk S 3
f

i

ds (32.10)

where, in the last step, we let �s S ds and the sum become an integral.
This integral is called a line integral. All we’ve done is to subdivide a line into 

infinitely many infinitesimal pieces, then add them up. This is exactly what you do in 
calculus when you evaluate an integral such as 1x dx. In fact, an integration along the 
x-axis is a line integral, one that happens to be along a straight line. Figure 32.23 dif-
fers only in that the line is curved. The underlying idea in both cases is that an integral 
is just a fancy way of doing a sum.

The line integral of Equation 32.10 is not terribly exciting. FiGure 32.24a makes things 
more interesting by allowing the line to pass through a magnetic field. FiGure 32.24b 

again divides the line into small segments, but this time �s
u

k  is the displacement vector 
of segment k. The magnetic field at this point in space is B

u

k.
Suppose we were to evaluate the dot product B

u

k
# �s

u

k at each segment, then add the 
values of B

u

k
# �s

u

k due to every segment. Doing so, and again letting the sum become 
an integral, we have

 a
k

B
u

k
# �s

u

k S 3
f

i

B
u # d s

u
= the line integral of B

u

  from i to f

Once again, the integral is just a shorthand way to say: Divide the line into lots of little 
pieces, evaluate B

u

k
# �s

u

k for each piece, then add them up.
Although this process of evaluating the integral could be difficult, the only line 

integrals we’ll need to deal with fall into two simple cases. If the magnetic field is 
everywhere perpendicular to the line, then B

u # ds
u

= 0 at every point along the line and 
the integral is zero. If the magnetic field is everywhere tangent to the line and has the 
same magnitude B at every point, then B

u # ds
u

= B ds at every point and

 3
f

i

 B
u # d s

u
= 3

f

i

B ds = B3
f

i

ds = Bl (32.11)

We used Equation 32.10 in the last step to integrate ds along the line.
Tactics Box 32.3 summarizes these two situations.

FiGure 32.24 Integrating B
u

 along a line 
from i to f.
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(a)

The line passes through a magnetic field.
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Magnetic field at segment k
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TACTiCs
B o x  3 2 . 3 

 evaluating line integrals

 ●1 If B
u

 is everywhere perpendicular to a 
line, the line integral of B

u

 is

3
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 B
u # d s

u
= 0

 ●2 If B
u

 is everywhere tangent to a line of 
length l and has the same magnitude B at 
every point, then
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u
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Ampère’s Law
FiGure 32.25 shows a wire carrying current I into the page and the magnetic field at 
distance d. The magnetic field of a current-carrying wire is everywhere tangent to a 
circle around the wire and has the same magnitude m0  I/2pd at all points on the circle. 
According to Tactics Box 32.3, these conditions allow us to easily evaluate the line 
integral of B

u

 along a circular path around the wire. Suppose we were to integrate the 
magnetic field all the way around the circle. That is, the initial point i of the integration 
path and the final point f will be the same point. This would be a line integral around 
a closed curve, which is denoted

 C B
u # ds

u

The little circle on the integral sign indicates that the integration is performed around 
a closed curve. The notation has changed, but the meaning has not.

Because B
u

 is tangent to the circle and of constant magnitude at every point on the 
circle, we can use Option 2 from Tactics Box 32.3 to write

 C B
u # ds

u
= Bl = B(2pd) (32.12)

where, in this case, the path length l is the circumference 2pd of the circle. The mag-
netic field strength of a current-carrying wire is B = m0I/2pd, thus

 C B
u # ds

u
= m0I (32.13)

The interesting result is that the line integral of B
u

 around the current-carrying wire 
is independent of the radius of the circle. Any circle, from one touching the wire to 
one far away, would give the same result. The integral depends only on the amount of 
current passing through the circle that we integrated around.

This is reminiscent of Gauss’s law. In our investigation of Gauss’s law, we started 
with the observation that the electric flux �e through a sphere surrounding a point 
charge depends only on the amount of charge inside, not on the radius of the sphere. 
After examining several cases, we concluded that the shape of the surface wasn’t rel-
evant. The electric flux through any closed surface enclosing total charge Qin turned 
out to be �e = Qin/P0.

Although we’ll skip the details, the same type of reasoning that we used to prove 
Gauss’s law shows that the result of Equation 32.13

	■ Is independent of the shape of the curve around the current.
	■ Is independent of where the current passes through the curve.
	■ Depends only on the total amount of current through the area enclosed by the inte-

gration path.

Thus whenever total current Ithrough passes through an area bounded by a closed curve, 
the line integral of the magnetic field around the curve is

 CB
u # ds

u
= m0Ithrough (32.14)

This result for the magnetic field is known as Ampère’s law.
To make practical use of Ampère’s law, we need to determine which currents are 

positive and which are negative. The right-hand rule is once again the proper tool. If 
you curl your right fingers around the closed path in the direction in which you are 
going to integrate, then any current passing though the bounded area in the direction 
of your thumb is a positive current. Any current in the opposite direction is a negative 
current. In FiGure 32.26, for example, currents I2 and I4 are positive, I3 is negative. Thus 
Ithrough = I2 - I3 + I4.

FiGure 32.25 Integrating the magnetic 
field around a wire.

The integration starts and
stops at the same point.

The integration
path is a circle
of radius d.

r
B is everywhere tangent to the integration
path and has constant magnitude.

d

B
r

I

FiGure 32.26 Using Ampère’s law.

I1 doesn’t pass through
the enclosed area.

These currents pass through the
bounded area.

The integration
path is a closed
curve.

I1

I2

I4

I3



NoTe  The integration path of Ampère’s law is a mathematical curve through 
space. It does not have to match a physical surface or boundary, although it could 
if we want it to. 

In one sense, Ampère’s law doesn’t tell us anything new. After all, we derived 
Ampère’s law from the Biot-Savart law for the magnetic field of a current. But in 
another sense, Ampère’s law is more important than the Biot-Savart law because it 
states a very general property about magnetic fields. We will use Ampère’s law to find 
the magnetic fields of some important current distributions that have a high degree of 
symmetry.

 CB
u # ds

u
= m0Ithrough =

m0r2

R2  I

We know from the symmetry of the wire that B
u

 is everywhere 
tangent to the circle and has the same magnitude at all points on 
the circle. Consequently, the line integral of B

u

 around the circle 
can be evaluated using Option 2 of Tactics Box 32.3:

 CB
u # ds

u
= Bl = 2prB

where l = 2pr is the path length. If we substitute this expression 
into Ampère’s law, we find that

 2prB =
m0r2

R2  I

Solving for B, we find that the magnetic field strength at radius r 
inside a current-carrying wire is

 B =
m0I

2pR2 r

Assess The magnetic field strength increases linearly with dis-
tance from the center of the wire until, at the surface of the 
wire, B = m0I/2pR matches our earlier solution for the mag-
netic field outside a current-carrying wire. This agreement at 
r = R gives us confidence in our result. The magnetic field 
strength both inside and outside the wire is shown graphically 
in FiGure 32.28.

exAMpLe 32.8  The magnetic field inside a current-carrying wire
A wire of radius R carries current I. Find the magnetic field inside 
the wire at distance r 6 R from the axis.

MoDeL Assume the current density is uniform over the cross sec-
tion of the wire.

visuALize FiGure 32.27 shows a cross section through the wire. 
The wire has cylindrical symmetry, with all the charges moving 
parallel to the wire, so the magnetic field must be tangent to circles 
that are concentric with the wire. We don’t know how the strength 
of the magnetic field depends on the distance from the center—
that’s what we’re going to find—but the symmetry of the situation 
dictates the shape of the magnetic field.

FiGure 32.27 Using Ampère’s law inside a current-
carrying wire.

Closed
integration
path R

r

I

B
r

B
r

Current-carrying
wire of radius R

By symmetry, the magnetic field
must be tangent to the circle.

Ithrough is the current inside radius r.

soLve To find the field strength at radius r, we draw a circle of 
radius r. The amount of current passing through this circle is

 Ithrough = JAcircle = pr2J

where J is the current density. Our assumption of a uniform cur-
rent density allows us to use the full current I passing through a 
wire of radius R to find that

 J =
I

A
=

I

pR2

Thus the current through the circle of radius r is

 Ithrough =
r2

R2 I

Let’s integrate B
u

 around the circumference of this circle. Accord-
ing to Ampère’s law,

FiGure 32.28 Graphical representation of the 
magnetic field of a current-carrying wire.
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The Magnetic Field of a solenoid
In our study of electricity, we made extensive use of the idea of a uniform electric 
field: a field that is the same at every point in space. We found that two closely spaced, 
parallel charged plates generate a uniform electric field between them, and this was 
one reason we focused so much attention on the parallel-plate capacitor.

Similarly, there are many applications of magnetism for which we would like to 
generate a uniform magnetic field, a field having the same magnitude and the same 
direction at every point within some region of space. None of the sources we have 
looked at thus far produces a uniform magnetic field.

In practice, a uniform magnetic field is generated with a solenoid. A solenoid, 
shown in FiGure 32.29, is a helical coil of wire with the same current I passing through 
each loop in the coil. Solenoids may have hundreds or thousands of coils, often called 
turns, sometimes wrapped in several layers.

FiGure 32.29 A solenoid.

I I

FiGure 32.30 Using superposition to find the magnetic field of a stack of current loops.

(a) A single loop

The magnetic field vector is
shown at six points.

(b) A stack of three loops

1 2 3

B2

r

B2

r

B1

r

B1

r

B3

r

B3

r

The fields reinforce
each other here.

The fields of the three loops
nearly cancel here.

We can understand a solenoid by thinking of it as a stack of current loops. FiGure 32.30a 
shows the magnetic field of a single current loop at three points on the axis and three 
points equally distant from the axis. The field directly above the loop is opposite in 
direction to the field inside the loop. FiGure 32.30b then shows three parallel loops. We 
can use information from Figure 32.30b to draw the magnetic fields of each loop at the 
center of loop 2 and at a point above loop 2.

The superposition of the three fields at the center of loop 2 produces a stronger field 
than that of loop 2 alone. But the superposition at the point above loop 2 produces a net 
magnetic field that is very much weaker than the field at the center of the loop. We’ve 
used only three current loops to illustrate the idea, but these tendencies are reinforced 
by including more loops. With many current loops along the same axis, the field in 
the center is strong and roughly parallel to the axis, whereas the field outside the 
loops is very close to zero.

FiGure 32.31a is a photo of the magnetic field of a short solenoid. You can see that 
the magnetic field inside the coils is nearly uniform (i.e., the field lines are nearly 
parallel) and the field outside is much weaker. Our goal of producing a uniform mag-
netic field can be achieved by increasing the number of coils until we have an ideal 
solenoid that is infinitely long and in which the coils are as close together as possible. 
As FiGure 32.31b shows, the magnetic field inside an ideal solenoid is uniform and 
parallel to the axis; the magnetic field outside is zero. No real solenoid is ideal, but 
a very uniform magnetic field can be produced near the center of a tightly wound so-
lenoid whose length is much larger than its diameter.

We can use Ampère’s law to calculate the field of an ideal solenoid. FiGure 32.32 shows 
a cross section through an infinitely long solenoid. The integration path that we’ll use is a 
rectangle of width l, enclosing N turns of the solenoid coil. Because this is a mathematical 
curve, not a physical boundary, there’s no difficulty with letting it protrude through the 

FiGure 32.31 The magnetic field of a 
solenoid.
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The magnetic field is uniform inside this 
section of an ideal, infinitely long solenoid. 
The magnetic field outside the solenoid is zero.

(a) A short solenoid



wall of the solenoid wherever we wish. The solenoid’s magnetic field direction, given by 
the right-hand rule, is left to right, so we’ll integrate around this path in the ccw direction.

Each of the N wires enclosed by the integration path carries current I, so the total 
current passing through the rectangle is Ithrough = NI. Ampère’s law is thus

 CB
u # ds

u
= m0Ithrough = m0NI (32.15)

The line integral around this path is the sum of the line integrals along each side. Along the 
bottom, where B

u

 is parallel to ds
u

 and of constant value B, the integral is simply Bl. The 
integral along the top is zero because the magnetic field outside an ideal solenoid is zero.

The left and right sides sample the magnetic field both inside and outside the sole-
noid. The magnetic field outside is zero, and the interior magnetic field is everywhere 
perpendicular to the line of integration. Consequently, as we recognized in Option 1 
of Tactics Box 32.3, the line integral is zero.

Only the integral along the bottom path is nonzero, leading to

 CB
u # ds

u
= Bl = m0NI

Thus the strength of the uniform magnetic field inside a solenoid is

 Bsolenoid =
m0NI

l
= m0nI (32.16)

where n = N/l is the number of turns per unit length. Measurements that need a uniform 
magnetic field are often conducted inside a solenoid, which can be built quite large.

FiGure 32.32 A closed path inside and 
outside an ideal solenoid.

B
r

r
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r

l

This is the integration path
for Ampère’s law. There
are N turns inside.

B is tangent to the integration
path along the bottom edge.

This patient is undergoing magnetic 
resonance imaging (MRI). The large cylinder 
surrounding the patient contains a solenoid 
that is wound with superconducting wire 
to generate a strong uniform magnetic field.

carry 100 A with no resistance, we can use Equation 32.16 to find 
the required number of turns:

 N =
lB

m0I
=

(1.0 m)(1.2 T)

(4p * 10-7 T m/A)(100 A)
= 9500 turns

Assess The solenoid coil requires a large number of turns, 
but that’s not surprising for generating a very strong field. If 
the wires are 1 mm in diameter, there would be 10 layers with 
approximately 1000 turns per layer.

exAMpLe 32.9  Generating an Mri magnetic field
A 1.0-m-long MRI solenoid generates a 1.2 T magnetic field. To 
produce such a large field, the solenoid is wrapped with supercon-
ducting wire that can carry a 100 A current. How many turns of 
wire does the solenoid need?

MoDeL Assume that the solenoid is ideal.

soLve Generating a magnetic field with a solenoid is a trade-off 
between current and turns of wire. A larger current requires fewer 
turns, but the resistance of ordinary wires causes them to overheat 
if the current is too large. For a superconducting wire that can 

The magnetic field of a finite-length solenoid is approximately uniform inside the 
solenoid and weak, but not zero, outside. As FiGure 32.33 shows, the magnetic field out-
side the solenoid looks like that of a bar magnet. Thus a solenoid is an electromagnet, 
and you can use the right-hand rule to identify the north-pole end. A solenoid with 
many turns and a large current can be a very powerful magnet.

FiGure 32.33 The magnetic fields of a finite-length solenoid and of a bar magnet.

The north pole is the end from
which the field emerges.

I I

NS

Solenoid Bar magnet
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32.7 The Magnetic Force on a Moving Charge
It’s time to switch our attention from how magnetic fields are generated to how 
magnetic fields exert forces and torques. Oersted discovered that a current pass-
ing through a wire causes a magnetic torque to be exerted on a nearby compass 
needle. Upon hearing of Oersted’s discovery, André-Marie Ampère, for whom the 
SI unit of current is named, reasoned that the current was acting like a magnet and, 
if this were true, that two current-carrying wires should exert magnetic forces on 
each other.

To find out, Ampère set up two parallel wires that could carry large currents either 
in the same direction or in opposite (or “antiparallel”) directions. FiGure 32.34 shows the 
outcome of his experiment. Notice that, for currents, “likes” attract and “opposites” 
repel. This is the opposite of what would have happened had the wires been charged 
and thus exerting electric forces on each other. Ampère’s experiment showed that a 
magnetic field exerts a force on a current.

Magnetic Force
Because a current consists of moving charges, Ampère’s experiment implied that a 
magnetic field exerts a force on a moving charge. This is true, although the exact form 
of the force law was not discovered until later in the 19th century. The magnetic force 
turns out to depend not only on the charge and the charge’s velocity, but also on how 
the velocity vector is oriented relative to the magnetic field. FiGure 32.35 shows the 
outcome of three experiments to observe the magnetic force.

FiGure 32.34 Ampère’s experiment to 
observe the forces between parallel 
current-carrying wires.
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FiGure 32.35 The relationship among v  
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If you compare the experiment in the middle of Figure 32.35 to Figure 32.10, you’ll 
see that the relationship among v  

u
, B

u

, and F
u

is exactly the same as the geometric 
relationship among C

u

, D
u

, and C
u

* D
u

. The magnetic force on a charge q as it moves 
through a magnetic field B

u

 with velocity v  

u
 can be written

 F
u

on q = qv  

u
* B

u

= (qvB sin a, direction of right@hand rule) (32.17)

where a is the angle between v  

u
 and B

u

.
The right-hand rule is that of the cross product, shown in FiGure 32.36. Notice that 

the magnetic force on a moving charged particle is perpendicular to both v  

u
 and B

u

.
The magnetic force has several important properties:

 1. Only a moving charge experiences a magnetic force. There is no magnetic force 
on a charge at rest (v  

u
= 0

u

) in a magnetic field.
 2. There is no force on a charge moving parallel (a = 0�) or antiparallel (a = 180�) 

to a magnetic field.
 3. When there is a force, the force is perpendicular to both v  

u
 and B

u

.
 4. The force on a negative charge is in the direction opposite to v  

u
* B

u

.
 5. For a charge moving perpendicular to B

u

 (a = 90�), the magnitude of the mag-
netic force is F = 0 q 0 vB.

FiGure 32.36 The right-hand rule for 
magnetic forces.
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FiGure 32.37 shows the relationship among v  

u
, B

u

, and F
u

 for four moving charges. 
(The source of the magnetic field isn’t shown, only the field itself.) You can see the 
inherent three-dimensionality of magnetism, with the force perpendicular to both v  

u
 

and B
u

. The magnetic force is very different from the electric force, which is parallel 
to the electric field.

FiGure 32.37 Magnetic forces on moving charges.
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field above the wire is out of the page, so the electron is moving 
perpendicular to the field.

soLve The electron charge is negative, thus the direction of the 
force is opposite the direction of v  

u
* B

u

. The right-hand rule shows 
that v  

u
* B

u

 points down, toward the wire, so F
u

 points up, away 
from the wire. The magnitude of the force is 0 q 0 vB = evB. The 
field is that of a long, straight wire:

 B =
m0I

2pd
= 2.0 * 10-4 T

Thus the magnitude of the force on the electron is

  F = evB = (1.60 * 10-19 C)(1.0 * 107 m/s)(2.0 * 10-4 T)

  = 3.2 * 10-16 N

The force on the electron is F
u

= (3.2 * 10-16 N, up).

Assess This force will cause the electron to curve away from 
the wire.

exAMpLe 32.10  The magnetic force on an electron
A long wire carries a 10 A current from left to right. An 
electron 1.0 cm above the wire is traveling to the right at a speed 
of 1.0 * 107 m/s. What are the magnitude and the direction of the 
magnetic force on the electron?

MoDeL The magnetic field is that of a long, straight wire.

visuALize FiGure 32.38 shows the current and an electron moving 
to the right. The right-hand rule tells us that the wire’s magnetic 

FiGure 32.38 An electron moving 
parallel to a current-carrying wire.

Magnetic field
of current I

We can draw an interesting and important conclusion at this point. You have seen 
that the magnetic field is created by moving charges. Now you also see that magnetic 
forces are exerted on moving charges. Thus it appears that magnetism is an interac-
tion between moving charges. Any two charges, whether moving or stationary, inter-
act with each other through the electric field. In addition, two moving charges interact 
with each other through the magnetic field.

Cyclotron Motion
Many important applications of magnetism involve the motion of charged particles in 
a magnetic field. Older television picture tubes use magnetic fields to steer electrons 
through a vacuum from the electron gun to the screen. Microwave generators, which 
are used in applications ranging from ovens to radar, use a device called a magnetron 
in which electrons oscillate rapidly in a magnetic field.

You’ve just seen that there is no force on a charge that has velocity v  

u
 parallel or 

antiparallel to a magnetic field. Consequently, a magnetic field has no effect on a 
charge moving parallel or antiparallel to the field. To understand the motion of 
charged particles in magnetic fields, we need to consider only motion perpendicular 
to the field.

FiGure 32.39 shows a positive charge q moving with a velocity v  

u
 in a plane that is 

perpendicular to a uniform magnetic field B
u

. According to the right-hand rule, the 

FiGure 32.39 Cyclotron motion of a 
charged particle moving in a uniform 
magnetic field.
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magnetic force on this particle is perpendicular to the velocity v  

u
. A force that is al-

ways perpendicular to v  

u
 changes the direction of motion, by deflecting the particle 

sideways, but it cannot change the particle’s speed. Thus a particle moving perpen-
dicular to a uniform magnetic field undergoes uniform circular motion at con-
stant speed. This motion is called the cyclotron motion of a charged particle in a 
magnetic field.

NoTe  A negative charge will orbit in the opposite direction from that shown in 
Figure 32.39 for a positive charge. 

You’ve seen many analogies to cyclotron motion earlier in this text. For a mass 
moving in a circle at the end of a string, the tension force is always perpendicular to 
v  

u
. For a satellite moving in a circular orbit, the gravitational force is always perpen-

dicular to v  

u
. Now, for a charged particle moving in a magnetic field, it is the magnetic 

force of strength F = qvB that points toward the center of the circle and causes the 
particle to have a centripetal acceleration.

Newton’s second law for circular motion, which you learned in Chapter 8, is

 F = qvB = mar =
mv 2

r
 (32.18)

Thus the radius of the cyclotron orbit is

 rcyc =
mv

qB
 (32.19)

The inverse dependence on B indicates that the size of the orbit can be decreased by 
increasing the magnetic field strength.

We can also determine the frequency of the cyclotron motion. Recall from your 
earlier study of circular motion that the frequency of revolution f is related to the speed 
and radius by f = v/2pr. A rearrangement of Equation 32.19 gives the cyclotron 
frequency:

 fcyc =
qB

2pm
 (32.20)

where the ratio q/m is the particle’s charge-to-mass ratio. Notice that the cyclotron 
frequency depends on the charge-to-mass ratio and the magnetic field strength but not 
on the charge’s velocity.

Electrons undergoing circular motion in a 
magnetic field. You can see the electrons’ 
path because they collide with a low-
density gas that then emits light.

field. Once in the magnetic field, it completes half a revolution in 
2.0 ns. What is the radius of its orbit?

MoDeL Energy is conserved as the electron is accelerated by the 
potential difference. The electron then undergoes cyclotron mo-
tion in the magnetic field, although it completes only half a revolu-
tion before hitting the back of the acceleration electrode.

soLve The electron accelerates from rest (vi = 0 m/s) at Vi = 0 V 
to speed vf at Vf = 500 V. We can use conservation of energy 
Kf + qVf = Ki + qVi to find the speed vf with which it enters the 
magnetic field:

 
1

2
 mvf 

2 + (-e)Vf = 0 + 0

  vf = B 2eVf

m
= B 2(1.60 * 10-19 C)(500 V)

9.11 * 10-31 kg

  = 1.33 * 107 m/s

exAMpLe 32.11  The radius of cyclotron motion
In FiGure 32.40, an electron is accelerated from rest through a po-
tential difference of 500 V, then injected into a uniform magnetic 

FiGure 32.40 An electron is accelerated, 
then injected into a magnetic field.
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FiGure 32.41a shows a more general situation in which the charged particle’s velocity v  

u
 is 

neither parallel nor perpendicular to B
u

. The component of v  

u
 parallel to B

u

 is not affected by 
the field, so the charged particle spirals around the magnetic field lines in a helical trajec-
tory. The radius of the helix is determined by v  

u

#, the component of v  

u
 perpendicular to B

u

.

  B =
2pmfcyc 

e
=

2p(9.11 * 10-31 kg)(2.50 * 108 Hz)

1.60 * 10-19 C

  = 8.94 * 10-3 T

Thus the radius of the electron’s orbit is

 rcyc =
mv

qB
= 8.5 * 10-3 m = 8.5 mm

The cyclotron radius in the magnetic field is rcyc = mv/eB, but 
we first need to determine the field strength. Were it not for the 
electrode, the electron would undergo circular motion with pe-
riod T = 4.0 ns. Hence the cyclotron frequency is f = 1/T =
2.5 * 108 Hz. We can use the cyclotron frequency to determine 
that the magnetic field strength is

FiGure 32.41 In general, charged particles spiral along helical trajectories around the 
magnetic field lines. This motion is responsible for the earth’s aurora.

Charged particles
spiral around the
magnetic field lines.

(a) The earth’s magnetic field leads
particles into the atmosphere near
the poles, causing the aurora.

(b) (c) The aurora

The motion of charged particles in a magnetic field is responsible for the earth’s 
aurora. High-energy particles and radiation streaming out from the sun, called the 
solar wind, create ions and electrons as they strike molecules high in the atmosphere. 
Some of these charged particles become trapped in the earth’s magnetic field, creating 
what is known as the Van Allen radiation belt.

As FiGure 32.41b shows, the electrons spiral along the magnetic field lines until the 
field leads them into the atmosphere. The shape of the earth’s magnetic field is such 
that most electrons enter the atmosphere near the magnetic poles. There they collide 
with oxygen and nitrogen atoms, exciting the atoms and causing them to emit auroral 
light seen in FiGure 32.41c.

Stop to think 32.5 
 An electron moves perpendicular to a 

magnetic field. What is the direction of B
u

?

 a. Left b. Up c. Into the page
 d. Right e. Down f. Out of the page

�

rv

F
r

The Cyclotron
Physicists studying the structure of the atomic nucleus and of elementary particles usu-
ally use a device called a particle accelerator. The first practical particle accelerator, 
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invented in the 1930s, was the cyclotron. Cyclotrons remain important for many ap-
plications of nuclear physics, such as the creation of radioisotopes for medicine.

A cyclotron, shown in FiGure 32.42, consists of an evacuated chamber within a large, 
uniform magnetic field. Inside the chamber are two hollow conductors shaped like the 
letter D and hence called “dees.” The dees are made of copper, which doesn’t affect 
the magnetic field; are open along the straight sides; and are separated by a small gap. 
A charged particle, typically a proton, is injected into the magnetic field from a source 
near the center of the cyclotron, and it begins to move in and out of the dees in a cir-
cular cyclotron orbit.

The cyclotron operates by taking advantage of the fact that the cyclotron frequency 
fcyc of a charged particle is independent of the particle’s speed. An oscillating poten-
tial difference �V  is connected across the dees and adjusted until its frequency is 
exactly the cyclotron frequency. There is almost no electric field inside the dees (you 
learned in Chapter 27 that the electric field inside a hollow conductor is zero), but a 
strong electric field points from the positive to the negative dee in the gap between 
them.

Suppose the proton emerges into the gap from the positive dee. The electric field in 
the gap accelerates the proton across the gap into the negative dee, and it gains kinetic 
energy e�V. A half cycle later, when it next emerges into the gap, the potential of the 
dees (whose potential difference is oscillating at fcyc) will have changed sign. The 
proton will again be emerging from the positive dee and will again accelerate across 
the gap and gain kinetic energy e�V.

This pattern will continue orbit after orbit. The proton’s kinetic energy increases by 
2e�V  every orbit, so after N orbits its kinetic energy is K = 2Ne�V  (assuming that its 
initial kinetic energy was near zero). The radius of its orbit increases as it speeds up; 
hence the proton follows the spiral path shown in Figure 32.42 until it finally reaches 
the outer edge of the dee. It is then directed out of the cyclotron and aimed at a target. 
Although �V  is modest, usually a few hundred volts, the fact that the proton can un-
dergo many thousands of orbits before reaching the outer edge allows it to acquire a 
very large kinetic energy.

The Hall effect
A charged particle moving through a vacuum is deflected sideways, perpendicular to 
v  

u
, by a magnetic field. In 1879, a graduate student named Edwin Hall showed that the 

same is true for the charges moving through a conductor as part of a current. This phe-
nomenon—now called the Hall effect—is used to gain information about the charge 
carriers in a conductor. It is also the basis of a widely used technique for measuring 
magnetic field strengths.

FiGure 32.43a shows a magnetic field perpendicular to a flat, current-carrying con-
ductor. You learned in Chapter 30 that the charge carriers move through a conductor 
at the drift speed vd. Their motion is perpendicular to B

u

, so each charge carrier experi-
ences a magnetic force FB = evdB perpendicular to both B

u

 and the current I. However, 
for the first time we have a situation in which it does matter whether the charge carriers 
are positive or negative.

FiGure 32.43 The charge carriers in a current are deflected to one surface of a 
conductor, creating the Hall voltage �VH.
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FiGure 32.43b, with the field out of the page, shows that positive charge carriers 
moving in the direction of I are pushed toward the bottom surface of the conductor. 
This creates an excess positive charge on the bottom surface and leaves an excess 
negative charge on the top. FiGure 32.43c, where the electrons in an electron current i 
move opposite the direction of I, shows that electrons would be pushed toward the bot-
tom surface. (Be sure to use the right-hand rule and the sign of the electron charge to 
confirm the deflections shown in these figures.) Thus the sign of the excess charge on 
the bottom surface is the same as the sign of the charge carriers. Experimentally, the 
bottom surface is negative when the conductor is a metal, and this is one more piece 
of evidence that the charge carriers in metals are electrons.

Electrons are deflected toward the bottom surface once the current starts flowing, 
but the process can’t continue indefinitely. As excess charge accumulates on the top 
and bottom surfaces, it acts like the charge on the plates of a capacitor, creating a po-
tential difference �V  between the two surfaces and an electric field E = �V/w inside 
the conductor of width w. This electric field increases until the upward electric force 
F
u

E on the charge carriers exactly balances the downward magnetic force F
u

B. Once the 
forces are balanced, a steady state is reached in which the charge carriers move in the 
direction of the current and no additional charge is deflected to the surface.

The steady-state condition, in which FB = FE, is

 FB = evdB = FE = eE = e 
�V
w

 (32.21)

Thus the steady-state potential difference between the two surfaces of the conductor, 
which is called the Hall voltage �VH, is

 �VH = wvdB (32.22)

You learned in Chapter 30 that the drift speed is related to the current density J by 
J = nevd, where n is the charge-carrier density (charge carriers per m3). Thus

 vd =
J
ne

=
I/A
ne

=
I

wtne
 (32.23)

where A = wt is the cross-section area of the conductor. If we use this expression for 
vd in Equation 32.22, we find that the Hall voltage is

 �VH =
IB

tne
 (32.24)

The Hall voltage is very small for metals in laboratory-sized magnetic fields, typi-
cally in the microvolt range. Even so, measurements of the Hall voltage in a known 
magnetic field are used to determine the charge-carrier density n. Interestingly, the 
Hall voltage is larger for poor conductors that have smaller charge-carrier densities. A 
laboratory probe for measuring magnetic field strengths, called a Hall probe, measures 
�VH for a poor conductor whose charge-carrier density is known. The magnetic field 
is then determined from Equation 32.24.

  B =
tne

I
 �VH

  =
(1.5 * 10-4 m)(1.35 * 1025 m-3)(1.60 *  10-19 C)

1.5 A
 0.0025 V

  = 0.54 T

The electric field created inside the bismuth by the excess charge 
on the surface is

 E =
�VH 

w
=

0.0025 V

5.0 * 10-3 m
= 0.50 V/m

Assess 0.54 T is a fairly typical strength for a laboratory magnet.

exAMpLe 32.12  Measuring the magnetic field
A Hall probe consists of a strip of the metal bismuth that is 0.15 mm 
thick and 5.0 mm wide. Bismuth is a poor conductor with charge-
carrier density 1.35 * 1025 m-3. The Hall voltage on the probe is 
2.5 mV when the current through it is 1.5 A. What is the strength of 
the magnetic field, and what is the electric field strength inside the 
bismuth?

visuALize The bismuth strip looks like Figure 32.43a. The thick-
ness is t = 1.5 * 10-4 m and the width is w = 5.0 * 10-3 m.

soLve Equation 32.24 gives the Hall voltage. We can rearrange 
the equation to find that the magnetic field is

32.7 . The Magnetic Force on a Moving Charge    945
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32.8  Magnetic Forces on Current-Carrying 
Wires

Ampère’s observation of magnetic forces between current-carrying wires motivated 
us to look at the magnetic forces on moving charges. We’re now ready to apply that 
knowledge to Ampère’s experiment. As a first step, let us find the force exerted by a 
uniform magnetic field on a long, straight wire carrying current I through the field. As 
FiGure 32.44a shows, there’s no force on a current-carrying wire parallel to a magnetic 
field. This shouldn’t be surprising; it follows from the fact that there is no force on a 
charged particle moving parallel to B

u

.
FiGure 32.44b shows a wire perpendicular to the magnetic field. By the right-hand 

rule, each charge in the current has a force of magnitude qvB directed to the left. Con-
sequently, the entire length of wire within the magnetic field experiences a force to the 
left, perpendicular to both the current direction and the field direction.

To find the magnitude of the force, we must relate the current I in the wire to the 
charge q moving through the wire. FiGure 32.45 shows a segment of wire of length l 
carrying current I. The current I, by definition, is the amount of moving charge q in 
this segment of wire divided by the time �t it takes the charge to flow through the 
segment: I = q/�t. The time required is �t = l/v, giving

 q = I�t = I 
l
v

Thus Il = qv. If we define vector l
u

 to have magnitude l and point in the direction of 
v
u
, the direction of current, then I l

u

= qv  

u
. Substituting this for qv  

u
 in the force equation 

F
u

= qv  

u
* B

u

, we find that the magnetic force on a current-carrying wire is

 F
u

wire = I l
u

* B
u

= (IlB sin a, direction of right@hand rule) (32.25)

where a is the angle between l
u

 (the direction of the current) and B
u

. As an aside, you 
can see from Equation 32.25 that the magnetic field B must have units of N/A m. This 
is why we defined 1 T = 1 N/A m in Section 32.3.

NoTe  The familiar right-hand rule applies to a current-carrying wire. Point your right 
thumb in the direction of the current (parallel to l

u

) and your index finger in the direction 
of B

u

. Your middle finger is then pointing in the direction of the force F
u

on the wire. 

FiGure 32.44 Magnetic force on a 
current-carrying wire.
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soLve We can use the right-hand rule to determine which cur-
rent direction experiences an upward force. With B

u

 pointing away 
from us, the direction of the current needs to be from left to right. 
The forces will balance when

 F = IlB = mg = r(pr2l)g

where r = 8920 kg/m3 is the density of copper. The length of the 
wire cancels, leading to

  I =
rpr2g

B
=

(8920 kg/m3)p(0.00050 m)2 (9.80 m/s2)

0.10 T
 

  = 0.69 A

A 0.69 A current from left to right will levitate the wire in the 
magnetic field.

Assess A 0.69 A current is quite reasonable, but this idea is useful 
only if we can get the current into and out of this segment of wire. 
In practice, we could do so with wires that come in from below the 
page. These input and output wires would be parallel to B

u

 and not 
experience a magnetic force. Although this example is very simple, 
it is the basis for applications such as magnetic levitation trains.

exAMpLe 32.13  Magnetic levitation
The 0.10 T uniform magnetic field of FiGure 32.46 is horizontal, 
parallel to the floor. A straight segment of 1.0-mm-diameter cop-
per wire, also parallel to the floor, is perpendicular to the magnetic 
field. What current through the wire, and in which direction, will 
allow the wire to “float” in the magnetic field?

FiGure 32.46 Magnetic levitation.
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MoDeL The wire will float in the magnetic field if the magnetic 
force on the wire points upward and has magnitude mg, allowing 
it to balance the downward gravitational force.
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Force Between Two parallel Wires
Now consider Ampère’s experimental arrangement of two parallel wires of length 
l, distance d apart. FiGure 32.47a shows the currents I1 and I2 in the same direction; 
FiGure 32.47b shows the currents in opposite directions. We will assume that the wires 
are sufficiently long to allow us to use the earlier result for the magnetic field of a long, 
straight wire: B = m0I/2pd.

FiGure 32.47 Magnetic forces between parallel current-carrying wires.
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As Figure 32.47a shows, the current I2 in the lower wire creates a magnetic field B
u

2 
at the position of the upper wire. B

u

2 points out of the page, perpendicular to current I1. 
It is field B

u

2, due to the lower wire, that exerts a magnetic force on the upper wire. 
Using the right-hand rule, you can see that the force on the upper wire is downward, thus 
attracting it toward the lower wire. The field of the lower current is not a uniform field, 
but it is the same at all points along the upper wire because the two wires are parallel. 
Consequently, we can use the field of a long, straight wire to determine the magnetic 
force exerted by the lower wire on the upper wire when they are separated by distance d:

 Fparallel wires = I1l B2 = I1l 
m0I2

2pd
=

m0l I1I2

2pd
 (32.26)

As an exercise, you should convince yourself that the current in the upper wire ex-
erts an upward-directed magnetic force on the lower wire with exactly the same mag-
nitude. You should also convince yourself, using the right-hand rule, that the forces are 
repulsive and tend to push the wires apart if the two currents are in opposite directions.

Thus two parallel wires exert equal but opposite forces on each other, as required by 
Newton’s third law. Parallel wires carrying currents in the same direction attract 
each other; parallel wires carrying currents in opposite directions repel each other.

exAMpLe 32.14  A current balance
Two stiff, 50-cm-long, parallel wires are connected at the ends 
by metal springs. Each spring has an unstretched length of 5.0 cm 
and a spring constant of 0.025 N/m. The wires push each other 
apart when a current travels around the loop. How much current is 
required to stretch the springs to lengths of 6.0 cm?

MoDeL Two parallel wires carrying currents in opposite direc-
tions exert repulsive magnetic forces on each other.

visuALize FiGure 32.48 shows the “circuit.” The springs are con-
ductors, allowing a current to travel around the loop. In equilibrium, 
the repulsive magnetic forces between the wires are balanced by 
the restoring forces Fsp = k�y of the springs.

FiGure 32.48 The current-carrying 
wires of Example 32.14.

Continued
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32.9 Forces and Torques on Current Loops
You have seen that a current loop is a magnetic dipole, much like a permanent magnet. 
We will now look at some important features of how current loops behave in magnetic 
fields. This discussion will be largely qualitative, but it will highlight some of the 
important properties of magnets and magnetic fields. We will use these ideas in the 
next section to make the connection between electromagnets and permanent magnets.

FiGure 32.49a shows two current loops. Using what we just learned about the forces 
between parallel and antiparallel currents, you can see that parallel current loops 
exert attractive magnetic forces on each other if the currents circulate in the same 
direction; they repel each other when the currents circulate in opposite directions.

 I = B 4pkd�y

m0l
= 17 A

Assess Devices in which a magnetic force balances a mechanical 
force are called current balances. They can be used to make very 
accurate current measurements.

soLve Figure 32.48 shows the forces on the lower wire. The net 
force is zero, hence the magnetic force is FB = 2Fsp. The force 
between the wires is given by Equation 32.26 with I1 = I2 = I:

 FB =
m0lI 2

2pd
= 2Fsp = 2k�y

where k is the spring constant and �y = 1.0 cm is the amount by 
which each spring stretches. Solving for the current, we find

FiGure 32.49 Two alternative but equivalent ways to view magnetic forces.

(a) Parallel currents attract, 
opposite currents repel.

(b) Opposite poles attract, 
like poles repel.
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We can think of these forces in terms of magnetic poles. Recall that the north pole 
of a current loop is the side from which the magnetic field emerges, which you can 
determine with the right-hand rule. FiGure 32.49b shows the north and south magnetic 
poles of the current loops. When the currents circulate in the same direction, a north 
and a south pole face each other and exert attractive forces on each other. When the 
currents circulate in opposite directions, the two like poles repel each other.

Here, at last, we have a real connection to the behavior of magnets that opened our 
discussion of magnetism—namely, that like poles repel and opposite poles attract. 
Now we have an explanation for this behavior, at least for electromagnets. Magnetic 
poles attract or repel because the moving charges in one current exert attractive 
or repulsive magnetic forces on the moving charges in the other current. Our tour 
through interacting moving charges is finally starting to show some practical results!

Now let’s consider what happens to a current loop in a magnetic field. FiGure 32.50 
shows a square current loop in a uniform magnetic field along the z-axis. As we’ve 
learned, the field exerts magnetic forces on the currents in each of the four sides of 
the loop. Their directions are given by the right-hand rule. Forces F

u

front and F
u

back are 
opposite to each other and cancel. Forces F

u

top and F
u

bottom also add to give no net force, 
but because F

u

top and F
u

bottom don’t act along the same line they will rotate the loop by 
exerting a torque on it.
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Recall that torque is the magnitude of the force F multiplied by the moment arm 
d, the distance between the pivot point and the line of action. Both forces have the 
same moment arm d =

1
2 l sin u, hence the torque on the loop—a torque exerted by the 

magnetic field—is

 t = 2Fd = 2(IlB) (1
2 l sin u) = (Il2)B sin u = mB sin u (32.27)

where m = Il2 = IA is the loop’s magnetic dipole moment.
Although we derived Equation 32.27 for a square loop, the result is valid for a cur-

rent loop of any shape. Notice that Equation 32.27 looks like another example of a 
cross product. We earlier defined the magnetic dipole moment vector m

u
 to be a vector 

perpendicular to the current loop in a direction given by the right-hand rule. Figure 
32.50 shows that u is the angle between B

u

 and m
u

, hence the torque on a magnetic 
dipole is

 t
u

= m
u

* B
u

 (32.28)

The torque is zero when the magnetic dipole moment m
u

 is aligned parallel or anti-
parallel to the magnetic field, and is maximum when m

u
 is perpendicular to the field. It 

is this magnetic torque that causes a compass needle—a magnetic moment—to rotate 
until it is aligned with the magnetic field.

An electric Motor
The torque on a current loop in a magnetic field is the basis for how an electric motor 
works. As FiGure 32.51 shows, the armature of a motor is a coil of wire wound on an 
axle. When a current passes through the coil, the magnetic field exerts a torque on 
the armature and causes it to rotate. If the current were steady, the armature would 
oscillate back and forth around the equilibrium position until (assuming there’s 
some friction or damping) it stopped with the plane of the coil perpendicular to the 
field. To keep the motor turning, a device called a commutator reverses the current 
direction in the coils every 180�. (Notice that the commutator is split, so the posi-
tive terminal of the battery sends current into whichever wire touches the right half 
of the commutator.) The current reversal prevents the armature from ever reaching 
an equilibrium position, so the magnetic torque keeps the motor spinning as long as 
there is a current.

FiGure 32.50 A uniform magnetic field 
exerts a torque on a current loop.
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Stop to think 32.6 
 What is the current direction in the loop?

 a. Out of the page at the top of the loop, into the page 
at the bottom

 b. Out of the page at the bottom of the loop, into the 
page at the top

S N

Repel

32.10 Magnetic properties of Matter
Our theory has focused mostly on the magnetic properties of currents, yet our every-
day experience is mostly with permanent magnets. We have seen that current loops 
and solenoids have magnetic poles and exhibit behaviors like those of permanent 
magnets, but we still lack a specific connection between electromagnets and perma-
nent magnets. The goal of this section is to complete our understanding by developing 
an atomic-level view of the magnetic properties of matter.

Atomic Magnets
A plausible explanation for the magnetic properties of materials is the orbital motion of 
the atomic electrons. FiGure 32.52 shows a simple, classical model of an atom in which 
a negative electron orbits a positive nucleus. In this picture of the atom, the electron’s 
motion is that of a current loop! It is a microscopic current loop, to be sure, but a 
current loop nonetheless. Consequently, an orbiting electron acts as a tiny magnetic 
dipole, with a north pole and a south pole. You can think of the magnetic dipole as an 
atomic-size magnet.

However, the atoms of most elements contain many electrons. Unlike the solar sys-
tem, where all of the planets orbit in the same direction, electron orbits are arranged to 
oppose each other: one electron moves counterclockwise for every electron that moves 
clockwise. Thus the magnetic moments of individual orbits tend to cancel each other 
and the net magnetic moment is either zero or very small.

The cancellation continues as the atoms are joined into molecules and the mol-
ecules into solids. When all is said and done, the net magnetic moment of any bulk 
matter due to the orbiting electrons is so small as to be negligible. There are various 
subtle magnetic effects that can be observed under laboratory conditions, but orbiting 
electrons cannot explain the very strong magnetic effects of a piece of iron.

The electron spin
The key to understanding atomic magnetism was the 1922 discovery that electrons 
have an inherent magnetic moment. Perhaps this shouldn’t be surprising. An electron 
has a mass, which allows it to interact with gravitational fields, and a charge, which 
allows it to interact with electric fields. There’s no reason an electron shouldn’t also 
interact with magnetic fields, and to do so it comes with a magnetic moment.

An electron’s inherent magnetic moment, shown in FiGure 32.53, is often called the 
electron spin because, in a classical picture, a spinning ball of charge would have a 
magnetic moment. This classical picture is not a realistic portrayal of how the electron 
really behaves, but its inherent magnetic moment makes it seem as if the electron 
were spinning. While it may not be spinning in a literal sense, an electron really is a 
microscopic magnet.

We must appeal to the results of quantum physics to find out what happens in an 
atom with many electrons. The spin magnetic moments, like the orbital magnetic mo-
ments, tend to oppose each other as the electrons are placed into their shells, causing 
the net magnetic moment of a filled shell to be zero. However, atoms containing an 
odd number of electrons must have at least one valence electron with an unpaired spin. 
These atoms have net magnetic moment due to the electron’s spin.

FiGure 32.52 A classical orbiting electron 
is a tiny magnetic dipole.
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FiGure 32.53 Magnetic moment of the 
electron.
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But atoms with magnetic moments don’t necessarily form a solid with magnetic 
properties. For most elements, the magnetic moments of the atoms are randomly ar-
ranged when the atoms join together to form a solid. As FiGure 32.54 shows, this random 
arrangement produces a solid whose net magnetic moment is very close to zero. This 
agrees with our common experience that most materials are not magnetic.

Ferromagnetism
It happens that in iron, and a few other substances, the spins interact with each other in 
such a way that atomic magnetic moments tend to all line up in the same direction, as 
shown in FiGure 32.55. Materials that behave in this fashion are called ferromagnetic, 
with the prefix ferro meaning “iron-like.”

In ferromagnetic materials, the individual magnetic moments add together to create 
a macroscopic magnetic dipole. The material has a north and a south magnetic pole, 
generates a magnetic field, and aligns parallel to an external magnetic field. In other 
words, it is a magnet!

FiGure 32.54 The random magnetic 
moments of the atoms in a typical solid.

The atomic magnetic moments due to 
unpaired spins point in random directions.
The sample has no net magnetic moment.

FiGure 32.55 The aligned atomic 
magnetic moments in a ferromagnetic 
material.
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The atomic magnetic moments are aligned.
The sample has north and south magnetic poles.

FiGure 32.56 Magnetic domains in 
a ferromagnetic material. The net 
magnetic dipole is nearly zero.

Magnetic domains

Magnetic moment of the domain

Although iron is a magnetic material, a typical piece of iron is not a strong permanent 
magnet. You need not worry that a steel nail, which is mostly iron and is easily lifted with 
a magnet, will leap from your hands and pin itself against the hammer because of its own 
magnetism. It turns out, as shown in FiGure 32.56, that a piece of iron is divided into small 
regions, typically less than 100 mm in size, called magnetic domains. The magnetic mo-
ments of all the iron atoms within each domain are perfectly aligned, so each individual 
domain, like Figure 32.55, is a strong magnet.

However, the various magnetic domains that form a larger solid, such as you might hold in 
your hand, are randomly arranged. Their magnetic dipoles largely cancel, much like the cancel-
lation that occurs on the atomic scale for nonferromagnetic substances, so the solid as a whole 
has only a small magnetic moment. That is why the nail is not a strong permanent magnet.

induced Magnetic Dipoles
If a ferromagnetic substance is subjected to an external magnetic field, the external field 
exerts a torque on the magnetic dipole of each domain. The torque causes many of the 
domains to rotate and become aligned with the external field, just as a compass needle 
aligns with a magnetic field, although internal forces between the domains generally 
prevent the alignment from being perfect. In addition, atomic-level forces between the 
spins can cause the domain boundaries to move. Domains that are aligned along the ex-
ternal field become larger at the expense of domains that are opposed to the field. These  
changes in the size and orientation of the domains cause the material to develop a net 
magnetic dipole that is aligned with the external field. This magnetic dipole has been 
induced by the external field, so it is called an induced magnetic dipole.

NoTe  The induced magnetic dipole is analogous to the polarization forces and in-
duced electric dipoles that you studied in Chapter 26. 
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Stop to think 32.7 
 Which magnet or magnets induced this magnetic 

dipole?

FiGure 32.57 shows a ferromagnetic material near the end of a solenoid. The mag-
netic moments of the domains align with the solenoid’s field, creating an induced 
magnetic dipole whose south pole faces the solenoid’s north pole. Consequently, the 
magnetic force between the poles pulls the ferromagnetic object to the electromagnet.

The fact that a magnet attracts and picks up ferromagnetic objects was one of the 
basic observations about magnetism with which we started the chapter. Now we have 
an explanation of how it works, based on three ideas:

 1. Electrons are microscopic magnets due to their spin.
 2. A ferromagnetic material in which the spins are aligned is organized into mag-

netic domains.
 3. The individual domains align with an external magnetic field to produce an in-

duced magnetic dipole moment for the entire object.

The object’s magnetic dipole may not return to zero when the external field is 
removed because some domains remain “frozen” in the alignment they had in the 
external field. Thus a ferromagnetic object that has been in an external field may be 
left with a net magnetic dipole moment after the field is removed. In other words, the 
object has become a permanent magnet. A permanent magnet is simply a ferromag-
netic material in which a majority of the magnetic domains are aligned with each other 
to produce a net magnetic dipole moment.

Whether or not a ferromagnetic material can be made into a permanent magnet depends 
on the internal crystalline structure of the material. Steel is an alloy of iron with other ele-
ments. An alloy of mostly iron with the right percentages of chromium and nickel produces 
stainless steel, which has virtually no magnetic properties at all because its particular crys-
talline structure is not conducive to the formation of domains. A very different steel alloy 
called Alnico V is made with 51% iron, 24% cobalt, 14% nickel, 8% aluminum, and 3% 
copper. It has extremely prominent magnetic properties and is used to make high-quality 
permanent magnets. You can see from the complex formula that developing good mag-
netic materials requires a lot of engineering skill as well as a lot of patience!

So we’ve come full circle. One of our initial observations about magnetism was 
that a permanent magnet can exert forces on some materials but not others. The theory 
of magnetism that we then proceeded to develop was about the interactions between 
moving charges. What moving charges had to do with permanent magnets was not 
obvious. But finally, by considering magnetic effects at the atomic level, we found that 
properties of permanent magnets and magnetic materials can be traced to the interac-
tions of vast numbers of electron spins.

Magnetic resonance imaging, or MRI, uses 
the magnetic properties of atoms as a 
noninvasive probe of the human body.
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CHALLeNGe exAMpLe 32.15  Designing a loudspeaker
A loudspeaker consists of a paper cone wrapped at the bottom with 
several turns of fine wire. As FiGure 32.58 shows, this coil sits in 
a narrow gap between the poles of a circular magnet. To produce 
sound, the amplifier drives a current through the coil. The mag-
netic field then exerts a force on this current, pushing the cone 
and thus pushing the air to create a sound wave. An ideal speaker 
would experience only forces from the magnetic field, thus re-
sponding only to the current from the amplifier. Real speakers are 
balanced so as to come close to this ideal unless driven very hard.

FiGure 32.58 The coil and magnet of a loudspeaker.

N

Wire coil

S

I

FiGure 32.57 The magnetic field of the 
solenoid creates an induced magnetic 
dipole in the iron.

I I

The magnetic domains align with 
the solenoid’s magnetic field.

The induced magnetic dipole has
north and south magnetic poles.

I I

The attractive force between the 
opposite poles pulls the ferromagnetic 
material toward the solenoid.

N NSS

Ferromagnetic material



through the coil, where R is the coil’s resistance. This causes the 
oscillating in-and-out force that drives the speaker cone back and 
forth. Even though the coil isn’t a straight wire, the fact that the 
magnetic field is everywhere perpendicular to the current means 
that we can calculate the magnetic force as F = IlB where l is the 
total length of the wire in the coil. The circumference of the coil 
is p(0.050 m) = 0.157 m so 20 turns gives l = 3.1 m. The cone 
responds to the force by accelerating with a = F/m. Combining 
these pieces, we find the cone’s acceleration is

 a =
IlB

m
=

V0lB cos vt

mR
= amax cos vt

It is straightforward to evaluate amax = 152 m/s2.
From kinematics, a = dv/dt and v = dx/dt. We need to inte-

grate twice to find the displacement. First,

 v = 3a dt = amax3cos vt dt =
amax

v
 sin vt

The integration constant is zero because we know, from simple 
harmonic motion, that the average velocity is zero. Integrating 
again, we get

 x = 3v dt =
amax

v 3sin vt dt = -
amax

v2  cos vt

where the integration constant is again zero if we assume the oscil-
lation takes place around the origin. The minus sign tells us that 
the displacement and acceleration are out of phase. The amplitude 
of the oscillation, which we seek, is

 A =
amax

v2 =
152 m/s2

(628 rad/s)2 = 3.8 * 10-4 m = 0.38 mm

Assess If you’ve ever placed your hand on a loudspeaker cone, 
you know that you can feel a slight vibration. An amplitude of 
0.38 mm is consistent with this observation. The fact that the 
amplitude increases with the inverse square of the frequency 
explains why you can sometimes see the cone vibrating with an 
amplitude of several millimeters for low-frequency bass notes.

Consider a 5.5 g loudspeaker cone with a 5.0-cm-diameter, 
20-turn coil having a resistance of 8.0 � . There is a 0.18 T field 
in the gap between the poles. These values are typical of the loud-
speakers found in car stereo systems. What is the oscillation am-
plitude of this speaker if driven by a 100 Hz oscillatory voltage 
from the amplifier with a peak value of 12 V? 

MoDeL Model the loudspeaker as ideal, responding only to mag-
netic forces. These forces cause the cone to accelerate. We’ll use 
kinematics to relate the acceleration to the displacement.

visuALize FiGure 32.59 shows the coil in the gap between the mag-
net poles. Magnetic fields go from north to south poles, so the field 
is radially outward. Consequently, the field at all points is perpen-
dicular to the circular current. According to the right-hand rule, the 
magnetic force on the current is into or out of the page, depending on 
whether the current is counterclockwise or clockwise, respectively.

Challenge Example    953

FiGure 32.59 The magnetic field in the gap, from 
north to south, is perpendicular to the current.

soLve We can write the output voltage of the amplifier as 
�V = V0 cos vt, where V0 = 12 V is the peak voltage and 
v = 2pf = 628 rad/s is the angular frequency at 100 Hz. The 
voltage drives current

 I =
�V

R
=

V0 cos vt

R
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s u M M A r y
The goal of Chapter 32 has been to learn how to calculate and use the magnetic field.

At its most fundamental level, magnetism is an interaction 
between moving charges. The magnetic field of one moving  
charge exerts a force on another moving charge.

General principles
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Magnetic Fields
The Biot-Savart law

• A point charge, B
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=
m0
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• A short current element, B
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=
m0
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u
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To find the magnetic field of a current:

• Divide the wire into many short segments.

• Find the field of each segment �s.

• Find B
u

 by summing the fields of all �s, usually as an integral.

An alternative method for fields with a high degree of symmetry 
is Ampère’s law:

  C B
u # ds

u
= m0Ithrough

where Ithrough is the current through the area bounded by the 
integration path.

Magnetic Forces
The magnetic force on a moving 
charge is
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Right-hand rule

Point your right thumb in the direction of I. Your fingers curl in 
the direction of B

u

. For a dipole, B
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 emerges from the side that is 
the north pole.

Parallel wires and current loops

Parallel currents attract.
Opposite currents repel.
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north pole
south pole
magnetic dipole
magnetic material
right-hand rule

magnetic field, B
u

magnetic field lines

Biot-Savart law
tesla, T
permeability constant, m0

cross product
current loop
electromagnet
magnetic dipole moment, m

u

line integral
Ampère’s law
uniform magnetic field
solenoid
cyclotron motion
cyclotron frequency, fcyc

cyclotron

Hall effect
Hall voltage, �VH

ferromagnetic
magnetic domain
induced magnetic dipole
permanent magnet

Terms and Notation

C o N C e p T u A L  Q u e s T i o N s

 1. The lightweight glass sphere in FiGure Q32.1 hangs by a thread. 
The north pole of a bar magnet is brought near the sphere.

 a. Suppose the sphere is electrically neutral. Is it attracted to, 
repelled by, or not affected by the magnet? Explain.

 b. Answer the same question if the sphere is positively charged.

 2. The metal sphere in FiGure Q32.2 hangs by a thread. When the north 
pole of a magnet is brought near, the sphere is strongly attracted 
to the magnet. Then the magnet is reversed and its south pole is 
brought near the sphere. How does the sphere respond? Explain.

 3. You have two electrically neutral metal cylinders that exert 
strong attractive forces on each other. You have no other metal 
objects. Can you determine if both of the cylinders are magnets, 
or if one is a magnet and the other is just a piece of iron? If so, 
how? If not, why not?

 4. What is the current direction in the wire of FiGure Q32.4? Explain.

 5. What is the current direction in the wire of FiGure Q32.5? Explain.
 6. What is the initial direction of deflection for the charged par-

ticles entering the magnetic fields shown in FiGure Q32.6?

 7. What is the initial direction of deflection for the charged par-
ticles entering the magnetic fields shown in FiGure Q32.7?

 8. Determine the magnetic field direction that causes the charged 
particles shown in FiGure Q32.8 to experience the indicated mag-
netic force.

 9.  Determine the magnetic field direction that causes the charged 
particles shown in FiGure Q32.9 to experience the indicated mag-
netic force.

 10. You have a horizontal cathode-ray tube (CRT) for which the 
controls have been adjusted such that the electron beam should 
make a single spot of light exactly in the center of the screen. 
You observe, however, that the spot is deflected to the right. It 
is possible that the CRT is broken. But as a clever scientist, you 
realize that your laboratory might be in either an electric or a 
magnetic field. Assuming that you do not have a compass, any 
magnets, or any charged rods, how can you use the CRT itself to 
determine whether the CRT is broken, is in an electric field, or is 
in a magnetic field? You cannot remove the CRT from the room.

 11. The south pole of a bar magnet is 
brought toward the current loop of 
FiGure Q32.11. Does the bar magnet 
attract, repel, or have no effect on the 
loop? Explain.

 12. Give a step-by-step explanation, using both words and pictures, 
of how a permanent magnet can pick up a piece of nonmagne-
tized iron.
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e x e r C i s e s  A N D  p r o B L e M s

Problems labeled  integrate material from earlier chapters.

exercises

Section 32.3 The Source of the Magnetic Field: Moving Charges

 1. | Points 1 and 2 in FiGure ex32.1 are the same distance from the 
wires as the point where B = 2.0 mT. What are the strength and 
direction of B

u

 at points 1 and 2?

 2. | What is the magnetic field strength at points 2 to 4 in 
FiGure ex32.2? Assume that the wires overlap closely and that 
points 1 to 4 are equally distant from the wires.

 3. || A proton moves along the x-axis with vx = 1.0 * 107 m/s. As 
it passes the origin, what are the strength and direction of the 
magnetic field at the (x, y, z) positions (a) (1 cm, 0 cm, 0 cm), 
(b) (0 cm, 1 cm, 0 cm), and (c) (0 cm, -2 cm, 0 cm)?

 4. || An electron moves along the z-axis with vz = 2.0 * 107 m/s. 
As it passes the origin, what are the strength and direction of the 
magnetic field at the (x, y, z) positions (a) (1 cm, 0 cm, 0 cm), 
(b) (0 cm, 0 cm, 1 cm), and (c) (0 cm, 1 cm, 1 cm)?

 5. || What is the magnetic field at the position of the dot in 
FiGure ex32.5? Give your answer as a vector.

 6. || What is the magnetic field at the position of the dot in 
FiGure  ex32.6? Give your answer as a vector.

 7. || A proton is passing the origin. The magnetic field at the 
(x, y, z) position (1 mm, 0 mm, 0 mm) is 1.0 * 10-13 jn T. The 
field at (0 mm, 1 mm, 0 mm) is -1.0 * 10-13 in T. What are the 
speed and direction of the proton?

Section 32.4 The Magnetic Field of a Current

 8. | What currents are needed to generate the magnetic field 
strengths of Table 32.1 at a point 1.0 cm from a long, straight 
wire?

 9. | At what distances from a very thin, straight wire carrying a 
10 A current would the magnetic field strengths of Table 32.1 
be generated?

 10. || The element niobium, which is a metal, is a superconductor (i.e., 
no electrical resistance) at temperatures below 9 K. However, the 
superconductivity is destroyed if the magnetic field at the surface of 
the metal reaches or exceeds 0.10 T. What is the maximum current 
in a straight, 3.0-mm-diameter superconducting niobium wire?

 11. || The magnetic field at the center of a 1.0-cm-diameter loop is 
2.5 mT.

 a. What is the current in the loop?
 b. A long straight wire carries the same current you found in 

part a. At what distance from the wire is the magnetic field 
2.5 mT?

 12. | A wire carries current I into the junction shown in
FiGure ex32.12. What is the magnetic field at the dot?

 13. | What are the magnetic fields at points a to c in FiGure ex32.13? 
Give your answers as vectors.

 14. || What are the magnetic field strength and direction at points a 
to c in FiGure ex32.14?

Section 32.5 Magnetic Dipoles

 15. | The on-axis magnetic field strength 10 cm from a small bar 
magnet is 5.0 mT.

 a. What is the bar magnet’s magnetic dipole moment?
 b. What is the on-axis field strength 15 cm from the magnet?
 16. || A 100 A current circulates around a 2.0-mm-diameter super-

conducting ring.
 a. What is the ring’s magnetic dipole moment?
 b. What is the on-axis magnetic field strength 5.0 cm from the 

ring?
 17. || A small, square loop carries a 25 A current. The on-axis mag-

netic field strength 50 cm from the loop is 7.5 nT. What is the 
edge length of the square?

 18. || The earth’s magnetic dipole moment is 8.0 * 1022 A m2.
 a. What is the magnetic field strength on the surface of the earth 

at the earth’s north magnetic pole? How does this compare to 
the value in Table 32.1? You can assume that the current loop 
is deep inside the earth.

 b. Astronauts discover an earth-size planet without a magnetic 
field. To create a magnetic field with the same strength as 
earth’s, they propose running a current through a wire around 
the equator. What size current would be needed?
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Section 32.6 Ampère’s Law and Solenoids

 19. | What is the line integral of B
u

 between points i and f in
FiGure ex32.19?

 20. | What is the line integral of B
u

 between points i and f in
FiGure ex32.20?

 21. || The value of the line integral of B
u

 around the closed path in 
FiGure ex32.21 is 3.77 * 10-6 T m. What is I3?

 22. || The value of the line integral of B
u

 around the closed path in 
FiGure ex32.22 is 1.38 * 10-5  T m. What are the direction (in or 
out of the page) and magnitude of I3?

 23. || What is the line integral of B
u

 between points i and f in 
FiGure ex32.23?

 24. || Magnetic resonance imaging needs a magnetic field strength 
of 1.5 T. The solenoid is 1.8 m long and 75 cm in diameter. It is 
tightly wound with a single layer of 2.0-mm-diameter supercon-
ducting wire. What size current is needed?

 25. || A 2.0-cm-diameter, 15-cm-long solenoid is tightly wound 
with one layer of wire. A 2.5 A current through the wire gener-
ates a 3.0 mT magnetic field inside the solenoid. What is the 
diameter of the wire, in mm?

Section 32.7 The Magnetic Force on a Moving Charge

 26. | A proton moves in the magnetic field B
u

= 0.50 in T with a 
speed of 1.0 * 107 m/s in the directions shown in FiGure ex32.26. 
For each, what is magnetic force F

u

on the proton? Give your 
answers in component form.

BIO

 27. || An electron moves in the magnetic field B
u

= 0.50 in T with a 
speed of 1.0 * 107 m/s in the directions shown in FiGure ex32.27. 
For each, what is magnetic force F

u

 on the electron? Give your 
answers in component form.

 28. || To five significant figures, what are the cyclotron fre-
quencies in a 3.0000 T magnetic field of the ions (a) O2 

+ , 
(b) N2 

+ , and (c) CO +? The atomic masses are shown in the 
table; the mass of the missing electron is less than 0.001 u 
and is not relevant at this level of precision. Although N2 

+  
and CO +  both have a nominal molecular mass of 28, they 
are easily distinguished by virtue of their slightly differ-
ent cyclotron frequencies. Use the following constants: 
1 u = 1.6605 * 10-27 kg, e = 1.6022 * 10-19 C.

Atomic masses

12C 12.000
14N 14.003
16O 15.995

 29. | Radio astronomers detect electromagnetic radiation at 45 MHz 
from an interstellar gas cloud. They suspect this radiation is emit-
ted by electrons spiraling in a magnetic field. What is the mag-
netic field strength inside the gas cloud?

 30. | For your senior project, you would like to build a cyclotron 
that will accelerate protons to 10% of the speed of light. The 
largest vacuum chamber you can find is 50 cm in diameter. What 
magnetic field strength will you need?

 31. | The Hall voltage across a conductor in a 55 mT magnetic field 
is 1.9 mV. When used with the same current in a different mag-
netic field, the voltage across the conductor is 2.8 mV. What is 
the strength of the second field?

 32. | Test instruments to measure magnetic field strengths are of-
ten based on the Hall effect. In one instrument, the “probe” is a 
1.0-mm-thick, 6.0-mm-wide semiconductor with a charge-carrier 
density of 2.1 * 1021 m-3, much less than the charge-carrier den-
sity in a conductor. Passing a 60 mA current through the probe 
generates a Hall voltage of 120 mV. What is the magnetic field 
strength?
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Section 32.8 Magnetic Forces on Current-Carrying Wires

 33. | What magnetic field strength and direction will levitate the 
2.0 g wire in FiGure ex32.33?

 34. | The right edge of the circuit 
in FiGure ex32.34 extends into 
a 50 mT uniform magnetic 
field. What are the magnitude 
and direction of the net force 
on the circuit?

 35. || The two 10-cm-long parallel wires in FiGure ex32.35 are sepa-
rated by 5.0 mm. For what value of the resistor R will the force 
between the two wires be 5.4 * 10-5 N?

 36. | What is the net force (mag-
nitude and direction) on each 
wire in FiGure ex32.36?

Section 32.9 Forces and Torques on Current Loops

 37. || A square current loop 5.0 cm on each side carries a 500 mA 
current. The loop is in a 1.2 T uniform magnetic field. The axis 
of the loop, perpendicular to the plane of the loop, is 30� away 
from the field direction. What is the magnitude of the torque on 
the current loop?

 38. | A small bar magnet experiences a 0.020 N m torque when the 
axis of the magnet is at 45� to a 0.10 T magnetic field. What is 
the magnitude of its magnetic dipole moment?

 39. || a. What is the magnitude 
of the torque on the current 
loop in FiGure ex32.39?

 b. What is the loop’s equilib-
rium orientation?

problems

 40. | Although the evidence is weak, there has been concern in re-
cent years over possible health effects from the magnetic fields 
generated by electric transmission lines. A typical high-voltage 
transmission line is 20 m above the ground and carries a 200 A 
current at a potential of 110 kV.

 a. What is the magnetic field strength on the ground directly 
under such a transmission line?

 b. What percentage is this of the earth’s magnetic field of 50 mT?

BIO

 41. | A biophysics experiment uses a very sensitive magnetic 
field probe to determine the current associated with a nerve 
impulse traveling along an axon. If the peak field strength 
1.0 mm from an axon is 8.0 pT, what is the peak current carried 
by the axon?

 42. || A long wire carrying a 5.0 A current perpendicular to the 
xy-plane intersects the x-axis at x = -2.0 cm. A second, par-
allel wire carrying a 3.0 A current intersects the x-axis at x =
+2.0 cm. At what point or points on the x-axis is the magnetic 
field zero if (a) the two currents are in the same direction and (b) 
the two currents are in opposite directions?

 43. || The two insulated wires in FiGure p32.43 cross at a 30� angle 
but do not make electrical contact. Each wire carries a 5.0 A 
current. Points 1 and 2 are each 4.0 cm from the intersection 
and equally distant from both wires. What are the magnitude and 
direction of the magnetic fields at points 1 and 2?

 44. || The capacitor in FiGure p32.44 is charged to 50 V. The switch 
closes at t = 0 s. Draw a graph showing the magnetic field 
strength as a function of time at the position of the dot. On your 
graph indicate the maximum field strength, and provide an ap-
propriate numerical scale on the horizontal axis.

 45. || At what distance on the axis of a current loop is the magnetic 
field half the strength of the field at the center of the loop? Give 
your answer as a multiple of R.

 46. || Find an expression for the magnetic field strength at the center 
(point P) of the circular arc in FiGure p32.46.

 47. || What are the strength and direction of the magnetic field at 
point P in FiGure p32.47?

 48. || What are the strength and direction of the magnetic field at the 
center of the loop in FiGure p32.48?
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 49. || Your employer asks you to build a 20-cm-long solenoid with an 
interior field of 5.0 mT. The specifications call for a single layer 
of wire, wound with the coils as close together as possible. You 
have two spools of wire available. Wire with a #18 gauge has a 
diameter of 1.02 mm and has a maximum current rating of 6 A. 
Wire with a #26 gauge is 0.41 mm in diameter and can carry up to 
1 A. Which wire should you use, and what current will you need?

 50. || The magnetic field strength at the north pole of a 2.0-cm-
diameter, 8-cm-long Alnico magnet is 0.10 T. To produce the same 
field with a solenoid of the same size, carrying a current of 2.0 A, 
how many turns of wire would you need? Does this seem feasible?

 51. || The earth’s magnetic field, with a magnetic dipole moment of 
8.0 * 1022 A m2, is generated by currents within the molten iron 
of the earth’s outer core. Suppose we model the core current as a 
3000-km-diameter current loop made from a 1000-km-diameter 
“wire.” The loop diameter is measured from the centers of this 
very fat wire.

 a. What is the current in the current loop?
 b. What is the current density J in the current loop?
 c. To decide whether this is a large or a small current density, 

compare it to the current density of a 1.0 A current in a 
1.0-mm-diameter wire.

 52. || Weak magnetic fields can be measured at the surface of the 
brain. Although the currents causing these fields are quite com-
plicated, we can estimate their size by modeling them as a current 
loop around the equator of a 16-cm-diameter (the width of a typical 
head) sphere. What current is needed to produce a 3.0 pT field—
the strength measured for one subject—at the pole of this sphere?

 53. || The heart produces a weak magnetic field that can be used to 
diagnose certain heart problems. It is a dipole field produced by 
a current loop in the outer layers of the heart.

 a. It is estimated that the field at the center of the heart is 90 pT. 
What current must circulate around an 8.0-cm-diameter loop, 
about the size of a human heart, to produce this field?

 b. What is the magnitude of the heart’s magnetic dipole moment?
 54. ||| Two identical coils are parallel to each other on the same axis. 

They are separated by a distance equal to their radius. They each 
have N turns and carry equal currents I in the same direction.

 a. Find an expression for the magnetic field strength at the mid-
point between the loops.

 b. Calculate the field strength if the loops are 10 cm in diameter, 
have 10 turns, and carry a 1.0 A current.

 55. || Use the Biot-Savart law to 
find the magnetic field strength 
at the center of the semicircle in 
FiGure p32.55.

 56. || The toroid of FiGure p32.56 is a coil of wire wrapped around a 
doughnut-shaped ring (a torus) made of nonconducting material. 
Toroidal magnetic fields are used to confine fusion plasmas.

 a. From symmetry, what must be the shape of the magnetic 
field in this toroid? Explain.

 b. Consider a toroid with N 
closely spaced turns carry-
ing current I. Use Ampère’s 
law to find an expres-
sion for the magnetic field 
strength at a point inside 
the torus at distance r from 
the axis.

 c. Is a toroidal magnetic field 
a uniform field? Explain.

BIO

BIO

 57. || A long, hollow wire has inner radius R1 and outer radius R2. 
The wire carries current I uniformly distributed across the area 
of the wire. Use Ampère’s law to find an expression for the mag-
netic field strength in the three regions 0 6 r 6 R1, R1 6 r 6 R2, 
and R2 6 r.

 58. || An electron orbits in a 5.0 mT field with angular momentum 
8.0 * 10-26 kg m2/s. What is the diameter of the orbit?

 59. || A proton moving in a uniform magnetic field with v
u

1 =
1.00 * 106 in m/s experiences force F

u

1 = 1.20 * 10-16 kn N. A 
second proton with v  

u

2 = 2.00 * 106 jn m/s experiences F
u

2 =
-4.16 * 10-16 kn N in the same field. What is B

u

? Give your 
answer as a magnitude and an angle measured ccw from the 
+x@axis.

 60. || An electron travels with speed 1.0 * 107 m/s between the two 
parallel charged plates shown in FiGure p32.60. The plates are 
separated by 1.0 cm and are charged by a 200 V battery. What 
magnetic field strength and direction will allow the electron to 
pass between the plates without being deflected?

 61. || An electron in a cathode-ray tube is accelerated through a po-
tential difference of 10 kV, then passes through the 2.0-cm-wide 
region of uniform magnetic field in FiGure p32.61. What field 
strength will deflect the electron by 10�?

 62. || The microwaves in a microwave oven are produced in a spe-
cial tube called a magnetron. The electrons orbit the magnetic 
field at 2.4 GHz, and as they do so they emit 2.4 GHz electro-
magnetic waves.

 a. What is the magnetic field strength?
 b. If the maximum diameter of the electron orbit before the elec-

tron hits the wall of the tube is 2.5 cm, what is the maximum 
electron kinetic energy?

 63. | An antiproton (same properties as a proton except that 
q = -e) is moving in the combined electric and magnetic fields 
of FiGure p32.63. What are the magnitude and direction of the 
antiproton’s acceleration at this instant?

 64. || a.  A 65-cm-diameter cyclotron uses a 500 V oscillating 
potential difference between the dees. What is the maxi-
mum kinetic energy of a proton if the magnetic field 
strength is 0.75 T?

   b.  How many revolutions does the proton make before leav-
ing the cyclotron?

FiGure p32.55 
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 65. ||| FiGure p32.65 shows a mass spectrometer, an analytical in-
strument used to identify the various molecules in a sample by 
measuring their charge-to-mass ratio q/m. The sample is ionized, 
the positive ions are accelerated (starting from rest) through a 
potential difference �V, and they then enter a region of uniform 
magnetic field. The field bends the ions into circular trajecto-
ries, but after just half a circle they either strike the wall or pass 
through a small opening to a detector. As the accelerating volt-
age is slowly increased, different ions reach the detector and are 
measured. Consider a mass spectrometer with a 200.00 mT mag-
netic field and an 8.0000 cm spacing between the entrance and 
exit holes. To five significant figures, what accelerating potential 
differences �V  are required to detect the ions (a) O2 

+, (b) N2 

+, 
and (c) CO +? See Exercise 28 for atomic masses; the mass of the 
missing electron is less than 0.001 u and is not relevant at this 
level of precision. Although N2 

+  and CO +  both have a nominal 
molecular mass of 28, they are easily distinguished by virtue of 
their slightly different accelerating voltages. Use the following 
constants:  1 u = 1.6605 * 10-27 kg, e = 1.6022 * 10-19 C.

 66. || A Hall-effect probe to measure magnetic field strengths needs 
to be calibrated in a known magnetic field. Although it is not 
easy to do, magnetic fields can be precisely measured by mea-
suring the cyclotron frequency of protons. A testing laboratory 
adjusts a magnetic field until the proton’s cyclotron frequency is 
10.0 MHz. At this field strength, the Hall voltage on the probe 
is 0.543 mV when the current through the probe is 0.150 mA. 
Later, when an unknown magnetic field is measured, the Hall 
voltage at the same current is 1.735 mV. What is the strength of 
this magnetic field?

 67. || The 10-turn loop of wire shown in FiGure p32.67 lies in a hori-
zontal plane, parallel to a uniform horizontal magnetic field, and 
carries a 2.0 A current. The loop is free to rotate about a nonmag-
netic axle through the center. A 50 g mass hangs from one edge 
of the loop. What magnetic field strength will prevent the loop 
from rotating about the axle?

 68. || The two springs in FiGure p32.68 each have a spring constant 
of 10 N/m. They are compressed by 1.0 cm when a current pass-
es through the wire. How big is the current?

 69. || Magnetic fields are sometimes measured by balancing mag-
netic forces against known mechanical forces. Your task is 
to measure the strength of a horizontal magnetic field using a 
12-cm-long rigid metal rod that hangs from two nonmagnetic 
springs, one at each end, with spring constants 1.3 N/m. You 
first position the rod to be level and perpendicular to the field, 
whose direction you determined with a compass. You then con-
nect the ends of the rod to wires that run parallel to the field and 
thus experience no forces. Finally, you measure the downward 
deflection of the rod, stretching the springs, as you pass current 
through it. Your data are as follows:

Current (A) Deflection (mm)

1.0  4

2.0  9

3.0 12

4.0 15

5.0 21

  Use an appropriate graph of the data to determine the magnetic 
field strength.

 70. || A conducting bar of length l and mass m rests at the left end of 
the two frictionless rails of length d in FiGure p32.70. A uniform 
magnetic field of strength B points upward.

 a. In which direction, into or out of the page, will a current 
through the conducting bar cause the bar to experience a 
force to the right?

 b. Find an expression for the bar’s speed as it leaves the rails at 
the right end.

 71. || a.  In FiGure p32.71, a long, straight, current-carrying wire of 
linear mass density m is suspended by threads. A magnetic 
field perpendicular to the wire exerts a horizontal force that 
deflects the wire to an equilibrium angle u. Find an expres-
sion for the strength and direction of the magnetic field B

u

.
   b.  What B

u

 deflects a 55 g/m wire to a 12� angle when the cur-
rent is 10 A?

 72. || FiGure p32.72 is a cross section through 
three long wires with linear mass density 
50 g/m. They each carry equal currents in 
the directions shown. The lower two wires 
are 4.0 cm apart and are attached to a table. 
What current I will allow the upper wire to 
“float” so as to form an equilateral triangle 
with the lower wires?

 73. || In the semiclassical Bohr model of the hydrogen atom, the 
electron moves in a circular orbit of radius 5.3 * 10-11 m with 
speed 2.2 * 106 m/s. According to this model, what is the mag-
netic field at the center of a hydrogen atom?

  Hint: Determine the average current of the orbiting electron.
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 74. || A wire along the x-axis carries current I in the negative x-
direction through the magnetic field

 B
u

= • B0 
x

l
  kn 0 … x … l

0 elsewhere
 

 a. Draw a graph of B versus x over the interval -3
2 l 6 x 6

3
2 l.

 b. Find an expression for the net force F
u

net on the wire.
 c. Find an expression for the net torque on the wire about the 

point x = 0.
 75. || A nonuniform magnetic field exerts a net force on a current loop 

of radius R. FiGure p32.75 shows a magnetic field that is diverging 
from the end of a bar magnet. The magnetic field at the position of 
the current loop makes an angle u with respect to the vertical.

 a. Find an expression for the net magnetic force on the current.
 b. Calculate the force if R = 2.0 cm, I = 0.50 A, B = 200 mT, 

and u = 20�.

Challenge problems

 76. You have a 1.0-m-long copper wire. You want to make an N-turn 
current loop that generates a 1.0 mT magnetic field at the center 
when the current is 1.0 A. You must use the entire wire. What 
will be the diameter of your coil?

 77. a.  Derive an expression for the magnetic field strength at dis-
tance d from the center of a straight wire of finite length l that 
carries current I.

  b.  Determine the field strength at the center of a current- 
carrying square loop having sides of length 2R.

  c.  Compare your answer to part b to the field at the center of a 
circular loop of diameter 2R. Do so by computing the ratio 
Bsquare/Bcircle.

 78. A flat, circular disk of radius R is uniformly charged with to-
tal charge Q. The disk spins at angular velocity v about an axis 
through its center. What is the magnetic field strength at the cen-
ter of the disk?

FiGure p32.75 B
r

B
r

u u

I I

2R

Fnet
r

N

 79. A long, straight conducting wire of radius R has a nonuniform 
current density J = J0r/R, where J0 is a constant. The wire car-
ries total current I.

 a. Find an expression for J0 in terms of I and R.
 b. Find an expression for the magnetic field strength inside the 

wire at radius r.
 c. At the boundary, r = R, does your solution match the known 

field outside a long, straight current-carrying wire?
 80. The coaxial cable shown in FiGure Cp32.80 consists of a solid in-

ner conductor of radius R1 surrounded by a hollow, very thin outer 
conductor of radius R2. The two carry 
equal currents I, but in opposite direc-
tions. The current density is uniformly 
distributed over each conductor.

 a. Find expressions for three magnetic 
fields: within the inner conductor, in 
the space between the conductors, 
and outside the outer conductor.

 b. Draw a graph of B versus r from 
r = 0 to r = 2R2 if R1 =

1
3 R2.

 81. An infinitely wide flat sheet of charge flows out of the page in 
FiGure Cp32.81. The current per unit width along the sheet (amps 
per meter) is given by the linear current density Js.

 a. What is the shape of the magnetic field? To answer this ques-
tion, you may find it helpful to approximate the current sheet 
as many parallel, closely spaced current-carrying wires. Give 
your answer as a picture showing magnetic field vectors.

 b. Find the magnetic field strength at distance d above or below 
the current sheet.

 82. The uniform 30 mT magnetic field in 
FiGure Cp32.82 points in the positive 
z-direction. An electron enters the re-
gion of magnetic field with a speed of 
5.0 * 106 m/s and at an angle of 30� 
above the xy-plane. Find the radius r 
and the pitch p of the electron’s spiral 
trajectory.
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Stop to Think 32.1: Not at all. The charge exerts weak, attractive 
polarization forces on both ends of the compass needle, but in this 
configuration the forces will balance and have no net effect.

Stop to Think 32.2: d. Point your right thumb in the direction of the 
current and curl your fingers around the wire.

Stop to Think 32.3: b. Point your right thumb out of the page, in the 
direction of v  

u
. Your fingers are pointing down as they curl around 

the left side.

Stop to Think 32.4: b. The right-hand rule gives a downward B
u

 for a 
clockwise current. The north pole is on the side from which the field 
emerges.

Stop to Think 32.5: c. For a field pointing into the page, v  

u
* B

u

 is to 
the right. But the electron is negative, so the force is in the direction 
of - (v  

u
* B

u

).

Stop to Think 32.6: b. Repulsion indicates that the south pole of the 
loop is on the right, facing the bar magnet; the north pole is on the left. 
Then the right-hand rule gives the current direction.

Stop to Think 32.7: a or c. Any magnetic field to the right, whether 
leaving a north pole or entering a south pole, will align the magnetic 
domains as shown.

FiGure Cp32.80 

R1 R2
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Electromagnetic  
Induction

33

Electromagnetic induction is 
the physics that underlies many 
modern technologies, from the 
generation of electricity to data 
storage.
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 Looking Back
Chapter 32 Magnetic fields and forces

Lenz’s Law
Lenz’s law says that a current is 
induced in a closed loop if and only if 
the magnetic flux through the loop is 
changing. Simply having a magnetic 
flux doesn’t do anything; the flux has 
to change.

Induced Fields
At its most fundamental level, Fara-
day’s law tells us that a changing mag-
netic field creates an induced electric 
field. It is the induced electric field that 
then creates the induced current in a 
conducting loop.

Applications
Electromagnetic induction has many 
applications. You’ll learn about using 
inductors—coils of wire that store 
magnetic energy—in circuits.

You’ll also learn how a generator, such as this 
generator turned by windmill blades, trans
forms mechanical en ergy into electric energy.

An increasing 
magnetic field 
(blue) creates an 
electric field (red) 
that circulates in 
closed loops. You’ll 
learn to calculate 
the strength of the 
induced field.

Magnetic Flux
A key idea will be the amount of mag-
netic field passing through a loop. This 
is called the magnetic flux.

You’ll learn that 
pushing a magnet 
into a coil of wire, 
or pulling it out, 
causes an induced 
current in the wire. 
The process is called 
electromagnetic 
induction.

Faraday’s Law
You’ll learn to use Faraday’s law, the 
most important law connecting electric 
and magnetic fields.

You’ll find that the magnetic 
flux depends on the strength 
of the magnetic field, the 
area of the loop, and the 
angle between them.

You’ll learn how 
to use Lenz’s law 
to determine the 
direction of an 
induced current. The magnetic flux through this loop is 

increasing as the loop moves into the field. 
Faraday’s law allows us to compute the 
induced emf and the induced current. The 
current direction is given by Lenz’s law.

Connecting E and B
We previously found that a current 
generates a magnetic field. In fact, the 
connection between electric and mag-
netic fields is much more profound.

 Looking Ahead The goal of Chapter 33 is to understand and apply electromagnetic induction.
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33.1 Induced Currents
Oersted’s 1820 discovery that a current creates a magnetic field generated enor-
mous excitement. One question scientists hoped to answer was whether the con-
verse of Oersted’s discovery was true: that is, can a magnet be used to create a 
current?

The breakthrough came in 1831 when the American science teacher Joseph Henry 
and the English scientist Michael Faraday each discovered the process we now call 
electromagnetic induction. Faraday—whom you met in Chapter 25 as the inventor 
of the concept of a field—was the first to publish his findings, so today we study 
Faraday’s law rather than Henry’s law.

Faraday’s 1831 discovery, like Oersted’s, was a happy combination of an unplanned 
event and a mind that was ready to recognize its significance. Faraday was experi-
menting with two coils of wire wrapped around an iron ring, as shown in FIgurE 33.1. 
He had hoped that the magnetic field generated in the coil on the left would induce a 
magnetic field in the iron, and that the magnetic field in the iron might then somehow 
create a current in the circuit on the right.

Like all his previous attempts, this technique failed to generate a current. But Fara-
day happened to notice that the needle of the current meter jumped ever so slightly 
at the instant he closed the switch in the circuit on the left. After the switch was 
closed, the needle immediately returned to zero. The needle again jumped when he 
later opened the switch, but this time in the opposite direction. Faraday recognized 
that the motion of the needle indicated a current in the circuit on the right, but a mo-
mentary current only during the brief interval when the current on the left was starting 
or stopping.

Faraday’s observations, coupled with his mental picture of field lines, led him to sug-
gest that a current is generated only if the magnetic field through the coil is changing. 
This explains why all the previous attempts to generate a current with static magnetic 
fields had been unsuccessful. Faraday set out to test this hypothesis.

FIgurE 33.1 Faraday’s discovery.
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Faraday investigates electromagnetic induction

Faraday placed one coil directly above the 
other, without the iron ring. There was no 
current in the lower circuit while the switch 
was in the closed position, but a momentary 
current appeared whenever the switch was 
opened or closed.

Opening or closing the switch creates a mo-
mentary current.

He pushed a bar magnet into a coil of wire. 
This action caused a momentary deflection 
of the current-meter needle, although 
holding the magnet inside the coil had no 
effect. A quick withdrawal of the magnet 
deflected the needle in the other direction.

Pushing the magnet into the coil or pulling 
it out creates a momentary current.

Must the magnet move? Faraday created a 
momentary current by rapidly pulling a coil of 
wire out of a magnetic field. Pushing the coil 
into the magnet caused the needle to deflect in 
the opposite direction.

Pushing the coil into the magnet or pulling it 
out creates a momentary current.

��

0

Push or pull coil.

N

S

Faraday found that there is a current in a coil of wire if and only if the mag
netic field passing through the coil is changing. This is an informal statement of 
what we’ll soon call Faraday’s law. The current in a circuit due to a changing mag-
netic field is called an induced current. An induced current is not caused by a battery; 
it is a completely new way to generate a current.
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33.2 Motional emf
We’ll start our investigation of electromagnetic induction by looking at situations in 
which the magnetic field is fixed while the circuit moves or changes. Consider a con-
ductor of length l that moves with velocity v  

u
 through a perpendicular uniform mag-

netic field B
u

, as shown in FIgurE 33.2. The charge carriers inside the wire—assumed 
to be positive—also move with velocity v  

u
, so they each experience a magnetic force 

F
u

B = qv  

u
* B

u

 of strength FB = qvB. This force causes the charge carriers to move, 
separating the positive and negative charges. The separated charges then create an 
electric field inside the conductor.

FIgurE 33.2 The magnetic force on the charge carriers in a moving conductor creates an 
electric field inside the conductor.

Charge carriers in the wire experience an
upward force of magnitude FB � qvB. Being
free to move, positive charges flow upward
(or, if you prefer, negative charges downward).
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The charge flow continues until the downward
electric force FE is large enough to balance the
upward magnetic force FB. Then the net force
on a charge is zero and the current ceases. 
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The charge carriers continue to separate until the electric force FE = qE exactly 
balances the magnetic force FB = qvB, creating an equilibrium situation. This balance 
happens when the electric field strength is

 E = vB (33.1)

In other words, the magnetic force on the charge carriers in a moving conductor 
creates an electric field E = vB inside the conductor.

The electric field, in turn, creates an electric potential difference between the 
two ends of the moving conductor. FIgurE 33.3a defines a coordinate system in which 
E
u

= -vB jn. Using the connection between the electric field and the electric potential,

 �V = Vtop - Vbottom = - 3
l

0

 Ey dy = - 3
l

0

 (-vB) dy = vlB (33.2)

Thus the motion of the wire through a magnetic field induces a potential differ
ence vlB between the ends of the conductor. The potential difference depends on the 
strength of the magnetic field and on the wire’s speed through the field.

There’s an important analogy between this potential difference and the potential dif-
ference of a battery. FIgurE 33.3b reminds you that a battery uses a nonelectric force—the 
charge escalator—to separate positive and negative charges. The emf E of the battery 
was defined as the work performed per charge (W/q) to separate the charges. An isolated 
battery, with no current, has a potential difference �Vbat = E. We could refer to a bat-
tery, where the charges are separated by chemical reactions, as a source of chemical emf.

The moving conductor develops a potential difference because of the work done by 
magnetic forces to separate the charges. You can think of the moving conductor as a 
“battery” that stays charged only as long as it keeps moving but “runs down” if it stops. 
The emf of the conductor is due to its motion, rather than to chemical reactions inside, 
so we can define the motional emf of a conductor moving with velocity v  

u
 perpendicu-

lar to a magnetic field B
u

 to be

 E = vlB (33.3)

FIgurE 33.3 Generating an emf.

Magnetic forces separate the charges and
cause a potential difference between the
ends. This is a motional emf.
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Stop to think 33.1 
 A square conductor moves through a uniform magnetic field. 

Which of the figures shows the correct charge distribution on the conductor?

(a) v (b) v

B out of page

(c) v (d) v

r r

r

r r
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SoLvE The magnetic field is perpendicular to the velocity, so we 
can use Equation 33.3 to find

 B =
E

vL
=

0.95 V

(260 m/s)(65 m)
= 5.6 * 10-5 T

ASSESS Chapter 32 noted that the earth’s magnetic field is roughly 
5 * 10-5 T. The field is somewhat stronger than this near the mag-
netic poles, somewhat weaker near the equator.

ExAMpLE 33.1  Measuring the earth’s magnetic field
It is known that the earth’s magnetic field over northern Canada 
points straight down. The crew of a Boeing 747 aircraft flying at 
260 m/s over northern Canada finds a 0.95 V potential difference 
between the wing tips. The wing span of a Boeing 747 is 65 m. 
What is the magnetic field strength there?

ModEL The wing is a conductor moving through a magnetic field, 
so there is a motional emf.

SoLvE Even though the bar is rotating, rather than moving in a 
straight line, the velocity of each charge carrier is perpendicular to 
B
u

. Consequently, the electric field created inside the bar is exactly 
that given in Equation 33.1, E = vB. But v, the speed of the charge 
carrier, now depends on its distance from the pivot. Recall that in 
rotational motion the tangential speed at radius r from the center 
of rotation is v = vr. Thus the electric field at distance r from the 
pivot is E = vrB. The electric field increases in strength as you 
move outward along the bar.

The electric field E
u

 points toward the pivot, so its radial com-
ponent is Er = -vrB. If we integrate outward from the center, the 
potential difference between the ends of the bar is

  �V = Vtip - Vpivot = - 3
l

0

Er dr

  = - 3
l

0

(-vrB) dr = vB3
l

0

r dr =
1

2
 vl 2B

ASSESS 1
2 vl is the speed at the midpoint of the bar. Thus �V  is 

vmidlB, which seems reasonable.

ExAMpLE 33.2  potential difference along a rotating bar
A metal bar of length l rotates with angular velocity v about a 
pivot at one end of the bar. A uniform magnetic field B

u

 is perpen-
dicular to the plane of rotation. What is the potential difference 
between the ends of the bar?

vISuALIzE FIgurE 33.4 is a pictorial representation of the bar. The 
magnetic forces on the charge carriers will cause the outer end to 
be positive with respect to the pivot.

FIgurE 33.4 Pictorial representation of a 
metal bar rotating in a magnetic field.

The electric field strength
increases with r.

Angular velocity v

The speed at distance r is v � vr.

Pivot v

B

E

r

l

r

r

r

�
�

��
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Induced Current in a Circuit
The moving conductor of Figure 33.2 had an emf, but it couldn’t sustain a current 
because the charges had nowhere to go. It’s like a battery that is disconnected from a 
circuit. We can change this by including the moving conductor in a circuit.

FIgurE 33.5 shows a conducting wire sliding with speed v along a U-shaped conduct-
ing rail. We’ll assume that the rail is attached to a table and cannot move. The wire and 
the rail together form a closed conducting loop—a circuit.

Suppose a magnetic field B
u

 is perpendicular to the plane of the circuit. Charges in 
the moving wire will be pushed to the ends of the wire by the magnetic force, just as 
they were in Figure 33.2, but now the charges can continue to flow around the circuit. 
That is, the moving wire acts like a battery in a circuit.

The current in the circuit is an induced current. In this example, the induced current 
is counterclockwise (ccw). If the total resistance of the circuit is R, the induced current 
is given by Ohm’s law as

 I =
E

R
=

vlB

R
 (33.4)

In this situation, the induced current is due to magnetic forces on moving charges.
We’ve assumed that the wire is moving along the rail at constant speed. It 

turns out that we must apply a continuous pulling force F
u

pull to make this happen. 
FIgurE 33.6 shows why. The moving wire, which now carries induced current I, is in 
a magnetic field. You learned in Chapter 32 that a magnetic field exerts a force on a 
current-carrying wire. According to the right-hand rule, the magnetic force F

u

mag on 
the moving wire points to the left. This “magnetic drag” will cause the wire to slow 
down and stop unless we exert an equal but opposite pulling force F

u

pull to keep the 
wire moving.

The magnitude of the magnetic force on a current-carrying wire was found in 
Chapter 32 to be Fmag = IlB. Using that result, along with Equation 33.4 for the 
induced current, we find that the force required to pull the wire with a constant speed 
v is

 Fpull = Fmag = IlB = 1vlB

R 2 lB =
vl2B2

R
 (33.5)

FIgurE 33.5 A current is induced in the 
circuit as the wire moves through a 
magnetic field.

�

�

v

I

I

B

Conducting rail. Fixed
to table and doesn’t move.

Negative end
of wire

Positive end
of wire
Moving wire

2. The charge carriers flow around the
conducting loop as an induced current.

1. The charge carriers in the wire
 are pushed upward by the
 magnetic force.

lr r

��

��

Energy Considerations
The environment must do work on the wire to pull it. What happens to the energy 
transferred to the wire by this work? Is energy conserved as the wire moves along the 
rail? It will be easier to answer this question if we think about power rather than work. 
Power is the rate at which work is done on the wire. You learned in Chapter 11 that 

Stop to think 33.2 
 Is there an induced current in this circuit? If so, what is its direction?

v B
rr

FIgurE 33.6 A pulling force is needed to 
move the wire to the right.

The magnetic force on
the current-carrying
wire is opposite the motion.

Fmag
Fpull

A pulling force to the right must
balance the magnetic force to keep
the wire moving at constant speed.
This force does work on the wire.

The induced current flows
through the moving wire.

l
rr

I



the power exerted by a force pushing or pulling an object with velocity v is P = Fv. 
The power provided to the circuit by pulling on the wire is

 Pinput = Fpullv =
v 2l2B2

R
 (33.6)

This is the rate at which energy is added to the circuit by the pulling force.
But the circuit also dissipates energy by transforming electric energy into the ther-

mal energy of the wires and components, heating them up. The power dissipated by 
current I as it passes through resistance R is P = I 2R. Equation 33.4 for the induced 
current I gives us the power dissipated by the circuit of Figure 33.5:

 Pdissipated = I 2R =
v 2l2B2

R
 (33.7)

You can see that Equations 33.6 and 33.7 are identical. The rate at which work is 
done on the circuit exactly balances the rate at which energy is dissipated. Thus 
energy is conserved.

If you have to pull on the wire to get it to move to the right, you might think that 
it would spring back to the left on its own. FIgurE 33.7 shows the same circuit with the 
wire moving to the left. In this case, you must push the wire to the left to keep it mov-
ing. The magnetic force is always opposite to the wire’s direction of motion.

In both Figure 33.6, where the wire is pulled, and Figure 33.7, where it is pushed, 
a mechanical force is used to create a current. In other words, we have a conversion 
of mechanical energy to electric energy. A device that converts mechanical energy 
to electric energy is called a generator. The slide-wire circuits of Figures 33.6 and 
33.7 are simple examples of a generator. We will look at more practical examples of 
generators later in the chapter.

We can summarize our analysis as follows:

 1. Pulling or pushing the wire through the magnetic field at speed v creates a mo-
tional emf E in the wire and induces a current I = E/R in the circuit.

 2. To keep the wire moving at constant speed, a pulling or pushing force must bal-
ance the magnetic force on the wire. This force does work on the circuit.

 3. The work done by the pulling or pushing force exactly balances the energy dis-
sipated by the current as it passes through the resistance of the circuit.

FIgurE 33.7 A pushing force is needed 
to move the wire to the left.

FmagFpush

I

I

2. The magnetic force
 on the current-carrying
 wire is to the right.

1. The magnetic force on the charge
 carriers is down, so the induced
 current flows clockwise.

r r

��

��

vISuALIzE The magnetic force on the charge carriers, F
u

B = qv  

u
* B

u

, 
causes a counterclockwise (ccw) induced current.

SoLvE a. The bulb’s rating of 3.0 V/1.5 W means that at full 
brightness it will dissipate 1.5 W at a potential difference of 
3.0 V. Because the power is related to the voltage and current 
by P = I�V, the current causing full brightness is

I =
P

�V
=

1.5 W

3.0 V
= 0.50 A

The bulb’s resistance—the total resistance of the circuit—is

R =
�V

I
=

3.0 V

0.50 A
= 6.0 �

Equation 33.4 gives the speed needed to induce this current:

v =
IR

lB
=

(0.50 A)(6.0 �)

(0.10 m)(0.10 T)
= 300 m/s

You can confirm from Equation 33.6 that the input power at 
this speed is 1.5 W.

ExAMpLE 33.3  Lighting a bulb
FIgurE 33.8 shows a circuit consisting of a flashlight bulb, rated 
3.0 V/1.5 W, and ideal wires with no resistance. The right wire 
of the circuit, which is 10 cm long, is pulled at constant speed v 
through a perpendicular magnetic field of strength 0.10 T.

 a. What speed must the wire have to light the bulb to full brightness?

 b. What force is needed to keep the wire moving?

FIgurE 33.8 Circuit of Example 33.3.

3.0 V
1.5 W

10 cm

0.10 T

vr

ModEL Treat the moving wire as a source of motional emf.

Continued
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ASSESS Example 33.1 showed that high speeds are needed to pro-
duce significant potential difference. Thus 300 m/s is not surpris-
ing. The pulling force is not very large, but even a small force can 
deliver large amounts of power P = Fv when v is large.

 b. From Equation 33.5, the pulling force must be

 Fpull =
vl 2B2

R
= 5.0 * 10-3 N

You can also obtain this result from Fpull = P/v.

Eddy Currents
These ideas have interesting implications. Consider pulling a sheet of metal through a 
magnetic field, as shown in FIgurE 33.9a. The metal, we will assume, is not a magnetic 
material, so it experiences no magnetic force if it is at rest. The charge carriers in the metal 
experience a magnetic force as the sheet is dragged between the pole tips of the magnet. 
A current is induced, just as in the loop of wire, but here the currents do not have wires 
to define their path. As a consequence, two “whirlpools” of current begin to circulate in 
the metal. These spread-out current whirlpools in a solid metal are called eddy currents.

FIgurE 33.9b shows the magnetic force on the eddy current as it passes between the 
pole tips. This force is to the left, acting as a retarding force. Thus an external force is 
required to pull a metal through a magnetic field. If the pulling force ceases, the re-
tarding magnetic force quickly causes the metal to decelerate until it stops. Similarly, 
a force is required to push a sheet of metal into a magnetic field.

Eddy currents are often undesirable. The power dissipation of eddy currents can 
cause unwanted heating, and the magnetic forces on eddy currents mean that extra 
energy must be expended to move metals in magnetic fields. But eddy currents also 
have important useful applications. A good example is magnetic braking.

The moving train car has an electromagnet that straddles the rail, as shown in 
FIgurE 33.10. During normal travel, there is no current through the electromagnet and 
no magnetic field. To stop the car, a current is switched into the electromagnet. The 
current creates a strong magnetic field that passes through the rail, and the motion of 
the rail relative to the magnet induces eddy currents in the rail. The magnetic force 
between the electromagnet and the eddy currents acts as a braking force on the mag-
net and, thus, on the car. Magnetic braking systems are very efficient, and they have 
the added advantage that they heat the rail rather than the brakes.

FIgurE 33.9 Eddy currents.
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(a)

N

Metal sheet

Fpull

v

Eddy currents are induced when
a metal sheet is pulled through
a magnetic field.
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v

The magnetic force on the eddy
currents is opposite in direction to v.

(b)
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Stop to think 33.3 
 A square loop of copper wire is pulled through a region of mag-

netic field. Rank in order, from strongest to weakest, the pulling forces F
u

a, F
u

b, F
u

c, and 
F
u

d that must be applied to keep the loop moving at constant speed.

Fc FdFb

v

Fa

v vv

B

rrrr

rr r

r

r

33.3 Magnetic Flux
Faraday found that a current is induced when the amount of magnetic field passing 
through a coil or a loop of wire changes. And that’s exactly what happens as the slide 
wire moves down the rail in Figure 33.5! As the circuit expands, more magnetic field 
passes through. It’s time to define more clearly what we mean by “the amount of field 
passing through a loop.”

Imagine holding a rectangular loop of wire in front of a fan, as shown in FIgurE 33.11. 
The amount of air that flows through the loop depends on the effective area of the loop 

FIgurE 33.10 Magnetic braking system.

Fbrake

v

B
r

r

r

The electromagnets
are part of the
moving train car.

Eddy currents are induced in the rail.
Magnetic forces between the eddy currents
and the electromagnets slow the train.

Rail

Fbrake

r

vr
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as seen along the direction of flow. You can see from the figure that the effective area 
(i.e., as seen facing the fan) is

 Aeff = ab cos u = A cos u (33.8)

where A = ab is the area of the loop and u is the tilt angle of the loop. A loop per-
pendicular to the flow, with u = 0�, has Aeff = A, the full area of the loop. No air at 
all flows through the loop if it is tilted 90�, and you can see that Aeff = 0 in this case.

FIgurE 33.11 The amount of air flowing through a loop depends on the effective area of the loop.

Fan

Direction of airflow

a

a

a

a

b

b
b cos u

u � 0� u u � 90�

These lengths
are the same.

Imagine holding a rectangular loop of wire in
front of a fan. Start with the loop face-on to the
direction of airflow, then tilt the loop as shown
until it is horizontal.

Aeff � ab Aeff � ab cos u Aeff � 0

Tilt angle u

(b) Loop seen from the side(a)

(c) Loop seen facing the fan

u � 0�

u � 90�

u

Tilt angle

0

We can apply this idea to a magnetic field passing through a loop. FIgurE 33.12 shows 
a loop of area A = ab in a uniform magnetic field. Think of the field vectors, seen 
here from behind, as if they were arrows shot into the page. The density of arrows (ar-
rows per m2)  is proportional to the strength B of the magnetic field; a stronger field 
would be represented by arrows packed closer together. The number of arrows passing 
through a loop of wire depends on two factors:

 1. The density of arrows, which is proportional to B, and
 2. The effective area Aeff = A cos u of the loop.

FIgurE 33.12 Magnetic field through a loop that is tilted at various angles.

a

a
b b cos u 0

a

Loop perpendicular to field.
Maximum number of arrows
pass through.

Loop rotated through angle u.
Fewer arrows pass through.

Loop rotated 90�. No arrows
pass through.

Seen in the direction
of the magnetic field:

These lengths
are the same.

u � 0� u u � 90�

Loop seen
from the side:

Axis of loop

B
r

B
r

B
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FIgurE 33.13 Magnetic flux can be 
defined in terms of an area vector A

u

.

A

The area vector is
perpendicular to the
loop. Its magnitude
is the area of the loop.

Loop of
area A

(a)
r

B
A

The angle u between
A and B is the angle
at which the loop
has been tilted.

The magnetic
flux through
the loop is
�m � A # B.

(b)
r

r r

r

u

r r

The angle u is the angle between the magnetic field and the axis of the loop. The 
maximum number of arrows passes through the loop when it is perpendicular to the 
magnetic field (u = 0�). No arrows pass through the loop if it is tilted 90�.

With this in mind, let’s define the magnetic flux �m as

 �m = AeffB = AB cos u (33.9)

The magnetic flux measures the amount of magnetic field passing through a loop of 
area A if the loop is tilted at angle u from the field. The SI unit of magnetic flux is the 
weber. From Equation 33.9 you can see that

 1 weber = 1 Wb = 1 T m2

Equation 33.9 is reminiscent of the vector dot product: A
u # B

u

= AB cos u. With that 
in mind, let’s define an area vector A

u

 to be a vector perpendicular to the loop, with 
magnitude equal to the area A of the loop. Vector A

u

 has units of m2. FIgurE 33.13a shows 
the area vector A

u

 for a circular loop of area A.
FIgurE 33.13b shows a magnetic field passing through a loop. The angle between 

vectors A
u

 and B
u

 is the same angle used in Equations 33.8 and 33.9 to define the effec-
tive area and the magnetic flux. So Equation 33.9 really is a dot product, and we can 
define the magnetic flux more concisely as

 �m = A
u # B

u

 (33.10)

Writing the flux as a dot product helps make clear how angle u is defined: u is the 
angle between the magnetic field and the axis of the loop.

ExAMpLE 33.4  A circular loop in a magnetic field
FIgurE 33.14 is an edge view of a 10-cm-diameter circular loop 
in a uniform 0.050 T magnetic field. What is the magnetic flux 
through the loop?

SoLvE Angle u is the angle between the loop’s area vector A
u

, 
which is perpendicular to the plane of the loop, and the magnetic 
field B

u

. In this case, u = 60�, not the 30� angle shown in the fig-
ure. Vector A

u

 has magnitude A = pr2 = 7.85 * 10-3 m2. Thus 
the magnetic flux is

 �m = A
u # B

u

= AB cos  u = 2.0 * 10-4 Wb

FIgurE 33.14 A circular loop in a magnetic field.

B

30�

Circular loop

r

Magnetic Flux in a Nonuniform Field
Equation 33.10 for the magnetic flux assumes that the field is uniform over the area of 
the loop. We can calculate the flux in a nonuniform field, one where the field strength 
changes from one edge of the loop to the other, but we’ll need to use calculus.

FIgurE 33.15 shows a loop in a nonuniform magnetic field. Imagine dividing the loop 
into many small pieces of area dA. The infinitesimal flux d�m through one such area, 
where the magnetic field is B

u

, is

 d�m = B
u # dA

u

 (33.11)

The total magnetic flux through the loop is the sum of the fluxes through each of 
the small areas. We find that sum by integrating. Thus the total magnetic flux through 
the loop is

 �m = 3
area of loop

B
u # dA

u

 (33.12)

Equation 33.12 is a more general definition of magnetic flux. It may look rather formi-
dable, so we’ll illustrate its use with an example.

FIgurE 33.15 A loop in a nonuniform 
magnetic field.

B

Loop

Increasing field strength

Small area dA.
Flux through this
little area is
d�m � B # dA.
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33.4 Lenz’s Law
We started out by looking at a situation in which a moving wire caused a loop to 
expand in a magnetic field. This is one way to change the magnetic flux through the 
loop. But Faraday found that a current can be induced by any change in the magnetic 
flux, no matter how it’s accomplished.

For example, a momentary current is induced in the loop of FIgurE 33.18 as the bar 
magnet is pushed toward the loop, increasing the flux through the loop. Pulling the 
magnet back out of the loop causes the current meter to deflect in the opposite direc-
tion. The conducting wires aren’t moving, so this is not a motional emf. Nonetheless, 
the induced current is very real.

The German physicist Heinrich Lenz began to study electromagnetic induction af-
ter learning of Faraday’s discovery. Three years later, in 1834, Lenz announced a rule 
for determining the direction of the induced current. We now call his rule Lenz’s law, 
and it can be stated as follows:

vISuALIzE Using the right-hand rule, we see that the field, as it cir-
cles the wire, is perpendicular to the plane of the loop. FIgurE 33.17 
redraws the loop with the field coming out of the page and estab-
lishes a coordinate system.

SoLvE Let the loop have dimensions a and b, as shown, with the 
near edge at distance c from the wire. The magnetic field varies 
with distance x from the wire, but the field is constant along a line 
parallel to the wire. This suggests dividing the loop into many 
narrow rectangular strips of length b and width dx, each forming 
a small area dA = b dx. The magnetic field has the same strength 
at all points within this small area. One such strip is shown in the 
figure at position x.

The area vector dA
u

 is perpendicular to the strip (coming out of 
the page), which makes it parallel to B

u

 (u = 0�). Thus the infini-
tesimal flux through this little area is

 d�m = B
u # dA

u

= B dA = B (b dx) =
m0Ib

2px
 dx

where, from Chapter 32, we’ve used B = m0I/2px as the magnetic 
field at distance x from a long straight wire. Integrating “over the 
area of the loop” means to integrate from the near edge of the loop 
at x = c to the far edge at x = c + a. Thus

 �m =
m0Ib

2p
 3

c + a

c

 
dx

x
=

m0Ib

2p
  ln x `

c + a

c

=
m0Ib

2p
  ln1c + a

c 2
Evaluating for a = c = 0.010 m, b = 0.040 m, and I = 1.0 A 
gives

 �m = 5.5 * 10-9 Wb

ASSESS The flux measures how much of the wire’s magnetic field 
passes through the loop, but we had to integrate, rather than simply 
using Equation 33.10, because the field is stronger at the near edge 
of the loop than at the far edge.

ExAMpLE 33.5  Magnetic flux from the current in a long straight wire
The 1.0 cm * 4.0 cm rectangular loop of FIgurE 33.16 is 1.0 cm 
away from a long straight wire. The wire carries a current of 1.0 A. 
What is the magnetic flux through the loop?

FIgurE 33.16 A loop next to a current carrying wire.

Loop

Long straight wire

1.0 cm 1.0 cm

4.0 cm

I

ModEL We’ll treat the wire as if it were infinitely long. The mag-
netic field strength of a wire decreases with distance from the wire, 
so the field is not uniform over the area of the loop.

FIgurE 33.17 Calculating the magnetic flux through 
the loop.

Vector dA is coming
out of the page.

Strip of area dA = b dx
at position x. Magnetic
flux through this strip
is d�m � B dA.

r

FIgurE 33.18 Pushing a bar magnet 
toward the loop induces a current.
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Current meter
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A bar magnet pushed into a loop
increases the flux through the loop.

Which direction
is the induced
current?
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Lenz’s law There is an induced current in a closed, conducting loop if and only if 
the magnetic flux through the loop is changing. The direction of the induced cur-
rent is such that the induced magnetic field opposes the change in the flux.

Lenz’s law is rather subtle, and it takes some practice to see how to apply it.

NotE  One difficulty with Lenz’s law is the term flux. In everyday language, the 
word flux already implies that something is changing. Think of the phrase, “The 
situation is in flux.” Not so in physics, where flux, the root of the word  flow, 
means “passes through.” A steady magnetic field through a loop creates a steady, 
unchanging magnetic flux. 

Lenz’s law tells us to look for situations where the flux is changing. This can 
happen in three ways.

 1. The magnetic field through the loop changes (increases or decreases),
 2. The loop changes in area or angle, or
 3. The loop moves into or out of a magnetic field.

Lenz’s law depends on the idea that an induced current generates its own mag-
netic field B

u

induced. This is the induced magnetic field of Lenz’s law. You learned in 
Chapter 32 how to use the right-hand rule to determine the direction of this induced 
magnetic field.

In Figure 33.18, pushing the bar magnet into the loop causes the magnetic flux 
to increase in the downward direction. To oppose the change in flux, which is what 
Lenz’s law requires, the loop itself needs to generate the upward-pointing magnetic 
field of FIgurE 33.19. The induced magnetic field at the center of the loop will point 
upward if the current is ccw. Thus pushing the north end of a bar magnet toward the 
loop induces a ccw current around the loop. The induced current ceases as soon as the 
magnet stops moving.

Now suppose the bar magnet is pulled back away from the loop, as shown 
in FIgurE 33.20a. There is a downward magnetic flux through the loop, but the 
flux decreases as the magnet moves away. According to Lenz’s law, the induced 
magnetic field of the loop opposes this decrease. To do so, the induced field needs 
to point in the downward direction, as shown in FIgurE 33.20b. Thus as the magnet is 
withdrawn, the induced current is clockwise (cw), opposite to the induced current of 
Figure 33.19.

FIgurE 33.19 The induced current is ccw.
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FIgurE 33.20 Pulling the magnet away induces a cw current.
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2. A downward-pointing field is
 needed to oppose the change.

1. Downward flux
 due to the magnet
 is decreasing. 3. A downward-pointing field

 is induced by a cw current.
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r

NotE  Notice that the magnetic field of the bar magnet is pointing downward in 
both Figures 33.19 and 33.20. It is not the flux due to the magnet that the induced 
current opposes, but the change in the flux. This is a subtle but critical distinction. 



If the induced current opposed the flux itself, the current in both Figures 33.19 
and 33.20 would be ccw to generate an upward magnetic field. But that’s not what 
happens. When the field of the magnet points down and is increasing, the induced 
current opposes the increase by generating an upward field. When the field of the 
magnet points down but is decreasing, the induced current opposes the decrease by 
generating a downward field. 

FIgurE 33.21 shows six basic situations. The magnetic field can point either up or 
down through the loop. For each, the flux can either increase, hold steady, or decrease 
in strength. These observations form the basis for a set of rules about using Lenz’s law.

FIgurE 33.21 The induced current for six different situations.
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tACtICS
B o x  3 3 . 1 

  using Lenz’s law

 ●1 Determine the direction of the applied magnetic field. The field must pass 
through the loop.

 ●2 Determine how the flux is changing. Is it increasing, decreasing, or staying 
the same?

 ●3 Determine the direction of an induced magnetic field that will oppose the 
change in the flux.

■ Increasing flux: the induced magnetic field points opposite the applied 
magnetic field.

■ Decreasing flux: the induced magnetic field points in the same direction as 
the applied magnetic field.

■ Steady flux: there is no induced magnetic field.

 ●4 Determine the direction of the induced current. Use the right-hand rule to 
determine the current direction in the loop that generates the induced mag-
netic field you found in step 3.

Exercises 10–14  
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Let’s look at some examples.

SoLvE FIgurE 33.23 shows the four steps of using Lenz’s law. 
Opening the switch induces a ccw current in the lower loop. This 
is a momentary current, lasting only until the magnetic field of the 
upper loop drops to zero.

ASSESS The conclusion is consistent with Figure 33.21.

ExAMpLE 33.6  Lenz’s law 1

FIgurE 33.22 shows two loops, one above the other. The upper loop 
has a battery and a switch that has been closed for a long time. 
How does the lower loop respond when the switch is opened in 
the upper loop?

ModEL We’ll use the right-hand rule to find the magnetic fields 
of current loops.

FIgurE 33.22 The two loops of Example 33.6.

��

0Upper loop

I

I

Lower loop

FIgurE 33.23 Applying Lenz’s law.

By the right-hand rule, the
magnetic field of the upper loop
points up. It decreases rapidly
after the switch is opened.

The field due to the upper loop
passes through the lower loop. It
creates a flux through the lower
loop that is up and decreasing.

The induced field needs to point
upward to oppose the change in flux.

A ccw current induces an
upward magnetic field.

1

2

3 4

Stop to think 33.4 
 A current-carrying wire 

is pulled away from a conducting loop in the 
direction shown. As the wire is moving, is 
there a cw current around the loop, a ccw 
current, or no current?

v

I

v

SoLvE FIgurE 33.25 shows the four steps of using Lenz’s law. 
Closing the switch induces a current that passes from right to left 
through the current meter. The induced current is only momentary. 
It lasts only until the field from coil 1 reaches full strength and is 
no longer changing.

ASSESS The conclusion is consistent with Figure 33.21.

ExAMpLE 33.7  Lenz’s law 2
FIgurE 33.24 shows two coils wrapped side by side on a cylinder. 
When the switch for coil 1 is closed, does the induced current in 
coil 2 pass from right to left or from left to right through the cur-
rent meter?

ModEL We’ll use the right-hand rule to find the magnetic field 
of a coil.

vISuALIzE It is very important to look at the direction in which 
a coil is wound around the cylinder. Notice that the two coils in 
Figure 33.24 are wound in opposite directions.

FIgurE 33.24 The two solenoids of Example 33.7.

��

0

Coil 1 Coil 2

FIgurE 33.25 Applying Lenz’s law.

The magnetic field of
coil 1 is to the left.

Coil 1 creates a flux
through coil 2 that is to
the left and increasing.

The induced field needs
to point right to oppose
the change in flux.

Current direction
that induces a
field to the right

1 2 3

4
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33.5 Faraday’s Law
Charges don’t start moving spontaneously. A current requires an emf to provide the 
energy. We started our analysis of induced currents with circuits in which a motional 
emf can be understood in terms of magnetic forces on moving charges. But we’ve also 
seen that a current can be induced by changing the magnetic field through a stationary 
circuit, a circuit in which there is no motion. There must be an emf in this circuit, even 
though the mechanism for this emf is not yet clear.

The emf associated with a changing magnetic flux, regardless of what causes the 
change, is called an induced emf E. Then, if there is a complete circuit having resis-
tance R, a current

 Iinduced =
E

R
 (33.13)

is established in the wire as a consequence of the induced emf. The direction of the 
current is given by Lenz’s law. The last piece of information we need is the size of the 
induced emf E.

The research of Faraday and others eventually led to the discovery of the basic law 
of electromagnetic induction, which we now call Faraday’s law. It states:

Faraday’s law An emf E is induced around a closed loop if the magnetic flux 
through the loop changes. The magnitude of the emf is

 E = ` d�m

dt
`  (33.14)

and the direction of the emf is such as to drive an induced current in the direction 
given by Lenz’s law.

In other words, the induced emf is the rate of change of the magnetic flux through the 
loop.

As a corollary to Faraday’s law, an N-turn coil of wire in a changing magnetic field 
acts like N batteries in series. The induced emf of each of the coils adds, so the induced 
emf of the entire coil is

 Ecoil = N ` d�per coil

dt
` (Faraday's law for an N@turn coil) (33.15)

As a first example of using Faraday’s law, return to the situation of Figure 33.5, 
where a wire moves through a magnetic field by sliding on a U-shaped conducting 
rail. FIgurE  33.26 shows the circuit again. The magnetic field B

u

 is perpendicular to the 
plane of the conducting loop, so u = 0� and the magnetic flux is � = AB, where A is 
the area of the loop. If the slide wire is distance x from the end, the area is A = xl and 
the flux at that instant of time is

 �m = AB = xlB (33.16)

The flux through the loop increases as the wire moves. According to Faraday’s law, 
the induced emf is

 E = ` d�m

dt
` =

d

dt
 (xlB) =

dx

dt
 lB = vlB (33.17)

where the wire’s velocity is v = dx/dt. We can now use Equation 33.13 to find that the 
induced current is

 I =
E

R
=

vlB

R
 (33.18)

FIgurE 33.26 The magnetic flux through 
the loop increases as the slide wire moves.

x

l

Induced current

Magnetic flux �m � AB � xlB

v

I

I

B
r r
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The flux is increasing into the loop, so the induced magnetic field opposes this increase 
by pointing out of the loop. This requires a ccw induced current in the loop. Faraday’s law 
leads us to the conclusion that the loop will have a ccw induced current I = vlB/R. This is 
exactly the conclusion we reached in Section 33.2, where we analyzed the situation from 
the perspective of magnetic forces on moving charge carriers. Faraday’s law confirms 
what we already knew but, at least in this case, doesn’t seem to offer anything new.

using Faraday’s Law
Most electromagnetic induction problems can be solved with a four-step strategy.

proBLEM-SoLvINg
StrAtEgy 33.1   Electromagnetic induction

ModEL Make simplifying assumptions about wires and magnetic fields.

vISuALIzE Draw a picture or a circuit diagram. Use Lenz’s law to determine the 
direction of the induced current.

SoLvE The mathematical representation is based on Faraday’s law

 E = ` d�m

dt
`

For an N-turn coil, multiply by N. The size of the induced current is I = E/R.

ASSESS Check that your result has the correct units, is reasonable, and answers 
the question.

Exercise 18  

solenoid as a function of time as the solenoid is “powered up.” A 
positive current is defined to be cw when seen from the left. Find 
the current in the loop as a function of time and show the result 
as a graph.

ModEL The solenoid’s length is much greater than its diameter, so 
the field near the center should be nearly uniform.

vISuALIzE The magnetic field of the solenoid creates a magnetic 
flux through the loop of wire. The solenoid current is always posi-
tive, meaning that it is cw as seen from the left. Consequently, 
from the right-hand rule, the magnetic field inside the solenoid 
always points to the right. During the first second, while the so-
lenoid current is increasing, the flux through the loop is to the 
right and increasing. To oppose the change in the flux, the loop’s 
induced magnetic field must point to the left. Thus, again using the 
right-hand rule, the induced current must flow ccw as seen from 
the left. This is a negative current. There’s no change in the flux 
for t 7 1 s, so the induced current is zero.

SoLvE Now we’re ready to use Faraday’s law to find the magni-
tude of the current. Because the field is uniform inside the sole-
noid and perpendicular to the loop (u = 0�), the flux is �m = AB, 
where A = pr2 =  3.14 * 10-4 m2 is the area of the loop (not the 
area of the solenoid). The field of a long solenoid of length l was 
found in Chapter 32 to be

 B =
m0NIsol

l

ExAMpLE 33.8  Electromagnetic induction in a solenoid
A 2.0-cm-diameter loop of wire with a resistance of 0.010 �  is 
placed in the center of the solenoid seen in FIgurE 33.27a. The 
solenoid is 4.0 cm in diameter, 20 cm long, and wrapped with 
1000 turns of wire. FIgurE 33.27b shows the current through the 

FIgurE 33.27 A loop inside a solenoid.

20 cm, 1000 turns

4.0 cm

2.0-cm-diameter loop

Positive
current

(a)

B 
r

t (s)

 Solenoid current
Isol (A)

0
10 2 3

10

(b)



Finally, the current induced in the loop is

 Iloop =
E

R
= b -2.0 mA 0.0 s 6 t 6 1.0 s

0 mA 1.0 s 6 t 6 3.0 s

where the negative sign comes from Lenz’s law. This result is 
shown in FIgurE 33.28.

The flux when the solenoid current is Isol is thus

 �m =
m0 ANIsol

l

The changing flux creates an induced emf E that is given by Fara-
day’s law:

 E = ` d�m

dt
` =

m0 AN

l
 ` dIsol

dt
` = 2.0 * 10-6 ` dIsol

dt
`

From the slope of the graph, we find

 ` dIsol

dt
` = b 10 A/s 0.0 s 6 t 6 1.0 s

0 1.0 s 6 t 6 3.0 s

Thus the induced emf is

 E = b 2.0 * 10-5 V 0.0 s 6 t 6 1.0 s

0 V 1.0 s 6 t 6 3.0 s

FIgurE 33.28 The induced current in 
the loop.

�2

0

2

t (s)
21 3

Iloop (mA)

The solenoid has a current, but
it’s not changing. Hence no
current is induced in the loop.

There is an induced current
as the flux changes.

The rate at which the magnetic field changes is

 
dB

dt
=

�B

�t
=

-1.60 T

0.30 s
= -5.3 T/s

dB/dt is negative because the field is decreasing, but all we need 
for Faraday’s law is the absolute value. Thus

 E = pr2 ` dB

dt
` = p(0.040 m)2(5.3 T/s) = 0.027 V

To find the current, we need to know the resistance of the loop. 
Recall, from Chapter 30, that a conductor with resistivity r, length 
L, and cross-section area A has resistance R = rL/A. The length 
is the circumference of the loop, L = 0.25 m, and we can use the 
1.0 cm diameter of the “wire” to find A = 7.9 * 10-5 m2. With 
these values, we can compute R = 4700 �. As a result, the in-
duced current is

 I =
E

R
=

0.027 V

4700 �
= 5.7 * 10-6 A = 5.7 mA

ASSESS This is a very small current. Power—the rate of energy 
dissipation in the muscle—is

 P = I 2R = (5.7 * 10-6 A)2(4700 �) = 1.5 * 10-7 W

The current is far too small to notice, and the tiny energy dissipa-
tion will certainly not heat the tissue.

ExAMpLE 33.9  Current induced by an MrI machine
The body is a conductor, so rapid magnetic field changes in an 
MRI machine can induce currents in the body. To estimate the size 
of these currents, and any biological hazard they might impose, 
consider the “loop” of muscle tissue shown in FIgurE 33.29. This 
might be muscle circling the bone of your arm or thigh. Although 
muscle is not a great conductor—its resistivity is 1.5 �  m—we 
can consider it to be a conducting loop with a rather high resis-
tance. Suppose the magnetic field along the axis of the loop drops 
from 1.6 T to 0 T in 0.30 s, which is about the largest possible rate 
of change for an MRI solenoid. What current will be induced?

FIgurE 33.29 Edge view of a loop of 
muscle tissue in a magnetic field.

8.0 cm
1.0 cm

r
B

ModEL Model the muscle as a current loop. Assume that B de-
creases linearly with time.

SoLvE The magnetic field is parallel to the axis of the loop, with 
u = 0�, so the magnetic flux through the loop is �m = AB = pr2B. 
The flux changes with time because B changes. According to 
Faraday’s law, the magnitude of the induced emf is

 E = ` d�m

dt
` = pr2 ` dB

dt
`

What does Faraday’s Law tell us?
The induced current in the slide-wire circuit of Figure 33.26 can be understood as a 
motional emf due to magnetic forces on moving charges. We had not anticipated this 
kind of current in Chapter 32, but it takes no new laws of physics to understand it. The 
induced currents in Examples 33.8 and 33.9 are different. We cannot explain these 
induced currents on the basis of previous laws or principles. This is new physics.

33.5 . Faraday’s Law    977
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Faraday recognized that all induced currents are associated with a changing mag-
netic flux. There are two fundamentally different ways to change the magnetic flux 
through a conducting loop:

 1. The loop can expand, contract, or rotate, creating a motional emf.
 2. The magnetic field can change.

We can see both of these if we write Faraday’s law as

 E = ` d�m

dt
` = ` Bu # dA

u

dt
+ A

u # dB
u

dt
`  (33.19)

The first term on the right side represents a motional emf. The magnetic flux changes 
because the loop itself is changing. This term includes not only situations like the 
slide-wire circuit, where the area A changes, but also loops that rotate in a magnetic 
field. The physical area of a rotating loop does not change, but the area vector A

u

 does. 
The loop’s motion causes magnetic forces on the charge carriers in the loop.

The second term on the right side is the new physics in Faraday’s law. It says that 
an emf can also be created simply by changing a magnetic field, even if nothing is 
moving. This was the case in Examples 33.8 and 33.9. Faraday’s law tells us that the 
induced emf is simply the rate of change of the magnetic flux through the loop, re-
gardless of what causes the flux to change.

 a. The loop is pushed upward, toward the top of the page.
 b. The loop is pushed downward, toward the bottom of the 

page.
 c. The loop is pulled to the left, into the magnetic field.
 d. The loop is pushed to the right, out of the magnetic field.
 e. The tension in the wires increases but the loop does not 

move.

Stop to think 33.5 
 A conducting loop is halfway into 

a magnetic field. Suppose the magnetic field begins to 
increase rapidly in strength. 
What happens to the loop?

B
r

33.6 Induced Fields
Faraday’s law is a tool for calculating the strength of an induced current, but one 
important piece of the puzzle is still missing. What causes the current? That is, 
what force pushes the charges around the loop against the resistive forces of the 
metal? The agents that exert forces on charges are electric fields and magnetic 
fields. Magnetic forces are responsible for motional emfs, but magnetic forces 
cannot explain the current induced in a stationary loop by a changing magnetic 
field.

FIgurE 33.30a shows a conducting loop in an increasing magnetic field. According 
to Lenz’s law, there is an induced current in the ccw direction. Something has to act 
on the charge carriers to make them move, so we infer that there must be an electric 
field tangent to the loop at all points. This electric field is caused by the changing 
magnetic field and is called an induced electric field. The induced electric field is 
the mechanism that creates a current inside a stationary loop when there’s a changing 
magnetic field.

The conducting loop isn’t necessary. The space in which the magnetic field 
is changing is filled with the pinwheel pattern of induced electric fields shown in 
FIgurE 33.30b. Charges will move if a conducting path is present, but the induced electric 
field is there as a direct consequence of the changing magnetic field.

But this is a rather peculiar electric field. All the electric fields we have examined 
until now have been created by charges. Electric field vectors pointed away from 

FIgurE 33.30 An induced electric field 
creates a current in the loop.

II

Induced
current

Conducting loop

E E

Region of increasing B

EE

(a)

r

r r

rr

Region of increasing B
r

Induced electric field E

(b)
r
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positive charges and toward negative charges. An electric field created by charges 
is called a Coulomb electric field. The induced electric field of Figure 33.30b is 
caused not by charges but by a changing magnetic field. It is called a non-Coulomb 
electric field.

So it appears that there are two different ways to create an electric field:

 1. A Coulomb electric field is created by positive and negative charges.
 2. A non-Coulomb electric field is created by a changing magnetic field.

Both exert a force F
u

= qE
u

 on a charge, and both create a current in a conductor. How-
ever, the origins of the fields are very different. FIgurE 33.31 is a quick summary of the 
two ways to create an electric field.

We first introduced the idea of a field as a way of thinking about how two charges 
exert long-range forces on each other through the emptiness of space. The field may 
have seemed like a useful pictorial representation of charge interactions, but we had 
little evidence that fields are real, that they actually exist. Now we do. The electric 
field has shown up in a completely different context, independent of charges, as the 
explanation of the very real existence of induced currents.

The electric field is not just a pictorial representation; it is real.

Calculating the Induced Field
The induced electric field is peculiar in another way: It is nonconservative. Recall that 
a force is conservative if it does no net work on a particle moving around a closed 
path. “Uphills” are balanced by “downhills.” We can associate a potential energy with 
a conservative force, hence we have gravitational potential energy for the conservative 
gravitational force and electric potential energy for the conservative electric force of 
charges (a Coulomb electric field).

But a charge moving around a closed path in the induced electric field of Figure 33.30 
is always being pushed in the same direction by the electric force F

u

= qE
u

. There’s never 
any negative work to balance the positive work, so the net work done in going around 
a closed path is not zero. Because it’s nonconservative, we cannot associate an electric 
potential with an induced electric field. Only the Coulomb field of charges has an electric 
potential.

However, we can associate the induced field with the emf of Faraday’s law. 
The emf was defined as the work required per unit charge to separate the charge. 
That is,

 E =
W
q

 (33.20)

In batteries, a familiar source of emf, this work is done by chemical forces. But the 
emf that appears in Faraday’s law arises when work is done by the force of an induced 
electric field.

If a charge q moves through a small displacement ds
u
, the small amount of work 

done by the electric field is dW = F
u # ds

u
= qE

u # ds
u
. The emf of Faraday’s law is an 

emf around a closed curve through which the magnetic flux �m is changing. The work 
done by the induced electric field as charge q moves around a closed curve is

 Wclosed curve = qC E
u # ds

u
 (33.21)

where the integration symbol with the circle is the same as the one we used in 
Ampère’s law to indicate an integral around a closed curve. If we use this work in 
Equation 33.20, we find that the emf around a closed loop is

 E =
Wclosed curve

q
= C E

u # ds
u
 (33.22)

FIgurE 33.31 Two ways to create an 
electric field.

A Coulomb electric field
is created by charges.

E E

A non-Coulomb electric field
is created by a changing
magnetic field.

E E

B increasing or decreasing

rr

r

r r
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If we restrict ourselves to situations such as Figure 33.30 where the loop is perpen-
dicular to the magnetic field and only the field is changing, we can write Faraday’s law 
as E = 0 d�m/dt 0 = A 0 dB/dt 0 . Consequently

 C E
u # ds

u
= A ` dB

dt
`  (33.23)

Equation 33.23 is an alternative statement of Faraday’s law that relates the induced 
electric field to the changing magnetic field.

The solenoid in FIgurE 33.32a provides a good example of the connection between E
u

 
and B

u

. If there were a conducting loop inside the solenoid, we could use Lenz’s law to 
determine that the direction of the induced current would be clockwise. But Faraday’s 
law, in the form of Equation 33.23, tells us that an induced electric field is present 
whether there’s a conducting loop or not. The electric field is induced simply due to 
the fact that B

u

 is changing.

FIgurE 33.32 The induced electric field circulates around the changing magnetic field 
inside a solenoid.

B increasing
r

(a) The current through the 
solenoid is increasing.
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current
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r

Induced E
r

Induced E
r

(b) The induced electric field 
circulates around the magnetic 
field lines.

E
r

E
r

E
r

E
r

dsr

dsrr

(c)

Integration
curve

Top view into the solenoid.
B is coming out of the page.
r

The shape and direction of the induced electric field have to be such that it could 
drive a current around a conducting loop, if one were present, and it has to be consis-
tent with the cylindrical symmetry of the solenoid. The only possible choice, shown 
in FIgurE 33.32b, is an electric field that circulates clockwise around the magnetic field 
lines.

NotE  Circular electric field lines violate the Chapter 26 rule that electric field 
lines have to start and stop on charges. However, that rule applied only to Coulomb 
fields created by source charges. An induced electric field is a non-Coulomb field 
created not by source charges but by a changing magnetic field. Without source 
charges, induced electric field lines must form closed loops. 

To use Faraday’s law, choose a clockwise circle of radius r as the closed curve for 
evaluating the integral. FIgurE 33.32c shows that the electric field vectors are every-
where tangent to the curve, so the line integral of E

u

 is

 C E
u # ds

u
= El = 2prE (33.24)

where l = 2pr is the length of the closed curve. This is exactly like the integrals we 
did for Ampère’s law in Chapter 32.

If we stay inside the solenoid (r 6 R), the flux passes through area A = pr2 and 
Equation 33.24 becomes

 C E
u # ds

u
= 2prE = A ` dB

dt
` = pr2 ` dB

dt
`  (33.25)



Thus the strength of the induced electric field inside the solenoid is

 Einside =
r

2
 ` dB

dt
`  (33.26)

This result shows very directly that the induced electric field is created by a changing 
magnetic field. A constant B

u

, with dB/dt = 0, would give E = 0.

The field strength is maximum at maximum radius (r = R) and at 
the instant when cos vt = 1. That is,

 Emax =
1

2
 m0nRvI0 = 0.019 V/m

ASSESS This field strength, although not large, is similar to the 
field strength that the emf of a battery creates in a wire. Hence 
this induced electric field can drive a substantial induced current 
through a conducting loop if a loop is present. But the induced 
electric field exists inside the solenoid whether or not there is a 
conducting loop.

ExAMpLE 33.10  An induced electric field
A 4.0-cm-diameter solenoid is wound with 2000 turns per meter. 
The current through the solenoid oscillates at 60 Hz with an 
amplitude of 2.0 A. What is the maximum strength of the induced 
electric field inside the solenoid?

ModEL Assume that the magnetic field inside the solenoid is 
uniform.

vISuALIzE The electric field lines are concentric circles around the 
magnetic field lines, as was shown in Figure 33.32b. They reverse 
direction twice every period as the current oscillates.

SoLvE You learned in Chapter 32 that the magnetic field strength 
inside a solenoid with n turns per meter is B = m0nI. In this case, 
the current through the solenoid is I = I0 sin vt, where I0 = 2.0 A 
is the peak current and v = 2p(60 Hz) = 377 rad/s. Thus the in-
duced electric field strength at radius r is

 E =
r

2
 ` dB

dt
` =

r

2
 
d

dt
 (m0nI0 sin vt) =

1

2
 m0nrvI0 cos vt

FIgurE 33.33 Maxwell hypothesized the 
existence of induced magnetic fields.

r r

A changing magnetic field creates
an induced electric field.
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A changing electric field creates
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r

Occasionally it is useful to have a version of Faraday’s law without the absolute 
value signs. The essence of Lenz’s law is that the emf E opposes the change in �m. 
Mathematically, this means that E must be opposite in sign to dB/dt. Consequently, 
we can write Faraday’s law as

 E = C E
u # ds

u
= -  

d�m

dt
 (33.27)

For practical applications, it’s always easier to calculate just the magnitude of the 
emf with Faraday’s law and to use Lenz’s law to find the direction of the emf or the 
induced current. However, the mathematically rigorous version of Faraday’s law in 
Equation 33.27 will prove to be useful when we combine it with other equations, in 
Chapter 34, to predict the existence of electromagnetic waves.

Maxwell’s theory of Electromagnetic Waves
In 1855, less than two years after receiving his undergraduate degree, the Scottish 
physicist James Clerk Maxwell presented a paper titled “On Faraday’s Lines of 
Force.” In this paper, he began to sketch out how Faraday’s pictorial ideas about fields 
could be given a rigorous mathematical basis. Maxwell was troubled by a certain lack 
of symmetry. Faraday had found that a changing magnetic field creates an induced 
electric field, a non-Coulomb electric field not tied to charges. But what, Maxwell 
began to wonder, about a changing electric field?

To complete the symmetry, Maxwell proposed that a changing electric field 
creates an induced magnetic field, a new kind of magnetic field not tied to the 
existence of currents. FIgurE 33.33 shows a region of space where the electric field is 
increasing. This region of space, according to Maxwell, is filled with a pinwheel pattern 
of induced magnetic fields. The induced magnetic field looks like the induced electric 
field, with E

u

 and B
u

 interchanged, except that—for technical reasons explored in the 
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next chapter—the induced B
u

 points the opposite way from the induced E
u

. Although 
there was no experimental evidence that induced magnetic fields existed, Maxwell 
went ahead and included them in his electromagnetic field theory. This was an inspired 
hunch, soon to be vindicated.

Maxwell soon realized that it might be possible to establish self-sustaining elec-
tric and magnetic fields that would be entirely independent of any charges or cur-
rents. That is, a changing electric field E

u

 creates a magnetic field B
u

, which then 
changes in just the right way to recreate the electric field, which then changes in 
just the right way to again recreate the magnetic field, and so on. The fields are 
continually recreated through electromagnetic induction without any reliance on 
charges or currents.

Maxwell was able to predict that electric and magnetic fields would be able 
to sustain themselves, free from charges and currents, if they took the form of an 
electromagnetic wave. The wave would have to have a very specific geometry, 
shown in FIgurE 33.34, in which E

u

 and B
u

 are perpendicular to each other as well as 
perpendicular to the direction of travel. That is, an electromagnetic wave would be a 
transverse wave.

Furthermore, Maxwell’s theory predicted that the wave would travel with speed

 vem wave =
12P0m0

where P0 is the permittivity constant from Coulomb’s law and m0 is the permeability 
constant from the law of Biot and Savart. Maxwell computed that an electromagnetic 
wave, if it existed, would travel with speed vem wave = 3.00 * 108 m/s.

We don’t know Maxwell’s immediate reaction, but it must have been both shock 
and excitement. His predicted speed for electromagnetic waves, a prediction that came 
directly from his theory, was none other than the speed of light! This agreement could 
be just a coincidence, but Maxwell didn’t think so. Making a bold leap of imagination, 
Maxwell concluded that light is an electromagnetic wave.

It took 25 more years for Maxwell’s predictions to be tested. In 1886, the German 
physicist Heinrich Hertz discovered how to generate and transmit radio waves. Two 
years later, in 1888, he was able to show that radio waves travel at the speed of light. 
Maxwell, unfortunately, did not live to see his triumph. He had died in 1879, at the 
age of 48.

Chapter 34 will develop some of the mathematical details of Maxwell’s theory and 
show how the ideas contained in Faraday’s law lead to electromagnetic waves.

33.7 Induced Currents: three Applications
There are many applications of Faraday’s law and induced currents in modern 
technology. In this section we will look at three: generators, transformers, and metal 
detectors.

generators
A generator is a device that transforms mechanical energy into electric energy. 
FIgurE 33.35 shows a generator in which a coil of wire, perhaps spun by a windmill, 
rotates in a magnetic field. Both the field and the area of the loop are constant, but the 
magnetic flux through the loop changes continuously as the loop rotates. The induced 
current is removed from the rotating loop by brushes that press up against rotating 
slip rings.

The flux through the coil is

 �m = A
u # B

u

= AB cos u = AB cos vt (33.28)

FIgurE 33.34 A selfsustaining 
electromagnetic wave.
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A generator inside a hydroelectric dam 
uses electromagnetic induction to convert 
the mechanical energy of a spinning 
turbine into electric energy.
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where v is the angular frequency (v = 2pf ) with which the coil rotates. The induced 
emf is given by Faraday’s law,

 Ecoil = -N  
d�m 

dt
= -ABN  

d

dt
 (cos vt) = vABN sin vt (33.29)

where N is the number of turns on the coil. Here it’s best to use the signed version of 
Faraday’s law to see how Ecoil alternates between positive and negative.

Because the emf alternates in sign, the current through resistor R alternates back 
and forth in direction. Hence the generator of Figure 33.35 is an alternating-current 
generator, producing what we call an AC voltage.

FIgurE 33.35 An alternatingcurrent generator.
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ASSESS A 0.010 T field is modest, so you can see that generating 
large voltages is not difficult with large (2 m2) coils. Commercial 
generators use water flowing through a dam, rotating windmill 
blades, or turbines spun by expanding steam to rotate the generator 
coils. Work is required to rotate the coil, just as work was required 
to pull the slide wire in Section 33.2, because the magnetic field 
exerts retarding forces on the currents in the coil. Thus a generator 
is a device that turns motion (mechanical energy) into a current 
(electric energy). A generator is the opposite of a motor, which 
turns a current into motion.

ExAMpLE 33.11  An AC generator
A coil with area 2.0 m2 rotates in a 0.010 T magnetic field at a 
frequency of 60 Hz. How many turns are needed to generate a 
peak voltage of 160 V?

SoLvE The coil’s maximum voltage is found from Equation 33.29:

 Emax = vABN = 2pfABN

The number of turns needed to generate Emax = 160 V is

 N =
Emax 

2pfAB
=

160 V

2p(60 Hz)(2.0 m2 )(0.010 T)
= 21 turns

transformers
FIgurE 33.36 shows two coils wrapped on an iron core. The left coil is called the 
primary coil. It has N1 turns and is driven by an oscillating voltage V1 cos vt. The 
magnetic field of the primary follows the iron core and passes through the right coil, 
which has N2 turns and is called the secondary coil. The alternating current through 
the primary coil causes an oscillating magnetic flux through the secondary coil and, 
hence, an induced emf. The induced emf of the secondary coil is delivered to the load 
as the oscillating voltage V2 cos vt.

The changing magnetic field inside the iron core is inversely proportional to the 
number of turns on the primary coil: B � 1/N1. (This relation is a consequence of the 
coil’s inductance, an idea discussed in the next section.) According to Faraday’s law, 
the emf induced in the secondary coil is directly proportional to its number of turns: 

FIgurE 33.36 A transformer.

The magnetic field
follows the iron core.
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Esec � N2. Combining these two proportionalities, the secondary voltage of an ideal 
transformer is related to the primary voltage by

 V2 =
N2

N1
 V1 (33.30)

Depending on the ratio N2/N1, the voltage V2 across the load can be transformed to 
a higher or a lower voltage than V1. Consequently, this device is called a transformer. 
Transformers are widely used in the commercial generation and transmission of elec-
tricity. A step-up transformer, with N2 W N1, boosts the voltage of a generator up to 
several hundred thousand volts. Delivering power with smaller currents at higher volt-
ages reduces losses due to the resistance of the wires. High-voltage transmission lines 
carry electric power to urban areas, where step-down transformers (N2 V N1) lower 
the voltage to 120 V.

Metal detectors
Metal detectors, such as those used in airports for security, seem fairly mysterious. 
How can they detect the presence of any metal—not just magnetic materials such 
as iron—but not detect plastic or other materials? Metal detectors work because of 
induced currents.

A metal detector, shown in FIgurE 33.37, consists of two coils: a transmitter coil and 
a receiver coil. A high-frequency alternating current in the transmitter coil generates 
an alternating magnetic field along the axis. This magnetic field creates a changing 
flux through the receiver coil and causes an alternating induced current. The transmit-
ter and receiver are similar to a transformer.

Suppose a piece of metal is placed between the transmitter and the receiver. 
The alternating magnetic field through the metal induces eddy currents in a plane 
parallel to the transmitter and receiver coils. The receiver coil then responds to 
the superposition of the transmitter’s magnetic field and the magnetic field of the 
eddy currents. Because the eddy currents attempt to prevent the flux from changing, 
in accordance with Lenz’s law, the net field at the receiver decreases when a piece of 
metal is inserted between the coils. Electronic circuits detect the current decrease in 
the receiver coil and set off an alarm. Eddy currents can’t flow in an insulator, so this 
device detects only metals.

33.8 Inductors
Capacitors are useful circuit elements because they store potential energy UC in the 
electric field. Similarly, a coil of wire can be a useful circuit element because it stores 
energy in the magnetic field. Using as an analogy the definition of capacitance as the 
charge-to-voltage ratio, C = Q/�V, let’s define the inductance L of a coil as its flux-
to-current ratio:

 L =
�m

I
 (33.31)

Strictly speaking, this is called self-inductance because the flux we’re considering is 
the magnetic flux the solenoid creates in itself when there is a current.

The SI unit of inductance is the henry, named in honor of Joseph Henry, defined as

 1 henry = 1 H K 1 Wb/A = 1 T m2/A

Practical inductances are typically millihenries (mH) or microhenries (mH).
A coil of wire used in a circuit for the purpose of providing inductance is called an 

inductor. An ideal inductor is one for which the wire forming the coil has no electric 
resistance. The circuit symbol for an inductor is .

Transformers are essential for transporting 
electric energy from the power plant to 
cities and homes.

FIgurE 33.37 A metal detector.

Metal

Transmitter coil

Receiver coil

Eddy currents in the metal
reduce the induced current
in the receiver coil.

Induced current due
to the transmitter coil

Induced current
due to eddy currents



33.8 . Inductors    985

It’s not hard to find the inductance of a solenoid. In Chapter 32 we found that the 
magnetic field inside an ideal solenoid having N turns and length l is

 B =
m0NI

l

The magnetic flux through one turn of the coil is �per  turn = AB, where A is the cross-
section area of the solenoid. The total magnetic flux through all N turns is

 �m = N�per  turn =
m0N 2A

l
 I (33.32)

Thus the inductance of the solenoid, using the definition of Equation 33.31, is

 L solenoid =
�m

I
=

m0N 2A

l
 (33.33)

The inductance of a solenoid depends only on its geometry, not at all on the current. 
You may recall that the capacitance of two parallel plates depends only on their geom-
etry, not at all on their potential difference.

The length needed to give inductance L = 1.0 * 10-5 H is

  l =
d 2L

m0pr2 =
(0.00030 m)2 (1.0 * 10-5 H)

(4p * 10-7 T m/A)p(0.0020 m)2

  = 0.057 m = 5.7 cm

ExAMpLE 33.12  the length of an inductor
An inductor is made by tightly wrapping 0.30-mm-diameter wire 
around a 4.0-mm-diameter cylinder. What length cylinder has an 
inductance of 10 mH?

SoLvE The cross-section area of the solenoid is A = pr2. If the 
wire diameter is d, the number of turns of wire on a cylinder of 
length l is N = l/d. Thus the inductance is

 L =
m0N 2A

l
=

m0(l/d)2pr2

l
=

m0pr2l

d 2

the potential difference Across an Inductor
An inductor is not very interesting when the current through it is steady. If the 
inductor is ideal, with R = 0 �, the potential difference due to a steady current 
is zero. Inductors become important circuit elements when currents are changing. 
FIgurE  33.38a shows a steady current into the left side of an inductor. The solenoid’s 
magnetic field passes through the coils of the solenoid, establishing a flux.

In FIgurE 33.38b, the current into the solenoid is increasing. This creates an increas-
ing flux to the left. According to Lenz’s law, an induced current in the coils will 
oppose this increase by creating an induced magnetic field pointing to the right. This 
requires the induced current to be opposite the current into the solenoid. This induced 
current will carry positive charge carriers to the left until a potential difference is 
established across the solenoid.

You saw a similar situation in Section 33.2. The induced current in a conductor 
moving through a magnetic field carried positive charge carriers to the top of the wire 
and established a potential difference across the conductor. The induced current in the 
moving wire was due to magnetic forces on the moving charges. Now, in Figure  33.38b, 
the induced current is due to the non-Coulomb electric field induced by the changing 
magnetic field. Nonetheless, the outcome is the same: a potential difference across the 
conductor.

We can use Faraday’s law to find the potential difference. The emf induced in a 
coil is

 Ecoil = N ` d�per turn

dt
` = ` d�m

dt
`  (33.34)

FIgurE 33.38 Increasing the current 
through an inductor.
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a potential difference across the inductor.

The induced current is
opposite the solenoid current.
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where �m = N�per turn is the total flux through all the coils. The inductance was defined 
such that �m = LI, so Equation 33.34 becomes

 Ecoil = L ` dI

dt
`  (33.35)

The induced emf is directly proportional to the rate of change of current through the 
coil. We’ll consider the appropriate sign in a moment, but Equation 33.35 gives us the 
size of the potential difference that is developed across a coil as the current through 
the coil changes. Note that Ecoil = 0 for a steady, unchanging current.

FIgurE 33.39 shows the same inductor, but now the current (still in to the left side) is 
decreasing. To oppose the decrease in flux, the induced current is in the same direction 
as the input current. The induced current carries charge to the right and establishes a 
potential difference opposite that in Figure 33.38b.

NotE  Notice that the induced current does not oppose the current through the 
inductor, which is from left to right in both Figures 33.38 and 33.39. Instead, in 
accordance with Lenz’s law, the induced current opposes the change in the current 
in the solenoid. The practical result is that it is hard to change the current through an 
inductor. Any effort to increase or decrease the current is met with opposition in the 
form of an opposing induced current. You can think of the current in an inductor as 
having inertia, trying to continue what it was doing without change. 

Before we can use inductors in a circuit we need to establish a rule about signs that 
is consistent with our earlier circuit analysis. FIgurE 33.40 first shows current I pass-
ing through a resistor. You learned in Chapter 31 that the potential difference across 
a resistor is �Vres = - �VR = -IR, where the minus sign indicates that the potential 
decreases in the direction of the current.

We’ll use the same convention for an inductor. The potential difference across an 
inductor, measured along the direction of the current, is

 �VL = -L 
dI

dt
 (33.36)

If the current is increasing (dI/dt 7 0), the input side of the inductor is more posi-
tive than the output side and the potential decreases in the direction of the current 
(�VL 6 0). This was the situation in Figure 33.38b. If the current is decreasing 
(dI/dt 6 0), the input side is more negative and the potential increases in the direction 
of the current (�VL 7 0). This was the situation in Figure 33.39.

The potential difference across an inductor can be very large if the current changes 
very abruptly (large dI/dt). FIgurE 33.41 shows an inductor connected across a battery. 
There is a large current through the inductor, limited only by the internal resistance of 
the battery. Suppose the switch is suddenly opened. A very large induced voltage is 
created across the inductor as the current rapidly drops to zero. This potential differ-
ence (plus �Vbat) appears across the gap of the switch as it is opened. A large potential 
difference across a small gap often creates a spark.

FIgurE 33.39 Decreasing the current 
through an inductor.
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Indeed, this is exactly how the spark plugs in your car work. The car’s generator  
sends a current through the coil, which is a big inductor. When a switch is suddenly 
opened, breaking the current, the induced voltage, typically a few thousand volts, appears  
across the terminals of the spark plug, creating the spark that ignites the gasoline. 
Older cars use a distributor to open and close an actual switch; more recent cars have 
electronic ignition in which the mechanical switch has been replaced by a transistor.

The induced voltage is

 �VL = -L 
dI

dt
� - (0.010 H)(-2.0 * 105 A/s) = 2000 V

ASSESS Inductors may be physically small, but they can pack a 
punch if you try to change the current through them too quickly.

ExAMpLE 33.13  Large voltage across an inductor
A 1.0 A current passes through a 10 mH inductor coil. What po-
tential difference is induced across the coil if the current drops to 
zero in 5.0 ms?

ModEL Assume this is an ideal inductor, with R = 0 �, and that 
the current decrease is linear with time.

SoLvE The rate of current decrease is

 
dI

dt
�

�I

�t
=

-1.0 A

5.0 * 10-6 s
= -2.0 * 105 A/s

Stop to think 33.6 
 The potential at a is higher than the potential at b. Which of the 

following statements about the inductor current I could be true?

 a. I is from a to b and steady.
 b. I is from a to b and increasing.
 c. I is from a to b and decreasing.
 d. I is from b to a and steady.
 e. I is from b to a and increasing.
 f. I is from b to a and decreasing.

a b
Va � Vb

Energy in Inductors and Magnetic Fields
Recall that electric power is Pelec = I �V. As current passes through an inductor, for 
which �VL = -L(dI/dt), the electric power is

 Pelec = I �VL = -LI  
dI

dt
 (33.37)

Pelec is negative because the current is losing electric energy. That energy is being 
transferred to the inductor, which is storing energy UL at the rate

 
dUL

dt
= +LI  

dI

dt
 (33.38)

where we’ve noted that power is the rate of change of energy.
We can find the total energy stored in an inductor by integrating Equation 33.38 

from I = 0, where UL = 0, to a final current I. Doing so gives

 UL = L3
I

0

I dI =
1

2
 LI 2 (33.39)

The potential energy stored in an inductor depends on the square of the current through 
it. Notice the analogy with the energy UC =

1
2 C(�V)2 stored in a capacitor.

33.8 . Inductors    987
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In working with circuits we say that the energy is “stored in the inductor.” Strictly 
speaking, the energy is stored in the inductor’s magnetic field, analogous to how a 
capacitor stores energy in the electric field. We can use the inductance of a solenoid, 
Equation 33.33, to relate the inductor’s energy to the magnetic field strength:

 UL =
1

2
 LI 2 =

m0N 2A

2l
 I 2 =

1

2m0
 Al1m0NI

l 2 2

 (33.40)

We made the last rearrangement in Equation 33.40 because m0NI/l is the magnetic 
field inside the solenoid. Thus

 UL =
1

2m0
 AlB2 (33.41)

But Al is the volume inside the solenoid. Dividing by Al, the magnetic field energy 
density inside the solenoid (energy per m3) is

 uB =
1

2m0
 B2 (33.42)

We’ve derived this expression for energy density based on the properties of a solenoid, 
but it turns out to be the correct expression for the energy density anywhere there’s a 
magnetic field. Compare this to the energy density of an electric field uE =

1
2 P0E2 that 

we found in Chapter 29.

Energy in electric and magnetic fields

Electric fields Magnetic fields

A capacitor 
stores energy

 UC =
1
2 C(�V)2

Energy density 
in the field is

 uE =
P0

2
 E2

An inductor stores 
energy

 UL =
1
2 LI 2

Energy density in the 
field is

 uB =
1

2m0
 B2

The solenoid volume is (pr2)l = 7.16 * 10-7 m3. Using this gives 
the energy density of the magnetic field:

 uB =
5.0 * 10-8 J

7.16 * 10-7 m3 = 0.070 J/m3

From Equation 33.42, the magnetic field with this energy density is

 B = 22m0uB = 4.2 * 10-4 T

ExAMpLE 33.14  Energy stored in an inductor
The 10 mH inductor of Example 33.12 was 5.7 cm long and 
4.0 mm in diameter. Suppose it carries a 100 mA current. What 
are the energy stored in the inductor, the magnetic energy density, 
and the magnetic field strength?

SoLvE The stored energy is

 UL =
1

2
 LI 2 =

1

2
 (1.0 * 10-5 H)(0.10 A)2 = 5.0 * 10-8 J

33.9 LC Circuits
Telecommunication—radios, televisions, cell phones—is based on electromagnetic 
signals that oscillate at a well-defined frequency. These oscillations are generated and 
detected by a simple circuit consisting of an inductor and a capacitor in parallel. This 
is called an LC circuit. In this section we will learn why an LC circuit oscillates and 
determine the oscillation frequency.

FIgurE 33.42 shows a capacitor with initial charge Q0, an inductor, and a switch. 
The switch has been open for a long time, so there is no current in the circuit. Then, 
at t = 0, the switch is closed. How does the circuit respond? Let’s think it through 
qualitatively before getting into the mathematics.

As FIgurE 33.43 shows, the inductor provides a conducting path for discharging the 
capacitor. However, the discharge current has to pass through the inductor, and, as 
we’ve seen, an inductor resists changes in current. Consequently, the current doesn’t 
stop when the capacitor charge reaches zero.

A block attached to a stretched spring is a useful mechanical analogy. Closing the 
switch to discharge the capacitor is like releasing the block. The block doesn’t stop 
when it reaches the origin; its momentum keeps it going until the spring is fully com-
pressed. Likewise, the current continues until it has recharged the capacitor with the 
opposite polarization. This process repeats over and over, charging the capacitor first 
one way, then the other. That is, the charge and current oscillate.

FIgurE 33.42 An LC circuit.

Switch closes at t � 0.
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charge Q0

C L
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The goal of our circuit analysis will be to find expressions showing how the capacitor 
charge Q and the inductor current I change with time. As always, our starting point for 
circuit analysis is Kirchhoff’s voltage law, which says that all the potential differences 
around a closed loop must sum to zero. Choosing a cw direction for I, Kirchhoff’s law is

 �VC + �VL = 0 (33.43)

The potential difference across a capacitor is �VC = Q/C, and we found the potential 
difference across an inductor in Equation 33.36. Using these, Kirchhoff’s law becomes

 
Q

C
- L 

dI

dt
= 0 (33.44)

Equation 33.44 has two unknowns, Q and I. We can eliminate one of the unknowns by 
finding another relation between Q and I. Current is the rate at which charge moves, 
I = dq/dt, but the charge flowing through the inductor is charge that was removed 
from the capacitor. That is, an infinitesimal charge dq flows through the inductor when 
the capacitor charge changes by dQ = -dq. Thus the current through the inductor is 
related to the charge on the capacitor by

 I = -  
dQ

dt
 (33.45)

Now I is positive when Q is decreasing, as we would expect. This is a subtle but im-
portant step in the reasoning.

Equations 33.44 and 33.45 are two equations in two unknowns. To solve them, 
we’ll first take the time derivative of Equation 33.45:

 
dI

dt
=

d

dt
 1-  

dQ

dt 2 = -  
d 2Q

dt2  (33.46)

We can substitute this result into Equation 33.44:

 
Q

C
+ L 

d 2Q

dt2 = 0 (33.47)

Now we have an equation for the capacitor charge Q.

FIgurE 33.43 The capacitor charge oscillates much like a block attached to a spring.
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A cell phone is actually a very sophisticated 
twoway radio that communicates with 
the nearest base station via highfrequency 
radio waves—roughly 1000 MHz. As in 
any radio or communications device, the 
transmission frequency is established by 
the oscillating current in an LC circuit.
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Equation 33.47 is a second-order differential equation for Q. Fortunately, it is an 
equation we’ve seen before and already know how to solve. To see this, we rewrite 
Equation 33.47 as

 
d 2Q

dt2 = -  
1

LC
 Q (33.48)

Recall, from Chapter 14, that the equation of motion for an undamped mass on a spring is

 
d 2x

dt2 = -  
k
m

 x (33.49)

Equation 33.48 is exactly the same equation, with x replaced by Q and k/m replaced by 
1/LC. This should be no surprise because we’ve already seen that a mass on a spring 
is a mechanical analog of the LC circuit.

We know the solution to Equation 33.49. It is simple harmonic motion x(t) =
x0 cos vt with angular frequency v = 1k/m. Thus the solution to Equation 33.48 
must be

 Q(t) = Q0 cos vt (33.50)

where Q0 is the initial charge, at t = 0, and the angular frequency is

 v = B 1

LC
 (33.51)

The charge on the upper plate of the capacitor oscillates back and forth between +Q0 
and -Q0 (the opposite polarization) with period T = 2p/v.

As the capacitor charge oscillates, so does the current through the inductor. Using 
Equation 33.45 gives the current through the inductor:

 I = -  
dQ

dt
= vQ0 sin vt = Imax sin vt (33.52)

where Imax = vQ0 is the maximum current.
An LC circuit is an electric oscillator, oscillating at frequency f = v/2p. FIgurE 33.44 

shows graphs of the capacitor charge Q and the inductor current I as functions of time. 
Notice that Q and I are 90� out of phase. The current is zero when the capacitor is fully 
charged, as expected, and the charge is zero when the current is maximum.

FIgurE 33.44 The oscillations of an LC 
circuit.

The letters match the stages
shown in Figure 33.43.
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An LC circuit, like a mass on a spring, wants to respond only at its natural oscilla-
tion frequency v = 1/1LC . In Chapter 14 we defined a strong response at the natural 
frequency as a resonance, and resonance is the basis for all telecommunications. The 
input circuit in radios, televisions, and cell phones is an LC circuit driven by the signal 
picked up by the antenna. This signal is the superposition of hundreds of sinusoidal 
waves at different frequencies, one from each transmitter in the area, but the circuit 
responds only to the one signal that matches the circuit’s natural frequency. That par-
ticular signal generates a large-amplitude current that can be further amplified and 
decoded to become the output that you hear.

SoLvE The angular frequency is v = 2pf = 5.78 * 106 rad/s. Us-
ing Equation 33.51 for v gives the required capacitor:

  C =
1

v2L
=

1

(5.78 * 106 rad/s)2(0.0010 H)

  = 3.0 * 10-11 F = 30 pF

ExAMpLE 33.15  An AM radio oscillator
You have a 1.0 mH inductor. What capacitor should you choose to 
make an oscillator with a frequency of 920 kHz? (This frequency 
is near the center of the AM radio band.)



33.10 LR Circuits
A circuit consisting of an inductor, a resistor, and (perhaps) a battery is called an 
LR circuit. FIgurE 33.45a is an example of an LR circuit. We’ll assume that the switch 
has been in position a for such a long time that the current is steady and unchanging. 
There’s no potential difference across the inductor, because dI/dt = 0, so it simply 
acts like a piece of wire. The current flowing around the circuit is determined entirely 
by the battery and the resistor: I0 = �Vbat/R.

What happens if, at t = 0, the switch is suddenly moved to position b? With the 
battery no longer in the circuit, you might expect the current to stop immediately. But 
the inductor won’t let that happen. The current will continue for some period of time 
as the inductor’s magnetic field drops to zero. In essence, the energy stored in the in-
ductor allows it to act like a battery for a short period of time. Our goal is to determine 
how the current decays after the switch is moved.

NotE  It’s important not to open switches in inductor circuits because they’ll 
spark, as Figure 33.41 showed. The unusual switch in Figure 33.45 is designed to 
make the new contact just before breaking the old one. 

FIgurE 33.45b shows the circuit after the switch is changed. Our starting point, once 
again, is Kirchhoff’s voltage law. The potential differences around a closed loop must 
sum to zero. For this circuit, Kirchhoff’s law is

 �Vres + �VL = 0 (33.53)

The potential differences in the direction of the current are �Vres = -IR for the resis-
tor and �VL = -L(dI/dt) for the inductor. Substituting these into Equation 33.53 gives

 -RI - L  
dI

dt
= 0 (33.54)

We’re going to need to integrate to find the current I as a function of time. Before 
doing so, we rearrange Equation 33.54 to get all the current terms on one side of the 
equation and all the time terms on the other:

 
dI

I
= -  

R

L
 dt = -  

dt

(L/R)
 (33.55)

We know that the current at t = 0, when the switch was moved, was I0. We want to 
integrate from these starting conditions to current I at the unspecified time t. That is,

 3
I

I0

dI

I
= -  

1

(L/R)3
t

0

 dt (33.56)

Both are common integrals, giving

 ln I `
I

I0

= ln I - ln I0 = ln 1 I

I0
2 = -  

t

(L/R)
 (33.57)

We can solve for the current I by taking the exponential of both sides, then multi-
plying by I0. Doing so gives I, the current as a function of time:

 I = I0e-t/(L/R) (33.58)

Notice that I = I0 at t = 0, as expected.
The argument of the exponential function must be dimensionless, so L/R must have 

dimensions of time. If we define the time constant t of the LR circuit to be

 t =
L

R
 (33.59)

FIgurE 33.45 An LR circuit.

R

(a)

L

b

a

�

�

RI0 �
 

�Vbat
�Vbat

The switch has been in this position
for a long time. At t � 0 it is moved
to position b.

R

(b)

�VL

�Vres

L

I

This is the circuit with the switch
in position b. The inductor prevents
the current from stopping instantly.
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then we can write Equation 33.58 as

 I = I0e-t/t (33.60)

The time constant is the time at which the current has decreased to e-1 (about 37%) 
of its initial value. We can see this by computing the current at the time t = t:

 I(at t = t) = I0e-t/t = e-1I0 = 0.37I0 (33.61)

Thus the time constant for an LR circuit functions in exactly the same way as the time 
constant for the RC circuit we analyzed in Chapter 31. At time t = 2t, the current has 
decreased to e-2I0, or about 13% of its initial value.

The current is graphed in FIgurE 33.46. You can see that the current decays exponen-
tially. The shape of the graph is always the same, regardless of the specific value of 
the time constant t.

Stop to think 33.7 
 Rank in order, from largest to smallest, the time constants ta, tb, and tc 

of these three circuits.

FIgurE 33.46 The current decay in an LR 
circuit.

0
0

0.13I0

0.37I0

0.50I0

I0

t
3t

The current has
decreased to 13% of its
initial value at t � 2t.

The current has decreased to
37% of its initial value at t � t.

Current I

2tt

inductor can’t change instantaneously. The circuit resistance after 
the switch is thrown is R = 200 �, so the time constant is

 t =
L

R
=

2.0 * 10-3 H

200 �
= 1.0 * 10-5 s = 10 ms

 a. The current at t = 5.0 ms is

 I = I0e-t/t = (100 mA)e-(5.0 ms)/(10 ms) = 61 mA

 b. To find the time at which a particular current is reached we 
need to go back to Equation 33.57 and solve for t:

 t = -  
L

R
  ln1 I

I0
2 = -t ln1 I

I0
2

The time at which the current has decayed to 1 mA (1% of I0) is

 t = - (10 ms) ln1 1 mA

100 mA 2 = 46 ms

ASSESS For all practical purposes, the current has decayed away 
in �50 ms. The inductance in this circuit is not large, so a short 
decay time is not surprising.

ExAMpLE 33.16  Exponential decay in an LR circuit
The switch in FIgurE 33.47 has been in position a for a long time. It 
is changed to position b at t = 0 s.

 a. What is the current in the circuit at t = 5.0 ms?
 b. At what time has the current decayed to 1% of its initial value?

FIgurE 33.47 The LR circuit of Example 33.16.

100 �

100 �
2 mH

b

a

10 V

The switch moves from a to b at t � 0. 

�

�

ModEL This is an LR circuit. We’ll assume ideal wires and an 
ideal inductor.

vISuALIzE The two resistors will be in series after the switch is 
thrown.

SoLvE Before the switch is thrown, while �VL = 0, the current is 
I0 = (10 V)/(100 �) = 0.10 A = 100 mA. This will be the initial 
current after the switch is thrown because the current through an 

R

Lta

R

R

Ltb

R
L

R

tc



As the current oscillates, the power dissipation in the wire is

 P = I 2R =
v2B0 

2L4

R
 sin2vt

The power dissipation also oscillates, but very rapidly in compari-
son to a temperature rise that we expect to occur over seconds or 
minutes. Consequently, we are justified in replacing the oscillating 
P with its average value Pavg. Recall that the time average of the 
function sin2vt is 1

2, a result that can be proven by integration or 
justified by noticing that a graph of sin2vt oscillates symmetri-
cally between 0 and 1. Thus the average power dissipation in the 
wire is

 Pavg =
v2B0 

2L4

2R
 

Recall that power is the rate of energy transfer. In this case, 
the power dissipated in the wire is the wire’s heating rate: 
dQ/dt = Pavg, where here Q is heat, not charge. Using Q = mc�T, 
from thermodynamics, we can write

 
dQ

dt
= mc 

dT

dt
= Pavg =

v2B0 

2L4

2R

To complete the calculation, we need the mass and resistance 
of the wire. The wire’s total length is 4L, and its cross-section area 
is A. Thus

 m = rmassV = 4rmass LA

 R =
relec(4L)

A
=

4relec L

A

Substituting these into the heating equation, we have

 4rmass LAc 
dT

dt
=

v2B0 

2L3A

8relec

Interestingly, the wire’s cross-section area cancels. The wire’s 
temperature initially increases at the rate

 
dT

dt
=

v2B0 

2L2

32relecrmassc

All the terms on the right-hand side are known. Evaluating, we 
find

 
dT

dt
= 3.3 K/s = 200�C/min

ASSESS This is a rapid but realistic temperature rise for a small 
object, although the rate of increase will slow as the object begins 
losing heat to the environment through radiation and/or convec-
tion. Induction heating can increase an object’s temperature by 
several hundred degrees in a few minutes.

ChALLENgE ExAMpLE 33.17  Induction heating
Induction heating uses induced currents to heat metal objects to 
high temperatures for applications such as surface hardening, 
brazing, or even melting. To illustrate the idea, consider a copper 
wire formed into a 4.0 cm * 4.0 cm square loop and placed in 
a magnetic field—perpendicular to the plane of the loop—that 
oscillates with 0.010 T amplitude at a frequency of 1000 Hz. What 
is the wire’s initial temperature rise, in °C/min?

ModEL The changing magnetic flux through the loop will induce 
a current that, because of the wire’s resistance, will heat the wire. 
Eventually, when the wire gets hot, heat loss through radiation 
and/or convection will limit the temperature rise, but initially we 
can consider the temperature change due only to the heating by 
the current. Assume that the wire’s diameter is much less than the 
4.0 cm width of the loop.

vISuALIzE FIgurE 33.48 shows the copper loop in the magnetic 
field. The wire’s cross-section area A is unknown, but our assump-
tion of a thin wire means that the loop has a well-defined area 
L2. Values of copper’s resistivity, density, and specific heat were 
taken from tables inside the back cover of the book. We’ve used 
subscripts to distinguish between mass density rmass and resistivity 
relec, a potentially confusing duplication of symbols.

FIgurE 33.48 A copper wire being heated by induction.

SoLvE Power dissipation by a current, P = I 2R, heats the wire. 
As long as heat losses are negligible, we can use the heating rate 
and the wire’s specific heat c to calculate the rate of temperature 
change. Our first task is to find the induced current. According to 
Faraday’s law,

 I =
E

R
= -

1

R
 
d�m

dt
= -

L2

R
 
dB

dt

where R is the loop’s resistance and �m = L2B is the magnetic 
flux through a loop of area L2. The oscillating magnetic 
field can be written B = B0 cos vt, with B0 = 0.010 T and 
v = 2p * 1000 Hz = 6280 rad/s. Thus

 
dB

dt
= -vB0 sin vt

from which we find that the induced current oscillates as

 I =
vB0L2

R
 sin vt
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S u M M A r y
The goal of Chapter 33 has been to understand and apply electromagnetic induction.

Magnetic flux

Magnetic flux measures the 
amount of magnetic field passing 
through a surface.

 �m = A
u # B

u

= AB cos u

Faraday’s Law
ModEL Make simplifying assumptions.

vISuALIzE Use Lenz’s law to determine the direction of the 
induced current.

SoLvE The induced emf is

  E = ` d�m

dt
`

Multiply by N for an N-turn coil.
The size of the induced current is I = E/R.

ASSESS Is the result reasonable?

Lenz’s Law
There is an induced current in a closed conducting loop if and 
only if the magnetic flux through the loop is changing.
The direction of the induced current is such that the induced 
magnetic field opposes the change in the flux.

general principles

Loop of
area A

u

r
B

r
A

Two ways to create an induced current

1. A motional emf is due to magnetic 
forces on moving charge carriers.

2. An induced electric field is due to a 
changing magnetic field.

Three ways to change the flux

1. A loop moves into or out of
a magnetic field.

2. The loop changes area or rotates.

3. The magnetic field through the 
loop increases or decreases.

Important Concepts

v

In

B

N

S

r

B
r

B
r

r

vr

Increasing B

v

B
r

r

r
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r

E
r

E
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�

Inductors

Solenoid inductance L solenoid =
m0N 2A

l

Potential difference �VL = -L 
dI

dt

Energy stored UL =
1
2 LI 2

Magnetic energy density uB =
1

2m0
 B2

LC circuit

Oscillates at v = A 1

LC

LR circuit

Exponential change with t =
L

R

Applications

C L

LR

C L
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electromagnetic induction
induced current
motional emf
generator
eddy current
magnetic flux, �m

weber, Wb

area vector, A
u

Lenz’s law
induced emf, E
Faraday’s law
induced electric field
Coulomb electric field
non-Coulomb electric field

induced magnetic field
electromagnetic wave
primary coil
secondary coil
transformer
inductance, L
henry, H

inductor
LC circuit
LR circuit
time constant, t

terms and Notation

C o N C E p t u A L  Q u E S t I o N S

 6. FIgurE Q33.6 shows a bar magnet being pushed toward a con-
ducting loop from below, along the axis of the loop.

 a. What is the current direction in the loop? Explain.
 b. Is there a magnetic force on the loop? If so, in which direc-

tion? Explain.
Hint: A current loop is a magnetic dipole.

 c. Is there a force on the magnet? If so, in which direction?

 7. A bar magnet is pushed toward a loop of wire as shown in 
FIgurE Q33.7. Is there a current in the loop? If so, in which direc-
tion? If not, why not? 

 8. FIgurE Q33.8 shows a bar magnet, a coil of wire, and a current 
meter. Is the current through the meter right to left, left to right, 
or zero for the following circumstances? Explain.

 a. The magnet is inserted into the coil.
 b. The magnet is held at rest inside the coil.
 c. The magnet is withdrawn from the left side of the coil.

 9. Is the magnetic field strength in FIgurE Q33.9 increasing, decreas-
ing, or steady? Explain.

 1. What is the direction of the induced current in FIgurE Q33.1?

 2. You want to insert a loop of copper wire between the two per-
manent magnets in FIgurE Q33.2. Is there an attractive magnetic 
force that tends to pull the loop in, like a magnet pulls on a 
paper clip? Or do you need to push the loop in against a repulsive 
force? Explain.

 3. A vertical, rectangular loop of 
copper wire is half in and half 
out of the horizontal magnetic 
field in FIgurE Q33.3. (The field 
is zero beneath the dashed line.) 
The loop is released and starts 
to fall. Is there a net magnetic 
force on the loop? If so, in 
which direction? Explain.

 4. Does the loop of wire in FIgurE Q33.4 have a clockwise current, a 
counterclockwise current, or no current under the following cir-
cumstances? Explain.

 a. The magnetic field points out of the page and is increasing.
 b. The magnetic field points out of the page and is constant.
 c. The magnetic field points out of the page and is decreasing.

 5. The two loops of wire in FIgurE Q33.5 are stacked one above the 
other. Does the upper loop have a clockwise current, a counter-
clockwise current, or no current at the following times? Explain.

 a. Before the switch is closed.
 b. Immediately after the switch is closed.
 c. Long after the switch is closed.
 d. Immediately after the switch is reopened.

FIgurE Q33.1 FIgurE Q33.2 
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 13. Rank in order, from largest to smallest, the three time constants 
ta to tc for the three circuits in FIgurE Q33.13. Explain.

 14. For the circuit of FIgurE Q33.14:
 a. What is the battery current 

immediately after the switch 
closes? Explain.

 b. What is the battery current 
after the switch has been 
closed a long time? Explain.

E x E r C I S E S  A N d  p r o B L E M S

Problems labled  integrate material from earlier chapters.

Exercises

Section 33.2 Motional emf

 1. | The earth’s magnetic field strength is 5.0 * 10-5 T. How fast 
would you have to drive your car to create a 1.0 V motional emf 
along your 1.0-m-long radio antenna? Assume that the motion of 
the antenna is perpendicular to B

u

.
 2. | A potential difference of 0.050 V 

is developed across the 10-cm-long 
wire of FIgurE Ex33.2 as it moves 
through a magnetic field perpen-
dicular to the page. What are the 
strength and direction (in or out) of 
the magnetic field?

 3. || A 10-cm-long wire is pulled along a U-shaped conducting 
rail in a perpendicular magnetic field. The total resistance of 
the wire and rail is 0.20 �. Pulling the wire at a steady speed 
of 4.0 m/s causes 4.0 W of power to be dissipated in the circuit.

 a. How big is the pulling force?
 b. What is the strength of the magnetic field?

Section 33.3 Magnetic Flux

 4. | What is the magnetic flux 
through the loop shown in 
FIgurE Ex33.4?

 5. || FIgurE Ex33.5 shows a 2.0-cm-diameter solenoid passing 
through the center of a 6.0-cm-diameter loop. The magnetic field 
inside the solenoid is 0.20 T. What is the magnetic flux through 
the loop when it is perpendicular to the solenoid and when it is 
tilted at a 60� angle?

 10. An inductor with a 2.0 A current stores energy. At what current 
will the stored energy be twice as large?

 11. a.  Can you tell which of the inductors in FIgurE Q33.11 has the 
larger current through it? If so, which one? Explain.

 b. Can you tell through which inductor the current is changing 
more rapidly? If so, which one? Explain.

 c. If the current enters the inductor from the bottom, can you tell 
if the current is increasing, decreasing, or staying the same? If 
so, which? Explain.

 12. An LC circuit oscillates at a frequency of 2000 Hz. What will the 
frequency be if the inductance is quadrupled?

FIgurE Q33.11 

2 H 2 V
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1 H 4 V
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�
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R
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Circuit a Circuit b Circuit c

R
L

R

FIgurE Q33.14 

10 V

5 �

5 mH

 6. || What is the magnetic flux through the loop shown in 
FIgurE Ex33.6?

Section 33.4 Lenz’s Law

 7. | There is a cw induced current in the conducting loop shown in 
FIgurE Ex33.7. Is the magnetic field inside the loop increasing in 
strength, decreasing in strength, or steady?

 8. | A solenoid is wound as shown in FIgurE Ex33.8.
 a. Is there an induced current as magnet 1 is moved away from 

the solenoid? If so, what is the current direction through 
resistor R?

 b. Is there an induced current as magnet 2 is moved away from 
the solenoid? If so, what is the current direction through 
resistor R?
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 9. || The current in the solenoid of FIgurE Ex33.9 is increasing. The 
solenoid is surrounded by a conducting loop. Is there a current in 
the loop? If so, is the loop current cw or ccw?

 10. | The metal equilateral triangle in FIgurE Ex33.10, 20 cm on each 
side, is halfway into a 0.10 T magnetic field.

 a. What is the magnetic flux through the triangle?
 b. If the magnetic field strength decreases, what is the direction 

of the induced current in the triangle?

Section 33.5 Faraday’s Law

 11. | FIgurE Ex33.11 shows a 10-cm-diameter loop in three different 
magnetic fields. The loop’s resistance is 0.20 �. For each, what 
are the size and direction of the induced current?

 12. | The loop in FIgurE Ex33.12 is being 
pushed into the 0.20 T magnetic field 
at 50 m/s. The resistance of the loop is 
0.10 �. What are the direction and the 
magnitude of the current in the loop?

 13. || A 1000-turn coil of wire 1.0 cm in diameter is in a magnetic 
field that increases from 0.10 T to 0.30 T in 10 ms. The axis of 
the coil is parallel to the field. What is the emf of the coil?

 14. | The resistance of the loop in FIgurE Ex33.14 is 0.20 �. Is 
the magnetic field strength increasing or decreasing? At what 
rate (T/s)?

Section 33.6 Induced Fields

 15. || FIgurE Ex33.15 shows the current as a function of time through 
a 20-cm-long, 4.0-cm-diameter solenoid with 400 turns. Draw a 
graph of the induced electric field strength as a function of time 
at a point 1.0 cm from the axis of the solenoid.

 16. || The magnetic field inside a 5.0-cm-diameter solenoid is 2.0 T 
and decreasing at 4.0 T/s. What is the electric field strength in-
side the solenoid at a point (a) on the axis and (b) 2.0 cm from the 
axis?

 17. || The magnetic field in FIgurE Ex33.17 is decreasing at the rate 
0.10 T/s. What is the acceleration (magnitude and direction) of a 
proton initially at rest at points a to d?

Section 33.8 Inductors

 18. | What is the potential difference across a 10 mH inductor if 
the current through the inductor drops from 150 mA to 50 mA in 
10 ms? What is the direction of this potential difference? That is, 
does the potential increase or decrease along the direction of the 
current?

 19. | The maximum allowable potential difference across a 200 mH 
inductor is 400 V. You need to raise the current through the 
inductor from 1.0 A to 3.0 A. What is the minimum time you 
should allow for changing the current?

 20. | A 100 mH inductor whose windings have a resistance of 
4.0 �  is connected across a 12 V battery having an internal resis-
tance of 2.0 �. How much energy is stored in the inductor?

 21. ||| How much energy is stored in a 3.0-cm-diameter, 12-cm-
long solenoid that has 200 turns of wire and carries a current of 
0.80 A?

Section 33.9 LC Circuits

 22. || An FM radio station broadcasts at a frequency of 100 MHz. 
What inductance should be paired with a 10 pF capacitor to build 
a receiver circuit for this station?

 23. | A 2.0 mH inductor is connected in parallel with a variable 
capacitor. The capacitor can be varied from 100 pF to 200 pF. 
What is the range of oscillation frequencies for this circuit?

 24. | An MRI machine needs to detect signals that oscillate at 
very high frequencies. It does so with an LC circuit containing 
a 15 mH coil. To what value should the capacitance be set to 
detect a 450 MHz signal?
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Section 33.10 LR Circuits

 25. || What value of resistor R gives the circuit in FIgurE Ex33.25 a 
time constant of 25 ms?

 26. || At t = 0 s, the current in the circuit in FIgurE Ex33.26 is I0. At 
what time is the current 12 I0?

problems

 27. || FIgurE p33.27 shows a 10 cm *
10 cm square bent at a 90� angle. 
A uniform 0.050 T magnetic field 
points downward at a 45� angle. 
What is the magnetic flux through 
the loop?

 28. || A 5.0-cm-diameter coil has 20 turns and a resistance of 
0.50 �. A magnetic field perpendicular to the coil is B =
0.020t + 0.010t 2, where B is in tesla and t is in seconds.

 a. Find an expression for the induced current I(t) as a function 
of time.

 b. Evaluate I at t = 5 s and t = 10 s.
 29. || A 20 cm * 20 cm square loop has a resistance of 0.10 �. A 

magnetic field perpendicular to the loop is B = 4t - 2t 2, where 
B is in tesla and t is in seconds. What is the current in the loop at 
t = 0.0 s, t = 1.0 s, and t = 2.0 s?

 30. || A 100-turn, 2.0-cm-diameter coil is at rest in a horizontal plane. 
A uniform magnetic field 60� away from vertical increases from 
0.50 T to 1.50 T in 0.60 s. What is the induced emf in the coil?

 31. || A 100-turn, 8.0-cm-diameter coil is made of 0.50-mm-diameter 
copper wire. A magnetic field is parallel to the axis of the coil. At 
what rate must B increase to induce a 2.0 A current in the coil?

 32. || A circular loop made from a flexible, conducting wire is 
shrinking. Its radius as a function of time is r = r0e-bt. The loop 
is perpendicular to a steady, uniform magnetic field B. Find an 
expression for the induced emf in the loop at time t.

 33. || A 10 cm * 10 cm square loop lies in the xy-plane. The mag-
netic field in this region of space is B = (0.30t in + 0.50t 2 kn) T, 
where t is in s. What is the emf induced in the loop at (a) t = 0.5 s 
and (b) t = 1.0 s?

 34. || A 20 cm * 20 cm square loop of wire lies in the xy-plane 
with its bottom edge on the x-axis. The resistance of the loop 
is 0.50 �. A magnetic field parallel to the z-axis is given
by B = 0.80y2t, where B is in tesla, y in meters, and t in 
seconds. What is the size of the induced current in the loop 
at t = 0.50 s?

 35. ||| A 2.0 cm * 2.0 cm square loop of wire with resistance 
0.010 � has one edge parallel to a long straight wire. The near 
edge of the loop is 1.0 cm from the wire. The current in the wire is 
increasing at the rate of 100 A/s. What is the current in the loop?

 36. ||| The rectangular loop in FIg-

urE p33.36 has 0.020 � resistance. 
What is the induced current in the 
loop at this instant?

 37. || FIgurE p33.37 shows a 4.0-cm-diameter loop with resistance 
0.10 � around a 2.0-cm-diameter solenoid. The solenoid is 
10 cm long, has 100 turns, and carries the current shown in the 
graph. A positive current is cw when seen from the left. Find the 
current in the loop at (a) t = 0.5 s, (b) t = 1.5 s, and (c) t = 2.5 s.

 38. ||| FIgurE p33.38 shows a 1.0-cm-diameter loop with R = 0.50 �  
inside a 2.0-cm-diameter solenoid. The solenoid is 8.0 cm long, 
has 120 turns, and carries the current shown in the graph. A 
positive current is cw when seen from the left. Determine the 
current in the loop at t = 0.010 s.

 39. || FIgurE p33.39 shows two 20-turn coils tightly wrapped on the 
same 2.0-cm-diameter cylinder with 1.0-mm-diameter wire. 
The current through coil 1 is shown in the graph. Determine the 
current in coil 2 at (a) t = 0.05 s and (b) t = 0.25 s. A positive 
current is into the page at the top of a loop. Assume that the mag-
netic field of coil 1 passes entirely through coil 2.

 40. ||| A 50-turn, 4.0-cm-diameter coil with R = 0.50 �  surrounds 
a 2.0-cm-diameter solenoid. The solenoid is 20 cm long and 
has 200 turns. The 60 Hz current through the solenoid is Isol =
(0.50 A)sin(2pft). Find an expression for Icoil, the induced cur-
rent in the coil as a function of time.

 41. || A loop antenna, such as is used on older televisions to pick 
up UHF broadcasts, is 25 cm in diameter. The plane of the loop 
is perpendicular to the oscillating magnetic field of a 150 MHz 
electromagnetic wave. The magnetic field through the loop is 
B = (20 nT)sin vt.
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 a. What is the maximum emf induced in the antenna?
 b. What is the maximum emf if the loop is turned 90� to be 

perpendicular to the oscillating electric field?
 42. || A 40-turn, 4.0-cm-diameter coil with R = 0.40 � surrounds 

a 3.0-cm-diameter solenoid. The solenoid is 20 cm long and 
has 200 turns. The 60 Hz current through the solenoid is I =
I0 sin(2pft). What is I0 if the maximum induced current in the 
coil is 0.20 A?

 43. | Electricity is distributed from electrical substations to neigh-
borhoods at 15,000 V. This is a 60 Hz oscillating (AC) voltage. 
Neighborhood transformers, seen on utility poles, step this 
voltage down to the 120 V that is delivered to your house.

 a. How many turns does the primary coil on the transformer 
have if the secondary coil has 100 turns?

 b. No energy is lost in an ideal transformer, so the output power 
Pout from the secondary coil equals the input power Pin to the 
primary coil. Suppose a neighborhood transformer delivers 
250 A at 120 V. What is the current in the 15,000 V line from 
the substation?

 44. ||| A small, 2.0-mm-diameter circular loop with R = 0.020 �  
is at the center of a large 100-mm-diameter circular loop. Both 
loops lie in the same plane. The current in the outer loop changes 
from +1.0 A to -1.0 A in 0.10 s. What is the induced current 
in the inner loop?

 45. || The square loop shown in FIgurE p33.45 moves into a 0.80 T 
magnetic field at a constant speed of 10 m/s. The loop has a 
resistance of 0.10 �, and it enters the field at t = 0 s.

 a. Find the induced current in the loop as a function of time. 
Give your answer as a graph of I versus t from t = 0 s to 
t = 0.020 s.

 b. What is the maxi-
mum current? What 
is the position of the 
loop when the cur-
rent is maximum?

 46. || The L-shaped conductor in FIgurE p33.46 moves at 10 m/s 
across a stationary L-shaped conductor in a 0.10 T magnetic field. 
The two vertices overlap, so 
that the enclosed area is zero, 
at t = 0 s. The conductor has 
a resistance of 0.010 ohms per 
meter.

 a. What is the direction of 
the induced current?

 b. Find expressions for the 
induced emf and the in-
duced current as functions 
of time.

 c. Evaluate E and I at 
t = 0.10 s.

 47. || A 4.0-cm-long slide wire moves outward with a speed of 
100 m/s in a 1.0 T magnetic field. (See Figure 33.26.) At the 
instant the circuit forms a 4.0 cm * 4.0 cm square, with R =  
0.010 �  on each side, what are

 a. The induced emf?
 b. The induced current?
 c. The potential difference between the two ends of the moving 

wire?

 48. || A 20-cm-long, zero-resistance slide wire moves outward, 
on zero-resistance rails, at a steady speed of 10 m/s in a 0.10 T 
magnetic field. (See Figure 33.26.) On the opposite side, a 1.0 �  
carbon resistor completes the circuit by connecting the two rails. 
The mass of the resistor is 50 mg.

 a. What is the induced current in the circuit?
 b. How much force is needed to pull the wire at this speed?
 c. If the wire is pulled for 10 s, what is the temperature increase 

of the carbon? The specific heat of carbon is 710 J/kg K.
 49. || Your camping buddy has an idea for a light to go inside your 

tent. He happens to have a powerful (and heavy!) horseshoe mag-
net that he bought at a surplus store. This magnet creates a 0.20 T 
field between two pole tips 10 cm apart. His idea is to build the 
hand-cranked generator shown in FIgurE p33.49. He thinks you can 
make enough current to fully light a 1.0 � lightbulb rated at 4.0 W. 
That’s not super bright, but it should be plenty of light for routine 
activities in the tent.

 a. Find an expression for the induced current as a function of 
time if you turn the crank at frequency f. Assume that the 
semicircle is at its highest point at t = 0 s.

 b. With what frequency will you have to turn the crank for the 
maximum current to fully light the bulb? Is this feasible?

 50. | The 10-cm-wide, zero-resistance slide wire shown in 
FIgurE p33.50 is pushed toward the 2.0 �  resistor at a steady 
speed of 0.50 m/s. The magnetic field strength is 0.50 T.

 a. How big is the pushing force?
 b. How much power does the pushing force supply to the wire?
 c. What are the direction and magnitude of the induced current?
 d. How much power is dissipated in the resistor?
 51. || One way to determine a magnetic field strength is to measure 

the emf induced in a rotating coil. To calibrate a large magnet 
in your laboratory, you attach a 2.0-cm-diameter, 100-turn coil 
to the end of a motor-driven shaft, place the coil between the 
pole tips of the magnet, and rotate it at different frequencies. 
The emf oscillates, so you use a voltmeter that measures its 
amplitude. The table shows your data:

Frequency (Hz) Voltage (mV)

10  380

15  610

20  780

25 1020

30 1160

  Use an appropriate graph of the data to determine the magnetic 
field strength.

 52. || You’ve decided to make the magnetic projectile launcher 
shown in FIgurE p33.52 for your science project. An aluminum 
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bar of length l slides along metal rails through a magnetic field B. 
The switch closes at t = 0 s, while the bar is at rest, and a battery 
of emf Ebat starts a current flowing around the loop. The battery 
has internal resistance r. The resistance of the rails and the bar 
are effectively zero.

 a. Show that the bar reaches a terminal speed vterm, and find an 
expression for vterm.

 b. Evaluate vterm for Ebat = 1.0 V, r = 0.10 �, l = 6.0 cm, and 
B = 0.50 T.

 53. ||| A slide wire of length l, mass m, and resistance R slides down 
a U-shaped metal track that is tilted upward at angle u. The track 
has zero resistance and no friction. A vertical magnetic field B 
fills the loop formed by the track and the slide wire.

 a. Find an expression for the induced current I when the slide 
wire moves at speed v.

 b. Show that the slide wire reaches a terminal speed vterm, and 
find an expression for vterm.

 54. || FIgurE p33.54 shows a U-shaped conducting rail that is oriented 
vertically in a horizontal magnetic field. The rail has no electric 
resistance and does not move. A slide wire with mass m and resis-
tance R can slide up and down without friction while maintaining 
electrical contact with the rail. The slide wire is released from rest.

 a. Show that the slide wire reaches a terminal speed vterm, and 
find an expression for vterm.

 b. Determine the value of vterm if l = 20 cm, m = 10 g, 
R = 0.10 �, and B = 0.50 T.

 55. || Experiments to study vision often need to track the movements 
of a subject’s eye. One way of doing so is to have the subject sit in 
a magnetic field while wearing special contact lenses with a coil 
of very fine wire circling the edge. A current is induced in the coil 
each time the subject rotates his eye. Consider the experiment of 
FIgurE p33.55 in which a 20-turn, 6.0-mm-diameter coil of wire 
circles the subject’s cornea while a 1.0 T magnetic field is directed 
as shown. The subject begins by looking straight ahead. What emf 
is induced in the coil if the subject shifts his gaze by 5� in 0.20 s?

 56. || A 10-turn coil of wire having a diameter of 1.0 cm and a resis-
tance of 0.20 � is in a 1.0 mT magnetic field, with the coil ori-
ented for maximum flux. The coil is connected to an uncharged 
1.0 mF capacitor rather than to a current meter. The coil is 
quickly pulled out of the magnetic field. Afterward, what is the 
voltage across the capacitor?
Hint: Use I = dq/dt to relate the net change of flux to the amount 
of charge that flows to the capacitor.

 57. ||| The magnetic field at one place on the earth’s surface is 
55 mT in strength and tilted 60� down from horizontal. A 
200-turn coil having a diameter of 4.0 cm and a resistance 
of 2.0 �  is connected to a 1.0 mF capacitor rather than to a 
current meter. The coil is held in a horizontal plane and the 
capacitor is discharged. Then the coil is quickly rotated 180� 
so that the side that had been facing up is now facing down. 
Afterward, what is the voltage across the capacitor? See the 
Hint in Problem 56.

 58. || The magnetic field inside a 4.0-cm-diameter superconducting 
solenoid varies sinusoidally between 8.0 T and 12.0 T at a fre-
quency of 10 Hz.

 a. What is the maximum electric field strength at a point 1.5 cm 
from the solenoid axis?

 b. What is the value of B at the instant E reaches its maximum 
value?

 59. || Equation 33.26 is an expression for the induced electric field 
inside a solenoid (r 6 R). Find an expression for the induced 
electric field outside a solenoid (r 7 R) in which the magnetic 
field is changing at the rate dB/dt.

 60. || A solenoid inductor has an emf of 0.20 V when the current 
through it changes at the rate 10.0 A/s. A steady current of 
0.10 A produces a flux of 5.0 mWb per turn. How many turns 
does the inductor have?

 61. || a.  What is the magnetic energy density at the center of a 
4.0-cm-diameter loop carrying a current of 1.0 A?

   b.  What current in a straight wire gives the magnetic energy 
density you found in part a at a point 2.0 cm from the wire?

 62. | MRI (magnetic resonance imaging) is a medical technique 
that produces detailed “pictures” of the interior of the body. 
The patient is placed into a solenoid that is 40 cm in diameter 
and 1.0 m long. A 100 A current creates a 5.0 T magnetic field 
inside the solenoid. To carry such a large current, the solenoid 
wires are cooled with liquid helium until they become supercon-
ducting (no electric resistance).

 a. How much magnetic energy is stored in the solenoid? 
Assume that the magnetic field is uniform within the solenoid 
and quickly drops to zero outside the solenoid.

 b. How many turns of wire does the solenoid have?
 63. | One possible concern with MRI (see Problem 62) is turning 

the magnetic field on or off too quickly. Bodily fluids are con-
ductors, and a changing magnetic field could cause electric cur-
rents to flow through the patient. Suppose a typical patient has a 
maximum cross-section area of 0.060 m2. What is the smallest 
time interval in which a 5.0 T magnetic field can be turned on or 
off if the induced emf around the patient’s body must be kept to 
less than 0.10 V?

 64. || FIgurE p33.64 shows the current through a 10 mH inductor. 
Draw a graph showing the potential difference �VL across the 
inductor for these 6 ms.

 65. || FIgurE p33.65 shows the potential difference across a 50 mH 
inductor. The current through the inductor at t = 0 s is 0.20 A. 
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Draw a graph showing the current through the inductor from 
t = 0 s to t = 40 ms.

 66. || The current through inductance L is given by I = I0 sin vt.
 a. Find an expression for the potential difference �VL across 

the inductor.
 b. The maximum voltage across the inductor is 0.20 V when 

L = 50 mH and f = 500 kHz. What is I0?
 67. || The current through inductance L is given by I = I0e-t/t.
 a. Find an expression for the potential difference �VL across 

the inductor.
 b. Evaluate �VL at t = 0, 1, 2, and 3 ms if L = 20 mH, I0 =  

50 mA, and t = 1.0 ms.
 68. || An LC circuit is built with a 20 mH inductor and an 8.0 pF ca-

pacitor. The capacitor voltage has its maximum value of 25 V at 
t = 0 s.

 a. How long is it until the capacitor is first fully discharged?
 b. What is the inductor current at that time?
 69. || An LC circuit has a 10 mH inductor. The current has its maxi-

mum value of 0.60 A at t = 0 s. A short time later the capacitor 
reaches its maximum potential difference of 60 V. What is the 
value of the capacitance?

 70. || An electric oscillator is made with a 0.10 mF capacitor and a
1.0 mH inductor. The capacitor is initially charged to 5.0 V. 
What is the maximum current through the inductor as the circuit 
oscillates?

 71. ||| In recent years it has been possible to buy a 1.0 F capacitor. 
This is an enormously large amount of capacitance. Suppose you 
want to build a 1.0 Hz oscillator with a 1.0 F capacitor. You have 
a spool of 0.25-mm-diameter wire and a 4.0-cm-diameter plastic 
cylinder. How long must your inductor be if you wrap it with 
2 layers of closely spaced turns?

 72. || For your final exam in electronics, you’re asked to build an 
LC circuit that oscillates at 10 kHz. In addition, the maximum 
current must be 0.10 A and the maximum energy stored in the 
capacitor must be 1.0 * 10-5 J. What values of inductance and 
capacitance must you use?

 73. || The switch in FIgurE p33.73 has been in position 1 for a long 
time. It is changed to position 2 at t = 0 s.

 a. What is the maximum current through the inductor?
 b. What is the first time at which the current is maximum?

 74. || The 300 mF capacitor in FIgurE p33.74 is initially charged to 
100 V, the 1200 mF capacitor is uncharged, and the switches are 
both open.

 a. What is the maximum voltage to which you can charge the 
1200 mF capacitor by the proper closing and opening of the 
two switches?

 b. How would you do it? Describe the sequence in which you 
would close and open switches and the times at which you 
would do so. The 
first switch is closed 
at t = 0 s.

 75. | The switch in FIgurE p33.75 has been open for a long time. It is 
closed at t = 0 s.

 a. What is the current through the battery immediately after the 
switch is closed?

 b. What is the current through the battery after the switch has 
been closed a long time?

 76. || The switch in FIgurE p33.76 has been open for a long time. It is 
closed at t = 0 s. What is the current through the 20 �  resistor

 a. immediately after the switch is closed?
 b. after the switch has been closed a long time?
 c. immediately after the switch is reopened?

 77. || The switch in FIgurE p33.77 has been open for a long time. It is 
closed at t = 0 s.

 a. After the switch has been closed for a long time, what is the 
current in the circuit? Call this current I0.

 b. Find an expression for the current I as a function of time. 
Write your expression in terms of I0, R, and L.

 c. Sketch a current-versus-time graph from t = 0 s until the cur-
rent is no longer changing.

 78. || To determine the inductance of an unmarked inductor, you set 
up the circuit shown in FIgurE p33.78. After moving the switch 
from a to b at t = 0 s, you monitor the resistor voltage with an 
oscilloscope. Your data are as follows:

Time (Ms) Voltage (V)

 0 9.0

10 6.7

20 4.6

30 3.2

40 2.5

  Use an appropriate graph of the data to determine the inductance.
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 82. Let’s look at the details of eddy-current braking. A square loop, 
length l on each side, is shot with velocity v0 into a uniform mag-
netic field B. The field is perpendicular to the plane of the loop. 
The loop has mass m and resistance R, and it enters the field at 
t = 0 s. Assume that the loop is moving to the right along the 
x-axis and that the field begins at x = 0 m.

 a. Find an expression for the loop’s velocity as a function of time as 
it enters the magnetic field. You can ignore gravity, and you can 
assume that the back edge of the loop has not entered the field.

 b. Calculate and draw a graph of v over the interval 0 s … t …
0.04 s for the case that v0 = 10 m/s, l = 10 cm, m = 1.0 g, 
R = 0.0010 �, and B = 0.10 T. The back edge of the loop 
does not reach the field during this time interval.

 83. An 8.0 cm * 8.0 cm square loop is halfway into a magnetic field 
perpendicular to the plane of the loop. The loop’s mass is 10 g 
and its resistance is 0.010 �. A switch is closed at t = 0 s, caus-
ing the magnetic field to increase from 0 to 1.0 T in 0.010 s.

 a. What is the induced current in the square loop?
 b. With what speed is the loop “kicked” away from the mag-

netic field?
Hint: What is the impulse on the loop?

 84. A 2.0-cm-diameter solenoid is wrapped with 1000 turns per me-
ter. 0.50 cm from the axis, the strength of an induced electric 
field is 5.0 * 10-4 V/m. What is the rate dI/dt with which the 
current through the solenoid is changing?

 85. High-frequency signals are often transmitted along a coaxial cable, 
such as the one shown in FIgurE Cp33.85. For example, the cable TV 
hookup coming into your home is a coaxial cable. The signal is car-
ried on a wire of radius r1 while the outer conductor of radius r2 is 
grounded. A soft, flexible insulating material fills the space between 
them, and an insulating plastic coating goes around the outside.

 a. Find an expression for the inductance per meter of a coaxial 
cable. To do so, consider 
the flux through a rectangle 
of length l that spans the 
gap between the inner and 
outer conductors.

 b. Evaluate the inductance 
per meter of a cable 
having r1 = 0.50 mm and 
r2 = 3.0 mm.

Challenge problems

 79. The metal wire in FIgurE Cp33.79 moves with speed v parallel to 
a straight wire that is carrying current I. The distance between 
the two wires is d. Find an expression for the potential difference 
between the two ends of the moving wire.

 80. A rectangular metal loop with 0.050 �  resistance is placed next 
to one wire of the RC circuit shown in FIgurE Cp33.80. The capac-
itor is charged to 20 V with the polarity shown, then the switch is 
closed at t = 0 s.

 a. What is the direction of current in the loop for t 7 0 s?
 b. What is the current in the loop at t = 5.0 ms? Assume that 

only the circuit wire next to the loop is close enough to pro-
duce a significant magnetic field.

 81. A closed, square loop is formed with 40 cm of wire having 
R = 0.10 �, as shown in FIgurE Cp33.81. A 0.50 T magnetic 
field is perpendicular to the loop. At t = 0 s, two diagonally op-
posite corners of the loop begin to move apart at 0.293 m/s.

 a. How long does it take the loop to collapse to a straight line?
 b. Find an expression for the induced current I as a function 

of time while the loop is collapsing. Assume that the sides 
remain straight lines during the collapse.

 c. Evaluate I at four 
or five times during 
the collapse, then 
draw a graph of I 
versus t.
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Stop to thINk ANSWErS

Stop to Think 33.1: d. According to the right-hand rule, the magnetic 
force on a positive charge carrier is to the right.

Stop to Think 33.2: No. The charge carriers in the wire move paral-
lel to B

u

. There’s no magnetic force on a charge moving parallel to a 
magnetic field.

Stop to Think 33.3: Fb � Fd + Fa � Fc. F
u

a is zero because 
there’s no field. F

u

c is also zero because there’s no current around the 
loop. The charge carriers in both the right and left edges are pushed 
to the bottom of the loop, creating a motional emf but no current. The 
currents at b and d are in opposite directions, but the forces on the seg-
ments in the field are both to the left and of equal magnitude.

Stop to Think 33.4: Clockwise. The wire’s magnetic field as it passes 
through the loop is into the page. The flux through the loop decreases 

into the page as the wire moves away. To oppose this decrease, the 
induced magnetic field needs to point into the page.

Stop to Think 33.5: d. The flux is increasing into the loop. To op-
pose this increase, the induced magnetic field needs to point out of the 
page. This requires a ccw induced current. Using the right-hand rule, 
the magnetic force on the current in the left edge of the loop is to the 
right, away from the field. The magnetic forces on the top and bottom 
segments of the loop are in opposite directions and cancel each other.

Stop to Think 33.6: b or f. The potential decreases in the direction of 
increasing current and increases in the direction of decreasing current.

Stop to Think 33.7: Tc + Ta + Tb. t = L/R, so smaller total resis-
tance gives a larger time constant. The parallel resistors have total 
resistance R/2. The series resistors have total resistance 2R.



Electromagnetic Waves
You’ll learn that Maxwell’s equations predict 
the existence of self-sustaining electromagnetic 
waves that travel through space without the pres-
ence of charges or currents.
■	 E

u

 and B
u

 are perpendicular to each other and 
to the direction of travel.

■	 In vacuum vem = 1/1P0 m0 = c, the speed of 
light.

Electromagnetic waves are often polarized, 
meaning that the electric field always oscillates 
in the same plane. You’ll learn to calculate the 
intensity of light transmitted through a polar-
izing filter.

34

A thin section of molar teeth 
seen in polarized light. The 
rainbow of colors arises because 
different biological materials 
have different effects on the 
light’s polarization.

Electromagnetic Fields 
and Waves

 Looking Ahead The goal of Chapter 34 is to study the properties of electromagnetic fields and waves.

 Looking Back
Section 27.4 Gauss’s law
Section 32.6 Ampère’s law
Section 33.5 Faraday’s law

Maxwell’s Theory of Electromagnetism
All of electricity and magnetism is based on four equations  
for the fields, called Maxwell’s equations, and one 
equation that tells us how charges respond to fields.
Gauss’s law: Charged particles create electric fields.
Faraday’s law: Electric fields can also be created by 
changing magnetic fields.
Gauss’s law for magnetism: There are no isolated 
magnetic poles.
Ampère-Maxwell law: Magnetic fields can be created 
by currents or by changing electric fields.

Electric and magnetic 
fields exert forces on 
charged particles. When 
combined, the net force 
on charge q is called the 
Lorentz force law:

F
u

= q (E
u

+ v  

u
* B

u

)Induced E

Increasing B
r

r

�

E

q

r

Increasing E

Induced B

r

r

B

I

r

No light is trans
mitted through 
crossed polarizers 
whose axes are 
perpendicular to 
each other.

vem � c

B

B

E

E

r

r

r

r

Field Transformations
Electric and magnetic fields turn out 
not to be separate, independent entities. 
Whether the field at a point is electric 
or magnetic depends on your motion 
relative to the charges and currents.

You’ll learn how to 
transform the fields 
measured in refer
ence frame A to a 
second frame B mov
ing relative to A.

 Looking Back
Section 4.4 Relative motion

y

xA

y

What are the
fields of this
charge?

x

vBA

B

r

�
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34.1 E or B? It Depends on Your Perspective
It seems clear, after the last nine chapters, that charges create electric fields and that 
moving charges, or currents, create magnetic fields. But consider FIgurE 34.1a, where 
Brittney, carrying charge q, runs past Alec with velocity v  

u
. Alec sees a moving 

charge, and he knows that this charge creates a magnetic field. But from Brittney’s 
perspective, the charge is at rest. Stationary charges don’t create magnetic fields, so 
Brittney claims that the magnetic field is zero. Is there, or is there not, a magnetic 
field?

Or what about the situation in FIgurE 34.1b? Now Brittney is carrying the charge 
through a magnetic field that Alec has created. Alec sees a charge moving in a mag-
netic field, so he knows there’s a force F

u

= qv  

u
* B

u

 on the charge. But for Brittney the 
charge is still at rest. Stationary charges don’t experience magnetic forces, so Brittney 
claims that F

u

= 0
u

.
Now, we may be a bit uncertain about magnetic fields, but surely there can be no 

disagreement over forces. After all, forces cause observable and measurable effects, 
so Alec and Brittney should be able to agree on whether or not the charge experi-
ences a force. Further, if Brittney runs with constant velocity, then both Alec and 
Brittney are in inertial reference frames. You learned in Chapter 4 that these are 
the reference frames in which Newton’s laws are valid, so we can’t say that there’s 
anything abnormal or unusual about Alec’s and Brittney’s observations. We have a 
paradox.

This paradox has arisen because magnetic fields and forces depend on velocity, but 
we haven’t looked at the issue of velocity with respect to what or velocity as measured 
by whom. The resolution of this paradox will lead us to the conclusion that E

u

 and B
u

 
are not, as we’ve been assuming, separate and independent entities. They are closely 
intertwined.

reference Frames
We introduced reference frames and relative motion in Chapter 4. To remind you, 
FIgurE 34.2 shows two reference frames labeled A and B. You can think of these as 
the reference frames in which Alec and Brittney, respectively, are at rest. Frame B 
moves with velocity v  

u

BA with respect to frame A. That is, an observer (Alec) at rest in 
A sees the origin of B (Brittney) go past with velocity v  

u

BA. Of course, Brittney would 
say that Alec has velocity v  

u

AB = -v  

u

BA relative to her reference frame. There’s no 
implication that either frame is “at rest.” All we know is that the two reference frames 
move relative to each other. We will stipulate that both reference frames are inertial 
reference frames, so v  

u

BA is constant.
FIgurE 34.3 shows a charged particle C. Experimenters in frame A measure the mo-

tion of the particle and find that its velocity relative to frame A is v  

u

CA. At the same 
instant, experimenters in B find that the particle’s velocity relative to frame B is v  

u

CB. 
In Chapter 4, we found that v  

u

CA and v  

u

CB are related by

 v  

u

CA = v  

u

CB + v  

u

BA (34.1)

Equation 34.1, the Galilean transformation of velocity, tells us that the velocity of the 
particle relative to reference frame A is its velocity relative to frame B plus (vector 
addition!) the velocity of frame B relative to frame A.

Suppose the charged particle in Figure 34.3 is accelerating, as it would if acted 
on by a net force. How does its acceleration a

u

CA, as measured by experimenters in 
frame A, compare to the acceleration a

u

CB measured in frame B? We can answer this 
question by taking the time derivative of Equation 34.1:

 
dv  

u

CA

dt
=

dv  

u

CB

dt
+

dv  

u

BA

dt

(a)
�

Charge q moves with velocity v relative to Alec.r

q

Alec

Brittney

vr

vr

Alec

Brittney

(b) F
r

B
r

Charge q moves through a magnetic field
established by Alec.

�

FIgurE 34.1 Brittney carries a charge 
past Alec.

vBA

B

y

x

A

y

x

Reference frame B moves with
velocity vBA relative to frame A.r

r

FIgurE 34.2 Reference frames A and B.

vBA
r

B

y

x

A

y

C

x

The velocity of this particle is
measured to be vCA in frame A
and vCB in frame B.r

r

FIgurE 34.3 The particle’s velocity is 
measured in both frame A and frame B.
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The derivatives of v  

u

CA and v  

u

CB are the particle’s accelerations a
u

CA and a
u

CB in frames A 
and B, respectively. But v  

u

BA is a constant velocity, so dv  

u

BA/dt = 0
u

. Thus the Galilean 
transformation of acceleration is simply

 a
u

CA = a
u

CB (34.2)

Brittney and Alec may measure different positions and velocities for a particle, 
but they agree on its acceleration. And if they agree on its acceleration, they must, by 
using Newton’s second law, agree on the force acting on the particle. That is, experi-
menters in all inertial reference frames agree about the force acting on a particle. 
This conclusion is the key to understanding how different experimenters see electric 
and magnetic fields.

The Transformation of Electric and Magnetic Fields
Imagine that Alec has measured the electric field E

u

A and the magnetic field B
u

A in 
reference frame A. Our investigations thus far give us no reason to think that Brittney’s 
measurements of the fields will differ from Alec’s. After all, it seems like the fields are 
just “there,” waiting to be measured. Thus our expectation is that Brittney, in frame B, 
will measure E

u

B = E
u

A and B
u

B = B
u

A.
To find out if this is true, Alec establishes a region of space with a uniform 

magnetic field B
u

A but no electric field (E
u

A = 0
u

). Then, as shown in FIgurE 34.4, 
he shoots a positive charge q through the magnetic field. At an instant when q is 
moving horizontally with velocity v  

u

CA, Alec observes that the particle experiences force 
F
u

A = q(E
u

A + v  

u

CA * B
u

A) = qv  

u

CA * B
u

A. The direction of the force, given by the right-
hand rule, is straight up.

Suppose that Brittney, in frame B, runs alongside the charge with the same 
velocity: v  

u

BA = v  

u

CA. To her, in frame B, the charge is at rest. Nonetheless, because 
both experimenters must agree about forces, Brittney must observe the same upward 
force on the charge that Alec observed. But there is no magnetic force on a stationary 
charge, so how can this be?

Because Brittney sees a stationary charge being acted on by an upward force, her only 
possible conclusion is that there is an upward-pointing electric field. After all, the elec-
tric field was initially defined in terms of the force experienced by a stationary charge. 
If the electric field in frame B is E

u

B, then the force on the charge is F
u

B = qE
u

B. But we 
know that F

u

B = F
u

A, and Alec has already measured F
u

A = qv  

u

CA * B
u

A = qv 
u

BA * B
u

A. 
Thus we’re led to the conclusion that

 E
u

B = v  

u

BA * B
u

A (34.3)

As Brittney runs past Alec, she finds that at least part of Alec’s magnetic field has be-
come an electric field! Whether a field is seen as “electric” or “magnetic” depends 
on the motion of the reference frame relative to the sources of the field.

FIgurE 34.5 shows the situation from Brittney’s perspective. There is a force on 
charge q, the same force that Alec measured in Figure 34.4, but Brittney attributes this 
force to an electric field rather than a magnetic field. (Brittney needs a moving charge 
to measure magnetic forces, so we’ll need a different experiment to see whether or not 
there’s a magnetic field in frame B.)

More generally, suppose that an experimenter in reference frame A creates both an 
electric field E

u

A, and a magnetic field B
u

A. A charge moving in A with velocity v  

u

CA 
experiences the force F

u

A = q(E
u

A + v  

u

CA * B
u

A) shown in FIgurE 34.6a on the next page. 
The charge is at rest in a reference frame B that moves with velocity v  

u

BA = v  

u

CA so the 
force in B can be due only to an electric field: F

u

B = qE
u

B. Equating the forces, because 
experimenters in all inertial reference frames agree about forces, we find that

 E
u

B =  E
u

A + v  

u

BA * B
u

A (34.4)

�

BA

r

FA � qvCA � BA

r r r

The situation in frame A

In A, the force on q is
due to a magnetic field.

q vCA
r

FIgurE 34.4 A charged particle moves 
through a magnetic field in reference 
frame A and experiences a magnetic 
force.

�

FB � qEB

r r

BB � ?
r

The situation in frame B

In B, the force on q is
due to an electric field.

q

In B, there’s 
an electric field
EB � vBA � BA.
r r r

The charge is at
rest in B.

FIgurE 34.5 In frame B, the charge 
experiences an electric force.
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Equation 34.4 transforms the electric and magnetic fields measured in reference 
frame A into the electric field measured in a frame B that moves relative to A with 
velocity v  

u

BA. FIgurE 34.6b shows the outcome. Although we used a charge as a probe to 
find Equation 34.4, the equation is strictly about fields in different reference frames; it 
makes no mention of charges.

EA

r

(a) The electric and magnetic 
fields in frame A

BA

r

vCA
r�

FA � q(EA � vCA � BA)
r r rr

�

FB � qEB

r r

EB

r

vCB � 0r r

(b) The electric field in frame B,
where the charged particle is at rest

FIgurE 34.6 A charge in reference frame A experiences electric and magnetic forces. The 
charge experiences the same force in frame B, but it is due only to an electric field.

ExAMPLE 34.1  Transforming the electric field
A laboratory experimenter has created the parallel electric and magnetic fields 
E
u

= 10,000 in V/m and B
u

= 0.10 in T. A proton is shot into these fields with velocity 
v  

u
= 1.0 * 105 jn m/s. What is the electric field in the proton’s reference frame?

MoDEL Let the laboratory be reference frame A and a frame moving with the proton be 
reference frame B. The relative velocity is v  

u

BA = 1.0 * 105 jn m/s.

VIsuALIzE FIgurE 34.7 shows the geometry. The laboratory fields, now labeled A, are parallel 
to the x-axis while v  

u

BA is in the y-direction. Thus v  

u

BA * B
u

A points in the negative z-direction.

soLVE v  

u

BA and B
u

A are perpendicular, so the magnitude of v  

u

BA * B
u

A is (1.0 * 105 m/s) 
(0.10 T)(sin 90�) = 10,000 V/m. Thus the electric field in frame B, the proton’s frame, is

  E
u

B = E
u

A + v  

u

BA * B
u

A = (10,000 in - 10,000 kn) V/m

  = (14,000 V/m, 45� below the x@axis)

AssEss The force on the proton is the same in both reference frames. But in the proton’s 
reference frame that force is due entirely to an electric field tilted 45� below the x-axis.

x

z

y

BA

r

EA

r

vBA
r

EB � EA � vBA � BA

r r rr
vBA � BA
r r

FIgurE 34.7 Finding electric field E
u

B.

To find a transformation equation for the magnetic field, FIgurE 34.8a shows charge 
q at rest in reference frame A. Alec measures the fields of a stationary point charge, 
which we know are

 E
u

A =
1

4pP0
 
q

r2 rn   B
u

A = 0
u

What are the fields at this point in space as measured by Brittney in frame B? We can 
use Equation 34.4 to find E

u

B. Because B
u

A = 0
u

, the electric field in frame B is

 E
u

B = E
u

A =
1

4pP0
 
q

r2 rn (34.5)

In other words, Coulomb’s law is still valid in a frame in which the point charge is moving.
But Brittney also measures a magnetic field B

u

B, because, as seen in FIgurE 34.8b, 
charge q is moving in reference frame B. The magnetic field of a moving point charge 
is given by the Biot-Savart law:

 B
u

B =
m0

4p
 
q

r2 v  

u

CB * rn = -
m0

4p
 
q

r2 v  

u

BA * rn (34.6)

where we used the fact that the charge’s velocity in frame B is v  

u

CB = -v  

u

BA.
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It will be useful to rewrite Equation 34.6 as

 B
u

B = -
m0

4p
 
q

r2 v  

u

BA * rn = -P0m0v  

u

BA * 1 1

4pP0
 
q

r2 rn2
The expression in parentheses is simply E

u

A, the electric field in frame A, so we have

 B
u

B = -P0m0v  

u

BA * E
u

A (34.7)

Equation 34.7 expresses the remarkable idea that the Biot-Savart law for the 
magnetic field of a moving point charge is nothing other than the Coulomb 
electric field of a stationary point charge transformed into a moving reference 
frame.

We will assert without proof that if the experimenters in frame A create a magnetic 
field B

u

A in addition to the electric field E
u

A, then the magnetic field B
u

B measured in 
frame B is

 B
u

B = B
u

A - P0m0v  

u

BA * E
u

A (34.8)

This is a general transformation matching Equation 34.4 for the electric field E
u

B.
Notice something interesting. The constant m0 has units of T m/A; those of P0 are 

C2/N m2. By definition, 1 T = 1 N/A m and 1 A = 1 C/s. Consequently, the units of 
P0m0 turn out to be s2/m2. In other words, the quantity 1/1P0m0, with units of m/s, is 
a speed. But what speed? The constants are well known from measurements of static 
electric and magnetic fields, so we can compute

 
12P0m0

=
12(8.85 * 10-12 C2/N m2)(1.26 * 10-6 T m/A)

= 3.00 * 108 m/s

Of all the possible values you might get from evaluating 1/1P0m0, what are the 
chances it equals c, the speed of light? It is not a random coincidence. In Section 34.5 
we’ll show that electric and magnetic fields can exist as a traveling wave, and that the 
wave speed is predicted by the theory to be none other than

 vem = c =
12P0m0

 (34.9)

For now, we’ll go ahead and write P0m0 = 1/c2. With this, our galilean field trans-
formation equations are

 E
u

B = E
u

A + v  

u

BA * B
u

A  
(34.10)

 B
u

B = B
u

A -
1

c2 v  

u

BA * E
u

A

where v  

u

BA is the velocity of reference frame B relative to frame A and where, to reiter-
ate, the fields are measured at the same point in space by experimenters at rest in each 
reference frame.

NoTE  We’ll see shortly that these equations are valid only if vBA V c. 

We can no longer believe that electric and magnetic fields have a separate, indepen-
dent existence. Changing from one reference frame to another mixes and rearranges 
the fields. Different experimenters watching an event will agree on the outcome, such 
as the deflection of a charged particle, but they will ascribe it to different combinations 
of fields. Our conclusion is that there is a single electromagnetic field that presents 
different faces, in terms of E

u

 and B
u

, to different viewers.

B

y

x

A

y

x

vBA
r

�

EA

r

BA � 0
r r

r

In frame A, the static charge creates
an electric field but no magnetic field.

Charge q at rest in A

(a)

B

y

x

�

EB

r

BB

r

r

In frame B, the moving charge creates
both an electric and a magnetic field.

(b)

vCB � �vBA
r r

q

FIgurE 34.8 A charge at rest in frame 
A is moving in frame B and creates a 
magnetic field B

u

B.
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Fields seen in frame A

Fields due to q1

vBA � vCA
rr

EA

r

BA

r

vCA
r
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r

r

q1

q2

�

�
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r r

vCB � 0r r

vCB� 0r r

B

y

x

Fields seen in frame B

EB

r

q1

q2

�

�

Fields due to q1

FIgurE 34.10 Two charges moving 
parallel to each other.

soLVE The fields in the laboratory reference frame are E
u

A = 0
u

 
and B

u

A = 1.0 jn T. Transforming the fields to the rocket’s refer-
ence frame gives first, for the electric field,

 E
u

B = E
u

A + v  

u

BA * B
u

A = v  

u

BA * B
u

A

From the right-hand rule, v  

u

BA * B
u

A is out of the page, in the
z-direction. v  

u

BA and B
u

A are perpendicular, so

 E
u

B = vBABAkn = 1000 kn V/m

Similarly, for the magnetic field,

 B
u

B = B
u

A -
1

c2 v  

u

BA * E
u

A = B
u

A = 1.0 jn T

Thus the rocket scientists measure

 E
u

B = 1000 kn V/m and B
u

B = 1.0 jn T

ExAMPLE 34.2 Two views of a magnet
The 1.0 T field of a large laboratory magnet points straight up. A 
rocket flies past the laboratory, parallel to the ground, at 1000 m/s. 
What are the fields between the magnet’s pole tips as measured—
very quickly!—by scientists on the rocket?

MoDEL Let the laboratory be reference frame A and a frame mov-
ing with the rocket be reference frame B.

VIsuALIzE FIgurE 34.9 shows the magnet and establishes the coor-
dinate systems. The relative velocity is v  

u

BA = 1000 in m/s.

FIgurE 34.9 The rocket and the magnet.

Almost relativity
FIgurE 34.10a shows two positive charges moving side by side through frame A with 
velocity v  

u

CA. Charge q1 creates an electric field and a magnetic field at the position of 
charge q2. These are

 E
u

A =
1

4pP0
 
q1

r2  jn and B
u

A =
m0

4p
 
q1vCA

r2  kn

where r is the distance between the charges, and we’ve used rn = jn  and v  

u
* rn = vkn.

How are the fields seen in frame B, which moves with v  

u

BA = v  

u

CA and in which the 
charges are at rest? From the field transformation equations,

  B
u

B = B
u

A -
1

c2 v  

u

BA * E
u

A =
m0

4p
 
q1vCA

r2  kn -
1

c2 1vCA in *
1

4pP0
 
q1

r2  jn2
  =

m0

4p
 
q1vCA

r2  11 -
1

P0m0c
2 2kn  

(34.11)

where we used in * jn = kn. But P0m0 = 1/c2, so the term in parentheses is zero and thus 
B
u

B = 0
u

. This result was expected because q1 is at rest in frame B and shouldn’t create 
a magnetic field.

The transformation of the electric field is similar:

  E
u

B = E
u

A + v  

u

BA * B
u

A =
1

4pP0
 
q1

r2  jn + vBA in *
m0

4p
 
q1vCA

r2  kn

 (34.12)

  =
1

4pP0
 
q1

r2  (1 - P0m0  vBA 

2 )jn =
1

4pP0
 
q1

r2  11 -
vBA 

2

c2 2 jn
where we used in * kn = - jn, v  

u

CA = v  

u

BA, and P0m0 = 1/c2. FIgurE 34.10b shows the 
charges and fields in frame B.
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But now we have a problem. In frame B where the two charges are at rest and sepa-
rated by distance r, the electric field due to charge q1 should be simply

 E
u

B =
1

4pP0
 
q1

r2  jn

The field transformation equations have given a “wrong” result for the electric field E
u

B.
It turns out that the field transformations of Equations 34.10, which are based on 

Galilean relativity, aren’t quite right. We would need Einstein’s relativity—a topic 
that we’ll take up in Chapter 36—to give the correct transformations. However, the 
Galilean field transformations in Equations 34.10 are equivalent to the relativistically 
correct transformations when v V c, in which case v 2/c2

V 1. You can see that the 
two expressions for E

u

B do, in fact, agree if vBA 

2 /c2 can be neglected.
Thus our use of the field transformation equations has an additional rule: Set v 2/c2 

to zero. This is an acceptable rule for speeds v 6 107 m/s. Even with this limitation, 
our investigation has provided us with a deeper understanding of electric and magnetic 
fields.

Stop to think 34.1  The first diagram shows electric and magnetic fields in reference 
frame A. Which diagram shows the fields in frame B?

BA

r

EA

r
x

z

y

vBA
r

x

z

y

A

B

(a) (b)

(c) (d) (e)

EB

r
EB

r

EB

r

EB

r
EB

r

BB

r

BB

r

BB

r
BB

r

BB

r

x

z

y

x

z

y

x

z

y

x

z

y

x

z

y

Faraday’s Law revisited
The transformation of electric and magnetic fields gives us new insight into Faraday’s 
law. FIgurE 34.11a on the next page shows a reference frame A in which a conduct-
ing loop is moving with velocity v  

u
 into a magnetic field. You learned in Chapter 33 

that the magnetic field exerts a magnetic force F
u

B = qv  

u
* B

u

= (qvB, upward) on the 
charges in the leading edge of the wire, creating an emf E = vLB and an induced cur-
rent in the loop. We called this a motional emf.

How do things appear to an experimenter who is in frame B that moves with the 
loop at velocity v  

u

BA = v  

u
 and for whom the loop is at rest? We have learned the im-

portant lesson that experimenters in different inertial reference frames agree about the 
outcome of any experiment; hence an experimenter in frame B agrees that there is an 
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induced current in the loop. But the charges are at rest in frame B so there cannot be 
any magnetic force on them. How is the emf established in frame B?

We can use the field transformations to determine that the fields in frame B are

  E
u

B = E
u

A + v  

u
* B

u

A = v  

u
* B

u

  B
u

B = B
u

A -
1

c2 v  

u
* E

u

A = B
u

 
(34.13)

where we used the fact that E
u

A = 0
u

 in frame A.
An experimenter in the loop’s frame sees not only a magnetic field but also 

the electric field E
u

B shown in FIgurE 34.11b. The magnetic field exerts no force on
the charges, because they’re at rest in this frame, but the electric field does. The 
force on charge q is F

u

E = qE
u

B = qv  

u
* B

u

= (qvB, upward). This is the same force as 
was measured in the laboratory frame, so it will cause the same emf and the same 
current. The outcome is identical, as we knew it had to be, but the experimenter in 
B attributes the emf to an electric field whereas the experimenter in A attributes it 
to a magnetic field.

Field E
u

B is, in fact, the induced electric field of Faraday’s law. Faraday’s law, 
fundamentally, is a statement that a changing magnetic field creates an electric 
field. But only in frame B, the frame of the loop, is the magnetic field changing. 
Thus the induced electric field is seen in the loop’s frame but not in the laboratory 
frame.

34.2 The Field Laws Thus Far
Let’s remind ourselves where we are in terms of discovering laws about the electro-
magnetic field. Gauss’s law, which you studied in Chapter 27, states a very general 
property of the electric field. It says that charges create electric fields in such a way 
that the electric flux of the field is the same through any closed surface surrounding 
the charges. FIgurE 34.12 illustrates this idea by showing the field lines passing through 
a Gaussian surface enclosing a charge.

The mathematical statement of Gauss’s law for the electric field says that for any 
closed surface enclosing total charge Qin, the net electric flux through the surface is

 (�e)closed surface = C E
u # dA

u

=
Qin

P0
 (34.14)

The circle on the integral sign indicates that the integration is over a closed surface. 
Gauss’s law is the first of what will turn out to be four field equations.

There’s an analogous equation for magnetic fields, an equation we implied in 
Chapter 32—where we noted that isolated north or south poles do not exist—but 
didn’t explicitly write it down. FIgurE 34.13 shows a Gaussian surface around a mag-
netic dipole. Magnetic field lines form continuous curves, without starting or stopping, 
so every field line leaving the surface at some point must reenter it at another. Conse-
quently, the net magnetic flux over a closed surface is zero.

We’ve shown only one surface and one magnetic field, but this conclusion turns out 
to be a general property of magnetic fields. Because every north pole is accompanied 
by a south pole, we can’t enclose a “net pole” within a surface. Thus Gauss’s law for 
magnetic fields is

 (�m)closed surface = C B
u # dA

u

= 0 (34.15)

Equation 34.14 is the mathematical statement that Coulomb electric field lines start 
and stop on charges. Equation 34.15 is the mathematical statement that magnetic field 
lines form closed loops; they don’t start or stop (i.e., there are no isolated magnetic poles). 

vr�

BA � B
r rFB � qv � B

r r r

(a) Laboratory frame A

The loop is moving to the right.

�vr

FE � qEB

r r

EB � v � B
r r r

(b) Loop frame B The induced electric
field points up.

The magnetic field is moving to the left.

�

FIgurE 34.11 A motional emf as seen in 
two different reference frames.

E
r

E
r

Gaussian surface

There is a net electric flux through
this surface that encloses a charge.

�

FIgurE 34.12 A Gaussian surface 
enclosing a charge.

B
r

B
r

Gaussian surface

There is no net magnetic flux
through this closed surface.

FIgurE 34.13 There is no net flux 
through a Gaussian surface around a 
magnetic dipole.
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These two versions of Gauss’s law are important statements about what types of fields 
can and cannot exist. They will become two of Maxwell’s equations.

The third field law we’ve established is Faraday’s law:

 E = C E
u # ds

u
= -

d�m

dt
 (34.16)

where the line integral of E
u

 is around the closed curve that bounds the surface through 
which the magnetic flux �m  is calculated. Equation 34.16 is the mathematical state-
ment that an electric field (and thus an emf E) can also be created by a changing mag-
netic field. The correct use of Faraday’s law requires a convention for determining 
when fluxes are positive and negative. The sign convention will be given in the next 
section, where we discuss the fourth and last field equation—an analogous equation 
for magnetic fields.

34.3 The Displacement Current
We introduced Ampère’s law in Chapter 32 as an alternative to the Biot-Savart law 
for calculating the magnetic field of a current. Whenever total current Ithrough passes 
through an area bounded by a closed curve, the line integral of the magnetic field 
around the curve is

 C B
u # ds

u
= m0Ithrough (34.17)

FIgurE 34.14 illustrates the geometry of Ampère’s law. The sign of each current can be 
determined by using Tactics Box 34.1. In this case, Ithrough = I1 - I2.

I1

Ithrough � I1 � I2

I2

B
r

B
r

B
r

Surface S

Positive
direction

Curve C

FIgurE 34.14 Ampère’s law relates the 
line integral of B

u

 around curve C to the 
current passing through surface S.

Ampère’s law is the formal statement that currents create magnetic fields. 
Although Ampère’s law can be used to calculate magnetic fields in situations with 
a high degree of symmetry, it is more important as a statement about what types of 
magnetic field can and cannot exist.

something Is Missing
Nothing restricts the bounded surface of Ampère’s law to being flat. It’s not hard to 
see that any current passing through surface S1 in FIgurE 34.15 on the next page must 
also pass through the curved surface S2. To interpret Ampère’s law properly, we have 
to say that the current Ithrough is the net current passing through any surface S that is 
bounded by curve C.

TACTICs
B o x  34 .1 

 Determining the signs of flux and current

 ●1 For a surface S bounded by a closed curve C, choose either the clockwise (cw) 
or counterclockwise (ccw) direction around C.

 ●2 Curl the fingers of your right hand around the curve in the chosen direction, 
with your thumb perpendicular to the surface. Your thumb defines the posi-
tive direction.

■	 A flux � through the surface is positive if the field is in the same direction 
as your thumb, negative if the field is in the opposite direction.

■	 A current through the surface in the direction of your thumb is positive, in 
the direction opposite your thumb is negative.

Exercises 4–6 
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But this leads to an interesting puzzle. FIgurE 34.16a shows a capacitor being charged. 
Current I, from the left, brings positive charge to the left capacitor plate. The same 
current carries charges away from the right capacitor plate, leaving the right plate 
negatively charged. This is a perfectly ordinary current in a conducting wire, and you 
can use the right-hand rule to verify that its magnetic field is as shown.

Curve C is a closed curve encircling the wire on the left. The current passes through 
surface S1, a flat surface across C, and we could use Ampère’s law to find that the 
magnetic field is that of a straight wire. But what happens if we try to use surface S2 
to determine Ithrough? Ampère’s law says that we can consider any surface bounded 
by curve C, and surface S2 certainly qualifies. But no current passes through S2. 
Charges are brought to the left plate of the capacitor and charges are removed from 
the right plate, but no charge moves across the gap between the plates. Surface S1 has 
Ithrough = I, but surface S2 has Ithrough = 0. Another dilemma!

It would appear that Ampère’s law is either wrong or incomplete. Maxwell was the 
first to recognize the seriousness of this problem. He noted that there may be no current 
passing through S2, but, as FIgurE 34.16b shows, there is an electric flux �e through S2 due 
to the electric field inside the capacitor. Furthermore, this flux is changing with time as the 
capacitor charges and the electric field strength grows. Faraday had discovered the sig-
nificance of a changing magnetic flux, but no one had considered a changing electric flux.

The current I passes through S1, so Ampère’s law applied to S1 gives

 C B
u # ds

u
= m0Ithrough = m0I

We believe this result because it gives the correct magnetic field for a current-carrying 
wire. Now the line integral depends only on the magnetic field at points on curve C, so 
its value won’t change if we choose a different surface S to evaluate the current. The 
problem is with the right side of Ampère’s law, which would incorrectly give zero if 
applied to surface S2. We need to modify the right side of Ampère’s law to recognize 
that an electric flux rather than a current passes through S2.

The electric flux between two capacitor plates of surface area A is

 �e = EA

The capacitor’s electric field is E = Q/P0A; hence the flux is actually independent of 
the plate size:

 �e =
Q

P0A
 A =

Q
P0

 (34.18)

The rate at which the electric flux is changing is

 
d�e

dt
=

1
P0

 
dQ

dt
=

I
P0

 (34.19)

where we used I = dQ/dt. The flux is changing with time at a rate directly propor-
tional to the charging current I.

II

Surface S1 Surface S2

Closed curve C around wire

Any currents passing through
S1 must also pass through S2.

S1

Closed curve C around wire
S2

Even in this case, the net current
through S1, namely zero, matches
the net current through S2.

I

I

FIgurE 34.15 The net current passing through the flat surface S1 also passes through the 
curved surface S2.

�
�
�
�
�
�

�
�
�
�
�
�

I

(a)

I

This is the magnetic field of the
current I that is charging the capacitor.

Current I 
passes through 
surface S1.

No current passes
through surface S2.

Cross section through a closed
curve C around the wire

�
�
�
�
�
�

�
�
�
�
�
�

(b)

The electric flux �e through surface S2

increases as the capacitor charges.

S1

S2Curve C

I � 
dQ
dt

I � 
dQ
dt

FIgurE 34.16 There is no current through 
surface S2 as the capacitor charges, but 
there is a changing electric flux.
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Equation 34.19 suggests that the quantity P0(d�e/dt) is in some sense “equivalent” 
to current I. Maxwell called the quantity

 Idisp = P0 
d�e

dt
 (34.20)

the displacement current. He had started with a fluid-like model of electric and 
magnetic fields, and the displacement current was analogous to the displacement of 
a fluid. The fluid model has since been abandoned, but the name lives on despite the 
fact that nothing is actually being displaced.

Maxwell hypothesized that the displacement current was the “missing” piece of 
Ampère’s law, so he modified Ampère’s law to read

 C B
u # ds

u
= m0(Ithrough + Idisp) = m01Ithrough + P0 

d�e

dt 2  (34.21)

Equation 34.21 is now known as the Ampère-Maxwell law. When applied to 
Figure 34.16b, the Ampère-Maxwell law gives

  S1: C B
u # ds

u
= m01Ithrough + P0

d�e

dt 2 = m0(I + 0) = m0I

  S2: C B
u # ds

u
= m01Ithrough + P0

d�e

dt 2 = m0(0 + I) = m0I

where, for surface S2, we used Equation 34.19 for d�e/dt. Surfaces S1 and S2 now 
both give the same result for the line integral of B

u # ds
u

 around the closed curve C.

NoTE  The displacement current Idisp between the capacitor plates is numerically 
equal to the current I in the wires to and from the capacitor, so in some sense it al-
lows “current” to be conserved all the way through the capacitor. Nonetheless, the 
displacement current is not a flow of charge. The displacement current is equiva-
lent to a real current in that it creates the same magnetic field, but it does so with a 
changing electric flux rather than a flow of charge. 

The Induced Magnetic Field
Ordinary Coulomb electric fields are created by charges, but a second way to create an 
electric field is by having a changing magnetic field. That’s Faraday’s law. Ordinary 
magnetic fields are created by currents, but now we see that a second way to create a 
magnetic field is by having a changing electric field. Just as the electric field created 
by a changing B

u

 is called an induced electric field, the magnetic field created by a 
changing E

u

 is called an induced magnetic field.
FIgurE 34.17 shows the close analogy between induced electric fields, governed 

by Faraday’s law, and induced magnetic fields, governed by the second term in the 
Ampère-Maxwell law. An increasing solenoid current causes an increasing magnetic 
field. The changing magnetic field, in turn, induces a circular electric field. The nega-
tive sign in Faraday’s law dictates that the induced electric field direction is ccw when 
seen looking along the magnetic field direction.

An increasing capacitor charge causes an increasing electric field. The chang-
ing electric field, in turn, induces a circular magnetic field. But the sign of the 
Ampère-Maxwell law is positive, the opposite of the sign of Faraday’s law, so the 
induced magnetic field direction is cw when you’re looking along the electric field 
direction.

E
r

B
r

Increasing solenoid current

Increasing capacitor charge

Q

I

Increasing B

Induced E
r

Increasing E
r

Induced B

r

r

Faraday’s law describes an induced electric field.

The Ampère-Maxwell law describes
an induced magnetic field.

FIgurE 34.17 The close analogy between 
an induced electric field and an induced 
magnetic field.
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If a changing magnetic field can induce an electric field and a changing electric 
field can induce a magnetic field, what happens when both fields change simultane-
ously? That is the question that Maxwell was finally able to answer after he modified 
Ampère’s law to include the displacement current, and it is the subject to which we 
turn next.

soLVE The electric field of a parallel-plate capacitor is E =  
Q/P0A = Q/P0pR2. The electric flux through the circle of radius r 
(not the full flux of the capacitor) is

 �e = pr2E = pr2 
Q

P0pR2 =
r2

R2 
Q

P0

Thus the Ampère-Maxwell law is

 C B
u # ds

u
= P0m0 

d�e

dt
= P0m0 

d

dt
 1 r2

R2 
Q

P0
2 = m0

r2

R2 
dQ

dt

The magnetic field is everywhere tangent to the circle of radius r, 
so the integral of B

u # ds
u

 around the circle is simply BL = 2prB. 
With this value for the line integral, the Ampère-Maxwell law 
becomes

 2prB = m0 
r2

R2 
dQ

dt
and thus

  B =
m0

2p
 

r

R2 
dQ

dt
= (2.0 * 10-7 T m/A) 

0.0050 m

(0.010 m)2 (0.50 C/s)

  = 5.0 * 10-6 T

ExAMPLE 34.3  The fields inside a charging capacitor
A 2.0-cm-diameter parallel-plate capacitor with a 1.0 mm spacing 
is being charged at the rate 0.50 C/s. What is the magnetic field 
strength inside the capacitor at a point 0.50 cm from the axis?

MoDEL The electric field inside a parallel-plate capacitor is uni-
form. As the capacitor is charged, the changing electric field in-
duces a magnetic field.

VIsuALIzE FIgurE 34.18 shows the fields. The induced magnetic 
field lines are circles concentric with the capacitor.

The magnetic field line is a circle concentric 
with the capacitor. The electric flux through 
this circle is pr2E.

FIgurE 34.18 The magnetic field strength is found 
by integrating around a closed curve of radius r.

Stop to think 34.2  The electric field in four 
identical capacitors is shown as a function of 
time. Rank in order, from largest to smallest, the 
magnetic field strength at the outer edge of the 
capacitor at time T.

t

E

T

a
b

c

d

34.4 Maxwell’s Equations
James Clerk Maxwell was a young, mathematically brilliant Scottish physicist. In 
1855, barely 24 years old, he presented a paper to the Cambridge Philosophical So-
ciety entitled “On Faraday’s Lines of Force.” It had been 30 years and more since 
the major discoveries of Oersted, Ampère, Faraday, and others, but electromagnetism 
remained a loose collection of facts and “rules of thumb” without a consistent theory 
to link these ideas together.

Maxwell’s goal was to synthesize this body of knowledge and to form a theory of 
electromagnetic fields. The critical step along the way was his recognition of the need 
to include a displacement-current term in Ampère’s law.
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Maxwell’s theory of electromagnetism is embodied in four equations that we today 
call Maxwell’s equations. These are

  C E
u # dA

u

=
Qin

P0
 Gauss>s law

  C B
u # dA

u

= 0  Gauss>s law for magnetism

  C E
u # ds

u
= -

d�m

dt
 Faraday>s law

  C B
u # ds

u
= m0Ithrough + P0m0 

d�e

dt
   Ampère@Maxwell law

Maxwell’s claim is that these four equations are a complete description of electric 
and magnetic fields. They tell us how fields are created by charges and currents, and 
also how fields can be induced by the changing of other fields. We need one more 
equation for completeness, an equation that tells us how matter responds to electro-
magnetic fields. The general force equation

 F
u

= q(E
u

+ v  

u
* B

u

)  (Lorentz force law)

is known as the Lorentz force law. Maxwell’s equations for the fields, together with 
the Lorentz force law to tell us how matter responds to the fields, form the com-
plete theory of electromagnetism.

Maxwell’s equations bring us to the pinnacle of classical physics. When combined 
with Newton’s three laws of motion, his law of gravity, and the first and second laws 
of thermodynamics, we have all of classical physics—a total of just 11 equations.

While some physicists might quibble over whether all 11 are truly fundamental, 
the important point is not the exact number but how few equations we need to describe 
the overwhelming majority of our experience of the physical world. It seems as if we 
could have written them all on page 1 of this book and been finished, but it doesn’t 
work that way. Each of these equations is the synthesis of a tremendous number of 
physical phenomena and conceptual developments. To know physics isn’t just to 
know the equations, but to know what the equations mean and how they’re used. 
That’s why it’s taken us so many chapters and so much effort to get to this point. Each 
equation is a shorthand way to summarize a book’s worth of information!

Let’s summarize the physical meaning of the five electromagnetic equations:

■	 Gauss’s law: Charged particles create an electric field.
■	 Faraday’s law: An electric field can also be created by a changing magnetic 

field.
■	 Gauss’s law for magnetism: There are no isolated magnetic poles.
■	 Ampère-Maxwell law, first half: Currents create a magnetic field.
■	 Ampère-Maxwell law, second half: A magnetic field can also be created 

by a changing electric field.
■	 Lorentz force law, first half: An electric force is exerted on a charged par-

ticle in an electric field.
■	 Lorentz force law, second half: A magnetic force is exerted on a charge 

moving in a magnetic field.

These are the fundamental ideas of electromagnetism. Other important ideas, such 
as Ohm’s law, Kirchhoff’s laws, and Lenz’s law, despite their practical importance, 
are not fundamental ideas. They can be derived from Maxwell’s equations, sometimes 
with the addition of empirically based concepts such as resistance.

Classical physics

Newton’s first law

Newton’s second law

Newton’s third law

Newton’s law of gravity

Gauss’s law

Gauss’s law for magnetism

Faraday’s law

Ampère-Maxwell law

Lorentz force law

First law of thermodynamics

Second law of thermodynamics
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It’s true that Maxwell’s equations are mathematically more complex than Newton’s 
laws and that their solution, for many problems of practical interest, requires advanced 
mathematics. Fortunately, we have the mathematical tools to get just far enough into 
Maxwell’s equations to discover their most startling and revolutionary implication—the 
prediction of electromagnetic waves.

34.5 Electromagnetic Waves
It had been known since the early 19th century, from experiments on interference and 
diffraction, that light is a wave. We studied the wave properties of light in Part V, but 
at that time we were not able to determine just what is “waving.”

Faraday speculated that light was somehow connected with electricity and magne-
tism, but Maxwell, using his equations of the electromagnetic field, was the first to 
understand that light is an oscillation of the electromagnetic field. Maxwell was able 
to predict that

	■	 Electromagnetic waves can exist at any frequency, not just at the frequencies of 
visible light. This prediction was the harbinger of radio waves.

	■	 All electromagnetic waves travel in a vacuum with the same speed, a speed that we 
now call the speed of light.

A general wave equation can be derived from Maxwell’s equations, but the nec-
essary mathematical techniques are beyond the level of this textbook. We’ll adopt a 
simpler approach in which we assume an electromagnetic wave of a certain form and 
then show that it’s consistent with Maxwell’s equations. After all, the wave can’t exist 
unless it’s consistent with Maxwell’s equations.

To begin, we’re going to assume that electric and magnetic fields can exist 
independently of charges and currents in a source-free region of space. This is 
a very important assumption because it makes the statement that fields are real 
entities. They’re not just cute pictures that tell us about charges and currents, but 
real things that can exist all by themselves. Our assertion is that the fields can exist in 
a self-sustaining mode in which a changing magnetic field creates an electric field 
(Faraday’s law) that in turn changes in just the right way to re-create the original 
magnetic field (the Ampère-Maxwell law).

The source-free Maxwell’s equations, with no charges or currents, are

  C E
u # dA

u

= 0  C E
u # ds

u
= -

d�m

dt

  C B
u # dA

u

= 0  C B
u # ds

u
= P0m0 

d�e

dt
 

(34.22)

Any electromagnetic wave traveling in empty space must be consistent with these 
equations.

Let’s postulate that an electromagnetic plane wave traveling with speed vem has 
the characteristics shown in FIgurE 34.19. It’s a useful picture, and one that you’ll see 
in any textbook, but a picture that can be very misleading if you don’t think about it 
carefully. E

u

 and B
u

 are not spatial vectors. That is, they don’t stretch spatially in the 
y- or z-direction for a certain distance. Instead, these vectors are showing the values of 
the electric and magnetic fields along a single line, the x-axis. An E

u

 vector pointing 
in the y-direction says that at this position on the x-axis, where the vector’s tail is, the 
electric field points in the y-direction and has a certain strength. Nothing is “reaching” 
to a point in space above the x-axis. In fact, this picture contains no information about 
the fields anywhere other than right on the x-axis.

However, we are assuming that this is a plane wave, which, you’ll recall from Chapter 20, 
is a wave for which the fields are the same everywhere in any yz-plane, perpendicular to 
the x-axis. FIgurE 34.20a shows a small section of the xy-plane where, at this instant of time,

Large radar installations like this one are 
used to track rockets and missiles.

B

B

B

B

E

E

EE0

B0

E

x

y

z

r

r
r

r

r
r

r

r

1. A sinusoidal wave with frequency f and 
 wavelength l travels with wave speed vem.

Wavelength l

vem

2. E and B are 
 perpendicular to 
 each other and to
 the direction of
 travel. The fields
 have amplitudes
 E0 and B0.

r r

3. E and B are in phase.
 That is, they have
 matching crests,
 troughs, and zeros.

r r

FIgurE 34.19 A sinusoidal electromag
netic wave.
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E
u

 is pointing up and B
u

 is pointing toward you. The field strengths vary with x, the direction 
of travel, but not with y. As the wave moves forward, the fields that are now in the x1-plane 
will soon arrive in the x2-plane, and those now in the x2@plane will move to x3.

FIgurE 34.20b shows a section of the yz-plane that slices the x-axis at x2. These fields 
are moving out of the page, coming toward you. The fields are the same everywhere 
in this plane, which is what we mean by a plane wave. If you watched a movie of the 
event, you would see the E

u

 and B
u

 fields at each point in this plane oscillating in time, 
but always synchronized with all the other points in the plane.

gauss’s Laws
Now that we understand the shape of the electromagnetic field, we can check its con-
sistency with Maxwell’s equations. This field is a sinusoidal wave, so the components 
of the fields are

  Ex = 0   Ey = E0 sin12p(x/l - ft)2   Ez = 0

  Bx = 0   By = 0   Bz = B0 sin12p(x/l - ft)2  
(34.23)

where E0 and B0 are the amplitudes of the oscillating electric and magnetic fields.
FIgurE 34.21 shows an imaginary box—a Gaussian surface—centered on the x-axis. 

Both electric and magnetic field vectors exist at each point in space, but the figure 
shows them separately for clarity. E

u

 oscillates along the y-axis, so all electric field 
lines enter and leave the box through the top and bottom surfaces; no electric field 
lines pass through the sides of the box.

(a) Wave traveling to the right
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B out of page
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(b) Wave coming toward you
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FIgurE 34.20 Interpreting the electro
magnetic wave of Figure 34.19.
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Electric field

The net electric flux through the box is zero.

E
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y

z

Magnetic field

The net magnetic flux through the box is zero.

B
r

x

FIgurE 34.21 A closed surface can be used to check Gauss’s law for the electric and 
magnetic fields.

Because this is a plane wave, the magnitude of each electric field vector entering 
the bottom of the box is exactly matched by the electric field vector leaving the top. 
The electric flux through the top of the box is equal in magnitude but opposite in sign 
to the flux through the bottom, and the flux through the sides is zero. Thus the net 
electric flux is �e = 0. There is no charge inside the box because there are no sources 
in this region of space, so we also have Qin = 0. Hence the electric field of a plane 
wave is consistent with the first of the source-free Maxwell’s equations, Gauss’s law.

The exact same argument applies to the magnetic field. The net magnetic flux is 
�m = 0; thus the magnetic field is consistent with the second of Maxwell’s equations.

Faraday’s Law
Faraday’s law is concerned with the changing magnetic flux through a closed curve. 
We’ll apply Faraday’s law to a narrow rectangle in the xy-plane, shown in FIgurE 34.22, 
with height h and width �x. We’ll assume �x to be so small that B

u

 is essentially con-
stant over the width of the rectangle.

z

y

Wave direction

Integration direction

Rectangle

B
r

E(x)
r E(x � �x)

r

x

�x

h

FIgurE 34.22 Faraday’s law can be 
applied to a narrow rectangle in the 
xyplane.
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The magnetic field B
u

 points in the z-direction, perpendicular to the rectangle. The 
magnetic flux through the rectangle is �m = Bz Arectangle = Bzh� x, hence the flux 
changes at the rate

 
d�m

dt
=

d

dt
 (Bzh�x) =

0 Bz

0 t
 h�x (34.24)

The ordinary derivative dBz/dt, which is the full rate of change of B from all possible 
causes, becomes a partial derivative 0 Bz/0 t in this situation because the change in 
magnetic flux is due entirely to the change of B with time and not at all to the spatial 
variation of B.

According to our sign convention, we have to go around the rectangle in a ccw 
direction to make the flux positive. Thus we must also use a ccw direction to evaluate 
the line integral

 C E
u # ds

u
= 3

right

E
u # ds

u
+ 3

top

E
u # ds

u
+ 3

left

E
u # ds

u
+ 3

bottom

E
u # ds

u
 (34.25)

The electric field E
u

 points in the y-direction, hence E
u # ds

u
= 0 at all points on the top 

and bottom edges, and these two integrals are zero.
Along the left edge of the loop, at position x, E

u

 has the same value at every point. 
Figure 34.22 shows that the direction of E

u

 is opposite to ds
u
, thus E

u # ds
u

= -Ey(x) ds. 
On the right edge of the loop, at position x + �x, E

u

 is parallel to ds
u

 and 
E
u # ds

u
= Ey(x + �x) ds. Thus the line integral of E

u # ds
u

 around the rectangle is

 C E
u # ds

u
= -Ey(x)h + Ey(x + �x)h = [Ey(x + �x) - Ey(x)]h (34.26)

NoTE  Ey(x) indicates that Ey is a function of the position x. It is not Ey multiplied 
by x. 

You learned in calculus that the derivative of the function f(x) is

 
df

dx
= lim

�xS0
c f(x + �x) - f(x)

�x
d

We’ve assumed that �x is very small. If we now let the width of the rectangle go to 
zero, �x S 0, Equation 34.26 becomes

 C E
u # ds

u
=

0Ey

0x
 h�x (34.27)

We’ve used a partial derivative because Ey is a function of both position x and time t.
Now, using Equations 34.24 and 34.27, we can write Faraday’s law as

 C E
u # ds

u
=

0Ey

0x
 h�x = -  

d�m

dt
= -  

0Bz

0 t
 h�x

The area h�x of the rectangle cancels, and we’re left with

 
0Ey

0x
= -

0 Bz

0 t
 (34.28)

Equation 34.28, which compares the rate at which Ey varies with position to the 
rate at which Bz varies with time, is a required condition that an electromagnetic wave 
must satisfy to be consistent with Maxwell’s equations. We can use Equations 34.23 
for Ey and Bz to evaluate the partial derivatives:

  
0Ey

0x
=

2pE0

l
  cos12p(x/l - ft)2

  
0Bz

0 t
= -2pfB0 cos12p(x/l - ft)2
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Thus the required condition of Equation 34.28 is

 
0Ey

0x
=

2pE0

l
 cos12p(x/l - ft)2 = -  

0Bz

0 t
= 2pfB0 cos12p(x/l - ft)2

Canceling the many common factors, and multiplying by l, we’re left with

 E0 = (lf )B0 = vemB0 (34.29)

where we used the fact that lf = v for any sinusoidal wave.
Equation 34.29, which came from applying Faraday’s law, tells us that the field am-

plitudes E0 and B0 of an electromagnetic wave are not arbitrary. Once the amplitude 
B0 of the magnetic field wave is specified, the electric field amplitude E0 must be 
E0 = vemB0. Otherwise the fields won’t satisfy Maxwell’s equations.

The Ampère-Maxwell Law
We have one equation to go, but this one will now be easier. The Ampère-
Maxwell law is concerned with the changing electric flux through a closed curve. 
FIgurE 34.23 shows a very narrow rectangle of width �x and length l in the xz-plane. 
The electric field is perpendicular to this rectangle; hence the electric flux through it 
is �e = EyArectangle = Eyl�x. This flux is changing at the rate

 
d�e

dt
=

d

dt
 (Eyl�x) =

0Ey

0 t
 l�x (34.30)

The line integral of B
u # ds

u
 around this closed rectangle is calculated just like the 

line integral of E
u # ds

u
 in Figure 34.22. B

u

 is perpendicular to ds
u

 on the narrow ends, 
so B

u # ds
u

= 0. The field at all points on the left edge, at position x, is B
u

 (x), and this 
field is parallel to ds

u
 to make B

u # ds
u

= Bz(x) ds. Similarly, B
u # ds

u
= -Bz(x + �x) ds 

at all points on the right edge, where B
u

 is opposite to ds
u
.

Thus, if we let �x S 0,

  C B
u # ds

u
= Bz(x)l - Bz(x + �x)l = -[Bz(x + �x) - Bz(x)]l 

(34.31)
  = -  

0Bz

0x
 l�x

Equations 34.30 and 34.31 can now be used in the Ampère-Maxwell law:

 C B
u # ds

u
= -

0Bz

0x
 l�x = P0m0 

d�e

dt
= P0m0 

0Ey

0 t
 l�x

The area of the rectangle cancels, and we’re left with

 
0Bz

0x
= -P0m0 

0Ey

0 t
 (34.32)

Equation 34.32 is a second required condition that the fields must satisfy. If we 
again evaluate the partial derivatives, using Equations 34.23 for Ey and Bz, we find

  
0Ey

0 t
= -2pf E0 cos12p(x/l - ft)2

  
0Bz

0x
=

2pB0

l
  cos12p(x/l - ft)2

With these, Equation 34.32 becomes

 
0Bz

0x
=

2pB0

l
 cos12p(x/l - ft)2 = -P0m0

0Ey

0 t
= 2pP0m0 f E0 cos12p(x/l - ft)2

z

y

Wave direction

Integration directionE
r

B(x)
r

B(x � �x)
r

x

�x

l

FIgurE 34.23 The AmpèreMaxwell law 
can be applied to a narrow rectangle in 
the xzplane.
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A final round of cancellations and another use of lf = vem leave us with

 E0 =
B0

P0m0lf
=

B0

P0m0vem
 (34.33)

The last of Maxwell’s equations gives us another constraint between E0 and B0.

The speed of Light
But how can Equation 34.29, which required E0 = vemB0, and Equation 34.33 both be 
true at the same time? The one and only way is if

 
1

P0m0vem
= vem

from which we find

 vem =
12P0m0

= 3.00 * 108 m/s = c (34.34)

This is a remarkable conclusion. The constants P0 and m0 are from electrostatics 
and magnetostatics, where they determine the size of E

u

 and B
u

 due to point charges. 
Coulomb’s law and the Biot-Savart law, where P0 and m0 first appeared, have nothing 
to do with waves. Yet Maxwell’s theory of electromagnetism ends up predicting 
that electric and magnetic fields can form a self-sustaining electromagnetic wave if 
that wave travels at the specific speed vem = 1/1P0m0. No other speed will satisfy 
Maxwell’s equations.

We’ve made no assumption about the frequency of the wave, so apparently all 
electromagnetic waves, regardless of their frequency, travel (in vacuum) at the same 
speed vem = 1/1P0m0. We call this speed c, the “speed of light,” but it applies equally 
well from low-frequency radio waves to ultrahigh-frequency x rays.

Stop to think 34.3  An electromagnetic wave is propagating in the 
positive x-direction. At this instant of time, what is the direction of 
E
u

 at the center of the rectangle?

 a. In the positive x-direction b. In the negative x-direction
 c. In the positive y-direction d. In the negative y-direction
 e. In the positive z-direction f. In the negative z-direction

z

y

B(x)
r B(x � �x)

r

x

�x

vr

34.6 Properties of Electromagnetic Waves
We’ve demonstrated that one very specific sinusoidal wave is consistent with 
Maxwell’s equations. It’s possible to show that any electromagnetic wave, whether 
it’s sinusoidal or not, must satisfy four basic conditions:

 1. The fields E
u

 and B
u

 are perpendicular to the direction of propagation v  

u

em. Thus 
an electromagnetic wave is a transverse wave.

 2. E
u

 and B
u

 are perpendicular to each other in a manner such that E
u

* B
u

 is in the 
direction of v  

u

em.
 3. The wave travels in vacuum at speed vem = 1/1P0m0 = c.
 4. E = cB at any point on the wave.

In this section, we’ll look at some other properties of electromagnetic waves.
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Energy and Intensity
Waves transfer energy. Ocean waves erode beaches, sound waves set your eardrums 
vibrating, and light from the sun warms the earth. The energy flow of an electromag-
netic wave is described by the Poynting vector S

u

, defined as

 S
u

K
1
m0

 E
u

* B
u

 (34.35)

The Poynting vector, shown in FIgurE 34.24, has two important properties:

 1. The Poynting vector points in the direction in which an electromagnetic wave is 
traveling. You can see this by looking back at Figure 34.19.

 2. It is straightforward to show that the units of S are W/m2, or power (joules per 
second) per unit area. Thus the magnitude S of the Poynting vector measures the 
rate of energy transfer per unit area of the wave.

Because E
u

 and B
u

 of an electromagnetic wave are perpendicular to each other, and 
E = cB, the magnitude of the Poynting vector is

 S =
EB
m0

=
E2

cm0
= cP0E2

The Poynting vector is a function of time, oscillating from zero to Smax = E0 

2/cm0 and 
back to zero twice during each period of the wave’s oscillation. That is, the energy 
flow in an electromagnetic wave is not smooth. It “pulses” as the electric and magnetic 
fields oscillate in intensity. We’re unaware of this pulsing because the electromagnetic 
waves that we can sense—light waves—have such high frequencies.

Of more interest is the average energy transfer, averaged over one cycle of oscilla-
tion, which is the wave’s intensity I. In our earlier study of waves, we defined the in-
tensity of a wave to be I = P/A, where P is the power (energy transferred per second) 
of a wave that impinges on area A. Because E = E0 sin12p(x/l - ft)2, and the average 
over one period of sin212p(x/l - ft)2  is 12 , the intensity of an electromagnetic wave is

 I =
P

A
= Savg =

1

2cm0
 E0 

2 =
cP0

2
 E0 

2 (34.36)

Equation 34.36 relates the intensity of an electromagnetic wave, a quantity that is 
easily measured, to the amplitude of the wave’s electric field.

The intensity of a plane wave, with constant electric field amplitude E0, would 
not change with distance. But a plane wave is an idealization; there are no true plane 
waves in nature. You learned in Chapter 20 that, to conserve energy, the intensity of a 
wave far from its source decreases with the inverse square of the distance. If a source 
with power Psource emits electromagnetic waves uniformly in all directions, the electro-
magnetic wave intensity at distance r from the source is

 I =
Psource

4pr2  (34.37)

Equation 34.37 simply expresses the recognition that the energy of the wave is spread 
over a sphere of surface area 4pr2.

ExAMPLE 34.4  Fields of a cell phone
A digital cell phone broadcasts a 0.60 W signal at a frequency of 1.9 GHz. What are the 
amplitudes of the electric and magnetic fields at a distance of 10 cm, about the distance 
to the center of the user’s brain?

MoDEL Treat the cell phone as a point source of electromagnetic waves.

Continued

S
r

B
r

E
r

Wave direction

The Poynting vector is
in the direction of E � B.

r r

z

y

x

FIgurE 34.24 The Poynting vector.
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Stop to think 34.4  An electromagnetic wave is traveling in the 
positive y-direction. The electric field at one instant of time is shown 
at one position. The magnetic field at this position points

 a. In the positive x-direction. b. In the negative x-direction.
 c. In the positive y-direction. d. In the negative y-direction.
 e. Toward the origin. f. Away from the origin.

soLVE The intensity of a 0.60 W point source at a distance of 10 cm is

I =
Psource

4pr2 =
0.60 W

4p(0.10 m)2 = 4.78 W/m2

We can find the electric field amplitude from the intensity:

  E0 = B 2I

cP0
= B 2(4.78 W/m2)

(3.00 * 108 m/s)(8.85 * 10-12 C2/N m2)

  = 60 V/m

The amplitudes of the electric and magnetic fields are related by the speed of light. This 
allows us to compute

B0 =
E0

c
= 2.0 * 10-7 T

AssEss The electric field amplitude is modest; the magnetic field amplitude is very 
small. This implies that the interaction of electromagnetic waves with matter is mostly 
due to the electric field.

z

y

E
r

x

radiation Pressure
Electromagnetic waves transfer not only energy but also momentum. An object 
gains momentum when it absorbs electromagnetic waves, much as a ball at rest gains 
momentum when struck by a ball in motion.

Suppose we shine a beam of light on an object that completely absorbs the light en-
ergy. If the object absorbs energy during a time interval �t, its momentum changes by

 �p =
energy absorbed

c

This is a consequence of Maxwell’s theory, which we’ll state without proof.
The momentum change implies that the light is exerting a force on the object. 

Newton’s second law, in terms of momentum, is F = �p/�t. The radiation force due 
to the beam of light is

 F =
�p

�t
=

(energy absorbed)/�t

c
=

P
c

where P is the power (joules per second) of the light.
It’s more interesting to consider the force exerted on an object per unit area, which 

is called the radiation pressure prad. The radiation pressure on an object that absorbs 
all the light is

 prad =
F

A
=

P/A
c

=
I
c

 (34.38)

where I is the intensity of the light wave. The subscript on prad is important in this 
context to distinguish the radiation pressure from the momentum p.

Artist’s conception of a future spacecraft 
powered by radiation pressure from the 
sun.
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Antennas
We’ve seen that an electromagnetic wave is self-sustaining, independent of charges or 
currents. However, charges and currents are needed at the source of an electromagnetic 
wave. We’ll take a brief look at how an electromagnetic wave is generated by an antenna.

FIgurE 34.25 is the electric field of an electric dipole. If the dipole is vertical, the elec-
tric field E

u

 at points along a horizontal line is also vertical. Reversing the dipole, by 
switching the charges, reverses E

u

. If the charges were to oscillate back and forth, 
switching position at frequency f, then E

u

 would oscillate in a vertical plane. The 
changing E

u

 would then create an induced magnetic field B
u

, which could then create 
an E

u

, which could then create a B
u

, p , and an electromagnetic wave at frequency f 
would radiate out into space.

area that, by absorbing light, will receive a 100 N force from 
the sun:

 A =
cF

I
=

(3.00 * 108 m/s)(100 N)

1300 W/m2 = 2.3 * 107 m2

AssEss If the sail is a square, it would need to be 4.8 km * 4.8 km, 
or roughly 3 mi * 3 mi. This is large, but not entirely out of the 
question with thin films that can be unrolled in space. But how will 
the crew return from Mars?

ExAMPLE 34.5  solar sailing
A low-cost way of sending spacecraft to other planets would be 
to use the radiation pressure on a solar sail. The intensity of the 
sun’s electromagnetic radiation at distances near the earth’s orbit 
is about 1300 W/m2. What size sail would be needed to accelerate 
a 10,000 kg spacecraft toward Mars at 0.010 m/s2?

MoDEL Assume that the solar sail is perfectly absorbing.

soLVE The force that will create a 0.010 m/s2 acceleration is 
F = ma = 100 N. We can use Equation 34.38 to find the sail 

Positive charge on top

�
�

E
r

E
r

Negative charge on top

�
�

FIgurE 34.25 An electric dipole creates an electric field that reverses direction if the 
dipole charges are switched.

This is exactly what an antenna does. FIgurE 34.26 shows two metal wires attached 
to the terminals of an oscillating voltage source. The figure shows an instant when the 
top wire is negative and the bottom is positive, but these will reverse in half a cycle. 
The wire is basically an oscillating dipole, and it creates an oscillating electric field. 
The oscillating E

u

 induces an oscillating B
u

, and they take off as an electromagnetic 
wave at speed vem = c. The wave does need oscillating charges as a wave source, but 
once created it is self-sustaining and independent of the source. The antenna might be 
destroyed, but the wave could travel billions of light years across the universe, bearing 
the legacy of James Clerk Maxwell.

Stop to think 34.5  The amplitude of the oscillating electric field at your cell phone is 
4.0 mV/m when you are 10 km east of the broadcast antenna. What is the electric field 
amplitude when you are 20 km east of the antenna?

 a. 1.0 mV/m b. 2.0 mV/m
 c. 4.0 mV/m d. There’s not enough information to tell.

�
�
�
�
�

�
�
�
�
�

B
r

B
r

E
r

E
r

E
r

B
r

The oscillating dipole causes an 
electromagnetic wave to move away 
from the antenna at speed vem � c.

An oscillating voltage causes
the dipole to oscillate.

Antenna
wire

FIgurE 34.26 An antenna generates a 
selfsustaining electromagnetic wave.
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34.7 Polarization
The plane of the electric field vector E

u

 and the Poynting vector S
u

 (the direction 
of propagation) is called the plane of polarization of an electromagnetic wave. 
Figure 34.27 shows two electromagnetic waves moving along the x-axis. The electric 
field in FIgurE 34.27a oscillates vertically, so we would say that this wave is vertically 
polarized. Similarly the wave in FIgurE 34.27b is horizontally polarized. Other polariza-
tions are possible, such as a wave polarized 30� away from horizontal.

E
r

The polymers are parallel to each other.

The electric field
of unpolarized light
oscillates randomly
in all directions.

Polaroid

Only the component of
E perpendicular to the
polymer molecules 
is transmitted.

r

FIgurE 34.28 A polarizing filter.

B

B

B

x

y
Plane of
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z
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r

r
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r

B
r

r

r

E
r

E
r

vem

(a) Vertical polarization

vem

x

y
Plane of
polarization

z

B
r

B
r

B
r

B
r

E
r

E
r

E
r

E
r

(b) Horizontal polarization

FIgurE 34.27 The plane of polarization is the plane in which the electric field vector 
oscillates.

NoTE  This use of the term “polarization” is completely independent of the idea of 
charge polarization that you learned about in Chapter 25. 

Some wave sources, such as lasers and radio antennas, emit polarized electro-
magnetic waves with a well-defined plane of polarization. By contrast, most natural 
sources of electromagnetic radiation are unpolarized, emitting waves whose electric 
fields oscillate randomly with all possible orientations.

A few natural sources are partially polarized, meaning that one direction of polariza-
tion is more prominent than others. The light of the sky at right angles to the sun is partially 
polarized because of how the sun’s light scatters from air molecules to create skylight. 
Bees and other insects make use of this partial polarization to navigate. Light reflected 
from a flat, horizontal surface, such as a road or the surface of a lake, has a predominantly 
horizontal polarization. This is the rationale for using polarizing sunglasses.

The most common way of artificially generating polarized visible light is to send 
unpolarized light through a polarizing filter. The first widely used polarizing filter 
was invented by Edwin Land in 1928, while he was still an undergraduate student. 
He developed an improved version, called Polaroid, in 1938. Polaroid, as shown in 
FIgurE 34.28, is a plastic sheet containing very long organic molecules known as poly-
mers. The sheets are formed in such a way that the polymers are all aligned to form a 
grid, rather like the metal bars in a barbecue grill. The sheet is then chemically treated 
to make the polymer molecules somewhat conducting.

As a light wave travels through Polaroid, the component of the electric field oscil-
lating parallel to the polymer grid drives the conduction electrons up and down the 
molecules. The electrons absorb energy from the light wave, so the parallel component 
of E

u

 is absorbed in the filter. But the conduction electrons can’t oscillate perpendicu-
lar to the molecules, so the component of E

u

 perpendicular to the polymer grid passes 
through without absorption. Thus the light wave emerging from a polarizing filter is 
polarized perpendicular to the polymer grid.

Malus’s Law
Suppose a polarized light wave of intensity I0 approaches a polarizing filter. What is 
the intensity of the light that passes through the filter? FIgurE 34.29 shows that an oscil-
lating electric field can be decomposed into components parallel and perpendicular to 
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Suppose the light incident on a polarizing filter is unpolarized, as is the light 
incident from the left on the polarizer in Figure 34.30a. The electric field of unpolar-
ized light varies randomly through all possible values of u. Because the average value 
of cos2u is 12 , the intensity transmitted by a polarizing filter is

 Itransmitted =
1

2
 I0   (incident light unpolarized) (34.42)

In other words, a polarizing filter passes 50% of unpolarized light and blocks 50%.
In polarizing sunglasses, the polymer grid is aligned horizontally (when the glasses 

are in the normal orientation) so that the glasses transmit vertically polarized light. Most 
natural light is unpolarized, so the glasses reduce the light intensity by 50%. But glare—
the reflection of the sun and the skylight from roads and other horizontal surfaces—has 
a strong horizontal polarization. This light is almost completely blocked by the Polaroid, 
so the sunglasses “cut glare” without affecting the main scene you wish to see.

You can test whether your sunglasses are polarized by holding them in front of you 
and rotating them as you look at the glare reflecting from a horizontal surface. Polarizing 
sunglasses substantially reduce the glare when the glasses are “normal” but not when the 
glasses are 90� from normal. (You can also test them against a pair of sunglasses known to 
be polarizing by seeing if all light is blocked when the lenses of the two pairs are crossed.)

x

y

u

u

E
r

E0 sin u

E0 cos u

The incident light is polarized
at angle u with respect to the 
polarizer’s axis.Polarizer axis

Only the component of E 
in the direction of the axis 
is transmitted.

r

FIgurE 34.29 An incident electric field can 
be decomposed into components parallel 
and perpendicular to a polarizer’s axis.

Polarizer

Unpolarized light(a)

Analyzer

u

(b)

u � 0� u � 45� u � 90�

FIgurE 34.30 The intensity of the transmitted light depends on the angle between the 
polarizing filters.

The vertical polarizer blocks the 
horizontally polarized glare from the 
surface of the water.

the polarizer’s axis (i.e., the polarization direction transmitted by the polarizer). If we 
call the polarizer axis the y-axis, then the incident electric field is

 E
u

incident = E# in + E} jn = E0 sin u in + E0 cos u jn (34.39)

where u is the angle between the incident plane of polarization and the polarizer axis.
If the polarizer is ideal, meaning that light polarized parallel to the axis is 100% 

transmitted and light perpendicular to the axis is 100% blocked, then the electric field 
of the light transmitted by the filter is

 E
u

transmitted = E} jn = E0 cos u jn (34.40)

Because the intensity depends on the square of the electric field amplitude, you can see 
that the transmitted intensity is related to the incident intensity by

 Itransmitted = I0 cos2 u  (incident light polarized) (34.41)

This result, which was discovered experimentally in 1809, is called Malus’s law.
FIgurE 34.30a shows that Malus’s law can be demonstrated with two polarizing fil-

ters. The first, called the polarizer, is used to produce polarized light of intensity I0. 
The second, called the analyzer, is rotated by angle u relative to the polarizer. As the 
photographs of FIgurE 34.30b show, the transmission of the analyzer is (ideally) 100% 
when u = 0� and steadily decreases to zero when u = 90�. Two polarizing filters with 
perpendicular axes, called crossed polarizers, block all the light.
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probe to which the laser is attached. This reaction force causes the 
probe to accelerate at

  a =
F

m
=

P

mc
=

15 * 106 W

(1200 kg)(3.0 * 108 m/s)

  = 4.2 * 10-5 m/s2

As expected, the acceleration is extremely small. But one year is a large 
amount of time: �t = 3.15 * 107 s. After one year of acceleration,

  v = a�t = 1300 m/s

  d =
1
2 a(�t)2 = 2.1 * 1010 m

The space probe will have traveled 2.1 * 1010 m and will be going 
1300 m/s.

AssEss Even after a year, the speed is not exceptionally fast—
only about 2900 mph. But the probe will have traveled a substan-
tial distance, about 25% of the distance to Mars.

ChALLENgE ExAMPLE 34.6  Light propulsion
Future space rockets might propel themselves by firing laser 
beams, rather than exhaust gases, out the back. The acceleration 
would be small, but it could continue for months or years in the 
vacuum of space. Consider a 1200 kg unmanned space probe pow-
ered by a 15 MW laser. After one year, how far will it have trav-
eled and how fast will it be going?

MoDEL Assume the laser efficiency is so high that it can be 
powered for a year with a negligible mass of fuel.

soLVE Light waves transfer not only energy but also momentum, 
which is how they exert a radiation-pressure force. We found that 
the radiation force of a light beam of power P is

 F =
P

c

From Newton’s third law, the emitted light waves must exert an 
equal-but-opposite reaction force on the source of the light. In this 
case, the emitted light exerts a force of this magnitude on the space 

Stop to think 34.6  Unpolarized light of equal intensity is incident on four pairs of 
polarizing filters. Rank in order, from largest to smallest, the intensities Ia to Id 
transmitted through the second polarizer of each pair.

30�

(a)

30� 60�

(b)

30�

30�

(c)

60�
30�

(d)

30�
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s u M M A r Y
The goal of Chapter 34 has been to study the properties of electromagnetic fields and waves.

Field  
Transformations
Fields measured in reference 
frame A to be E

u

A and B
u

A are 
found in frame B to be

 E
u

B = E
u

A + v  

u

BA * B
u

A

 B
u

B = B
u

A -
1

c2 v  

u

BA * E
u

A

Lorentz Force
This force law governs the interaction of charged particles with 
electromagnetic fields:

 F
u

= q(E
u

+ v  

u
* B

u

)

•	 An electric field exerts a force on any charged particle.

•	 A magnetic field exerts a force on a moving charged particle.

Maxwell’s Equations
These equations govern electromagnetic fields:

 C E
u # dA

u

=
Qin

P0
    Gauss>s law

 C B
u # dA

u

= 0    Gauss>s law for magnetism

 C E
u # ds

u
= -

d�m

dt
    Faraday>s law

 C B
u # ds

u
= m0Ithrough + P0m0 

d�e

dt
    Ampère@Maxwell law

Maxwell’s equations tell us that:

An electric field can be created by

•	 Charged particles

•	 A changing magnetic field

A magnetic field can be created by

•	 A current

•	 A changing electric field

general Principles

y

xA

y

x

vBA

B

r

Polarization

The electric field and the Poynting vector define the plane of polarization. The intensity 
of polarized light transmitted through a polarizing filter is given by Malus’s law:

  I = I0 cos2 u

where u is the angle between the electric field and the polarizer axis.

Applications

I0

I

u

u

An electromagnetic wave is a self-sustaining electromagnetic field.

•	 An em wave is a transverse wave with E
u

, B
u

, and v  

u

em mutually perpendicular.

•	 An em wave propagates with speed vem = c = 1/1P0m0.

•	 The electric and magnetic field strengths are related by E = cB.

•	 The Poynting vector S
u

= (E
u

* B
u

)/m0 is the energy transfer in the direction of travel.

•	 The wave intensity is I = P/A = (1/2cm0)E0 

2 = (cP0/2)E0 

2.

Induced fields

An induced electric 
field is created by a 
changing magnetic 
field.

Important Concepts

Induced E

Increasing B
r

r

An induced magnetic 
field is created by a 
changing electric 
field.

Increasing E

Induced B

r

r

S

B

B

E

E

r

r

r

r

r

vem � c

These fields can exist 
independently of 
charges and currents.
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Galilean field transformation equations
displacement current
Maxwell’s equations

Poynting vector, S
u

intensity, I
radiation pressure, prad

antenna
plane of polarization
Malus’s law

Terms and Notation

C o N C E P T u A L  Q u E s T I o N s

 5. Is the electric field strength in FIgurE Q34.5 increasing, decreas-
ing, or not changing? Explain.

 6. Do the situations in FIgurE Q34.6 represent possible electromag-
netic waves? If not, why not?

 7. In what directions are the electromagnetic waves traveling in 
FIgurE Q34.7?

 8. The intensity of an electromagnetic wave is 10 W/m2. What will 
the intensity be if:

 a. The amplitude of the electric field is doubled?
 b. The amplitude of the magnetic field is doubled?
 c. The amplitudes of both the electric and the magnetic fields 

are doubled?
 d. The frequency is doubled?
 9. Older televisions used a 

loop antenna like the one in 
FIgurE Q34.9. How does this 
antenna work?

 10. A vertically polarized electromagnetic wave passes through the 
five polarizers in FIgurE Q34.10. Rank in order, from largest to 
smallest, the transmitted intensities Ia  to Ie.

(b)(a)

FIgurE Q34.3 

 1. Andre is flying his spaceship to the left through the laboratory 
magnetic field of FIgurE Q34.1.

 a. Does Andre see a magnetic field? If so, in which direction 
does it point?

 b. Does Andre see an electric field? If so, in which direction 
does it point?

 2. Sharon drives her rocket through the magnetic field of FIg-

urE Q34.2 traveling to the right at a speed of 1000 m/s as mea-
sured by Bill. As she passes Bill, she shoots a positive charge 
backward at a speed of 1000 m/s relative to her.

 a. According to Sharon, what kind of force or forces act on the 
charge? In which directions? Explain.

 b. According to Bill, what kind of force or forces act on the 
charge? In which directions? Explain.

 3. If you curl the fingers of your right hand as shown, are the 
electric fluxes in FIgurE Q34.3 positive or negative?

 4. What is the current through surface S in FIgurE Q34.4 if you curl 
your right fingers in the direction of the arrow?

FIgurE Q34.4 

S2 A

2 A

Induced B
r

E
r
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E x E r C I s E s  A N D  P r o B L E M s

Problems labeled  integrate material from earlier chapters.

Exercises

Section 34.1 E or B? It Depends on Your Perspective

 1. | A rocket cruises past a laboratory at 1.00 * 106 m/s in the 
positive x-direction just as a proton is launched with velocity 
(in the laboratory frame) v  

u
= (1.41 * 106 in + 1.41 * 106 jn) m/s. 

What are the proton’s speed and its angle from the y-axis in
(a) the laboratory frame and (b) the rocket frame?

 2. | FIgurE Ex34.2 shows the electric and 
magnetic field in frame A. A rocket 
in frame B travels parallel to one of 
the axes of the A coordinate system. 
Along which axis must the rocket 
travel, and in which direction, in 
order for the rocket scientists to mea-
sure (a) BB 7 BA, (b) BB = BA, and
(c) BB 6 BA?

 3. || Scientists in the laboratory create a uniform electric field E
u

 =
1.0 * 106 kn V/m in a region of space where B

u

= 0
u

. What are the 
fields in the reference frame of a rocket traveling in the positive 
x-direction at 1.0 * 106 m/s?

 4. | Laboratory scientists have created the electric and magnetic 
fields shown in FIgurE Ex34.4. These fields are also seen by sci-
entists that zoom past in a rocket traveling in the x-direction at 
1.0 * 106 m/s. According to the rocket scientists, what angle 
does the electric field make with the axis of the rocket?

 5. | A rocket zooms past the earth at v = 2.0 * 106 m/s. Scientists 
on the rocket have created the electric and magnetic fields shown 
in FIgurE Ex34.5. What are the fields measured by an earthbound 
scientist?

Section 34.2 The Field Laws Thus Far

Section 34.3 The Displacement Current

 6. || The magnetic field is uniform over each face of the box shown 
in FIgurE Ex34.6. What are the magnetic field strength and direc-
tion on the front surface?

 7. | Show that the quantity P0(d�e/dt) has units of current.
 8. || Show that the displacement current inside a parallel-plate 

capacitor can be written C(dVC/dt).
 9. | What capacitance, in mF, has its potential difference increasing 

at 1.0 * 106 V/s when the displacement current in the capacitor 
is 1.0 A? 

 10. || A 10-cm-diameter parallel-plate capacitor has a 1.0 mm 
spacing. The electric field between the plates is increasing at the 
rate 1.0 * 106 V/m s. What is the magnetic field strength (a) on 
the axis, (b) 3.0 cm from the axis, and (c) 7.0 cm from the axis?

 11. || A 5.0-cm-diameter parallel-plate capacitor has a 0.50 mm gap. 
What is the displacement current in the capacitor if the potential 
difference across the capacitor is increasing at 500,000 V/s?

Section 34.5 Electromagnetic Waves

 12. | What is the electric field amplitude of an electromagnetic 
wave whose magnetic field amplitude is 2.0 mT?

 13. | What is the magnetic field amplitude of an electromagnetic 
wave whose electric field amplitude is 10 V/m?

 14. | The magnetic field of an electromagnetic wave in a vacuum 
is Bz = (3.00 mT) sin1(1.00 * 107)x - vt2, where x is in m and 
t is in s. What are the wave’s (a) wavelength, (b) frequency, and 
(c) electric field amplitude?

 15. || The electric field of an electromagnetic wave in a vacuum is 
Ey = (20.0 V/m) cos 1(6.28 * 108 )x - vt2, where x is in m and 
t is in s. What are the wave’s (a) wavelength, (b) frequency, and 
(c) magnetic field amplitude?

Section 34.6 Properties of Electromagnetic Waves

 16. | A radio wave is traveling in the negative y-direction. What 
is the direction of E

u

 at a point where B
u

 is in the positive
x-direction?

 17. | a.  What is the magnetic field amplitude of an electromagnetic 
wave whose electric field amplitude is 100 V/m?

  b. What is the intensity of the wave?
 18. | A radio receiver can detect signals with electric field ampli-

tudes as small as 300 mV/m. What is the intensity of the smallest 
detectable signal?

 19. || A helium-neon laser emits a 1.0-mm-diameter laser beam 
with a power of 1.0 mW. What are the amplitudes of the electric 
and magnetic fields of the light wave?

 20. || A 200 MW laser pulse is focused with a lens to a diameter of 
2.0 mm.

 a. What is the laser beam’s electric field amplitude at the focal 
point?

 b. What is the ratio of the laser beam’s electric field to the 
electric field that keeps the electron bound to the proton of a 
hydrogen atom? The radius of the electron orbit is 0.053 nm.

 21. || A radio antenna broadcasts a 1.0 MHz radio wave with 25 kW 
of power. Assume that the radiation is emitted uniformly in all 
directions.

 a. What is the wave’s intensity 30 km from the antenna?
 b. What is the electric field amplitude at this distance?
 22. || At what distance from a 10 W point source of electromagnetic 

waves is the magnetic field amplitude 1.0 mT?
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r

EA
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 23. | A 1000 W carbon-dioxide laser emits light with a wavelength 
of 10 mm into a 3.0-mm-diameter laser beam. What force does 
the laser beam exert on a completely absorbing target?

Section 34.7 Polarization

 24. | FIgurE Ex34.24 shows a vertically 
polarized radio wave of frequency  
1.0 * 106 Hz traveling into the page. 
The maximum electric field strength is 
1000 V/m. What are

 a. The maximum magnetic field  
strength?

 b. The magnetic field strength and 
direction at a point where E

u

 =  
(500 V/m, down)?

 25. || Only 25% of the intensity of a polarized light wave passes 
through a polarizing filter. What is the angle between the electric 
field and the axis of the filter?

 26. || A 200 mW vertically polarized laser beam passes through a 
polarizing filter whose axis is 35� from horizontal. What is the 
power of the laser beam as it emerges from the filter?

 27. || Unpolarized light with intensity 350 W/m2 passes first 
through a polarizing filter with its axis vertical, then through a 
second polarizing filter. It emerges from the second filter with 
intensity 131 W/m2. What is the angle from vertical of the axis 
of the second polarizing filter?

Problems

 28. || What is the force (magnitude and direction) on the proton in 
FIgurE P34.28? Give the direction as an angle cw or ccw from 
vertical.

 29. || What are the electric field strength and direction at the posi-
tion of the proton in FIgurE P34.29?

 30. | What electric field strength and direction will allow the elec-
tron in FIgurE P34.30 to pass through this region of space without 
being deflected?

 31. | A proton is fired with a speed of 1.0 * 106 m/s through the 
parallel-plate capacitor shown in FIgurE P34.31. The capacitor’s 
electric field is E

u

= (1.0 * 105 V/m, down).
 a. What magnetic field B

u

, both strength and direction, must be 
applied to allow the proton to pass through the capacitor with 
no change in speed or direction?

 b. Find the electric and magnetic fields in the proton’s reference 
frame.

 c. How does an experimenter in the proton’s frame explain 
that the proton experiences no force as the charged plates 
fly by?

 32. ||| An electron travels with v  

u
= 5.0 * 106 in m/s through a 

point in space where E
u

= (2.0 * 105 in - 2.0 * 105 jn) V/m and
B
u

= -0.10 kn T. What is the force on the electron?
 33. || A very long, 1.0-mm-diameter wire carries a 2.5 A current 

from left to right. Thin plastic insulation on the wire is posi-
tively charged with linear charge density 2.5 nC/cm. A mosquito 
1.0 cm from the center of the wire would like to move in such a 
way as to experience an electric field but no magnetic field. How 
fast and which direction should she fly?

 34. || In FIgurE P34.34, a circular loop of radius r travels with speed 
v along a charged wire having linear charge density l. The wire 
is at rest in the laboratory frame, and it passes through the center 
of the loop.

 a. What are E
u

 and B
u

 at a point on the loop as measured by a 
scientist in the laboratory? Include both strength and direction.

 b. What are the fields E
u

 and B
u

 at a point on the loop as measured 
by a scientist in the frame of the loop?

 c. Show that an experimenter in the loop’s frame sees a current 
I = lv passing through the center of the loop.

 d. What electric and magnetic fields would an experimenter in 
the loop’s frame calculate at distance r from the current of 
part c?

 e. Show that your fields of parts b and d are the same.

 35. || The magnetic field inside a 4.0-cm-diameter superconducting 
solenoid varies sinusoidally between 8.0 T and 12.0 T at a fre-
quency of 10 Hz.

 a. What is the maximum electric field strength at a point 1.5 cm 
from the solenoid axis?

 b. What is the value of B at the instant E reaches its maximum 
value?

 36. || A simple series circuit consists of a 150 �  resistor, a 25 V 
battery, a switch, and a 2.5 pF parallel-plate capacitor (initially 
uncharged) with plates 5.0 mm apart. The switch is closed at 
t = 0 s.

 a. After the switch is closed, find the maximum electric flux and 
the maximum displacement current through the capacitor.

 b. Find the electric flux and the displacement current at 
t = 0.50 ns.

 37. || A wire with conductivity s carries current I. The current is 
increasing at the rate dI/dt.

 a. Show that there is a displacement current in the wire equal to 
(P0/s)(dI/dt).

 b. Evaluate the displacement current for a copper wire in which 
the current is increasing at 1.0 * 106 A/s.

 38. || A 10 A current is charging a 1.0-cm-diameter parallel-plate 
capacitor.

 a. What is the magnetic field strength at a point 2.0 mm radially 
from the center of the wire leading to the capacitor?

 b. What is the magnetic field strength at a point 2.0 mm radially 
from the center of the capacitor?
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 39. || FIgurE P34.39 shows the voltage across a 0.10 mF capacitor. Draw 
a graph showing the displacement current through the capacitor as 
a function of time.

 40. || FIgurE P34.40 shows the electric field inside a cylinder of 
radius R = 3.0 mm. The field strength is increasing with time as 
E = 1.0 * 108t 2 V/m, where t is in s. The electric field outside 
the cylinder is always zero, and the field inside the cylinder was 
zero for t 6 0.

 a. Find an expression for the electric flux �e through the entire 
cylinder as a function of time.

 b. Draw a picture showing the magnetic field lines inside and 
outside the cylinder. Be sure to include arrowheads showing 
the field’s direction.

 c. Find an expression for the magnetic field strength as a 
function of time at a distance r 6 R from the center. Evaluate 
the magnetic field strength at r = 2.0 mm, t = 2.0 s.

 d. Find an expression for the magnetic field strength as a func-
tion of time at a distance r 7 R from the center. Evaluate the 
magnetic field strength at r = 4.0 mm, t = 2.0 s.

 41. || A 1.0 mF capacitor is discharged, starting at t = 0 s.The displace-
ment current through the plates is Idisp = (10 A)exp(- t/2.0 ms). 
What was the capacitor’s initial voltage (�VC)0?

 42. || At one instant, the electric and magnetic fields at one point 
of an electromagnetic wave are E

u

= (200 in + 300 jn - 50 kn) V/m 
and B

u

= B0(7.3 in - 7.3 jn + a kn) mT.
 a. What are the values of a and B0?
 b. What is the Poynting vector at this time and position?
 43. || a.  Show that uE and uB, the energy densities of the elec-

tric and magnetic fields, are equal to each other in an 
electromagnetic wave. In other words, show that the wave’s 
energy is divided equally between the electric field and the 
magnetic field.

  b.  What is the total energy density in an electromagnetic 
wave of intensity 1000 W/m2?

 44. || Assume that a 7.0-cm-diameter, 100 W lightbulb radiates 
all its energy as a single wavelength of visible light. Estimate 
the electric and magnetic field strengths at the surface of the 
bulb.

 45. | The intensity of sunlight reaching the earth is 1360 W/m2.
 a. What is the power output of the sun?
 b. What is the intensity of sunlight on Mars?
 46. ||| A cube of water 10 cm on a side is placed in a microwave 

beam having E0 = 11 kV/m. The microwaves illuminate one 
face of the cube, and the water absorbs 80% of the incident 
energy. How long will it take to raise the water temperature 
by 50�C? Assume that the water has no heat loss during this 
time.

 47. || A laser beam passes through a converging lens with a focal 
length f. At what distance past the lens has the laser beam’s 
(a) intensity and (b) electric field strength increased by a factor of 4?

 48. | When the Voyager 2 spacecraft passed Neptune in 1989, it 
was 4.5 * 109 km from the earth. Its radio transmitter, with 
which it sent back data and images, broadcast with a mere 21 W 
of power. Assuming that the transmitter broadcast equally in all 
directions,

 a. What signal intensity was received on the earth?
 b. What electric field amplitude was detected?
  The received signal was somewhat stronger than your result 

because the spacecraft used a directional antenna, but not by 
much.

 49. || In reading the instruction manual that came with your garage-
door opener, you see that the transmitter unit in your car pro-
duces a 250 mW signal and that the receiver unit is supposed to 
respond to a radio wave of the correct frequency if the electric 
field amplitude exceeds 0.10 V/m. You wonder if this is really 
true. To find out, you put fresh batteries in the transmitter and 
start walking away from your garage while opening and closing 
the door. Your garage door finally fails to respond when you’re 
42 m away. Are the manufacturer’s claims true?

 50. || The maximum electric field strength in air is 3.0 MV/m. 
Stronger electric fields ionize the air and create a spark. What is 
the maximum power that can be delivered by a 1.0-cm-diameter 
laser beam propagating through air?

 51. || A LASIK vision-correction system uses a laser that emits 
10-ns-long pulses of light, each with 2.5 mJ of energy. The laser 
beam is focused to a 0.85-mm-diameter circle on the cornea. 
What is the electric field amplitude of the light wave at the 
cornea?

 52. || The intensity of sunlight reaching the earth is 1360 W/m2. 
Assuming all the sunlight is absorbed, what is the radiation-
pressure force on the earth? Give your answer (a) in newtons 
and (b) as a fraction of the sun’s gravitational force on the 
earth.

 53. || For radio and microwaves, the depth of penetration into the 
human body is proportional to l1/2. If 27 MHz radio waves 
penetrate to a depth of 14 cm, how far do 2.4 GHz microwaves 
penetrate?

 54. || A laser beam shines straight up onto a flat, black foil of mass m.
 a. Find an expression for the laser power P needed to levitate 

the foil.
 b. Evaluate P for a foil with a mass of 25 mg.
 55. | For a science project, you would like to horizontally suspend 

an 8.5 by 11 inch sheet of black paper in a vertical beam of light 
whose dimensions exactly match the paper. If the mass of the 
sheet is 1.0 g, what light intensity will you need?

 56. || You’ve recently read about a chemical laser that generates 
a 20-cm-diameter, 25 MW laser beam. One day, after physics 
class, you start to wonder if you could use the radiation pres-
sure from this laser beam to launch small payloads into orbit. To 
see if this might be feasible, you do a quick calculation of the 
acceleration of a 20-cm-diameter, 100 kg, perfectly absorbing 
block. What speed would such a block have if pushed horizon-
tally 100 m along a frictionless track by such a laser?

 57. ||| An 80 kg astronaut has gone outside his space capsule to do 
some repair work. Unfortunately, he forgot to lock his safety 
tether in place, and he has drifted 5.0 m away from the capsule. 
Fortunately, he has a 1000 W portable laser with fresh batteries 
that will operate it for 1.0 h. His only chance is to accelerate him-
self toward the space capsule by firing the laser in the opposite 
direction. He has a 10-h supply of oxygen. How long will it take 
him to reach safety?
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 58.  ||  Unpolarized light of intensity I0 is incident on three polarizing 
filters. The axis of the first is vertical, that of the second is 45� 
from vertical, and that of the third is horizontal. What light inten-
sity emerges from the third filter?

Challenge Problems

 59.  An electron travels with v  

u
= 5.0 * 106  in m/s through a point in 

space where B
u

= 0.10 jn T. The force on the electron at this point 
is  F

u

= (9.6 * 10-14  in - 9.6 * 10-14 kn) N.  What  is  the  electric 
field?

 60.  A 4.0-cm-diameter parallel-plate capacitor with a 1.0 mm spac-
ing  is  charged  to  1000  V.  A  switch  closes  at  t = 0 s,  and  the 
capacitor is discharged through a wire with 0.20 �  resistance.

  a.  Find an expression for the magnetic field strength inside the 
capacitor at r = 1.0 cm as a function of time.

  b.  Draw a graph of B versus t.
 61.  The radar system at an airport broadcasts 11 GHz microwaves 

with 150 kW of power. An approaching airplane with a 31 m2 
cross section is 30 km away. Assume that the radar broadcasts 
uniformly  in  all  directions  and  that  the  airplane  scatters  mi-
crowaves uniformly in all directions. What  is  the electric field 
strength  of  the  microwave  signal  received  back  at  the  airport 
200 ms later?

 62.  Large  quantities  of  dust  should  have  been  left  behind  after 
the  creation  of  the  solar  system.  Larger  dust  particles,  com-
parable  in  size  to  soot  and  sand  grains,  are  common.  They 
create  shooting  stars when  they  collide with  the  earth’s  atmo-
sphere. But very small dust particles are conspicuously absent. 
Astronomers  believe  that  the  very  small  dust  particles  have 
been  blown  out  of  the  solar  system  by  the  sun.  By  compar-
ing  the  forces on dust particles, determine  the diameter of  the 
smallest dust particles that can remain in the solar system over 
long periods of time. Assume that the dust particles are spherical, 
black, and have a density of 2000 kg/m3. The sun emits electro-
magnetic radiation with power 3.9 * 1026 W.

 63.  Consider current I passing through a resistor of radius r, length L, 
and resistance R.

  a.  Determine the electric and magnetic fields at the surface of 
the resistor. Assume that the electric field is uniform through-
out, including at the surface.

  b.  Determine the strength and direction of the Poynting vector 
at the surface of the resistor.

  c.  Show that the flux of the Poynting vector (i.e., the integral of 
S
u # dA

u

) over the surface of the resistor is  I 2R. Then give an 
interpretation of this result.

 64.  Unpolarized  light  of  intensity  I0  is  incident  on  a  stack  of 
7 polarizing filters, each with its axis rotated 15� cw with respect to 
the previous filter. What light intensity emerges from the last filter?

StoP to think AnSwerS

Stop to Think 34.1: b. v  

u

AB is parallel to B
u

A hence v  

u

AB * B
u

A is zero. 
Thus E

u

B = E
u

A and points in the positive z-direction. v  

u

AB * E
u

A points 
down, in the negative y-direction, so -v  

u

AB * E
u

A/c2 points in the posi-
tive y-direction and causes B

u

B to be angled upward.

Stop to Think 34.2: Bc + Ba + Bd + Bb. The induced magnetic 
field strength depends on the rate dE/dt at which the electric field is 
changing. Steeper slopes on the graph correspond to larger magnetic 
fields.

Stop to Think 34.3: e. E
u

 is perpendicular to B
u

 and to v  

u
, so it can only 

be along  the z-axis. According  to  the Ampère-Maxwell  law, d�e/dt 
has the same sign as the line integral of B

u # ds
u
 around the closed curve. 

The integral is positive for a cw integration. Thus, from the right-hand 
rule, E

u

 is either into the page (negative z-direction) and increasing, or 
out of the page (positive z-direction) and decreasing. We can see from 
the figure that B is decreasing in strength as the wave moves from left 

to right, so E must also be decreasing. Thus E
u

 points along the posi-
tive z-axis.

Stop to Think 34.4: a. The Poynting vector S
u

= (E
u

* B
u

)/m0 points in 
the direction of travel, which is the positive y-direction. B

u

 must point 
in the positive x-direction in order for E

u

* B
u

 to point upward.

Stop to Think 34.5: b. The intensity along a line from the antenna 
decreases inversely with the square of the distance, so the intensity at 
20 km is 1

4 that at 10 km. But the intensity depends on the square of 
the electric field amplitude, or, conversely, E0 is proportional to I 1/2. 
Thus E0 at 20 km is 12 that at 10 km.

Stop to Think 34.6: Id + Ia + Ib � Ic. The intensity depends on 
cos2 u, where u is the angle between the axes of the two filters. The 
filters in d have u = 0�. The two filters in both b and c are crossed 
(u = 90�) and transmit no light at all.
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Phasors
Voltages and currents oscillate, so the 
mathematics of AC circuits is similar to 
that of simple harmonic motion.

35

Transmission lines carry 
alternating current at  
voltages as high as 500,000 V.

AC Circuits

 Looking Ahead  The goal of Chapter 35 is to understand and apply basic techniques of AC circuit analysis.

AC Electricity
The wires that transport electricity 
across the country—the grid—use alter-
nating current, called AC.

Capacitors and Inductors
You’ll learn that capacitors and inductors 
are much more useful in AC circuits than 
they were in DC circuits.

 Looking Back
Chapter 31 Circuit analysis

Filter Circuits
Simple circuits consisting of resistors 
and capacitors can act as filters.

You’ll see how this circuit transmits low 
frequencies to the output—the capacitor 
voltage— but blocks high frequencies. It is 
called a low-pass filter.

RLC Circuits
A circuit that is 
especially important 
in communication 
electronics is the 
series RLC circuit, 
consisting of a resis-
tor, capacitor, and 
inductor.

You’ll learn that an RLC 
circuit exhibits resonance, 
allowing it to be tuned to 
a specific frequency.

Phase and Power
The emf and the current of an AC circuit 
oscillate with the same frequency but 
usually not in phase with each other. 
You’ll find that the phase difference 
limits an emf’s ability to deliver power 
because the current and voltage aren’t 
pushing and pulling together.

The power delivered 
to, say, a motor is re-
duced by a quantity 
called the power 
factor.

Transformers allow an oscillating voltage to 
be “stepped up” to a higher voltage so that 
power can be delivered using lower currents 
that don’t overheat the wires. Smaller trans-
formers bring the voltage down to 120 V.

Instantaneous
emf

E0

vt

v
VCC

R

E

L

C

R

E

I

v
2v00 v0

You’ll learn a new 
way to represent 
oscillating quantities 
with rotating vec-
tors called phasors. 
The instantaneous 
value of a phasor 
is its horizontal 
projection.

 Looking Back
Chapter 14 Simple harmonic motion  
and resonance

 Looking Back
Section 29.5 Capacitors
Section 33.8 Inductors

The peak current and peak 
voltage of a capacitor or an 
inductor are related by a 
resistance-like quantity called 
reactance, also measured in 
ohms. An inductor’s reactance 
increases with frequency; that 
of a capacitor decreases.
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35.1 AC Sources and Phasors
One of the examples of Faraday’s law cited in Chapter 33 was an electric generator. 
A turbine, which might be powered by expanding steam or falling water, causes  
a coil of wire to rotate in a magnetic field. As the coil spins, the emf and the induced 
current oscillate sinusoidally. The emf is alternately positive and negative, causing the 
charges to flow in one direction and then, a half cycle later, in the other. The oscilla-
tion frequency of the grid in North and South America is f = 60 Hz, whereas most of 
the rest of the world uses a 50 Hz oscillation.

The generator’s peak emf—the peak voltage—is a fixed, unvarying quantity, so 
it might seem logical to call a generator an alternating voltage source. Nonetheless, 
circuits powered by a sinusoidal emf are called AC circuits, where AC stands for 
alternating current. By contrast, the steady-current circuits you studied in Chapter 31 
are called DC circuits, for direct current.

AC circuits are not limited to the use of 50 Hz or 60 Hz power-line voltages. 
Audio, radio, television, and telecommunication equipment all make extensive use of 
AC circuits, with frequencies ranging from approximately 102 Hz in audio circuits to 
approximately 109 Hz in cell phones. These devices use electrical oscillators rather than 
generators to produce a sinusoidal emf, but the basic principles of circuit analysis are 
the same.

You can think of an AC generator or oscillator as a battery whose output voltage 
undergoes sinusoidal oscillations. The instantaneous emf of an AC generator or oscil-
lator, shown graphically in FIgurE 35.1a, can be written

 E = E0 cos vt (35.1)

where E0 is the peak or maximum emf and v = 2pf  is the angular frequency in 
radians per second. Recall that the units of emf are volts. As you can imagine, the 
mathematics of AC circuit analysis are going to be very similar to the mathematics of 
simple harmonic motion.

An alternative way to represent the emf and other oscillatory quantities is with the 
phasor diagram of FIgurE 35.1b. A phasor is a vector that rotates counterclockwise 
(ccw) around the origin at angular frequency v. The length or magnitude of the phasor 
is the maximum value of the quantity. For example, the length of an emf phasor is E0. 
The angle vt is the phase angle, an idea you learned about in Chapter 14, where we 
made a connection between circular motion and simple harmonic motion.

The quantity’s instantaneous value, the value you would measure at time t, is 
the projection of the phasor onto the horizontal axis. This is also analogous to the 
connection between circular motion and simple harmonic motion. FIgurE 35.2 helps 
you visualize the phasor rotation by showing how the phasor corresponds to the more 
familiar graph at several specific points in the cycle.

(a) The emf oscillates
as E � E0 cos vt.

0

E0

E

�E0

t
2TT

Peak
emf

The oscillation period
is T � 1/f � 2p/v.

(b)

The phasor rotates
ccw at angular
frequency v.

The phase
angle is vt.

The length of
the phasor is E0.

The tip of
the phasor goes
once around the
circle in time T.

The instantaneous emf
value E0 cos vt is the
projection of the phasor
onto the horizontal axis.

E0�E0

vt

FIgurE 35.1 An oscillating emf can be 
represented as a graph or as a phasor 
diagram.

0
0

E0

E

�E0

t
T1T4

1T2
3T4

vt � 0
E � E0

vt � 
E � 0

vt � p
E � �E0

vt � 
E � 0

vt � 2p
E � E0

p
2

3p
2

FIgurE 35.2 The correspondence be-
tween a phasor and points on a graph.

Stop to think 35.1  The magnitude of the instantaneous value of the emf represented 
by this phasor is

 a. Increasing.
 b. Decreasing.
 c. Constant.
 d. It’s not possible to tell without knowing t.

E0

E

resistor Circuits
In Chapter 31 you learned to analyze a circuit in terms of the current I, voltage V, and 
potential difference �V. Now, because the current and voltage are oscillating, we will 
use lowercase i to represent the instantaneous current through a circuit element and v 
for the circuit element’s instantaneous voltage.
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FIgurE 35.3 shows the instantaneous current iR through a resistor R. The potential 
difference across the resistor, which we call the resistor voltage vR, is given by 
Ohm’s law:

 vR = iRR (35.2)

FIgurE 35.4 shows a resistor R connected across an AC emf E. Notice that the circuit 
symbol for an AC generator is . We can analyze this circuit in exactly the same 
way we analyzed a DC resistor circuit. Kirchhoff’s loop law says that the sum of all 
the potential differences around a closed path is zero:

 a �V = �Vsource + �Vres = E - vR = 0 (35.3)

The minus sign appears, just as it did in the equation for a DC circuit, because the 
potential decreases when we travel through a resistor in the direction of the current. 
We find from the loop law that vR = E = E0 cos vt. This isn’t surprising because the 
resistor is connected directly across the terminals of the emf.

The resistor voltage in an AC circuit can be written

 vR = VR cos vt (35.4)

where VR is the peak or maximum voltage. You can see that VR = E0 in the single-
resistor circuit of Figure 35.4. Thus the current through the resistor is

 iR =
vR 

R
=

VR cos vt

R
= IR cos vt (35.5)

where IR = VR/R is the peak current.

NoTE  Ohm’s law applies to both the instantaneous and peak currents and 
voltages. 

The resistor’s instantaneous current and voltage are in phase, both oscillating as 
cos vt. FIgurE 35.5 shows the voltage and the current simultaneously on a graph and as 
a phasor diagram. The fact that the current phasor is shorter than the voltage phasor 
has no significance. Current and voltage are measured in different units, so you can’t 
compare the length of one to the length of the other. Showing the two different quanti-
ties on a single graph—a tactic that can be misleading if you’re not careful—illustrates 
that they oscillate in phase and that their phasors rotate together at the same angle and 
frequency.

� �

iR

R

The instantaneous resistor
voltage is vR � iRR. The
potential decreases in the
direction of the current.

The instantaneous current
in the resistor

FIgurE 35.3 Instantaneous current iR 
through a resistor.

�Vsource � E

iR

�Vres � �vRR

This is the current direction
when E � 0. A half cycle later
it will be in the opposite direction.

FIgurE 35.4 An AC resistor circuit.

0

VR

IR

vR and iR

vR � VR cos vt

iR � IR cos vt

�VR

�IR

t
T

The resistor voltage and
current oscillate in phase.

iR

IR

VR

vR

Voltage phasor, length VR

Current phasor, length IR

Instantaneous
current and voltage

vt

FIgurE 35.5 Graph and phasor diagram 
of the resistor current and voltage.

ExAmPLE 35.1  Finding resistor voltages
In the circuit of FIgurE 35.6, what are (a) the 
peak voltage across each resistor and (b) the 
instantaneous resistor voltages at t = 20 ms?

VISuALIzE Figure 35.6 shows the circuit dia-
gram. The two resistors are in series.

SoLVE a. The equivalent resistance of the 
two series resistors is Req = 5 � +
15 � = 20 �. The instantaneous current through the equivalent resistance is

 iR =
vR

Req
=

E0 cos vt

Req
=

(100 V) cos (2p(60 Hz)t)

20 �

 = (5.0 A) cos (2p(60 Hz)t)

15 �

5 �

(100 V) cos(2p(60 Hz)t)

FIgurE 35.6 An AC resistor circuit.

Continued
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iC

C

iC

The instantaneous capacitor
voltage is vC � q / C. The potential
decreases from � to �.

The instantaneous current
to and from the capacitor

� �
� �
� �

� �
� �
� �

� �

(a)

E � E0 cos vt

iC

vCC

(b)

FIgurE 35.7 An AC capacitor circuit.

Stop to think 35.2  The resistor whose voltage and 
current phasors are shown here has resistance R

 a. 7 1 �
 b. 6 1 �
 c. It’s not possible to tell.

VR IR

35.2 Capacitor Circuits
FIgurE 35.7a shows current iC charging a capacitor with capacitance C. The instanta-
neous capacitor voltage is vC = q/C, where {q is the charge on the two capacitor 
plates at this instant. It is useful to compare Figure 35.7a to Figure 35.3 for a 
resistor.

FIgurE 35.7b, where capacitance C is connected across an AC source of emf E, is the 
most basic capacitor circuit. The capacitor is in parallel with the source, so the capaci-
tor voltage equals the emf: vC = E = E0 cos vt. It will be useful to write

 vC = VC cos vt (35.6)

where VC is the peak or maximum voltage across the capacitor. You can see that 
VC = E0 in this single-capacitor circuit.

To find the current to and from the capacitor, we first write the charge

 q = CvC = CVC cos vt (35.7)

The current is the rate at which charge flows through the wires, iC = dq/dt, thus

 iC =
dq

dt
=

d

dt
 (CVC cos vt) = -vCVC sin vt (35.8)

We can most easily see the relationship between the capacitor voltage and current if 
we use the trigonometric identity -sin (x) = cos (x + p/2) to write

 iC = vCVC cos 1vt +
p

2 2  (35.9)

The peak current is IR = 5.0 A, and this is also the peak current through the two 
resistors that form the 20 �  equivalent resistance. Hence the peak voltage across 
each resistor is

VR = IRR = b 25 V 5 � resistor

75 V 15 � resistor

b. The instantaneous current at t = 0.020 s is

iR = (5.0 A) cos12p(60 Hz)(0.020 s)2 = 1.55 A

The resistor voltages at this time are

vR = iRR = b 7.7 V 5 � resistor

23.2 V 15 � resistor

ASSESS The sum of the instantaneous voltages, 30.9 V, is what you would find by calcu-
lating E at t = 20 ms. This self-consistency gives us confidence in the answer.
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In contrast to a resistor, a capacitor’s current and voltage are not in phase. In 
FIgurE 35.8a, a graph of the instantaneous voltage vC and current iC, you can see that 
the current peaks one-quarter of a period before the voltage peaks. The phase angle 
of the current phasor on the phasor diagram of FIgurE 35.8b is p/2 rad—a quarter of a 
circle—larger than the phase angle of the voltage phasor.

We can summarize this finding:

The AC current of a capacitor leads the capacitor voltage by p/2 rad, or 90�.

The current reaches its peak value IC at the instant the capacitor is fully discharged and 
vC = 0. The current is zero at the instant the capacitor is fully charged.

A simple harmonic oscillator provides a mechanical analogy of the 90� phase dif-
ference between current and voltage. You learned in Chapter 14 that the position and 
velocity of a simple harmonic oscillator are

  x = A cos vt

  v =
dx

dt
= -vA sin vt = -vmax sin vt = vmax cos1vt +

p

2 2
You can see that the velocity of an oscillator leads the position by 90� in the same way 
that the capacitor current leads the voltage.

Capacitive reactance
We can use Equation 35.9 to see that the peak current to and from a capacitor is 
IC = vCVC. This relationship between the peak voltage and peak current looks much 
like Ohm’s law for a resistor if we define the capacitive reactance XC to be

 XC K
1

vC
 (35.10)

With this definition,

 IC =
VC

XC
 or VC = ICXC (35.11)

The units of reactance, like those of resistance, are ohms.

NoTE  Reactance relates the peak voltage VC and current IC. But reactance differs 
from resistance in that it does not relate the instantaneous capacitor voltage and 
current because they are out of phase. That is, vC � iCXC. 

A resistor’s resistance R is independent of the emf frequency. In contrast, as 
FIgurE 35.9 shows, a capacitor’s reactance XC depends inversely on the frequency. 
The reactance becomes very large at low frequencies (i.e., the capacitor is a large 
impediment to current). This makes sense because v = 0 would be a nonoscillating 
DC circuit, and we know that a steady DC current cannot pass through a capacitor. 
The reactance decreases as the frequency increases until, at very high frequencies, 
XC � 0 and the capacitor begins to act like an ideal wire. This result has important 
consequences for how capacitors are used in many circuits.

T

iC peaks   T before vC peaks. We say
that the current leads the voltage by 90�.

IC

vC and iC

VC

�IC

�VC

Voltage vC

Current iC

t
1
2

1
4

T

(a)

0

The current phasor leads
the voltage phasor by 90�.

These are the instantaneous
current and voltage.

IC

iC

VC

vC

vt �    

vt

Voltage phasor 

(b)

p
2

FIgurE 35.8 Graph and phasor diagrams 
of the capacitor current and voltage.

Capacitive reactance

The reactance is very
large at low frequencies.

The reactance is very
small at high frequencies.

XC

XC �

v

1
vC

FIgurE 35.9 The capacitive reactance as 
a function of frequency.

Increasing the frequency by a factor of 106 decreases XC by a fac-
tor of 106, giving

 XC (at 100 MHz) = 0.016 �

ASSESS A capacitor with a substantial reactance at audio frequen-
cies has virtually no reactance at FM-radio frequencies.

ExAmPLE 35.2  Capacitive reactance
What is the capacitive reactance of a 0.10 mF capacitor at a 100 Hz 
audio frequency and at a 100 MHz FM-radio frequency?

SoLVE At 100 Hz,

 XC (at 100 Hz) =
1

vC
=

1

2p(100 Hz)(1.0 * 10-7 F)
= 16,000 �
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Stop to think 35.3 
 What is the capacitive reactance of “no capacitor,” just a contin-

uous wire?

 a. 0 b. � c. Undefined

Physics for Scientists and Engineers 3e
Knight
Benjamin Cummings
Pearson Education
7409035019
Fig 35_10
Pickup: 3273636019
Rolin Graphics
lm    6/1/11    10p4 x 5p11

vRR

C

E � E0 cos vt 

i

i

vC

FIgurE 35.10 An RC circuit driven by an 
AC source.

35.3 RC Filter Circuits
You learned in Chapter 31 that a resistance R causes a capacitor to be charged or 
discharged with time constant t = RC. We called this an RC circuit. Now that we’ve 
looked at resistors and capacitors individually, let’s explore what happens if an RC 
circuit is driven continuously by an alternating current source.

FIgurE 35.10 shows a circuit in which a resistor R and capacitor C are in series with 
an emf E oscillating at angular frequency v. Before launching into a formal analysis, 
let’s try to understand qualitatively how this circuit will respond as the frequency is 
varied. If the frequency is very low, the capacitive reactance will be very large, and 
thus the peak current IC will be very small. The peak current through the resistor is the 
same as the peak current to and from the capacitor (conservation of current requires 
IR = IC); hence we expect the resistor’s peak voltage VR = IRR to be very small at very 
low frequencies.

On the other hand, suppose the frequency is very high. Then the capacitive reac-
tance approaches zero and the peak current, determined by the resistance alone, will be 
IR = E0/R. The resistor’s peak voltage VR = IR will approach the peak source voltage 
E0 at very high frequencies.

This reasoning leads us to expect that VR will increase steadily from 0 to E0 as v 
is increased from 0 to very high frequencies. Kirchhoff’s loop law has to be obeyed, 
so the capacitor voltage VC will decrease from E0 to 0 during the same change of 
frequency. A quantitative analysis will show us how this behavior can be used as a 
filter.

The goal of a quantitative analysis is to determine the peak current I and the two 
peak voltages VR and VC as functions of the emf amplitude E0 and frequency v. Our 
analytic procedure is based on the fact that the instantaneous current i is the same for 
two circuit elements in series.

ExAmPLE 35.3  Capacitor current
A 10 mF capacitor is connected to a 1000 Hz oscillator with a peak emf of 5.0 V. What 
is the peak current to the capacitor?

VISuALIzE Figure 35.7b showed the circuit diagram. It is a simple one-capacitor 
circuit.

SoLVE The capacitive reactance at v = 2pf = 6280 rad/s is

XC =
1

vC
=

1

(6280 rad/s)(10 * 10-6 F)
= 16 �

The peak voltage across the capacitor is VC = E0 = 5.0 V; hence the peak current is

IC =
VC

XC
=

5.0 V

16 �
= 0.31 A

ASSESS Using reactance is just like using Ohm’s law, but don’t forget it applies to only 
the peak current and voltage, not the instantaneous values.
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using phasors to analyze an RC circuit

Begin by drawing a current 
phasor of length I. This is the 
starting point because the series 
circuit elements have the same 
current i. The angle at which 
the phasor is drawn is not 
relevant.

The current and voltage of a  
resistor are in phase, so draw a  
resistor voltage phasor of  
length VR parallel to the current 
phasor I. The capacitor current 
leads the capacitor voltage by  
90�, so draw a capacitor volt-
age phasor of length VC that is 
90� behind [i.e., clockwise (cw) 
from] the current phasor.

The series resistor and capaci-
tor are in parallel with the emf, 
so their instantaneous voltages 
satisfy vR + vC = E. This is a 
vector addition of phasors, so 
draw the emf phasor as the vec-
tor sum of the two voltage pha-
sors. The emf is E = E0 cos vt, 
hence the emf phasor is at  
angle vt.

The length of the emf phasor,  
E0, is the hypotenuse of a right 
triangle formed by the resistor  
and capacitor phasors. Thus  
E0 

2 = VR 

2 + VC 

2.

I I

VR

VC

I

vt

VR

VC

E0

VC

VR

E0

The relationship E0 

2 = VR 

2 + VC 

2 is based on the peak values, not the instantaneous 
values, because the peak values are the lengths of the sides of the right triangle. The 
peak voltages are related to the peak current I via VR = IR and VC = IXC, thus

  E0 

2 = VR 

2 + VC 

2 = (IR)2 + (IXC)2 = (R2 + XC 

2)I 2 
(35.12)

  = (R2 + 1/v2C 2)I 2

Consequently, the peak current in the RC circuit is

 I =
E02R2 + XC 

2
=

E02R2 + 1/v2C 2
 (35.13)

Knowing I gives us the two peak voltages:

  VR = IR =
E0R2R2 + XC 

2
=

E0R2R2 + 1/v2C 2

  VC = IXC =
E0XC2R2 + XC 

2
=

E0/vC2R2 + 1/v2C 2
 

(35.14)

Frequency Dependence
Our goal was to see how the peak current and voltages vary as functions of the fre-
quency v. Equations 35.13 and 35.14 are rather complex and best interpreted by look-
ing at graphs. FIgurE 35.11 is a graph of VR and VC versus v.

You can see that our qualitative predictions have been borne out. That is, VR in-
creases from 0 to E0 as v is increased, while VC decreases from E0 to 0. The explana-
tion for this behavior is that the capacitive reactance XC decreases as v increases. For 
low frequencies, where XC W R, the circuit is primarily capacitive. For high frequen-
cies, where XC V R, the circuit is primarily resistive.

The frequency at which VR = VC is called the crossover frequency vc. The cross-
over frequency is easily found by setting the two expressions in Equations 35.14 equal 
to each other. The denominators are the same and cancel, as does E0, leading to

 vc =
1

RC
 (35.15)

In practice, fc = vc/2p is also called the crossover frequency.

E0

VR and VC The capacitor voltage approaches
E0 as v approaches 0.

The resistor voltage
approaches E0 as v
approaches �.

Crossover frequency

0
0

vc 2vc 3vc 4vc

v

FIgurE 35.11 Graph of the resistor and 
capacitor peak voltages as functions of 
the emf angular frequency v.
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We’ll leave it as a homework problem to show that VR = VC = E0/12 when 
v = vc. This may seem surprising. After all, shouldn’t VR and VC add up to E0?

No! VR and VC are the peak values of oscillating voltages, not the instantaneous 
values. The instantaneous values do, indeed, satisfy vR + vC = E at all instants of 
time. But the resistor and capacitor voltages are out of phase with each other, as the 
phasor diagram shows, so the two circuit elements don’t reach their peak values at 
the same time. The peak values are related by E0 

2 = VR 

2 + VC 

2, and you can see that 
VR = VC = E0/12 satisfies this equation.

NoTE  It’s very important in AC circuit analysis to make a clear distinction 
between instantaneous values and peak values of voltages and currents. Relation-
ships that are true for one set of values may not be true for the other. 

Filters
FIgurE 35.12a is the circuit we’ve just analyzed; the only difference is that the capacitor 
voltage vC is now identified as the output voltage vout. This is a voltage you might mea-
sure or, perhaps, send to an amplifier for use elsewhere in an electronic instrument. 
You can see from the capacitor voltage graph in Figure 35.11 that the peak output 
voltage is Vout � E0 if v V vc, but Vout � 0 if v W vc. In other words,

	■	 If the frequency of an input signal is well below the crossover frequency, the input 
signal is transmitted with little loss to the output.

	■	 If the frequency of an input signal is well above the crossover frequency, the input 
signal is strongly attenuated and the output is very nearly zero.

This circuit is called a low-pass filter.
The circuit of FIgurE 35.12b, which instead uses the resistor voltage vR for the output 

vout, is a high-pass filter. The output is Vout � 0 if v V vc, but Vout � E0 if v W vc. 
That is, an input signal whose frequency is well above the crossover frequency is 
transmitted without loss to the output.

Filter circuits are widely used in electronics. For example, a high-pass filter 
designed to have fc = 100 Hz would pass the audio frequencies associated with 
speech ( f 7 200 Hz) while blocking 60 Hz “noise” that can be picked up from power 
lines. Similarly, the high-frequency hiss from old vinyl records can be attenuated with 
a low-pass filter, allowing the lower-frequency audio signal to pass.

A simple RC filter suffers from the fact that the crossover region where VR � VC is 
fairly broad. More sophisticated filters have a sharper transition from off (Vout � 0) to 
on (Vout � E0), but they’re based on the same principles as the RC filter analyzed here.

vout � vCC

R

Frequency vE

Transmits frequencies  v � vc and
blocks frequencies v � vc  

(a) Low-pass filter 

vout � vRR

C

Frequency vE

Transmits frequencies  v � vc and
blocks frequencies v � vc  

(b) High-pass filter 

FIgurE 35.12 Low-pass and high-pass 
filter circuits.

SoLVE You might think that a crossover frequency near 5 MHz, 
about halfway between 1 MHz and 10 MHz, would work best. 
But 5 MHz is a factor of 5 higher than 1 MHz while only a fac-
tor of 2 less than 10 MHz. A crossover frequency the same factor 
above 1 MHz as it is below 10 MHz will give the best results. In 
practice, choosing fc = 3 MHz would be sufficient. You can then 
use Equation 35.15 to select the proper resistor value:

  R =
1

vcC
=

1

2p(3 * 106 Hz)(500 * 10-12 F)

  = 106 � � 100 �

ASSESS Rounding to 100 �  is appropriate because the crossover 
frequency was determined to only one significant figure. Such 
“sloppy design” is adequate when the two frequencies you need to 
distinguish are well separated.

ExAmPLE 35.4  Designing a filter
For a science project, you’ve built a radio to listen to AM radio 
broadcasts at frequencies near 1 MHz. The basic circuit is an antenna, 
which produces a very small oscillating voltage when it absorbs the 
energy of an electromagnetic wave, and an amplifier. Unfortunately, 
your neighbor’s short-wave radio broadcast at 10 MHz interferes 
with your reception. Having just finished physics, you decide to 
solve this problem by placing a filter between the antenna and the 
amplifier. You happen to have a 500 pF capacitor. What frequency 
should you select as the filter’s crossover frequency? What value of 
resistance will you need to build this filter?

moDEL You need a low-pass filter to block signals at 10 MHz 
while passing the lower-frequency AM signal at 1 MHz.

VISuALIzE The circuit will look like the low-pass filter in Fig-
ure 35.12a. The oscillating voltage generated by the antenna will 
be the emf, and vout will be sent to the amplifier.
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Stop to think 35.4 
 Rank in order, from largest to smallest, the crossover frequencies 

(vc)a to (vc)d of these four circuits.

100 � 100 � 50 � 50 �

100 mF

(a)

200 mF

(b)

200 mF

(c)

100 mF

(d)

35.4 Inductor Circuits
FIgurE 35.13a shows the instantaneous current iL through an inductor. If the current is 
changing, the instantaneous inductor voltage is

 vL = L 
diL

dt
 (35.16)

You learned in Chapter 33 that the potential decreases in the direction of the cur-
rent if the current is increasing (diL/dt 7 0) and increases if the current is decreasing 
(diL/dt 6 0).

FIgurE 35.13b is the simplest inductor circuit. The inductor L is connected across the 
AC source, so the inductor voltage equals the emf: vL = E = E0 cos vt. We can write

 vL = VL cos vt (35.17)

where VL is the peak or maximum voltage across the inductor. You can see that 
VL = E0 in this single-inductor circuit.

We can find the inductor current iL by integrating Equation 35.17. First, we use 
Equation 35.17 to write Equation 35.16 as

 diL =
vL

L
 dt =

VL

L
 cos vt dt (35.18)

Integrating gives

  iL =
VL

L 3cos vt dt =
VL

vL
 sin vt =

VL

vL
 cos1vt -

p

2 2  

(35.19)

  = IL cos1vt -
p

2 2
where IL = VL/vL is the peak or maximum inductor current.

NoTE  Mathematically, Equation 35.19 could have an integration constant i0. An 
integration constant would represent a constant DC current through the inductor, 
but there is no DC source of potential in an AC circuit. Hence, on physical grounds, 
we set i0 = 0 for an AC circuit. 

We define the inductive reactance, analogous to the capacitive reactance, to be

 XL K vL (35.20)

(a)

iL

L
� �

The instantaneous current
through the inductor

The instantaneous inductor
voltage is vL � L (diL/dt).

(b)

L

iL

vLE � E0 cos vt

FIgurE 35.13 Using an inductor in an AC 
circuit.
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Then the peak current IL = VL/vL and the peak voltage are related by

 IL =
VL

XL
 or VL = ILXL (35.21)

FIgurE 35.14 shows that the inductive reactance increases as the frequency increases. 
This makes sense. Faraday’s law tells us that the induced voltage across a coil increases 
as the time rate of change of B

u

 increases, and B
u

 is directly proportional to the inductor 
current. For a given peak current IL, B

u

 changes more rapidly at higher frequencies 
than at lower frequencies, and thus VL is larger at higher frequencies than at lower 
frequencies.

FIgurE 35.15a is a graph of the inductor voltage and current. You can see that the 
current peaks one-quarter of a period after the voltage peaks. The angle of the current 
phasor on the phasor diagram of FIgurE 35.15b is p/2 rad less than the angle of the volt-
age phasor. We can summarize this finding:

The AC current through an inductor lags the inductor voltage by p/2 rad, 
or 90�.

Inductive reactance
XL � vL

The reactance increases
with increasing frequency.

XL

v

FIgurE 35.14 The inductive reactance as 
a function of frequency.

0

VL

IL

vL and iL

Current iL

Voltage vL
�VL

�IL

t
T

(a) iL peaks   T after vL peaks.
We say that the current lags
the voltage by 90�.

1
4

T1
2 iL

IL

VL

vL

Voltage phasor
vt

(b)

The current phasor lags
the voltage phasor by 90�.

vt �    p
2

FIgurE 35.15 Graphs and phasor diagrams of the inductor current and voltage.

SoLVE The inductive reactance at f = 100 kHz is

 XL = vL = 2p(1.0 * 105 Hz)(25 * 10-6 H) = 16 �

Thus the peak voltage is VL = ILXL = (20 mA)(16 �) = 320 mV. 
The voltage peak occurs one-quarter period before the current 
peaks, and we know that the current peaks at t = 5.0 ms. The pe-
riod of a 100 kHz oscillation is 10.0 ms, so the voltage peaks at

 t = 5.0 ms -
10.0 ms

4
= 2.5 ms

ExAmPLE 35.5  Current and voltage of an inductor
A 25 mH inductor is used in a circuit that oscillates at 100 kHz. 
The current through the inductor reaches a peak value of 20 mA at 
t = 5.0 ms. What is the peak inductor voltage, and when, closest 
to t = 5.0 ms, does it occur?

moDEL The inductor current lags the voltage by 90�, or, equiva-
lently, the voltage reaches its peak value one-quarter period before 
the current.

VISuALIzE The circuit looks like Figure 35.13b.

35.5 The Series RLC Circuit
The circuit of FIgurE 35.16, where a resistor, inductor, and capacitor are in series, is 
called a series RLC circuit. The series RLC circuit has many important applications 
because, as you will see, it exhibits resonance behavior.

The analysis, which is very similar to our analysis of the RC circuit in Section 35.3, 
will be based on a phasor diagram. Notice that the three circuit elements are in series 
with each other and, together, are in parallel with the emf. We can draw two conclu-
sions that form the basis of our analysis:

 1. The instantaneous current of all three elements is the same: i = iR = iL = iC.
 2. The sum of the instantaneous voltages matches the emf: E = vR + vL + vC.

E � E0 cos vt

i

i
vC

vL

vR

C

L

R

FIgurE 35.16 A series RLC circuit.



35.5 . The Series RLC Circuit    1043

using phasors to analyze an RLC circuit

Begin by drawing a current 
phasor of length I. This is the 
starting point because the series 
circuit elements have the same 
current i.

The current and voltage of a 
resistor are in phase, so draw a  
resistor voltage phasor parallel  
to the current phasor I. The 
capacitor current leads the  
capacitor voltage by 90�, so 
draw a capacitor voltage phasor  
that is 90� behind the current 
phasor. The inductor current  
lags the voltage by 90�, so draw 
an inductor voltage phasor 90� 
ahead of the current phasor.

The instantaneous voltages sat-
isfy E = vR + vL + vC. In 
terms of phasors, this is a vector 
addition. We can do the addi-
tion in two steps. Because the 
capacitor and inductor phasors  
are in opposite directions, their 
vector sum has length VL - VC. 
Adding the resistor phasor, at 
right angles, then gives the emf 
phasor E at angle vt.

The length E0 of the emf pha-
 sor is the hypotenuse of a 
right triangle. Thus

E0 

2 = VR 

2 + (VL - VC)2

I
VR

VL

VC

I
VR

VL � VC
E0

VR

VL � VC

E0

f

I
 vt

If VL 7 VC, which we’ve assumed, then the instantaneous current i lags the emf by 
a phase angle f. We can write the current, in terms of f, as

 i = I cos (vt - f) (35.22)

Of course, there’s no guarantee that VL will be larger than VC. If the opposite is true, 
VL 6 VC, the emf phasor is on the other side of the current phasor. Our analysis is still 
valid if we consider f to be negative when i is ccw from E. Thus f can be anywhere 
between -90� and +90�.

Now we can continue much as we did with the RC circuit. Based on the right tri-
angle, E0 

2 is

 E0 

2 = VR 

2 + (VL - VC)2 = [R2 + (XL - XC)2]I 2 (35.23)

where we wrote each of the peak voltages in terms of the peak current I and a resis-
tance or a reactance. Consequently, the peak current in the RLC circuit is

 I =
E02R2 + (XL - XC)2

=
E02R2 + (vL - 1/vC)2

 (35.24)

The three peak voltages, if you need them, are then found from VR = IR, VL = IXL, 
and VC = IXC.

Impedance
The denominator of Equation 35.24 is called the impedance Z of the circuit:

 Z = 2R2 + (XL - XC)2 (35.25)

Impedance, like resistance and reactance, is measured in ohms. The circuit’s peak cur-
rent can be written in terms of the source emf and the circuit impedance as

 I =
E0

Z
 (35.26)

Equation 35.26 is a compact way to write I, but it doesn’t add anything new to 
Equation 35.24.
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Phase Angle
It is often useful to know the phase angle f between the emf and the current. You can 
see from FIgurE 35.17 that

 tan f =
VL - VC

VR
=

(XL - XC)I

RI

The current I cancels, and we’re left with

 f = tan-11XL - XC

R 2  (35.27)

We can check that Equation 35.27 agrees with our analyses of single-element 
circuits. A resistor-only circuit has XL = XC = 0 and thus f = tan-1(0) = 0 rad. In 
other words, as we discovered previously, the emf and current are in phase. An AC 
inductor circuit has R = XC = 0 and thus f = tan-1(�) = p/2 rad, agreeing with our 
earlier finding that the inductor current lags the voltage by 90�.

Other relationships can be found from the phasor diagram and written in terms of 
the phase angle. For example, it is useful to write the peak resistor voltage as

 VR = E0 cos f (35.28)

Notice that the resistor voltage oscillates in phase with the emf only if f = 0 rad.

resonance
Suppose we vary the emf frequency v while keeping everything else constant. There is 
very little current at very low frequencies because the capacitive reactance XC = 1/vC 
is very large. Similarly, there is very little current at very high frequencies because the 
inductive reactance XL = vL becomes very large.

If I approaches zero at very low and very high frequencies, there should be some in-
termediate frequency where I is a maximum. Indeed, you can see from Equation 35.24 
that the denominator will be a minimum, making I a maximum, when XL = XC, or

 vL =
1

vC
 (35.29)

The frequency v0 that satisfies Equation 35.29 is called the resonance frequency:

 v0 =
12LC

 (35.30)

This is the frequency for maximum current in the series RLC circuit. The maximum 
current

 Imax =
E0

R
 (35.31)

is that of a purely resistive circuit because the impedance is Z = R at resonance.
You’ll recognize v0 as the oscillation frequency of the LC circuit we analyzed in 

Chapter 33. The current in an ideal LC circuit oscillates forever as energy is trans-
ferred back and forth between the capacitor and the inductor. This is analogous to an 
ideal, frictionless simple harmonic oscillator in which the energy is transformed back 
and forth between kinetic and potential.

Adding a resistor to the circuit is like adding damping to a mechanical oscillator. The 
emf is then a sinusoidal driving force, and the series RLC circuit is directly analogous to the 
driven, damped oscillator that you studied in Chapter 14. A mechanical oscillator exhib-
its resonance by having a large-amplitude response when the driving frequency matches 
the system’s natural frequency. Equation 35.30 is the natural frequency of the series RLC 

(              )

VR

VL � VC

E0

f

I

VR � E0 cos f

The current lags the emf by

(              )f � tan�1     � tan�1 
VL � VC_______

VR

XL � XC_______
R

FIgurE 35.17 The current is not in phase 
with the emf.



circuit, the frequency at which the current would like to oscillate. Consequently, the circuit 
has a large current response when the oscillating emf matches this frequency.

FIgurE 35.18 shows the peak current I of a series RLC circuit as the emf frequency v 
is varied. Notice how the current increases until reaching a maximum at frequency v0, 
then decreases. This is the hallmark of a resonance.

As R decreases, causing the damping to decrease, the maximum current becomes 
larger and the curve in Figure 35.18 becomes narrower. You saw exactly the same be-
havior for a driven mechanical oscillator. The emf frequency must be very close to v0 in 
order for a lightly damped system to respond, but the response at resonance is very large.

For a different perspective, FIgurE 35.19 graphs the instantaneous emf E = E0 cos vt 
and current i = I cos (vt - f) for frequencies below, at, and above v0. The current 
and the emf are in phase at resonance (f = 0 rad) because the capacitor and inductor 
essentially cancel each other to give a purely resistive circuit. Away from resonance, 
the current decreases and begins to get out of phase with the emf. You can see, from 
Equation 35.27, that the phase angle f is negative when XL 6 XC (i.e., the frequency 
is below resonance) and positive when XL 7 XC (the frequency is above resonance).

Resonance circuits are widely used in radio, television, and communication equip-
ment because of their ability to respond to one particular frequency (or very narrow 
range of frequencies) while suppressing others. The selectivity of a resonance circuit 
improves as the resistance decreases, but the inherent resistance of the wires and the 
inductor coil keeps R from being 0 �.

I

v
2v00 v0

R � 8 �

R � 25 �

R � 50 �

The maximum 
current is E0 /R.

FIgurE 35.18 A graph of the current I 
versus emf frequency for a series RLC 
circuit.

0

E0

E and i

�E0

t
T

Below resonance: v � v0

0

E0

E and i

�E0

t
T

The current is in phase with the emf.
f � 0

Resonance: v � v0

Maximum current

0

E0

E and i

�E0

t
T

The current lags the emf.
f � 0

Above resonance: v � v0

The current leads the emf.
f � 0

FIgurE 35.19 Graphs of the emf E and the current i at frequencies below, at, and above the 
resonance frequency v0.

 C =
1

Lv0 

2 =
1

(60 * 10-6 H)(6.28 * 106 rad/s)2

 = 4.2 * 10-10 F = 420 pF

 b. XL = XC at resonance, so the peak current is

I =
E0

R
=

5.0 * 10-3 V

0.25 �
= 0.020 A = 20 mA

 c. The 1050 kHz signal is “off resonance,” so we need to com-
pute XL = vL = 396 �  and XC = 1/vC = 361 �  at v =
2p * 1050 kHz. The peak voltage of this signal is E0 = 10 mV. 
With these values, Equation 35.24 for the peak current is

I =
E02R2 + (XL - XC)2

= 0.28 mA

ASSESS These are realistic values for the input stage of an AM 
radio. You can see that the signal from the 1050 kHz station is 
strongly suppressed when the radio is tuned to 1000 kHz.

ExAmPLE 35.6  Designing a radio receiver
An AM radio antenna picks up a 1000 kHz signal with a peak volt-
age of 5.0 mV. The tuning circuit consists of a 60 mH inductor in 
series with a variable capacitor. The inductor coil has a resistance 
of 0.25 �, and the resistance of the rest of the circuit is negligible.

 a. To what value should the capacitor be tuned to listen to this 
radio station?

 b. What is the peak current through the circuit at resonance?
 c. A stronger station at 1050 kHz produces a 10 mV antenna 

signal. What is the current at this frequency when the radio is 
tuned to 1000 kHz?

moDEL The inductor’s 0.25 �  resistance can be modeled as a re-
sistance in series with the inductance, hence we have a series RLC 
circuit. The antenna signal at v = 2p * 1000 kHz is the emf.

VISuALIzE The circuit looks like Figure 35.16.

SoLVE a. The capacitor needs to be tuned to where it and the in-
ductor are resonant at v0 = 2p * 1000 kHz. The appropriate 
value is

35.5 . The Series RLC Circuit    1045
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Stop to think 35.5 
 A series RLC circuit has VC = 5.0 V, VR = 7.0 V, and VL = 9.0 V. 

Is the frequency above, below, or equal to the resonance frequency?

35.6 Power in AC Circuits
A primary role of the emf is to supply energy. Some circuit devices, such as motors 
and lightbulbs, use the energy to perform useful tasks. Other circuit devices dissipate 
the energy as an increased thermal energy in the components and the surrounding air. 
Chapter 31 examined the topic of power in DC circuits. Now we can perform a similar 
analysis for AC circuits.

The emf supplies energy to a circuit at the rate

 psource = iE (35.32)

where i and E are the instantaneous current from and potential difference across the 
emf. We’ve used a lowercase p to indicate that this is the instantaneous power. We 
need to look at the power losses in individual circuit elements.

resistors
A resistor dissipates energy at the rate

 pR = iRvR = iR 

2R (35.33)

We can use iR = IR cos vt to write the resistor’s instantaneous power loss as

 pR = iR 

2R = IR 

2R cos2 vt (35.34)

FIgurE 35.20 shows the instantaneous power graphically. You can see that, because 
the cosine is squared, the power oscillates twice during every cycle of the emf. The 
energy dissipation peaks both when iR = IR and when iR = -IR.

In practice, we’re more interested in the average power than in the instantaneous 
power. The average power P is the total energy dissipated per second. We can find 
PR for a resistor by using the identity cos2(x) =

1
2 (1 + cos 2x) to write

 PR = IR 

2R cos2 vt = IR 

2RJ1

2
 (1 + cos 2vt) R =

1

2
 IR 

2R +
1

2
 IR 

2R cos 2vt

The cos 2vt term oscillates positive and negative twice during each cycle of the emf. 
Its average, over one cycle, is zero. Thus the average power loss in a resistor is

 PR =
1

2
 IR 

2R  (average power loss in a resistor) (35.35)

It is useful to write Equation 35.35 as

 PR = 1 IR22
2 2

R = (Irms)
2R (35.36)

where the quantity

 Irms =
IR22

 (35.37)

is called the root-mean-square current, or rms current, Irms. Technically, an rms 
quantity is the square root of the average, or mean, of the quantity squared. For a sinu-
soidal oscillation, the rms value turns out to be the peak value divided by 12.

pR is a maximum
when iR � �IR.

pR is zero
when iR is zero.

0

IR

iR

�IR

t
2TT

0
0

IR
2R

pR

t
2TT

IR
2R1

2

The average power
is PR �    IR

2R.1
2

FIgurE 35.20 The instantaneous power 
loss in a resistor.
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The rms current allows us to compare Equation 35.36 directly to the energy dissi-
pated by a resistor in a DC circuit: P = I 2R. You can see that the average power loss of 
a resistor in an AC circuit with Irms = 1 A is the same as in a DC circuit with I = 1 A. 
As far as power is concerned, an rms current is equivalent to an equal DC current.

Similarly, we can define the root-mean-square voltage and emf:

 Vrms =
VR22

   Erms =
E022

 (35.38)

The resistor’s average power loss in terms of the rms quantities is

 PR = (Irms)
2R =

(Vrms)
2

R
= IrmsVrms (35.39)

and the average power supplied by the emf is

 Psource = Irms Erms (35.40)

The single-resistor circuit that we analyzed in Section 35.1 had VR = E or, equiva-
lently, Vrms = Erms. You can see from Equations 35.39 and 35.40 that the power loss 
in the resistor exactly matches the power supplied by the emf. This must be the case 
in order to conserve energy.

NoTE  Voltmeters, ammeters, and other AC measuring instruments are calibrated 
to give the rms value. An AC voltmeter would show that the “line voltage” of an 
electrical outlet in the United States is 120 V. This is Erms. The peak voltage E0 
is larger by a factor of 12, or E0 = 170 V. The power-line voltage is sometimes 
specified as “120 V/60 Hz,” showing the rms voltage and the frequency. 

SoLVE A bulb labeled 100 W is designed to dissipate an average 
100 W at Vrms = 120 V. We can use Equation 35.39 to find

 R =
(Vrms)

2

PR
=

(120 V)2

100 W
= 144 �

The rms current is then found from

 Irms =
PR

Vrms
=

100 W

120 V
= 0.833 A

The peak current is IR = 12 Irms = 1.18 A.

ASSESS Calculations with rms values are just like the calculations 
for DC circuits.

ExAmPLE 35.7  Lighting a bulb
A 100 W incandescent lightbulb is plugged into a 120 V/60 Hz 
outlet. What is the resistance of the bulb’s filament? What is the 
peak current through the bulb?

moDEL The filament in a lightbulb acts as a resistor.

VISuALIzE FIgurE 35.21 is a simple one-resistor circuit.

FIgurE 35.21 An AC circuit with a lightbulb as a resistor.

Capacitors and Inductors
In Section 35.2, we found that the instantaneous current to a capacitor is iC =
-vCVC sin vt. Thus the instantaneous energy dissipation in a capacitor is

 pC = vCiC = (VC cos vt)(-vCVC sin vt) = -
1

2
 vCVC 

2 sin 2vt (35.41)

where we used sin(2x) = 2 sin(x)cos(x).
FIgurE 35.22 on the next page shows Equation 35.41 graphically. Energy is trans-

ferred into the capacitor (positive power) as it is charged, but, instead of being dis-
sipated, as it would be by a resistor, the energy is stored as potential energy in the 
capacitor’s electric field. Then, as the capacitor discharges, this energy is given back 
to the circuit. Power is the rate at which energy is removed from the circuit, hence p is 
negative as the capacitor transfers energy back into the circuit.

The power rating on a lightbulb is its 
average power at Vrms = 120 V.
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Using a mechanical analogy, a capacitor is like an ideal, frictionless simple har-
monic oscillator. Kinetic and potential energy are constantly being exchanged, but 
there is no dissipation because none of the energy is transformed into thermal en-
ergy. The important conclusion is that a capacitor’s average power loss is zero: 
PC � 0.

The same is true of an inductor. An inductor alternately stores energy in the mag-
netic field, as the current is increasing, then transfers energy back to the circuit as the 
current decreases. The instantaneous power oscillates between positive and negative, 
but an inductor’s average power loss is zero: PL � 0.

NoTE  We’re assuming ideal capacitors and inductors. Real capacitors and induc-
tors inevitably have a small amount of resistance and dissipate a small amount of 
energy. However, their energy dissipation is negligible compared to that of the 
resistors in most practical circuits. 

The Power Factor
In an RLC circuit, energy is supplied by the emf and dissipated by the resistor. But an 
RLC circuit is unlike a purely resistive circuit in that the current is not in phase with 
the potential difference of the emf.

We found in Equation 35.22 that the instantaneous current in an RLC circuit is 
i = I cos(vt - f), where f is the angle by which the current lags the emf. Thus the 
instantaneous power supplied by the emf is

 psource = iE = (I cos (vt - f))(E0 cos vt) = IE0 cos vt cos (vt - f) (35.42)

We can use the expression cos(x - y) = cos(x) cos(y) + sin(x) sin(y) to write the 
power as

 psource = (IE0 cos f) cos2vt + (IE0 sin f) sin vt cos vt (35.43)

In our analysis of the power loss in a resistor and a capacitor, we found that 
the average of cos2 vt is 1

2 and the average of sin vt cos vt is zero. Thus we can 
immediately write that the average power supplied by the emf is

 Psource =
1

2
 IE0 cos f = Irms Erms cos f (35.44)

The rms values, you will recall, are I/12 and E0/12.
The term cos f, called the power factor, arises because the current and the emf in 

a series RLC circuit are not in phase. Because the current and the emf aren’t pushing 
and pulling together, the source delivers less energy to the circuit.

We’ll leave it as a homework problem for you to show that the peak current in 
an RLC circuit can be written I = Imax cos f, where Imax = E0/R was given in Equa-
tion 35.31. In other words, the current term in Equation 35.44 is a function of the 
power factor. Consequently, the average power is

 Psource = Pmax cos2f (35.45)

where Pmax =
1
2 Imax E0 is the maximum power the source can deliver to the circuit.

The source delivers maximum power only when cos f = 1. This is the case when 
XL - XC = 0, requiring either a purely resistive circuit or an RLC circuit operating at 
the resonance frequency v0. The average power loss is zero for a purely capacitive 
or purely inductive load with, respectively, f = -90� or f = +90�, as found above.

Motors of various types, especially large industrial motors, use a significant frac-
tion of the electric energy generated in industrialized nations. Motors operate most 
efficiently, doing the maximum work per second, when the power factor is as close to 

0
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�VC

t
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power is zero.

FIgurE 35.22 Energy flows into and 
out of a capacitor as it is charged and 
discharged.

Industrial motors use a significant fraction 
of the electric energy generated in the 
United States.



1 as possible. But motors are inductive devices, due to their electromagnet coils, and 
if too many motors are attached to the electric grid, the power factor is pulled away 
from 1. To compensate, the electric company places large capacitors throughout the 
transmission system. The capacitors dissipate no energy, but they allow the electric 
system to deliver energy more efficiently by keeping the power factor close to 1.

Finally, we found in Equation 35.28 that the resistor’s peak voltage in an RLC 
circuit is related to the emf peak voltage by VR = E0 cos f or, dividing both sides by 12, Vrms = Erms cos f. We can use this result to write the energy loss in the resistor as

 PR = IrmsVrms = Irms Erms cos f (35.46)

But this expression is Psource, as we found in Equation 35.44. Thus we see that the 
energy supplied to an RLC circuit by the emf is ultimately dissipated by the resistor.

Stop to think 35.6 
 The emf and the current 

in a series RLC circuit oscillate as shown. 
Which of the following (perhaps more than 
one) would increase the rate at which energy 
is supplied to the circuit?

 a. Increase E0 b. Increase L
 c. Increase C d. Decrease E0

 e. Decrease L f. Decrease C

0

E0

I

E and i

i
E

�E0

�I

t
T

and thus

Irms =
Erms

Z
=

15.0 V

8.45 �
= 1.78 A

Lastly, we need the phase angle between the emf and the cur-
rent:

f = tan-11XL - XC

R
 2 = 18.8�

The power factor is cos (18.8�) = 0.947, and thus the power 
delivered by the emf is

Psource = Irms Erms cos f = (1.78 A)(15.0 V)(0.947) = 25 W

 b. Maximum power is delivered when the current is in phase 
with the emf, making the power factor 1.00. This occurs when 
XC = XL, making the impedance Z = R = 8.0 �  and the 
current Irms = Erms/R = 1.88 A. Then

Psource = Irms Erms cos f = (1.88 A)(15.0 V)(1.00) = 28 W

To deliver maximum power, we need to change the capaci-
tance to make XC = XL = 4.71 �. The required capacitance is

C =
1

(3140 rad/s)(4.71 �)
= 68 mF

So delivering maximum power requires lowering the capaci-
tance from 160 mF to 68 mF.

ASSESS Changing the capacitor not only increases the power factor, 
it also increases the current. Both contribute to the higher power.

ChALLENgE ExAmPLE 35.8  Power in an RLC circuit
An audio amplifier drives a series RLC circuit consisting of an 
8.0 �  loudspeaker, a 160 mF capacitor, and a 1.5 mH inductor. 
The amplifier output is 15.0 V rms at 500 Hz.

 a. What power is delivered to the speaker?
 b. What maximum power could the amplifier deliver, and how 

would the capacitor have to be changed for this to happen?

moDEL The emf and voltage of an RLC circuit are not in phase, 
and that affects the power delivered to the circuit. All the power 
is dissipated by the circuit’s resistance, which in this case is the 
loudspeaker.

VISuALIzE The circuit looks like Figure 35.16.

SoLVE a. The power delivered by the emf is Psource = IrmsErms cos f, 
where f is the phase angle between the emf and the current. In 
an AC circuit, the current is I = E/Z, where Z is the impedance. 
To calculate Z, we need the reactances of the capacitor and in-
ductor, and these, in turn, depend on the frequency. At 500 Hz, 
the angular frequency is v = 2p(500 Hz) = 3140 rad/s. With 
this, we can find

XC =
1

vC
=

1

(3140 rad/s)(160 * 10-6 F)
= 1.99 �

XL = vL = (3140 rad/s)(0.0015 H) = 4.71 �

Now we can calculate the impedance:

Z = 2R2 + (XL - XC)2 = 8.45 �

Challenge Example    1049
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RC filter circuits

  VC =
E0XC2R2 + XC

2

  VC S E0 as v S 0

A low-pass filter transmits low frequencies and blocks high 
frequencies.

  VR =
E0R2R2 + XC

2

  VR S E0 as v S �

A high-pass filter transmits high frequencies and blocks low 
frequencies.

Series RLC circuits

  I = E0/Z where Z is the impedance

  Z = 2R2 + (XL - XC)2

  VR = IR  VL = IXL  VC = IXC

When v = v0 = 1/1LC (the resonance frequency), the current 
in the circuit is a maximum Imax = E0/R.

In general, the current i lags behind E by the phase angle 
f = tan-11(XL - XC)/R2 .

The power supplied by the emf is Psource = Irms Ermscos f, where 
cos f is called the power factor.

The power lost in the resistor is PR = IrmsVrms = (Irms)
2R.

Using phasor diagrams

• Start with a phasor (v or i)
common to two or more 
circuit elements.

• The sum of instantaneous 
quantities is vector addition.

•	 Use the Pythagorean theorem
to relate peak quantities. 

Kirchhoff’s laws

Loop law The sum of the potential differences around a 
loop is zero.

Junction law The sum of currents entering a junction 
equals the sum leaving the junction.

Instantaneous and peak quantities

Instantaneous quantities v and i generally obey different 
relationships than peak quantities V and I.

AC circuits are driven by an emf

E = E0 cos vt

that oscillates with angular frequency v = 2pf.

Phasors can be used 
to represent the 
oscillating emf, 
current, and voltage.

Basic circuit elements

Element i and v
Resistance/ 
reactance I and V Power

Resistor In phase R is fixed V = IR IrmsVrms

Capacitor i leads v by 90� XC = 1/vC V = IXC 0

Inductor i lags v by 90� XL = vL V = IXL 0

For many purposes, especially calculating power, the root-mean-square (rms) 
quantities

Vrms = V/12  Irms = I/12  Erms = E0/12

are equivalent to the corresponding DC quantities.

S u m m A r y
The goal of Chapter 35 has been to understand and apply basic techniques of AC circuit analysis.

Important Concepts

Key Skills

Applications

The horizontal projection
is the instantaneous value E.

E

E0

vt

The length
of the
phasor is
the peak
value E0.

I

vt

VR

VC

E0

For an RC circuit, shown here,

  vR + vC = E

  VR 

2 + VC 

2 = E0 

2

VCC

R

E

VRR

C

E

L

C

R

E
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AC circuit
DC circuit
phasor
capacitive reactance, XC

crossover frequency, vc

low-pass filter
high-pass filter
inductive reactance, XL

series RLC circuit
impedance, Z
resonance frequency, v0

average power, P

root-mean-square current, Irms

power factor, cos f

Terms and Notation

C o N C E P T u A L  Q u E S T I o N S

 6. The resonance frequency of a series RLC circuit is 1000 Hz. 
What is the resonance frequency if:

 a. The resistance R is doubled?
 b. The inductance L is doubled?
 c. The capacitance C is doubled?
 d. The peak emf E0 is doubled?
 7. In the series RLC circuit represented by the phasors of 

FIgurE Q35.7, is the emf frequency less than, equal to, or greater 
than the resonance frequency v0? Explain.

 8. The resonance frequency of a series RLC circuit is less than the 
emf frequency. Does the current lead or lag the emf? Explain.

 9. The current in a series RLC circuit lags the emf by 20�. You can-
not change the emf. What two different things could you do to 
the circuit that would increase the power delivered to the circuit 
by the emf?

 10. The average power dissipated by a resistor is 4.0 W. What is 
PR if:

 a. The resistance R is doubled while E0 is held fixed?
 b. The peak emf E0 is doubled while R is held fixed?
 c. Both are doubled simultaneously?

 1. FIgurE Q35.1 shows emf phasors a, b, 
and c.

 a. For each, what is the instanta-
neous value of the emf?

 b. At this instant, is the magnitude 
of each emf increasing, decreas-
ing, or holding constant?

 2. A resistor is connected across an oscillating emf. The peak 
current through the resistor is 2.0 A. What is the peak current if:

 a. The resistance R is doubled?
 b. The peak emf E0 is doubled?
 c. The frequency v is doubled?
 3. A capacitor is connected across an oscillating emf. The peak cur-

rent through the capacitor is 2.0 A. What is the peak current if:
 a. The capacitance C is doubled?
 b. The peak emf E0 is doubled?
 c. The frequency v is doubled?
 4. A low-pass RC filter has a crossover frequency fc = 200 Hz. 

What is fc  if:
 a. The resistance R is doubled?
 b. The capacitance C is doubled?
 c. The peak emf E0 is doubled?
 5. An inductor is connected across an oscillating emf. The peak 

current through the inductor is 2.0 A. What is the peak current if:
 a. The inductance L is doubled?
 b. The peak emf E0 is doubled?
 c. The frequency v is doubled?

100 V

a

b

c

�100 V

�100 V 100 V

FIgurE Q35.1 

I

E0 

FIgurE Q35.7 

E x E r C I S E S  A N D  P r o B L E m S

Problems labeled  integrate material from earlier chapters.

Exercises

Section 35.1 AC Sources and Phasors

 1. | The emf phasor in FIgurE Ex35.1 
is shown at t = 15 ms.

 a. What is the angular frequency 
v? Assume this is the first 
rotation.

 b. What is the instantaneous value 
of the emf?

 2. || The emf phasor in FIgurE Ex35.2 
is shown at t = 2.0 ms.

 a. What is the angular frequency 
v? Assume this is the first 
rotation.

 b. What is the peak value of the 
emf?

 3. | A 110 Hz source of emf has a peak voltage of 50 V. Draw the 
emf phasor at t = 3.0 ms.

 4. || Draw the phasor for the emf E = (170 V) cos1(2p * 60 Hz)t2  
at t = 60 ms.

E0

225� at
t � 2.0 ms

�50 V

FIgurE Ex35.2 

E0 � 12 V Phasor at
t � 15 ms

30�

FIgurE Ex35.1 

http://www.meetyourbrain.com/bookChapters.php?book=Physics-for-Scientists-and-Engineers-A-Strategic-Approach-with-Modern-Physics-3rd-Edition-Solutions&title=0
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 5. | A 200 �  resistor is connected to an AC source with E0 = 10 V. 
What is the peak current through the resistor if the emf frequency 
is (a) 100 Hz? (b) 100 kHz?

 6. | FIgurE Ex35.6 shows voltage and current graphs for a resistor.
 a. What is the emf frequency f ?
 b. What is the value of the resistance R?
 c. Draw the resistor’s voltage and current phasors at t = 15 ms.

Section 35.2 Capacitor Circuits

 7. | A 0.30 mF capacitor is connected across an AC generator 
that produces a peak voltage of 10 V. What is the peak current 
to and from the capacitor if the emf frequency is (a) 100 Hz? 
(b) 100 kHz?

 8. | The peak current to and from a capacitor is 10 mA. What is the 
peak current if

 a. The emf frequency is doubled?
 b. The emf peak voltage is doubled (at the original frequency)?
 9. | A 20 nF capacitor is connected across an AC generator that 

produces a peak voltage of 5.0 V.
 a. At what frequency f is the peak current 50 mA?
 b. What is the instantaneous value of the emf at the instant when 

iC = IC?
 10. || A capacitor is connected to a 15 kHz oscillator. The peak 

current is 65 mA when the rms voltage is 6.0 V. What is the 
value of the capacitance C?

 11. | A capacitor has a peak current of 330 mA when the peak 
voltage at 250 kHz is 2.2 V.

 a. What is the capacitance?
 b. If the peak voltage is held constant, what is the peak current 

at 500 kHz?

Section 35.3 RC Filter Circuits

 12. | A high-pass RC filter is connected to an AC source with a 
peak voltage of 10.0 V. The peak capacitor voltage is 6.0 V. 
What is the resistor voltage?

 13. | A high-pass RC filter with a crossover frequency of 1000 Hz 
uses a 100 �  resistor. What is the value of the capacitor?

 14. | A low-pass RC filter with a crossover frequency of 1000 Hz 
uses a 100 �  resistor. What is the value of the capacitor?

 15. || What are VR and VC if the emf frequency in FIgurE Ex35.15 is 
10 kHz?

 16. | A low-pass filter consists of a 100 mF capacitor in series with 
a 159 �  resistor. The circuit is driven by an AC source with a 
peak voltage of 5.00 V.

 a. What is the crossover frequency fc?
 b. What is VC when f =

1
2 fc, fc, and 2 fc?

 17. | A high-pass filter consists of a 1.59 mF capacitor in series 
with a 100 �  resistor. The circuit is driven by an AC source 
with a peak voltage of 5.00 V.

 a. What is the crossover frequency fc?
 b. What is VR when f =

1
2 fc, fc, and 2 fc?

Section 35.4 Inductor Circuits

 18. | The peak current through an inductor is 10 mA. What is the 
peak current if

 a. The emf frequency is doubled?
 b. The emf peak voltage is doubled (at the original frequency)?
 19. | A 20 mH inductor is connected across an AC generator that 

produces a peak voltage of 10 V. What is the peak current through 
the inductor if the emf frequency is (a) 100 Hz? (b) 100 kHz?

 20. | An inductor is connected to a 15 kHz oscillator. The peak cur-
rent is 65 mA when the rms voltage is 6.0 V. What is the value 
of the inductance L?

 21. | A 500 mH inductor is connected across an AC generator that 
produces a peak voltage of 5.0 V.

 a. At what frequency f is the peak current 50 mA?
 b. What is the instantaneous value of the emf at the instant when 

iL = IL?
 22. || An inductor has a peak current of 330 mA when the peak volt-

age at 45 MHz is 2.2 V.
 a. What is the inductance?
 b. If the peak voltage is held constant, what is the peak current 

at 90 MHz?

Section 35.5 The Series RLC Circuit

 23. | A series RLC circuit has a 200 kHz resonance frequency. 
What is the resonance frequency if

 a. The resistor value is doubled?
 b. The capacitor value is doubled?
 24. | A series RLC circuit has a 200 kHz resonance frequency. 

What is the resonance frequency if the capacitor value is doubled 
and, at the same time, the inductor value is halved?

 25. || What capacitor in series with a 100 �  resistor and a 20 mH 
inductor will give a resonance frequency of 1000 Hz?

 26. | What inductor in series with a 100 �  resistor and a 2.5 mF 
capacitor will give a resonance frequency of 1000 Hz?

 27. | A series RLC circuit consists of a 50 �  resistor, a 3.3 mH 
inductor, and a 480 nF capacitor. It is connected to an oscillator 
with a peak voltage of 5.0 V. Determine the impedance, the 
peak current, and the phase angle at frequencies (a) 3000 Hz, 
(b) 4000 Hz, and (c) 5000 Hz.

 28. || At what frequency f do a 1.0 mF capacitor and a 1.0 mH 
inductor have the same reactance? What is the value of the reac-
tance at this frequency?

Section 35.6 Power in AC Circuits

 29. | The heating element of a hair drier dissipates 1500 W when 
connected to a 120 V/60 Hz power line. What is its resistance?

 30. || A resistor dissipates 2.0 W when the rms voltage of the emf is 
10.0 V. At what rms voltage will the resistor dissipate 10.0 W?

 31. || For what absolute value of the phase angle does a source 
deliver 75% of the maximum possible power to an RLC circuit?

10 V

vR iR

0
0.02 s

Voltage

Current

0.00 s 0.04 s

�10 V

0.50 A

0

�0.50 A

FIgurE Ex35.6 

(10 V) cos vt
150 �

80 nF

FIgurE Ex35.15 
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 32. || The motor of an electric drill draws a 3.5 A rms current at the 
power-line voltage of 120 V rms. What is the motor’s power if 
the current lags the voltage by 20�?

 33. || A series RLC circuit attached to a 120 V/60 Hz power line 
draws a 2.4 A rms current with a power factor of 0.87. What is 
the value of the resistor?

 34. || A series RLC circuit with a 100 �  resistor dissipates 80 W 
when attached to a 120 V/60 Hz power line. What is the power 
factor?

Problems

 35. || a.  For an RC circuit, find an expression for the angular fre-
quency at which VR =

1
2 E0.

 b. What is VC at this frequency?
 36. || a.  For an RC circuit, find an expression for the angular fre-

quency at which VC =
1
2 E0.

 b. What is VR at this frequency?
 37. || a.  Evaluate VC in FIgurE P35.37 at emf frequencies 1, 3, 10, 30, 

and 100 kHz.
 b.  Graph VC versus frequency. Draw a smooth curve through 

your five points.

 38. || a.  Evaluate VR in FIgurE P35.38 at emf frequencies 100, 300, 
1000, 3000, and 10,000 Hz.

 b.  Graph VR versus frequency. Draw a smooth curve through 
your five points.

 39. || For an RC filter circuit, show that VR = VC = E0 /12 at 
v = vc.

 40. ||| When two capacitors are connected in parallel across a
10.0 V rms, 1.00 kHz oscillator, the oscillator supplies a total 
rms current of 545 mA. When the same two capacitors are con-
nected to the oscillator in series, the oscillator supplies an rms 
current of 126 mA. What are the values of the two capacitors?

 41. || Show that Equation 35.27 for the phase angle f of a series 
RLC circuit gives the correct result for a capacitor-only circuit.

 42. || a.  What is the peak current supplied by the emf in 
FIgurE P35.42?

 b. What is the peak voltage across the 3.0 mF capacitor?

 43. || You have a resistor and a capacitor of unknown values. First, 
you charge the capacitor and discharge it through the resistor. By 
monitoring the capacitor voltage on an oscilloscope, you see that 
the voltage decays to half its initial value in 2.5 ms. You then use 
the resistor and capacitor to make a low-pass filter. What is the 
crossover frequency fc?

 44. || FIgurE P35.44 shows a paral-
lel RC circuit.

 a. Use a phasor-diagram anal-
ysis to find expressions for 
the peak currents IR and IC.

Hint: What do the resistor and 
capacitor have in common? 
Use that as the initial phasor.

 b. Complete the phasor analysis by finding an expression for the 
peak emf current I.

 45. || FIgurE P35.45 shows voltage and current graphs for a capacitor.
 a. What is the emf frequency f ?
 b. What is the value of the capacitance C?

 46. || FIgurE P35.46 shows voltage and current graphs for an inductor.
 a. What is the emf frequency f ?
 b. What is the value of the inductance L?

 47. || Use a phasor diagram to analyze 
the RL circuit of FIgurE P35.47. In 
particular,

 a. Find expressions for I, VR, and VL.
 b. What is VR in the limits v S 0 

and v S �?
 c. If the output is taken from the 

resistor, is this a low-pass or a 
high-pass filter? Explain.

 d. Find an expression for the crossover frequency vc.
 48. || A series RLC circuit consists of a 100 �  resistor, a 0.15 H 

inductor, and a 30 mF capacitor. It is attached to a 120 V/60 Hz 
power line. What are (a) the emf Erms, (b) the phase angle f, and 
(c) the average power loss?

 49. || A series RLC circuit consists of a 25 �  resistor, a 0.10 H in-
ductor, and a 100 mF capacitor. It draws a 2.5 A rms current 
when attached to a 60 Hz source. What are (a) the emf Erms, 
(b) the phase angle f, and (c) the average power loss?

 50. | For the circuit of FIgurE P35.50,
 a. What is the resonance frequency, in both rad/s and Hz?
 b. Find VR and VL at reso-

nance.
 c. How can VL be larger than 

E0? Explain.

(10 V) cos vt

16 �

1.0 mF

FIgurE P35.37 

(10 V) cos vt 100 �

1.6 mF

FIgurE P35.38 

2.0 mF4.0 mF

3.0 mF

E0 � 10 V
f � 200 Hz

FIgurE P35.42 

E0 cos vt

i
iR iC

CR

FIgurE P35.44 

10 V

vC iC

0
0.01 s

Voltage

Current

0.00 s 0.02 s

�10 V

15 mA

0

�15 mA

FIgurE P35.45 

1 V

vL iL

0
0.01 s

Voltage

Current

0.00 s 0.02 s

�1 V

2 A

0

�2 A

FIgurE P35.46 

E0 cos vt

R

L

FIgurE P35.47 

(10 V) cos vt

10 �

10 mH

10 mF
FIgurE P35.50 
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 51. | For the circuit of FIgurE P35.51,
 a. What is the resonance frequency, in both rad/s and Hz?
 b. Find VR and VC at resonance.
 c. How can VC be larger than E0? Explain.

 52. || In FIgurE P35.52, what is the current supplied by the emf when 
(a) the frequency is very small and (b) the frequency is very large?

 53. || The current lags the emf by 30� in a series RLC circuit with 
E0 = 10 V and R = 50 �. What is the peak current through the 
circuit?

 54. || A series RLC circuit consists of a 50 �  resistor, a 3.3 mH 
inductor, and a 480 nF capacitor. It is connected to a 5.0 kHz 
oscillator with a peak voltage of 5.0 V. What is the instantaneous 
current i when

 a. E = E0?
 b. E = 0 V and is decreasing?
 55. || A series RLC circuit consists of a 50 �  resistor, a 3.3 mH 

inductor, and a 480 nF capacitor. It is connected to a 3.0 kHz 
oscillator with a peak voltage of 5.0 V. What is the instantaneous 
emf E when

 a. i = I?
 b. i = 0 A and is decreasing?
 c. i = - I?
 56. || A series RLC circuit consists of a 100 �  resistor, a 10 mH 

inductor, and a 1.0 nF capacitor. It is connected to an oscillator 
with an rms voltage of 10 V. What is the power supplied to the 
circuit if (a) v =

1
2 v0? (b) v = v0? (c) v = 2v0?

 57. || Show that the power factor of a series RLC circuit is 
cos f = R/Z.

 58. || For a series RLC circuit, show that
 a. The peak current can be written I = Imaxcos f.
 b. The average power can be written Psource =  Pmaxcos2 f.
 59. || The tuning circuit in an FM radio receiver is a series RLC 

circuit with a 0.200 mH inductor.
 a. The receiver is tuned to a station at 104.3 MHz. What is the 

value of the capacitor in the tuning circuit?
 b. FM radio stations are assigned frequencies every 0.2 MHz, 

but two nearby stations cannot use adjacent frequencies. 
What is the maximum resistance the tuning circuit can have 
if the peak current at a frequency of 103.9 MHz, the closest 
frequency that can be used by a nearby station, is to be no 
more than 0.10% of the peak current at 104.3 MHz? The ra-
dio is still tuned to 104.3 MHz, and you can assume the two 
stations have equal strength.

 60. || A television channel is assigned the frequency range from 
54 MHz to 60 MHz. A series RLC tuning circuit in a TV receiver 
resonates in the middle of this frequency range. The circuit uses 
a 16 pF capacitor.

 a. What is the value of the inductor?
 b. In order to function properly, the current throughout the fre-

quency range must be at least 50% of the current at the reso-
nance frequency. What is the minimum possible value of the 
circuit’s resistance?

 61. || Lightbulbs labeled 40 W, 
60 W, and 100 W are con-
nected to a 120 V/60 Hz power 
line as shown in FIgurE P35.61. 
What is the rate at which energy 
is dissipated in each bulb?

 62. || Commercial electricity is generated and transmitted as three-
phase electricity. Instead of a single emf, three separate wires 
carry currents for the emfs E1 = E0 cos vt, E2 = E0 cos(vt +
120�), and E3 = E0 cos(vt - 120�) over three parallel wires, 
each of which supplies one-third of the power. This is why the 
long-distance transmission lines you see in the countryside have 
three wires. Suppose the transmission lines into a city supply a 
total of 450 MW of electric power, a realistic value.

 a. What would be the current in each wire if the transmission 
voltage were E0 = 120 V rms?

 b. In fact, transformers are used to step the transmission-line 
voltage up to 500 kV rms. What is the current in each wire?

 c. Big transformers are expensive. Why does the electric com-
pany use step-up transformers?

 63. || Commercial electricity is generated and transmitted as three-
phase electricity. Instead of a single emf E = E0 cos vt, three 
separate wires carry currents for the emfs E1 = E0 cos vt, 
E2 = E0 cos (vt + 120�), and E3 = E0 cos (vt - 120�). This is why 
the long-distance transmission lines you see in the countryside have 
three parallel wires, as do many distribution lines within a city.

 a. Draw a phasor diagram showing phasors for all three phases 
of a three-phase emf.

 b. Show that the sum of the three phases is zero, producing what 
is referred to as neutral. In single-phase electricity, provided 
by the familiar 120 V/60 Hz electric outlets in your home, 
one side of the outlet is neutral, as established at a nearby 
electrical substation. The other, called the hot side, is one of 
the three phases. (The round opening is connected to ground.)

 c. Show that the potential difference between any two of the 
phases has the rms value 13 Erms, where Erms is the famil-
iar single-phase rms voltage. Evaluate this potential differ-
ence for Erms = 120 V. Some high-power home appliances, 
especially electric clothes dryers and hot-water heaters, are 
designed to operate between two of the phases rather than 
between one phase and neutral. Heavy-duty industrial motors 
are designed to operate from all three phases, but full three-
phase power is rare in residential or office use.

 64. || A motor attached to a 120 V/60 Hz power line draws an 8.0 A 
current. Its average energy dissipation is 800 W.

 a. What is the power factor?
 b. What is the rms resistor voltage?
 c. What is the motor’s resistance?
 d. How much series capacitance needs to be added to increase 

the power factor to 1.0?

(10 V) cos vt

10 �

1.0 mH

1.0 mF
FIgurE P35.51 

10 V rms

50 �100 �

50 mH 20 mF

FIgurE P35.52 

40 W

100 W120 V/60 Hz

60 W

FIgurE P35.61 



Challenge Problems

 65. The small transformers that power many consumer products pro-
duce a 12.0 V rms, 60 Hz emf. Design a circuit using resistors 
and capacitors that uses the transformer voltage as an input and 
produces a 6.0 V rms output that leads the input voltage by 45�.

 66. FIgurE CP35.66 shows voltage and current graphs for a series RLC 
circuit.

 a. What is the resistance R?
 b. If L = 200 mH, what is the resonance frequency?

 67. You’re the operator of a 15,000 V rms, 60 Hz electrical substa-
tion. When you get to work one day, you see that the station is 
delivering 6.0 MW of power with a power factor of 0.90.

 a. What is the rms current leaving the station?
 b. How much series capacitance should you add to bring the 

power factor up to 1.0?
 c. How much power will the station then be delivering?
 68. a. Show that the average power loss in a series RLC circuit is

 Pavg =
v2Erms 

2R

v2R2 + L2(v2 - v0 

2)2

 b. Prove that the energy dissipation is a maximum at v = v0.
 69. a.  Show that the peak inductor voltage in a series RLC circuit is 

maximum at frequency

 vL = 1 1

v0 

2 -
1

2
 R2C 22 -1/2

 b. A series RLC circuit with E0 = 10.0 V consists of a 1.0 �  
resistor, a 1.0 mH inductor, and a 1.0 mF capacitor. What is 
VL at v = v0 and at v = vL?

 70. The telecommunication circuit shown in FIgurE CP35.70 has a 
parallel inductor and capacitor in series with a resistor.

 a. Use a phasor diagram to show that the peak current through 
the resistor is

 I =
E0BR2 + 1 1

XL
-

1

XC
2 -2

Hint: Start with the inductor phasor vL.
 b. What is I in the limits v S 0 and v S �?
 c. What is the resonance frequency v0? What is I at this 

frequency?

 71. Consider the parallel RLC circuit shown in FIgurE CP35.71.
 a. Show that the current drawn from the emf is

 I = E0 B 1

R2 + 1 1

vL
- vC2 2

Hint: Start with a phasor that is common to all three circuit ele-
ments.

 b. What is I in the limits v S 0 and v S �?
 c. Find the frequency for which I is a minimum.
 d. Sketch a graph of I versus v.

10 V

E i

0
50

Voltage

0 100 ms

�10 V

0

�2 A

2 ACurrent

FIgurE CP35.66 

R

L CE0 cos vt

FIgurE CP35.70 

E0 cos vt R L C

FIgurE CP35.71 

SToP To ThINK ANSwErS

Stop to Think 35.1: a. The instantaneous emf value is the projection 
down onto the horizontal axis. The emf is negative but increasing in 
magnitude as the phasor, which rotates ccw, approaches the horizon-
tal axis.

Stop to Think 35.2: c. Voltage and current are measured using differ-
ent scales and units. You can’t compare the length of a voltage phasor 
to the length of a current phasor.

Stop to Think 35.3: a. There is “no capacitor” when the separation 
between the two capacitor plates becomes zero and the plates touch. 
Capacitance C is inversely proportional to the plate spacing d, hence 
C S � as d S 0. The capacitive reactance is inversely proportional 
to C, so XC S 0 as C S �.

Stop to Think 35.4: (Vc)d + (Vc)c = (Vc)a + (Vc)b. The cross-
over frequency is 1/RC.

Stop to Think 35.5: Above. VL 7 VC tells us that XL 7 XC. This is 
the condition above resonance, where XL is increasing with v while 
XC is decreasing.

Stop to Think 35.6: a, b, and f. You can always increase power 
by turning up the voltage. The current leads the emf, telling us that 
the circuit is primarily capacitive. The current can be brought into 
phase with the emf, thus maximizing the power, by decreasing C 
or increasing L.

Exercises and Problems    1055



1056

ESSENTIAL CoNCEPTS Charge, dipole, field, potential, emf
BASIC goALS How do charged particles interact?
 What are the properties and characteristics of electromagnetic fields?

gENErAL PrINCIPLES Coulomb’s law E
u

point charge =
1

4pP0
 
q

r2 rn = 1 1

4pP0
  
q

r2, away from q2
 Biot-Savart law B

u

point charge =
m0

4p
 
qv  

u
* rn

r2 = 1 m0

4p
  
qv sin u

r2  , direction of right@hand rule2
 Faraday’s law  E = 0 d�m /dt 0  Iinduced = E/R in the direction of Lenz>s law

 Lenz’s law  An induced current flows around a conducting loop in the direction such that the 
induced magnetic field opposes the change in the magnetic flux.

 Lorentz force law  F
u

on q = q(E
u

+ v  

u
* B

u

)

 Superposition  The electric or magnetic field due to multiple charges is the vector sum of the field 
of each charge. This principle was used to derive the fields of many special charge 
distributions, such as wires, planes, and loops.

FIELD AND PoTENTIAL The electric field of charges can also be 
described in terms of an electric potential V:

 Vpoint charge =
q

4pP0r

•	 The electric field is perpendicular to equipotential surfaces and in 
the direction of decreasing potential.

•	 The potential energy of charge q is U = qV. The total energy 
K + qV  of a group of charges is conserved.

P a r t 

mass and charge are the two most fundamental properties 
of matter. The first five parts of this text were investigations 
of the properties and interactions of masses. Part VI has been 
a study of the physics of charge—what charge is and how 
charges interact.

Electric and magnetic fields were introduced to enable us to 
understand the long-range forces of electricity and magnetism. 
The field concept is subtle, but it is an essential part of our 
modern understanding of the physical universe. One charge—
the source charge—alters the space around it by creating an 
electric field and, if the charge is moving, a magnetic field. 
Other charges experience forces exerted by the fields. Thus the 

electric and magnetic fields are the agents by which charges 
interact.

Faraday’s discovery of electromagnetic induction led sci-
entists to recognize that the fields are real and can exist inde-
pendently of charges. The most vivid confirmation of this real-
ity was Maxwell’s discovery of electromagnetic waves—the 
quintessential electromagnetic phenomenon.

Part VI has introduced many new phenomena, concepts, 
and laws. The knowledge structure table draws together the 
major ideas about charges and fields, and it briefly summa-
rizes some of the most important applications of electricity and 
magnetism.

VI Electricity and Magnetism
SUMMArY

Electric and magnetic properties of materials

• Charges move through conductors but not through insulators.

• Conductors and insulators are polarized in an electric field.

• A magnetic moment in a magnetic field experiences a torque.

model of current and conductivity

• The charge carriers in metals are electrons.

• emf S  electric field S  current density J = sE S  I = JA

KNowLEDgE STruCTurE VI  Electricity and magnetism

ELECTromAgNETIC wAVES All the properties of 
electromagnetic fields are summarized mathematically in 
four equations called Maxwell’s equations. From Maxwell’s 
equations we learn that electromagnetic fields can exist 
independently of charges as an electromagnetic wave.

• An em wave travels at speed c = 1/1P0m0.

• E
u

 and B
u

 are perpendicular to each other and to the direc-
tion of travel, with E = cB.

Applications to circuits

• Circuits obey Kirchhoff’s loop law (conservation of 
energy) and junction law (conservation of current).

• Resistors control the current: I = �V/R (Ohm’s law).

• Capacitors store charge Q = C�V  and energy 
VC =

1
2 C(�VC)2.



1057

OnE STEp BEYOnd

events, then return the film to the studio for broadcast. Tele-
vision images from overseas could only be seen the next 
day, after film was flown back to the United States.

The first communications satellite was launched by 
NASA in 1960, followed two years later by a more practi-
cal satellite, Telstar, that used solar power to amplify signals 
received from earth and beam them back down. The first live 
transatlantic television transmission was made on July 11, 
1962, and was broadcast throughout the United States.

Plans were made for a system of roughly 100 satellites, 
so that one would always be overhead, but another idea soon 
proved more practical. In 1945, 12 years before space flight 
began, the science-fiction writer Arthur C. Clarke proposed 
placing satellites in orbits 22,300 miles above the earth. A 
satellite at this altitude orbits with a 24-hour period, so from 
the ground it appears to hang stationary in space. We now 
call this a geosynchronous orbit. One such satellite would 
allow microwave communication between two points one-
third of a world apart, so just three geosynchronous satel-
lites would span the entire earth.

Much more energy is required to reach geosynchronous 
orbit than to reach low-earth orbit, but rocket technology 
was advancing faster than NASA could build Telstar sat-
ellites. The first commercial communications satellite was 
placed in geosynchronous orbit in 1965, and, for the first 
time, television images could be broadcast live to anywhere 
in the world. Today all of the world’s intercontinental tele-
vision and much of the intercontinental telephone traffic 
travel via microwaves to and from a cluster of these artifi-
cial stars floating high above the earth.

Today, in the 21st century, information and images span 
the world as quickly as or more quickly than they once 
moved through a small village. You can talk to friends or 
relatives anywhere around the globe, and each day’s news 
brings live images from remote places. Telecommunication 
unites our world, and the technologies of telecommunica-
tions are direct descendants of Coulomb, Ampère, Oersted, 
Henry, and—most of all—Michael Faraday.

In 1800, the year that Alessandro Volta invented the battery 
and Thomas Jefferson was elected president, the fastest a 
message could travel was the speed of a man or woman on 
horseback. News took three days to travel from New York 
to Boston, and well over a month to reach the frontier out-
post of Cincinnati.

But Hans Oersted’s 1820 discovery that a current creates 
a magnetic field introduced revolutionary changes to com-
munications. The American scientist Joseph Henry, who 
shares with Faraday credit for the discovery of electro-
magnetic induction, saw a simple electromagnet in 1825. 
Inspired, he set about improving the device. By 1830, 
Henry was able to send current through more than a mile of 
wire to activate an electromagnet and strike a bell.

In 1835, Henry met an entrepreneur interested in the 
commercial development of electric technology—Samuel 
F. B. Morse. Morse was one of the most prominent Ameri-  
 can artists of the early 19th century, but he also had an 
abiding interest in technology. In the 1830s, he invented the 
famous code that bears his name—Morse code—and began 
to experiment with electromagnets.

With advice and encouragement from Henry, Morse 
developed the first practical telegraph. The first telegraph 
line, between Washington, D.C., and Baltimore, began 
operating in 1844; the first message sent was “What hath 
God wrought?” For the first time, long-distance communi-
cations could take place essentially instantaneously.

Telegraph communication advanced as quickly as wire 
could be strung, and a worldwide network had been estab-
lished by 1875. But the telegraph didn’t hold its monopoly 
for long, as other inventors began to think about using elec-
tromagnetic devices to transmit speech. The first to succeed 
was Alexander Graham Bell, who invented the telephone in 
1876.

The telegraph and telephone provided electromagnetic 
communication over wires, but the discovery of electro-
magnetic waves opened up another possibility—wireless 
communication at the speed of light. Radio technology de-
veloped rapidly in the late 19th century, and in 1901 the Ital-
ian inventor Guglielmo Marconi sent and received the first 
transatlantic radio message. World War I prompted further 
development of radio, because of the need to communicate 
with military units as they moved about, and by 1925 more 
than 1000 radio stations were operating in the United States.

Radio and, later, television spanned the globe by 1960, 
but radio stations reached a few hundred miles at best, and 
television transmission was limited to each city. National 
broadcasts within the United States required the signal to 
be transmitted via microwave relays to local stations for 
rebroadcast. Network television shows were possible, but 
not live-from-the-scene broadcasts. Journalists had to film 

The Telecommunications revolution

This InTELSAT telecommunications satellite is 12 m (40 ft) long.



Relativity and  
Quantum Physics

P A R T

VII

This three-
frame sequence 

shows a gas of 
a few thousand 
rubidium atoms 

condensing 
into a single 

quantum state 
known as a 

Bose-Einstein 
condensate. This 

phenomenon 
was predicted by 
Einstein in 1925 

but not observed 
until 1995, 

when physicists 
learned how 

to use lasers to 
cool the atoms 

to temperatures 
below 200 

nanokelvin.
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Overview

Contemporary Physics
Our journey into physics is nearing its end. We began roughly 350 years ago with 
Newton’s discovery of the laws of motion. Part VI brought us to the end of the 19th 
century, just over 100 years ago. Along the way you’ve learned about the motion of 
particles, the conservation of energy, the physics of waves, and the electromagnetic 
interactions that hold atoms together and generate light waves. We begin the last phase 
of our journey with confidence.

Newton’s mechanics and Maxwell’s electromagnetism were the twin pillars of sci-
ence at the end of the 19th century and the basis for much of engineering and applied 
science in the 20th century. Despite the successes of these theories, a series of discov-
eries starting around 1900 and continuing into the first few decades of the 20th century 
profoundly altered our understanding of the universe at the most fundamental level.

	■	 Einstein’s theory of relativity forced scientists to completely revise their concepts 
of space and time. Our exploration of these fascinating ideas will end with perhaps 
the most famous equation in physics: Einstein’s E = mc2.

	■	 Experimenters found that the classical distinction between particles and waves 
breaks down at the atomic level. Light sometimes acts like a particle, while elec-
trons and even entire atoms sometimes act like waves. We will need a new theory 
of light and matter—quantum physics—to explain these phenomena.

These two theories form the basis for physics as it is practiced today, and they are now 
having a significant impact on 21st-century engineering.

The complete theory of quantum physics, as it was developed in the 1920s, describes 
atomic particles in terms of an entirely new concept called a wave function. One of 
our most important tasks in Part VII will be to learn what a wave function is, what 
laws govern its behavior, and how to relate wave functions to experimental measure-
ments. We will concentrate on one-dimensional models that, while not perfect, will be 
adequate for understanding the essential features of scanning tunneling microscopes, 
various semiconductor devices, radioactive decay, and other applications.

We’ll complete our study of quantum physics with an introduction to atomic and 
nuclear physics. You will learn where the electron-shell model of chemistry comes 
from, how atoms emit and absorb light, what’s inside the nucleus, and why some nu-
clei undergo radioactive decay.

The quantum world with its wave functions and probabilities can seem strange and 
mysterious, yet quantum physics gives the most definitive and accurate predictions of 
any physical theory ever devised. The contemporary perspective of quantum physics 
will be a fitting end to our journey.



Reference Frames
You’ll learn to work with events whose 
position in space and time of occurrence 
are measured by experimenters in differ-
ent inertial reference frames.

Applications of Relativity
Abstract though it may seem, relativity is 
important for modern technologies such 
as PET scans (positron-electron tomog-
raphy) in medicine and nuclear energy. 
Relativity also underlies our understand-
ing of the physics of stars and galaxies.

Mass and energy
You’ll learn the significance of relativ-
ity’s famous equation, E = mc2. Mass 
can be transformed into energy, and 
energy into mass, as long as the total 
energy is conserved.

Your GPS device 
receives signals from 
precision clocks in 
orbiting satellites. The 
clocks must be cor-
rected for relativistic 
effects in order for the 
GPS system to work.

Principle of Relativity
Einstein’s theory of relativity is based on 
a simple-sounding principle: The laws 
of physics are the same in every inertial 
reference frame. This seemingly innocu-
ous statement will force us to completely 
rethink our ideas of space and time.

The most well-known consequence of 
this principle is that light travels at the 
same speed c in all inertial reference 
frames.

You’ll learn why it is that no object or 
information can travel faster than the 
speed of light.

Relativity36

the Large Hadron Collider, the 
world’s highest-energy particle 
accelerator, is built in a 27-km-
circumference tunnel near 
Geneva, Switzerland. It acceler-
ates protons to 99.999999% of 
the speed of light.

 Looking Ahead  The goal of Chapter 36 is to understand how Einstein’s theory of relativity changes our concepts of 
space and time.

Space
The physical length of an object is less 
when the object is moving in a reference 
frame than when it is at rest in that refer-
ence frame. This is length contraction.

To us, the Fermi-
lab Accelerator 
is 3.9 miles in 
circumference. 
To protons in the 
accelerator, mov-
ing at 0.999999c, 
the circumference 
is only 30 feet.

time
The time interval between ticks of a clock 
is longer when the clock is moving in a 
reference frame than when it is at rest in 
that reference frame. This is time dilation.

S

y

x

Meter sticks

Synchronized
clocksEvent

 Looking Back
Section 4.4 Reference frames and  
relative velocity

The sun is powered 
by the conversion of 
4 billion kilograms of 
matter into energy 
every second. even 
so, the sun will 
continue to shine for 
billions of years.

You’ll learn about the twin paradox. if an 
astronaut travels to a distance star and back 
at a speed close to that of light, she’ll be 
younger than her identical twin when she 
returns.
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36.1 Relativity: What’s It All About?
What do you think of when you hear the phrase “theory of relativity”? A white-haired 
Einstein? E = mc2? Black holes? Time travel? Perhaps you’ve heard that the theory 
of relativity is so complicated and abstract that only a handful of people in the whole 
world really understand it.

There is, without doubt, a certain mystique associated with relativity, an aura of 
the strange and exotic. The good news is that understanding the ideas of relativity is 
well within your grasp. Einstein’s special theory of relativity, the portion of relativity 
we’ll study, is not mathematically difficult at all. The challenge is conceptual because 
relativity questions deeply held assumptions about the nature of space and time. In 
fact, that’s what relativity is all about—space and time.

What’s Special About Special Relativity?
Einstein’s first paper on relativity, in 1905, dealt exclusively with inertial reference 
frames, reference frames that move relative to each other with constant velocity. Ten 
years later, Einstein published a more encompassing theory of relativity that consid-
ered accelerated motion and its connection to gravity. The second theory, because 
it’s more general in scope, is called general relativity. General relativity is the theory 
that describes black holes, curved spacetime, and the evolution of the universe. It is a 
fascinating theory but, alas, very mathematical and outside the scope of this textbook.

Motion at constant velocity is a “special case” of motion—namely, motion for 
which the acceleration is zero. Hence Einstein’s first theory of relativity has come to 
be known as special relativity. It is special in the sense of being a restricted, special 
case of his more general theory, not special in the everyday sense meaning distinctive 
or exceptional. Special relativity, with its conclusions about time dilation and length 
contraction, is what we will study.

36.2 Galilean Relativity
Relativity is the process of relating measurements in one reference frame to those in 
a different reference frame moving relative to the first. To appreciate and understand 
what is new in Einstein’s theory, we need a firm grasp of the ideas of relativity that are 
embodied in Newtonian mechanics. Thus we begin with Galilean relativity.

Reference Frames
Suppose you’re passing me as we both drive in the same direction along a freeway. My 
car’s speedometer reads 55 mph while your speedometer shows 60 mph. Is 60 mph 
your “true” speed? That is certainly your speed relative to someone standing beside 
the road, but your speed relative to me is only 5 mph. Your speed is 120 mph relative 
to a driver approaching from the other direction at 60 mph.

An object does not have a “true” speed or velocity. The very definition of velocity, 
v = �x/�t, assumes the existence of a coordinate system in which, during some time 
interval �t, the displacement �x is measured. The best we can manage is to specify 
an object’s velocity relative to, or with respect to, the coordinate system in which it is 
measured.

Let’s define a reference frame to be a coordinate system in which experimenters 
equipped with meter sticks, stopwatches, and any other needed equipment make posi-
tion and time measurements on moving objects. Three ideas are implicit in our defini-
tion of a reference frame:

	■	 A reference frame extends infinitely far in all directions.
	■	 The experimenters are at rest in the reference frame.
	■	 The number of experimenters and the quality of their equipment are sufficient to 

measure positions and velocities to any level of accuracy needed.

Albert einstein (1879–1955) was one of 
the most influential thinkers in history.
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The first two ideas are especially important. It is often convenient to say “the labo-
ratory reference frame” or “the reference frame of the rocket.” These are shorthand 
expressions for “a reference frame, infinite in all directions, in which the laboratory 
(or the rocket) and a set of experimenters happen to be at rest.”

Note  A reference frame is not the same thing as a “point of view.” That is, 
each person or each experimenter does not have his or her own private reference 
frame. All experimenters at rest relative to each other share the same reference 
frame. 

FIGuRe 36.1 shows two reference frames called S and S�. The coordinate axes in S are 
x, y, z and those in S� are x�, y�, z�. Reference frame S� moves with velocity v relative 
to S or, equivalently, S moves with velocity -v relative to S�. There’s no implication 
that either reference frame is “at rest.” Notice that the zero of time, when experiment-
ers start their stopwatches, is the instant that the origins of S and S� coincide.

We will restrict our attention to inertial reference frames, implying that the relative 
velocity v is constant. You should recall from Chapter 5 that an inertial reference 
frame is a reference frame in which Newton’s first law, the law of inertia, is valid. 
In particular, an inertial reference frame is one in which an isolated particle, one on 
which there are no forces, either remains at rest or moves in a straight line at constant 
speed.

Any reference frame moving at constant velocity with respect to an inertial refer-
ence frame is itself an inertial reference frame. Conversely, a reference frame accel-
erating with respect to an inertial reference frame is not an inertial reference frame. 
Our restriction to reference frames moving with respect to each other at constant 
velocity—with no acceleration—is the “special” part of special relativity.

Note  An inertial reference frame is an idealization. A true inertial reference 
frame would need to be floating in deep space, far from any gravitational influ-
ence. In practice, an earthbound laboratory is a good approximation of an inertial 
reference frame because the accelerations associated with the earth’s rotation and 
motion around the sun are too small to influence most experiments. 

Stop to think 36.1 
 Which of these is an inertial reference frame (or a very good 

approximation)?

 a. Your bedroom
 b. A car rolling down a steep hill
 c. A train coasting along a level track
 d. A rocket being launched
 e. A roller coaster going over the top of a hill
 f. A sky diver falling at terminal speed

the Galilean transformations
Suppose a firecracker explodes at time t. The experimenters in reference frame S de-
termine that the explosion happened at position x. Similarly, the experimenters in S� 
find that the firecracker exploded at x� in their reference frame. What is the relation-
ship between x and x�?

FIGuRe 36.2 shows the explosion and the two reference frames. You can see from the 
figure that x = x� + vt, thus

 

x = x� + vt

y = y�

z = z�

  or  

x� = x - vt

y� = y

z� = z

 (36.1)

FIGuRe 36.1 The standard reference 
frames S and S�.

S

y

x S�

y�

x�

v

The axes 
of S and S� 
have the same 
orientation.

The origins of S and S� coincide at t � 0.
This is our definition of t � 0.

Frame S� moves with 
velocity v relative to
frame S. The relative
motion is parallel to
the x- and x�-axes.

S

y

x S�

y�

x�

�v

Alternatively, frame S moves
with velocity �v relative to
frame S�.

1. 2. 

3. 

4. 

FIGuRe 36.2 The position of an 
exploding firecracker is measured in 
reference frames S and S�.

S

y

x S�

y�

x�

v

At time t, the origin of S� has moved 
distance vt to the right. Thus x � x� � vt.

Origins coincide
at t � 0.

Distances perpendicular to 
the motion are not affected.
Thus y� � y and z� � z.

x�vt

x

Firecracker

y� � y
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These are the Galilean transformations of position. If you know a position measured 
by the experimenters in one inertial reference frame, you can calculate the position 
that would be measured by experimenters in any other inertial reference frame.

Suppose the experimenters in both reference frames now track the motion of the 
object in FIGuRe 36.3 by measuring its position at many instants of time. The experi-
menters in S find that the object’s velocity is u

u
. During the same time interval �t, the 

experimenters in S� measure the velocity to be u
u

�.

Note  In this chapter, we will use v to represent the velocity of one reference 
frame relative to another. We will use u

u
 and u

u
� to represent the velocities of objects 

with respect to reference frames S and S�. 

We can find the relationship between u
u

 and u
u

� by taking the time derivatives of 
Equations 36.1 and using the definition ux = dx/dt:

  ux =
dx

dt
=

dx�

dt
+ v = u =

x + v

  uy =
dy

dt
=

dy�

dt
= u =

y

The equation for uz is similar. The net result is

 

ux = u =
x + v

uy = u =
y

uz = u =
z

  or  

u =
x = ux - v

u =
y = uy

u =
z = uz

 (36.2)

Equations 36.2 are the Galilean transformations of velocity. If you know the veloc-
ity of a particle in one inertial reference frame, you can find the velocity that would be 
measured by experimenters in any other inertial reference frame.

Note  In Section 4.4 you learned the Galilean transformation of velocity as v  

u

CB =
v  

u

CA + v  

u

AB, where v  

u

AB means “the velocity of A relative to B.” Equations 36.2 are 
equivalent for relative motion parallel to the x-axis but are written in a more formal 
notation that will be useful for relativity. 

FIGuRe 36.3 The velocity of a moving 
object is measured in reference frames 
S and S�.

In frame S�, the velocity is u�.

v

u

S�

y�

x�S

y

x

The object’s velocity in frame S is u.r

r

r

�v

u�

S�

y�

x�S

y

x

r

SoLve The speed of a mechanical wave, such as a sound wave or a 
wave on a string, is its speed relative to its medium. Thus the speed 
of sound is the speed of a sound wave through a reference frame 
in which the air is at rest. This is reference frame S, where wave 1 
travels with velocity u1 = -340 m/s and wave 2 travels with 
velocity u2 = +340 m/s. Notice that the Galilean transformations 
use velocities, with appropriate signs, not just speeds.

The airplane travels to the right with reference frame S� at 
velocity v. We can use the Galilean transformations of velocity to 
find the velocities of the two sound waves in frame S�:

  u =
1 = u1 - v = -340 m/s - 200 m/s = -540 m/s

  u =
2 = u2 - v = 340 m/s - 200 m/s = 140 m/s

ASSeSS This isn’t surprising. If you’re driving at 50 mph, a car 
coming the other way at 55 mph is approaching you at 105 mph. 
A car coming up behind you at 55 mph is gaining on you at the 
rate of only 5 mph. Wave speeds behave the same. Notice that a 
mechanical wave appears to be stationary to a person moving at 
the wave speed. To a surfer, the crest of the ocean wave remains at 
rest under his or her feet.

exAMPLe 36.1  the speed of sound
An airplane is flying at speed 200 m/s with respect to the ground. 
Sound wave 1 is approaching the plane from the front, sound 
wave 2 is catching up from behind. Both waves travel at 340 m/s 
relative to the ground. What is the speed of each wave relative to 
the plane?

ModeL Assume that the earth (frame S) and the airplane (frame S�) 
are inertial reference frames. Frame S�, in which the airplane is at 
rest, moves at v = 200 m/s relative to frame S.

vISuALIze FIGuRe 36.4 shows the airplane and the sound waves.

FIGuRe 36.4 experimenters in the plane measure different 
speeds for the waves than do experimenters on the ground.
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in frame S.
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u1 � �340 m/s 
in frame S.
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Stop to think 36.2 
 Ocean waves are approaching the beach at 10 m/s. A boat heading 

out to sea travels at 6 m/s. How fast are the waves moving in the boat’s reference 
frame?

 a. 16 m/s b. 10 m/s c. 6 m/s d. 4 m/s

the Galilean Principle of Relativity
Experimenters in reference frames S and S� measure different values for position and 
velocity. What about the force on and the acceleration of the particle in FIGuRe 36.5? The 
strength of a force can be measured with a spring scale. The experimenters in refer-
ence frames S and S� both see the same reading on the scale (assume the scale has a 
bright digital display easily seen by all experimenters), so both conclude that the force 
is the same. That is, F� = F.

We can compare the accelerations measured in the two reference frames by tak-
ing the time derivative of the velocity transformation equation u� = u - v. (We’ll 
assume, for simplicity, that the velocities and accelerations are all in the x-direction.) 
The relative velocity v between the two reference frames is constant, with dv/dt = 0, 
thus

 a� =
du�

dt
=

du

dt
= a (36.3)

Experimenters in reference frames S and S� measure different values for an object’s 
position and velocity, but they agree on its acceleration.

If F = ma in reference frame S, then F� = ma� in reference frame S�. Stated 
another way, if Newton’s second law is valid in one inertial reference frame, then it 
is valid in all inertial reference frames. Because other laws of mechanics, such as the 
conservation laws, follow from Newton’s laws of motion, we can state this conclusion 
as the Galilean principle of relativity:

Galilean principle of relativity  The laws of mechanics are the same in all inertial 
reference frames.

The Galilean principle of relativity is easy to state, but to understand it we must 
understand what is and is not “the same.” To take a specific example, consider the law 
of conservation of momentum. FIGuRe 36.6a shows two particles about to collide. Their 
total momentum in frame S, where particle 2 is at rest, is Pi = 9.0 kg m/s. This is an 
isolated system, hence the law of conservation of momentum tells us that the momen-
tum after the collision will be Pf = 9.0 kg m/s.

FIGuRe 36.6b has used the velocity transformation to look at the same particles in 
frame S� in which particle 1 is at rest. The initial momentum in S� is P =

i = -18 kg m/s. 
Thus it is not the value of the momentum that is the same in all inertial reference 
frames. Instead, the Galilean principle of relativity tells us that the law of momentum 
conservation is the same in all inertial reference frames. If Pf = Pi in frame S, then it 
must be true that P =

f = P =
i in frame S�. Consequently, we can conclude that P =

f will be 
-18 kg m/s after the collision in S�.

using Galilean Relativity
The principle of relativity is concerned with the laws of mechanics, not with the values 
that are needed to satisfy the laws. If momentum is conserved in one inertial reference 
frame, it is conserved in all inertial reference frames. Even so, a problem may be easier 
to solve in one reference frame than in others.

FIGuRe 36.5 experimenters in both 
reference frames test Newton’s second 
law by measuring the force on a particle 
and its acceleration.
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Experimenters in both frames
measure the same force.

Experimenters in both frames
measure the same acceleration.
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Force
m

FIGuRe 36.6 Total momentum measured 
in two reference frames.
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Elastic collisions provide a good example of using reference frames. You learned 
in Chapter 10 how to calculate the outcome of a perfectly elastic collision between 
two particles in the reference frame in which particle 2 is initially at rest. We can use 
that information together with the Galilean transformations to solve elastic-collision 
problems in any inertial reference frame.

tACtICS
B o x  3 6 . 1 

 Analyzing elastic collisions

 ●1 Transform the initial velocities of particles 1 and 2 from frame S to reference 
frame S� in which particle 2 is at rest.

 ●2 The outcome of the collision in S� is given by

  u =
1f =

m1 - m2

m1 + m2
 u =

1i

  u =
2f =

2m1

m1 + m2
 u =

1i

 ●3 Transform the two final velocities from frame S� back to frame S.

exercises 4–5 

exAMPLe 36.2  An elastic collision
A 300 g ball moving to the right at 2.0 m/s has a perfectly elastic 
collision with a 100 g ball moving to the left at 4.0 m/s. What are 
the direction and speed of each ball after the collision?

ModeL The velocities are measured in the laboratory frame, 
which we call frame S.

vISuALIze FIGuRe 36.7a shows both the balls and a reference frame 
S� in which ball 2 is at rest.

SoLve The three steps of Tactics Box 36.1 are illustrated in 
FIGuRe 36.7b. We’re given u1i and u2i. The Galilean transforma-
tions of these velocities to frame S�, using v = -4.0 m/s, are

  u =
1i = u1i - v = (2.0 m/s) - (-4.0  m/s) = 6.0 m/s

  u =
2i = u2i - v = (-4.0 m/s) - (-4.0 m/s) = 0 m/s

The 100 g ball is at rest in frame S�, which is what we wanted. The 
velocities after the collision are

  u =
1f =

m1 - m2

m1 + m2
 u =

1i = 3.0 m/s

  u =
2f =

2m1

m1 + m2
 u =

1i = 9.0 m/s

We’ve finished the collision analysis, but we’re not done because 
these are the post-collision velocities in frame S�. Another ap-
plication of the Galilean transformations tells us that the post-
collision velocities in frame S are

  u1f = u =
1f + v = (3.0 m/s) + (-4.0 m/s) = -1.0 m/s

  u2f = u =
2f + v = (9.0 m/s) + (-4.0 m/s) = 5.0 m/s

Thus the 300 g ball rebounds to the left at a speed of 1.0 m/s and 
the 100 g ball is knocked to the right at a speed of 5.0 m/s.

FIGuRe 36.7 Using reference frames to solve an 
elastic-collision problem.
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Transform the velocities
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ASSeSS You can easily verify that momentum is conserved: 
Pf = Pi = 0.20 kg m/s. The calculations in this example were 
easy. The important point of this example, and one worth careful 
thought, is the logic of what we did and why we did it.
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36.3 einstein’s Principle of Relativity
The 19th century was an era of optics and electromagnetism. Thomas Young dem-
onstrated in 1801 that light is a wave, and by midcentury scientists had devised tech-
niques for measuring the speed of light. Faraday discovered electromagnetic induction 
in 1831, setting in motion a series of events leading to Maxwell’s conclusion, in 1864, 
that light is an electromagnetic wave.

If light is a wave, what is the medium in which it travels? This was perhaps the 
most important scientific question of the second half of the 19th century. The medium 
in which light waves were assumed to travel was called the ether. Experiments to 
measure the speed of light were assumed to be measuring its speed through the ether. 
But just what is the ether? What are its properties? Can we collect a jar full of ether to 
study? Despite the significance of these questions, efforts to detect the ether or mea-
sure its properties kept coming up empty handed.

Maxwell’s theory of electromagnetism didn’t help the situation. The crowning suc-
cess of Maxwell’s theory was his prediction that light waves travel with speed

 c =
12P0m0

= 3.00 * 108 m/s

This is a very specific prediction with no wiggle room. The difficulty with such a 
specific prediction was the implication that Maxwell’s laws of electromagnetism are 
valid only in the reference frame of the ether. After all, as FIGuRe 36.8 shows, the light 
speed should certainly be larger or smaller than c in a reference frame moving through 
the ether, just as the sound speed is different to someone moving through the air.

As the 19th century closed, it appeared that Maxwell’s theory did not obey the clas-
sical principle of relativity. There was just one reference frame, the reference frame of 
the ether, in which the laws of electromagnetism seemed to be true. And to make 
matters worse, the fact that no one had been able to detect the ether meant that no one 
could identify the one reference frame in which Maxwell’s equations “worked.”

It was in this muddled state of affairs that a young Albert Einstein made his mark 
on the world. Even as a teenager, Einstein had wondered how a light wave would look 
to someone “surfing” the wave, traveling alongside the wave at the wave speed. You 
can do that with a water wave or a sound wave, but light waves seemed to present a 
logical difficulty. An electromagnetic wave sustains itself by virtue of the fact that a 
changing magnetic field induces an electric field and a changing electric field induces 
a magnetic field. But to someone moving with the wave, the fields would not change. 
How could there be an electromagnetic wave under these circumstances?

Several years of thinking about the connection between electromagnetism and ref-
erence frames led Einstein to the conclusion that all the laws of physics, not just the 
laws of mechanics, should obey the principle of relativity. In other words, the principle 
of relativity is a fundamental statement about the nature of the physical universe. Thus 
we can remove the restriction in the Galilean principle of relativity and state a much 
more general principle:

Principle of relativity All the laws of physics are the same in all inertial reference 
frames.

All the results of Einstein’s theory of relativity flow from this one simple statement.

the Constancy of the Speed of Light
If Maxwell’s equations of electromagnetism are laws of physics, and there’s every 
reason to think they are, then, according to the principle of relativity, Maxwell’s equa-
tions must be true in every inertial reference frame. On the surface this seems to be an 

FIGuRe 36.8 it seems as if the speed of 
light should differ from c in a reference 
frame moving through the ether.
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Prior to Einstein, it was thought that
light travels at speed c in the reference
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Then surely light travels at some
other speed relative to a reference
frame moving through the ether.
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innocuous statement, equivalent to saying that the law of conservation of momentum 
is true in every inertial reference frame. But follow the logic:

 1. Maxwell’s equations are true in all inertial reference frames.
 2. Maxwell’s equations predict that electromagnetic waves, including light, travel 

at speed c = 3.00 * 108 m/s.
 3. Therefore, light travels at speed c in all inertial reference frames.

FIGuRe 36.9 shows the implications of this conclusion. All experimenters, regardless 
of how they move with respect to each other, find that all light waves, regardless of 
the source, travel in their reference frame with the same speed c. If Cathy’s velocity 
toward Bill and away from Amy is v = 0.9c, Cathy finds, by making measurements 
in her reference frame, that the light from Bill approaches her at speed c, not at 
c + v = 1.9c. And the light from Amy, which left Amy at speed c, catches up from 
behind at speed c relative to Cathy, not the c - v = 0.1c you would have expected.

Although this prediction goes against all shreds of common sense, the experimen-
tal evidence for it is strong. Laboratory experiments are difficult because even the 
highest laboratory speed is insignificant in comparison to c. In the 1930s, however, 
physicists R. J. Kennedy and E. M. Thorndike realized that they could use the earth 
itself as a laboratory. The earth’s speed as it circles the sun is about 30,000 m/s. The 
relative velocity of the earth in January differs by 60,000 m/s from its velocity in 
July, when the earth is moving in the opposite direction. Kennedy and Thorndike 
were able to use a very sensitive and stable interferometer to show that the numerical 
values of the speed of light in January and July differ by less than 2 m/s.

More recent experiments have used unstable elementary particles, called p mesons, 
that decay into high-energy photons of light. The p mesons, created in a particle ac-
celerator, move through the laboratory at 99.975% the speed of light, or v = 0.99975c, 
as they emit photons at speed c in the p meson’s reference frame. As FIGuRe 36.10 
shows, you would expect the photons to travel through the laboratory with speed 
c + v = 1.99975c. Instead, the measured speed of the photons in the laboratory was, 
within experimental error, 3.00 * 108 m/s.

In summary, every experiment designed to compare the speed of light in different 
reference frames has found that light travels at 3.00 * 108 m/s in every inertial reference 
frame, regardless of how the reference frames are moving with respect to each other.

How Can this Be?
You’re in good company if you find this impossible to believe. Suppose I shot a ball 
forward at 50 m/s while driving past you at 30 m/s. You would certainly see the ball 
traveling at 80 m/s relative to you and the ground. What we’re saying with regard to 
light is equivalent to saying that the ball travels at 50 m/s relative to my car and at 
the same time travels at 50 m/s relative to the ground, even though the car is moving 
across the ground at 30 m/s. It seems logically impossible.

You might think that this is merely a matter of semantics. If we can just get our 
definitions and use of words straight, then the mystery and confusion will disappear. 
Or perhaps the difficulty is a confusion between what we “see” versus what “really 
happens.” In other words, a better analysis, one that focuses on what really happens, 
would find that light “really” travels at different speeds in different reference frames.

Alas, what “really happens” is that light travels at 3.00 * 108 m/s in every inertial 
reference frame, regardless of how the reference frames are moving with respect to 
each other. It’s not a trick. There remains only one way to escape the logical contra-
dictions.

The definition of velocity is u = �x/�t, the ratio of a distance traveled to the time 
interval in which the travel occurs. Suppose you and I both make measurements on an ob-
ject as it moves, but you happen to be moving relative to me. Perhaps I’m standing on the 
corner, you’re driving past in your car, and we’re both trying to measure the velocity of a 
bicycle. Further, suppose we have agreed in advance to measure the position of the bicycle 

FIGuRe 36.9 Light travels at speed c in 
all inertial reference frames, regardless 
of how the reference frames are moving 
with respect to the light source.

This light wave leaves Amy at 
speed c relative to Amy. It approaches 
Cathy at speed c relative to Cathy.

This light wave leaves Bill at 
speed c relative to Bill. It approaches
Cathy at speed c relative to Cathy.
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FIGuRe 36.10 experiments find that the 
photons travel through the laboratory 
with speed c, not the speed 1.99975c 
that you might expect.
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first as it passes the tree in FIGuRe 36.11, then later as it passes the lamppost. Your �x�, the 
bicycle’s displacement, differs from my �x because of your motion relative to me, causing 
you to calculate a bicycle velocity u� in your reference frame that differs from its velocity 
u in my reference frame. This is just the Galilean transformations showing up again.

FIGuRe 36.11 Measuring the velocity of an object by appealing to the basic definition 
u = �x/�t.
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Now let’s repeat the measurements, but this time let’s measure the velocity of a 
light wave as it travels from the tree to the lamppost. Once again, your �x� differs 
from my �x, and the obvious conclusion is that your light speed u� differs from my 
light speed u. The difference will be very small if you’re driving past in your car, very 
large if you’re flying past in a rocket traveling at nearly the speed of light. Although 
this conclusion seems obvious, it is wrong. Experiments show that, for a light wave, 
we’ll get the same values: u� = u.

The only way this can be true is if your �t is not the same as my �t. If the time it 
takes the light to move from the tree to the lamppost in your reference frame, a time 
we’ll now call �t�, differs from the time �t it takes the light to move from the tree to 
the lamppost in my reference frame, then we might find that �x�/�t� = �x/�t. That 
is, u� = u even though you are moving with respect to me.

We’ve assumed, since the beginning of this textbook, that time is simply time. It 
flows along like a river, and all experimenters in all reference frames simply use it. For 
example, suppose the tree and the lamppost both have big clocks that we both can see. 
Shouldn’t we be able to agree on the time interval �t the light needs to move from the 
tree to the lamppost?

Perhaps not. It’s demonstrably true that �x� � �x. It’s experimentally verified 
that u� = u for light waves. Something must be wrong with assumptions that we’ve 
made about the nature of time. The principle of relativity has painted us into a corner, 
and our only way out is to reexamine our understanding of time.

36.4 events and Measurements
To question some of our most basic assumptions about space and time requires ex-
treme care. We need to be certain that no assumptions slip into our analysis unnoticed. 
Our goal is to describe the motion of a particle in a clear and precise way, making the 
barest minimum of assumptions.
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events
The fundamental element of relativity is called an event. An event is a physical activity 
that takes place at a definite point in space and at a definite instant of time. An explod-
ing firecracker is an event. A collision between two particles is an event. A light wave 
hitting a detector is an event.

Events can be observed and measured by experimenters in different reference 
frames. An exploding firecracker is as clear to you as you drive by in your car as it is 
to me standing on the street corner. We can quantify where and when an event occurs 
with four numbers: the coordinates (x, y, z) and the instant of time t. These four num-
bers, illustrated in FIGuRe 36.12, are called the spacetime coordinates of the event.

The spatial coordinates of an event measured in reference frames S and S� may 
differ. It now appears that the instant of time recorded in S and S� may also differ. 
Thus the spacetime coordinates of an event measured by experimenters in frame S are 
(x, y, z, t) and the spacetime coordinates of the same event measured by experimenters 
in frame S� are (x�, y�, z�, t�).

The motion of a particle can be described as a sequence of two or more events. We 
introduced this idea in the preceding section when we agreed to measure the velocity 
of a bicycle and then of a light wave by making measurements when the object passed 
the tree (first event) and when the object passed the lamppost (second event).

Measurements
Events are what “really happen,” but how do we learn about an event? That is, how 
do the experimenters in a reference frame determine the spacetime coordinates of an 
event? This is a problem of measurement.

We defined a reference frame to be a coordinate system in which experimenters can 
make position and time measurements. That’s a good start, but now we need to be more 
precise as to how the measurements are made. Imagine that a reference frame is filled 
with a cubic lattice of meter sticks, as shown in FIGuRe 36.13. At every intersection is a 
clock, and all the clocks in a reference frame are synchronized. We’ll return in a moment 
to consider how to synchronize the clocks, but assume for the moment it can be done.

Now, with our meter sticks and clocks in place, we can use a two-part measurement 
scheme:

	■ The (x, y, z) coordinates of an event are determined by the intersection of the meter 
sticks closest to the event.

	■ The event’s time t is the time displayed on the clock nearest the event.

You can imagine, if you wish, that each event is accompanied by a flash of light to 
illuminate the face of the nearest clock and make its reading known.

Several important issues need to be noted:

 1. The clocks and meter sticks in each reference frame are imaginary, so they have 
no difficulty passing through each other.

 2. Measurements of position and time made in one reference frame must use only 
the clocks and meter sticks in that reference frame.

 3. There’s nothing special about the sticks being 1 m long and the clocks 1 m apart. 
The lattice spacing can be altered to achieve whatever level of measurement ac-
curacy is desired.

 4. We’ll assume that the experimenters in each reference frame have assistants sit-
ting beside every clock to record the position and time of nearby events.

 5. Perhaps most important, t is the time at which the event actually happens, not 
the time at which an experimenter sees the event or at which information about 
the event reaches an experimenter.

 6. All experimenters in one reference frame agree on the spacetime coordinates of 
an event. In other words, an event has a unique set of spacetime coordinates 
in each reference frame.

FIGuRe 36.12 The location and time of 
an event are described by its spacetime 
coordinates.
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Stop to think 36.3 
 A carpenter is working on a house two blocks away. You notice a 

slight delay between seeing the carpenter’s hammer hit the nail and hearing the blow. 
At what time does the event “hammer hits nail” occur?

 a. At the instant you hear the blow
 b. At the instant you see the hammer hit
 c. Very slightly before you see the hammer hit
 d. Very slightly after you see the hammer hit

Clock Synchronization
It’s important that all the clocks in a reference frame be synchronized, meaning that 
all clocks in the reference frame have the same reading at any one instant of time. Thus 
we need a method of synchronization. One idea that comes to mind is to designate the 
clock at the origin as the master clock. We could then carry this clock around to every 
clock in the lattice, adjust that clock to match the master clock, and finally return the 
master clock to the origin.

This would be a perfectly good method of clock synchronization in Newtonian me-
chanics, where time flows along smoothly, the same for everyone. But we’ve been driven 
to reexamine the nature of time by the possibility that time is different in reference frames 
moving relative to each other. Because the master clock would move, we cannot assume 
that the moving master clock would keep time in the same way as the stationary clocks.

We need a synchronization method that does not require moving the clocks. For-
tunately, such a method is easy to devise. Each clock is resting at the intersection of 
meter sticks, so by looking at the meter sticks, the assistant knows, or can calculate, 
exactly how far each clock is from the origin. Once the distance is known, the assistant 
can calculate exactly how long a light wave will take to travel from the origin to each 
clock. For example, light will take 1.00 ms to travel to a clock 300 m from the origin.

Note  It’s handy for many relativity problems to know that the speed of light is 
c = 300 m/ms. 

To synchronize the clocks, the assistants begin by setting each clock to display the 
light travel time from the origin, but they don’t start the clocks. Next, as FIGuRe 36.14 
shows, a light flashes at the origin and, simultaneously, the clock at the origin starts 
running from t = 0 s. The light wave spreads out in all directions at speed c. A pho-
todetector on each clock recognizes the arrival of the light wave and, without delay, 
starts the clock. The clock had been preset with the light travel time, so each clock as  
it starts reads exactly the same as the clock at the origin. Thus all the clocks will be 
synchronized after the light wave has passed by.

events and observations
We noted above that t is the time the event actually happens. This is an important point, 
one that bears further discussion. Light waves take time to travel. Messages, whether 
they’re transmitted by light pulses, telephone, or courier on horseback, take time to be 
delivered. An experimenter observes an event, such as an exploding firecracker, only at 
a later time when light waves reach his or her eyes. But our interest is in the event itself, 
not the experimenter’s observation of the event. The time at which the experimenter sees 
the event or receives information about the event is not when the event actually occurred.

Suppose at t = 0 s a firecracker explodes at x = 300 m. The flash of light from the 
firecracker will reach an experimenter at the origin at t1 = 1.0 ms. The sound of the 
explosion will reach a sightless experimenter at the origin at t2 = 0.88 s. Neither of 
these is the time tevent of the explosion, although the experimenter can work backward 
from these times, using known wave speeds, to determine tevent. In this example, the 
spacetime coordinates of the event—the explosion—are (300 m, 0 m, 0 m, 0 s).

FIGuRe 36.14 Synchronizing clocks.
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 light wave has begun to move outward.

3. The clock starts when the light wave
 reaches it. It is now synchronized with
 the origin clock.
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received at 3.0 ms and 4.0 ms, respectively; hence it was emitted 
by the explosion at t = 2.0 ms. The spacetime coordinates of the 
explosion are (600 m, 0 m, 0 m, 2.0 ms).

ASSeSS Although the experimenters see the explosion at different 
times, they agree that the explosion actually happened at 
t = 2.0 ms.

exAMPLe 36.3  Finding the time of an event
Experimenter A in reference frame S stands at the origin looking 
in the positive x-direction. Experimenter B stands at x = 900 m 
looking in the negative x-direction. A firecracker explodes 
somewhere between them. Experimenter B sees the light flash 
at t = 3.0 ms. Experimenter A sees the light flash at t = 4.0 ms. 
What are the spacetime coordinates of the explosion?

ModeL Experimenters A and B are in the same reference frame 
and have synchronized clocks.

vISuALIze FIGuRe 36.15 shows the two experimenters and the 
explosion at unknown position x.

SoLve The two experimenters observe light flashes at two differ-
ent instants, but there’s only one event. Light travels at 300 m/ms, 
so the additional 1.0 ms needed for the light to reach experimenter 
A implies that distance (x - 0 m) is 300 m longer than distance 
(900 m - x). That is,

 (x - 0 m) = (900 m - x) + 300 m

This is easily solved to give x = 600 m as the position coordinate 
of the explosion. The light takes 1.0 ms to travel 300 m to experi-
menter B, 2.0 ms to travel 600 m to experimenter A. The light is 

Simultaneity
Two events 1 and 2 that take place at different positions x1 and x2 but at the same time 
t1 = t2, as measured in some reference frame, are said to be simultaneous in that refer-
ence frame. Simultaneity is determined by when the events actually happen, not when 
they are seen or observed. In general, simultaneous events are not seen at the same 
time because of the difference in light travel times from the events to an experimenter.

Stop to think 36.4 
 A tree and a pole are 3000 m apart. Each is suddenly hit by a bolt 

of lightning. Mark, who is standing at rest midway between the two, sees the two 
lightning bolts at the same instant of time. Nancy is at rest under the tree. Define event 
1 to be “lightning strikes tree” and event 2 to be “lightning strikes pole.” For Nancy, 
does event 1 occur before, after, or at the same time as event 2?

36.5 the Relativity of Simultaneity
We’ve now established a means for measuring the time of an event in a reference 
frame, so let’s begin to investigate the nature of time. The following “thought experi-
ment” is very similar to one suggested by Einstein.

FIGuRe 36.16 on the next page shows a long railroad car traveling to the right with a 
velocity v that may be an appreciable fraction of the speed of light. A firecracker is tied 

SoLve The experimenter sees two different explosions, but per-
ceptions of the events are not the events themselves. When did 
the explosions actually occur? Using the fact that light travels at 
300 m/ms, we can see that firecracker 1 exploded at t1 = 1.0 ms 
and firecracker 2 also exploded at t2 = 1.0 ms. The events are 
simultaneous.

exAMPLe 36.4  Are the explosions simultaneous?
An experimenter in reference frame S stands at the origin look-
ing in the positive x-direction. At t = 3.0 ms she sees firecracker 
1 explode at x = 600 m. A short time later, at t = 5.0 ms, she 
sees firecracker 2 explode at x = 1200 m. Are the two explosions 
simultaneous? If not, which firecracker exploded first?

ModeL Light from both explosions travels toward the experi-
menter at 300 m/ms.

FIGuRe 36.15 The light wave reaches the experimenters at 
different times. Neither of these is the time at which the 
event actually happened.
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to each end of the car, just above the ground. Each firecracker is powerful enough so that, 
when it explodes, it will make a burn mark on the ground at the position of the explosion.

Ryan is standing on the ground, watching the railroad car go by. Peggy is stand-
ing in the exact center of the car with a special box at her feet. This box has two light 
detectors, one facing each way, and a signal light on top. The box works as follows:

 1. If a flash of light is received at the detector facing right, as seen by Ryan, before a 
flash is received at the left detector, then the light on top of the box will turn green.

 2. If a flash of light is received at the left detector before a flash is received at the 
right detector, or if two flashes arrive simultaneously, the light on top will turn red.

The firecrackers explode as the railroad car passes Ryan, and he sees the two light 
flashes from the explosions simultaneously. He then measures the distances to the two 
burn marks and finds that he was standing exactly halfway between the marks. Because 
light travels equal distances in equal times, Ryan concludes that the two explosions 
were simultaneous in his reference frame, the reference frame of the ground. Further, 
because he was midway between the two ends of the car, he was directly opposite 
Peggy when the explosions occurred.

FIGuRe 36.17a shows the sequence of events in Ryan’s reference frame. Light travels 
at speed c in all inertial reference frames, so, although the firecrackers were moving, 
the light waves are spheres centered on the burn marks. Ryan determines that the light 
wave coming from the right reaches Peggy and the box before the light wave coming 
from the left. Thus, according to Ryan, the signal light on top of the box turns green.

FIGuRe 36.17 exploding firecrackers seen in two different reference frames.

v

Explosions are simultaneous.
Burn marks are equal distances
from Ryan.

The waves are spheres centered
on the burn marks because the
light speed of both is c.

The waves reach Ryan 
simultaneously. The right 
wave has already passed 
Peggy and been detected. 
The left wave has not arrived.

P

R

v
P

R

v
P

R

Peggy is moving to the right.

(a) The events in Ryan’s frame

Explosions are at the ends of the car
at the instant Ryan passes Peggy.

The waves are spheres centered
on the ends of the car because
the light speed of both is c.

The waves reach Peggy and the 
light detectors simultaneously.
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(b) The events in Peggy’s frame

FIGuRe 36.16 A railroad car traveling to 
the right with velocity v.

Signal light

Light detector

Peggy

Ryan

v

The firecrackers will make burn marks on the
ground at the positions where they explode.
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How do things look in Peggy’s reference frame, a reference frame moving to the 
right at velocity v relative to the ground? As FIGuRe 36.17b shows, Peggy sees Ryan 
moving to the left with speed v. Light travels at speed c in all inertial reference 
frames, so the light waves are spheres centered on the ends of the car. If the explo-
sions are simultaneous, as Ryan has determined, the two light waves reach her and 
the box simultaneously. Thus, according to Peggy, the signal light on top of the box 
turns red!

Now the light on top must be either green or red. It can’t be both! Later, after the 
railroad car has stopped, Ryan and Peggy can place the box in front of them. Either it 
has a red light or a green light. Ryan can’t see one color while Peggy sees the other. 
Hence we have a paradox. It’s impossible for Peggy and Ryan both to be right. But 
who is wrong, and why?

What do we know with absolute certainty?

 1. Ryan detected the flashes simultaneously.
 2. Ryan was halfway between the firecrackers when they exploded.
 3. The light from the two explosions traveled toward Ryan at equal speeds.

The conclusion that the explosions were simultaneous in Ryan’s reference frame is 
unassailable. The light is green.

Peggy, however, made an assumption. It’s a perfectly ordinary assumption, one 
that seems sufficiently obvious that you probably didn’t notice, but an assumption 
nonetheless. Peggy assumed that the explosions were simultaneous.

Didn’t Ryan find them to be simultaneous? Indeed, he did. Suppose we call Ryan’s 
reference frame S, the explosion on the right event R, and the explosion on the left 
event L. Ryan found that tR = tL. But Peggy has to use a different set of clocks, the 
clocks in her reference frame S�, to measure the times t =R and t =L at which the explo-
sions occurred. The fact that tR = tL in frame S does not allow us to conclude that 
t =R = t =L in frame S�.

In fact, in frame S� the right firecracker must explode before the left firecracker. 
Figure 36.17b, with its assumption about simultaneity, was incorrect. FIGuRe 36.18 
shows the situation in Peggy’s reference frame, with the right firecracker exploding 
first. Now the wave from the right reaches Peggy and the box first, as Ryan had con-
cluded, and the light on top turns green.

One of the most disconcerting conclusions of relativity is that two events occur-
ring simultaneously in reference frame S are not simultaneous in any reference 
frame S� moving relative to S. This is called the relativity of simultaneity.

The two firecrackers really explode at the same instant of time in Ryan’s reference 
frame. And the right firecracker really explodes first in Peggy’s reference frame. It’s 
not a matter of when they see the flashes. Our conclusion refers to the times at which 
the explosions actually occur.

The paradox of Peggy and Ryan contains the essence of relativity, and it’s worth 
careful thought. First, review the logic until you’re certain that there is a paradox, a 
logical impossibility. Then convince yourself that the only way to resolve the paradox 
is to abandon the assumption that the explosions are simultaneous in Peggy’s refer-
ence frame. If you understand the paradox and its resolution, you’ve made a big step 
toward understanding what relativity is all about.

FIGuRe 36.18 The real sequence of 
events in Peggy’s reference frame.

The right firecracker explodes first.

The right wave reaches
Peggy first.

The left firecracker
explodes later.

The waves reach Ryan simultaneously.
The left wave has not reached Peggy.
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R
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Stop to think 36.5 
 A tree and a pole are 3000 m apart. Each is hit by a bolt of light-

ning. Mark, who is standing at rest midway between the two, sees the two lightning 
bolts at the same instant of time. Nancy is flying her rocket at v = 0.5c in the direction 
from the tree toward the pole. The lightning hits the tree just as she passes by it. Define 
event 1 to be “lightning strikes tree” and event 2 to be “lightning strikes pole.” For 
Nancy, does event 1 occur before, after, or at the same time as event 2?
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36.6 time dilation
The principle of relativity has driven us to the logical conclusion that time is not the 
same for two reference frames moving relative to each other. Our analysis thus far has 
been mostly qualitative. It’s time to start developing some quantitative tools that will 
allow us to compare measurements in one reference frame to measurements in another 
reference frame.

FIGuRe 36.19a shows a special clock called a light clock. The light clock is a box with 
a light source at the bottom and a mirror at the top, separated by distance h. The light 
source emits a very short pulse of light that travels to the mirror and reflects back to a 
light detector beside the source. The clock advances one “tick” each time the detector 
receives a light pulse, and it immediately, with no delay, causes the light source to emit 
the next light pulse.

Our goal is to compare two measurements of the interval between two ticks of the 
clock: one taken by an experimenter standing next to the clock and the other by an 
experimenter moving with respect to the clock. To be specific, FIGuRe 36.19b shows the 
clock at rest in reference frame S�. We call this the rest frame of the clock. Reference 
frame S� moves to the right with velocity v relative to reference frame S.

Relativity requires us to measure events, so let’s define event 1 to be the emission 
of a light pulse and event 2 to be the detection of that light pulse. Experimenters in 
both reference frames are able to measure where and when these events occur in their 
frame. In frame S, the time interval �t = t2 - t1 is one tick of the clock. Similarly, one 
tick in frame S� is �t� = t =2 - t =1.

To be sure we have a clear understanding of the relativity result, let’s first do a 
classical analysis. In frame S�, the clock’s rest frame, the light travels straight up and 
down, a total distance 2h, at speed c. The time interval is �t� = 2h/c.

FIGuRe 36.20a shows the operation of the light clock as seen in frame S. The clock is 
moving to the right at speed v in S, thus the mirror moves distance 1

2 v(�t) during the 
time 12 (�t) in which the light pulse moves from the source to the mirror. The distance 
traveled by the light during this interval is 12 ulight (�t), where ulight is the speed of light 
in frame S. You can see from the vector addition in FIGuRe 36.20b that the speed of light 
in frame S is ulight = (c2 + v 2)1/2. (Remember, this is a classical analysis in which the 
speed of light does depend on the motion of the reference frame relative to the light 
source.)

The Pythagorean theorem applied to the right triangle in Figure 36.20a is

 h2 + 11

2
 v �t2 2

= 11

2
 ulight�t2 2

= 11

2
 2c2 + v2�t2 2

 

(36.4)

 = 11

2
 c �t2 2

+ 11

2
 v �t2 2

The term 11
2 v �t22 is common to both sides and cancels. Solving for �t gives 

�t = 2h/c, identical to �t�. In other words, a classical analysis finds that the clock 
ticks at exactly the same rate in both frame S and frame S�. This shouldn’t be sur-
prising. There’s only one kind of time in classical physics, measured the same by all 
experimenters independent of their motion.

The principle of relativity changes only one thing, but that change has profound 
consequences. According to the principle of relativity, light travels at the same speed 
in all inertial reference frames. In frame S�, the rest frame of the clock, the light simply 
goes straight up and back. The time of one tick,

 �t� =
2h
c

 (36.5)

is unchanged from the classical analysis.

FIGuRe 36.19 The ticking of a light clock 
can be measured by experimenters in 
two different reference frames.
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FIGuRe 36.20 A classical analysis of the 
light clock.
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FIGuRe 36.21 shows the light clock as seen in frame S. The difference from Fig-
ure 36.20a is that the light now travels along the hypotenuse at speed c. We can again 
use the Pythagorean theorem to write

 h2 + 11

2
 v �t2 2

= 11

2
 c �t2 2

 (36.6)

Solving for �t gives

 �t =
2h/c21 - v2/c2

=
�t�21 - v2/c2

 (36.7)

The time interval between two ticks in frame S is not the same as in frame S�.
It’s useful to define b = v/c, the velocity as a fraction of the speed of light. For 

example, a reference frame moving with v = 2.4 * 108 m/s has b = 0.80. In terms of 
b, Equation 36.7 is

 �t =
�t�21 - b2

 (36.8)

Note  The expression (1 - v2/c2)1/2 = (1 - b2)1/2 occurs frequently in relativity. 
The value of the expression is 1 when v = 0, and it steadily decreases to 0 as v S c 
(or b S 1). The square root is an imaginary number if v 7 c, which would make 
�t imaginary in Equation 36.8. Time intervals certainly have to be real numbers, 
suggesting that v 7 c is not physically possible. One of the predictions of the theory 
of relativity, as you’ve undoubtedly heard, is that nothing can travel faster than 
the speed of light. Now you can begin to see why. We’ll examine this topic more 
closely in Section 36.9. In the meantime, we’ll require v to be less than c. 

Proper time
Frame S� has one important distinction. It is the one and only inertial reference frame 
in which the light clock is at rest. Consequently, it is the one and only inertial refer-
ence frame in which the times of both events—the emission of the light and the detec-
tion of the light—are measured by the same reference-frame clock. You can see that 
the light pulse in Figure 36.19a starts and ends at the same position. In Figure 36.21, 
the emission and detection take place at different positions in frame S and must be 
measured by different reference-frame clocks, one at each position.

The time interval between two events that occur at the same position is called the 
proper time �t. Only one inertial reference frame measures the proper time, and it 
does so with a single clock that is present at both events. An inertial reference frame 
moving with velocity v = bc relative to the proper-time frame must use two clocks to 
measure the time interval: one at the position of the first event, the other at the position 
of the second event. The time interval between the two events in this frame is

 �t =
�t21 - b2

Ú �t  (time dilation) (36.9)

The “stretching out” of the time interval implied by Equation 36.9 is called time 
dilation. Time dilation is sometimes described by saying that “moving clocks run 
slow.” This is not an accurate statement because it implies that some reference frames 
are “really” moving while others are “really” at rest. The whole point of relativity is 
that all inertial reference frames are equally valid, that all we know about reference 
frames is how they move relative to each other. A better description of time dilation 
is the statement that the time interval between two ticks is the shortest in the refer-
ence frame in which the clock is at rest. The time interval between two ticks is longer 
(i.e., the clock “runs slower”) when it is measured in any reference frame in which the 
clock is moving.

FIGuRe 36.21 A light clock analysis in 
which the speed of light is the same in 
all reference frames.

Emission

Mirror v

h

Detection

c�t1
2

v�t1
2

Light path
through
frame S

Light speed is the same
in both frames.

Clock moves distance v�t.



1076    c h a p t e r  36 . Relativity

Note  Equation 36.9 was derived using a light clock because the operation of 
a light clock is clear and easy to analyze. But the conclusion is really about time 
itself. Any clock, regardless of how it operates, behaves the same. 

vISuALIze FIGuRe 36.22 shows the two events as seen from the two 
reference frames. Notice that the two events occur at the same 
position in S�, the position of the rocket, and consequently can be 
measured by one clock.

SoLve The time interval measured in the solar system reference 
frame, which includes the earth, is simply

 �t =
�x

v
=

1.43 * 1012 m

0.9 * (3.00 * 108 m/s)
= 5300 s

Relativity hasn’t abandoned the basic definition v = �x/�t, 
although we do have to be sure that �x and �t are measured in 
just one reference frame and refer to the same two events.

How are things in the rocket’s reference frame? The two events 
occur at the same position in S� and can be measured by one 
clock, the clock at the origin. Thus the time measured by the astro-
nauts is the proper time �t between the two events. We can use 
Equation 36.9 with b = 0.9 to find

 �t = 21 - b2 �t = 21 - 0.92 (5300 s) = 2310 s

ASSeSS The time interval measured between these two events 
by the astronauts is less than half the time interval measured by 
experimenters on earth. The difference has nothing to do with when 
earthbound astronomers see the rocket pass the sun and Saturn. �t 
is the time interval from when the rocket actually passes the sun, 
as measured by a clock at the sun, until it actually passes Saturn, as 
measured by a synchronized clock at Saturn. The interval between 
seeing the events from earth, which would have to allow for light 
travel times, would be something other than 5300 s. �t and �t are 
different because time is different in two reference frames moving 
relative to each other.

exAMPLe 36.5  From the sun to Saturn
Saturn is 1.43 * 1012 m from the sun. A rocket travels along a 
line from the sun to Saturn at a constant speed of 0.9c relative to 
the solar system. How long does the journey take as measured by 
an experimenter on earth? As measured by an astronaut on the 
rocket?

ModeL Let the solar system be in reference frame S and the 
rocket be in reference frame S� that travels with velocity v =  0.9c 
relative to S. Relativity problems must be stated in terms of events. 
Let event 1 be “the rocket and the sun coincide” (the experimenter 
on earth says that the rocket passes the sun; the astronaut on the 
rocket says that the sun passes the rocket) and event 2 be “the 
rocket and Saturn coincide.”

FIGuRe 36.22 Pictorial representation of the trip as seen in 
frames S and S�.
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Stop to think 36.6 
 Molly flies her rocket past Nick at constant velocity v. Molly and 

Nick both measure the time it takes the rocket, from nose to tail, to pass Nick. Which 
of the following is true?

 a. Both Molly and Nick measure the same amount of time.
 b. Molly measures a shorter time interval than Nick.
 c. Nick measures a shorter time interval than Molly.

experimental evidence
Is there any evidence for the crazy idea that clocks moving relative to each other tell 
time differently? Indeed, there’s plenty. An experiment in 1971 sent an atomic clock 
around the world on a jet plane while an identical clock remained in the laboratory. 
This was a difficult experiment because the traveling clock’s speed was so small com-
pared to c, but measuring the small differences between the time intervals was just 
barely within the capabilities of atomic clocks. It was also a more complex experiment 



36.6 . Time Dilation    1077

than we’ve analyzed because the clock accelerated as it moved around a circle. The 
scientists found that, upon its return, the eastbound clock, traveling faster than the 
laboratory on a rotating earth, was 60 ns behind the stay-at-home clock, which was 
exactly as predicted by relativity.

Very detailed studies have been done on unstable particles called muons that are 
created at the top of the atmosphere, at a height of about 60 km, when high-energy 
cosmic rays collide with air molecules. It is well known, from laboratory studies, that 
stationary muons decay with a half-life of 1.5 ms. That is, half the muons decay within 
1.5 ms, half of those remaining decay in the next 1.5 ms, and so on. The decays can be 
used as a clock.

The muons travel down through the atmosphere at very nearly the speed of 
light. The time needed to reach the ground, assuming v � c, is �t � (60,000 m)/ 
(3 * 108 m/s) = 200 ms. This is 133 half-lives, so the fraction of muons reaching the 
ground should be � 11

22133 = 10-40. That is, only 1 out of every 1040 muons should 
reach the ground. In fact, experiments find that about 1 in 10 muons reach the ground, 
an experimental result that differs by a factor of 1039 from our prediction!

The discrepancy is due to time dilation. In FIGuRe 36.23, the two events “muon is cre-
ated” and “muon hits ground” take place at two different places in the earth’s reference 
frame. However, these two events occur at the same position in the muon’s reference 
frame. (The muon is like the rocket in Example 36.5.) Thus the muon’s internal clock 
measures the proper time. The time-dilated interval �t = 200 ms in the earth’s refer-
ence frame corresponds to a proper time �t � 5 ms in the muon’s reference frame. 
That is, in the muon’s reference frame it takes only 5 ms from creation at the top of the 
atmosphere until the ground runs into it. This is 3.3 half-lives, so the fraction of muons 
reaching the ground is 11

223.3 = 0.1, or 1 out of 10. We wouldn’t detect muons at the 
ground at all if not for time dilation.

The details are beyond the scope of this textbook, but dozens of high-energy 
particle accelerators around the world that study quarks and other elementary par-
ticles have been designed and built on the basis of Einstein’s theory of relativity. 
The fact that they work exactly as planned is strong testimony to the reality of 
time dilation.

the twin Paradox
The most well-known relativity paradox is the twin paradox. George and Helen are 
twins. On their 25th birthday, Helen departs on a starship voyage to a distant star. 
Let’s imagine, to be specific, that her starship accelerates almost instantly to a speed 
of 0.95c and that she travels to a star that is 9.5 light years (9.5 ly) from earth. Upon 
arriving, she discovers that the planets circling the star are inhabited by fierce aliens, 
so she immediately turns around and heads home at 0.95c.

A light year, abbreviated ly, is the distance that light travels in one year. A light 
year is vastly larger than the diameter of the solar system. The distance between two 
neighboring stars is typically a few light years. For our purpose, we can write the 
speed of light as c = 1 ly/year. That is, light travels 1 light year per year.

This value for c allows us to determine how long, according to George and his 
fellow earthlings, it takes Helen to travel out and back. Her total distance is 19 ly and, 
due to her rapid acceleration and rapid turn-around, she travels essentially the entire 
distance at speed v = 0.95c = 0.95 ly/year. Thus the time she’s away, as measured by 
George, is

 �tG =
19 ly

0.95 ly/year
= 20 years (36.10)

George will be 45 years old when his sister Helen returns with tales of adventure.
While she’s away, George takes a physics class and studies Einstein’s theory of 

relativity. He realizes that time dilation will make Helen’s clocks run more slowly 
than his clocks, which are at rest relative to him. Her heart—a clock—will beat fewer 

FIGuRe 36.23 we wouldn’t detect muons 
at the ground if not for time dilation.

Muon hits ground.

Muon is
created.

A muon travels �450 m in 1.5 ms. 
We would not detect muons at ground 
level if the half-life of a moving muon 
were 1.5 ms.

Because of
time dilation,
the half-life of
a high-speed muon
is long enough in the
earth’s reference frame
for about 1 in 10 muons 
to reach the ground.

The global positioning system (GPS), 
which allows you to pinpoint your 
location anywhere in the world to within 
a few meters, uses a set of orbiting 
satellites. Because of their motion, the 
atomic clocks on these satellites keep 
time differently from clocks on the 
ground. To determine an accurate 
position, the software in your GPS 
receiver must carefully correct for time-
dilation effects.
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times and the minute hand on her watch will go around fewer times. In other words, 
she’s aging more slowly than he is. Although she is his twin, she will be younger than 
he is when she returns.

Calculating Helen’s age is not hard. We simply have to identify Helen’s clock, 
because it’s always with Helen as she travels, as the clock that measures proper time 
�t. From Equation 36.9,

 �tH = �t = 21 - b2  �tG = 21 - 0.952  (20 years) = 6.25 years (36.11)

George will have just celebrated his 45th birthday as he welcomes home his 31-year-
and-3-month-old twin sister.

This may be unsettling because it violates our commonsense notion of time, but it’s 
not a paradox. There’s no logical inconsistency in this outcome. So why is it called 
“the twin paradox”?

Helen, knowing that she had quite of bit of time to kill on her journey, brought 
along several physics books to read. As she learns about relativity, she begins 
to think about George and her friends back on earth. Relative to her, they are all 
moving away at 0.95c. Later they’ll come rushing toward her at 0.95c. Time dilation 
will cause their clocks to run more slowly than her clocks, which are at rest relative 
to her. In other words, as FIGuRe 36.24 shows, Helen concludes that people on earth 
are aging more slowly than she is. Alas, she will be much older than they when she 
returns.

Finally, the big day arrives. Helen lands back on earth and steps out of the starship. 
George is expecting Helen to be younger than he is. Helen is expecting George to be 
younger than she is.

Here’s the paradox! It’s logically impossible for each to be younger than the other 
at the time they are reunited. Where, then, is the flaw in our reasoning? It seems to be 
a symmetrical situation—Helen moves relative to George and George moves relative 
to Helen—but symmetrical reasoning has led to a conundrum.

But are the situations really symmetrical? George goes about his business day after 
day without noticing anything unusual. Helen, on the other hand, experiences three 
distinct periods during which the starship engines fire, she’s crushed into her seat, and 
free dust particles that had been floating inside the starship are no longer, in the star-
ship’s reference frame, at rest or traveling in a straight line at constant speed. In other 
words, George spends the entire time in an inertial reference frame, but Helen does 
not. The situation is not symmetrical.

The principle of relativity applies only to inertial reference frames. Our 
discussion of time dilation was for inertial reference frames. Thus George’s analysis 
and calculations are correct. Helen’s analysis and calculations are not correct 
because she was trying to apply an inertial reference frame result while traveling in 
a noninertial reference frame.

Helen is younger than George when she returns. This is strange, but not a paradox. 
It is a consequence of the fact that time flows differently in two reference frames mov-
ing relative to each other.

36.7 Length Contraction
We’ve seen that relativity requires us to rethink our idea of time. Now let’s turn 
our attention to the concepts of space and distance. Consider the rocket that 
traveled from the sun to Saturn in Example 36.5. FIGuRe 36.25a shows the rocket 
moving with velocity v through the solar system reference frame S. We define 
L = �x = xSaturn - xsun as the distance between the sun and Saturn in frame S or, 
more generally, the length of the spatial interval between two points. The rocket’s 
speed is v = L /�t, where �t is the time measured in frame S for the journey from 
the sun to Saturn.

FIGuRe 36.24 The twin paradox.

0.95c
9.5 ly

Helen is moving relative
to me at 0.95c. Her clocks 
are running more slowly than 
mine, and when she returns 
she’ll be younger than I am.

George is moving relative
to me at 0.95c. His clocks 
are running more slowly than 
mine, and when I return he’ll 
be younger than I am.
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FIGuRe 36.25b shows the situation in reference frame S�, where the rocket is at rest. 
The sun and Saturn move to the left at speed v = L�/�t�, where �t� is the time mea-
sured in frame S� for Saturn to travel distance L�.

Speed v is the relative speed between S and S� and is the same for experimenters in 
both reference frames. That is,

 v =
L

�t
=

L�

�t�
 (36.12)

The time interval �t� measured in frame S� is the proper time �t because both events 
occur at the same position in frame S� and can be measured by one clock. We can use 
the time-dilation result, Equation 36.9, to relate �t measured by the astronauts to �t 
measured by the earthbound scientists. Then Equation 36.12 becomes

 
L

�t
=

L�

�t
=

L�21 - b2 �t
 (36.13)

The �t cancels, and the distance L� in frame S� is

 L� = 21 - b2 L (36.14)

Surprisingly, we find that the distance between two objects in reference frame 
S� is not the same as the distance between the same two objects in reference 
frame S.

Frame S, in which the distance is L, has one important distinction. It is the one 
and only inertial reference frame in which the objects are at rest. Experimenters 
in frame S can take all the time they need to measure L because the two objects 
aren’t going anywhere. The distance L between two objects, or two points on one 
object, measured in the reference frame in which the objects are at rest is called 
the proper length /. Only one inertial reference frame can measure the proper 
length.

We can use the proper length / to write Equation 36.14 as

 L� = 21 - b2 / … / (36.15)

This “shrinking” of the distance between two objects, as measured by an experi-
ment moving with respect to the objects, is called length contraction. Although 
we derived length contraction for the distance between two distinct objects, it ap-
plies equally well to the length of any physical object that stretches between two 
points along the x- and x�@ axes. The length of an object is greatest in the reference 
frame in which the object is at rest. The object’s length is less (i.e., the length 
is contracted) when it is measured in any reference frame in which the object is 
moving.

FIGuRe 36.25 L and L� are the distances between the sun and Saturn in frames S and S�.

The rocket moves distance
L in time �t. This is the
distance between the sun 
and Saturn in S.

(a) Reference frame S: The solar system is stationary.

x

y

v
L

v

xsun xSaturn

S

�v

Saturn moves distance L� in
time �t� � �t. This is the distance
between the sun and Saturn in S�.

(b) Reference frame S�: The rocket is stationary.

x�

y�

S�

L�

�v

The Stanford Linear Accelerator (SLAC) 
is a 2-mi-long electron accelerator. The 
accelerator’s length is less than 1 m in the 
reference frame of the electrons.
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The conclusion that space is different in reference frames moving relative to 
each other is a direct consequence of the fact that time is different. Experimenters 
in both reference frames agree on the relative velocity v, leading to Equation 36.12: 
v = L/�t = L�/�t�. We had already learned that �t� 6 �t because of time dilation. 
Thus L� has to be less than L. That is the only way experimenters in the two reference 
frames can reconcile their measurements.

To be specific, the earthly experimenters in Examples 36.5 and 36.6 find that the 
rocket takes 5300 s to travel the 1.43 * 1012 m between the sun and Saturn. The rock-
et’s speed is v = L/�t = 2.7 * 108 m/s = 0.9c. The astronauts in the rocket find that 
it takes only 2310 s for Saturn to reach them after the sun has passed by. But there’s no 
conflict, because they also find that the distance is only 0.62 * 1012 m. Thus Saturn’s 
speed toward them is v = L�/�t� = (0.62 * 1012 m)/(2310 s) = 2.7 * 108 m/s = 0.9c.

Another Paradox?
Carmen and Dan are in their physics lab room. They each select a meter stick, lay the 
two side by side, and agree that the meter sticks are exactly the same length. Then, for 
an extra-credit project, they go outside and run past each other, in opposite directions, 
at a relative speed v = 0.9c. FIGuRe 36.26 shows their experiment and a portion of their 
conversation.

Now, Dan’s meter stick can’t be both longer and shorter than Carmen’s meter 
stick. Is this another paradox? No! Relativity allows us to compare the same events 
as they’re measured in two different reference frames. This did lead to a real paradox 
when Peggy rolled past Ryan on the train. There the signal light on the box turns green 
(a single event) or it doesn’t, and Peggy and Ryan have to agree about it. But the 
events by which Dan measures the length (in Dan’s frame) of Carmen’s meter stick 
are not the same events as those by which Carmen measures the length (in Carmen’s 
frame) of Dan’s meter stick.

There’s no conflict between their measurements. In Dan’s reference frame, Car-
men’s meter stick has been length contracted and is less than 1 m in length. In Car-
men’s reference frame, Dan’s meter stick has been length contracted and is less than 
1m in length. If this weren’t the case, if both agreed that one of the meter sticks was 
shorter than the other, then we could tell which reference frame was “really” moving 
and which was “really” at rest. But the principle of relativity doesn’t allow us to make 
that distinction. Each is moving relative to the other, so each should make the same 
measurement for the length of the other’s meter stick.

the Spacetime Interval
Forget relativity for a minute and think about ordinary geometry. FIGuRe 36.27 shows two 
ordinary coordinate systems. They are identical except for the fact that one has been 
rotated relative to the other. A student using the xy-system would measure coordinates 
(x1, y1) for point 1 and (x2, y2) for point 2. A second student, using the x�y�@system, 
would measure (x =

1, y
=
1) and (x =

2, y
=
2).

SoLve We can use Equation 36.15 to find the distance in the rocket’s 
frame S�:

  L� = 21 - b2 / = 21 - 0.92 (1.43 * 1012 m)

  = 0.62 * 1012 m

ASSeSS The sun-to-Saturn distance measured by the astronauts is 
less than half the distance measured by experimenters on earth. 
L� and / are different because space is different in two reference 
frames moving relative to each other.

exAMPLe 36.6  the distance from the sun to Saturn
In Example 36.5 a rocket traveled along a line from the sun to 
Saturn at a constant speed of 0.9c relative to the solar system. 
The Saturn-to-sun distance was given as 1.43 * 1012 m. What is 
the distance between the sun and Saturn in the rocket’s reference 
frame?

ModeL Saturn and the sun are, at least approximately, at rest in 
the solar system reference frame S. Thus the given distance is the 
proper length /.

FIGuRe 36.26 Carmen and Dan each 
measure the length of the other’s meter 
stick as they move relative to each other.

Your meter stick is shorter than mine.
It’s length contracted because you’re
moving relative to me.  

That can’t be. Your meter
stick is the one whose length
is contracted. Your meter stick
is the shorter one.

Carmen

Meter sticks

Dan

FIGuRe 36.27 Distance d is the same in 
both coordinate systems.
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y
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�y�

�x

x1 x2

x�1
x�2�x�

d

y�1

y2

y1

d

Coordinate values
and intervals
are different.

1

1

2

Measurements in the xy-system

2

Distance d
is the same.

Measurements in the x�y�-system
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The students soon find that none of their measurements agree. That is, x1 � x =
1 and 

so on. Even the intervals are different: �x � �x� and �y � �y�. Each is a perfectly 
valid coordinate system, giving no reason to prefer one over the other, but each yields 
different measurements.

Is there anything on which the two students can agree? Yes, there is. The distance d 
between points 1 and 2 is independent of the coordinates. We can state this math-
ematically as

 d 2 = (� x)2 + (�y)2 = (� x�)2 + (�y�)2 (36.16)

The quantity (�x)2 + (�y)2 is called an invariant in geometry because it has the same 
value in any Cartesian coordinate system.

Returning to relativity, is there an invariant in the spacetime coordinates, some 
quantity that has the same value in all inertial reference frames? There is, and to find 
it let’s return to the light clock of Figure 36.21. FIGuRe 36.28 shows the light clock as 
seen in reference frames S� and S�. The speed of light is the same in both frames, even 
though both are moving with respect to each other and with respect to the clock.

Notice that the clock’s height h is common to both reference frames. Thus

 h2 = 11

2
 c �t�2 2

- 11

2
 �x�2 2

= 11

2
 c �t�2 2

- 11

2
 � x�2 2

 (36.17)

The factor 12 cancels, allowing us to write

 c2(�t�)2 - (�x�)2 = c2(�t�)2 - (�x�)2 (36.18)

Let us define the spacetime interval s between two events to be

 s2 = c2(�t)2 - (�x)2 (36.19)

What we’ve shown in Equation 36.18 is that the spacetime interval s has the same 
value in all inertial reference frames. That is, the spacetime interval between two 
events is an invariant. It is a value that all experimenters, in all reference frames, can 
agree upon.

FIGuRe 36.28 The light clock seen by 
experimenters in reference frames S� 
and S�.

c�t�

h
h

h is the same in
both frames.

Mirror
in S�

Light path
in S�

Emission

Mirror
in S�

1
2 c�t �1

2

� x�

 S� detection

1
2 � x �1

2

� x�

� x �

Light
path
in S�

S� detection

where we used c = 300 m/ms to determine that c �t = 600 m. 
The spacetime interval has the same value in frame S�. Thus

  s2 = 270,000 m2 = c2(�t�)2 - (�x�)2

  = c2(�t�)2 - (200 m)2

This is easily solved to give �t� = 1.85 ms.

ASSeSS The two events are closer together in both space and time 
in the rocket’s reference frame than in the reference frame of the 
ground.

exAMPLe 36.7  using the spacetime interval
A firecracker explodes at the origin of an inertial reference frame. 
Then, 2.0 ms later, a second firecracker explodes 300 m away. 
Astronauts in a passing rocket measure the distance between the 
explosions to be 200 m. According to the astronauts, how much 
time elapses between the two explosions?

ModeL The spacetime coordinates of two events are measured in 
two different inertial reference frames. Call the reference frame 
of the ground S and the reference frame of the rocket S�. The 
spacetime interval between these two events is the same in both 
reference frames.

SoLve The spacetime interval (or, rather, its square) in frame S is

 s2 = c2(�t)2 - (�x)2 = (600 m)2 - (300 m)2 = 270,000 m2

Einstein’s legacy, according to popular culture, was the discovery that “everything 
is relative.” But it’s not so. Time intervals and space intervals may be relative, as were 
the intervals �x and �y in the purely geometric analogy with which we opened this 
section, but some things are not relative. In particular, the spacetime interval s between 
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Stop to think 36.7 
 Beth and Charles are at rest 

relative to each other. Anjay runs past at velocity v 
while holding a long pole parallel to his motion. 
Anjay, Beth, and Charles each measure the length 
of the pole at the instant Anjay passes Beth. Rank 
in order, from largest to smallest, the three lengths 
LA, LB, and LC.

v

Beth

Anjay

Charles

36.8 the Lorentz transformations
The Galilean transformation x� = x - vt of classical relativity lets us calculate the 
position x� of an event in frame S� if we know its position x in frame S. Classical 
relativity, of course, assumes that t� = t. Is there a similar transformation in relativity 
that would allow us to calculate an event’s spacetime coordinates (x�, t�) in frame S� 
if we know their values (x, t) in frame S? Such a transformation would need to satisfy 
three conditions:

 1. Agree with the Galilean transformations in the low-speed limit v V c.
 2. Transform not only spatial coordinates but also time coordinates.
 3. Ensure that the speed of light is the same in all reference frames.

We’ll continue to use reference frames in the standard orientation of FIGuRe 36.29. The 
motion is parallel to the x- and x�@axes, and we define t = 0 and t� = 0 as the instant 
when the origins of S and S� coincide.

The requirement that a new transformation agree with the Galilean transformation 
when v V c suggests that we look for a transformation of the form

 x� = g(x - vt) and x = g(x� + vt�) (36.20)

where g is a dimensionless function of velocity that satisfies g S 1 as v S 0.
To determine g, we consider the following two events:

Event 1:  A flash of light is emitted from the origin of both reference frames 
(x = x� = 0) at the instant they coincide (t = t� = 0).

Event 2:  The light strikes a light detector. The spacetime coordinates of this 
event are (x, t) in frame S and (x�, t�) in frame S�.

Light travels at speed c in both reference frames, so the positions of event 2 are x = ct 
in S and x� = ct� in S�. Substituting these expressions for x and x� into Equation 36.20 
gives

  ct� = g(ct - vt) = g(c - v)t

  ct = g(ct� + vt�) = g(c + v)t� 
(36.21)

We solve the first equation for t�, by dividing by c, then substitute this result for t� 
into the second:

 ct = g(c + v) 
g(c - v)t

c
= g2(c2 - v2 ) 

t
c

FIGuRe 36.29 The spacetime coordinates 
of an event are measured in inertial 
reference frames S and S�.

An event has spacetime coordinates
(x, t) in frame S, (x�, t�) in frame S�.

Event

Origins coincide
at t � t�� 0.

x

y

x�

y�

v

S S�

two events is not relative. It is a well-defined number, agreed on by experimenters in 
each and every inertial reference frame.
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The t cancels, leading to

 g2 =
c2

c2 - v2 =
1

1 - v 2/c2

Thus the g that “works” in the proposed transformation of Equation 36.20 is

 g =
121 - v 2/c2

=
121 - b2

 (36.22)

You can see that g S 1 as v S 0, as expected.
The transformation between t and t� is found by requiring that x = x if you use 

Equation 36.20 to transform a position from S to S� and then back to S. The details will 
be left for a homework problem. Another homework problem will let you demonstrate 
that the y and z measurements made perpendicular to the relative motion are not affected 
by the motion. We tacitly assumed this condition in our analysis of the light clock.

The full set of equations are called the Lorentz transformations. They are

 

x� = g(x - vt) x = g(x� + vt�)

y� = y y = y�

z� = z z = z�

t� = g(t - vx/c2) t = g(t� + vx�/c2)

 (36.23)

The Lorentz transformations transform the spacetime coordinates of one event. Com-
pare these to the Galilean transformation equations in Equations 36.1.

Note  These transformations are named after the Dutch physicist H. A. Lorentz, 
who derived them prior to Einstein. Lorentz was close to discovering special rel-
ativity, but he didn’t recognize that our concepts of space and time have to be 
changed before these equations can be properly interpreted. 

using Relativity
Relativity is phrased in terms of events; hence relativity problems are solved by inter-
preting the problem statement in terms of specific events.

PRoBLeM-SoLvING
StRAteGy 36.1   Relativity

ModeL Frame the problem in terms of events, things that happen at a specific 
place and time.

vISuALIze A pictorial representation defines the reference frames.

 ■ Sketch the reference frames, showing their motion relative to each other.
 ■ Show events. Identify objects that are moving with respect to the reference 

frames.
 ■ Identify any proper time intervals and proper lengths. These are measured in 

an object’s rest frame.

SoLve The mathematical representation is based on the Lorentz transformations, 
but not every problem requires the full transformation equations.

■ Problems about time intervals can often be solved using time dilation: 
�t = g�t.

■ Problems about distances can often be solved using length contraction: 
L = //g.

ASSeSS Are the results consistent with Galilean relativity when v V c?
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SoLve a. The two burn marks tell Ryan that the distance between 
the explosions was L = 600 m. Light travels at c = 300 m/ms, 
and the burn marks are 300 m on either side of him, so Ryan 
can determine that each explosion took place 1.0 ms before 
he saw the flash. But this was the instant of time that Peggy 
passed him, so Ryan concludes that the explosions were si-
multaneous with each other and with Peggy’s passing him. 
The spacetime coordinates of the two events in frame S are 
(xR, tR) = (300 m, 0 ms) and (xL, tL ) = (-300 m, 0 ms).

 b. We already know, from our qualitative analysis in Section 36.5, 
that the explosions are not simultaneous in Peggy’s reference 
frame. Event R happens before event L in S�, but we don’t 
know how they compare to the time at which Ryan passes 
Peggy. We can now use the Lorentz transformations to relate 
the spacetime coordinates of these events as measured by Ryan 
to the spacetime coordinates as measured by Peggy. Using 
v = 0.8c, we find that g is

g =
121 - v 2/c2

=
121 - 0.82

= 1.667

For event L, the Lorentz transformations are

 x =
L = 1.667((-300 m) - (0.8c)(0 ms)) = -500 m

 t =L = 1.667((0 ms) - (0.8c)(-300 m)/c2) = 1.33 ms

And for event R,

 x =
R = 1.667((300 m) - (0.8c)(0 ms)) = 500 m

 t =R = 1.667((0 ms) - (0.8c)(300 m)/c2) = -1.33 ms

According to Peggy, the two explosions occur 1000 m apart. 
Furthermore, the first explosion, on the right, occurs 1.33 ms 
before Ryan passes her at t� = 0 s. The second, on the left, 
occurs 1.33 ms after Ryan goes by.

ASSeSS Events that are simultaneous in frame S are not simul-
taneous in frame S�. The results of the Lorentz transformations 
agree with our earlier qualitative analysis.

exAMPLe 36.8  Ryan and Peggy revisited
Peggy is standing in the center of a long, flat railroad car that has 
firecrackers tied to both ends. The car moves past Ryan, who is 
standing on the ground, with velocity v = 0.8c. Flashes from the 
exploding firecrackers reach him simultaneously  1.0 ms after the 
instant that Peggy passes him, and he later finds burn marks on 
the track 300 m to either side of where he had been standing.

 a. According to Ryan, what is the distance between the two 
explosions, and at what times do the explosions occur relative 
to the time that Peggy passes him?

 b. According to Peggy, what is the distance between the two 
explosions, and at what times do the explosions occur relative 
to the time that Ryan passes her?

ModeL Let the explosion on Ryan’s right, the direction in which 
Peggy is moving, be event R. The explosion on his left is event L.

vISuALIze Peggy and Ryan are in inertial reference frames. As 
FIGuRe 36.30 shows, Peggy’s frame S� is moving with v = 0.8c 
relative to Ryan’s frame S. We’ve defined the reference frames 
such that Peggy and Ryan are at the origins. The instant they 
pass, by definition, is t = t� = 0 s. The two events are shown in 
Ryan’s reference frame.

FIGuRe 36.30 A pictorial representation of the 
reference frames and events.

x
�300 m 0

(xL, tL) � (�300 m, 0 s)
300 m

(xR, tR) � (300 m, 0 s)

Peggy passes
Ryan at t � t� � 0.  

Peggy

Ryan

Frame S�

Frame S

Event L Event R

v

A follow-up discussion of Example 36.8 is worthwhile. Because Ryan moves at 
speed v = 0.8c = 240 m/ms relative to Peggy, he moves 320 m during the 1.33 ms 
between the first explosion and the instant he passes Peggy, then another 320 m before 
the second explosion. Gathering this information together, FIGuRe 36.31 shows the 
sequence of events in Peggy’s reference frame.

The firecrackers define the ends of the railroad car, so the 1000 m distance between 
the explosions in Peggy’s frame is the car’s length L� in frame S�. The car is at rest 
in frame S�, hence length L� is the proper length: / = 1000 m. Ryan is measuring the 
length of a moving object, so he should see the car length contracted to

 L = 21 - b2 / =
/

g
=

1000 m

1.667
= 600 m

And, indeed, that is exactly the distance Ryan measured between the burn marks.
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Finally, we can calculate the spacetime interval s between the two events. Accord-
ing to Ryan,

 s2 = c2(�t2) - (� x)2 = c2(0 ms)2 - (600 m)2 = -(600  m)2

Peggy computes the spacetime interval to be

 s2 = c2 (�t�)2 - (� x�)2 = c2 (2.67 ms)2 - (1000 m)2 = -(600 m)2

Their calculations of the spacetime interval agree, showing that s really is an invariant, 
but notice that s itself is an imaginary number.

Length
We’ve already introduced the idea of length contraction, but we didn’t precisely define 
just what we mean by the length of a moving object. The length of an object at rest is 
clear because we can take all the time we need to measure it with meter sticks, survey-
ing tools, or whatever we need. But how can we give clear meaning to the length of a 
moving object?

A reasonable definition of an object’s length is the distance L = � x = xR - xL 
between the right and left ends when the positions xR and xL are measured at the 
same time t. In other words, length is the distance spanned by the object at one instant 
of time. Measuring an object’s length requires simultaneous measurements of two 
positions (i.e., two events are required); hence the result won’t be known until the 
information from two spatially separated measurements can be brought together.

FIGuRe 36.32 shows an object traveling through reference frame S with velocity v. 
The object is at rest in reference frame S� that travels with the object at velocity v; 
hence the length in frame S� is the proper length /. That is, �x� =x =

R - x =
L = / in 

frame S�.
At time t, an experimenter (and his or her assistants) in frame S makes simultaneous 

measurements of the positions xR and xL of the ends of the object. The difference 
�x = xR - xL = L is the length in frame S. The Lorentz transformations of xR and xL are

  x =
R = g(xR - vt)

  x =
L = g(xL - vt) 

(36.24)

where, it is important to note, t is the same for both because the measurements are 
simultaneous.

Subtracting the second equation from the first, we find

 x =
R - x =

L = / = g(xR - xL) = gL =
L21 - b2

Solving for L, we find, in agreement with Equation 36.15, that

 L = 21 - b2 / (36.25)

This analysis has accomplished two things. First, by giving a precise definition of 
length, we’ve put our length-contraction result on a firmer footing. Second, we’ve had 
good practice at relativistic reasoning using the Lorentz transformation.

Note  Length contraction does not tell us how an object would look. The visual 
appearance of an object is determined by light waves that arrive simultaneously at 
the eye. These waves left points on the object at different times (i.e., not simultane-
ously) because they had to travel different distances to the eye. The analysis needed 
to determine an object’s visual appearance is considerably more complex. Length 
and length contraction are concerned only with the actual length of the object at 
one instant of time. 

FIGuRe 36.31 The sequence of events as 
seen in Peggy’s reference frame.
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FIGuRe 36.32 The length of an object 
is the distance between simultaneous 
measurements of the positions of the 
end points.

The object is at rest in frame S�.
Its length is L� � �, which can
be measured at any time.

Because the object is moving in frame S,
simultaneous measurements of its ends
must be made to find its length L in frame S.

L
xR

x

y
v

xL

S

L� � �
x�

y�

S�



1086    c h a p t e r  36 . Relativity

the Binomial Approximation
You’ve met the binomial approximation earlier in this text and in your calculus class. 
The binomial approximation is useful when we need to calculate a relativistic expres-
sion for a nonrelativistic velocity v V c. Because v 2/c2

V 1 in these cases, we can 
write

If v V c: d 21 - b2 = (1 - v 2/c2)1/2 � 1 -
1

2
 
v 2

c2

g =
121 - b2

= (1 - v 2 /c2 )-1/2 � 1 +
1

2
 
v 2

c2

 (36.26)

The following example illustrates the use of the binomial approximation.

The binomial approximation

If x V 1, then (1 + x)n � 1 + nx.

The amount of the length contraction is

  / - L =
1

2
 
v 2

c2 / =
1

2
 1 30 m/s

3.0 * 108 m/s 2 2

 (8.0 m)

  = 4.0 * 10-14 m = 40 fm

where 1 fm = 1 femtometer = 10-15 m.

ASSeSS The bus “shrinks” by only slightly more than the diameter 
of the nucleus of an atom. It’s no wonder that we’re not aware of 
length contraction in our everyday lives. If you had tried to calcu-
late this number exactly, your calculator would have shown 
/ - L = 0 because the difference between / and L shows up only 
in the 14th decimal place. A scientific calculator determines num-
bers to 10 or 12 decimal places, but that isn’t sufficient to show 
the difference. The binomial approximation provides an invalu-
able tool for finding the very tiny difference between two numbers 
that are nearly identical.

exAMPLe 36.9  the shrinking school bus
An 8.0-m-long school bus drives past at 30 m/s. By how much is 
its length contracted?

ModeL The school bus is at rest in an inertial reference frame S� 
moving at velocity v = 30 m/s relative to the ground frame S. The 
given length, 8.0 m, is the proper length / in frame S�.

SoLve In frame S, the school bus is length contracted to

 L = 21 - b2 /

The bus’s velocity v is much less than c, so we can use the bino-
mial approximation to write

 L � 11 -
1

2
 
v 2

c2 2/ = / -
1

2
 
v 2

c2 /

the Lorentz velocity transformations
FIGuRe 36.33 shows an object that is moving in both reference frame S and reference 
frame S�. Experimenters in frame S determine that the object’s velocity is u, while 
experimenters in frame S� find it to be u�. For simplicity, we’ll assume that the object 
moves parallel to the x- and x�@axes.

The Galilean velocity transformation u� = u - v was found by taking the time 
derivative of the position transformation. We can do the same with the Lorentz trans-
formation if we take the derivative with respect to the time in each frame. Velocity u� 
in frame S� is

 u� =
dx�

dt�
=

d(g(x - vt))

d(g(t - vx/c2))
 (36.27)

where we’ve used the Lorentz transformations for position x� and time t�.
Carrying out the differentiation gives

 u� =
g(dx - vdt)

g(dt - vdx/c2 )
=

dx/dt - v

1 - v(dx/dt)/c2 (36.28)

But dx/dt is u, the object’s velocity in frame S, leading to

 u� =
u - v

1 - uv/c2 (36.29)

You can see that Equation 36.29 reduces to the Galilean transformation u� = u - v 
when v V c, as expected.

FIGuRe 36.33 The velocity of a moving 
object is measured to be u in frame S 
and u� in frame S�.

Velocity of frame S�
relative to frame S

u in frame S

x

v

�v

S

x�

y�y

S�

Velocity of frame S
relative to frame S�

u� in frame S�

xS

x�

y�y

S�
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The transformation from S� to S is found by reversing the sign of v. Altogether,

 u� =
u - v

1 - uv/c2 and u =
u� + v

1 + u�v/c2 (36.30)

Equations 36.30 are the Lorentz velocity transformation equations.

Note  It is important to distinguish carefully between v, which is the relative 
velocity between two reference frames, and u and u�, which are the velocities of an 
object as measured in the two different reference frames. 

The bullet’s speed with respect to the earth is 99.7% of the speed 
of light.

Note  Many relativistic calculations are much easier when 
velocities are specified as a fraction of c. 

ASSeSS In Newtonian mechanics, the Galilean transformation of 
velocity would give u = 1.85c. Now, despite the very high speed 
of the rocket and of the bullet with respect to the rocket, the bul-
let’s speed with respect to the earth remains less than c. This is 
yet more evidence that objects cannot travel faster than the speed 
of light.

exAMPLe 36.10  A really fast bullet
A rocket flies past the earth at 0.90c. As it goes by, the rocket fires 
a bullet in the forward direction at 0.95c with respect to the rocket. 
What is the bullet’s speed with respect to the earth?

ModeL The rocket and the earth are inertial reference frames. Let 
the earth be frame S and the rocket be frame S�. The velocity of 
frame S� relative to frame S is v = 0.90c. The bullet’s velocity in 
frame S� is u� = 0.95c.

SoLve We can use the Lorentz velocity transformation to find

 u =
u� + v

1 + u�v/c2 =
0.95c + 0.90c

1 + (0.95c)(0.90c)/c 2 = 0.997c

Suppose the rocket in Example 36.10 fired a laser beam in the forward direction as it 
traveled past the earth at velocity v. The laser beam would travel away from the rocket 
at speed u� = c in the rocket’s reference frame S�. What is the laser beam’s speed in the 
earth’s frame S? According to the Lorentz velocity transformation, it must be

 u =
u� + v

1 + u�v/c2 =
c + v

1 + cv/c2 =
c + v

1 + v/c
=

c + v

(c + v)/c
= c (36.31)

Light travels at speed c in both frame S and frame S�. This important consequence of 
the principle of relativity is “built into” the Lorentz transformations.

36.9 Relativistic Momentum
In Newtonian mechanics, the total momentum of a system is a conserved quantity. 
Further, as we’ve seen, the law of conservation of momentum, Pf = Pi, is true in 
all inertial reference frames if the particle velocities in different reference frames are 
related by the Galilean velocity transformations.

The difficulty, of course, is that the Galilean transformations are not consis-
tent with the principle of relativity. It is a reasonable approximation when all 
velocities are very much less than c, but the Galilean transformations fail dramati-
cally as velocities approach c. It’s not hard to show that P =

f � P =
i  if the particle 

velocities in frame S� are related to the particle velocities in frame S by the Lorentz 
transformations.

There are two possibilities:

 1. The so-called law of conservation of momentum is not really a law of physics. It 
is approximately true at low velocities but fails as velocities approach the speed 
of light.

 2. The law of conservation of momentum really is a law of physics, but the expres-
sion p = mu is not the correct way to calculate momentum when the particle 
velocity u becomes a significant fraction of c.
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Momentum conservation is such a central and important feature of mechanics that it 
seems unlikely to fail in relativity.

The classical momentum, for one-dimensional motion, is p = mu = m(�x/�t). �t 
is the time to move distance � x. That seemed clear enough within a Newtonian frame-
work, but now we’ve learned that experimenters in different reference frames disagree 
about the amount of time needed. So whose �t should we use?

One possibility is to use the time measured by the particle. This is the proper time 
�t because the particle is at rest in its own reference frame and needs only one clock. 
With this in mind, let’s redefine the momentum of a particle of mass m moving with 
velocity u = �x/�t to be

 p = m 
� x

�t
 (36.32)

We can relate this new expression for p to the familiar Newtonian expression by using 
the time-dilation result �t = (1 - u2/c2)1/2�t to relate the proper time interval mea-
sured by the particle to the more practical time interval �t measured by experimenters 
in frame S. With this substitution, Equation 36.32 becomes

 p = m 
�x

�t
= m 

�x21 - u2/c2 �t
=

mu21 - u2/c2
 (36.33)

You can see that Equation 36.33 reduces to the classical expression p = mu when 
the particle’s speed u V c. That is an important requirement, but whether this is the 
“correct” expression for p depends on whether the total momentum P is conserved when 
the velocities of a system of particles are transformed with the Lorentz velocity transfor-
mation equations. The proof is rather long and tedious, so we will assert, without actual 
proof, that the momentum defined in Equation 36.33 does, indeed, transform correctly. 
The law of conservation of momentum is still valid in all inertial reference frames if 
the momentum of each particle is calculated with Equation 36.33.

The factor that multiplies mu in Equation 36.33 looks much like the factor g in the 
Lorentz transformation equations for x and t, but there’s one very important difference. 
The v in the Lorentz transformation equations is the velocity of a reference frame. The 
u in Equation 36.33 is the velocity of a particle moving in a reference frame.

With this distinction in mind, let’s define the quantity

 gp =
121 - u2/c2

 (36.34)

where the subscript p indicates that this is g for a particle, not for a reference frame. 
In frame S�, where the particle moves with velocity u�, the corresponding expression 
would be called g=

p . With this definition of gp, the momentum of a particle is

 p = gpmu (36.35)

SoLve gp for the muon in the laboratory reference frame is

 gp =
121 - u2/c2

=
121 - 0.952

= 3.20

Thus the muon’s momentum in the laboratory is

  p = gpmu = (3.20)(1.90 * 10-28 kg)(0.95 * 3.00 * 108 m/s)

  = 1.73 * 10-19 kg m/s

The momentum is a factor of 3.2 larger than the Newtonian 
momentum mu. To find the momentum in the electron-beam 

exAMPLe 36.11  Momentum of a subatomic particle
Electrons in a particle accelerator reach a speed of 0.999c relative 
to the laboratory. One collision of an electron with a target pro-
duces a muon that moves forward with a speed of 0.95c relative 
to the laboratory. The muon mass is 1.90 * 10-28 kg. What is the 
muon’s momentum in the laboratory frame and in the frame of the 
electron beam?

ModeL Let the laboratory be reference frame S. The reference 
frame S� of the electron beam (i.e., a reference frame in which 
the electrons are at rest) moves in the direction of the electrons at 
v = 0.999c. The muon velocity in frame S is u = 0.95c.
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the Cosmic Speed Limit
FIGuRe 36.34a is a graph of momentum versus velocity. For a Newtonian particle, 
with p = mu, the momentum is directly proportional to the velocity. The relativistic 
expression for momentum agrees with the Newtonian value if u V c, but p approaches 
� as u S c.

The implications of this graph become clear when we relate momentum to force. 
Consider a particle subjected to a constant force, such as a rocket that never runs out 
of fuel. If F is constant, we can see from F = dp/dt that the momentum is p = Ft. If 
Newtonian physics were correct, a particle would go faster and faster as its velocity 
u = p/m = (F/m)t increased without limit. But the relativistic result, shown in 
FIGuRe 36.34b, is that the particle’s velocity asymptotically approaches the speed of light 
(u S c) as p approaches �. Relativity gives a very different outcome than Newtonian 
mechanics.

The speed c is a “cosmic speed limit” for material particles. A force cannot ac-
celerate a particle to a speed higher than c because the particle’s momentum becomes 
infinitely large as the speed approaches c. The amount of effort required for each 
additional increment of velocity becomes larger and larger until no amount of effort 
can raise the velocity any higher.

Actually, at a more fundamental level, c is a speed limit for any kind of causal 
influence. If I throw a rock and break a window, my throw is the cause of the breaking 
window and the rock is the causal influence. If I shoot a laser beam at a light detector 
that is wired to a firecracker, the light wave is the causal influence that leads to the 
explosion. A causal influence can be any kind of particle, wave, or information that 
travels from A to B and allows A to be the cause of B.

For two unrelated events—a firecracker explodes in Tokyo and a balloon bursts in 
Paris—the relativity of simultaneity tells us that they may be simultaneous in one ref-
erence frame but not in others. Or in one reference frame the firecracker may explode 
before the balloon bursts but in some other reference frame the balloon may burst first. 
These possibilities violate our commonsense view of time, but they’re not in conflict 
with the principle of relativity.

For two causally related events—A causes B—it would be nonsense for an experi-
menter in any reference frame to find that B occurs before A. No experimenter in any 
reference frame, no matter how it is moving, will find that you are born before your 
mother is born. If A causes B, then it must be the case that tA 6 tB in all reference 
frames.

Suppose there exists some kind of causal influence that can travel at speed u 7 c. 
FIGuRe 36.35 shows a reference frame S in which event A occurs at position xA = 0. 
The faster-than-light causal influence—perhaps some yet-to-be-discovered “z ray”—
leaves A at tA = 0 and travels to the point at which it will cause event B. It arrives at 
xB at time tB = xB/u.

How do events A and B appear in a reference frame S� that travels at an ordinary 
speed v 6 c relative to frame S? We can use the Lorentz transformations to find out. 

The muon’s momentum in the electron-beam reference frame is

  p� = g=
p mu�

  = (3.66)(1.90 * 10-28 kg)(-0.962 * 3.00 * 108 m/s)

  = -2.01 * 10-19 kg m/s

ASSeSS From the laboratory perspective, the muon moves only 
slightly slower than the electron beam. But it turns out that the 
muon moves faster with respect to the electrons, although in the 
opposite direction, than it does with respect to the laboratory.

reference frame, we must first use the velocity transformation 
equation to find the muon’s velocity in frame S�:

 u� =
u - v

1 - uv/c2 =
0.95c - 0.999c

1 - (0.95c)(0.999c)/c2 = -0.962c

In the laboratory frame, the faster electrons are overtaking the 
slower muon. Hence the muon’s velocity in the electron-beam 
frame is negative. g=

p for the muon in frame S� is

 g=
p =

121 - u =2/c2
=

121 - 0.9622
= 3.66

FIGuRe 36.34 The speed of a particle 
cannot reach the speed of light.

The Newtonian momentum
expression is valid when u V c.

The relativistic momentum
approaches � as u S c.

0.5c

Newtonian
momentum

0 c
u

p
(a)

The speed of a
particle cannot
exceed c.

c

0

(b)

t

u
Newtonian
velocity

FIGuRe 36.35 Assume that a causal 
influence can travel from A to B at a 
speed u 7 c.

S x

v � c

S� x�

tA � 0 Causal influence arrives
at tB � xB/u.

A B

xB

A causal influence is assumed
to travel from A to B at u � c.y y�
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Because xA = 0 and tA = 0, it’s easy to see that x =
A = 0 and t =A = 0. That is, the ori-

gins of S and S� overlap at the instant the causal influence leaves event A. More in-
teresting is the time at which this influence reaches B in frame S�. The Lorentz time 
transformation for event B is

 t =B = g1tB -
vxB

c2 2 = gtB11 -
v(xB/tB)

c2 2 = gtB11 -
vu

c2 2  (36.36)

where we first factored out tB, then made use of the fact that u = xB/tB in frame S.
We’re assuming u 7 c, so let u = ac where a 7 1 is a constant. Then vu/c2 = av/c. 

Now follow the logic:

 1. If v 7 c/a, which is possible because a 7 1, then vu/c2 7 1.
 2. If vu/c2 7 1, then the term (1 - vu/c2) is negative and t =B 6 0.
 3. If t =B 6 0, then event B happens before event A in reference frame S�.

In other words, if a causal influence can travel faster than c, then there exist reference 
frames in which the effect happens before the cause. We know this can’t happen, so 
our assumption u 7 c must be wrong. No causal influence of any kind—particle, 
wave, or yet-to-be-discovered z rays—can travel faster than c.

The existence of a cosmic speed limit is one of the most interesting consequences 
of the theory of relativity. “Warp drive,” in which a spaceship suddenly leaps to 
faster-than-light velocities, is simply incompatible with the theory of relativity. Rapid 
travel to the stars will remain in the realm of science fiction unless future scientific 
discoveries find flaws in Einstein’s theory and open the doors to yet-undreamed-
of theories. While we can’t say with certainty that a scientific theory will never be 
overturned, there is currently not even a hint of evidence that disagrees with the special 
theory of relativity.

36.10 Relativistic energy
Energy is our final topic in this chapter on relativity. Space, time, velocity, and momentum 
are changed by relativity, so it seems inevitable that we’ll need a new view of energy.

In Newtonian mechanics, a particle’s kinetic energy K =
1
2 mu2 can be written in 

terms of its momentum p = mu as K = p2/2m. This suggests that a relativistic expres-
sion for energy will likely involve both the square of p and the particle’s mass. We 
also hope that energy will be conserved in relativity, so a reasonable starting point is 
with the one quantity we’ve found that is the same in all inertial reference frames: the 
spacetime interval s.

Let a particle of mass m move through distance �x during a time interval �t, as 
measured in reference frame S. The spacetime interval is

 s2 = c2(�t)2 - (�x)2 = invariant

We can turn this into an expression involving momentum if we multiply by (m/�t)2, 
where �t is the proper time (i.e., the time measured by the particle). Doing so gives

 (mc)2 1 �t

�t 2 2

- 1m�x

�t 2 2

= (mc)21 �t

�t 2 2

- p2 = invariant (36.37)

where we used p = m(�x/�t) from Equation 36.32.
Now �t, the time interval in frame S, is related to the proper time by the time-

dilation result �t = gp �t. With this change, Equation 36.37 becomes

 (gpmc)2 - p2 = invariant

Finally, for reasons that will be clear in a minute, we multiply by c2, to get

 (gpmc2)2 - ( pc)2 = invariant (36.38)
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To say that the right side is an invariant means it has the same value in all inertial 
reference frames. We can easily determine the constant by evaluating it in the refer-
ence frame in which the particle is at rest. In that frame, where p = 0 and gp = 1, we 
find that

 (gpmc2)2 - ( pc)2 = (mc2)2 (36.39)

Let’s reflect on what this means before taking the next step. The space-
time interval s has the same value in all inertial reference frames. In other words, 
c2 (�t)2 - (�x)2 = c2(�t�)2 - (�x�)2. Equation 36.39 was derived from the definition 
of the spacetime interval; hence the quantity mc2 is also an invariant having the same 
value in all inertial reference frames. In other words, if experimenters in frames S and 
S� both make measurements on this particle of mass m, they will find that

 (gpmc2)2 - ( pc)2 = (g=
pmc2 )2 - ( p�c)2 (36.40)

Experimenters in different reference frames measure different values for the 
momentum, but experimenters in all reference frames agree that momentum is a con-
served quantity. Equations 36.39 and 36.40 suggest that the quantity gpmc2 is also an 
important property of the particle, a property that changes along with p in just the right 
way to satisfy Equation 36.39. But what is this property?

The first clue comes from checking the units. gp is dimensionless and c is a veloc-
ity, so gpmc2 has the same units as the classical expression 1

2 mv 2— namely, units of 
energy. For a second clue, let’s examine how gpmc2 behaves in the low-velocity limit 
u V c. We can use the binomial approximation expression for gp to find

 gpmc2 =
mc221 - u2/c2

� 11 +
1

2
 
u2

c2 2mc2 = mc2 +
1

2
 mu2 (36.41)

The second term, 1
2 mu2, is the low-velocity expression for the kinetic energy K. This 

is an energy associated with motion. But the first term suggests that the concept of en-
ergy is more complex than we originally thought. It appears that there is an inherent 
energy associated with mass itself.

With that as a possibility, subject to experimental verification, let’s define the total 
energy E of a particle to be

 E = gpmc2 = E0 + K = rest energy + kinetic energy (36.42)

This total energy consists of a rest energy

 E0 = mc2 (36.43)

and a relativistic expression for the kinetic energy

 K = (gp - 1)mc2 = (gp - 1)E0 (36.44)

This expression for the kinetic energy is very nearly 1
2 mu2 when u V c but, as 

FIGuRe 36.36 shows, differs significantly from the classical value for very high velocities.
Equation 36.43 is, of course, Einstein’s famous E = mc2, perhaps the most famous 

equation in all of physics. Before discussing its significance, we need to tie up some 
loose ends. First, notice that the right-hand side of Equation 36.39 is the square of the 
rest energy E0. Thus we can write a final version of that equation:

 E2 - (pc)2 = E0 

2 (36.45)

The quantity E0 is an invariant with the same value mc2 in all inertial reference frames.
Second, notice that we can write

 pc = (gpmu)c =
u
c

 (gpmc2)

FIGuRe 36.36 The relativistic kinetic 
energy.
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K
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The relativistic kinetic energy
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But gpmc2 is the total energy E and u/c = bp, where the subscript p, as on gp, indi-
cates that we’re referring to the motion of a particle within a reference frame, not the 
motion of two reference frames relative to each other. Thus

 pc = bpE (36.46)

FIGuRe 36.37 shows the “velocity-energy-momentum triangle,” a convenient way to 
remember the relationships among the three quantities.

FIGuRe 36.37 The velocity-energy-momentum triangle.

pc � bpE

E2 � (pc)2 � E0
2

p � gpmuE � gpmc2

Energy, E Momentum, p

Velocity, u

 b. For the electron, we start by calculating

gp =
1

(1 - u2/c2)1/2 = 22.4

Then, using me = 9.11 * 10-31 kg, we find

 E0 = mc2 = 8.2 * 10-14 J

 K = (gp - 1)E0 = 170 * 10-14 J

ASSeSS The ball’s kinetic energy is a typical kinetic energy. Its 
rest energy, by contrast, is a staggeringly large number. For a 
relativistic electron, on the other hand, the kinetic energy is more 
important than the rest energy.

exAMPLe 36.12  Kinetic energy and total energy
Calculate the rest energy and the kinetic energy of (a) a 100 g ball 
moving with a speed of 100 m/s and (b) an electron with a speed 
of 0.999c.

ModeL The ball, with u V c, is a classical particle. We don’t 
need to use the relativistic expression for its kinetic energy. The 
electron is highly relativistic.

SoLve a. For the ball, with m = 0.10 kg,

 E0 = mc2 = 9.0 * 1015 J

 K =
1

2
 mu2 = 500 J

Stop to think 36.8
 An electron moves through the lab at 99% the speed of light. The 

lab reference frame is S and the electron’s reference frame is S�. In which reference 
frame is the electron’s rest mass larger?

 a. In frame S, the lab frame
 b. In frame S�, the electron’s frame
 c. It is the same in both frames.

Mass-energy equivalence
Now we’re ready to explore the significance of Einstein’s famous equation E = mc2. 
FIGuRe 36.38 shows two balls of clay approaching each other. They have equal masses 
and equal kinetic energies, and they slam together in a perfectly inelastic collision to 
form one large ball of clay at rest. In Newtonian mechanics, we would say that the 
initial energy 2K is dissipated by being transformed into an equal amount of thermal 
energy, raising the temperature of the coalesced ball of clay. But Equation 36.42, 
E = E0 + K, doesn’t say anything about thermal energy. The total energy before the 

FIGuRe 36.38 An inelastic collision 
between two balls of clay does not 
seem to conserve the total energy E.

m m

KK
Ei � 2mc2 � 2K

Ef � 2mc2 ?
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collision is Ei = 2mc2 + 2K, with the factor of 2 appearing because there are two 
masses. It seems like the total energy after the collision, when the clay is at rest, should 
be 2mc2, but this value doesn’t conserve total energy.

There’s ample experimental evidence that energy is conserved, so there must be a 
flaw in our reasoning. The statement of energy conservation is

 Ef = Mc2 = Ei = 2mc2 + 2K  (36.47)

where M is the mass of clay after the collision. But, remarkably, this requires

 M = 2m +
2K

c2  (36.48)

In other words, mass is not conserved. The mass of clay after the collision is 
larger than the mass of clay before the collision. Total energy can be conserved only if 
kinetic energy is transformed into an “equivalent” amount of mass.

The mass increase in a collision between two balls of clay is incredibly small, 
far beyond any scientist’s ability to detect. So how do we know if such a crazy idea 
is true?

FIGuRe 36.39 shows an experiment that has been done countless times in the last 
50 years at particle accelerators around the world. An electron that has been acceler-
ated to u � c is aimed at a target material. When a high-energy electron collides with 
an atom in the target, it can easily knock one of the electrons out of the atom. Thus 
we would expect to see two electrons leaving the target: the incident electron and the 
ejected electron. Instead, four particles emerge from the target: three electrons and 
a positron. A positron, or positive electron, is the antimatter version of an electron, 
identical to an electron in all respects other than having charge q = +e.

In chemical-reaction notation, the collision is

 e- (fast) + e- (at rest) S e- + e- + e- + e+

An electron and a positron have been created, apparently out of nothing. Mass 2me 
before the collision has become mass 4me after the collision. (Notice that charge has 
been conserved in this collision.)

Although the mass has increased, it wasn’t created “out of nothing.” This is an 
inelastic collision, just like the collision of the balls of clay, because the kinetic energy 
after the collision is less than before. In fact, if you measured the energies before and 
after the collision, you would find that the decrease in kinetic energy is exactly equal 
to the energy equivalent of the two particles that have been created: �K = 2mec

2. The 
new particles have been created out of energy!

Particles can be created from energy, and particles can return to energy. FIGuRe 36.40 
shows an electron colliding with a positron, its antimatter partner. When a particle and 
its antiparticle meet, they annihilate each other. The mass disappears, and the energy 
equivalent of the mass is transformed into light. In Chapter 38, you’ll learn that light 
is quantized, meaning that light is emitted and absorbed in discrete chunks of energy 
called photons. For light with wavelength l, the energy of a photon is Ephoton = hc/l, 
where h = 6.63 * 10-34 J s is called Planck’s constant. Photons carry momentum as 
well as energy. Conserving both energy and momentum in the annihilation of an elec-
tron and a positron requires the emission in opposite directions of two photons of equal 
energy.

If the electron and positron are fairly slow, so that K V mc2, then Ei � E0 = mc2. 
In that case, energy conservation requires

 Ef = 2Ephoton = Ei � 2mec
2 (36.49)

Hence the wavelength of the emitted photons is

 l =
hc

mec
2 � 0.0024 nm (36.50)

The tracks of elementary particles in a 
bubble chamber show the creation of an 
electron-positron pair. The negative 
electron and positive positron spiral in 
opposite directions in the magnetic field.

FIGuRe 36.39 An inelastic collision 
between electrons can create an 
electron-positron pair.
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FIGuRe 36.40 The annihilation of an 
electron-positron pair.

Photon Photon

An electron and
a positron meet.

They annihilate.

The energy equivalent
of the mass is trans-
formed into two
gamma-ray photons.

e� e�
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This is an extremely short wavelength, even shorter than the wavelengths of x rays. 
Photons in this wavelength range are called gamma rays. And, indeed, the emission of 
0.0024 nm gamma rays is observed in many laboratory experiments in which positrons 
are able to collide with electrons and thus annihilate. In recent years, with the advent 
of gamma-ray telescopes on satellites, astronomers have found 0.0024 nm photons 
coming from many places in the universe, especially galactic centers—evidence that 
positrons are abundant throughout the universe.

Positron-electron annihilation is also the basis of the medical procedure known as a 
positron-emission tomography, or PET scans. A patient ingests a very small amount of 
a radioactive substance that decays by the emission of positrons. This substance is taken 
up by certain tissues in the body, especially those tissues with a high metabolic rate. As 
the substance decays, the positrons immediately collide with electrons, annihilate, and 
create two gamma-ray photons that are emitted back to back. The gamma rays, which 
easily leave the body, are detected, and their trajectories are traced backward into the 
body. The overlap of many such trajectories shows quite clearly the tissue in which 
the positron emission is occurring. The results are usually shown as false-color photo-
graphs, with redder areas indicating regions of higher positron emission.

Conservation of energy
The creation and annihilation of particles with mass, processes strictly forbidden in 
Newtonian mechanics, are vivid proof that neither mass nor the Newtonian definition 
of energy is conserved. Even so, the total energy—the kinetic energy and the energy 
equivalent of mass—remains a conserved quantity.

Law of conservation of total energy The energy E = gEi of an isolated system 
is conserved, where Ei = (gp)imic

2 is the total energy of particle i.

Mass and energy are not the same thing, but, as the last few examples have shown, 
they are equivalent in the sense that mass can be transformed into energy and energy 
can be transformed into mass as long as the total energy is conserved.

Probably the most well-known application of the conservation of total energy is 
nuclear fission. The uranium isotope 236U, containing 236 protons and neutrons, does 
not exist in nature. It can be created when a 235U nucleus absorbs a neutron, increasing 
its atomic mass from 235 to 236. The 236U nucleus quickly fragments into two smaller 
nuclei and several extra neutrons, a process known as nuclear fission. The nucleus can 
fragment in several ways, but one is

 n +  235U S  236U S  144Ba +  89Kr + 3n

Ba and Kr are the atomic symbols for barium and krypton.
This reaction seems like an ordinary chemical reaction—until you check the 

masses. The masses of atomic isotopes are known with great precision from many 
decades of measurement in instruments called mass spectrometers. If you add up the 
masses on both sides, you find that the mass of the products is 0.185 u smaller than 
the mass of the initial neutron and 235U, where, you will recall, 1 u = 1.66*10-27 kg 
is the atomic mass unit. In kilograms the mass loss is 3.07 * 10-28 kg.

Mass has been lost, but the energy equivalent of the mass has not. As FIGuRe 36.41 
shows, the mass has been converted to kinetic energy, causing the two product nuclei 
and three neutrons to be ejected at very high speeds. The kinetic energy is easily 
calculated: �K = mlostc

2 = 2.8 * 10-11 J.
This is a very tiny amount of energy, but it is the energy released from one fission. 

The number of nuclei in a macroscopic sample of uranium is on the order of NA, Avo-
gadro’s number. Hence the energy available if all the nuclei fission is enormous. This 
energy, of course, is the basis for both nuclear power reactors and nuclear weapons.

Positron-electron annihilation (a PeT scan) 
provides a noninvasive look into the brain.

FIGuRe 36.41 in nuclear fission, the 
energy equivalent of lost mass is 
converted into kinetic energy.

The mass of the reactants is 0.185 u
more than the mass of the products.

0.185 u of mass has been
converted into kinetic energy.

235U

236U

89Kr

n

144Ba
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We started this chapter with an expectation that relativity would challenge our ba-
sic notions of space and time. We end by finding that relativity changes our under-
standing of mass and energy. Most remarkable of all is that each and every one of 
these new ideas flows from one simple statement: The laws of physics are the same in 
all inertial reference frames.

are (x2, t2) = (1000 m, 0 ms). The nose of the Goths’ rocket is at 
x = 600 m at t = 0 ms; thus the laser cannon misses the Goths by 
400 m.

Now we can use the Lorentz transformations to find the space-
time coordinates of the events in the Goths’ reference frame. The 
nose of the Huns’ rocket passes the tail of the Goths’ rocket at 
(x =

1, t
=
1) = (0 m, 0 ms). The Huns fire their laser cannon at

x =
2 = g(x2 - vt2) =

5

3
 (1000 m - 0 m) = 1667 m

t =2 = g1t2 -
vx2

c2 2 =
5

3
 10 ms - (0.8) 

1000 m

300 m/ms 2 = - 4.444 ms

where we calculated g = 5/3 for v = 0.8c. Events 1 and 2 are not 
simultaneous in S�. The Huns fire the laser cannon 4.444 ms be-
fore the nose of their rocket reaches the tail of the Goths’ rocket. 
The laser is fired at x =

2 = 1667 m, missing the nose of the Goths’ 
rocket by 667 m. FIGuRe 36.43 shows how the Goths see things.

CHALLeNGe exAMPLe  36.13  Goths and Huns
The rockets of the Goths and the Huns are each 1000 m long in 
their rest frame. The rockets pass each other, virtually touching, at 
a relative speed of 0.8c. The Huns have a laser cannon at the rear 
of their rocket that fires a deadly laser beam perpendicular to the 
rocket’s motion. The captain of the Huns wants to send a threat-
ening message to the Goths by “firing a shot across their bow.” 
He tells his first mate, “The Goths’ rocket is length contracted to 
600 m. Fire the laser cannon at the instant the tail of their rocket 
passes the nose of ours. The laser beam will cross 400 m in front 
of them.”

But things are different in the Goths’ reference frame. The Goth 
captain muses, “The Huns’ rocket is length contracted to 600 m, 
400 m shorter than our rocket. If they fire as the nose of their ship 
passes the tail of ours, the lethal laser beam will pass right through 
our side.”

The first mate on the Huns’ rocket fires as ordered. Does the 
laser beam blast the Goths or not?

ModeL Both rockets are inertial reference frames. Let the Huns’ 
rocket be frame S and the Goths’ rocket be frame S�. S� moves 
with velocity v = 0.8c relative to S. We need to describe the situ-
ation in terms of events.

vISuALIze Begin by considering the situation from the Huns’ 
reference frame, as shown in FIGuRe 36.42.

FIGuRe 36.42 The situation seen by the Huns.

SoLve The key to resolving the paradox is that two events simul-
taneous in one reference frame are not simultaneous in a differ-
ent reference frame. The Huns do, indeed, see the Goths’ rocket 
length contracted to LGoths = (1 - (0.8)2)1/2 (1000 m) = 600 m. 
Let event 1 be the tail of the Goths’ rocket passing the nose of 
the Huns’ rocket. Since we’re free to define the origin of our 
coordinate system, we define this event to be at time t1 = 0 ms 
and at position x1 = 0 m. Then, in the Huns’ reference frame, the 
spacetime coordinates of event 2, the firing of the laser cannon, 

FIGuRe 36.43 The situation seen by the Goths.

In fact, since the Huns’ rocket is length contracted to 600 m, the 
nose of the Huns’ rocket is at x� = 1667 m - 600 m =  1067 m at 
the instant they fire the laser cannon. At a speed of v = 0.8c =
240 m/ms, in 4.444 ms the nose of the Huns’ rocket travels 
�x� = (240 m/ms)(4.444 ms) = 1067 m—exactly the right dis-
tance to be at the tail of the Goths’ rocket at t�1 = 0 ms. We could 
also note that the 667 m “miss distance” in the Goths’ frame is 
length contracted to (1 - (0.8)2)1/2 (667 m) = 400 m in the Huns’ 
frame—exactly the amount by which the Huns think they miss the 
Goths’ rocket.

ASSeSS Thus we end up with a consistent explanation. The Huns 
miss the Goths’ rocket because, to them, the Goths’ rocket is length 
contracted. The Goths find that the Huns miss because event 2 (the 
firing of the laser cannon) occurs before event 1 (the nose of one 
rocket passing the tail of the other). The 400 m distance of the miss 
in the Huns’ reference frame is the length-contracted miss distance 
of 667 m in the Goths’ reference frame.



1096    c h a p t e r  36 . Relativity

S u M M A R y
The goal of Chapter 36 has been to understand how Einstein’s theory of relativity changes our concepts 

 of space and time.

Principle of Relativity All the laws of physics are the same in all inertial reference frames.

• The speed of light c is the same in all inertial reference frames.

• No particle or causal influence can travel at a speed greater than c.

General Principles

A reference frame is a coordinate system with meter sticks and 
clocks for measuring events. Experimenters at rest relative to 
each other share the same reference frame.

An event happens at a specific place in space and time. Spacetime 
coordinates are (x, t) in frame S and (x�, t�) in frame S�.

The Lorentz transformations transform spacetime coordinates and velocities between reference frames S and S�.

  x� = g (x - vt) x = g (x� + vt�)
  y� = y y = y�

  z� = z z = z�

  t� = g (t - vx/c2) t = g (t� + vx�/c2)

  u� =
u - v

1 - uv/c2 u =
u� + v

1 + u�v/c2

where u and u� are the x- and x�-components of an object’s velocity.

  b =
v

c
 and g = 1/21 - v 2/c2 = 1/21 - b2

Applications

Time

Time measurements depend on the motion of the experimenter 
relative to the events. Events that are simultaneous in reference 
frame S are not simultaneous in frame S� moving relative to S.

Proper time �t is the time interval between two events 
measured in a reference frame in which the events occur at the 
same position. The time interval between the events in a frame 
moving with relative velocity v is

  �t = �t/21 - b2 Ú �t

This is called time dilation.

Energy

The law of conservation of energy is 
valid in all inertial reference frames if 
the energy of a particle with velocity u is 
E = gpmc2 = E0 + K.

Rest energy E0 = mc2

Kinetic energy K = (gp - 1)mc2

Mass-energy equivalence

Mass m can be transformed into energy E = mc2.

Energy can be transformed into mass m = �E/c2.

Space

Spatial measurements depend on the motion of the experimenter 
relative to the events. An object’s length is the difference between 
simultaneous measurements of the positions of both ends.

Proper length / is the length of an object measured in a
reference frame in which the object is at rest. The object’s length 
in a frame in which the object moves with velocity v is

  L = 21 - b2/ … /

This is called length contraction.

Momentum

The law of conservation of momentum is 
valid in all inertial reference frames if the 
momentum of a particle with velocity u is 
p = gpmu, where

  gp = 1/21 - u2/c2

The momentum approaches � as u S c.

Invariants are quantities that have the same value in all inertial 
reference frames.

Spacetime interval: s2 = (c�t)2 - (�x)2

Particle rest energy: E0 

2 = (mc2)2 = E2 - (pc)2

Important Concepts

p

c
u

0

y

xS

y�

x�

(x, t) in S
(x�, t�) in S�

Motion

Event

u in S
u� in S�

v

S�

K

c0
u
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special relativity
reference frame
inertial reference frame
Galilean principle of relativity
ether
principle of relativity
event

spacetime coordinates, 
(x, y, z, t)

synchronized
simultaneous
relativity of simultaneity
rest frame
proper time, �t

time dilation
light year, ly
proper length, /
length contraction
invariant
spacetime interval, s
Lorentz transformations

causal influence
total energy, E
rest energy, E0

law of conservation of total 
energy

nuclear fission

terms and Notation

C o N C e P t u A L  Q u e S t I o N S

 a. Do the light flashes reach the rocket pilot simultaneously? If 
not, which reaches her first? Explain.

 b. A student was sitting on the ground halfway between the 
trees as the rocket passed overhead. According to the student, 
were the lightning strikes simultaneous? If not, which tree 
was hit first? Explain.

 7. Your friend flies from Los Angeles to New York. She carries 
an accurate stopwatch with her to measure the flight time. 
You and your assistants on the ground also measure the flight 
time.

 a. Identify the two events associated with this measurement.
 b. Who, if anyone, measures the proper time?
 c. Who, if anyone, measures the shorter flight time?
 8. As the meter stick in FIGuRe Q36.8 flies 

past you, you simultaneously measure 
the positions of both ends and deter-
mine that L 6 1 m.

 a. To an experimenter in frame S�, the meter stick’s frame, did 
you make your two measurements simultaneously? If not, 
which end did you measure first? Explain.

 b. Can experimenters in frame S� give an explanation for why 
your measurement is less than 1 m?

 9. A 100-m-long train is heading for an 80-m-long tunnel. If the 
train moves sufficiently fast, is it possible, according to experi-
menters on the ground, for the entire train to be inside the tunnel 
at one instant of time? Explain.

 10. Particle A has half the mass and twice the speed of particle B. Is 
the momentum pA less than, greater than, or equal to pB? Explain.

 11. Event A occurs at spacetime coordinates (300 m, 2 ms).
 a. Event B occurs at spacetime coordinates (1200 m, 6 ms). 

Could A possibly be the cause of B? Explain.
 b. Event C occurs at spacetime coordinates (2400 m, 8 ms). 

Could A possibly be the cause of C? Explain.

 1. FIGuRe Q36.1 shows two balls. What are the speed and direction 
of each (a) in a reference frame that moves with ball 1 and (b) in 
a reference frame that moves with ball 2?

 2. Teenagers Sam and Tom are playing chicken in their rockets. As 
FIGuRe Q36.2 shows, an experimenter on earth sees that each is 
traveling at 0.95c as he approaches the other. Sam fires a laser 
beam toward Tom.

 a. What is the speed of the laser beam relative to Sam?
 b. What is the speed of the laser beam relative to Tom?
 3. Firecracker A is 300 m from you. Firecracker B is 600 m from 

you in the same direction. You see both explode at the same 
time. Define event 1 to be “firecracker A explodes” and event 2 
to be “firecracker B explodes.” Does event 1 occur before, after, 
or at the same time as event 2? Explain.

 4. Firecrackers A and B are 600 m apart. You are standing exactly 
halfway between them. Your lab partner is 300 m on the other 
side of firecracker A. You see two flashes of light, from the two 
explosions, at exactly the same instant of time. Define event 1 
to be “firecracker A explodes” and event 2 to be “firecracker B 
explodes.” According to your lab partner, based on measure-
ments he or she makes, does event 1 occur before, after, or at the 
same time as event 2? Explain.

 5. FIGuRe Q36.5 shows Peggy 
standing at the center of her 
railroad car as it passes Ryan 
on the ground. Firecrackers 
attached to the ends of the car 
explode. A short time later, the 
flashes from the two explosions arrive at Peggy at the same time.

 a. Were the explosions simultaneous in Peggy’s reference 
frame? If not, which exploded first? Explain.

 b. Were the explosions simultaneous in Ryan’s reference 
frame? If not, which exploded first? Explain.

 6. FIGuRe Q36.6 shows a rocket traveling from left to right. At the 
instant it is halfway between two trees, lightning simultaneously 
(in the rocket’s frame) hits both trees.

FIGuRe Q36.1 

3 m/s6 m/s
1 2

FIGuRe Q36.2 

Laser
beam

0.95c0.95c

Earth

Sam Tom

FIGuRe Q36.5 

P

R

FIGuRe Q36.6 

FIGuRe Q36.8 

Meter stick

 v
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e x e R C I S e S  A N d  P R o B L e M S

 11. || Bianca is standing at x = 600 m. Firecracker 1, at the origin, 
and firecracker 2, at x = 900 m, explode simultaneously. The 
flash from firecracker 1 reaches Bianca’s eye at t = 3.0 ms. At 
what time does she see the flash from firecracker 2?

 12. || You are standing at x = 9.0 km. Lightning bolt 1 strikes at 
x = 0 km and lightning bolt 2 strikes at x = 12.0 km. Both 
flashes reach your eye at the same time. Your assistant is stand-
ing at x = 3.0 km. Does your assistant see the flashes at the 
same time? If not, which does she see first, and what is the time 
difference between the two?

 13. || You are standing at x = 9.0 km and your assistant is standing at 
x = 3.0 km. Lightning bolt 1 strikes at x = 0 km and lightning bolt 
2 strikes at x = 12.0 km. You see the flash from bolt 2 at t = 10 ms 
and the flash from bolt 1 at t = 50 ms. According to your assistant, 
were the lightning strikes simultaneous? If not, which occurred first, 
and what was the time difference between the two?

 14. || Jose is looking to the east. Lightning bolt 1 strikes a tree 
300 m from him. Lightning bolt 2 strikes a barn 900 m from him 
in the same direction. Jose sees the tree strike 1.0 ms before he 
sees the barn strike. According to Jose, were the lightning strikes 
simultaneous? If not, which occurred first, and what was the time 
difference between the two?

 15. || You are flying your personal rocketcraft at 0.9c from Star A 
toward Star B. The distance between the stars, in the stars’ refer-
ence frame, is 1.0 ly. Both stars happen to explode simultane ously 
in your reference frame at the instant you are exactly halfway be-
tween them. Do you see the flashes simultaneously? If not, which 
do you see first, and what is the time difference between the two?

Section 36.6 Time Dilation

 16. || A cosmic ray travels 60 km through the earth’s atmosphere in 
400 ms, as measured by experimenters on the ground. How long 
does the journey take according to the cosmic ray?

 17. | At what speed, as a fraction of c, does a moving clock tick at 
half the rate of an identical clock at rest?

 18. | An astronaut travels to a star system 4.5 ly away at a speed of 
0.9c. Assume that the time needed to accelerate and decelerate is 
negligible.

 a. How long does the journey take according to Mission Control 
on earth?

 b. How long does the journey take according to the astronaut?
 c. How much time elapses between the launch and the arrival of 

the first radio message from the astronaut saying that she has 
arrived?

 19. || a.  How fast must a rocket travel on a journey to and from a 
distant star so that the astronauts age 10 years while the 
Mission Control workers on earth age 120 years?

   b.  As measured by Mission Control, how far away is the 
distant star?

 20. || You fly 5000 km across the United States on an airliner at 
250 m/s. You return two days later at the same speed.

 a. Have you aged more or less than your friends at home?
 b. By how much?

Hint: Use the binomial approximation.
 21. || At what speed, in m/s, would a moving clock lose 1.0 ns in 

1.0 day according to experimenters on the ground?
Hint: Use the binomial approximation.

Problems labeled  integrate material from earlier chapters.

exercises

Section 36.2 Galilean Relativity

 1. || At t = 1.0 s, a firecracker explodes at x = 10 m in refer-
ence frame S. Four seconds later, a second firecracker explodes 
at x = 20 m. Reference frame S� moves in the x-direction at a 
speed of 5.0 m/s. What are the positions and times of these two 
events in frame S�?

 2. || A firecracker explodes in reference frame S at t = 1.0 s. A 
second firecracker explodes at the same position at t = 3.0 s. In 
reference frame S�, which moves in the x-direction at speed v, 
the first explosion is detected at x� = 4.0 m and the second at 
x� = -4.0 m.

 a. What is the speed of frame S� relative to frame S?
 b. What is the position of the two explosions in frame S?
 3. | A sprinter crosses the finish line of a race. The roar of the 

crowd in front approaches her at a speed of 360 m/s. The roar 
from the crowd behind her approaches at 330 m/s. What are the 
speed of sound and the speed of the sprinter?

 4. | A baseball pitcher can throw a ball with a speed of 40 m/s. He 
is in the back of a pickup truck that is driving away from you. 
He throws the ball in your direction, and it floats toward you at a 
lazy 10 m/s. What is the speed of the truck?

 5. | A newspaper delivery boy is riding his bicycle down the street 
at 5.0 m/s. He can throw a paper at a speed of 8.0 m/s. What is 
the paper’s speed relative to the ground if he throws the paper 
(a) forward, (b) backward, and (c) to the side?

Section 36.3 Einstein’s Principle of Relativity

 6. | An out-of-control alien spacecraft is diving into a star at a 
speed of 1.0 * 108 m/s. At what speed, relative to the spacecraft, 
is the starlight approaching?

 7. | A starship blasts past the earth at 2.0 * 108 m/s. Just after 
passing the earth, it fires a laser beam out the back of the 
starship. With what speed does the laser beam approach the 
earth?

 8. | A positron moving in the positive x-direction at 2.0 * 108 m/s 
collides with an electron at rest. The positron and electron an-
nihilate, producing two gamma-ray photons. Photon 1 travels 
in the positive x-direction and photon 2 travels in the negative 
x-direction. What is the speed of each photon?

Section 36.4 Events and Measurements

Section 36.5 The Relativity of Simultaneity

 9. || Your job is to synchronize the clocks in a reference frame. 
You are going to do so by flashing a light at the origin at t = 0 s. 
To what time should the clock at (x, y, z) = (30 m, 40 m, 0 m) 
be preset?

 10. | Bjorn is standing at x = 600 m. Firecracker 1 explodes at 
the origin and firecracker 2 explodes at x = 900 m. The flashes 
from both explosions reach Bjorn’s eye at t = 3.0 ms. At what 
time did each firecracker explode?

http://www.meetyourbrain.com/bookChapters.php?book=Physics-for-Scientists-and-Engineers-A-Strategic-Approach-with-Modern-Physics-3rd-Edition-Solutions&title=0
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Section 36.7 Length Contraction

 22. | At what speed, as a fraction of c, will a moving rod have a 
length 60% that of an identical rod at rest?

 23. | Jill claims that her new rocket is 100 m long. As she flies 
past your house, you measure the rocket’s length and find that 
it is only 80 m. Should Jill be cited for exceeding the 0.5c speed 
limit?

 24. || A muon travels 60 km through the atmosphere at a speed of 
0.9997c. According to the muon, how thick is the atmosphere?

 25. || A cube has a density of 2000 kg/m3 while at rest in the labora-
tory. What is the cube’s density as measured by an experimenter 
in the laboratory as the cube moves through the laboratory at 
90% of the speed of light in a direction perpendicular to one of 
its faces?

 26. | Our Milky Way galaxy is 100,000 ly in diameter. A space-
ship crossing the galaxy measures the galaxy’s diameter to be a 
mere 1.0 ly.

 a. What is the speed of the spaceship relative to the galaxy?
 b. How long is the crossing time as measured in the galaxy’s 

reference frame?
 27. || A human hair is about 50 mm in diameter. At what speed, in 

m/s, would a meter stick “shrink by a hair”?
Hint: Use the binomial approximation.

Section 36.8 The Lorentz Transformations

 28. | An event has spacetime coordinates (x, t) = (1200 m, 2.0 ms) 
in reference frame S. What are the event’s spacetime coordinates 
(a) in reference frame S� that moves in the positive x-direction 
at 0.8c and (b) in reference frame S� that moves in the negative 
x-direction at 0.8c?

 29. || A rocket travels in the x-direction at speed 0.6c with respect 
to the earth. An experimenter on the rocket observes a collision 
between two comets and determines that the spacetime coordinates 
of the collision are (x�, t�) = (3.0 * 1010 m, 200 s). What are the 
spacetime coordinates of the collision in earth’s reference frame?

 30. || In the earth’s reference frame, a tree is at the origin and a pole 
is at x = 30 km. Lightning strikes both the tree and the pole at 
t = 10 ms. The lightning strikes are observed by a rocket travel-
ing in the x-direction at 0.5c.

 a. What are the spacetime coordinates for these two events in 
the rocket’s reference frame?

 b. Are the events simultaneous in the rocket’s frame? If not, 
which occurs first?

 31. || A rocket cruising past earth at 0.8c shoots a bullet out the back 
door, opposite the rocket’s motion, at 0.9c relative to the rocket. 
What is the bullet’s speed relative to the earth?

 32. || A laboratory experiment shoots an electron to the left at 0.9c. 
What is the electron’s speed relative to a proton moving to the 
right at 0.9c?

 33. || A distant quasar is found to be moving away from the earth at 
0.8c. A galaxy closer to the earth and along the same line of sight 
is moving away from us at 0.2c. What is the recessional speed of 
the quasar as measured by astronomers in the other galaxy?

Section 36.9 Relativistic Momentum

 34. | A proton is accelerated to 0.999c.
 a. What is the proton’s momentum?
 b. By what factor does the proton’s momentum exceed its 

Newtonian momentum?

 35. || At what speed is a particle’s momentum twice its Newtonian 
value?

 36. ||| A 1.0 g particle has momentum 400,000 kg m/s. What is the 
particle’s speed?

 37. || What is the speed of a particle whose momentum is mc?

Section 36.10 Relativistic Energy

 38. | What are the kinetic energy, the rest energy, and the total 
energy of a 1.0 g particle with a speed of 0.8c?

 39. | A quarter-pound hamburger with all the fixings has a mass 
of 200 g. The food energy of the hamburger (480 food calories) 
is 2 MJ.

 a. What is the energy equivalent of the mass of the hamburger?
 b. By what factor does the energy equivalent exceed the food 

energy?
 40. | How fast must an electron move so that its total energy is 10% 

more than its rest mass energy?
 41. | At what speed is a particle’s kinetic energy twice its rest energy?
 42. || At what speed is a particle’s total energy twice its rest energy?

Problems

 43. | A 50 g ball moving to the right at 4.0 m/s overtakes and col-
lides with a 100 g ball moving to the right at 2.0 m/s. The colli-
sion is perfectly elastic. Use reference frames and the Chapter 10 
result for perfectly elastic collisions to find the speed and direc-
tion of each ball after the collision.

 44. | A billiard ball has a perfectly elastic collision with a second 
billiard ball of equal mass. Afterward, the first ball moves to the 
left at 2.0 m/s and the second to the right at 4.0 m/s. Use reference 
frames and the Chapter 10 result for perfectly elastic collisions to 
find the speed and direction of each ball before the collision.

 45. || The diameter of the solar system is 10 light hours. A spaceship 
crosses the solar system in 15 hours, as measured on earth. How 
long, in hours, does the passage take according to passengers on 
the spaceship?
Hint: c = 1 light hour per hour.

 46. | A 30-m-long rocket train car is traveling from Los Angeles to 
New York at 0.5c when a light at the center of the car flashes. 
When the light reaches the front of the car, it immediately rings a 
bell. Light reaching the back of the car immediately sounds a siren.

 a. Are the bell and siren simultaneous events for a passenger seated 
in the car? If not, which occurs first and by how much time?

 b. Are the bell and siren simultaneous events for a bicyclist 
waiting to cross the tracks? If not, which occurs first and by 
how much time?

 47. ||| The star Alpha goes supernova. Ten years later and 100 ly away, 
as measured by astronomers in the galaxy, star Beta explodes.

 a. Is it possible that the explosion of Alpha is in any way re-
sponsible for the explosion of Beta? Explain.

 b. An alien spacecraft passing through the galaxy finds that the 
distance between the two explosions is 120 ly. According to 
the aliens, what is the time between the explosions?

 48. || Two events in reference frame S occur 10 ms apart at the same 
point in space. The distance between the two events is 2400 m in 
reference frame S�.

 a. What is the time interval between the events in reference 
frame S�?

 b. What is the velocity of S� relative to S?
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 49. ||| A starship voyages to a distant planet 10 ly away. The explor-
ers stay 1 yr, return at the same speed, and arrive back on earth 
26 yr after they left. Assume that the time needed to accelerate 
and decelerate is negligible.

 a. What is the speed of the starship?
 b. How much time has elapsed on the astronauts’ chronometers?
 50. || In Section 36.6 we saw that muons can reach the ground be-

cause of time dilation. But how do things appear in the muon’s 
reference frame, where the muon’s half-life is only 1.5 ms? How 
can a muon travel the 60 km to reach the earth’s surface before 
decaying? Resolve this apparent paradox. Be as quantitative as 
you can in your answer.

 51. || The Stanford Linear Accelerator (SLAC) accelerates electrons 
to c = 0.99999997c in a 3.2-km-long tube. If they travel the 
length of the tube at full speed (they don’t, because they are accel-
erating), how long is the tube in the electrons’ reference frame?

 52. || In an attempt to reduce the extraordinarily long travel times 
for voyaging to distant stars, some people have suggested travel-
ing at close to the speed of light. Suppose you wish to visit the 
red giant star Betelgeuse, which is 430 ly away, and that you 
want your 20,000 kg rocket to move so fast that you age only 
20 years during the round trip.

 a. How fast must the rocket travel relative to earth?
 b. How much energy is needed to accelerate the rocket to this 

speed?
 c. Compare this amount of energy to the total energy used 

by the United States in the year 2010, which was roughly 
1.0 * 1020 J.

 53. | A rocket traveling at 0.5c sets out for the nearest star, Alpha 
Centauri, which is 4.25 ly away from earth. It will return to earth 
immediately after reaching Alpha Centauri. What distance will 
the rocket travel and how long will the journey last according to 
(a) stay-at-home earthlings and (b) the rocket crew? (c) Which 
answers are the correct ones, those in part a or those in part b?

 54. || The star Delta goes supernova. One year later and 2 ly away, 
as measured by astronomers in the galaxy, star Epsilon ex-
plodes. Let the explosion of Delta be at xD = 0 and tD = 0. The 
explosions are observed by three spaceships cruising through 
the galaxy in the direction from Delta to Epsilon at velocities 
v1 = 0.3c, v2 = 0.5c, and v3 = 0.7c.

 a. What are the times of the two explosions as measured by sci-
entists on each of the three spaceships?

 b. Does one spaceship find that the explosions are simultane-
ous? If so, which one?

 c. Does one spaceship find that Epsilon explodes before Delta? 
If so, which one?

 d. Do your answers to parts b and c violate the idea of causality? 
Explain.

 55. || Two rockets approach each other. Each is traveling at 0.75c 
in the earth’s reference frame. What is the speed of one rocket 
relative to the other?

 56. || A rocket fires a projectile at a speed of 0.95c while traveling 
past the earth. An earthbound scientist measures the projectile’s 
speed to be 0.90c. What was the rocket’s speed?

 57. || Through what potential difference must an electron be accel-
erated, starting from rest, to acquire a speed of 0.99c?

 58. || What is the speed of a proton after being accelerated from rest 
through a 50 * 106 V potential difference?

 59. || The half-life of a muon at rest is 1.5 ms. Muons that have been 
accelerated to a very high speed and are then held in a circular 
storage ring have a half-life of 7.5 ms.

 a. What is the speed of the muons in the storage ring?
 b. What is the total energy of a muon in the storage ring? The 

mass of a muon is 207 times the mass of an electron.
 60. || A solar flare blowing out from the sun at 0.9c is overtaking a 

rocket as it flies away from the sun at 0.8c. According to the crew 
on board, with what speed is the flare gaining on the rocket?

 61. || This chapter has assumed that lengths perpendicular to the 
direction of motion are not affected by the motion. That is, 
motion in the x-direction does not cause length contraction along 
the y- or z-axes. To find out if this is really true, consider two 
spray-paint nozzles attached to rods perpendicular to the x-axis. 
It has been confirmed that, when both rods are at rest, both noz-
zles are exactly 1 m above the base of the rod. One rod is placed 
in the S reference frame with its base on the x-axis; the other is 
placed in the S� reference frame with its base on the x�@axis. The 
rods then swoop past each other and, as FIGuRe P36.61 shows, 
each paints a stripe across the other rod.

We will use proof by contradiction. Assume that objects 
perpendicular to the motion are contracted. An experimenter in 
frame S finds that the S� nozzle, as it goes past, is less than 1 m 
above the x-axis. The principle of relativity says that an experi-
ment carried out in two different 
inertial reference frames will 
have the same outcome in both.

 a. Pursue this line of reasoning 
and show that you end up 
with a logical contradiction, 
two mutually incompatible 
situations.

 b. What can you conclude from 
this contradiction?

 62. || Derive the Lorentz transformations for t and t�.
Hint: See the comment following Equation 36.22.

 63. || a.  Derive a velocity transformation equation for uy and u =
y. 

Assume that the reference frames are in the standard orien-
tation with motion parallel to the x- and x�@axes.

  b.  A rocket passes the earth at 0.8c. As it goes by, it launches 
a projectile at 0.6c perpendicular to the direction of motion. 
What is the projectile’s speed in the earth’s reference 
frame?

 64. || What is the momentum of a particle whose total energy is four 
times its rest energy? Give your answer as a multiple of mc.

 65. || a.  What are the momentum and total energy of a proton with 
speed 0.99c?

  b.  What is the proton’s momentum in a different reference 
frame in which E� = 5.0 * 10-10 J?

 66. ||| At what speed is the kinetic energy of a particle twice its New-
tonian value?

 67. | A typical nuclear power plant generates electricity at the rate 
of 1000 MW. The efficiency of transforming thermal energy into 
electrical energy is 1

3 and the plant runs at full capacity for 80% 
of the year. (Nuclear power plants are down about 20% of the 
time for maintenance and refueling.)

 a. How much thermal energy does the plant generate in one year?
 b. What mass of uranium is transformed into energy in one year?
 68. | The sun radiates energy at the rate 3.8 * 1026 W. The source 

of this energy is fusion, a nuclear reaction in which mass is trans-
formed into energy. The mass of the sun is 2.0 * 1030 kg.

 a. How much mass does the sun lose each year?
 b. What percent is this of the sun’s total mass?
 c. Estimate the lifetime of the sun.

FIGuRe P36.61 
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 69. || The radioactive element radium (Ra) decays by a process known 
as alpha decay, in which the nucleus emits a helium nucleus. 
(These high-speed helium nuclei were named alpha particles when 
radioactivity was first discovered, long before the identity of the 
particles was established.) The reaction is 226Ra S 222Rn + 4He, 
where Rn is the element radon. The accurately measured atomic 
masses of the three atoms are 226.025, 222.017, and 4.003. How 
much energy is released in each decay? (The energy released in 
radioactive decay is what makes nuclear waste “hot.”)

 70. || The nuclear reaction that powers the sun is the fusion of four 
protons into a helium nucleus. The process involves several 
steps, but the net reaction is simply 4p S  4He + energy. The 
mass of a helium nucleus is known to be 6.64 * 10-27 kg.

 a. How much energy is released in each fusion?
 b. What fraction of the initial rest mass energy is this energy?
 71. ||| An electron moving to the right at 0.9c collides with a positron 

moving to the left at 0.9c. The two particles annihilate and produce 
two gamma-ray photons. What is the wavelength of the photons?

 72. || Consider the inelastic collision e- + e- S e- + e- + e- + e+  
in which an electron-positron pair is produced in a head-on colli-
sion between two electrons moving in opposite directions at the 
same speed. This is similar to Figure 36.39, but both of the initial 
electrons are moving.

 a. What is the threshold kinetic energy? That is, what minimum 
kinetic energy must each electron have to allow this process 
to occur?

 b. What is the speed of an electron with this kinetic energy?

Challenge Problems

 73. Two rockets, A and B, approach the earth from opposite direc-
tions at speed 0.8c. The length of each rocket measured in its rest 
frame is 100 m. What is the length of rocket A as measured by 
the crew of rocket B?

 74. Two rockets are each 1000 m long in their rest frame. Rocket 
Orion, traveling at 0.8c relative to the earth, is overtaking rocket 

Sirius, which is poking along at a mere 0.6c. According to the 
crew on Sirius, how long does Orion take to completely pass? 
That is, how long is it from the instant the nose of Orion is at the 
tail of Sirius until the tail of Orion is at the nose of Sirius?

 75. Some particle accelerators allow protons (p+) and antiprotons 
(p-) to circulate at equal speeds in opposite directions in a de-
vice called a storage ring. The particle beams cross each other 
at various points to cause p+ + p- collisions. In one collision, 
the outcome is p+ + p- S e+ + e- + g + g, where g represents 
a high-energy gamma-ray photon. The electron and positron are 
ejected from the collision at 0.9999995c and the gamma-ray 
photon wavelengths are found to be 1.0 * 10-6 nm. What were 
the proton and antiproton speeds prior to the collision?

 76. A very fast pole vaulter lives in the country. One day, while prac-
ticing, he notices a 10.0-m-long barn with the doors open at both 
ends. He decides to run through the barn at 0.866c while carrying 
his 16.0-m-long pole. The farmer, who sees him coming, says, 
“Aha! This guy’s pole is length contracted to 8.0 m. There will be 
a short interval of time when the pole is entirely inside the barn. 
If I’m quick, I can simultaneously close both barn doors while the 
pole vaulter and his pole are inside.” The pole vaulter, who sees the 
farmer beside the barn, thinks to himself, “That farmer is crazy. The 
barn is length contracted and is only 5.0 m long. My 16.0-m-long 
pole cannot fit into a 5.0-m-long barn. If the farmer closes the doors 
just as the tip of my pole reaches the back door, the front door will 
break off the last 11.0 m of my pole.”

Can the farmer close the 
doors without breaking the 
pole? Show that, when prop-
erly analyzed, the farmer 
and the pole vaulter agree on 
the outcome. Your analysis 
should contain both quantita-
tive calculations and written 
explanation.

StoP to tHINK ANSWeRS

is seen is not when the event actually happens. Because all experi-
menters in a reference frame agree on the spacetime coordinates of an 
event, Nancy’s position in her reference frame cannot affect the order 
of the events. If Nancy had been passing Mark at the instant the light-
ning strikes occur in Mark’s frame, then Nancy would be equivalent 
to Peggy. Event 2, like the firecracker at the front of Peggy’s railroad 
car, occurs first in Nancy’s reference frame.

Stop to Think 36.6: c. Nick measures proper time because Nick’s 
clock is present at both the “nose passes Nick” event and the “tail 
passes Nick” event. Proper time is the smallest measured time interval 
between two events.

Stop to Think 36.7: LA + LB � LC. Anjay measures the pole’s 
proper length because it is at rest in his reference frame. Proper 
length is the longest measured length. Beth and Charles may see the 
pole differently, but they share the same reference frame and their 
measurements of the length agree.

Stop to Think 36.8: c. The rest energy E0 is an invariant, the same in 
all inertial reference frames. Thus m = E0/c2 is independent of speed. 

Stop to Think 36.1: a, c, and f. These move at constant velocity, or 
very nearly so. The others are accelerating.

Stop to Think 36.2: a. u� = u - v = -10 m/s - 6 m/s = -16 m/s. 
The speed is 16 m/s.

Stop to Think 36.3: c. Even the light has a slight travel time. The event 
is the hammer hitting the nail, not your seeing the hammer hit the nail.

Stop to Think 36.4: At the same time. Mark is halfway between 
the tree and the pole, so the fact that he sees the lightning bolts at the 
same time means they happened at the same time. It’s true that Nancy 
sees event 1 before event 2, but the events actually occurred before 
she sees them. Mark and Nancy share a reference frame, because they 
are at rest relative to each other, and all experimenters in a reference 
frame, after correcting for any signal delays, agree on the spacetime 
coordinates of an event.

Stop to Think 36.5: After. This is the same as the case of Peggy 
and Ryan. In Mark’s reference frame, as in Ryan’s, the events are 
simultaneous. Nancy sees event 1 first, but the time when an event 

FIGuRe CP36.76
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Emission and Absorption
You’ll learn how spectroscopy is based 
on the interference of light and how 
scientists used spectroscopy to study 
the emission and absorption of light. 
This provided many new clues about the 
structure of matter.

Rutherford’s Model of 
the Atom
The discovery of the electron and the 
nucleus led Rutherford to propose a 
solar-system model of the atom in which 
negative electrons orbit a tiny, dense, 
positive nucleus.

X Rays
At very high voltages, the cathode-ray 
tube itself is a source of rays, highly 
penetrating rays called x rays. You’ll 
learn that x rays are electromagnetic 
waves with wavelengths much shorter 
than those of visible light.

An element’s atomic 
number is the number 
of protons in the 
nucleus. An atom with 
three protons is lithium.

Matter and Light
Except for relativity, everything you’ve 
studied until now was known by 1900. 
But within the span of just a few years, 
right around 1900, investigations into 
the structure of matter and the properties 
of light led to many discoveries at odds 
with classical physics.

Our goal is to establish the experimental 
basis for new theories of matter and 
light that arose in the first decades of 
the 20th century. We cannot see atoms, 
so what is the evidence for our current 
understanding of the atomic structure of 
matter?

The Foundations of 
Modern Physics

37	

Studies of the light emitted by gas 
discharge tubes helped lay the 
foundations of modern physics.

 Looking Ahead The goal of Chapter 37 is to learn about the structure and properties of atoms.

Electrons
Experiments to study electrical conduction 
in gases found that unknown “rays” travel 
outward from the cathode—the negative 
electrode. You’ll learn how J. J. Thomson 
discovered that these cathode rays are a 
stream of subatomic particles—electrons.

   Looking Back
Section 28.1–28.2 Electric potential energy

The Nucleus
How are atoms built? You’ll learn how 
Ernest Rutherford used the particles 
emitted in radioactive decay to dis-
cover that atoms have an incredibly tiny 
nucleus.

Atoms emit a discrete spectrum consisting 
of many discrete wavelengths. Each element 
has a unique spectrum, an electromagnetic 
fingerprint that can identify that element.

A cathode-ray tube, or CRT, was, until very 
recently, the “picture tube” of televisions 
and computer monitors.

Proton

Neutron

The nucleus, which is 
unbelievably dense, 
consists of positive 
protons and neutral 
neutrons.

The penetrating power of 
x rays led to their use in 
medicine almost immedi-
ately. Today, x rays have 
applications ranging from 
inspecting machine parts to 
deciphering the structure 
of biological molecules.

 Looking Back
Section 16.2 Atomic masses
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FiguRE 37.1 A grating spectrometer is 
used to study the emission of light.
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FiguRE 37.2 The continuous spectrum of 
an incandescent lightbulb.
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37.1 Matter and Light
The idea that matter consists of small, indivisible particles can be traced to the Greek 
philosophers Leucippus and Democritus in the 5th century bce. They called these par-
ticles atoms, Greek for “not divisible.” Atomism was not widely accepted, due in no 
small part to the complete lack of evidence, but atomic ideas never died.

Things began to change in the early years of the 19th century. The English chemist 
John Dalton argued that chemical reactions could be understood if each chemical 
element consisted of identical atoms. An important feature of Dalton’s work, which 
made it more science than speculation, was his experimental effort to determine the 
relative masses of the atoms of different elements.

The evidence for atoms grew stronger as thermodynamics and the kinetic theory 
of gases developed in the mid-19th century. Slight deviations from the ideal-gas law 
at high pressures, which could be understood if the atoms were beginning to come 
into close proximity to one another, led to a rough estimate of atomic sizes. By 
1890, it was widely accepted that atoms exist and have diameters of approximately 
10-10 m.

Other scientists of the 19th century were trying to understand what light is. Newton, 
as we have noted, favored a corpuscular theory whereby small particles of light travel 
in straight lines. However, the situation changed when, in 1801, Thomas Young dem-
onstrated the interference of light with his celebrated double-slit experiment. But if 
light is a wave, what is waving? Studies of electricity and magnetism by Ampère, 
Faraday, and others led Maxwell to the realization that light is an electromagnetic 
wave.

This was the situation at the end of the 19th century, when a series of discoveries 
began to reveal that the theories of Newton and Maxwell were not sufficient to explain 
the properties of atoms. New theories of matter and light at the atomic level, collec-
tively called modern physics, arose in the early decades of the 20th century. Modern 
physics, including relativity and quantum physics, is our topic for the final part of this 
textbook.

A difficulty, however, is that we cannot directly see, feel, or manipulate atoms. To 
know what the theories of modern physics are attempting to explain, and whether they 
are successful, we must start with experimental evidence about the behavior of atoms 
and light. That is the primary purpose of this chapter and the next.

37.2 The Emission and Absorption of Light
The interference and diffraction of light, discovered early in the 19th century, soon led 
to practical tools for measuring the wavelengths of light. The most important tool, still 
widely used today, is the spectrometer, such as the one shown in FiguRE 37.1. The heart 
of a spectrometer is a diffraction grating that diffracts different wavelengths of light 
at different angles. Making the grating slightly curved, like a spherical mirror, focuses 
the interference fringes onto a photographic plate or (more likely today) an electronic 
array detector. Each wavelength in the light is focused to a different position on the 
detector, producing a distinctive pattern called the spectrum of the light. Spectrosco-
pists discovered very early that there are two distinct types of spectra.

Continuous Spectra and Blackbody Radiation
Cool lava is black, but lava heated to a high temperature glows red and, if hot enough, 
yellow. A tungsten wire, dark gray at room temperature, emits bright white light when 
heated by a current—thus becoming the bright filament in an incandescent lightbulb. 
Hot, self-luminous objects, such as the lava or the lightbulb, form a rainbow-like 
continuous spectrum in which light is emitted at every possible wavelength. FiguRE 37.2 
is a continuous spectrum.



This temperature-dependent emission of electromagnetic waves was called thermal 
radiation when we studied it as the mechanism of heat transfer in Chapter 17. Recall 
that the heat energy Q radiated in a time interval �t by an object with surface area A 
and absolute temperature T is given by

 
Q

�t
= esAT 4 (37.1)

where s = 5.67 * 10-8 W/m2 K4 is the Stefan-Boltzmann constant. Notice the very 
strong fourth-power dependence on temperature.

The parameter e in Equation 37.1 is the emissivity of the surface, a measure of 
how effectively it radiates. A perfectly absorbing—and thus perfectly emitting—
object with e = 1 is called a blackbody, and the thermal radiation emitted by a 
blackbody is called blackbody radiation. Charcoal is an excellent approximation 
of a blackbody.

Our interest in Chapter 17 was the amount of energy radiated. Now we want to 
examine the spectrum of that radiation. If we measure the spectrum of a blackbody 
at three temperatures, 3500 K, 4500 K, and 5500 K, the data appear as in FiguRE 37.3. 
These continuous curves are called blackbody spectra. There are four important fea-
tures of the spectra:

	■ All blackbodies at the same temperature emit exactly the same spectrum. The 
spectrum depends on only an object’s temperature, not the material of which it 
is made.

	■ Increasing the temperature increases the radiated intensity at all wavelengths. 
Making the object hotter causes it to emit more radiation across the entire 
spectrum.

	■ Increasing the temperature causes the peak intensity to shift toward shorter wave-
lengths. The higher the temperature, the shorter the wavelength of the peak of 
the spectrum.

	■ The visible rainbow that we see is only a small portion of the continuous blackbody 
spectrum. Much of the emission is infrared. Extremely hot objects, such as stars, 
emit a significant fraction of their radiation at ultraviolet wavelengths.

The wavelength corresponding to the peak of the intensity graph is given by

 lpeak(in nm) =
2.90 * 106 nm K

T
 (37.2)

where T must be in kelvin. Equation 37.2 is known as Wien’s law.

EXAMpLE 37.1  Finding peak wavelengths
What are the peak wavelengths and the corresponding spectral 
regions for thermal radiation from the sun, a glowing ball of gas 
with a surface temperature of 5800 K, and from the earth, whose 
average surface temperature is 15�C?

ModEL The sun and the earth are well approximated as blackbodies.

SoLvE The sun’s wavelength of peak intensity is given by Wien’s 
law:

 lpeak =
2.90 * 106 nm K

5800 K
= 500 nm

This is right in the middle of the visible spectrum. The earth’s 
wavelength of peak intensity is

 lpeak =
2.90 * 106 nm K

288 K
= 10,000 nm

where we converted the surface temperature to kelvin before com-
puting. This is rather far into the infrared portion of the spectrum, 
which is not surprising because we don’t “see” the earth glowing.

ASSESS The difference between these two wavelengths is quite 
important for understanding the earth’s greenhouse effect. Most 
of the energy from the sun—its spectrum is much like the highest 
curve in Figure 37.3—arrives as visible light. The earth’s atmo-
sphere is transparent to visible wavelengths, so this energy reaches 
the ground and is absorbed. The earth must radiate an equal amount 
of energy back to space, but it does so with long-wavelength infra-
red radiation. These wavelengths are strongly absorbed by some 
gases in the atmosphere, so the atmosphere acts as a blanket to 
keep the earth’s surface warmer than it would be otherwise.

FiguRE 37.3 Blackbody radiation spectra.
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That all blackbodies at the same temperature emit the same spectrum was an unex-
pected discovery. Why should this be? It seemed that a combination of thermodynam-
ics and Maxwell’s new theory of electromagnetic waves ought to provide a convincing 
explanation, but scientists of the late 19th century failed to come up with a theoretical 
justification for the curves seen in Figure 37.3.

discrete Spectra
Michael Faraday, who discovered electromagnetic induction, wanted to know whether 
an electric current could pass through a gas. To find out, he sealed metal electrodes into 
a glass tube, lowered the pressure with a primitive vacuum pump, and then attached 
an electrostatic generator. When he started the generator, the gas inside the tube began 
to glow with a bright purple color! Faraday’s device, called a gas discharge tube, is 
shown in FiguRE 37.4.

The purple color Faraday saw is characteristic of nitrogen, the primary component 
of air. You are more likely familiar with the reddish-orange color of a neon discharge 
tube, but neon was not discovered until long after Faraday’s time. If light from a 
neon discharge tube is passed through a spectrometer, it produces the spectrum seen 
in FiguRE 37.5. This is called a discrete spectrum because it contains only discrete, 
individual wavelengths. Further, each kind of gas emits a unique spectrum—a spectral 
fingerprint—that distinguishes it from every other gas.

The discrete emission spectrum of a hot, low-density gas stands in sharp contrast to 
the continuous blackbody spectrum of a glowing solid. Not only do gases emit discrete 
wavelengths, but it was soon discovered that they also absorb discrete wavelengths. 
FiguRE 37.6a shows an absorption experiment in which white light passes through a 
sample of gas. Without the gas, the white light would expose the film with a continu-
ous rainbow spectrum. Any wavelengths absorbed by the gas are missing, and the 
film is dark at that wavelength. FiguRE 37.6b shows, for sodium vapor, that only certain 
discrete wavelengths are absorbed.

FiguRE 37.4 Faraday’s gas discharge 
tube.
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FiguRE 37.5 The discrete spectrum of a 
neon discharge tube.

400 nm 500 nm 600 nm 700 nm

FiguRE 37.6 Measuring an absorption spectrum.

300 nm

Ultraviolet Visible

Emission

Absorption

(b) Absorption and emission spectra of sodium

400 nm 500 nm 600 nm 700 nm

l2

Film or
photodetector

(a) Measuring an absorption spectrum

White
light

Glass cell
filled with
sample gas

l1

Although the emission and absorption spectra of a gas are both discrete, there is an 
important difference: Every wavelength absorbed by the gas is also emitted, but not 
every emitted wavelength is absorbed. Figure 37.6b shows that the wavelengths in 
the absorption spectrum are a subset of those in the emission spectrum. All the absorp-
tion wavelengths are prominent in the emission spectrum, but there are many emission 
wavelengths for which no absorption occurs.

What causes atoms to emit or absorb light? Why a discrete spectrum? Why 
are some wavelengths emitted but not absorbed? Why is each element different? 
Nineteenth-century physicists struggled with these questions but could not answer 
them. Ultimately, their inability to understand the emission and absorption of light 
forced scientists to the unwelcome realization that classical physics was simply inca-
pable of providing an understanding of atoms.
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The only encouraging sign came from an unlikely source. While the spectra of 
other atoms have dozens or even hundreds of wavelengths, the emission spectrum 
of hydrogen, seen in FiguRE 37.7, is very simple and regular. If any spectrum could 
be understood, it should be that of the first element in the periodic table. The break-
through came in 1885, not by an established and recognized scientist but by a Swiss 
schoolteacher, Johann Balmer. Balmer showed that the wavelengths in the hydrogen 
spectrum could be represented by the simple formula

 l =
91.18 nm

1 1

22 -
1

n2 2    n = 3, 4, 5, p  (37.3)

This formula predicts a series of spectral lines of gradually decreasing wavelength, 
converging to the series limit wavelength of 364.7 nm as n S �. This series of spec-
tral lines is now called the Balmer series.

Later experimental evidence, as ultraviolet and infrared spectroscopy developed, 
showed that Balmer’s result could be generalized to

 l =
91.18 nm

1 1

m2 -
1

n2 2  m = 1, 2, 3, p  n = m + 1, m + 2, p  (37.4)

We now refer to Equation 37.4 as the Balmer formula, although Balmer himself sug-
gested only the original version of Equation 37.3 in which m = 2. Other than at the 
highest levels of resolution, where new details appear that need not concern us in this 
text, the Balmer formula accurately describes every wavelength in the emission spec-
trum of hydrogen.

The Balmer formula is what we call empirical knowledge. It is an accurate math-
ematical representation found empirically—that is, through experimental evidence—
but it does not rest on any physical principles or physical laws. Yet the formula was so 
simple that it must, everyone agreed, have a simple explanation. It would take 30 years 
to find it.

Stop to think 37.1 
 These spectra are due to the same 

element. Which one is an emission spectrum and which 
is an absorption spectrum?

FiguRE 37.8 A solid object in the cathode 
glow casts a shadow.
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Cathode Glass tube
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37.3 Cathode Rays and X Rays
Faraday’s invention of the gas discharge tube had two major repercussions. One set of 
investigations, as we’ve seen, led to the development of spectroscopy. Another set led 
to the discovery of the electron.

In addition to the bright color of the gas in a discharge tube, Figure 37.4 shows 
a separate, constant glow around the negative electrode (i.e., the cathode) called the 
cathode glow. As vacuum technology improved, scientists made two discoveries:

 1. At lower pressures, the cathode glow became more extended.
 2. If the cathode glow extended to the wall of the glass tube, the glass itself emitted 

a greenish glow—fluorescence—at that point.

In fact, a solid object sealed inside a low-pressure tube casts a shadow on the glass 
wall, as shown in FiguRE 37.8. This suggests that the cathode emits rays of some form that 

FiguRE 37.7 The hydrogen emission 
spectrum.
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travel in straight lines but are easily blocked. These rays, which are invisible but cause 
the glass to glow where they strike it, were quickly dubbed cathode rays. This name 
lives on today in the cathode-ray tube that forms the picture tube in older televisions 
and computer-display terminals. But naming the rays did nothing to explain them. What 
were they?

Crookes Tubes
The most systematic studies on the new cathode rays were carried out during the 1870s 
by the English scientist Sir William Crookes. Crookes devised a set of glass tubes, 
such as the one shown in FiguRE 37.9, that could be used to make careful studies of 
cathode rays. These tubes, today called Crookes tubes, generate a small glowing spot 
where the cathode rays strike the face of the tube.

The work of Crookes and others demonstrated that

 1. There is an electric current in a tube in which cathode rays are emitted.
 2. The rays are deflected by a magnetic field as if they are negative charges.
 3. Cathodes made of any metal produce cathode rays. Furthermore, the ray proper-

ties are independent of the cathode material.

Crookes’s experiments led to more questions than they answered. Were 
the cathode rays some sort of particles? Or a wave? Were the rays themselves the 
carriers of the electric current, or were they something else that happened to be 
emitted whenever there was a current? Item 3 is worthy of note because it suggests 
that the cathode rays are a fundamental entity, not a part of the element from which 
they are emitted.

It is important to realize how difficult these questions were at the time and how ex-
perimental evidence was used to answer them. Crookes suggested that molecules in the 
gas collided with the cathode, somehow acquired a negative charge (i.e., became nega-
tive ions), and then “rebounded” with great speed as they were repelled by the nega-
tive cathode. These “charged molecules” would travel in a straight line, be deflected 
by a magnetic field, and cause the tube to glow where they struck the glass. Crookes’s 
theory predicted, of course, that the negative ions should also be deflected by an elec-
tric field, but his experimental efforts were inconclusive. Otherwise, Crookes’s model 
seemed to explain the observations.

However, Crookes’s theory was immediately attacked. Critics noted that the cath-
ode rays could travel the length of a 90-cm-long tube with no discernible deviation 
from a straight line. But the mean free path for molecules, due to collisions with other 
molecules, is only about 6 mm at the pressure in Crookes’s tubes. There was no chance 
at all that molecules could travel in a straight line for 150 times their mean free path! 
Crookes’s theory, seemingly adequate when it was proposed, was wildly inconsistent 
with subsequent observations.

But if cathode rays were not particles, what were they? An alternative theory was 
that the cathode rays were electromagnetic waves. After all, light travels in straight 
lines, casts shadows, and can, under the right circumstances, cause materials to  
fluoresce. It was known that hot metals emit light—incandescence—so it seemed 
plausible that the cathode could be emitting waves. The major obstacle for the wave 
theory was the deflection of cathode rays by a magnetic field. But the theory of 
electromagnetic waves was quite new at the time, and many characteristics of these 
waves were still unknown. Visible light was not deflected by a magnetic field, but 
it was easy to think that some other form of electromagnetic waves might be so 
influenced.

The controversy over particles versus waves was intense. British scientists gener-
ally favored particles, but their continental counterparts preferred waves. Such con-
troversies are an integral part of science, for they stimulate the best minds to come 
forward with new ideas and new experiments.

FiguRE 37.9 A Crookes tube.
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X Rays
The German physicist Wilhelm Röntgen, also studying cathode rays, made a remark-
able discovery in 1895. He had sealed a cathode and a metal target electrode into a 
vacuum tube, as shown in FiguRE 37.10, and then applied a much higher voltage than 
normally used to produce cathode rays. He happened, by chance, to leave a sealed 
envelope containing photographic film near the vacuum tube, and was later surprised 
to discover that the film had been exposed. This serendipitous discovery was the be-
ginning of the study of x rays.

Röntgen quickly found that the vacuum tube was the source of whatever was 
exposing the film. Not having any idea what was coming from the tube, he called 
them x rays, using the algebraic symbol x as meaning “unknown.” X rays were unlike 
anything, particle or wave, ever discovered. Röntgen was not successful at reflecting 
the rays or at focusing the rays with a lens. He showed that they travel in straight lines, 
like particles, but they also pass right through most solid materials, something no 
known particle could do.

Scientists soon began to suspect that x rays were an electromagnetic wave with a 
wavelength much shorter than that of visible light. However, it wasn’t until 20 years 
after their discovery that this was verified by the diffraction of x rays, showing that 
they have wavelengths in the range 0.01 nm to 10 nm. The production and the proper-
ties of x rays seemed far outside the scope of Maxwell’s theory of electromagnetic 
waves.

37.4 The discovery of the Electron
Shortly after Röntgen’s discovery of x rays, the young English physicist J. J. Thomson 
began using them to study electrical conduction in gases. He found that x rays could 
discharge an electroscope and concluded that they must be ionizing the air molecules, 
thereby making the air conductive.

This simple observation was of profound significance. Until then, the only form of 
ionization known was the creation of positive and negative ions in solutions where, 
for example, a molecule such as NaCl splits into two smaller charged pieces. Although 
the underlying process was not yet understood, the fact that two atoms could acquire 
charge as a molecule splits apart did not jeopardize the idea that the atoms themselves 
were indivisible. But after observing that even monatomic gases, such as helium, 
could be ionized by x rays, Thomson realized that the atom itself must have charged 
constituents that could be separated! This was the first direct evidence that the atom 
is a complex structure, not a fundamental, indivisible unit of matter.

Thomson was also investigating the nature of cathode rays. Other scientists, using 
a Crookes tube like the one shown in FiguRE 37.11a, had measured an electric current 
in a cathode-ray beam. Although its presence seemed to demonstrate that the rays are 
charged particles, proponents of the wave model argued that the current might be a 
separate, independent event that just happened to be following the same straight line 
as the cathode rays.

Thomson realized that he could use magnetic deflection of the cathode rays to 
settle the issue. He built a modified tube, shown in FiguRE 37.11b, in which the col-
lecting electrode was off to the side. With no magnetic field, the cathode rays struck 
the center of the tube face and created a greenish spot on the glass. No current was 
measured by the electrode under these circumstances. Thomson then placed the 
tube in a magnetic field to deflect the cathode rays to the side. He could determine 
their trajectory by the location of the green spot as it moved across the face of the 
tube. Just at the point when the field was strong enough to deflect the cathode rays 
onto the electrode, a current was detected! At an even stronger field, when the 
cathode rays were deflected completely to the other side of the electrode, the cur-
rent ceased.

FiguRE 37.11 Experiments to measure the 
electric current in a cathode-ray tube.
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This was the first conclusive demonstration that cathode rays really are negatively 
charged particles. But why were they not deflected by an electric field? Thomson’s 
experience with the x-ray ionization of gases soon led him to recognize that the rapidly 
moving cathode-ray particles must be colliding with the few remaining gas molecules 
in the tube with sufficient energy to ionize them by splitting them into charged pieces. 
The electric field created by these charges neutralized the field of the electrodes, hence 
there was no deflection.

Fortunately, vacuum technology was getting ever better. By using the most sophis-
ticated techniques of his day, Thomson was able to lower the pressure to a point where 
ionization of the gas was not a problem. Then, just as he had expected, the cathode 
rays were deflected by an electric field!

Thomson’s experiment was a decisive victory for the charged-particle model, but 
it still did not indicate anything about the nature of the particles. What were they?

Thomson’s Crossed-Field Experiment
Thomson could measure the deflection of cathode-ray particles for various strengths of 
the magnetic field, but magnetic deflection depends both on the particle’s charge-to-
mass ratio q/m and on its speed. Measuring the charge-to-mass ratio, and thus learning 
something about the particles themselves, requires some means of determining their 
speed. To do so, Thomson devised the experiment for which he is most remembered.

Thomson built a tube containing the parallel-plate electrodes visible in the photo in 
FiguRE 37.12a. He then placed the tube in a magnetic field. FiguRE 37.12b shows that the 
electric and magnetic fields were perpendicular to each other, thus creating what came 
to be known as a crossed-field experiment.

The magnetic field, which is perpendicular to the particle’s velocity v  

u
, exerts a 

magnetic force on the charged particle of magnitude

 FB = qvB (37.5)

The magnetic field alone would cause a negatively charged particle to move along 
an upward circular arc. The particle doesn’t move in a complete circle because the 
velocity is large and because the magnetic field is limited in extent. As you learned in 
Chapter 32, the radius of the arc is

 r =
mv

qB
 (37.6)

The net result is to deflect the beam of particles upward. It is a straightforward ge-
ometry problem to determine the radius of curvature r from the measured deflection.

Thomson’s new idea was to create an electric field between the parallel-plate elec-
trodes that would exert a downward force on the negative charges, pushing them back 
toward the center of the tube. The magnitude of the electric force on each particle is

 FE = qE (37.7)

Thomson adjusted the electric field strength until the cathode-ray beam, in the pres-
ence of both electric and magnetic fields, had no deflection and was seen exactly in 
the center of the tube.

Zero deflection occurs when the magnetic and electric forces exactly balance each 
other, as FiguRE 37.12c shows. The force vectors point in opposite directions, and their 
magnitudes are equal when

 FB = qvB = FE = qE

Notice that the charge q cancels. Once E and B are set, a charged particle can pass 
undeflected through the crossed fields only if its speed is

 v =
E

B
 (37.8)

FiguRE 37.12 Thomson’s crossed-field 
experiment to measure the velocity of 
cathode rays. The photograph shows his 
original tube and the coils he used to 
produce the magnetic field.
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The Electron
Thomson next measured q/m for different cathode materials. Finding them all to be 
the same, he concluded that all metals emit the same cathode rays. Thomson then 
compared his result to the charge-to-mass ratio of the hydrogen ion, known from elec-
trolysis to have a value of �1 * 108 C/kg. This value was roughly 1000 times smaller 
than for the cathode-ray particles, which could imply that a cathode-ray particle has a 
much larger charge than a hydrogen ion, or a much smaller mass, or some combina-
tion of these.

Electrolysis experiments suggested the existence of a basic unit of charge, so it was 
tempting to assume that the cathode-ray charge was the same as the charge of a hydro-
gen ion. However, cathode rays were so different from the hydrogen ion that such an 

SoLvE We can find the needed electric field, and thus �V, if 
we know the electron’s speed. We can find the electron’s speed 
from the radius of curvature of its circular arc in a magnetic field. 
Figure 37.13 shows a right triangle with hypotenuse r and width 
L. We can use the Pythagorean theorem to write

 (r - �y)2 + L2 = r2

where �y is the electron’s deflection in the magnetic field. This is 
easily solved to find the radius of the arc:

 r =
(�y)2 + L2

2 �y
=

(0.0020 m)2 + (0.030 m)2

2(0.0020 m)
= 0.226 m

The speed of an electron traveling along an arc with this radius is 
found from Equation 37.6:

 v =
erB

m
= 4.0 * 107 m/s

Thus the electric field allowing the electron to pass through with-
out deflection is

 E = vB = 40,000 V/m

The electric field of a parallel-plate capacitor of spacing d is re-
lated to the potential difference by E = �V/d, so the necessary 
potential difference is

�V = Ed = (40,000 V/m)(0.0050 m) = 200 V

ASSESS A fairly small potential difference is sufficient to counter-
act the magnetic deflection.

EXAMpLE 37.2  A crossed-field experiment
An electron is fired between two parallel-plate electrodes that 
are 5.0 mm apart and 3.0 cm long. A potential difference �V  
between the electrodes establishes an electric field between them. 
A 3.0-cm-wide, 1.0 mT magnetic field overlaps the electrodes and 
is perpendicular to the electric field. When �V = 0 V, the electron 
is deflected by 2.0 mm as it passes between the plates. What value 
of �V  will allow the electron to pass through the plates without 
deflection?

ModEL Assume that the fields between the electrodes are uniform 
and that they are zero outside the electrodes.

viSuALizE FiguRE 37.13 shows an electron passing through the 
magnetic field between the plates when �V = 0 V. The curvature 
has been exaggerated to make the geometry clear.

FiguRE 37.13 The electron’s trajectory in Example 37.2.
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By balancing the magnetic force against the electric force, Thomson could deter-
mine the speed of the charged-particle beam. Once he knew v, he could use Equa-
tion 37.6 to find the charge-to-mass ratio:

 
q

m
=

v

rB
 (37.9)

Thomson found that the charge-to-mass ratio of cathode rays is q/m � 1 *
1011 C/kg. This seems not terribly accurate in comparison to the modern value of 
1.76 * 1011 C/kg, but keep in mind both the experimental limitations of his day and 
the fact that, prior to his work, no one had any idea of the charge-to-mass ratio.
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assumption could not be justified without some other evidence. To provide that evi-
dence, Thomson called attention to previous experiments showing that cathode rays 
can penetrate thin metal foils but atoms cannot. This can be true, Thomson argued, 
only if cathode-ray particles are vastly smaller and thus much less massive than atoms.

In a paper published in 1897, Thomson assembled all of the evidence to announce 
the discovery that cathode rays are negatively charged particles, that they are much 
less massive (�0.1%) than atoms, and that they are identical when generated by dif-
ferent elements. In other words, Thomson had discovered a subatomic particle, one 
of the constituents of which atoms themselves are constructed. In recognition of the 
role this particle plays in electricity, it was later named the electron. By 1900 it was 
clear to all that electrons were a fundamental building block of atoms. Thomson was 
awarded the Nobel Prize in 1906.

FiguRE 37.14 Millikan’s oil-drop apparatus 
to measure the fundamental unit of 
charge.
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Stop to think 37.2 
 Thomson’s conclusion that cathode-ray particles are fundamental 

constituents of atoms was based primarily on which observation?

 a. They have a negative charge.
 b. They are the same from all cathode materials.
 c. Their mass is much less than that of hydrogen.
 d. They penetrate very thin metal foils.

37.5 The Fundamental unit of Charge
Thomson measured the electron’s charge-to-mass ratio and surmised that the 
mass must be much smaller than that of an atom, but clearly it was desirable to 
measure the charge q directly. This was done in 1906 by the American scientist 
Robert Millikan.

The Millikan oil-drop experiment, as we call it today, is illustrated in FiguRE 37.14. 
A squeeze-bulb atomizer sprayed out a very fine mist of oil droplets. Millikan found 
that some of these droplets were charged from friction in the sprayer. The charged 
droplets slowly settled toward a horizontal pair of parallel-plate electrodes, where a 
few droplets passed through a small hole in the top plate. Millikan observed the 
drops by shining a bright light between the plates and using an eyepiece to see the 
droplets’ reflections. He then established an electric field by applying a voltage to 
the plates.

A drop will remain suspended between the plates, moving neither up nor down, if 
the electric field exerts an upward force on a charged drop that exactly balances the 
downward gravitational force. The forces balance when

 mdropg = qdropE (37.10)

and thus the charge on the drop is measured to be

 qdrop =
mdropg

E
 (37.11)

Notice that m and q are the mass and charge of the oil droplet, not of an electron. But 
because the droplet is charged by acquiring (or losing) electrons, the charge of the 
droplet should be related to the electron’s charge.

The field strength E could be determined accurately from the voltage applied to 
the plates, so the limiting factor in measuring qdrop was Millikan’s ability to determine 
the mass of these small drops. Ideally, the mass could be found by measuring a drop’s 
diameter and using the known density of the oil. However, the drops were too small 
(�1 mm) to measure accurately by viewing through the eyepiece.
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Instead, Millikan devised an ingenious method to find the size of the droplets. 
Objects this small are not in free fall. The air resistance forces are so large that the 
drops fall with a very small but constant speed. The motion of a sphere through a 
viscous medium is a problem that had been solved in the 19th century, and it was 
known that the sphere’s terminal speed depends on its radius and on the viscos-
ity of air. By timing the droplets’ fall with a stopwatch, then using the known 
viscosity of air, Millikan could calculate their radii, compute their masses, and, 
finally, arrive at a value for their charge. Although it was a somewhat roundabout 
procedure, Millikan was able to measure the charge on a droplet with an accuracy 
of {0.1%.

Millikan measured many hundreds of droplets, some for hours at a time, under 
a wide variety of conditions. He found that some of his droplets were positively 
charged and some negatively charged, but all had charges that were integer mul-
tiples of a certain minimum charge value. Millikan concluded that “the electric 
charges found on ions all have either exactly the same value or else some small exact 
multiple of that value.” That value, the fundamental unit of charge that we now call 
e, is measured to be

 e = 1.60 * 10-19 C

We can then combine the measured e with the measured charge-to-mass ratio e/m to 
find that the mass of the electron is

 melec = 9.11 * 10-31 kg

Taken together, the experiments of Thomson, Millikan, and others provided over-
whelming evidence that electric charge comes in discrete units and that all charges 
found in nature are multiples of a fundamental unit of charge we call e.

where the droplet’s radius is R = 5.0 * 10-7 m. The electric field 
that will suspend this droplet against the force of gravity is

 E =
mdropg

qdrop
= 2760 V/m

Establishing this electric field between two plates spaced by 
d = 0.010 m requires a potential difference

 �V = Ed = 27.6 V

ASSESS Experimentally, this is a very convenient voltage.

EXAMpLE 37.3  Suspending an oil drop
Oil has a density of 860 kg/m3. A 1.0@mm@diameter oil droplet 
acquires 10 extra electrons as it is sprayed. What potential differ-
ence between two parallel plates 1.0 cm apart will cause the droplet 
to be suspended in air?

ModEL Assume a uniform electric field E = �V/d between the 
plates.

SoLvE The magnitude of the charge on the drop is qdrop = 10e.  
The mass of the charge is related to its density r and volume V by

 mdrop = rV =
4

3
 pR3r = 4.50 * 10-16 kg

37.6 The discovery of the Nucleus
By 1900, it was clear that atoms are not indivisible but, instead, are constructed 
of charged particles. Atomic sizes were known to be �10-10 m, but the electrons 
common to all atoms are much smaller and much less massive than the smallest atom. 
How do they “fit” into the larger atom? What is the positive charge of the atom? 
Where are the charges located inside the atoms?

Thomson proposed the first model of an atom. Because the electrons are very 
small and light compared to the whole atom, it seemed reasonable to think that the 
positively charged part would take up most of the space. Thomson suggested that 
the atom consists of a spherical “cloud” of positive charge, roughly 10-10 m in di-
ameter, in which the smaller negative electrons are embedded. The positive charge 
exactly balances the negative, so the atom as a whole has no net charge. This model 
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of the atom has often been called the “plum-pudding model” or the “raisin-cake 
model” for reasons that should be clear from FiguRE 37.15.

Thomson was never able to make any predictions that would enable his model to 
be tested, and the Thomson atom did not stand the test of time. His model is of inter-
est today primarily to remind us that our current models of the atom are by no means 
obvious. Science has many sidesteps and dead ends as it progresses.

One of Thomson’s students was a New Zealander named Ernest Rutherford. While 
Rutherford and Thomson were studying the ionizing effects of x rays, in 1896, the 
French physicist Antoine Henri Becquerel announced the discovery that some new 
form of “rays” were emitted by crystals of uranium. These rays, like x rays, could 
expose film, pass through objects, and ionize the air. Yet they were emitted continu-
ously from the uranium without having to “do” anything to it. This was the discovery 
of radioactivity, a topic we’ll study in Chapter 42.

With x rays only a year old and cathode rays not yet completely understood, 
it was not known whether all these various kinds of rays were truly different or 
merely variations of a single type. Rutherford immediately began a study of these 
new rays. He quickly discovered that at least two different rays are emitted by a ura-
nium crystal. The first, which he called alpha rays, were easily absorbed by a piece 
of paper. The second, beta rays, could penetrate through at least 0.1 inch of metal.

Thomson soon found that beta rays have the same charge-to-mass ratio as 
cathode rays. The beta rays turned out to be high-speed electrons emitted by the 
uranium crystal. Rutherford, using similar techniques, showed that alpha rays are 
positively charged particles. By 1906 he had measured their charge-to-mass ratio 
to be

 
q

m
=

1

2
 

e
mH

where mH is the mass of a hydrogen atom. This value could indicate either a singly 
ionized hydrogen molecule H2 

+ (q = e, m = 2mH) or a doubly ionized helium atom 
He++ (q = 2e, m = 4mH).

In an ingenious experiment, Rutherford sealed a sample of radium—an emitter 
of alpha radiation—into a glass tube. Alpha rays could not penetrate the glass, so 
the particles were contained within the tube. Several days later, Rutherford used 
electrodes in the tube to create a discharge and observed the spectrum of the emitted 
light. He found the characteristic wavelengths of helium, but not those of hydro-
gen. Alpha rays (or alpha particles, as we now call them) consist of doubly ionized 
helium atoms (bare helium nuclei) emitted at high speed (�3 * 107 m/s) from the 
sample.

The First Nuclear physics Experiment
Rutherford soon realized that he could use these high-speed particles to probe inside 
other atoms. In 1909, Rutherford and his students set up the experiment shown in 
FiguRE 37.16 to shoot alpha particles at very thin metal foils. Some of the alpha par-
ticles penetrated the foil, but the beam of alpha particles that did so became some-
what spread out. This was not surprising. According to Thomson’s raisin-cake model 
of the atom, the electric forces exerted on the positive alpha particle by the positive 
atomic charges should roughly cancel the forces from the negative electrons, causing 
the alpha particles to be deflected only slightly.

At Rutherford’s suggestion, his students then set up the apparatus to see if any al-
pha particles were deflected at large angles. It took only a few days to find the answer. 
Not only were alpha particles deflected at large angles, but a very few were reflected 
almost straight backward toward the source!

How can we understand this result? FiguRE 37.17a on the next page shows that only 
a small deflection is expected for an alpha particle passing through a Thomson atom. 
But if an atom has a small, positive core, such as the one in FiguRE 37.17b, a few of the 

FiguRE 37.15 Thomson’s raisin-cake 
model of the atom.
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EXAMpLE 37.4  A nuclear physics experiment
An alpha particle is shot with a speed of 2.0 * 107 m/s directly 
toward the nucleus of a gold atom. What is the distance of closest 
approach to the nucleus?

ModEL Energy is conserved in electric interactions. Assume that 
the gold nucleus, which is much more massive than the alpha 
particle, does not move. Also recall that the exterior electric field 
and potential of a sphere of charge can be found by treating the 
total charge as a point charge at the center.

viSuALizE FiguRE 37.18 is a pictorial representation. The motion is 
in and out along a straight line.

SoLvE We are not interested in how long the collision takes or 
any of the details of the trajectory, so using conservation of energy 
rather than Newton’s laws is appropriate. Initially, when the alpha 
particle is very far away, the system has only kinetic energy. At 
the moment of closest approach, just before the alpha particle is 
reflected, the charges are at rest and the system has only potential 
energy. The conservation of energy statement Kf + Uf = Ki + Ui is

 0 +
1

4pP0
 
qaqAu

rmin
=

1

2
 mvi 

2 + 0

where qa is the alpha-particle charge and we’ve treated the gold 
nucleus as a point charge qAu. The mass m is that of the alpha par-
ticle. The solution for rmin is

 rmin =
1

4pP0
 
2qaqAu

mvi 

2

The alpha particle is a helium nucleus, so m = 4 u = 6.64 *
10-27 kg and qa = 2e = 3.20 * 10-19 C. Gold has atomic number 
79, so qAu = 79e = 1.26 * 10-17 C. We can then calculate

 rmin = 2.7 * 10-14 m

This is only about 1/10,000 the size of the atom itself!

ASSESS We ignored the atom’s electrons in this example. In fact, 
they make almost no contribution to the alpha particle’s trajectory. 
The alpha particle is exceedingly massive compared to the elec-
trons, and the electrons are spread out over a distance very large 
compared to the size of the nucleus. Hence the alpha particle easily 
pushes them aside without any noticeable change in its velocity.

FiguRE 37.18 A before-and-after pictorial representation of 
an alpha particle colliding with a nucleus.

When the a particle is at its 
closest approach to the gold 
nucleus, its speed is zero.

alpha particles can come very close to the core. Because the electric force varies with 
the inverse square of the distance, the very large force of this very close approach can 
cause a large-angle scattering or a backward deflection of the alpha particle.

Thus the discovery of large-angle scattering of alpha particles led Rutherford to 
envision an atom in which negative electrons orbit an unbelievably small, massive, 
positive nucleus, rather like a miniature solar system. This is the nuclear model of 
the atom. Notice that nearly all of the atom is empty space—the void!

FiguRE 37.17 Alpha particles interact differently with a concentrated positive nucleus 
than they would with the spread-out charge in Thomson’s model.

Alpha

The alpha particle is only slightly deflected
by a Thomson atom because forces from the
spread-out positive and negative charges
nearly cancel.
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If the atom has a concentrated positive
nucleus, some alpha particles will be able to
come very close to the nucleus and thus feel
a very strong repulsive force.

Alpha
�
����

�

�

�

(b)(a)

Rutherford went on to make careful experiments of how the alpha particles scattered 
at different angles. From these experiments he deduced that the diameter of the atomic 
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nucleus is �1 * 10-14 m = 10 fm (1 fm = 1 femtometer = 10-15 m), increasing a 
little for elements of higher atomic number and atomic mass.

It may seem surprising to you that the Rutherford model of the atom, with its 
solar-system analogy, was not Thomson’s original choice. However, scientists at 
the time could not imagine matter having the extraordinarily high density implied 
by a small nucleus. Neither could they understand what holds the nucleus together, 
why the positive charges do not push each other apart. Thomson’s model, in which 
the positive charge was spread out and balanced by the negative electrons, actually 
made more sense. It would be several decades before the forces holding the nucleus 
together began to be understood, but Rutherford’s evidence for a very small nucleus 
was indisputable.

Stop to think 37.3 
 If the alpha particle has a 

positive charge, which way will it be deflected in 
the magnetic field?

 a. Up b. Down c. Into the page d. Out of the page

��
�

B
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The Electron volt
The joule is a unit of appropriate size in mechanics and thermodynamics, where 
we dealt with macroscopic objects, but it is poorly matched to the needs of atomic 
physics. It will be very useful to have an energy unit appropriate to atomic and 
nuclear events.

FiguRE 37.19 shows an electron accelerating (in a vacuum) from rest across a parallel-
plate capacitor with a 1.0 V potential difference. What is the electron’s kinetic energy 
when it reaches the positive plate? We know from energy conservation that Kf + qVf =

Ki + qVi, where U = qV  is the electric potential energy. Ki = 0 because the electron 
starts from rest, and the electron’s charge is q = -e. Thus

  Kf = -q(Vf - Vi) = -q �V = e �V = (1.60 * 10-19 C)(1.0 V)

  = 1.60 * 10-19 J

Let us define a new unit of energy, called the electron volt, as

 1 electron volt = 1 eV K 1.60 * 10-19 J

With this definition, the kinetic energy gained by the electron in our example is

 Kf = 1 eV

In other words, 1 electron volt is the kinetic energy gained by an electron (or pro-
ton) if it accelerates through a potential difference of 1 volt.

NoTE  The abbreviation eV uses a lowercase e but an uppercase V. Units of keV 
(103 eV), MeV (106 eV), and GeV (109 eV) are common. 

The electron volt can be a troublesome unit. One difficulty is its unusual name, which 
looks less like a unit than, say, “meter” or “second.” A more significant difficulty is that 
the name suggests a relationship to volts. But volts are units of electric potential, whereas 
this new unit is a unit of energy! It is crucial to distinguish between the potential V, mea-
sured in volts, and an energy that can be measured either in joules or in electron volts. 
You can now use electron volts anywhere that you would previously have used joules.

NoTE  To reiterate, the electron volt is a unit of energy, convertible to joules, and 
not a unit of potential. Potential is always measured in volts. However, the joule 
remains the SI unit of energy. It will be useful to express energies in eV, but you 
must convert this energy to joules before doing most calculations. 
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FiguRE 37.19 An electron accelerating 
across a 1 V potential difference gains 
1 eV of kinetic energy.

Electron starts
from rest.

Electron arrives
with K � 1 eV.
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using the Nuclear Model
The nuclear model of the atom makes it easy to understand and picture such processes 
as ionization. Because electrons orbit a positive nucleus, an x-ray photon or a rapidly 
moving particle, such as another electron, can knock one of the orbiting electrons 
away, creating a positive ion. Removing one electron makes a singly charged ion, 
with q = +e. Removing two electrons creates a doubly charged ion, with q = +2e. 
This is shown for lithium (atomic number 3) in FiguRE 37.20.

FiguRE 37.20 Different ionization stages of the lithium atom (Z = 3).
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Ef = Kf + Uf = 0 + 0 = 0 eV. This is larger than Ei by 13.6 eV, 
so the minimum energy that is required to ionize a hydrogen 
atom is 13.6 eV. This is called the atom’s ionization energy. If 
the electron receives Ú13.6 eV (2.17 * 10-18 J) of energy from 
a photon, or in a collision with another electron, or by any other 
means, it will be knocked out of the atom and leave a H+ ion 
behind.

EXAMpLE 37.7  The ionization energy of hydrogen
What is the minimum energy required to ionize a hydrogen atom?

SoLvE In Example 37.6 we found that the atom’s energy is 
Ei = -13.6 eV. Ionizing the atom means removing the elec-
tron and taking it very far away. As r S �, the potential energy 
becomes zero. Further, using the least possible energy to ion-
ize the atom will leave the electron, when it is very far away, 
very nearly at rest. Thus the atom’s energy after ionization is 

Conversion to eV gives

 E = -2.17 * 10-18 J *
1 eV

1.60 * 10-19 J
= -13.6 eV

ASSESS The negative energy reflects the fact that the electron is 
bound to the proton. You would need to add energy to remove 
the electron.

EXAMpLE 37.6  Energy of an electron
In a simple model of the hydrogen atom, the electron orbits the 
proton at 2.19 * 106 m/s in a circle with radius 5.29 * 10-11 m. 
What is the atom’s energy in eV?

ModEL The electron has a kinetic energy of motion, and the 
electron + proton system has an electric potential energy.

SoLvE The potential energy is that of two point charges, with 
qproton = +e and qelec = -e. Thus

 E = K + U =
1

2
 melecv

2 +
1

4pP0
 
(e)(-e)

r
= -2.17 * 10-18 J

Now we can find the speed:

  K =
1

2
 mv 2 = 1.33 * 10-12 J

  v = B 2K

m
= 2.0 * 107 m/s

This was the speed of the alpha particle in Example 37.4.

EXAMpLE 37.5  The speed of an alpha particle
Alpha particles are usually characterized by their kinetic energy in 
MeV. What is the speed of an 8.3 MeV alpha particle?

SoLvE Alpha particles are helium nuclei, having m = 4 u =
6.64 * 10-27 kg. The kinetic energy of this alpha particle is 
8.3 * 106 eV. First, we convert the energy to joules:

 K = 8.3 * 106 eV *
1.60 * 10-19 J

1.00 eV
= 1.33 * 10-12 J

The nuclear model also allows us to understand why, during chemical reactions 
and when an object is charged by rubbing, electrons are easily transferred but protons 
are not. The protons are tightly bound in the nucleus, shielded by all the electrons, but 
outer electrons are easily stripped away. Rutherford’s nuclear model has explanatory 
power that was lacking in Thomson’s model.
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37.7 into the Nucleus
Chapter 42 will discuss nuclear physics in more detail, but it will be helpful to give 
a brief overview of the nucleus. The relative masses of many of the elements were 
known from chemistry experiments by the mid-19th century. By arranging the ele-
ments in order of ascending mass, and noting recurring regularities in their chemical 
properties, the Russian chemist Dmitri Mendeleev first proposed the periodic table of 
the elements in 1872. But what did it mean to say that hydrogen was atomic number 1, 
helium number 2, lithium number 3, and so on?

It soon became known that hydrogen atoms can be only singly ionized, produc-
ing H+. A doubly ionized H++ is never observed. Helium, by contrast, can be both 
singly and doubly ionized, creating He+ and He++, but He+++ is not observed. Once 
Thomson discovered the electron and Millikan established the fundamental unit of 
charge, it seemed fairly clear that a hydrogen atom contains only one electron and one 
unit of positive charge, helium has two electrons and two units of positive charge, and 
so on. Thus the atomic number of an element, which is always an integer, describes 
the number of electrons (of a neutral atom) and the number of units of positive charge 
in the nucleus. The atomic number is represented by Z, so hydrogen is Z = 1, helium 
Z = 2, and lithium Z = 3. Elements are listed in the periodic table by their atomic 
number.

Rutherford’s discovery of the nucleus soon led to the recognition that the positive 
charge is associated with a positive subatomic particle called the proton. The proton’s 
charge is +e, equal in magnitude but opposite in sign to the electron’s charge. Further, 
because nearly all the atomic mass is associated with the nucleus, the proton is much 
more massive than the electron. According to Rutherford’s nuclear model, atoms with 
atomic number Z consist of Z negative electrons, with net charge -Ze, orbiting a mas-
sive nucleus that contains protons and has net charge +Ze. The Rutherford atom went 
a long way toward explaining the periodic table.

But there was a problem. Helium, with atomic number 2, has twice as many elec-
trons as hydrogen. Lithium, Z = 3, has three electrons. But it was known from chem-
istry measurements that helium is four times as massive as hydrogen and lithium is 
seven times as massive. If a nucleus contains Z protons to balance the Z orbiting elec-
trons, and if nearly all the atomic mass is contained in the nucleus, then helium should 
be simply twice as massive as hydrogen and lithium three times as massive.

The Neutron
About 1910, Thomson and his student Francis Aston developed a device called a 
mass spectrometer for measuring the charge-to-mass ratios of atomic ions. As As-
ton and others began collecting data, they soon found that many elements consist of 
atoms of differing mass! Neon, for example, had been assigned an atomic mass of 
20. But Aston found, as the data of FiguRE 37.21 show, that while 91% of neon atoms 
have mass m = 20 u, 9% have m = 22 u and a very small percentage have m = 21 u. 
Chlorine was found to be a mixture of 75% chlorine atoms with m = 35 u and 25% 
chlorine atoms with m = 37 u, both having atomic number Z = 17.

These difficulties were not resolved until the discovery, in 1932, of a third sub-
atomic particle. This particle has essentially the same mass as a proton but no electric 
charge. It is called the neutron. Neutrons reside in the nucleus, with the protons, 
where they contribute to the mass of the atom but not to its charge. As you’ll see in 
Chapter 42, neutrons help provide the “glue” that holds the nucleus together.

Stop to think 37.4 
 Carbon is the sixth element in the periodic table. How many 

electrons are in a C++ ion?
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FiguRE 37.21 The mass spectrum of neon.
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The neutron was the missing link needed to explain why atoms of the same element 
can have different masses. We now know that every atom with atomic number Z has 
a nucleus containing Z protons with charge +Ze. In addition, as shown in FiguRE 37.22, 
the nucleus contains N neutrons. There are a range of neutron numbers that happily 
form a nucleus with Z protons, creating a series of nuclei having the same Z-value (i.e., 
they are all the same chemical element) but different masses. Such a series of nuclei 
are called isotopes.

Chemical behavior is determined by the orbiting electrons. All isotopes of one 
element have the same number Z of orbiting electrons and have the same chemical 
properties. But different isotopes of the same element can have quite different nuclear 
properties.

An atom’s mass number A is defined to be A = Z + N. It is the total number of 
protons and neutrons in a nucleus. The mass number, which is dimensionless, is not 
the same thing as the atomic mass m. By definition, A is an integer. But because the 
proton and neutron masses are both �1 u, the mass number A is approximately the 
mass in atomic mass units.

The notation used to label isotopes is AZ, where the mass number A is given as a 
leading superscript. The proton number Z is not specified by an actual number but, 
equivalently, by the chemical symbol for that element. The most common isotope of 
neon has Z = 10 protons and N = 10 neutrons. Thus it has mass number A = 20 and 
it is labeled 20Ne. The neon isotope 22Ne has Z = 10 protons (that’s what makes it 
neon) and N = 12 neutrons. Helium has the two isotopes shown in FiguRE 37.23. The 
rare 3He is only 0.0001% abundant, but it can be isolated and has important uses in 
scientific research.

FiguRE 37.24 The fate of a Rutherford 
atom.

According to classical physics, an electron
would spiral into the nucleus while radiating
energy as an electromagnetic wave.

���

Electron

Nucleus

Stop to think 37.5 
 Carbon is the sixth element in the periodic table. How many 

protons and how many neutrons are there in a nucleus of the isotope 14C?

FiguRE 37.23 The two isotopes of 
helium. 3He is only 0.0001% abundant.
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37.8 Classical physics at the Limit
At the start of the 19th century, only a few scientists thought that matter consists of 
atoms. By century’s end, there was substantial evidence not only for atoms but also for 
the existence of charged subatomic particles. The explorations into atomic structure 
culminated with Rutherford’s nuclear model.

Rutherford’s nuclear model of the atom matched the experimental evidence about 
the structure of atoms, but it had one serious shortcoming. According to Maxwell’s 
theory of electricity and magnetism, the orbiting electrons in a Rutherford atom should 
act as small antennas and radiate electromagnetic waves. That sounds encouraging, 
because we know that atoms can emit light, but the radiation of electromagnetic waves 
means the atoms would continuously lose energy. As FiguRE 37.24 shows, this would 
cause the electrons to spiral into the nucleus! Calculations showed that a Rutherford 
atom can last no more than about a microsecond. In other words, classical Newto-
nian mechanics and electromagnetism predict that an atom in which electrons orbit a 
nucleus would be highly unstable and would immediately self-destruct. This clearly 
does not happen.

The experimental efforts of the late 19th and early 20th centuries had been impres-
sive, and there could be no doubt about the existence of electrons, about the small 
positive nucleus, and about the unique discrete spectrum emitted by each atom. But 
the theoretical framework for understanding such observations had lagged behind. As 
the new century dawned, physicists could not explain the structure of atoms, could not 
explain the stability of matter, could not explain discrete spectra or blackbody radia-
tion, and could not explain the origin of x rays or radioactivity.
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FiguRE 37.22 The nucleus of an atom 
contains protons and neutrons.
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Yet few physicists were willing to abandon the successful and long-cherished theo-
ries of classical physics. Most considered these “problems” with atoms to be minor 
discrepancies that would soon be resolved. But classical physics had, indeed, reached 
its limit, and a whole new generation of brilliant young physicists, with new ideas, 
was about to take the stage. Among the first was an unassuming young man in Bern, 
Switzerland. His scholastic record had been mediocre, and the best job he could find 
upon graduation was as a clerk in the patent office, examining patent applications. His 
name was Albert Einstein.

FiguRE 37.25 A before-and-after pictorial representation of 
the beta decay.

in comparison to a nuclear radius. The detected electron is very far 
from the nucleus, so Uf = 0.

SoLvE The conservation of energy statement is Kf + Uf = Ki + Ui. 
The electron starts outside the nucleus, even though at the sur-
face, so the spherical nucleus can be treated as a point charge 
with q1 = 55e. The electron has q2 = - e, so the initial electron-
nucleus potential energy is

 Ui =
Kq1q2

ri

 =
(9.0 * 109 N m2/C2)(55 * 1.60 * 10-19 C)(-1.60 * 10-19 C)

6.20 * 10-15 m

 = - 2.04 * 10-12 J *
1 eV

1.60 * 10-19 J
= -12.8 MeV

To be detected in the laboratory with Kf = 300 keV = 0.3 MeV, 
the electron had to be ejected from the nucleus with

 Ki = Kf + Uf - Ui = 0.3 MeV + 0 MeV + 12.8 MeV

   = 13.1 MeV

ASSESS A negative electron is very strongly attracted to the nucleus. 
It’s not surprising that it has to be ejected from the nucleus with an 
enormous amount of kinetic energy to be able to escape at all.

ChALLENgE EXAMpLE 37.8  Radioactive decay
The cesium isotope 137Cs, with Z = 55, is radioactive and decays 
by beta decay. A beta particle is observed in the laboratory with a 
kinetic energy of 300 keV. With what kinetic energy was the beta 
particle ejected from the 12.4-fm-diameter nucleus?

ModEL A beta particle is an electron that was ejected from the nu-
cleus of an atom during a radioactive decay. Energy is conserved 
in the decay.

viSuALizE FiguRE 37.25 shows a before-and-after pictorial repre-
sentation. The electron starts by being ejected from the nucleus 
with kinetic energy Ki. It has electric potential energy Ui due to 
its interaction with the nucleus. The potential energy due to the at-
om’s orbiting electrons is negligible because they are so far away 
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The end of classical physics. . .
Atomic spectra had to be related to atomic structure, but no one could understand how. 
Classical physics could not explain

• The stability of matter.

• Discrete atomic spectra.

• Continuous blackbody spectra.

Atomic Spectra and the Nature of Light
The spectra emitted by the gas in a discharge tube consist of discrete wave-
lengths.

• Every element has a unique spectrum.

• Every spectral line in an element’s 
absorption spectrum is present in its 
emission spectrum, but not all emis-
sion lines are seen in the absorption 
spectrum.

The wavelengths of the hydrogen emission spectrum are

l =
91.18 nm

1 1

m2 -
1

n2 2  m = 1, 2, 3, p  n = m + 1, m + 2, p

Nineteenth-century scientists focused on understanding matter and light. Faraday’s invention of the 
gas discharge tube launched two important avenues of inquiry:

• Atomic structure.

• Atomic spectra.

Applications
Millikan’s	oil-drop	experiment measured the fundamental unit 
of charge:

 e = 1.60 * 10-19 C

One electron	volt (1 eV) is the energy an electron or proton (charge 
{e) gains by accelerating through a potential difference of 1 V:

1 eV = 1.60 * 10-19 J

Terms and Notation
spectrometer
spectrum
continuous spectrum
blackbody radiation
Wien’s law
gas discharge tube
discrete spectrum
Balmer series

Balmer formula
cathode glow
cathode rays
Crookes tube
x rays
crossed-field experiment
subatomic particle
electron

Millikan oil-drop experiment
radioactivity
alpha rays
beta rays
nucleus
nuclear model of the atom
electron volt, eV
atomic number, Z

proton
mass spectrometer
neutron
isotope
mass number, A

���

S u M M A R y
The	goal	of	Chapter	37	has	been	to	learn	about	the	structure	and	properties	of	atoms.

important Concepts/Experiments

Cathode Rays and Atomic Structure
Thomson found that cathode rays are negative, sub-
atomic particles. These were soon named electrons. 
Electrons are

• Constituents of atoms.

• The fundamental units of negative charge.

Rutherford discovered the atomic nucleus.
His nuclear model of the atom proposes

• A very small, dense positive nucleus.

• Orbiting negative electrons.

Later, different isotopes	were 
recognized to contain different 
numbers of neutrons in a
nucleus with the same number 
of protons.

Emission

Absorption

�
��

�

�

�



Exercises and Problems    1121

C o N C E p T u A L  Q u E S T i o N S

 1. a. Summarize the experimental evidence prior to the research 
of Thomson by which you might conclude that cathode rays 
are some kind of particle.

 b. Summarize the experimental evidence prior to the research 
of Thomson by which you might conclude that cathode rays 
are some kind of wave.

 2. Thomson observed deflection of the cathode-ray particles due to 
magnetic and electric fields, but there was no observed deflec-
tion due to gravity. Why not?

 3. What was the significance of Thomson’s experiment in which 
an off-center electrode was used to collect charge deflected by a 
magnetic field?

 4. What is the evidence by which we know that an electron from an 
iron atom is identical to an electron from a copper atom?

 5. a. Describe the experimental evidence by which we know that 
the nucleus is made up not just of protons.

 b. The neutron is not easy to isolate or control because it has 
no charge that would allow scientists to manipulate it. What 
evidence allowed scientists to determine that the mass of the 
neutron is almost the same as the mass of a proton?

 6. Rutherford studied alpha particles using the crossed-field tech-
nique Thomson had invented to study cathode rays. Assuming 

that valpha � vcathode ray (which turns out to be true), would the 
deflection of an alpha particle by a magnetic field be larger, 
smaller, or the same as the deflection of a cathode-ray particle 
by the same field? Explain.

 7. Once Thomson showed that atoms consist of very light negative 
electrons and a much more massive positive charge, why didn’t 
physicists immediately consider a solar-system model of elec-
trons orbiting a positive nucleus? Why would physicists in 1900 
object to such a model?

 8. Explain why the observation of alpha particles scattered at very 
large angles led Rutherford to reject Thomson’s model of the 
atom and to propose a nuclear model.

 9. Identify the element, the isotope, and the charge state of each 
atom in FiguRE Q37.9. Give your answer in symbolic form, such 
as 4He+ or 8Be-.

FiguRE Q37.9 

�

�

pn
pn

n

p

(a) �

�

�

�

�

�

�

p pp n
p n n

nnn p
p

n
(b)

E X E R C i S E S  A N d  p R o B L E M S

Problems labeled integrate material from earlier chapters.

Exercises

Section 37.2 The Emission and Absorption of Light

 1. | Figure 37.7 identified the wavelengths of four lines in the 
Balmer series of hydrogen.

 a. Determine the Balmer formula n and m values for these 
wavelengths.

 b. Predict the wavelength of the fifth line in the spectrum.
 2. | What are the wavelengths of spectral lines in the Balmer series 

with n = 6, 8, and 10?
 3. || The wavelengths in the hydrogen spectrum with m = 1 

form a series of spectral lines called the Lyman series. Calcu-
late the wavelengths of the first four members of the Lyman 
series.

 4. | Two of the wavelengths emitted by a hydrogen atom are
102.6 nm and 1876 nm.

 a. What are the m and n values for each of these wavelengths?
 b. For each of these wavelengths, is the light infrared, visible, or 

ultraviolet?
 5. | What temperature, in �C, is a blackbody whose emission spec-

trum peaks at (a) 300 nm and (b) 3.00 mm?
 6. || A 2.0-cm-diameter metal sphere is glowing red, but a spec-

trum shows that its emission spectrum peaks at an infrared 
wavelength of 2.0 mm. How much power does the sphere 
radiate?

 7. || A ceramic cube 3.0 cm on each side radiates heat at 630 W. At 
what wavelength, in mm, does its emission spectrum peak?

Section 37.3 Cathode Rays and X Rays

Section 37.4 The Discovery of the Electron

 8. | The current in a Crookes tube is 10 nA. How many electrons 
strike the face of the glass tube each second?

 9. | An electron in a cathode-ray beam passes between 2.5-cm-
long parallel-plate electrodes that are 5.0 mm apart. A 2.0 mT, 
2.5-cm-wide magnetic field is perpendicular to the electric field 
between the plates. The electron passes through the electrodes 
without being deflected if the potential difference between the 
plates is 600 V.

 a. What is the electron’s speed?
 b. If the potential difference between the plates is set to zero, 

what is the electron’s radius of curvature in the magnetic field?
 10. | Electrons pass through the parallel electrodes shown in

FiguRE EX37.10 with a speed of 5.0 * 106 m/s. What magnetic 
field strength and direction will allow the electrons to pass 
through without being deflected? Assume that the magnetic 
field is confined to the region between the electrodes.

FiguRE EX37.10 
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Section 37.5 The Fundamental Unit of Charge

 11. | A 0.80@mm@diameter oil droplet is observed between two par-
allel electrodes spaced 11 mm apart. The droplet hangs motion-
less if the upper electrode is 20 V more positive than the lower 
electrode. The density of the oil is 885 kg/m3.

 a. What is the droplet’s mass?
 b. What is the droplet’s charge?
 c. Does the droplet have a surplus or a deficit of electrons? How 

many?
 12. || An oil droplet with 15 excess electrons is observed between 

two parallel electrodes spaced 12 mm apart. The droplet hangs 
motionless if the upper electrode is 25 V more positive than the 
lower electrode. The density of the oil is 860 kg/m3. What is the 
radius of the droplet?

 13. || Suppose that in a hypothetical oil-drop experiment you mea-
sure the following values for the charges on the drops: 3.99 *
10-19 C, 6.65 * 10-19 C, 2.66 * 10-19 C, 10.64 *  10-19 C, and 
9.31 * 10-19 C. What is the largest value of the fundamental unit 
of charge that is consistent with your measurements?

Section 37.6 The Discovery of the Nucleus

Section 37.7 Into the Nucleus

 14. |  Determine:
 a. The speed of a 300 eV electron.
 b. The speed of a 3.5 MeV H+  ion.
 c. The specific type of particle that has 2.09 MeV of kinetic 

energy when moving with a speed of 1.0 * 107 m/s.
 15. | Determine:
 a. The speed of a 7.0 MeV neutron.
 b. The speed of a 15 MeV helium atom.
 c. The specific type of particle that has 1.14 keV of kinetic en-

ergy when moving with a speed of 2.0 * 107 m/s.
 16. ||  Express in eV (or keV or MeV if more appropriate):
 a. The kinetic energy of an electron moving with a speed of 

5.0 * 106 m/s.
 b. The potential energy of an electron and a proton 0.10 nm 

apart.
 c. The kinetic energy of a proton that has accelerated from rest 

through a potential difference of 5000 V.
 17. || Express in eV (or keV or MeV if more appropriate):
 a. The kinetic energy of a Li++ ion that has accelerated from rest 

through a potential difference of 5000 V.
 b. The potential energy of two protons 10 fm apart.
 c. The kinetic energy, just before impact, of a 200 g ball dropped 

from a height of 1.0 m.
 18. |  A parallel-plate capacitor with a 1.0 mm plate separation is 

charged to 75 V. With what kinetic energy, in eV, must a proton 
be launched from the negative plate if it is just barely able to 
reach the positive plate?

 19. | How many electrons, protons, and neutrons are con-
tained in the following atoms or ions: (a) 6Li, (b) 16O+, and
(c) 13N++?

 20. | How many electrons, protons, and neutrons are contained in 
the following atoms or ions: (a) 10B, (b) 13N+, and (c) 17O+++?

 21. | Write the symbol for an atom or ion with:
 a. five electrons, five protons, and six neutrons.
 b. five electrons, six protons, and eight neutrons.

 22. |  Write the symbol for an atom or ion with:
 a. one electron, one proton, and two neutrons.
 b. seven electrons, eight protons, and ten neutrons.
 23. |  Consider the gold isotope 197Au.
 a. How many electrons, protons, and neutrons are in a neutral 

197Au atom?
 b. The gold nucleus has a diameter of 14.0 fm. What is the den-

sity of matter in a gold nucleus?
 c. The density of lead is 11,400 kg/m3. How many times the 

density of lead is your answer to part b?
 24. ||  Consider the lead isotope 207Pb.
 a. How many electrons, protons, and neutrons are in a neutral 

207Pb atom?
 b. The lead nucleus has a diameter of 14.2 fm. What is the elec-

tric field strength at the surface of a lead nucleus?

problems

 25. || What is the total energy, in MeV, of
 a. A proton traveling at 99% of the speed of light?
 b. An electron traveling at 99% of the speed of light?

Hint: This problem uses relativity.
 26. | What is the velocity, as a fraction of c, of
 a. A proton with 500 GeV total energy?
 b. An electron with 2.0 GeV total energy?

Hint: This problem uses relativity.
 27. | You learned in Chapter 36 that mass has an equivalent amount 

of energy. What are the energy equivalents in MeV of the rest 
masses of an electron and a proton?

 28. || The factor g appears in many relativistic expressions. A 
value g = 1.01 implies that relativity changes the Newto-
nian values by approximately 1% and that relativistic effects 
can no longer be ignored. At what kinetic energy, in MeV, 
is g = 1.01 for (a) an electron, (b) a proton, and (c) an alpha 
particle?

 29. | The fission process n + 235U S 236U S 144Ba + 89Kr + 3n 
converts 0.185 u of mass into the kinetic energy of the fission 
products. What is the total kinetic energy in MeV?

 30. || An electron in a cathode-ray beam passes between 2.5-cm-
long parallel-plate electrodes that are 5.0 mm apart. A 1.0 mT, 
2.5-cm-wide magnetic field is perpendicular to the electric field 
between the plates. If the potential difference between the plates 
is 150 V, the electron passes through the electrodes without be-
ing deflected. If the potential difference across the plates is set 
to zero, through what angle is the electron deflected as it passes 
through the magnetic field?

 31. || The two 5.0-cm-long paral-
lel electrodes in FiguRE p37.31 
are spaced 1.0 cm apart. A pro-
ton enters the plates from one 
end, an equal distance from 
both electrodes. A potential 
difference �V = 500 V across 
the electrodes deflects the proton so that it strikes the outer end 
of the lower electrode. What magnetic field strength and direc-
tion will allow the proton to pass through undeflected while the 
500 V potential difference is applied? Assume that both the elec-
tric and magnetic fields are confined to the space between the 
electrodes.
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 32. || An unknown charged particle passes without deflection 
through crossed electric and magnetic fields of strengths 
187,500 V/m and 0.1250 T, respectively. The particle passes 
out of the electric field, but the magnetic field continues, and the 
particle makes a semicircle of diameter 25.05 cm. What is the 
particle’s charge-to-mass ratio? Can you identify the particle?

 33. || In one of Thomson’s experiments he placed a thin metal foil 
in the electron beam and measured its temperature rise. Consider 
a cathode-ray tube in which electrons are accelerated through 
a 2000 V potential difference, then strike a 10 mg copper foil. 
What is the electron-beam current if the foil temperature rises 
6.0�C in 10 s? Assume no loss of energy by radiation or other 
means. The specific heat of copper is 385 J/kg K.

 34. || A neutral lithium atom has three electrons. As you will dis-
cover in Chapter 41, two of these electrons form an “inner core,” 
but the third—the valence electron—orbits at much larger ra-
dius. From the valence electron’s perspective, it is orbiting a 
spherical ball of charge having net charge +1e (i.e., the three 
protons in the nucleus and the two inner-core electrons). The 
energy required to ionize a lithium atom is 5.14 eV. According 
to Rutherford’s nuclear model of the atom, what are the orbital 
radius and speed of the valence electron?
Hint: Consider the energy needed to remove the electron and the 
force needed to give the electron a circular orbit.

 35. ||  The diameter of an atom is 1.2 * 10-10 m and the diameter of 
its nucleus is 1.0 * 10-14 m. What percent of the atom’s volume 
is occupied by mass and what percent is empty space?

 36. || A 222Rn  atom (radon) in a 0.75 T magnetic field undergoes 
radioactive decay, emitting an alpha particle in a direction per-

pendicular to B
u

. The alpha particle begins cyclotron motion with 
a radius of 45 cm. With what energy, in MeV, was the alpha 
particle emitted?

 37. ||| The diameter of an aluminum atom of mass 27 u is approxi-
mately 1.2 * 10-10 m. The diameter of the nucleus of an alumi-
num atom is approximately 8 * 10-15 m. The density of solid 
aluminum is 2700 kg/m3.

 a. What is the average density of an aluminum atom?
 b. Your answer to part a was larger than the density of solid 

aluminum. This suggests that the atoms in solid alumi-
num have spaces between them rather than being tightly 
packed together. What is the average volume per atom in 
solid aluminum? If this volume is a sphere, what is the 
radius?

Hint: The volume per atom is not the same as the volume of an 
atom.

 c. What is the density of the aluminum nucleus? By what fac-
tor is the nuclear density larger than the density of solid 
aluminum?

 38. |  The charge-to-mass ratio of a nucleus, in units of e/u, is q/m =
Z/A. For example, a hydrogen nucleus has q/m = 1/1 = 1.

 a. Make a graph of charge-to-mass ratio versus proton number 
Z for nuclei with Z = 5, 10, 15, 20, . . ., 90. For A, use the 
average atomic mass shown on the periodic table of elements 
in Appendix B. Show each of these 18 nuclei as a dot, but 
don’t connect the dots together as a curve.

 b. Describe any trend that you notice in your graph.
 c. What’s happening in the nuclei that is responsible for this 

trend?
 39. | If the nucleus is a few fm in diameter, the distance between the 

centers of two protons must be �2 fm.

 a. Calculate the repulsive electric force between two pro-
tons that are 2.0 fm apart.

 b. Calculate the attractive gravitational force between two 
protons that are 2.0 fm apart. Could gravity be the force 
that holds the nucleus together?

 c. Your answers to parts a and b imply that there must be 
some other force that binds the nucleus together and 
prevents the protons from pushing each other out. What 
characteristics of this force can you deduce from the 
discussion of the atom and the nucleus in this chapter?

 40. ||| A proton is shot straight outward from the surface of 
a 1.0-mm-diameter glass bead that has been charged to 
0.20 nC. If the proton is launched with 520 eV of kinetic 
energy, what is its kinetic energy, in eV, when it is 2.0 mm 
from the surface?

 41. || In a head-on collision, the closest approach of a 
6.24 MeV alpha particle to the center of a nucleus is  
6.00 fm. The nucleus is in an atom of what element?  
Assume the nucleus remains at rest.

 42. || Through what potential difference would you need to ac-
celerate an alpha particle, starting from rest, so that it will 
just reach the surface of a 15-fm-diameter 238U nucleus?

 43. ||  The oxygen nucleus 16O has a radius of 3.0 fm.
 a. With what speed must a proton be fired toward an oxy-

gen nucleus to have a turning point 1.0 fm from the 
surface? Assume the nucleus remains at rest.

 b. What is the proton’s kinetic energy in MeV?
 44. || To initiate a nuclear reaction, an experimental nuclear 

physicist wants to shoot a proton into a 5.50-fm-diameter 12C 
nucleus. The proton must impact the nucleus with a kinetic 
energy of 3.00 MeV. Assume the nucleus remains at rest.

 a. With what speed must the proton be fired toward the 
target?

 b. Through what potential difference must the proton be 
accelerated from rest to acquire this speed?

Challenge problems

 45. An alpha particle approaches a 197Au nucleus with a speed 
of 1.50 * 107 m/s. As FiguRE Cp37.45 shows, the alpha 
particle is scattered at a 49� angle at the slower speed of 
1.49 * 107 m/s. In what 
direction does the 197Au 
nucleus recoil, and with 
what speed?

 46. Physicists first attempted to understand the hydrogen atom 
by applying the laws of classical physics. Consider an 
electron of mass m and charge -e in a circular orbit of 
radius r around a proton of charge +e.

 a. Use Newtonian physics to show that the total energy of 
the atom is E = -e2/8pP0r.

 b. Show that the potential energy is -2 times the electron’s 
kinetic energy. This result is called the virial theorem.

 c. The minimum energy needed to ionize a hydrogen 
atom (i.e., to remove the electron) is found experimen-
tally to be 13.6 eV. From this information, what are the 
electron’s speed and the radius of its orbit?

FiguRE Cp37.45 

��
a

�
�
��

197Au
nucleus

49�

Exercises and Problems    1123



	47.	 Consider	an	oil	droplet	of	mass	m	and	charge	q.	We	want	to	de-
termine	the	charge	on	the	droplet	in	a	Millikan-type	experiment.	
We	will	do	this	in	several	steps.	Assume,	for	simplicity,	that	the	
charge	is	positive	and	that	the	electric	field	between	the	plates	
points	upward.

	 a.	 An	electric	 field	 is	 established	by	 applying	 a	potential	 dif-
ference	 to	 the	plates.	 It	 is	 found	 that	 a	 field	of	 strength	 E0	
will	cause	the	droplet	to	be	suspended	motionless.	Write	an	
expression	for	the	droplet’s	charge	in	terms	of	the	suspending	
field	E0	and	the	droplet’s	weight	mg.

	 b.	 The	field	E0	is	easily	determined	by	knowing	the	plate	spac-
ing	and	measuring	the	potential	difference	applied	to	them.	
The	larger	problem	is	to	determine	the	mass	of	a	microscopic	
droplet.	Consider	a	mass	m	falling	through	a	viscous	medium	
in	which	there	is	a	retarding	or	drag	force.	For	very	small	par-
ticles,	the	retarding	force	is	given	by	Fdrag = -bv	where	b	is	a	
constant	and	v	the	droplet’s	velocity.	The	sign	recognizes	that	
the	drag	force	vector	points	upward	when	the	droplet	is	fall-
ing	(negative	v).	A	falling	droplet	quickly	reaches	a	constant	
speed,	called	the	terminal speed.	Write	an	expression	for	the	
terminal	speed	vterm	in	terms	of	m,	g,	and	b.

	 c.	 A	 spherical	 object	 of	 radius	 r	 moving	 slowly	 through	 the	
air	is	known	to	experience	a	retarding	force	Fdrag = -6phrv	

where	h	is	the	viscosity	of	the	air.	Use	this	and	your	answer	
to	part	b	to	show	that	a	spherical	droplet	of	density	r	falling	
with	a	terminal	velocity	vterm	has	a	radius

	 r = B 9hvterm

2rg

	 d.	 Oil	has	a	density	860	kg/m3.	An	oil	droplet	is	suspended	be-
tween	two	plates	1.0	cm	apart	by	adjusting	the	potential	differ-
ence	between	them	to	1177	V.	When	the	voltage	is	removed,	
the	droplet	falls	and	quickly	reaches	constant	speed.	It	is	timed	
with	a	stopwatch,	and	falls	3.00	mm	in	7.33	s.	The	viscosity	of	
air	is	1.83 * 10-5	kg/m	s.	What	is	the	droplet’s	charge?

	 e.	 How	many	units	of	the	fundamental	electric	charge	does	this	
droplet	possess?

	48.	 A	classical	atom	orbiting	at	frequency	f	would	emit	electromag-
netic	 waves	 of	 frequency	 f	 because	 the	 electron’s	 orbit,	 seen	
edge-on,	looks	like	an	oscillating	electric	dipole.

	 a.	 At	what	radius,	in	nm,	would	the	electron	orbiting	the	proton	
in	a	hydrogen	atom	emit	light	with	a	wavelength	of	600	nm?

	 b.	 What	is	the	total	mechanical	energy	of	this	atom?

Stop to think AnSwerS

Stop to Think 37.4:	4.	Neutral	carbon	would	have	six	electrons.	C++	
is	missing	two.

Stop to Think 37.5:	 6 protons and 8 neutrons.	 The	 number	 of	
protons	 is	 the	 atomic	 number,	 which	 is	 6.	 That	 leaves	 14 - 6 = 8	
neutrons.

Stop to Think 37.1:	 a is emission, b is absorption.	 All	 wave-
lengths	in	the	absorption	spectrum	are	seen	in	the	emission	spec-
trum,	but	not	all	wavelengths	in	the	emission	spectrum	are	seen	in	
the	absorption	spectrum.

Stop to Think 37.2:	b.	This	observation	says	that	all	electrons	are	
the	same.

Stop to Think 37.3:	b.	From	the	right-hand	rule	with	v 	

u
	to	the	right	

and	B
u

	out	of	the	page.
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A scanning tunneling micro
scope image shows an electron 
standing wave in a “quantum 
corral” made from 60 iron 
atoms.

Quantization

Matter Waves
You’ll learn that the wave-like properties 
of matter are described by the de Broglie 
wavelength l = h/mv. Wave properties 
are not noticeable for macroscopic matter 
but are essential to understand matter at 
the atomic level.

You’ll learn that light and matter have characteristics of both particles and waves.

A classical particle confined to a box would 
bounce back and forth. But reflected matter 
waves set up a standing wave. You’ll see 
how this leads to quantized energy levels.

Waves and Particles
You’ve learned that light is an 
electromagnetic wave.

As we found in Chapter 22, light 
exhibits interference and diffrac-
tion, the hallmarks of waviness.

 Looking Back
Chapter 22 Interference and diffraction

But matters are more complex.

At very low intensity, light hits the 
screen in “chunks.” Sometimes 
light acts like a particle.

An electron is a basic, sub- 
atomic particle.

Our model of conduction in 
metals was based on the motion 
of particle-like electrons moving 
through a lattice of fixed ions.

���

���

���

Or maybe not.

Shooting electrons through two 
closely spaced slits produces an 
interference pattern. Sometimes 
matter acts like a wave.

Photons
The photon model of light says that

■ Light consists of discrete, massless 
“chunks” called photons.

■ The energy of a photon of frequency f 
is quantized: Ephoton = hf , where h is a 
constant.

In the photoelectric effect, short-wavelength 
light ejects electrons from a metal surface 
but long-wavelength light does not. You’ll 
learn how this is evidence for photons.

Light

Cathode Anode

Bohr’s Atomic Model
By adding quantum ideas to Ruther-
ford’s solar-system model of the atom, 
Bohr created an atomic model in which 
the electrons can orbit only with certain 
discrete energies. These are the energy 
levels of the atom.

 Looking Back
Section 37.6 Rutherford’s atom

You’ll learn to use 
energy-level diagrams 
to understand the dis- 
crete emission and 
absorption spectra of 
gases. E1

E2

E3

Emission

Absorption

 Looking Ahead The goal of Chapter 38 is to understand the quantization of energy for light and matter.
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38.1 The Photoelectric Effect
In 1886, Heinrich Hertz, who was the first to demonstrate that electromagnetic 
waves can be artificially generated, noticed that a negatively charged electro-
scope could be discharged by shining ultraviolet light on it. Hertz’s observation 
caught the attention of J. J. Thomson, who inferred that the ultraviolet light was 
causing the electrode to emit electrons, thus restoring itself to electric neutral-
ity. The emission of electrons from a substance due to light striking its surface 
came to be called the photoelectric effect. The emitted electrons are often called 
photoelectrons to indicate their origin, but they are identical in every respect to 
all other electrons.

Although this discovery might seem to be a minor footnote in the history of sci-
ence, it soon became a, or maybe the, pivotal event that opened the door to new 
ideas.

Characteristics of the Photoelectric Effect
It was not the discovery itself that dealt the fatal blow to classical physics, but the 
specific characteristics of the photoelectric effect found around 1900 by one of Hertz’s 
students, Phillip Lenard. Lenard built a glass tube, shown in FigurE 38.1, with two fac-
ing electrodes and a window. After removing the air from the tube, he allowed light 
to shine on the cathode.

Lenard found a counterclockwise current (clockwise flow of electrons) through 
the ammeter whenever ultraviolet light was shining on the cathode. There are no 
junctions in this circuit, so the current must be the same all the way around the loop. 
The current in the space between the cathode and the anode consists of electrons 
moving freely through the evacuated space between the electrodes (i.e., not inside 
a wire) at the same rate (same number of electrons per second) as the current in
the wire. There is no current if the electrodes are in the dark, so electrons don’t spon-
taneously leap off the cathode. Instead, the light causes electrons to be ejected from 
the cathode at a steady rate.

Lenard used a battery to establish an adjustable potential difference �V  between 
the two electrodes. He then studied how the current I varied as the potential difference 
and the light’s frequency and intensity were changed. Lenard made the following 
observations:

 1. The current I is directly proportional to the light intensity. If the light intensity is 
doubled, the current also doubles.

 2. The current appears without delay when the light is applied. To Lenard, this 
meant within the �  0.1 s with which his equipment could respond. Later experi-
ments showed that the current begins in less than 1 ns.

 3. Photoelectrons are emitted only if the light frequency f exceeds a threshold 
frequency f0. This is shown in the graph of FigurE 38.2.

 4. The value of the threshold frequency f0 depends on the type of metal from which 
the cathode is made.

 5. If the potential difference �V  is more than about 1 V positive (anode positive 
with respect to the cathode), the current does not change as �V  is increased. If 
�V  is made negative (anode negative with respect to the cathode), by reversing 
the battery, the current decreases until, at some voltage �V = -Vstop the current 
reaches zero. The value of Vstop is called the stopping potential. This behavior 
is shown in FigurE 38.3.

 6. The value of Vstop is the same for both weak light and intense light. A more in-
tense light causes a larger current, as Figure 38.3 shows, but in both cases the 
current ceases when �V = -Vstop.

NoTE  We’re defining Vstop to be a positive number. The potential difference that 
stops the electrons is �V = -Vstop, with an explicit minus sign. 

FigurE 38.1 Lenard’s experimental 
device to study the photoelectric effect.

� �

Light

Cathode Anode

�V I

Ammeter

A

The potential 
difference can 
be changed or 
reversed.

The current can be measured
while the potential difference, 
the light frequency, and the
light intensity are varied.

The photoelectrons 
form a current 
between the cathode 
and the anode.

Ultraviolet light causes the metal 
cathode to emit electrons. This is 
the photoelectric effect.

FigurE 38.2 The photoelectric current as 
a function of the light frequency f for 
light of constant intensity.

f

I

0 f0

No matter how intense the light, 
there is no current if f � f0.

Threshold frequency

No matter how weak 
the light, there is a 
current if f � f0.

FigurE 38.3 The photoelectric current as 
a function of the battery potential.

�V

I

0�Vstop

Intense light

Weaker light

No current flows
if �V � �Vstop.

The stopping potential is the same 
for intense light and weak light.

The current becomes inde-
pendent of �V for �V � 0.

A more intense light
causes a larger current.
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Classical interpretation of the Photoelectric Effect
The mere existence of the photoelectric effect is not, as is sometimes assumed, a dif-
ficulty for classical physics. You learned in Chapter 25 that electrons are the charge 
carriers in a metal. The electrons move freely but are bound inside the metal and 
do not spontaneously spill out of an electrode at room temperature. But a piece of 
metal heated to a sufficiently high temperature does emit electrons in a process called 
thermal emission. The electron gun in an older television or computer display terminal 
starts with the thermal emission of electrons from a hot tungsten filament.

A useful analogy, shown in FigurE 38.4, is the water in a swimming pool. Water 
molecules do not spontaneously leap out of the pool if the water is calm. To remove a 
water molecule, you must do work on it to lift it upward, against the force of gravity. 
A minimum energy is needed to extract a water molecule, namely the energy needed 
to lift a molecule that is right at the surface. Removing a water molecule that is deeper 
requires more than the minimum energy. People playing in the pool add energy to the 
water, causing waves. If sufficient energy is added, a few water molecules will gain 
enough energy to splash over the edge and leave the pool.

Similarly, a minimum energy is needed to free an electron from a metal. To extract 
an electron, you would need to exert a force on it and pull it (i.e., do work on it) until 
its speed is large enough to escape. The minimum energy E0 needed to free an electron 
is called the work function of the metal. Some electrons, like the deeper water mol-
ecules, may require more energy than E0 to escape, but all will require at least E0. 
Different metals have different work functions; Table 38.1 provides a short list. Notice 
that work functions are given in electron volts.

Heating a metal, like splashing in the pool, increases the thermal energy of the 
electrons. At a sufficiently high temperature, the kinetic energy of a small percent-
age of the electrons may exceed the work function. These electrons can “make it out 
of the pool” and leave the metal. In practice, there are only a few elements, such as 
tungsten, for which thermal emission can become significant before the metal melts!

Suppose we could raise the temperature of only the electrons, not the crystal lattice. 
One possible way to do this is to shine a light wave on the surface. Because electro-
magnetic waves are absorbed by the conduction electrons, not by the positive ions, 
the light wave heats only the electrons. Eventually the electrons’ energy is transferred 
to the crystal lattice, via collisions, but if the light is sufficiently intense, the electron 
temperature may be significantly higher than the temperature of the metal. In 1900, it 
was plausible to think that an intense light source could cause the thermal emission of 
electrons without melting the metal.

The Stopping Potential
Photoelectrons leave the cathode with kinetic energy. An electron with energy Eelec 
inside the metal loses energy �E as it escapes, so it emerges as a photoelectron with 
K = Eelec - �E. The work function energy E0 is the minimum energy needed to 
remove an electron, so the maximum possible kinetic energy of a photoelectron is

 Kmax = Eelec - E0 (38.1)

Some photoelectrons reach the anode, creating a measurable current, but many do 
not. However, as FigurE 38.5 shows:

	■ A positive anode attracts the photoelectrons. Once all electrons reach the anode, 
which happens for �V  greater than about 1 V, a further increase in �V  does not 
cause any further increase in the current I. That is why the graph lines become hori-
zontal on the right side of Figure 38.3.

	■ A negative anode repels the electrons. However, photoelectrons leaving the cath-
ode with sufficient kinetic energy can still reach the anode. The current steadily 
decreases as the anode voltage becomes increasingly negative until, at the stopping 
potential, all electrons are turned back and the current ceases. This was the behav-
ior observed on the left side of Figure 38.3.

FigurE 38.4 A swimming pool analogy 
of electrons in a metal.

Water

h

The minimum energy to remove a 
drop of water from the pool is mgh.

Removing this drop
takes more than the
minimum energy.

Adding energy to 
the water and making 
waves can cause a few 
of the most energetic 
drops to escape.

TABLE 38.1 The work function 
for some of the elements

Element E0 (eV)

Potassium 2.30

Sodium 2.75

Aluminum 4.28

Tungsten 4.55

Copper 4.65

Iron 4.70

Gold 5.10

FigurE 38.5 The photoelectron current 
depends on the anode potential.

��

� �

Cathode Anode

UV

�V � 0: The photoelectrons leave the cathode
in all directions. Only a few reach the anode.

�V � 0: A positive anode attracts the
photoelectrons to the anode.

�V � 0: A negative anode repels the electrons.
Only the very fastest make it to the anode.
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Let the cathode be the point of zero potential energy, as shown in FigurE 38.6. An 
electron emitted from the cathode with kinetic energy Ki has initial total energy

 Ei = Ki + Ui = Ki + 0 = Ki

When the electron reaches the anode, which is at potential �V  relative to the cathode, 
it has potential energy U = q �V = -e �V  and final total energy

 Ef = Kf + Uf = Kf - e �V

From conservation of energy, Ef = Ei, the electron’s final kinetic energy is

 Kf = Ki + e �V  (38.2)

The electron speeds up (Kf 7 Ki) if �V  is positive. The electron slows down if �V  is 
negative, but it still reaches the anode (Kf 7 0) if Ki is large enough.

An electron with initial kinetic energy Ki will stop just as it reaches the anode if the 
potential difference is �V = -Ki/e. The potential difference that turns back the very 
fastest electrons, those with K = Kmax, and thus stops the current is

 �Vstop fastest electrons = -  
Kmax

e

By definition, the potential difference that causes the electron current to cease is 
�V = -Vstop, where Vstop is the stopping potential. The stopping potential is

 Vstop =
Kmax

e
 (38.3)

Thus the stopping potential tells us the maximum kinetic energy of the photoelectrons.

FigurE 38.6 Energy is conserved.

� �

Cathode Anode

Ki

Ui � 0

Before: Kf

Uf � q�V � �e�V

After:

�V
Energy is transformed from kinetic to potential
as an electron moves from cathode to anode.

where E0 = 4.28 eV is the work function of aluminum. Thus the 
kinetic energy at the anode, given by Equation 38.2, is

 Kf = Ki + e �V = 2.13 eV - (e)(2.00 V) = 0.13 eV

Notice that the electron loses 2.00 eV of energy as it moves 
through the potential difference of -2.00 V, so we can com-
pute the final kinetic energy in eV without having to convert to 
joules. However, we must convert Kf to joules to find the final 
speed:

  Kf =
1

2
 mvf 

2 = 0.13 eV = 2.1 * 10-20 J

  vf = B 2Kf

m
= 2.1 * 105 m/s

ExAMPLE 38.1  The classical photoelectric effect
A photoelectric-effect experiment is performed with an alumi-
num cathode. An electron inside the cathode has a speed of 1.5 *

106 m/s. If the potential difference between the anode and cathode 
is -2.00 V, what is the highest possible speed with which this 
electron could reach the anode?

ModEL Energy is conserved.

SoLvE If the electron escapes with the maximum possible kinetic 
energy, its kinetic energy at the anode will be given by Equ ation 38.2 
with �V = -2.00 V. The electron’s initial kinetic energy is

  Eelec =
1

2
 mv 2 =

1

2
 (9.11 * 10-31 kg)(1.5 * 106 m/s)2

  = 1.025 * 10-18 J = 6.41 eV

Its maximum possible kinetic energy as it leaves the cathode is

 Ki = Kmax = Eelec - E0 = 2.13 eV

Limits of the Classical interpretation
A classical analysis has provided a possible explanation of observations 1 and 5 
above. But nothing in this explanation suggests that there should be a threshold fre-
quency, as Lenard found. If a weak intensity at a frequency just slightly above f0 can 
generate a current, why can’t a strong intensity at a frequency just slightly below f0 
do so?



38.2 . Einstein’s Explanation    1129

What about Lenard’s observation that the current starts instantly? If the photo-
electrons are due to thermal emission, it should take some time for the light to raise 
the electron temperature sufficiently high for some to escape. The experimental 
evidence was in sharp disagreement. And more intense light would be expected to 
heat the electrons to a higher temperature. Doing so should increase the maximum 
kinetic energy of the photoelectrons and thus should increase the stopping potential 
Vstop. But as Lenard found, the stopping potential is the same for strong light as it is 
for weak light.

Although the mere presence of photoelectrons did not seem surprising, classical 
physics was unable to explain the observed behavior of the photoelectrons. The thresh-
old frequency and the instant current seemed particularly anomalous.

38.2 Einstein’s Explanation
Albert Einstein, seen in FigurE 38.7, was a little-known young man of 26 in 1905. He 
had recently graduated from the Polytechnic Institute in Zurich, Switzerland, with 
the Swiss equivalent of a Ph.D. in physics. Although his mathematical brilliance 
was recognized, his overall academic record was mediocre. Rather than pursue an 
academic career, Einstein took a job with the Swiss Patent Office in Bern. This was 
a fortuitous choice because it provided him with plenty of spare time to think about 
physics.

In 1905, Einstein published his initial paper on the theory of relativity, the subject 
for which he is most well known to the general public. He also published another 
paper, on the nature of light. In it Einstein offered an exceedingly simple but amaz-
ingly bold idea to explain Lenard’s photoelectric-effect data.

A few years earlier, in 1900, the German physicist Max Planck had been trying 
to understand the details of the rainbow-like blackbody spectrum of light emitted 
by a glowing hot object. As we noted in the preceding chapter, this problem didn’t 
yield to a classical physics analysis, but Planck found that he could calculate the 
spectrum perfectly if he made an unusual assumption. The atoms in a solid vibrate 
back and forth around their equilibrium positions with frequency f. You learned in 
Chapter 14 that the energy of a simple harmonic oscillator depends on its ampli-
tude and can have any possible value. But to predict the spectrum correctly, Planck 
had to assume that the oscillating atoms are not free to have any possible energy. 
Instead, the energy of an atom vibrating with frequency f has to be one of the 
specific energies E = 0, hf, 2hf, 3hf, p , where h is a constant. That is, the vibration 
energies are quantized.

Planck was able to determine the value of the constant h by comparing his calcula-
tions of the spectrum to experimental measurements. The constant that he introduced 
into physics is now called Planck’s constant. Its contemporary value is

 h = 6.63 * 10-34 J s = 4.14 * 10-15 eV s

The first value, with SI units, is the proper one for most calculations, but you will find 
the second to be useful when energies are expressed in eV.

Einstein was the first to take Planck’s quantization idea seriously. He went even 
further and suggested that electromagnetic radiation itself is quantized! That is, 
light is not really a continuous wave but, instead, arrives in small packets or bundles 
of energy. Einstein called each packet of energy a light quantum, and he postulated 
that the energy of one light quantum is directly proportional to the frequency of the 
light. That is, each quantum of light has energy

 E = hf  (38.4)

where h is Planck’s constant and f is the frequency of the light.

FigurE 38.7 A young Einstein.
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The idea of light quanta is subtle, so let’s look at an analogy with raindrops. A 
downpour has a torrent of raindrops, but in a light shower the drops are few. The 
difference between “intense” rain and “weak” rain is the rate at which the drops ar-
rive. An intense rain makes a continuous noise on the roof, so you are not aware of 
the individual drops, but the individual drops become apparent during a light rain.

Similarly, intense light has so many quanta arriving per second that the light seems 
continuous, but very weak light consists of only a few quanta per second. And just as 
raindrops come in different sizes, with larger-mass drops having larger kinetic energy, 
higher-frequency light quanta have a larger amount of energy. Although this analogy 
is not perfect, it does provide a useful mental picture of light quanta arriving at a 
surface.

The calculation requires l to be in m, but it is useful to have 
Planck’s constant in eV s. At 437 nm, we have

 E =
(4.14 * 10-15 eV s)(3.00 * 108 m/s)

437 * 10-9 m
= 2.84 eV

Carrying out the same calculation for the other two wavelengths 
gives E = 2.33 eV at 533 nm and E = 2.16 eV at 575 nm.

ASSESS The electron volt turns out to be more convenient than 
the joule for describing the energy of light quanta. Because these 
wavelengths span a good fraction of the visible spectrum of 
400–700 nm, you can see that visible light corresponds to light 
quanta having energy of roughly 2–3 eV.

ExAMPLE 38.2  Light quanta
The retina of your eye has three types of color photoreceptors, 
called cones, with maximum sensitivities at 437 nm, 533 nm, 
and 575 nm. For each, what is the energy of one quantum of light 
having that wavelength?

ModEL The energy of light is quantized.

SoLvE Light with wavelength l has frequency f = c/l. The energy 
of one quantum of light at this wavelength is

 E = hf =
hc

l

Einstein’s Postulates
Einstein framed three postulates about light quanta and their interaction with matter:

 1. Light of frequency f consists of discrete quanta, each of energy E = hf. Each 
photon travels at the speed of light c.

 2. Light quanta are emitted or absorbed on an all-or-nothing basis. A substance 
can emit 1 or 2 or 3 quanta, but not 1.5. Similarly, an electron in a metal cannot 
absorb half a quantum but, instead, only an integer number.

 3. A light quantum, when absorbed by a metal, delivers its entire energy to one 
electron.

NoTE  These three postulates—that light comes in chunks, that the chunks can-
not be divided, and that the energy of one chunk is delivered to one electron—are 
crucial for understanding the new ideas that will lead to quantum physics. They 
are completely at odds with the concepts of classical physics, where energy can be 
continuously divided and shared, so they deserve careful thought. 

Let’s look at how Einstein’s postulates apply to the photoelectric effect. If Einstein 
is correct, the light of frequency f shining on the metal is a flow of light quanta, each 
of energy hf. Each quantum is absorbed by one electron, giving that electron an energy 
Eelec = hf. This leads us to several interesting conclusions:

 1. An electron that has just absorbed a quantum of light energy has Eelec = hf. (The 
electron’s thermal energy at room temperature is so much less than hf  that we 
can neglect it.) FigurE 38.8 shows that this electron can escape from the metal, 
becoming a photoelectron, if

 Eelec = hf Ú E0 (38.5)

FigurE 38.8 The creation of a 
photoelectron.

Work function E0

Before:

After:

One quantum of light with
energy E � hf � E0

A single electron has absorbed
the entire energy of the light 
quantum and has escaped.
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  where, you will recall, the work function E0 is the minimum energy needed to 
free an electron from the metal. As a result, there is a threshold frequency

 f0 =
E0

h
 (38.6)

  for the ejection of photoelectrons. If f is less than f0, even by just a small amount, 
none of the electrons will have sufficient energy to escape no matter how intense 
the light. But even very weak light with f Ú f0 will give a few electrons suf-
ficient energy to escape because each light quantum delivers all of its energy 
to one electron. This threshold behavior is exactly what Lenard observed.

NoTE  The threshold frequency is directly proportional to the work function. 
Metals with large work functions, such as iron, copper, and gold, exhibit the photo-
electric effect only when illuminated by high-frequency ultraviolet light. Photo -
emission occurs with lower-frequency visible light for metals with smaller values 
of E0, such as sodium and potassium. 

 2. A more intense light means more quanta of the same energy, not more energetic 
quanta. These quanta eject a larger number of photoelectrons and cause a larger 
current, exactly as observed.

 3. There is a distribution of kinetic energies, because different photoelectrons 
require different amounts of energy to escape, but the maximum kinetic 
energy is

 Kmax = Eelec - E0 = hf - E0 (38.7)

  As we noted in Equation 38.3, the stopping potential Vstop is directly propor-
tional to Kmax. Einstein’s theory predicts that the stopping potential is related to 
the light frequency by

 Vstop =
Kmax

e
=

hf - E0

e
 (38.8)

  The stopping potential does not depend on the intensity of the light. Both weak 
light and intense light will have the same stopping potential, which Lenard had 
observed but which could not previously be explained.

 4. If each light quantum transfers its energy hf  to just one electron, that electron 
immediately has enough energy to escape. The current should begin instantly, 
with no delay, exactly as Lenard had observed.

Using the swimming pool analogy again, FigurE 38.9 shows a pebble being thrown 
into the pool. The pebble increases the energy of the water, but the increase is shared 
among all the molecules in the pool. The increase in the water’s energy is barely 
enough to make ripples, not nearly enough to splash water out of the pool. But suppose 
all the pebble’s energy could go to one drop of water that didn’t have to share it. That 
one drop of water could easily have enough energy to leap out of the pool. Einstein’s 
hypothesis that a light quantum transfers all its energy to one electron is equivalent to 
the pebble transferring all its energy to one drop of water.

A Prediction
Not only do Einstein’s hypotheses explain all of Lenard’s observations, they also 
make a new prediction. According to Equation 38.8, the stopping potential should be 
a linearly increasing function of the light’s frequency f. We can rewrite Equation 38.8 
in terms of the threshold frequency f0 = E0 /h as

 Vstop =
h
e

 ( f - f0) (38.9)

FigurE 38.9 A pebble transfers energy 
to the water.

Water

Pebble

Classically, the energy of the pebble is
shared by all the water molecules. One
pebble causes only very small waves.

If the pebble could give all its energy to
one drop, that drop could easily splash
out of the pool.  
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A graph of the stopping potential Vstop versus the light frequency f should start from 
zero at f = f0, then rise linearly with a slope of h/e. In fact, the slope of the graph pro-
vides a way to measure Planck’s constant h.

Lenard had not measured the stopping potential for different frequencies, so Einstein 
offered this as an untested prediction of his postulates. Robert Millikan, known for his 
oil-drop experiment to measure e, took up the challenge. Some of Millikan’s data for 
a cesium cathode are shown in FigurE 38.10. As you can see, Einstein’s prediction of a 
linear relationship between f and Vstop was confirmed.

Millikan measured the slope of his graph and multiplied it by the value of e 
(which he had measured a few years earlier in the oil-drop experiment) to find 
h. His value agreed with the value that Planck had determined in 1900 from an 
entirely different experiment. Light quanta, whether physicists liked the idea or 
not, were real.

These frequencies are converted to wavelengths with l = c/f, giving

 l = b 452 nm sodium

290 nm aluminum

ASSESS The photoelectric effect can be observed with sodium for 
l 6 452 nm. This includes blue and violet visible light but not red, 
orange, yellow, or green. Aluminum, with a larger work function, 
needs ultraviolet wavelengths l 6 290 nm.

ExAMPLE 38.3  The photoelectric threshold frequency
What are the threshold frequencies and wavelengths for photo-
emission from sodium and from aluminum?

SoLvE Table 38.1 gives the sodium work function as E0 =
2.75 eV. Aluminum has E0 = 4.28 eV. We can use Equation 38.6, 
with h in units of eV s, to calculate

 f0 =
E0

h
= b 6.64 * 1014 Hz sodium

10.34 * 1014 Hz aluminum

Because K =
1
2 mv 2, where m is the electron’s mass, not the mass 

of the sodium atom, the maximum speed of a photoelectron 
leaving the cathode is

 vmax = B 2Kmax

m
= 6.99 * 105 m/s

Note that we had to convert Kmax to SI units of J before calculating 
a speed in m/s.

ExAMPLE 38.4  Maximum photoelectron speed
What is the maximum photoelectron speed if sodium is illumi-
nated with light of 300 nm?

SoLvE The light frequency is f = c/l = 1.00 * 1015 Hz, so each 
light quantum has energy hf = 4.14 eV. The maximum kinetic 
energy of a photoelectron is

  Kmax = hf - E0 = 4.14 eV - 2.75 eV = 1.39 eV

  = 2.22 * 10-19 J

Stop to think 38.1 
 The work function of metal A is 3.0 eV. Metals B and C have 

work functions of 4.0 eV and 5.0 eV, respectively. Ultraviolet light shines on all three 
metals, creating photoelectrons. Rank in order, from largest to smallest, the stopping 
potentials for A, B, and C.

38.3 Photons
Einstein was awarded the Nobel Prize in 1921 not for his theory of relativity, as many 
suppose, but for his explanation of the photoelectric effect. Although Planck had made 
the first suggestion, it was Einstein who showed convincingly that energy is quantized. 
Quanta of light energy were later given the name photons.

But just what are photons? To begin our explanation, let’s return to the experiment 
that showed most dramatically the wave nature of light—Young’s double-slit interfer-
ence experiment. We will make a change, though: We will dramatically lower the light 

FigurE 38.10 A graph of Millikan’s data 
for the stopping potential as the light 
frequency is varied.
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intensity by inserting filters between the light source and the slits. The fringes will be 
too dim to see by eye, so we will replace the viewing screen with a detector that can 
build up an image over time.

What would we predict for the outcome of this experiment? If light is a wave, 
there is no reason to think that the nature of the interference fringes will change. The 
detector should continue to show alternating light and dark bands.

FigurE 38.11 shows the actual outcome at four different times. At early times, contrary 
to our prediction, the detector shows not dim interference fringes but discrete, bright 
dots. If we didn’t know that light is a wave, we would interpret the dots as evidence 
that light is a stream of some type of particle-like objects. They arrive one by one, 
seemingly randomly, and each is localized at a specific point on the detector. (Waves, 
you will recall, are not localized at a specific point in space.)

As the detector builds up the image for a longer period of time, we see that these 
dots are not entirely random. They are grouped into bands at exactly the positions 
where we expected to see bright constructive-interference fringes. No dot ever appears 
at points of destructive interference. After a long time, the individual dots overlap and 
the image looks like the photographs of interference fringes in Chapter 22.

We’re detecting individual photons! Most light sources—even very dim sources—
emit such vast numbers of photons that you are aware of only their wave-like superpo-
sition, just as you notice only the roar of a heavy rain on your roof and not the individual 
raindrops. But at extremely low intensities the light begins to appear as a stream of 
individual photons, like the random patter of raindrops when it is barely sprinkling. 
Each dot on the detector in Figure 38.11 signifies a point where one particle-like photon 
delivered its energy and caused a measurable signal.

But photons are certainly not classical particles. Classical particles, such as 
Newton’s corpuscles of light, would travel in straight lines through the two slits of 
a double-slit experiment and make just two bright areas on the detector. Instead, as 
Figure 38.11 shows, the particle-like photons seem to be landing at places where a 
wave undergoes constructive interference, thus forming the bands of dots.

Today, it is quite feasible to do this experiment with a light intensity so low that 
only one photon at a time is passing through the double-slit apparatus. But if one 
photon at a time can build up a wave-like interference pattern, what is the photon 
interfering with? The only possible answer is that the photon is interfering with 
itself. Nothing else is present. But if each photon interferes with itself, rather than 
with other photons, then each photon, despite the fact that it is a particle-like object, 
must somehow go through both slits! Photons seem to be both wave-like and particle-
like at the same time.

This all seems pretty crazy, but it’s the way light actually behaves. Sometimes 
light exhibits particle-like behavior and sometimes it exhibits wave-like behavior. 
The thing we call light is stranger and more complex than it first appeared, and there 
is no way to reconcile these seemingly contradictory behaviors. We have to accept 
nature as it is rather than hoping that nature will conform to our expectations. Further-
more, as we will see, this half-wave/half-particle behavior is not restricted to light.

The Photon Model of Light
The photon model of light consists of three basic postulates:

 1. Light consists of discrete, massless units called photons. A photon travels in 
vacuum at the speed of light.

 2. Each photon has energy

 Ephoton = hf  (38.10)

  where f is the frequency of the light and h = 6.63 * 10-34 J s is Planck’s 
constant. In other words, the light comes in discrete “chunks” of energy hf.

 3. The superposition of a sufficiently large number of photons has the characteris-
tics of a classical light wave.

FigurE 38.11 A double-slit experiment 
performed with light of very low 
intensity.

(a) Image after a very short time

(b) Image after a slightly longer time

(c) Continuing to build up the image

(d) Image after a very long time
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Photons are sometimes visualized as wave packets. The electromagnetic wave 
shown FigurE 38.12 has a wavelength and a frequency, yet it is also discrete and fairly 
localized. But this cannot be exactly what a photon is because a wave packet would 
take a finite amount of time to be emitted or absorbed. This is contrary to much 
evidence that the entire photon is emitted or absorbed in a single instant; there is no 
point in time at which the photon is “half absorbed.” The wave packet idea, although 
useful, is still too classical to represent a photon.

In fact, there simply is no “true” mental representation of a photon. Analogies such 
as raindrops or wave packets can be useful, but none is perfectly accurate. We can 
detect photons, measure the properties of photons, and put photons to practical use, but 
the ultimate nature of the photon remains a mystery. To paraphrase Gertrude Stein, “A 
photon is a photon is a photon.”

The Photon rate
Light, in the raindrop analogy, consists of a stream of photons. For monochromatic 
light of frequency f, N photons have a total energy Elight = Nhf. We are usually more 
interested in the power of the light, or the rate (in joules per second, or watts) at which 
the light energy is delivered. The power is

 P =
dElight

dt
=

dN

dt
 hf = Rhf  (38.11)

where R = dN/dt is the rate at which photons arrive or, equivalently, the number of 
photons per second.

Stop to think 38.2 
 The intensity of a beam of light is increased but the light’s frequency 

is unchanged. Which one (or perhaps more than one) of the following is true?

 a. The photons travel faster.
 b. Each photon has more energy.
 c. The photons are larger.
 d. There are more photons per second.

38.4 Matter Waves and Energy Quantization
Prince Louis-Victor de Broglie was a French graduate student in 1924. It had been 
19 years since Einstein had shaken the world of physics by introducing photons and 
blurring the distinction between a particle and a wave. As de Broglie thought about 
these issues, it seemed that nature should have some kind of symmetry. If light waves 

ExAMPLE 38.5  The photon rate in a laser beam
The 1.0 mW light beam of a helium-neon laser (l = 633 nm) shines on a screen. How 
many photons strike the screen each second?

SoLvE The light-beam power, or energy delivered per second, is P = 1.0 mW =
0.0010 J/s. The frequency of the light is f = c/l = 4.74 * 1014 Hz. The number of 
photons striking the screen per second, which is the rate of arrival of photons, is

R =
P

hf
= 3.2 * 1015 photons per second

ASSESS That is a lot of photons per second. No wonder we are not aware of individual 
photons!

FigurE 38.12 A wave packet has wave-
like and particle-like properties.
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What would it mean for matter—an electron or a proton or a baseball—to have a 
wavelength? Would it obey the principle of superposition? Would it exhibit interfer-
ence and diffraction? The classic test of “waviness” is Young’s double-slit experiment. 
FigurE 38.13 shows the intensity pattern recorded after 50 keV electrons passed through 
two slits separated by 1.0 mm. The pattern is clearly a double-slit interference pattern, and 
the spacing of the fringes is exactly as predicted for a wavelength given by de Broglie’s 
formula. And because the electron beam was weak, with one electron at a time passing 
through the apparatus, it would appear that each electron—like photons—somehow went 
through both slits, then interfered with itself before striking the detector!

Surprisingly, electrons—also neutrons—exhibit all the behavior we associate with 
waves. But electrons and neutrons are subatomic particles. What about entire atoms, 
aggregates of many fundamental particles? Amazing as it seems, research during the 
1980s demonstrated that whole atoms, and even molecules, can produce interference 
patterns.

FigurE 38.14 shows an atom interferometer. You learned in Chapter 22 that an 
interferometer, such as the Michelson interferometer, works by dividing a wave front 

Although fast by macroscopic standards, this is a slow electron 
because it gains this speed by accelerating through a potential 
difference of a mere 1 V. Its de Broglie wavelength is

 l =
h

mv
= 1.2 * 10-9 m = 1.2 nm

ASSESS The electron’s wavelength is small, but it is similar to the 
wavelengths of x rays and larger than the approximately 10-10 m 
spacing of atoms in a crystal.

ExAMPLE 38.6  The de Broglie wavelength of an electron
What is the de Broglie wavelength of a 1.0 eV electron?

SoLvE An electron with 1.0 eV = 1.6 * 10-19 J of kinetic energy 
has speed

 v = B 2K

m
= 5.9 * 105 m/s

FigurE 38.13 A double-slit interference 
pattern created with electrons.

FigurE 38.14 An atom interferometer.
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The atom wave is divided at A by diffracting 
through the standing light wave.

Portions of the wave travel 
along different paths.

The waves are
recombined at D.

could have a particle-like nature, why shouldn’t material particles have some kind of 
wave-like nature? In other words, could matter waves exist?

With no experimental evidence to go on, de Broglie reasoned by analogy with 
Einstein’s equation E = hf  for the photon and with some of the ideas of his theory of 
relativity. The details need not concern us, but they led de Broglie to postulate that if 
a material particle of momentum p = mv has a wave-like nature, then its wavelength 
must be given by

 l =
h
p

=
h

mv
 (38.12)

where h is Planck’s constant. This is called the de Broglie wavelength.
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into two waves, sending the two waves along separate paths, then recombining them. 
For light waves, wave division can be accomplished by sending light through the 
periodic slits in a diffraction grating. In an atom interferometer, the atom’s matter 
wave is divided by sending atoms through the periodic intensity of a standing light 
wave.

You can see in the figure that a laser creates three parallel standing waves of light, 
each with nodes spaced a distance l/2 apart. The wavelength is chosen so that the light 
waves exert small forces on an atom in the laser beam. Because the intensity along a 
standing wave alternates between maximum at the antinodes and zero intensity at the 
nodes, an atom crossing the laser beam experiences a periodic force field. A particle-
like atom would be deflected by this periodic force, but a wave is diffracted. After 
being diffracted by the first standing wave at A, an atom is, in some sense, traveling 
toward both point B and point C.

The second standing wave diffracts the atom waves again at points B and C, directing 
some of them toward D where, with a third diffraction, they are recombined after having 
traveled along different paths. The detector image shows interference fringes, exactly as 
would be expected for a wave but completely at odds with the expectation for particles.

The atom interferometer is fascinating because it completely inverts everything 
we previously learned about interference and diffraction. The scientists who studied 
the wave nature of light during the 19th century aimed light (a wave) at a diffraction 
grating (a periodic structure of matter) and found that it diffracted. Now we aim atoms 
(matter) at a standing wave (a periodic structure of light) and find that the atoms dif-
fract. The roles of light and matter have been reversed!

Quantization of Energy
The fact that matter has wave-like properties is not merely a laboratory curiosity; the 
implications are profound. Foremost among them is that the energy of matter, like that 
of light, is quantized.

We’ll illustrate quantization with a simple system that physicists call “a particle 
in a box.” FigurE 38.15a shows a particle of mass m moving in one dimension as it 
bounces back and forth with speed v between the ends of a box of length L. The 
width of the box is irrelevant, so we’ll call this a one-dimensional box. We’ll assume 
that the collisions at the ends are perfectly elastic, so the particle’s energy—entirely 
kinetic—never changes. According to classical physics, there are no restrictions on the 
particle’s speed or energy.

But if matter has wave-like properties, perhaps we should consider the particle in 
a box to be a wave reflecting back and forth between the ends of the box, as shown 
in FigurE 38.15b. These are the conditions that create standing waves. You learned in 
Chapter 21 that a standing wave of length L must have one of the wavelengths given by

 ln =
2L
n
  n = 1, 2, 3, 4, p  (38.13)

If the confined particle has wave-like properties, it should satisfy both Equa-
tion 38.13 and the de Broglie relationship l = h/mv. That is, a particle in a box should 
obey the relationship

 ln =
h

mv
=

2L
n

Thus the particle’s speed must be

 vn = n 1 h

2Lm 2  n = 1, 2, 3, p  (38.14)

In other words, the particle cannot bounce back and forth with just any speed. Rather, 
it can have only those specific speeds vn, given by Equation 38.14, for which the de 
Broglie wavelength creates a standing wave in the box.

FigurE 38.15 A particle confined in a 
box of length L.

(a) A classical particle bounces back and forth.

(b) A reflected wave creates a standing wave.

Matter waves travel in both directions.

L
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Thus the particle’s energy, which is purely kinetic energy, is

 En =
1

2
 mvn 

2 = n2 
h2

8mL2  n = 1, 2, 3, p  (38.15)

De Broglie’s hypothesis about the wave-like properties of matter leads us to the 
remarkable conclusion that a particle confined in a box can have only certain 
energies. We say that its energy is quantized. The energy of the particle in the box can 
be 1(h2/8mL2), or 4(h2/8mL2), or 9(h2/8mL2), but it cannot have an energy between 
these values.

The possible values of the particle’s energy are called energy levels, and the inte-
ger n that characterizes the energy levels is called the quantum number. The quantum 
number can be found by counting the antinodes, just as you learned to do for standing 
waves on a string. The standing wave shown in Figure 38.15 is n = 3, thus its energy 
is E3.

We can rewrite Equation 38.15 in the useful form

 En = n2E1 (38.16)

where

 E1 =
h2

8mL2 (38.17)

is the fundamental quantum of energy for a particle in a one-dimensional box. It is 
analogous to the fundamental frequency f1 of a standing wave on a string.

  E1 =
h2

8mL2 =
(6.63 * 10-34 J s)2

8(1.4 * 10-20 kg)(1.0 * 10-6 m)2

  = 3.9 * 10-36 J = 2.5 * 10-17 eV

ASSESS This is such an incredibly small amount of energy that 
there is no hope of distinguishing between energies of E1 or 4E1 or 
9E1. For any macroscopic particle, even one this tiny, the allowed 
energies will seem to be perfectly continuous. We will not observe 
the quantization.

ExAMPLE 38.7  The energy levels of a virus
A 30-nm-diameter virus is about the smallest imaginable macro-
scopic particle. What is the fundamental quantum of energy for 
this virus if confined in a one-dimensional cell of length 1.0 mm? 
The density of a virus is very close to that of water.

ModEL Model the virus as a particle in a box.

SoLvE The mass of a virus is m = rV, where the volume is 43 pr3. 
A quick calculation shows that a 30-nm-diameter virus has mass 
m = 1.4 * 10-20 kg. The confinement length is L = 1.0 * 10-6 m. 
From Equation 38.17, the fundamental quantum of energy is

  E1 = 38 eV

  E2 = 4E1 = 152 eV

  E3 = 9E1 = 342 eV

ASSESS You’ll soon see that the results are way off. This model of 
a hydrogen atom is too simple to capture essential details.

ExAMPLE 38.8  The energy levels of an electron
As a very simple model of a hydrogen atom, consider an electron 
confined in a one-dimensional box of length 0.10 nm, about the 
size of an atom. What are the first three allowed energy levels?

SoLvE We can use Equation 38.17, with melec = 9.11 * 10-31 kg 
and L = 1.0 * 10-10 m, to find that the fundamental quantum 
of energy is E1 = 6.0 * 10-18 J = 38 eV. Thus the first three 
allowed energies of an electron in a 0.10 nm box are

It is the confinement of the particle in a box that leads to standing matter waves and 
thus energy quantization. Our goal is to extend this idea to atoms. An atom is certainly 
more complicated than a one-dimensional box, but an electron is “confined” within an 
atom. Thus an electron in an atom must be some kind of three-dimensional standing 
wave and, like the particle in a box, must have quantized energies. De Broglie’s idea 
is steering us toward a new theory of matter.
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Stop to think 38.3 
 What is the quantum number of 

this particle confined in a box?

38.5 Bohr’s Model of Atomic Quantization
Thomson’s electron and Rutherford’s nucleus made it clear that the atom has a structure 
of some sort. The challenge at the beginning of the 20th century was to deduce, from 
experimental evidence, the correct structure. The difficulty of this task cannot be exag-
gerated. The evidence about atoms, such as observations of atomic spectra, was very 
indirect, and experiments were carried out with only the simplest measuring devices.

Rutherford’s nuclear model was the most successful of various proposals, but 
Rutherford’s model failed to explain why atoms are stable or why their spectra are 
discrete. A missing piece of the puzzle, although not recognized as such for a few 
years, was Einstein’s 1905 introduction of light quanta. If light comes in discrete pack-
ets of energy, which we now call photons, and if atoms emit and absorb light, what 
does that imply about the structure of the atoms?

This was the question posed by the Danish physicist Niels Bohr, shown as a young 
man in FigurE 38.16. After receiving his doctoral degree in physics in 1911, Bohr went 
to England to work in Rutherford’s laboratory. Rutherford had just, within the previ-
ous year, completed his development of the nuclear model of the atom. Rutherford’s 
model certainly contained a kernel of truth, but Bohr wanted to understand how a 
solar-system-like atom could be stable and not radiate away all its energy. He soon 
recognized that Einstein’s light quanta had profound implications for the structure of 
atoms. In 1913, Bohr proposed a new model of the atom in which he added quantiza-
tion to Rutherford’s nuclear atom.

The basic assumptions of the Bohr model of the atom are as follows:

understanding Bohr’s model

1. The electrons in an 
atom can exist in only  
certain allowed orbits. 
A particular arrange-
ment of electrons in  
these orbits is called a 
stationary state.

2. Each stationary state has 
a discrete, well-defined  
energy En. That is, atomic 
energies are quantized. The 
stationary states are labeled  
by the quantum number n in 
order of increasing energy:  
E1 6 E2 6 E3 6 g.

3. An atom can undergo a 
transition or quantum jump 
from one stationary state to  
another by emitting or absorb-
ing a photon whose energy  
is exactly equal to the energy  
difference between the two  
stationary states.

4. Atoms can also move from a 
lower energy state to a higher 
energy state by absorbing energy 
in a collision with an electron or 
other atom in a process called 
collisional excitation.

The excited atoms soon jump 
down to lower states, eventually 
ending in the stable ground state.

This is one 
stationary
state.

This is another 
stationary
state.

An electron cannot exist
here, where there is no
allowed orbit.

Electrons can exist in only
certain allowed orbits.

These other
states are
excited states.

This state, with the lowest energy
E1, is the ground state. It is
stable and can persist indefinitely.

Stationary
states

Photon emission

Photon absorption

Excited-state electron

Approaching photon
The electron absorbs the photon
and jumps to a higher energy 
stationary state.

The electron jumps to a lower
energy stationary state and 
emits a photon.

Collisional excitation

Approaching
particle

Particle loses
energy.

An atom in an excited state jumps
to lower states, emitting a photon
at each jump.

The particle transfers energy
to the atom in the collision
and excites the atom.

FigurE 38.16 Niels Bohr.
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Bohr’s model builds upon Rutherford’s model, but it adds two new ideas that 
are derived from Einstein’s ideas of quanta. The first, expressed in assumption 1, is 
that only certain electron orbits are “allowed” or can exist. The second, expressed in 
assumption 3, is that the atom can jump from one state to another by emitting or 
absorbing a photon of just the right frequency to conserve energy.

According to Einstein, a photon of frequency f has energy Ephoton = hf. If an atom 
jumps from an initial state with energy Ei to a final state with energy Ef, energy will 
be conserved if the atom emits or absorbs a photon with Ephoton = �Eatom = 0Ef - Ei 0 . 
This photon must have frequency

 fphoton =
�Eatom

h
 (38.18)

if it is to add or carry away exactly the right amount of energy. The total energy of the 
atom-plus-light system is conserved.

NoTE  When an atom is excited to a higher energy level by absorbing a 
photon, the photon vanishes. Thus energy conservation requires Ephoton = �Eatom. 
When an atom is excited to a higher energy level in a collision with a particle, 
such as an electron or another atom, the particle still exists after the collision and 
still has energy. Thus energy conservation requires the less stringent condition 
Eparticle Ú �Eatom. 

The implications of Bohr’s model are profound. In particular:

 1. Matter is stable. An atom in its ground state has no states of any lower energy 
to which it can jump. It can remain in the ground state forever.

 2. Atoms emit and absorb a discrete spectrum. Only those photons whose fre-
quencies match the energy intervals between the stationary states can be emitted 
or absorbed. Photons of other frequencies cannot be emitted or absorbed without 
violating energy conservation.

 3. Emission spectra can be produced by collisions. In a gas discharge tube, the 
current-carrying electrons moving through the tube occasionally collide with 
the atoms. A collision transfers energy to an atom and can kick the atom to 
an excited state. Once the atom is in an excited state, it can emit photons of 
light—a discrete emission spectrum—as it jumps back down to lower-energy 
states.

 4. Absorption wavelengths are a subset of the wavelengths in the emis-
sion spectrum. Recall that all the lines seen in an absorption spectrum are 
also seen in emission, but many emission lines are not seen in absorption. 
According to Bohr’s model, most atoms, most of the time, are in their lowest 
energy state, the n = 1 ground state. Thus the absorption spectrum consists of 
only those transitions such as 1 S 2, 1 S 3, p in which the atom jumps from 
n = 1 to a higher value of n by absorbing a photon. Transitions such as 2 S 3 
are not observed because there are essentially no atoms in n = 2 at any instant 
of time. On the other hand, atoms that have been excited to the n = 3 state 
by collisions can emit photons corresponding to transitions 3 S 1 and 3 S 2. 
Thus the wavelength corresponding to �Eatom = E3 - E1 is seen in both emis-
sion and absorption, but transitions with �Eatom = E3 - E2 occur in emission 
only.

 5. Each element in the periodic table has a unique spectrum. The energies of the 
stationary states are the energies of the orbiting electrons. Different elements, 
with different numbers of electrons, have different stable orbits and thus differ-
ent stationary states. States with different energies emit and absorb photons of 
different wavelengths.
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EnergyLevel diagrams
An energylevel diagram, such as the one shown in FigurE 38.17, is a useful pictorial 
representation of the stationary-state energies. An energy-level diagram is less a graph 
than it is a picture. The vertical axis represents energy, but the horizontal axis is not a 
scale. Think of this as a picture of a ladder in which the energies are the rungs of the 
ladder. The lowest rung, with energy E1, is the ground state. Higher rungs are labeled 
by their quantum numbers, n = 2, 3, 4, p .

The photon frequency is

 f =
Ephoton

h
=

2.00 eV

4.14 * 10-15 eV s
= 4.83 * 1014 Hz

The wavelength of this photon is

 l =
c

f
= 621 nm

ASSESS 621 nm is a visible-light wavelength. Notice that the 
wavelength depends on the difference between the atom’s energy 
levels, not the values of the energies.

ExAMPLE 38.9  The wavelength of an emitted photon
An atom has stationary states with energies Ej = 4.00 eV and 
Ek = 6.00 eV. What is the wavelength of a photon emitted in a 
quantum jump from state k to state j?

ModEL To conserve energy, the emitted photon must have exactly 
the energy lost by the atom in the quantum jump.

SoLvE The atom can jump from the higher energy state k to the 
lower energy state j by emitting a photon. The atom’s change in 
energy is �Eatom = 0Ej - Ek 0 = 2.00 eV, so the photon energy 
must be Ephoton = 2.00 eV.

FigurE 38.17 An energy-level diagram.

Increasing
energy

Ground state

Excited
states

n � 1

n � 2

n � 3
n � 4

n � 5

E1

E2

E3

E4

E5

These are allowed energies.
The atom cannot have an
energy between these.

These transitions
from n � 4 emit 
photons.

These are the
transitions of 
the absorption
spectrum.

Energy-level diagrams are especially useful for showing transitions, or quantum 
jumps, in which a photon of light is emitted or absorbed. As examples, Figure 38.17 
shows upward transitions in which a photon is absorbed by a ground-state atom (n = 1) 
and downward transitions in which a photon is emitted from an n = 4 excited state.

ExAMPLE 38.10  Emission and absorption
An atom has stationary states E1 = 0.00 eV, E2 = 3.00 eV, and 
E3 = 5.00 eV. What wavelengths are observed in the absorption 
spectrum and in the emission spectrum of this atom?

ModEL Photons are emitted when an atom undergoes a quantum 
jump from a higher energy level to a lower energy level. Photons 
are absorbed in a quantum jump from a lower energy level to a 
higher energy level. But most of the atoms are in the n = 1 ground 
state, so the only quantum jumps seen in the absorption spectrum 
start from the n = 1 state.

viSuALizE FigurE 38.18 shows an energy-level diagram for the 
atom.

FigurE 38.18 The atom’s energy-level diagram.

n � 1

n � 2

n � 3

0.00 eV

3.00 eV

5.00 eV

Absorption transitions 
must start from n � 1.

Emission transitions 
can start and end 
at any level.
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Stop to think 38.4 
 A photon with a wavelength 

of 414 nm has energy Ephoton =  3.00 eV. Do you 
expect to see a spectral line with l = 414 nm in 
the emission spectrum of the atom represented by 
this energy-level diagram? If so, what transition 
or transitions will emit it? Do you expect to see a 
spectral line with l = 414 nm in the absorption 
spectrum? If so, what transition or transitions will 
absorb it?

excited states 2 and 3 to the ground state. In addition, the emis-
sion spectrum will contain the 3 S 2 quantum jump with 
�E3S2 = -2.00 eV that is not seen in absorption because there 
are too few atoms in the n = 2 state to absorb. We found in 
Example 38.9 that a 2.00 eV transition corresponds to a wave-
length of 621 nm. Thus the emission wavelengths are

  2 S 1  l = 414 nm (blue)

  3 S 1  l = 248 nm (ultraviolet)

  3 S 2  l = 621 nm (orange)

SoLvE This atom will absorb photons on the 1 S 2 and 1 S 3 
transitions, with �E1S2 = 3.00 eV and �E1S3 = 5.00 eV. From 
f = �Eatom/h and l = c/f, we find that the wavelengths in the 
absorption spectrum are

  1 S 2  f = 3.00 eV/h = 7.25 * 1014 Hz

  l = 414 nm (blue)

  1 S 3  f = 5.00 eV/h = 1.21 * 1015 Hz

  l = 248 nm (ultraviolet)

The emission spectrum will also have the 414 nm and 248 nm 
wavelengths due to the 2 S 1 and 3 S 1 quantum jumps from 

n � 1

n � 3

0.00 eV

n � 2 2.00 eV

5.00 eV

n � 4 6.00 eV

38.6 The Bohr Hydrogen Atom
Bohr’s hypothesis was a bold new idea, yet there was still one enormous stumbling 
block: What are the stationary states of an atom? Everything in Bohr’s model hinges on 
the existence of these stationary states, of there being only certain electron orbits that are 
allowed. But nothing in classical physics provides any basis for such orbits. And Bohr’s 
model describes only the consequences of having stationary states, not how to find them. 
If such states really exist, we will have to go beyond classical physics to find them.

To address this problem, Bohr did an explicit analysis of the hydrogen atom. The 
hydrogen atom, with only a single electron, was known to be the simplest atom. 
Furthermore, as we discussed in Chapter 37, Balmer had discovered a fairly simple 
formula that characterized the wavelengths in the hydrogen emission spectrum. Any-
one with a successful model of an atom was going to have to predict, from theory, 
Balmer’s formula for the hydrogen atom.

Bohr’s paper followed a rather circuitous line of reasoning. That is not surprising 
because he had little to go on at the time. But our goal is a clear explanation of the ideas, 
not a historical study of Bohr’s methods, so we are going to follow a different analysis 
using de Broglie’s matter waves. De Broglie did not propose matter waves until 1924, 
11 years after Bohr’s paper, but with the clarity of hindsight we can see that treating 
the electron as a wave provides a more straightforward analysis of the hydrogen atom. 
Although our route will be different from Bohr’s, we will arrive at the same point, and, 
in addition, we will be in a much better position to understand the work that came after 
Bohr.

NoTE  Bohr’s analysis of the hydrogen atom is sometimes called the Bohr atom. 
It’s important not to confuse this analysis, which applies only to hydrogen, with the 
more general postulates of the Bohr model of the atom. Those postulates, which we 
looked at in Section 38.5, apply to any atom. To make the distinction clear, we’ll 
call Bohr’s analysis of hydrogen the Bohr hydrogen atom. 
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The Stationary States of the Hydrogen Atom
FigurE 38.19 shows a Rutherford hydrogen atom, with a single electron orbiting a 
nucleus that consists of a single proton. We will assume a circular orbit of radius r 
and speed v. We will also assume, to keep the analysis manageable, that the proton 
remains stationary while the electron revolves around it. This is a reasonable assump-
tion because the proton is roughly 1800 times as massive as the electron. With these 
assumptions, the atom’s energy is the kinetic energy of the electron plus the potential 
energy of the electron-proton interaction. This is

 E = K + U =
1

2
 mv 2 +

1

4pP0
 
qelecqproton

r
=

1

2
 mv 2 -

e2

4pP0r
 (38.19)

where we used qelec = -e and qproton = +e.

NoTE  m is the mass of the electron, not the mass of the entire atom. 

Now, the electron, as we are coming to understand it, has both particle-like and 
wave-like properties. First, let us treat the electron as a charged particle. The proton 
exerts a Coulomb electric force on the electron:

 F
u

elec = 1 1

4pP0
 
e2

r2  , toward center2  (38.20)

This force gives the electron an acceleration a
u

elec = F
u

elec /m that also points to the 
center. This is a centripetal acceleration, causing the particle to move in its circular 
orbit. The centripetal acceleration of a particle moving in a circle of radius r at speed 
v must be v 2/r, thus

 aelec =
Felec

m
=

e2

4pP0mr2 =
v 2

r
 (38.21)

Rearranging, we find

 v2 =
e2

4pP0mr
 (38.22)

Equation 38.22 is a constraint on the motion. The speed v and radius r must satisfy 
Equation 38.22 if the electron is to move in a circular orbit. This constraint is not unique 
to atoms; we earlier found a similar relationship between v and r for orbiting satellites.

Now let’s treat the electron as a de Broglie wave. In Section 38.4 we found that a 
particle confined to a one-dimensional box sets up a standing wave as it reflects back 
and forth. A standing wave, you will recall, consists of two traveling waves moving 
in opposite directions. When the round-trip distance in the box is equal to an integer 
number of wavelengths (2L = nl), the two oppositely traveling waves interfere con-
structively to set up the standing wave.

Suppose that, instead of traveling back and forth along a line, our wave-like particle 
travels around the circumference of a circle. The particle will set up a standing wave, 
just like the particle in the box, if there are waves traveling in both directions and if 
the round-trip distance is an integer number of wavelengths. This is the idea we want 
to carry over from the particle in a box. As an example, FigurE 38.20 shows a standing 
wave around a circle with n = 10 wavelengths.

The mathematical condition for a circular standing wave is found by replacing the 
round-trip distance 2L in a box with the round-trip distance 2pr on a circle. Thus a 
circular standing wave will occur when

 2pr = nl  n = 1, 2, 3, p  (38.23)

But the de Broglie wavelength for a particle has to be l = h/p = h/mv. Thus the standing-
wave condition for a de Broglie wave is

 2pr = n 
h

mv

FigurE 38.19 A Rutherford hydrogen 
atom. The size of the nucleus is greatly 
exaggerated.

Felec

r

vr

r
�

FigurE 38.20 An n = 10 electron 
standing wave around the orbit’s 
circumference.

Proton

Electron standing wave

Classical orbit
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This condition is true only if the electron’s speed is

 vn =
nh

2pmr
  n = 1, 2, 3, p  (38.24)

The quantity h/2p occurs so often in quantum physics that it is customary to give it 
a special name. We define the quantity U, pronounced “h bar,” as

 U K
h

2p
= 1.055 * 10-34 J s = 6.58 * 10-16 eV s

With this definition, we can write Equation 38.24 as

 vn =
nU

mr
  n = 1, 2, 3, p  (38.25)

This, like Equation 38.22, is another relationship between v and r. This is the constraint 
that arises from treating the electron as a wave.

Now if the electron can act as both a particle and a wave, then both the Equation 
38.22 and Equation 38.25 constraints have to be obeyed. That is, v 2 as given by the 
Equation 38.22 particle constraint has to equal v 2 of the Equation 38.25 wave con-
straint. Equating these gives

 v 2 =
e2

4pP0mr
=

n2 U2

m2r2

We can solve this equation to find that the radius r is

 rn = n2 
4pP0U2

me2   n = 1, 2, 3, p  (38.26)

where we have added a subscript n to the radius r to indicate that it depends on the 
integer n.

The right-hand side of Equation 38.26, except for the n2, is just a collection of con-
stants. Let’s group them all together and define the Bohr radius aB as

 aB = Bohr radius K
4pP0U2

me2 = 5.29 * 10-11 m = 0.0529 nm

With this definition, Equation 38.26 for the radius of the electron’s orbit becomes

 rn = n2aB  n = 1, 2, 3, p  (38.27)

For example, r1 = 0.053 nm, r2 = 0.212 nm and r3 = 0.476 nm.
We have discovered stationary states! That is, a hydrogen atom can exist only 

if the radius of the electron’s orbit is one of the values given by Equation 38.27. 
Intermediate values of the radius, such as r = 0.100 nm, cannot exist because the 
electron cannot set up a standing wave around the circumference. The possible orbits 
are quantized, with only certain orbits allowed.

The key step leading to Equation 38.27 was the requirement that the electron have 
wave-like properties in addition to particle-like properties. This requirement leads 
to quantized orbits, or what Bohr called stationary states. The integer n is thus the 
quantum number that numbers the various stationary states.

Hydrogen Atom Energy Levels
Now we can make progress quickly. Knowing the possible radii, we can return to 
Equation 38.24 and find the possible electron speeds to be

 vn =
nU

mrn
=

1
n

 
U

maB
=

v1

n
  n = 1, 2, 3, p  (38.28)

where v1 = U/maB = 2.19 * 106 m/s is the electron’s speed in the n = 1 orbit. The 
speed decreases as n increases.
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Finally, we can determine the energies of the stationary states. From Equation 38.19 
for the energy, with Equations 38.27 and 38.28 for r and v, we have

 En =
1

2
 mvn 

2 -
e2

4pP0rn

=
1

2
 m1 U2

m2aB 

2n2 2 -
e2

4pP0n2aB

 (38.29)

As a homework problem, you can show that this rather messy expression simplifies to

 En = -  
1

n2 1 1

4pP0
 

e2

2aB
2  (38.30)

The expression in parentheses is easily evaluated, giving

 
1

4pP0
 

e2

2aB
= 13.60 eV

We can then write the energy levels of the stationary states of the hydrogen atom as

 En = -
13.60 eV

n2   n = 1, 2, 3, p  (38.31)

This has been a lot of math, so we need to see where we are and what we have 
learned. Table 38.2 shows values of rn, vn, and En evaluated for quantum number 
values n = 1 to 5. We do indeed seem to have discovered stationary states of the 
hydrogen atom. Each state, characterized by its quantum number n, has a unique 
radius, speed, and energy. These are displayed graphically in FigurE 38.21, in which the 
orbits are drawn to scale. Notice how the atom’s diameter increases very rapidly as n 
increases. At the same time, the electron’s speed decreases.

TABLE 38.2 Radii, speeds, and energies for the first five 
states of the Bohr hydrogen atom

n rn (nm) vn (m/s) En (eV)

1 0.053 2.19 * 106 -13.60

2 0.212 1.09 * 106 -3.40

3 0.476 0.73 * 106 -1.51

4 0.846 0.55 * 106 -0.85

5 1.322 0.44 * 106 -0.54

FigurE 38.21 The first four stationary states, or allowed 
orbits, of the Bohr hydrogen atom drawn to scale.

n � 1

n � 2

n � 3

n � 4
r4 � 16aB

v4 � 0.5 � 106 m/s
E4 � �0.8 eV

r3 � 9aB

v3 � 0.7 � 106 m/s
E3 � �1.5 eV

r2 � 4aB

v2 � 1.1 � 106 m/s
E2 � �3.4 eV

r1 � aB

v1 � 2.2 � 106 m/s
E1 � �13.6 eV

This is not an integer, so the electron can not have this speed. But 
if v = 3.65 * 105 m/s, then

 n =
2.19 * 106 m/s

3.65 * 105 m/s
= 6

This is the speed of an electron in the n = 6 excited state. An elec-
tron in this state has energy

 E6 = -  
13.60 eV

62 = -0.38 eV

and the radius of its orbit is

 r6 = 62(5.29 * 10-11 m) = 1.90 * 10-9 m = 1.90 nm

ExAMPLE 38.11  Stationary states of the hydrogen atom
Can an electron in a hydrogen atom have a speed of 3.60 *
105 m/s? If so, what are its energy and the radius of its orbit? What 
about a speed of 3.65 * 105 m/s?

SoLvE To be in a stationary state, the electron must have speed

 vn =
v1

n
=

2.19 * 106 m/s
n

where n is an integer. A speed of 3.60 * 105 m/s would require 
quantum number

 n =
2.19 * 106 m/s

3.60 * 105 m/s
= 6.08
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Binding Energy and ionization Energy
It is important to understand why the energies of the stationary states are negative. 
Because the potential energy of two charged particles is U = q1q2/4pP0r, the zero of 
potential energy occurs at r = � where the particles are infinitely far apart. The state 
of zero total energy corresponds to having the electron at rest (K = 0) and infinitely 
far from the proton (U = 0). This situation, which is the case of two “free particles,” 
occurs in the limit n S �, for which rn S � and vn S 0.

An electron and a proton bound into an atom have less energy than two free par-
ticles. We know this because we would have to do work (i.e., add energy) to pull the 
electron and proton apart. If the bound atom’s energy is lower than that of two free 
particles, and if the total energy of two free particles is zero, then it must be the case 
that the atom has a negative amount of energy.

Thus 0En 0  is the binding energy of the electron in stationary state n. In the ground state, 
where E1 = -13.60 eV, we would have to add 13.60 eV to the electron to free it from the 
proton and reach the zero energy state of two free particles. We can say that the electron in 
the ground state is “bound by 13.60 eV.” An electron in an n = 3 orbit, where it is farther 
from the proton and moving more slowly, is bound by only 1.51 eV. That is the amount of 
energy you would have to supply to remove the electron from an n = 3 orbit.

Removing the electron entirely leaves behind a positive ion, H+ in the case of 
a hydrogen atom. (The fact that H+ happens to be a proton does not alter the fact 
that it is also an atomic ion.) Because nearly all atoms are in their ground state, the 
binding energy 0E1 0  of the ground state is called the ionization energy of an atom. 
Bohr’s analysis predicts that the ionization energy of hydrogen is 13.60 eV. FigurE 38.22 
illustrates the ideas of binding energy and ionization energy.

We can test this prediction by shooting a beam of electrons at hydrogen atoms. A 
projectile electron can knock out an atomic electron if its kinetic energy K is greater 
than the atom’s ionization energy, leaving an ion behind. But a projectile electron will 
be unable to cause ionization if its kinetic energy is less than the atom’s ionization en-
ergy. This is a fairly straightforward experiment to carry out, and the evidence shows 
that the ionization energy of hydrogen is, indeed, 13.60 eV.

Quantization of Angular Momentum
The angular momentum of a particle in circular motion, whether it is a planet or an 
electron, is

 L = mvr

You will recall that angular momentum is conserved in orbital motion because a force 
directed toward a central point exerts no torque on the particle. Bohr used conserva-
tion of energy explicitly in his analysis of the hydrogen atom, but what role does 
conservation of angular momentum play?

The condition that a de Broglie wave for the electron set up a standing wave around 
the circumference was given, in Equation 38.23, as

 2pr = nl = n 
h

mv
Multiplying by mv and dividing by 2p, we can rewrite this equation as

 mvr = n 
h

2p
= nU (38.32)

But mvr is the angular momentum L for a particle in a circular orbit. It appears that 
the angular momentum of an orbiting electron cannot have just any value. Instead, it 
must satisfy

 L = nU  n = 1, 2, 3, p  (38.33)

Thus angular momentum also is quantized! The electron’s angular momentum must be 
an integer multiple of Planck’s constant U.

FigurE 38.22 Binding energy and 
ionization energy.

The binding energy is the energy
needed to remove an electron from
its orbit.

The ionization energy is the energy
needed to create an ion by removing
a ground-state electron.
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The quantization of angular momentum is a direct consequence of this wave-like 
nature of the electron. We will find that the quantization of angular momentum plays 
a major role in the behavior of more complex atoms, leading to the idea of electron 
shells that you likely have studied in chemistry.

Stop to think 38.5 
 What is the quantum number of this hydrogen 

atom?

38.7 The Hydrogen Spectrum
Our analysis of the hydrogen atom has revealed stationary states, but how do we know 
whether the results make any sense? The most important experimental evidence that 
we have about the hydrogen atom is its spectrum, so the primary test of the Bohr 
hydrogen atom is whether it correctly predicts the spectrum.

The Hydrogen EnergyLevel diagram
FigurE 38.23 is an energy-level diagram for the hydrogen atom. As we noted earlier, 
the energies are like the rungs of a ladder. The lowest rung is the ground state, with 
E1 = -13.60 eV. The top rung, with E = 0 eV, corresponds to a hydrogen ion in the 
limit n S �. This top rung is called the ionization limit. In principle there are an 
infinite number of rungs, but only the lowest few are shown. The higher values of n 
are all crowded together just below the ionization limit at n = �.

The figure shows a 1 S 4 transition in which a photon is absorbed and a 4 S 2 
transition in which a photon is emitted. For two quantum states m and n, where n 7 m 
and En is the higher energy state, an atom can emit a photon in an n S m transition or 
absorb a photon in an m S n transition.

The Emission Spectrum
According to the third assumption of Bohr’s model of atomic quantization, the fre-
quency of the photon emitted in an n S m transition is

 f =
�Eatom

h
=

En - Em

h
 (38.34)

We can use Equation 38.30 for the energies En and Em to predict that the emitted pho-
ton has frequency

  f =
1

h
e c -  

1

n2 1 1

4pP0
 

e2

2aB
2 d - c -  

1

m2 1 1

4pP0
 

e2

2aB
2 d f

  =
1

4pP0
 

e2

2haB
 1 1

m2 -
1

n2 2  

(38.35)

The frequency is a positive number because m 6 n and thus 1/m2 7 1/n2.
We are more interested in wavelength than frequency, because wavelengths are the 

quantity measured by experiment. The wavelength of the photon emitted in an n S m 
quantum jump is

 lnSm =
c

f
=

8pP0hcaB/e2

1 1

m2 -
1

n2 2  (38.36)

FigurE 38.23 The energy-level diagram 
of the hydrogen atom.

n � �
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1 S 4 absorption
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Many energy levels
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FigurE 38.24 Transitions producing the 
Lyman series and the Balmer series of 
lines in the hydrogen spectrum.

n � �

Balmer series
n S 2
visible

Lyman series
n S 1
ultraviolet

Ground state

5
4
3 2

1

Ionization limit

This looks rather gruesome, but notice that the numerator is simply a collection of 
various constants. The value of the numerator, which we can call l0, is

 l0 =
8pP0hcaB

e2 = 9.112 * 10-8 m = 91.12 nm

With this definition, our prediction for the wavelengths in the hydrogen emission 
spectrum is

 lnSm =
l0

1 1

m2 -
1

n2 2 m = 1, 2, 3, p n = m + 1, m + 2, p  (38.37)

This should look familiar. It is the Balmer formula from Chapter 37! However, 
there is one slight difference: Bohr’s analysis of the hydrogen atom has predicted 
l0 = 91.12 nm, whereas Balmer found, from experiment, that l0 =  91.18 nm. Could 
Bohr have come this close but then fail to predict the Balmer formula correctly?

The problem, it turns out, is in our assumption that the proton remains at rest 
while the electron orbits it. In fact, both particles rotate about their common center 
of mass, rather like a dumbbell with a big end and a small end. The center of mass 
is very close to the proton, which is far more massive than the electron, but the 
proton is not entirely motionless. The good news is that a more advanced analysis 
can account for the proton’s motion. It changes the energies of the stationary states 
ever so slightly—about 1 part in 2000—but that is precisely what is needed to give 
a revised value:

l0 = 91.18 nm when corrected for the nuclear motion

It works! Unlike all previous atomic models, the Bohr hydrogen atom correctly 
predicts the discrete spectrum of the hydrogen atom. FigurE 38.24 shows the Balmer 
series and the Lyman series transitions on an energy-level diagram. Only the Balmer 
series, consisting of transitions ending on the m = 2 state, gives visible wavelengths, 
and this is the series that Balmer initially analyzed. The Lyman series, ending on the 
m = 1 ground state, is in the ultraviolet region of the spectrum and was not measured 
until later. These series, as well as others in the infrared, are observed in a discharge 
tube where collisions with electrons excite the atoms upward from the ground state 
to state n. They then decay downward by emitting photons. Only the Lyman series is 
observed in the absorption spectrum because, as noted previously, essentially all the 
atoms in a quiescent gas are in the ground state.

 l1S2 =
91.18 nm

1 1

12 -
1

22 2 = 121.6 nm

ASSESS This wavelength is far into the ultraviolet. Ground-based 
astronomy cannot observe this region of the spectrum because the 
wavelengths are strongly absorbed by the atmosphere, but with 
space-based telescopes, first widely used in the 1970s, astrono-
mers see 121.6 nm absorption in nearly every direction they look.

ExAMPLE 38.12  Hydrogen absorption
Whenever astronomers look at distant galaxies, they find that the 
light has been strongly absorbed at the wavelength of the 1 S 2 
transition in the Lyman series of hydrogen. This absorption tells 
us that interstellar space is filled with vast clouds of hydrogen left 
over from the Big Bang. What is the wavelength of the 1 S 2 
absorption in hydrogen?

SoLvE Equation 38.37 predicts the absorption spectrum of 
hydrogen if we let m = 1. The absorption seen by astronomers is 
from the ground state of hydrogen (m = 1) to its first excited state 
(n = 2). The wavelength is

HydrogenLike ions
An ion with a single electron orbiting Z protons in the nucleus is called a hydrogen
like ion. Z is the atomic number and describes the number of protons in the nucleus. 
He+, with one electron circling a Z = 2 nucleus, and Li++, with one electron and a 
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Z = 3 nucleus, are hydrogen-like ions. So is U+91, with one lonely electron orbiting a 
Z = 92 uranium nucleus.

Any hydrogen-like ion is simply a variation on the Bohr hydrogen atom. The only 
difference between a hydrogen-like ion and neutral hydrogen is that the potential 
energy -e2/4pP0r becomes, instead, -Ze2/4pP0r. Hydrogen itself is the Z = 1 case. 
If we repeat the analysis of the previous sections with this one change, we find:

  rn =
n2aB

Z
      En = -  

13.60 Z 2 eV

n2

  vn = Z 
v1

n
      l0 =

91.18 nm

Z 2  

(38.38)

As the nuclear charge increases, the electron moves into a smaller-diameter, higher-
speed orbit. Its ionization energy 0E1 0  increases significantly, and its spectrum shifts to 
shorter wavelengths. Table 38.3 compares the ground-state atomic diameter 2r1, the 
ionization energy 0E1 0 , and the first wavelength 3 S 2 in the Balmer series for hydro-
gen and the first two hydrogen-like ions.

TABLE 38.3 Comparison of hydrogen-like ions with Z = 1, 2, and 3

Ion Diameter 2r1

Ionization  
energy 0E1 0

Wavelength 
of 3 S 2

H (Z = 1) 0.106 nm 13.6 eV 656 nm

He+ (Z = 2) 0.053 nm 54.4 eV 164 nm

Li++ (Z = 3) 0.035 nm 122.4 eV 73 nm

Success and Failure
Bohr’s analysis of the hydrogen atom seemed to be a resounding success. By introduc-
ing Einstein’s ideas about light quanta, Bohr was able to provide the first understand-
ing of discrete spectra and to predict the Balmer formula for the wavelengths in the 
hydrogen spectrum. And the Bohr hydrogen atom, unlike Rutherford’s model, was 
stable. There was clearly some validity to the idea of stationary states.

But Bohr was completely unsuccessful at explaining the spectra of any other neu-
tral atom. His method did not work even for helium, the second element in the periodic 
table with a mere two electrons. Something inherent in Bohr’s assumptions seemed to 
work correctly for a single electron but not in situations with two or more electrons.

It is important to make a distinction between the Bohr model of atomic quan-
tization, described in Section 38.5, and the Bohr hydrogen atom. The Bohr model 
assumes that stationary states exist, but it does not say how to find them. We found 
the stationary states of a hydrogen atom by requiring that an integer number of 
de Broglie waves fit around the circumference of the orbit, setting up standing waves. 
The difficulty with more complex atoms is not the Bohr model but the method of 
finding the stationary states. Bohr’s model of the atomic quantization remains valid, 
and we will continue to use it, but the procedure of fitting standing waves to a circle 
is just too simple to find the stationary states of complex atoms. We need to find a 
better procedure.

Einstein, de Broglie, and Bohr carried physics into uncharted waters. Their suc-
cesses made it clear that the microscopic realm of light and atoms is governed by 
quantization, discreteness, and a blurring of the distinction between particles and 
waves. Although Bohr was clearly on the right track, his inability to extend the Bohr 
hydrogen atom to more complex atoms made it equally clear that the complete and 
correct theory remained to be discovered. Bohr’s theory was what we now call “semi-
classical,” a hybrid of classical Newtonian mechanics with the new ideas of quanta. 
Still missing was a complete theory of motion and dynamics in a quantized universe—
a quantum mechanics.
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atom’s energy to En = E1 + 13.06 eV = -0.54 eV. The energy 
levels of hydrogen are given by

 En = -
13.60 eV

n2

The quantum number of the energy level with -0.54 eV is

 n = B -
13.60 eV

 (-0.54 eV)
= 5

We see that the absorption is a 1 S 5 transition; thus the emission, 
with �n = 3, must be a 5 S 2 transition. The energy of the n = 2 
state is

 E2 = -
13.60 eV

22 = -3.40 eV

Consequently, the energy of the emitted photon is

 Ephoton = �Eatom = (-0.54 eV) - (-3.40 eV) = 2.86 eV

Inverting the energy-wavelength relationship that we started with, 
we find

l =
hc

Ephoton
=

(4.14 * 10-15 eV s)(3.00 * 108 m/s)

2.86 eV
= 434 nm

When atomic hydrogen gas is irradiated with ultraviolet light hav-
ing a wavelength of 95.10 nm, it fluoresces at the visible wave-
length of 434 nm. (It also fluoresces at infrared and ultraviolet 
wavelengths in downward transitions with other values of �n.)

ASSESS The 5 S 2 transition is a member of the Balmer series, 
and a 434 nm spectral line was shown in the hydrogen spectrum 
of Figure 37.7. It is important to notice that the 13.06 eV photon 
energy does not match any energy level of the hydrogen atom. 
Instead, it matches the difference between two levels because that 
conserves energy in a quantum jump between those two levels. 
Photons with nearby wavelengths, such as 94 nm or 96 nm, would 
not be absorbed at all because their energy does not match the dif-
ference of any two energy levels in hydrogen.

CHALLENgE ExAMPLE 38.13  Hydrogen fluorescence
Fluorescence is the absorption of light at one wavelength followed 
by emission at a longer wavelength. Suppose a hydrogen atom in 
its ground state absorbs an ultraviolet photon with a wavelength of 
95.10 nm. Immediately after the absorption, the atom undergoes a 
quantum jump with �n = 3. What is the wavelength of the photon 
emitted in this quantum jump?

ModEL Photons are emitted and absorbed as an atom undergoes 
quantum jumps from one energy level to another. The Bohr model 
gives the energy levels of the hydrogen atom.

viSuALizE FigurE 38.25 shows the process. To be absorbed, the 
photon energy has to match exactly the energy difference between 
the ground state of hydrogen and an excited state with quantum 
number n. After excitation, the atom emits a photon as it jumps 
downward in a n S n - 3 transition.

FigurE 38.25 The process of fluorescence in hydrogen. 
Energy levels are not drawn to scale.

SoLvE The energy of the absorbed photon is

 E = hf =
hc

l
=

(4.14 * 10-15 eV s)(3.00 * 108 m/s)

95.10 * 10-9 m
= 13.06 eV

The atom’s initial energy is E1 = -13.60 eV, the energy of the 
ground state of hydrogen. Absorbing a 13.06 eV photon raises the 
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S u M M A r y
The goal of Chapter 38 has been to understand the quantization of energy for light and matter.

Einstein’s Model of Light
• Light consists of quanta of energy 

E = hf.

• Quanta are emitted and absorbed 
on an all-or-nothing basis.

• When a light quantum is absorbed, 
it delivers all its energy to one 
electron.

Bohr’s Model of the Atom
• An atom can exist in only certain stationary states. The  

allowed energies are quantized. State n has energy En.

• An atom can jump from one stationary state to another by 
emitting or absorbing a photon with Ephoton = hf = �Eatom.

• Atoms can be excited in inelastic collisions.

• Atoms seek the n = 1 ground state. Most atoms, most of 
the time, are in the ground state.

important Concepts

Light has particle-like properties

• The energy of a light wave 
comes in discrete packets called 
light quanta or photons.

• For light of frequency f, the energy of each photon is 
E = hf, where h is Planck’s constant.

• For a light wave that delivers power P, photons arrive 
at rate R such that P = Rhf.

• Photons are “particle-like” but are not classical 
particles.

Matter has wave-like properties

• The de Broglie wavelength of a “particle” of mass m is l = h/mv.

• The wave-like nature of matter is seen in the interference patterns 
of electrons, neutrons, and entire atoms.

• When a particle is confined, it sets up a de Broglie standing wave. 
The fact that standing waves have only 
certain allowed wavelengths leads to 
the conclusion that a confined particle 
has only certain allowed energies. That 
is, energy is quantized.

general Principles

c

E1

E2

E3

Emission

Absorption

Photoelectric effect

Light can eject electrons from a metal 
only if f Ú f0 = E0/h, where E0 is the 
metal’s work function.

The stopping potential that stops even 
the fastest electrons is

  Vstop =
h

e
 ( f - f0)

The Bohr hydrogen atom

The stationary states are found by 
requiring an integer number of 
de Broglie wavelengths to fit around 
the circumference of the electron’s 
orbit: 2pr = nl.

This leads to energy quantization with

rn = n2aB  vn =
v1

n
  En = -

13.60 eV

n2

where aB = 0.0529 nm is the Bohr radius. The Bohr 
hydrogen atom successfully predicts the Balmer formula 
for the hydrogen spectrum. Angular momentum is also 
quantized, with L = nU.

Applications

Particle in a box

A particle confined to a one-dimensional box of length L sets up 
de Broglie standing waves. The allowed energies are

  En =
1

2
 mvn 

2 = n2 
h2

8mL2  n = 1, 2, 3, p

�V

I

0�Vstop
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photoelectric effect
threshold frequency, f0

stopping potential, Vstop

thermal emission
work function, E0

Planck’s constant, h or U
light quantum
photon
photon model

wave packet
matter wave
de Broglie wavelength
quantized
energy level
quantum number, n
fundamental quantum of 

energy, E1

Bohr model of the atom

stationary state
excited state
ground state
transition
quantum jump
collisional excitation
energy-level diagram
Bohr radius, aB

binding energy

ionization energy
ionization limit
hydrogen-like ion

Terms and Notation

C o N C E P T u A L  Q u E S T i o N S

 1. a. A negatively charged electroscope can be discharged by shin-
ing an ultraviolet light on it. How does this happen?

 b. You might think that an ultraviolet light shining on an initially 
uncharged electroscope would cause the electroscope to 
become positively charged as photoelectrons are emitted. In 
fact, ultraviolet light has no noticeable effect on an uncharged 
electroscope. Why not?

 2. a.  Explain why the graphs of Figure 38.3 are mostly horizontal 
for �V 7 0.

 b. Explain why photoelectrons are ejected from the cathode 
with a range of kinetic energies, rather than all electrons 
having the same kinetic energy.

 c. Explain the reasoning by which we claim that the stopping 
potential Vstop indicates the maximum kinetic energy of the 
electrons.

 3. How would the graph of Figure 38.2 look if classical physics pro-
vided the correct description of the photoelectric effect? Draw the 
graph and explain your reasoning. Assume that the light intensity 
remains constant as its frequency and wavelength are varied.

 4. How would the graphs of Figure 38.3 look if classical physics 
provided the correct description of the photoelectric effect? 
Draw the graph and explain your reasoning. Include curves for 
both weak light and intense light.

 5. FigurE Q38.5 is the current-versus-potential-difference graph 
for a photoelectric-effect experiment with an unknown metal. If 
classical physics provided the correct description of the photo-
electric effect, how would the graph look if:

 a. The light was replaced by an equally intense light with a 
shorter wavelength? Draw it.

 b. The metal was replaced by a different metal with a smaller 
work function? Draw it.

 6. Metal 1 has a larger work function than metal 2. Both are il-
luminated with the same short-wavelength ultraviolet light. Do 
photoelectrons from metal 1 have a higher speed, a lower speed, 
or the same speed as photoelectrons from metal 2? Explain.

 7. Electron 1 is accelerated from rest through a potential difference 
of 100 V. Electron 2 is accelerated from rest through a potential 

difference of 200 V. Afterward, which electron has the larger de 
Broglie wavelength? Explain.

 8. An electron and a proton are each accelerated from rest through 
a potential difference of 100 V. Afterward, which particle has the 
larger de Broglie wavelength? Explain.

 9. FigurE Q38.9 is a simulation of the electrons detected behind two 
closely spaced slits. Each bright dot represents one electron. 
How will this pattern change if

 a. The electron-beam intensity is increased?
 b. The electron speed is reduced?
 c. The electrons are replaced by neutrons?
 d. The left slit is closed?
  Your answers should consider the number of dots on the screen 

and the spacing, width, and positions of the fringes.

 10. Imagine that the horizontal box of Figure 38.15 is instead ori-
ented vertically. Also imagine the box to be on a neutron star 
where the gravitational field is so strong that the particle in the 
box slows significantly, nearly stopping, before it hits the top of 
the box. Make a qualitative sketch of the n = 3 de Broglie stand-
ing wave of a particle in this box.

  Hint: The nodes are not uniformly spaced.
 11. If an electron is in a stationary state of an atom, is the electron at 

rest? If not, what does the term mean?
 12. FigurE Q38.12 shows the energy-level diagram of Element X.
 a. What is the ionization energy of Element X?
 b. An atom in the ground state absorbs a photon, then emits a 

photon with a wavelength of 1240 nm. What conclusion can 
you draw about the energy of the photon that was absorbed?

 c. An atom in the ground state has a collision with an electron, 
then emits a photon with a wavelength of 1240 nm. What 
conclusion can you draw about the initial kinetic energy of 
the electron?FigurE Q38.5 
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E x E r C i S E S  A N d  P r o B L E M S

Problems labeled  integrate material from earlier chapters.

Exercises

Section 38.1 The Photoelectric Effect

Section 38.2 Einstein’s Explanation

 1. || How many photoelectrons are ejected per second in the ex-
periment represented by the graph of FigurE Ex38.1?

 2. | Which metals in Table 38.1 exhibit the photoelectric effect for 
(a) light with l = 400 nm and (b) light with l = 250 nm?

 3. | Photoelectrons are observed when a metal is illuminated by 
light with a wavelength less than 388 nm. What is the metal’s 
work function?

 4. || Electrons in a photoelectric-effect experiment emerge from an 
aluminum surface with a maximum kinetic energy of 1.30 eV. 
What is the wavelength of the light?

 5. | You need to design a photodetector that can respond to the 
entire range of visible light. What is the maximum possible work 
function of the cathode?

 6. || A photoelectric-effect experiment finds a stopping potential 
of 1.56 V when light of 200 nm is used to illuminate the cathode.

 a. From what metal is the cathode made?
 b. What is the stopping potential if the intensity of the light is 

doubled?

Section 38.3 Photons

 7. | a.  Determine the energy, in eV, of a photon with a 550 nm 
wavelength.

   b. Determine the wavelength of a 7.5 keV x-ray photon.
 8. | What is the wavelength, in nm, of a photon with energy

(a) 0.30 eV, (b) 3.0 eV, and (c) 30 eV? For each, is this wave-
length visible, ultraviolet, or infrared light?

 9. | What is the energy, in eV, of (a) a 450 MHz radio-frequency 
photon, (b) a visible-light photon with a wavelength of 450 nm, 
and (c) an x-ray photon with a wavelength of 0.045 nm?

 10. | An FM radio station broadcasts with a power of 10 kW at a 
frequency of 101 MHz.

 a. How many photons does the antenna emit each second?
 b. Should the broadcast be treated as an electromagnetic wave 

or discrete photons? Explain.
 11. | For what wavelength of light does a 100 mW laser deliver 

2.50 * 1017 photons per second?
 12. | A red laser with a wavelength of 650 nm and a blue laser with 

a wavelength of 450 nm emit laser beams with the same light 
power. How do their rates of photon emission compare? Answer 
this by computing Rred/Rblue.

 13. | A 100 W incandescent lightbulb emits about 5 W of visible 
light. (The other 95 W are emitted as infrared radiation or lost as 
heat to the surroundings.) The average wavelength of the visible 
light is about 600 nm, so make the simplifying assumption that 
all the light has this wavelength. How many visible-light photons 
does the bulb emit per second?

Section 38.4 Matter Waves and Energy Quantization

 14. || At what speed is an electron’s de Broglie wavelength 
(a) 1.0 pm, (b) 1.0 nm, (c) 1.0 mm, and (d) 1.0 mm?

 15. || Through what potential difference must an electron be accel-
erated from rest to have a de Broglie wavelength of 500 nm?

 16. || What is the de Broglie wavelength of a neutron that has fallen 
1.0 m in a vacuum chamber, starting from rest?

 17. | a.  What is the de Broglie wavelength of a 200 g baseball with 
a speed of 30 m/s?

   b.  What is the speed of a 200 g baseball with a de Broglie 
wavelength of 0.20 nm?

 18. | The diameter of the nucleus is about 10 fm. What is the kinetic 
energy, in MeV, of a proton with a de Broglie wavelength of 10 fm?

 19. | What is the quantum number of an electron confined in a 
3.0-nm-long one-dimensional box if the electron’s de Broglie 
wavelength is 1.0 nm?

 20. | The diameter of the nucleus is about 10 fm. A simple model 
of the nucleus is that protons and neutrons are confined within 
a one-dimensional box of length 10 fm. What are the first three 
energy levels, in MeV, for a proton in such a box?

 21. || What is the length of a one-dimensional box in which an elec-
tron in the n = 1 state has the same energy as a photon with a 
wavelength of 600 nm?

Section 38.5 Bohr’s Model of Atomic Quantization

 22. | FigurE Ex38.22 is an energy-level diagram for a simple atom. 
What wavelengths appear in the atom’s (a) emission spectrum 
and (b) absorption spectrum?

 23. || An electron with 2.00 eV of kinetic energy collides with the 
atom shown in FigurE Ex38.22.

 a. Is the electron able to excite the atom? Why or why not?
 b. If your answer to part a was yes, what is the electron’s kinetic 

energy after the collision?
 24. || The allowed energies of a simple atom are 0.00 eV, 4.00 eV, 

and 6.00 eV.
 a. Draw the atom’s energy-level diagram. Label each level with 

the energy and the quantum number.
 b. What wavelengths appear in the atom’s emission spectrum?
 c. What wavelengths appear in the atom’s absorption spectrum?

FigurE Ex38.1 
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 25. || The allowed energies of a simple atom are 0.00 eV, 4.00 eV, 
and 6.00 eV. An electron traveling with a speed of 1.30 * 106 m/s 
collides with the atom. Can the electron excite the atom to the 
n = 2 stationary state? The n = 3 stationary state? Explain.

Section 38.6 The Bohr Hydrogen Atom

 26. | What is the radius of a hydrogen atom whose electron moves 
at 7.3 * 105 m/s?

 27. | What is the radius of a hydrogen atom whose electron is bound 
by 0.378 eV?

 28. | a.  What quantum number of the hydrogen atom comes closest 
to giving a 100-nm-diameter electron orbit?

   b. What are the electron’s speed and energy in this state?
 29. || a.  Calculate the de Broglie wavelength of the electron in the 

n = 1, 2, and 3 states of the hydrogen atom. Use the infor-
mation in Table 38.2.

   b.  Show numerically that the circumference of the orbit for 
each of these stationary states is exactly equal to n de 
Broglie wavelengths.

   c. Sketch the de Broglie standing wave for the n = 3 orbit.
 30. || How much energy does it take to ionize a hydrogen atom that 

is in its first excited state?
 31. | Show, by calculation, that the first three states of the hydrogen 

atom have angular momenta U, 2U, and 3U, respectively.

Section 38.7 The Hydrogen Spectrum

 32. | Determine the wavelengths of all the possible photons that can 
be emitted from the n = 4 state of a hydrogen atom.

 33. || What is the third-longest wavelength in the absorption spec-
trum of hydrogen?

 34. | Is a spectral line with wavelength 656.5 nm seen in the ab-
sorption spectrum of hydrogen atoms? Why or why not?

 35. || Find the radius of the electron’s orbit, the electron’s speed, 
and the energy of the atom for the first three stationary states of 
He+.

Problems

 36. || A ruby laser emits an intense pulse of light that lasts a mere 
10 ns. The light has a wavelength of 690 nm, and each pulse has 
an energy of 500 mJ.

 a. How many photons are emitted in each pulse?
 b. What is the rate of photon emission, in photons per second, 

during the 10 ns that the laser is “on”?
 37. || In a photoelectric-effect experiment, the wavelength of light 

shining on an aluminum cathode is decreased from 250 nm to 
200 nm. What is the change in the stopping potential?

 38. || The wavelengths of light emitted by a firefly span the visible 
spectrum but have maximum intensity near 550 nm. A typical 
flash lasts for 100 ms and has a power output of 1.2 mW. How 
many photons does a firefly emit in one flash if we assume that 
all light is emitted at the peak intensity wavelength of 550 nm?

 39. || Dinoflagellates are single-cell organisms that float in the 
world’s oceans. Many types are bioluminescent. When disturbed, 
a typical bioluminescent dinoflagellate emits 108 photons in a 
0.10-s-long flash of wavelength 460 nm. What is the power of 
the flash?
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 40. || Potassium and gold cathodes are used in a photoelectric-effect 
experiment. For each cathode, find:

 a. The threshold frequency.
 b. The threshold wavelength.
 c. The maximum photoelectron ejection speed if the light has a 

wavelength of 220 nm.
 d. The stopping potential if the wavelength is 220 nm.
 41. || The maximum kinetic energy of photoelectrons is 2.8 eV. 

When the wavelength of the light is increased by 50%, the maxi-
mum energy decreases to 1.1 eV. What are (a) the work function 
of the cathode and (b) the initial wavelength of the light?

 42. || In a photoelectric-effect experiment, the stopping potential at 
a wavelength of 400 nm is 25.7% of the stopping potential at a 
wavelength of 300 nm. Of what metal is the cathode made?

 43. || The graph in FigurE P38.43 was measured in a photoelectric-
effect experiment.

 a. What is the work function (in eV) of the cathode?
 b. What experimental value of Planck’s constant is obtained 

from these data?

 44. || A metal cathode whose work function is 3.3 eV is illuminated 
with 15 mW of light having a wavelength of 300 nm. The ef-
ficiency of converting photons to photoelectrons is 12%. What 
current is measured in the experiment?

 45. || In a photoelectric-effect experiment, the stopping potential 
was measured for several different wavelengths of incident light. 
The data are as follows:

Wavelength (nm) Stopping potential (V)

500 0.19

450 0.48

400 0.83

350 1.28

300 1.89

250 2.74

  Use an appropriate graph of the data to determine (a) the metal used 
for the cathode and (b) an experimental value for Planck’s constant.

 46. || The relationship between momentum and energy from 
Einstein’s theory of relativity is E2 - (pc)2 = E0 

2, where, in this 
context, E0 = mc2 is the rest energy rather than the work function.

 a. A photon is a massless particle. What is a photon’s momen-
tum p in terms of its energy E?

 b. Einstein also claimed that the energy of a photon is related to 
its frequency by E = hf. Use this and your result from part a 
to write an expression for the wavelength l of a photon in 
terms of its momentum p.

 c. Your result for part b is for a “particle-like wave.” Suppose 
you thought this expression should also apply to a “wave-like 
particle.” What is your expression for l if you replace p with 
the classical-mechanics expression for the momentum of a 
particle of mass m? Is this a familiar-looking expression?
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 47. || A red blood cell is a 7.0@mm@diameter, 2.0@mm@thick disk with 
a density of 1100 kg/m3. What is the de Broglie wavelength of 
a red blood cell moving through a capillary at 4.0 mm/s? Do we 
need to be concerned with the wave nature of blood cells when 
describing the flow of blood?

 48. || The electron interference pattern of Figure 38.13 was made 
by shooting electrons with 50 keV of kinetic energy through two 
slits spaced 1.0 mm apart. The fringes were recorded on a detec-
tor 1.0 m behind the slits.

 a. What was the speed of the electrons? (The speed is large 
enough to justify using relativity, but for simplicity do this as 
a nonrelativistic calculation.)

 b. Figure 38.13 is greatly magnified. What was the actual spac-
ing on the detector between adjacent bright fringes?

 49. || An experiment was performed in which neutrons were shot 
through two slits spaced 0.10 nm apart and detected 3.5 m be-
hind the slits. FigurE P38.49 shows the detector output. Notice 
the 100 mm scale on the figure. To one significant figure, what 
was the speed of the neutrons?

 50. || The electrons in a cathode-ray tube are accelerated through 
a 250 V potential difference and then shot through a 33-nm-
diameter circular aperture. What is the diameter of the bright 
spot on an electron detector 1.5 m behind the aperture?

 51. || An electron confined in a one-dimensional box is observed, 
at different times, to have energies of 12 eV, 27 eV, and 48 eV. 
What is the length of the box?

 52. || An electron confined in a one-dimensional box emits a 
200 nm photon in a quantum jump from n = 2 to n = 1. What is 
the length of the box?

 53. ||| A proton confined in a one-dimensional box emits a 2.0 MeV 
gamma-ray photon in a quantum jump from n = 2 to n = 1. 
What is the length of the box?

 54. || Consider a small virus having a diameter of 10 nm. The atoms 
of the intracellular fluid are confined within the virus. Suppose 
we model the virus as a 10-nm-long “box.” What is the ground-
state energy (in eV) of a sodium ion confined in this box?

 55. || The absorption spectrum of an atom consists of the wave-
lengths 200 nm, 300 nm, and 500 nm.

 a. Draw the atom’s energy-level diagram.
 b. What wavelengths are seen in the atom’s emission spectrum?
 56. || The first three energy levels of 

the fictitious element X are shown in 
FigurE P38.56.

 a. What is the ionization energy of 
element X?

 b. What wavelengths are observed in 
the absorption spectrum of element 
X? Express your answers in nm.

 c. State whether each of your wave-
lengths in part b corresponds to ultraviolet, visible, or infra-
red light.

 57. || The first three energy levels of the fictitious element X were 
shown in FigurE P38.56. An electron with a speed of 1.4 * 106 m/s 
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collides with an atom of element X. Shortly afterward, the atom 
emits a photon with a wavelength of 1240 nm. What was the 
electron’s speed after the collision? Assume that, because the 
atom is much more massive than the electron, the recoil of the 
atom is negligible.

  Hint: The energy of the photon is not the energy transferred to 
the atom in the collision.

 58. || Starting from Equation 38.29, derive Equation 38.30.
 59. | Calculate all the wavelengths of visible light in the emission 

spectrum of the hydrogen atom.
  Hint: There are infinitely many wavelengths in the spectrum, 

so you’ll need to develop a strategy for this problem rather than 
using trial and error.

 60. || An electron with a speed of 2.1 * 106 m/s collides with a 
hydrogen atom, exciting the atom to the highest possible energy 
level. The atom then undergoes a quantum jump with �n = 1. 
What is the wavelength of the photon emitted in the quantum 
jump?

 61. || a.  What wavelength photon does a hydrogen atom emit in a 
200 S 199 transition?

   b.  What is the difference in the wavelengths emitted in a 
199 S 2 transition and a 200 S 2 transition?

 62. || Draw an energy-level diagram, similar to Figure 38.23, for the 
He+ ion. On your diagram:

 a. Show the first five energy levels. Label each with the values 
of n and En.

 b. Show the ionization limit.
 c Show all possible emission transitions from the n = 4 energy 

level.
 d. Calculate the wavelengths (in nm) for each of the transitions 

in part c and show them alongside the appropriate arrow.
 63. | What are the wavelengths of the transitions 3 S 2, 4 S 2, 

and 5 S 2 in the hydrogen-like ion O+7? In what spectral range 
do these lie?

 64. || Two hydrogen atoms collide head-on. The collision brings 
both atoms to a halt. Immediately after the collision, both atoms 
emit a 121.6 nm photon. What was the speed of each atom just 
before the collision?

 65. || A beam of electrons is incident upon a gas of hydrogen atoms.
 a. What minimum speed must the electrons have to cause 

the emission of 656 nm light from the 3 S 2 transition of 
hydrogen?

 b. Through what potential difference must the electrons be ac-
celerated to have this speed?

Challenge Problems

 66. Ultraviolet light with a wavelength of 70.0 nm shines on a gas 
of hydrogen atoms in their ground states. Some of the atoms are 
ionized by the light. What is the kinetic energy of the electrons 
that are freed in this process?

 67. In the atom interferometer experiment of Figure 38.14, laser-
cooling techniques were used to cool a dilute vapor of sodium 
atoms to a temperature of 0.0010 K = 1.0 mK. The ultracold at-
oms passed through a series of collimating apertures to form the 
atomic beam you see entering the figure from the left. The stand-
ing light waves were created from a laser beam with a wave-
length of 590 nm.

 a. What is the rms speed vrms of a sodium atom (A = 23) in a 
gas at temperature 1.0 mK?
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 b. By treating the laser beam as if it were a diffraction grating, 
calculate the first-order diffraction angle of a sodium atom 
traveling with the rms speed of part a.

 c. How far apart are points B and C if the second standing wave 
is 10 cm from the first?

 d. Because interference is observed between the two paths, each 
individual atom is apparently present at both point B and 
point C. Describe, in your own words, what this experiment 
tells you about the nature of matter.

 68. Consider a hydrogen atom in stationary state n.
 a. Show that the orbital period of an electron in quantum state n 

is T = n3T1, and find a numerical value for T1.
 b. On average, an atom stays in the n = 2 state for 1.6 ns be-

fore undergoing a quantum jump to the n = 1 state. On aver-
age, how many revolutions does the electron make before the 
quantum jump?

 69. Consider an electron undergoing cyclotron motion in a magnetic 
field. According to Bohr, the electron’s angular momentum must 
be quantized in units of U.

 a. Show that allowed radii for the electron’s orbit are given by 
rn = (nU/eB)1/2, where n = 1, 2, 3,....

 b. Compute the first four allowed radii in a 1.0 T magnetic field.
 c. Find an expression for the allowed energy levels En in terms 

of U and the cyclotron frequency fcyc.

 70. The muon is a subatomic particle with the same charge as an 
electron but with a mass that is 207 times greater: mm = 207me. 
Physicists think of muons as “heavy electrons.” However, the 
muon is not a stable particle; it decays with a half-life of 1.5 ms 
into an electron plus two neutrinos. Muons from cosmic rays 
are sometimes “captured” by the nuclei of the atoms in a solid. 
A captured muon orbits this nucleus, like an electron, until it 
decays. Because the muon is often captured into an excited orbit 
(n 7 1), its presence can be detected by observing the photons 
emitted in transitions such as 2 S 1 and 3 S 1.

Consider a muon captured by a carbon nucleus (Z = 6). 
Because of its large mass, the muon orbits well inside the elec-
tron cloud and is not affected by the electrons. Thus the muon 
“sees” the full nuclear charge Ze and acts like the electron in a 
hydrogen-like ion.

 a. What are the orbital radius and speed of a muon in the n = 1 
ground state? Note that the mass of a muon differs from the 
mass of an electron.

 b. What is the wavelength of the 2 S 1 muon transition?
 c. Is the photon emitted in the 2 S 1 transition infrared, visible, 

ultraviolet, or x ray?
 d. How many orbits will the muon complete during 1.5 ms? Is 

this a sufficiently large number that the Bohr model “makes 
sense,” even though the muon is not stable?

Stop to think AnSwerS

Stop to Think 38.1: VA + VB + VC. For a given wavelength of 
light, electrons are ejected with more kinetic energy from metals with 
smaller work functions because it takes less energy to remove an elec-
tron. Faster electrons need a larger negative voltage to stop them.

Stop to Think 38.2: d. Photons always travel at c, and a photon’s 
energy depends only on the light’s frequency, not its intensity.

Stop to Think 38.3: n � 4. There are four antinodes.

Stop to Think 38.4: Not in absorption. In emission from the 
n � 3 to n � 2 transition. The photon energy has to match the 
energy difference between two energy levels. Absorption is from the 
ground state, at E1 = 0.00 eV. There’s no energy level at 3.00 eV to 
which the atom could jump.

Stop to Think 38.5: n � 3. Each antinode is half a wavelength, so 
this standing wave has three full wavelengths in one circumference.
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Probability
You’ll learn that quantum mechanics 
deals with probabilities. We cannot say 
exactly where an electron is or how it’s 
moving, but we can make accurate state-
ments about the probability of locating 
the electron in a region of space.

Uncertainty
You’ll learn that the Heisenberg uncer-
tainty principle places a fundamental 
limit on how well you can know a 
particle’s position and speed.

Waves and Particles
The wave function reconciles the ex-
perimental evidence that matter has both 
particle-like and wave-like properties. 
The probability of detecting a particle 
is governed by a wave-like function that 
can exhibit interference.

Quantum Mechanics
This chapter and the next will introduce 
the essential ideas of quantum 
mechanics in one dimension. The full 
theory is beyond the scope of this text-
book, but we can delve far enough into 
quantum mechanics to learn, in the final 
two chapters, how it solves the prob-
lems of atomic and nuclear structure.

Despite the strange and unfamiliar 
aspects of quantum mechanics, its pre-
dictions are verified with amazing preci-
sion. It is the most successful physical 
theory ever devised.

Wave Functions and 
Uncertainty

39

 Looking Ahead  The goal of Chapter 39 is to introduce and learn to use the wave-function description of matter.

Wave Functions
You’ll learn that the probability of 
finding a particle is determined by the 
particle’s wave function c(x).

 Looking Back
Section 38.3 Photons
Section 38.4 de Broglie wavelength

The wave function c(x) is a wave-like 
function that can be used to make 
probabilistic predictions, but nothing is 
actually waving.

You’ll learn how to interpret the wave 
function in different situations.

The surface of graphite, imaged 
with atomic resolution by a 
scanning tunneling microscope. 
The hexagonal ridges show the 
most probable locations of the 
electrons.

The wave func
tion is an oscil
latory function.

The square of  
the wave func
tion is the prob-
ability density.

The particle 
is most likely 
found where 
the probability 
density peaks.

0c(x) 02

c(x)

x

x

In the doubleslit experiment, interference 
fringes in the wave function indicate that 
particlelike electrons are most likely to 
be detected where a wave would exhibit 
bright fringes.

If an experiment 
detects N particles, 
the expected number 
in a given region of 
space is N times the 
probability of being in 
that region.

 Looking Back
Section 21.8 Beats

c(x)

Wave packet length �x

x

v

Because matter has 
wavelike properties, 
a particle simply does 
not have a precise 
position or a precise 
speed. Our knowl
edge of a particle is 
inherently uncertain.
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39.1  Waves, Particles, and the 
Double-Slit Experiment

You may feel surprise at how slowly we have been building up to quantum mechanics. 
Why not just write it down and start using it? There are two reasons. First, quantum 
mechanics explains microscopic phenomena that we cannot directly sense or experi-
ence. It was important to begin by learning how light and atoms behave. Otherwise, 
how would you know if quantum mechanics explains anything? Second, the concepts 
we’ll need in quantum mechanics are rather abstract. Before launching into the math-
ematics, we need to establish a connection between theory and experiment.

We will make the connection by returning to the double-slit interference experi-
ment, an experiment that goes right to the heart of wave–particle duality. The sig-
nificance of the double-slit experiment arises from the fact that both light and matter 
exhibit the same interference pattern. Regardless of whether photons, electrons, or 
neutrons pass through the slits, their arrival at a detector is a particle-like event. 
That is, they make a collection of discrete dots on a detector. Yet our understand-
ing of how interference “works” is based on the properties of waves. Our goal is 
to find the connection between the wave description and the particle description of 
interference.

A Wave Analysis of Interference
The interference of light can be analyzed from either a wave perspective or a photon 
perspective. Let’s start with a wave analysis. FIgUrE 39.1 shows light waves passing 
through a double slit with slit separation d. You should recall that the lines in a wave-
front diagram represent wave crests, spaced one wavelength apart. The bright fringes 
of constructive interference occur where two crests or two troughs overlap. The graphs 
and the picture of the detection screen (notice that they’re aligned vertically) show the 
outcome of the experiment.

You studied interference and the double-slit experiment in Chapters 21 and 22. 
The two waves traveling from the slits to the viewing screen are traveling waves with 
displacements

  D1 = a sin(kr1 - vt)

  D2 = a sin(kr2 - vt)

where a is the amplitude of each wave, k = 2p/l is the wave number, and r1 and r2 are 
the distances from the two slits. The “displacement” of a light wave is not a physical 
displacement, as in a water wave, but a change in the electromagnetic field.

According to the principle of superposition, these two waves add together where 
they meet at a point on the screen to give a wave with net displacement D = D1 + D2. 
Previously (see Equation 22.12) we found that the amplitude of their superposition is

 A(x) = 2a cos 1pdx

lL 2  (39.1)

where x is the horizontal coordinate on the screen, measured from x = 0 in the center.
The function A(x), the top graph in Figure 39.1, is called the amplitude function. 

It describes the amplitude A of the light wave as a function of the position x on the 
viewing screen. The amplitude function has maxima where two crests from individ-
ual waves overlap and add constructively to make a larger wave with amplitude 2a. 
A(x) is zero at points where the two individual waves are out of phase and interfere 
destructively.

If you carry out a double-slit experiment in the lab, what you observe on the screen 
is the light’s intensity, not its amplitude. A wave’s intensity I is proportional to the 
square of the amplitude. That is, I � A2, where � is the “is proportional to” symbol. 

Interference fringes in an optical double
slit interference experiment.

Approaching wave fronts

Wave amplitude along the screen

Interference fringes

Photon arrival positions

Double slit

Screen

Crests
overlap

0

0

x

x

A(x)

L

d

l l

l

I

FIgUrE 39.1 The doubleslit experiment 
with light.
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Using Equation 39.1 for the amplitude at each point, we find the intensity I(x) as a 
function of position x on the screen is

 I(x) = C cos21pdx

lL 2  (39.2)

where C is a proportionality constant.
The lower graph in Figure 39.1 shows the intensity as a function of position along 

the screen. This graph shows the alternating bright and dark interference fringes that 
you see in the laboratory. In other words, the intensity of the wave is the experimental 
reality that you observe and measure.

Probability
Before discussing photons, we need to introduce some ideas about probability. Imag-
ine throwing darts at a dart board while blindfolded. FIgUrE 39.2 shows how the board 
might look after your first 100 throws. From this information, can you predict where 
your 101st throw is going to land? We’ll assume that all darts hit the board.

No. The position of any individual dart is unpredictable. No matter how hard you 
try to reproduce the previous throw, a second dart will not land at the same place. Yet 
there is clearly an overall pattern to where the darts strike the board. Even blindfolded, 
you had a general sense of where the center of the board was, so each dart was more 
likely to land near the center than at the edge.

Although we can’t predict where any individual dart will land, we can use the 
information in Figure 39.2 to determine the probability that your next throw will land 
in region A or region B or region C. Because 45 out of 100 throws landed in region A, 
we could say that the odds of hitting region A are 45 out of 100, or 45%.

Now, 100 throws isn’t all that many. If you throw another 100 darts, perhaps only 
43 will land in region A. Then maybe 48 of the next 100 throws. Imagine that the total 
number of throws Ntot becomes extremely large. Then the probability that any particu-
lar throw lands in region A is defined to be

 PA = lim
NtotS�

NA

Ntot
 (39.3)

In other words, the probability that the outcome will be A is the fraction of outcomes 
that are A in an enormously large number of trials. Similarly, PB = NB/Ntot and 
PC = NC/Ntot as Ntot S �. We can give probabilities as either a decimal fraction or a 
percentage. In this example, PA � 45%, PB � 35%, and PC � 20%. We’ve used �
rather than = because 100 throws isn’t enough to determine the probabilities with 
great precision.

What is the probability that a dart lands in either region A or region B? The number 
of darts landing in either A or B is NA or B = NA + NB, so we can use the definition of 
probability to learn that

  PA or B = lim
NtotS�

NA or B

Ntot
= lim

NtotS�

NA + NB

Ntot
 

(39.4)

  = lim
NtotS�

NA

Ntot
+ lim

NtotS�

NB

Ntot
= PA + PB

That is, the probability that the outcome will be A or B is the sum of PA and PB. 
This important conclusion is a general property of probabilities.

Each dart lands somewhere on the board. Consequently, the probability that a dart 
lands in A or B or C must be 100%. And, in fact,

 Psomewhere = PA or B or C = PA + PB + PC = 0.45 + 0.35 + 0.20 = 1.00

Thus another important property of probabilities is that the sum of the probabilities 
of all possible outcomes must equal 1.

45 in region A

35 in region B
20 in region C

C

B

A

FIgUrE 39.2 One hundred throws at a 
dart board.
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Suppose exhaustive trials have established that the probability of a dart landing in 
region A is PA. If you throw N darts, how many do you expect to land in A? This value, 
called the expected value, is

 NA expected = NPA (39.5)

The expected value is your best prediction of the outcome of an experiment.
If PA = 0.45, your best prediction is that 27 of 60 throws (45% of 60) will land in 

A. Of course, predicting 27 and actually getting 27 aren’t the same thing. You would 
predict 30 heads in 60 flips of a coin, but you wouldn’t be surprised if the actual num-
ber were 28 or 31. Similarly, the number of darts landing in region A might be 24 or 
29 instead of 27. In general, the agreement between actual values and expected values 
improves as you throw more darts.

Stop to think 39.1 
 Suppose you roll a die 30 times. What is the expected number of 

1’s and 6’s?

A Photon Analysis of Interference
Now let’s look at the double-slit results from a photon perspective. We know, from 
experimental evidence, that the interference pattern is built up photon by photon. The 
bottom portion of Figure 39.1 shows the pattern made on a detector after the arrival 
of the first few dozen photons. It is clearly a double-slit interference pattern, but it’s 
made, rather like a newspaper photograph, by piling up dots in some places but not 
others.

The arrival position of any particular photon is unpredictable. That is, nothing 
about how the experiment is set up or conducted allows us to predict exactly where the 
dot of an individual photon will appear on the detector. Yet there is clearly an overall 
pattern. There are some positions at which a photon is more likely to be detected, other 
positions at which it is less likely to be found.

If we record the arrival positions of many thousands of photons, we will be able 
to determine the probability that a photon will be detected at any given location. If 
50 out of 50,000 photons land in one small area of the screen, then each photon has 
a probability of 50/50,000 = 0.001 = 0.1% of being detected there. The probability 
will be zero at the interference minima because no photons at all arrive at those 
points. Similarly, the probability will be a maximum at the interference maxima. 
The probability will have some in-between value on the sides of the interference 
fringes.

FIgUrE 39.3a shows a narrow strip with width dx and height H. (We will assume 
that dx is very small in comparison with the fringe spacing, so the light’s intensity 
over dx is very nearly constant.) Think of this strip as a very narrow detector that 
can detect and count the photons landing on it. Suppose we place the narrow strip at 
position x. We’ll use the notation N(in dx at x) to indicate the number of photons that 
hit the detector at this position. The value of N(in dx at x) varies from point to point. 
N(in dx at x) is large if x happens to be near the center of a bright fringe; N(in dx at x) 
is small if x is in a dark fringe.

Suppose Ntot photons are fired at the slits. The probability that any one photon ends 
up in the strip at position x is

 Prob(in dx at x) = lim
NtotS�

N(in dx at x)

Ntot
 (39.6)

As FIgUrE 39.3b shows, Equation 39.6 is an empirical method for determining the prob-
ability of the photons hitting a particular spot on the detector.

The number of photons in
this narrow strip when it is
at position x is N(in dx at x).

dx

0 Position x 

H

x-axis 

(a)

N(in dx at x1) � 12 N(in dx at x2) � 3

Ntot � 84

Prob(in dx at x1)
� 12/84
� 4/28

Prob(in dx at x2)
� 3/84
� 1/28

(b)

x1

x-axis 
x2

FIgUrE 39.3 A strip of width dx at 
position x.
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Alternatively, suppose we can calculate the probabilities from a theory. In that case, 
the expected value for the number of photons landing in the narrow strip when it is at 
position x is

 N(in dx at x) = N * Prob(in dx at x) (39.7)

We cannot predict what any individual photon will do, but we can predict the fraction 
of the photons that should land in this little region of space. Prob(in dx at x) is the 
probability that it will happen.

39.2 Connecting the Wave and Photon Views
The wave model of light describes the interference pattern in terms of the wave’s 
intensity I(x), a continuous-valued function. The photon model describes the interfer-
ence pattern in terms of the probability Prob(in dx at x) of detecting a photon. These 
two models are very different, yet Figure 39.1 shows a clear correlation between the 
intensity of the wave and the probability of detecting photons. That is, photons are 
more likely to be detected at those points where the wave intensity is high and less 
likely to be detected at those points where the wave intensity is low.

The intensity of a wave is I = P/A, the ratio of light power P (joules per second) to 
the area A on which the light falls. The narrow strip in Figure 39.3a has area A = H dx. 
If the light intensity at position x is I(x), the amount of light energy E falling onto this 
narrow strip during each second is

 E(in dx at x) = I(x) A = I(x) H dx = H I(x) dx (39.8)

The notation E(in dx at x) refers to the energy landing on this narrow strip if you place 
it at position x.

From the photon perspective, energy E is due to the arrival of N photons, each of 
which has energy hf. The number of photons that arrive in the strip each second is

 N(in dx at x) =
E(in dx at x)

h f
=

H

h f
 I(x) dx (39.9)

We can then use Equation 39.6, the definition of probability, to write the probability 
that a photon lands in the narrow strip dx at position x as

 Prob(in dx at x) =
N(in dx at x)

Ntot
=

H

h f Ntot
 I(x) dx (39.10)

Equation 39.10 is a critical link between the wave model and the photon model. It tells 
us that the probability of detecting a photon is proportional to the intensity of the light 
at that point and to the width of the detector.

As a final step, recall that the light intensity I(x) is proportional to 0A(x) 0 2, the 
square of the amplitude function. Consequently,

 Prob(in dx at x) � 0A(x) 0 2 dx (39.11)

where the various constants in Equation 39.10 have all been incorporated into the 
unspecified proportionality constant of Equation 39.11.

In other words, the probability of detecting a photon at a particular point is 
directly proportional to the square of the light-wave amplitude function at that 
point. If the wave amplitude at point A is twice that at point B, then a photon is four 
times as likely to land in a narrow strip at A as it is to land in an equal-width strip at B.

NoTE  Equation 39.11 is the connection between the particle perspective and the 
wave perspective. It relates the probability of observing a particle-like event—the 
arrival of a photon—to the amplitude of a continuous, classical wave. This con-
nection will become the basis of how we interpret the results of quantum-physics 
calculations. 
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Probability Density
We need one last definition. Recall that the mass of a wire or string of a length L can be 
expressed in terms of the linear mass density m as m = mL. Similarly, the charge along 
a length L of wire can be expressed in terms of the linear charge density l as Q = lL. 
If the length had been very short—in which case we might have denoted it as dx—and 
if the density varied from point to point, we could have written

  mass(in length dx at x) = m(x) dx

  charge(in length dx at x) = l(x) dx

where m(x) and l(x) are the linear densities at position x. Writing the mass and charge 
this way separates the role of the density from the role of the small length dx.

Equation 39.11 looks similar. Using the mass and charge densities as analogies, as 
shown in FIgUrE 39.4, we can define the probability density P(x) such that

 Prob(in dx at x) = P(x) dx (39.12)

In one dimension, probability density has SI units of m-1. Thus the probability density 
multiplied by a length, as in Equation 39.12, yields a dimensionless probability.

NoTE  P(x) itself is not a probability, just as the linear mass density l is not, by 
itself, a mass. You must multiply the probability density by a length, as shown in 
Equation 39.12, to find an actual probability. 

By comparing Equation 39.12 to Equation 39.11, you can see that the photon prob-
ability density is directly proportional to the square of the light-wave amplitude:

 P(x) � 0A(x) 0 2 (39.13)

The probability density, unlike the probability itself, is independent of the width dx 
and depends on only the amplitude function.

Although we were inspired by the double-slit experiment, nothing in our analysis 
actually depends on the double-slit geometry. Consequently, Equation 39.13 is quite 
general. It says that for any experiment in which we detect photons, the probability 
density for detecting a photon is directly proportional to the square of the ampli-
tude function of the corresponding electromagnetic wave. We now have an explicit 
connection between the wave-like and the particle-like properties of the light.

FIgUrE 39.4 The probability density is 
analogous to the linear mass density.

The probability that a photon
lands in this small segment
of the screen is

Prob(in dx at x) � P(x) dx 

The mass of this small segment
of string is

mass(in dx at x) � m(x) dx 

Probability density
at x is P(x).

x

Linear mass density
at x is m(x).

dx

x-axis

x-axis

x

dx

Thus the probability density P(x) = Prob(in dx at x)/dx at this 
position is

  P(50 cm) =
Prob(in 1.0 mm at x = 50 cm)

0.0010 m
=

0.010

0.0010 m
  = 10 m-1

ExAMPLE 39.1  Calculating the probability density
In an experiment, 6000 out of 600,000 photons are detected in 
a 1.0-mm-wide strip located at position x = 50 cm. What is the 
probability density at x = 50 cm?

SoLVE The probability that a photon arrives at this particular 
strip is

 Prob(in 1.0 mm at x = 50 cm) =
6000

600,000
= 0.010

Stop to think 39.2  The figure shows the 
detection of photons in an optical exper-
iment. Rank in order, from largest to 
smallest, the square of the amplitude func-
tion of the electromagnetic wave at positions 
A, B, C, and D.

A B C D
x



1162    c h a p t e r  39 . Wave Functions and Uncertainty

39.3 The Wave Function
Now let’s look at the interference of matter. Electrons passing through a double-
slit apparatus create the same interference patterns as photons. The pattern is built 
up electron by electron, but there is no way to predict where any particular elec-
tron will be detected. Even so, we can establish the probability of an electron land-
ing in a narrow strip of width dx by measuring the positions of many individual 
electrons.

For light, we were able to relate the photon probability density P(x) to the am-
plitude of an electromagnetic wave. But there is no wave for electrons like electro-
magnetic waves for light. So how do we find the probability density for electrons? 
We have reached the point where we must make an inspired leap beyond classical 
physics. Let us assume that there is some kind of continuous, wave-like function 
for matter that plays a role analogous to the electromagnetic amplitude function 
A(x) for light. We will call this function the wave function c(x), where c is a 
lowercase Greek psi. The wave function is a function of position, which is why 
we write it as c(x).

To connect the wave function to the real world of experimental measurements, we 
will interpret c(x) in terms of the probability of detecting a particle at position x. If a 
matter particle, such as an electron, is described by the wave function c(x), then the 
probability Prob(in dx at x) of finding the particle within a narrow region of width dx 
at position x is

 Prob(in dx at x) = 0c(x) 0 2 dx = P(x) dx (39.14)

That is, the probability density P(x) for finding the particle is

 P(x) = 0c(x) 0 2 (39.15)

With Equations 39.14 and 39.15, we are defining the wave function c(x) to play 
the same role for material particles that the amplitude function A(x) does for photons. 
The only difference is that P(x) = 0c(x) 0 2 is for particles, whereas Equation 39.13 
for photons is P(x) � 0A(x) 0 2. The difference is that the electromagnetic field 
amplitude A(x) had previously been defined through the laws of electricity and 
magnetism. 0A(x) 0 2 is proportional to the probability density for finding a photon, 
but it is not directly the probability density. In contrast, we do not have any preex-
isting definition for the wave function c(x). Thus we are free to define c(x) so that 
0c(x) 0 2 is exactly the probability density. That is why we used =  rather than �  in 
Equation 39.15.

FIgUrE 39.5 shows the double-slit experiment with electrons. This time we will work 
backward. From the observed distribution of electrons, which represents the prob-
abilities of their landing in any particular location, we can deduce that 0c(x) 0 2 has 
alternating maxima and zeros. The oscillatory wave function c(x) is the square root at 
each point of 0c(x) 0 2. Notice the very close analogy with the amplitude function A(x) 
in Figure 39.1.

NoTE  0c(x) 0 2 is uniquely determined by the data, but the wave function c(x) is 
not unique. The alternative wave function c�(x) = -c(x)—an upside-down ver-
sion of the graph in Figure 39.5—would be equally acceptable. 

FIgUrE 39.6 is a different example of a wave function. After squaring it at each point, 
as shown in the bottom half of the figure, we see that this wave function represents a 
particle most likely to be detected very near x = -b or x = +b. These are the points 
where 0c(x) 0 2 is a maximum. There is zero likelihood of finding the particle right in 
the center. The particle is more likely to be detected at some positions than at others, 
but we cannot predict what its exact location will be at any given time.

NoTE  One of the difficulties in learning to use the concept of a wave function 
is coming to grips with the fact that there is no “thing” that is waving. There is no 

Electrons create interference fringes.

FIgUrE 39.5 The doubleslit experiment 
with electrons.

Electrons

Electron wave function

Interference fringes

Electron arrival positions on detector

Double slit

Detector

de Broglie
wavelength

0

0

x

x

c(x)

l l

0 c(x) 0 2

FIgUrE 39.6 The square of the wave 
function is the probability density for 
detecting the electron at position x.

The particle has zero probability of
being detected where 0 c(x) 0 2 � 0.

The particle has the
maximum probability
of being detected where
0 c(x) 0 2 is a maximum.

Probability
density

Wave function

P(x) � 0 c(x) 02

c(x) 

x
0

x

b�b

b�b
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disturbance associated with a physical medium. The wave function c(x) is simply a 
wave-like function (i.e., it oscillates between positive and negative values) that can 
be used to make probabilistic predictions about atomic particles. 

A Little Science Methodology
Equation 39.14 defines the wave function c(x) for a particle in terms of the probabil-
ity of finding the particle at different positions x. But our interests go beyond merely 
characterizing experimental data. We would like to develop a new theory of matter. 
But just what is a theory? Although this is not a book on scientific methodology, we 
can loosely say that a physical theory needs two basic ingredients:

 1. A descriptor, a mathematical quantity used to describe our knowledge of a phys-
ical object.

 2. One or more laws that govern the behavior of the descriptor.

For example, Newtonian mechanics is a theory of motion. The primary descriptor in 
Newtonian mechanics is a particle’s position x(t) as a function of time. This describes 
our knowledge of the particle at all times. The position is governed by Newton’s laws. 
These laws, especially the second law, are mathematical statements of how the de-
scriptor changes in response to forces. If we predict x(t) for a known set of forces, we 
feel confident that an experiment carried out at time t will find the particle right where 
predicted.

Newton’s theory of motion assumes that a particle’s position is well defined at 
every instant of time. The difficulty facing physicists early in the 20th century was the 
astounding discovery that the position of an atomic-size particle is not well defined. 
An electron in a double-slit experiment must, in some sense, go through both slits to 
produce an electron interference pattern. It simply does not have a well-defined posi-
tion as it interacts with the slits. But if the position function x(t) is not a valid descrip-
tor for matter at the atomic level, what is?

We will assert that the wave function c(x) is the descriptor of a particle in quantum 
mechanics. In other words, the wave function tells us everything we can know about 
the particle. The wave function c(x) plays the same leading role in quantum mechan-
ics that the position function x(t) plays in classical mechanics.

Whether this hypothesis has any merit will not be known until we see if it leads to 
predictions that can be verified. And before we can do that, we need to learn the “law 
of psi.” What new law of physics determines the wave function c(x) in a given situa-
tion? We will answer this question in the next chapter.

It may seem to you, as we go along, that we are simply “making up” ideas. In-
deed, that is at least partially true. The inventors of entirely new theories use their 
existing knowledge as a guide, but ultimately they have to make an inspired guess as 
to what a new theory should look like. Newton and Einstein both made such leaps, 
and the inventors of quantum mechanics had to make such a leap. We can attempt to 
make the new ideas plausible, but ultimately a new theory is simply a bold assertion 
that must be tested against reality via controlled experiments. The wave-function 
theory of quantum mechanics passed the only test that really matters in science—it 
works!

Stop to think 39.3 
 This is the wave function of 

a neutron. At what value of x is the neutron most 
likely to be found?

x

c(x)

xA

0
xB xC
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39.4 Normalization
In our discussion of probability we noted that the dart has to hit the wall somewhere. 
The mathematical statement of this idea is the requirement that PA + PB + PC = 1. 
That is, the probabilities of all the mutually exclusive outcomes must add up to 1.

Similarly, a photon or electron has to land somewhere on the detector after passing 
through an experimental apparatus. Consequently, the probability that it will be 
detected at some position is 100%. To make use of this requirement, consider an 
experiment in which an electron is detected on the x-axis. As FIgUrE 39.7 shows, we 
can divide the region between positions xL and xR into N adjacent narrow strips of 
width dx.

The probability that any particular electron lands in the narrow strip i at position 
xi is

 Prob(in dx at xi) = P(xi) dx

where P(xi) = 0c(xi) 0 2 is the probability density at xi. The probability that the electron 
lands in the strip at x1 or x2 or x3 or p  is the sum

  Prob(between xLand xR) = Prob(in dx at x1)

  + Prob(in dx at x2 ) + g  (39.16)

  = a
N

i=1
 P(xi) dx = a

N

i=1

0c(xi) 0 2 dx

That is, the probability that the electron lands somewhere between xL and xR is the 
sum of the probabilities of landing in each narrow strip.

If we let the strips become narrower and narrower, then dx S dx and the sum 
becomes an integral. Thus the probability of finding the particles in the range xL …
x … xR is

 Prob(in range xL … x … xR) = 3
xR

xL

P(x) dx = 3
xR

xL

0c(x) 0 2 dx (39.17)

As FIgUrE 39.8a shows, we can interpret Prob(in range xL … x … xR) as the area under 
the probability density curve between xL and xR.

NoTE  The integral of Equation 39.17 is needed when the probability density 
changes over the range xL to xR. For sufficiently narrow intervals, over which P(x) 
remains essentially constant, the expression Prob(in dx at x) = P(x) dx is still valid 
and is easier to use. 

Now let the detector become infinitely wide, so that the probability that the electron 
will arrive somewhere on the detector becomes 100%. The statement that the electron 
has to land somewhere on the x-axis is expressed mathematically as

 3
�

-�

P(x) dx = 3
�

-�

0c(x) 0 2 dx = 1 (39.18)

Equation 39.18 is called the normalization condition. Any wave function c(x) must 
satisfy this condition; otherwise we would not be able to interpret 0c(x) 0 2 as a prob-
ability density. As FIgUrE 39.8b shows, Equation 39.18 tells us that the total area under 
the probability density curve must be 1.

NoTE  The normalization condition integrates the square of the wave function. 
We don’t have any information about what the integral of c(x) might be. 

FIgUrE 39.7 Dividing the entire detector 
into many small strips of width dx.

N narrow strips of width dx

x-axis

xL

x1 x2 x3 xNxi... ...

The probability that a
particle lands in strip i is

xR

Prob(in dx at xi) � P(xi) dx. 

dx

FIgUrE 39.8 The area under the 
probability density curve is a probability.

xL 0 xR

x

The area under the curve between
xL and xR is the probability of finding
the particle between xL and xR.

P(x) � 0c(x) 0  2(a)

The total area under
the curve must be 1.

0

(b)

x

P(x) � 0c(x) 02
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 b. The wave function is

 c(x) = (1.732 nm-1/2)11 -
x

1.0 nm 2
Thus the probability density is

 P(x) = 0c(x) 0 2 = (3.0 nm-1)11 -
x

1.0 nm 2 2

This probability density is graphed in FIgUrE 39.10a.

ExAMPLE 39.2  Normalizing and interpreting a wave function
FIgUrE 39.9 shows the wave function of a particle confined within 
the region between x = 0 nm and x = L = 1.0 nm. The wave 
function is zero outside this region.

 a. Determine the value of the constant c that makes this a normal-
ized wave function.

 b. Draw a graph of the probability density P(x).
 c. Draw a dot picture showing where the first 40 or 50 particles 

might be found.
 d. Calculate the probability of finding the particle in a region of 

width dx = 0.01 nm at positions x1 = 0.05 nm, x2 =  0.50 nm, 
and x3 = 0.95 nm.

FIgUrE 39.9 The wave function of 
Example 39.2.

L � 1.0 nm0
0

c

c(x)

c(x) � c(1 � x/L)

x

MoDEL The probability of finding the particle is determined by 
the probability density P(x).

VISUALIzE The wave function is shown in Figure 39.9.

SoLVE a. The wave function is c(x) = c(1 - x/L) between 0 and 
L, 0 otherwise. This is a function that decreases linearly from 
c = c at x = 0 to c = 0 at x = L. The constant c is the height 
of this wave function. The particle has to be in the region 
0 … x … L with probability 1, and only one value of c will 
make it so. We can determine c by using Equation 39.18, the 
normalization condition. Because the wave function is zero 
outside the interval from 0 to L, the integration limits are 0 to 
L. Thus

  1 = 3
L

0

0c(x) 0 2 dx = c2
3

L

0
11 -

x

L 2 2

 dx

  = c2 3
L

0
11 -

2x

L
+

x2

L2 2  dx

  = c2 c x -
x2

L
+

x3

3L2 d
L

0
=

1

3
 c2L

The solution for c is

 c = B 3

L
= B 3

1.0 nm
= 1.732 nm-1/2

Note the unusual units for c. Although these are not SI units, 
we can correctly compute probabilities as long as dx has units 
of nm. A multiplicative constant such as c is often called a 
normalization constant.

FIgUrE 39.10 The probability density P(x) 
and the detected positions of particles.

0
0 x (nm)

Screen

P(x) (nm�1)

1

2

3

1.0

(a)

(b)

 c. Particles are most likely to be detected at the left edge of the 
interval, where the probability density P(x) is maximum. The 
probability steadily decreases across the interval, becoming 
zero at x = 1.0 nm. FIgUrE 39.10b shows how a group of 
particles described by this wave function might appear on a 
detection screen.

 d. P(x) is essentially constant over the small interval dx = 0.01 nm, 
so we can use

 Prob(in dx at x) = P(x) dx = 0c(x) 0 2  dx

for the probability of finding the particle in a region of width 
dx at the position x. We need to evaluate 0c(x) 0 2 at the three po-
sitions x1 = 0.05 nm, x2 = 0.50 nm, and x3 = 0.95 nm. Doing 
so gives

  Prob(in 0.01 nm at x1 = 0.05 nm) = c2(1 - x1/L)2 dx

  = 0.0270 = 2.70%

  Prob(in 0.01 nm at x2 = 0.50 nm) = c2(1 - x2/L)2 dx

  = 0.0075 = 0.75%

  Prob(in 0.01 nm at x3 = 0.95 nm) = c2(1 - x3/L)2 dx

  = 0.00008 = 0.008%
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Stop to think 39.4  The value of the constant a is

 a. a = 2.0 mm-1

 b. a = 1.0 mm-1

 c. a = 0.5 mm-1

 d. a = 2.0 mm-1/2

 e. a = 1.0 mm-1/2

 f. a = 0.5 mm-1/2
210

a

P(x) � 0c(x) 0  2

x (mm)

39.5 Wave Packets
The classical physics ideas of particles and waves are mutually exclusive. An object 
can be one or the other, but not both. These classical models fail to describe the 
wave–particle duality seen at the atomic level. An alternative model with both par-
ticle and wave characteristics is a wave packet.

Consider the wave shown in FIgUrE 39.11. Unlike the sinusoidal waves we have con-
sidered previously, which stretch through time and space, this wave is bunched up, or 
localized. The localization is a particle-like characteristic. The oscillations are wave-
like. Such a localized wave is called a wave packet.

A wave packet travels through space with constant speed v, just like a photon in 
a light wave or an electron in a force-free region. A wave packet has a wavelength, 
hence it will undergo interference and diffraction. But because it is also localized, a 
wave packet has the possibility of making a “dot” when it strikes a detector. We can 
visualize a light wave as consisting of a very large number of these wave packets 
moving along together. Similarly, we can think of a beam of electrons as a series of 
wave packets spread out along a line.

Wave packets are not a perfect model of photons or electrons (we need the full 
treatment of quantum physics to get a more accurate description), but they do provide 
a useful way of thinking about photons and electrons in many circumstances.

You might have noticed that the wave packet in Figure 39.11 looks very much 
like one cycle of a beat pattern. You will recall that beats occur if we superimpose 
two waves of frequencies f1 and f2 where the two frequencies are very similar: 
f1 � f2. FIgUrE 39.12, which is copied from Chapter 21 where we studied beats, shows 
that the loud, soft, loud, soft, p pattern of beats corresponds to a series of wave 
packets.

In Chapter 21, the beat frequency (number of pulses per second) was found to be

 fbeat = f1 - f2 = �f  (39.19)

where �f  is the range of frequencies that are superimposed to form the wave packet. 
Figure 39.12 defines �t as the duration of each beat or each wave packet. This interval 
of time is equivalent to the period Tbeat of the beat. Because period and frequency are 
inverses of each other, the duration �t is

 �t = Tbeat =
1

fbeat
=

1

�f

We can rewrite this as

 �f �t = 1 (39.20)

Equation 39.20 is nothing new; we are simply writing what we already knew in 
a different form. Equation 39.20 is a combination of three things: the relationship 
f = 1/T  between period and frequency, writing Tbeat as �t, and the specific knowledge 
that the beat frequency fbeat is the difference �f  of the two frequencies contributing to 

FIgUrE 39.11 History graph of a wave 
packet with duration �t.

The wave packet oscillates,
a wave-like characteristic.

The wave packet is localized,
a particle-like characteristic.

A wave packet can represent either a
matter particle (wave function c) or a
photon (electromagnetic field E).

c or E

Wave packet duration �t

t

FIgUrE 39.12 Beats are a series of wave 
packets.

Duration �t

loudsoft soft loud soft loud

t

Displacement
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the wave packet. As the frequency separation gets smaller, the duration of each beat 
gets longer.

When we superimpose two frequencies to create beats, the wave packet repeats 
over and over. A more advanced treatment of waves, called Fourier analysis, reveals 
that a single, nonrepeating wave packet can be created through the superposition of 
many waves of very similar frequency. FIgUrE 39.13 illustrates this idea. At one instant 
of time, all the waves interfere constructively to produce the maximum amplitude of 
the wave packet. At other times, the individual waves get out of phase and their super-
position tends toward zero.

FIgUrE 39.13 A single wave packet is the superposition of many component waves of 
similar wavelength and frequency.

The waves are all in phase
at this instant of time.

The superposition of the
many waves spanning a
range of frequencies is
a wave packet.

Waves to be added span the frequency
range from f0 �   � f to f0 �   � f.1

2
1
2

f � f0 �   � f

f � f0 

1
2

f � f0 �    � f1
2
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Suppose a single nonrepeating wave packet of duration �t is created by the super-
position of many waves that span a range of frequencies �f. We’ll not prove it, but 
Fourier analysis shows that for any wave packet

 �f �t � 1 (39.21)

The relationship between �f  and �t for a general wave packet is not as precise as 
Equation 39.20 for beats. There are two reasons for this:

 1. Wave packets come in a variety of shapes. The exact relationship between �f  
and �t depends somewhat on the shape of the wave packet.

 2. We have not given a precise definition of �t and �f  for a general wave 
packet. The quantity �t is “about how long the wave packet lasts,” while �f  
is “about the range of frequencies needing to be superimposed to produce 
this wave packet.” For our purposes, we will not need to be any more precise 
than this.

Equation 39.21 is a purely classical result that applies to waves of any kind. It tells 
you the range of frequencies you need to superimpose to construct a wave packet of 
duration �t. Alternatively, Equation 39.21 tells you that a wave packet created as a 
superposition of various frequencies cannot be arbitrarily short but must last for a time 
interval �t � 1/�f.
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Bandwidth
Short-duration pulses, like the one in Example 39.3, are used to transmit digital infor-
mation. Digital signals are sent over a phone line by brief tone pulses, over satellite 
links by brief radio pulses like the one in the example, and through optical fibers by 
brief laser-light pulses. Regardless of the type of wave and the medium through which 
it travels, any wave pulse must obey the fundamental relationship �f �t � 1.

Sending data at a higher rate (i.e., more pulses per second) requires that the pulse 
duration �t be shorter. But a shorter-duration pulse must be created by the superpo-
sition of a larger range of frequencies. Thus the medium through which a shorter-
duration pulse travels must be physically able to transmit the full range of frequencies.

The range of frequencies that can be transmitted through a medium is called the 
bandwidth �fB of the medium. The shortest possible pulse that can be transmitted 
through a medium is

 �tmin �
1

�fB
 (39.22)

A pulse shorter than this would require a larger range of frequencies than the medium 
can support.

The concept of bandwidth is extremely important in digital communications. A 
higher bandwidth permits the transmission of shorter pulses and allows a higher data 
rate. A standard telephone line does not have a very high bandwidth, and that is why 
a modem is limited to sending data at the rate of roughly 50,000 pulses per second. 
A 0.80 ms pulse can’t be sent over a phone line simply because the phone line won’t 
transmit the range of frequencies that would be needed.

An optical fiber is a high-bandwidth medium. A fiber has a bandwidth �fB 7

1 GHz and thus can transmit laser-light pulses with duration �t 6 1 ns. As a result, 
more than 109 pulses per second can be sent along an optical fiber, which is why 
optical-fiber networks now form the backbone of the Internet.

Uncertainty
There is another way of thinking about the time-frequency relationship �f �t � 1. 
Suppose you want to determine when a wave packet arrives at a specific point in 
space, such as at a detector of some sort. At what instant of time can you say that the 
wave packet is detected? When the front edge arrives? When the maximum amplitude 
arrives? When the back edge arrives? Because a wave packet is spread out in time, 

SoLVE The period of a 10.000 MHz oscillation is 0.100 ms. A 
pulse 0.800 ms in duration is 8 oscillations of the wave. Although 
the station broadcasts at a nominal frequency of 10.000 MHz, this 
pulse is not a pure 10.000 MHz oscillation. Instead, the pulse has 
been created by the superposition of many waves whose frequen-
cies span

�f �
1

�t
=

1

0.800 * 10-6 s
= 1.250 * 106 Hz = 1.250 MHz

This range of frequencies will be centered at the 10.000 MHz 
broadcast frequency, so the waves that must be superimposed to 
create this pulse span the frequency range

 9.375 MHz … f … 10.625 MHz

ExAMPLE 39.3  Creating radio-frequency pulses
A short-wave radio station broadcasts at a frequency of 
10.000 MHz. What is the range of frequencies of the waves that 
must be superimposed to broadcast a radio-wave pulse lasting 
0.800 ms?

MoDEL A pulse of radio waves is an electromagnetic wave packet, 
hence it must satisfy the relationship �f �t � 1.

VISUALIzE FIgUrE 39.14 shows the pulse.

FIgUrE 39.14 A pulse of radio waves.

�t � 0.800 ms

t

T � 0.100 ms
E

0
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there is not a unique and well-defined time t at which the packet arrives. All we can 
say is that it arrives within some interval of time �t. We are uncertain about the exact 
arrival time.

Similarly, suppose you would like to know the oscillation frequency of a wave 
packet. There is no precise value for f because the wave packet is constructed from 
many waves within a range of frequencies �f. All we can say is that the frequency is 
within this range. We are uncertain about the exact frequency.

The time-frequency relationship �f �t � 1 tells us that the uncertainty in our 
knowledge about the arrival time of the wave packet is related to our uncertainty about 
the packet’s frequency. The more precisely and accurately we know one quantity, the 
less precisely we will be able to know the other.

FIgUrE 39.15 shows two different wave packets. The wave packet of FIgUrE 39.15a is 
very narrow and thus very localized in time. As it travels, our knowledge of when it 
will arrive at a specified point is fairly precise. But a very wide range of frequencies 
�f  is required to create a wave packet with a very small �t. The price we pay for be-
ing fairly certain about the time is a very large uncertainty �f  about the frequency of 
this wave packet.

FIgUrE 39.15b shows the opposite situation: The wave packet oscillates many times 
and the frequency of these oscillations is pretty clear. Our knowledge of the frequency 
is good, with minimal uncertainty �f. But such a wave packet is so spread out that 
there is a very large uncertainty �t as to its time of arrival.

In practice, �f �t � 1 is really a lower limit. Technical limitations may cause 
the uncertainties in our knowledge of f and t to be even larger than this relationship 
implies. Consequently, a better statement about our knowledge of a wave packet is

 �f �t Ú 1 (39.23)

The fact that waves are spread out makes it meaningless to specify an exact frequency 
and an exact arrival time simultaneously. This is an inherent feature of waviness that 
applies to all waves.

FIgUrE 39.15 Two wave packets with 
different �t.

�t

�t

(a)

(b)

This wave packet has a large
frequency uncertainty �f.

This wave packet has a small
frequency uncertainty �f.

Stop to think 39.5 
 What minimum bandwidth must a medium have to transmit a 

100-ns-long pulse?

 a. 1 MHz b. 10 MHz c. 100 MHz d. 1000 MHz

39.6 The Heisenberg Uncertainty Principle
If matter has wave-like aspects and a de Broglie wavelength, then the expression 
�f �t Ú 1 must somehow apply to matter. How? And what are the implications?

Consider a particle with velocity vx as it travels along the x-axis with deBroglie wave-
length l = h/px. Figure 39.11 showed a history graph (c versus t) of a wave packet that 
might represent the particle as it passes a point on the x-axis. It will be more useful to 
have a snapshot graph (c versus x) of the wave packet traveling along the x-axis.

The time interval �t is the duration of the wave packet as the particle passes a point 
in space. During this interval, the packet moves forward

 �x = vx �t =
px

m
 �t (39.24)

where px = mvx is the x-component of the particle’s momentum. The quantity �x, 
shown in FIgUrE 39.16, is the length or spatial extent of the wave packet. Conversely, we 
can write the wave packet’s duration in terms of its length as

 �t =
m
px

 �x (39.25)

FIgUrE 39.16 A snapshot graph of a 
wave packet.

c(x)

Wave packet length �x

x

vx or px
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You will recall that any wave with sinusoidal oscillations must satisfy the wave 
condition l f = v. For a material particle, where l is the de Broglie wavelength, the 
frequency f is

 f =
v

l
=

px/m

h/px

=
px 

2

hm

If the momentum px should vary by the small amount �px, the frequency will vary 
by the small amount �f. Assuming that �f V f  and �px V px (reasonable assump-
tions), we can treat �f  and �px as if they were differentials df  and dpx. Taking the 
derivative, we find

 �f =
2px �px

hm
 (39.26)

Multiplying together these expressions for �t and �f, we find that

 �f �t =
2px �px

hm
 
m �x

px
=

2

h
 �x �px (39.27)

Because �f �t Ú 1 for any wave, one last rearrangement of Equation 39.27 shows 
that a matter wave must obey the condition

 �x �px Ú
h

2
  (Heisenberg uncertainty principle) (39.28)

This statement about the relationship between the position and momentum of a parti-
cle was proposed by Werner Heisenberg, creator of one of the first successful quantum 
theories. Physicists often just call it the uncertainty principle.

NoTE  In statements of the uncertainty principle, the right side is sometimes h/2, 
as we have it, but other times it is just h or contains various factors of p. The spe-
cific number is not especially important because it depends on exactly how �x and 
�p are defined. The important idea is that the product of � x and �px for a particle 
cannot be significantly less than Planck’s constant h. A similar relationship for 
�y �py applies along the y-axis. 

What Does It Mean?
Heisenberg’s uncertainty principle is a statement about our knowledge of the prop-
erties of a particle. If we want to know where a particle is located, we measure its 
position x. That measurement is not absolutely perfect but has some uncertainty �x. 
Likewise, if we want to know how fast the particle is going, we need to measure its 
velocity vx or, equivalently, its momentum px. This measurement also has some un-
certainty �px.

Uncertainties are associated with all experimental measurements, but better pro-
cedures and techniques can reduce those uncertainties. Newtonian physics places no 
limits on how small the uncertainties can be. A Newtonian particle at any instant of 
time has an exact position x and an exact momentum px, and with sufficient care we 
can measure both x and px with such precision that the product �x �px S 0. There 
are no inherent limits to our knowledge about a classical, or Newtonian, particle.

Heisenberg, however, made the bold and original statement that our knowledge has 
real limitations. No matter how clever you are, and no matter how good your experi-
ment, you cannot measure both x and px simultaneously with arbitrarily good preci-
sion. Any measurements you make are limited by the condition that � x �px Ú h/2. 
Our knowledge about a particle is inherently uncertain.

Why? Because of the wave-like nature of matter. The “particle” is spread out in 
space, so there simply is not a precise value of its position x. Similarly, the de Broglie 



Once again, we see that even the smallest of macroscopic objects behaves very 
much like a classical Newtonian particle. Perhaps a 1@mm@diameter particle is slightly 
fuzzy and has a slightly uncertain velocity, but it is far beyond the measuring capabili-
ties of even the very best instruments to detect this wave-like behavior. In contrast, the 
effects of the uncertainty principle at the atomic scale are stupendous. We are unable 
to determine the velocity of an electron in an atom-size container to any better accu-
racy than about 1% of the speed of light.

the particle’s momentum will be �px � h/(2 �x) = h/2L. We’ve 
assumed the most accurate measurements possible so that the Ú

in Heisenberg’s uncertainty principle becomes � . Consequently, 
the range of possible velocities is

 �vx =
�px

m
�

h

2mL
� 3.0 * 10-14 m/s

This range of possible velocities will be centered on vx = 0 m/s if 
we have done our best to have the particle be at rest. Thus all we 
can know with certainty is that the particle’s velocity is somewhere 
within the interval -1.5 * 10-14 m/s … v … 1.5 * 10-14 m/s.

ASSESS For practical purposes you might consider this to be a sat-
isfactory definition of “at rest.” After all, a particle moving with 
a speed of 1.5 * 10-14 m/s would need 6 * 1010 s to move a mere 
1 mm. That is about 2000 years! Nonetheless, we can’t know if the 
particle is “really” at rest.

ExAMPLE 39.4  The uncertainty of a dust particle
A 1.0@mm@diameter dust particle (m � 10-15 kg) is confined within 
a 10@mm@long box. Can we know with certainty if the particle is at 
rest? If not, within what range is its velocity likely to be found?

MoDEL All matter is subject to the Heisenberg uncertainty 
principle.

SoLVE If we know for sure that the particle is at rest, then px = 0 
with no uncertainty. That is, �px = 0. But then, according to the 
uncertainty principle, the uncertainty in our knowledge of the par-
ticle’s position would have to be �x S �. In other words, we 
would have no knowledge at all about the particle’s position—it 
could be anywhere! But that is not the case. We know the particle 
is somewhere in the box, so the uncertainty in our knowledge of 
its position is at most �x = L = 10 mm. With a finite � x, the 
uncertainty �px cannot be zero. We cannot know with certainty 
if the particle is at rest inside the box. No matter how hard we try 
to bring the particle to rest, the uncertainty in our knowledge of 

Because the average velocity is zero, the best we can say 
is that the electron’s velocity is somewhere in the interval 
-2 * 106 m/s … v … 2 * 106 m/s. It is simply not possible to 
know the electron’s velocity any more precisely than this.

ASSESS Unlike the situation in Example 39.4, where �v was so 
small as to be of no practical consequence, our uncertainty about 
the electron’s velocity is enormous—about 1% of the speed of 
light!

ExAMPLE 39.5  The uncertainty of an electron
What range of velocities might an electron have if confined to a 
0.10-nm-wide region, about the size of an atom?

MoDEL Electrons are subject to the Heisenberg uncertainty principle.

SoLVE The analysis is the same as in Example 39.4. If we know that 
the electron’s position is located within an interval �x � 0.1 nm,  
then the best we can know is that its velocity is within the range

 �vx =
�px

m
�

h

2mL
� 4 * 106 m/s

Stop to think 39.6 
 Which of these particles, A or B, can you locate more precisely?

x

c(x)

A

x

c(x)

B

relationship between momentum and wavelength implies that we cannot know the 
momentum of a wave packet any more exactly than we can know its wavelength or 
frequency. Our belief that position and momentum have precise values is tied to our 
classical concept of a particle. As we revise our ideas of what atomic particles are like, 
we will also have to revise our old ideas about position and momentum.

39.6 . The Heisenberg Uncertainty Principle    1171
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CHALLENgE ExAMPLE 39.6  The probability of finding a particle
A particle is described by the wave function

 c(x) = b 0 x 6 0

ce-x/L x Ú 0

where L = 1 nm.

 a. Determine the value of the constant c.
 b. Draw graphs of c(x) and the probability density P(x).
 c. If 106 particles are detected, how many are expected to be 

found in the region x Ú 1 nm?

MoDEL The probability of finding a particle is determined by the 
probability density P(x).

SoLVE a. The wave function is an exponential c(x) = ce-x/L 
that extends from x = 0 to x = + �. Equation 39.18, the 
normalization condition, is

1 = 3
�

-�

0c(x) 0 2 dx = c2
3

�

0

e-2x/L dx = -  
c2L

2
 e-2x/L `

�

0
=

c2L

2

We can solve this for the normalization constant c:

 c = B 2

L
= B 2

1 nm
= 1.414 nm-1/2

 b. The probability density is

 P(x) = 0c(x) 0 2 = (2.0 nm-1)e-2x/(1.0 nm)

The wave function and the probability density are graphed in 
FIgUrE 39.17.

 c. The probability of finding a particle in the region x Ú 1 nm 
is the shaded area under the probability density curve in 
Figure 39.17. We must use Equation 39.17 and integrate to find 
a numerical value. The probability is

FIgUrE 39.17 The wave function and 
probability density of Example 39.6.

0
x (nm)

P(x) (nm�1)

c(x) � (1.414 nm�1/2)e�x/(1.0 nm)

c(x) (nm�1/2)

The area under
the curve is
Prob(x � 1 nm).

1 2

1

2

3

0
x (nm)

1 2

1.414

  Prob(x Ú 1 nm) = 3
�

1 nm

0c(x) 0 2 dx

  = (2.0 nm-1)3
�

1 nm

 e-2x/(1.0 nm) dx

  = (2.0 nm-1)1-  
1.0 nm

2 2e-2x/(1.0 nm) 2 �
1 nm

  = e-2 = 0.135 = 13.5%

The number of particles expected to be found at x Ú 1 nm is

 Ndetected = N # Prob(x Ú 1 nm) = (106)(0.135) = 135,000

ASSESS There is a 13.5% chance of detecting a particle beyond 
1 nm and thus an 86.5% chance of finding it within the interval 
0 … x … 1 nm. Unlike classical physics, we cannot make an 
exact prediction of a particle’s position.
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S U M M A r y
The goal of Chapter 39 has been to introduce and learn to use the wave-function description of matter.

Terms and Notation
probability
expected value
probability density, P(x)

wave function, c(x)
normalization condition
wave packet

bandwidth, �fB

uncertainty principle

Heisenberg Uncertainty Principle
A particle with wave-like characteristics does not have a precise value 
of position x or a precise value of momentum px. Both are uncertain. 
The position uncertainty � x and momentum uncertainty �px are related 
by �x �px Ú h/2. The more you try to pin down the value of one, the 
less precisely the other can be known.

Wave Functions and the Probability Density
We cannot predict the exact trajectory of an atomic-level particle such as an electron. The 
best we can do is to predict the probability that a particle will be found in some region of 
space. The probability is determined by the particle’s wave function c(x).

• c(x) is a continuous, wave-like (i.e., oscillatory) function.

• The probability that a particle will be found in the narrow interval dx at position x is

  Prob(in dx at x) = 0c(x) 0 2  dx

• 0c(x) 0 2 is the probability density P(x).

• For the probability interpretation of c(x) to make sense, the wave function must 
satisfy the normalization condition:

•  3
�

-�

P(x) dx = 3
�

-�

0c(x) 0 2 dx = 1

 That is, it is certain that the particle is somewhere on the x-axis.

• For an extended interval

  Prob(xL … x … xR) = 3
xR

xL

0c(x) 0 2  dx = area under the curve

general Principles

0c(x) 02

c(x)

x

x
xL xR

dx at x

c(x)

Wave packet length �x

x

v

The probability that a particle 
is found in region A is

  PA = lim
NtotS�

  
NA

Ntot
 

If the probability is known, the 
expected number of A outcomes 
in N trials is NA = NPA.

A wave packet 
of duration �t can 
be created by the 
superposition of many 
waves spanning the 
frequency range �f. 
These are related by

�f �t � 1

Important Concepts

Region A

c or E

Wave packet duration �t

t
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C o N C E P T U A L  Q U E S T I o N S

 1. FIgUrE Q39.1 shows the probability density for photons to be 
detected on the x-axis.

 a. Is a photon more likely to be detected at x = 0 m or at x =
1 m? Explain.

 b. One million photons are detected. What is the expected num-
ber of photons in a 1-mm-wide interval at x = 0.50 m?

 2. What is the difference between the probability and the probabil-
ity density?

 3. For the electron wave function shown in FIgUrE Q39.3, at what 
position or positions is the electron most likely to be found? 
Least likely to be found? Explain.

FIgUrE Q39.1 

1

2

0

P(x) (m�1)

1.00.50.0
x (m)

FIgUrE Q39.3 

x (nm)

c(x)

�4 �2 2 4

 4. FIgUrE Q39.4 shows the dot pattern of electrons landing on a 
screen.

 a. At what value or values of x is the electron probability density 
at maximum? Explain.

 b. Can you tell at what value or values of x the electron wave 
function c(x) is most positive? If so, where? If not, why not?

 5. What is the value of the constant a in FIgUrE Q39.5?

 6. FIgUrE Q39.6 shows wave packets for particles 1, 2, and 3. Which 
particle can have its velocity known most precisely? Explain.

FIgUrE Q39.4 

x (mm)
0�2 2�4 4

FIgUrE Q39.5 
x (mm)

a

P(x) � 0c(x)02

31 20
0

FIgUrE Q39.6 

x x x

c(x) c(x) c(x)

Particle 3Particle 2Particle 1

E x E r C I S E S  A N D  P r o B L E M S

Problems labeled  integrate material from earlier chapters.

Exercises

Section 39.1 Waves, Particles, and the Double-Slit Experiment

 1. || An experiment has four possible outcomes, labeled A to D. 
The probability of A is PA = 40% and of B is PB = 30%. Out-
come C is twice as probable as outcome D. What are the prob-
abilities PC and PD?

 2. || Suppose you toss three coins into the air and let them fall on 
the floor. Each coin shows either a head or a tail.

 a. Make a table in which you list all the possible outcomes of 
this experiment. Call the coins A, B, and C.

 b. What is the probability of getting two heads and one tail? 
Explain.

 c. What is the probability of getting at least two heads?

 3. | Suppose you draw a card from a regular deck of 52 cards.
 a. What is the probability that you draw an ace?
 b. What is the probability that you draw a spade?
 4. | You are dealt 1 card each from 1000 decks of cards. What 

is the expected number of picture cards (jacks, queens, and 
kings)?

 5. | Make a table in which you list all possible outcomes of rolling 
two dice. Call the dice A and B. What is the probability of roll-
ing (a) a 7, (b) any double, and (c) a 6 or an 8? You can give the 
probabilities as fractions, such as 3/36.

Section 39.2 Connecting the Wave and Photon Views

 6. | In one experiment, 2000 photons are detected in a 0.10-mm-
wide strip where the amplitude of the electromagnetic wave is 
10 V/m. How many photons are detected in a nearby 0.10-mm-
wide strip where the amplitude is 30 V/m?

http://www.meetyourbrain.com/bookChapters.php?book=Physics-for-Scientists-and-Engineers-A-Strategic-Approach-with-Modern-Physics-3rd-Edition-Solutions&title=0


Exercises and Problems    1175

 7. || In one experiment, 6000 photons are detected in a 0.10-mm-
wide strip where the amplitude of the electromagnetic wave is 
200 V/m. What is the wave amplitude at a nearby 0.20-mm-wide 
strip where 3000 photons are detected?

 8. || 1.0 * 1010 photons pass through an experimental apparatus. 
How many of them land in a 0.10-mm-wide strip where the 
probability density is 20 m-1?

 9. | When 5 * 1012 photons pass through an experimental 
apparatus, 2.0 * 109 land in a 0.10-mm-wide strip. What is the 
probability density at this point?

Section 39.3 The Wave Function

 10. | What are the units of c? Explain.
 11. | FIgUrE Ex39.11 shows the 

probability density for an elec-
tron that has passed through 
an experimental apparatus. If 
1.0 * 106 electrons are used, 
what is the expected number 
that will land in a 0.010-mm-
wide strip at (a) x = 0.000 mm 
and (b) 2.000 mm?

 12. || In an interference experiment with electrons, you find the 
most intense fringe is at x = 7.0 cm. There are slightly weaker 
fringes at x = 6.0 and 8.0 cm, still weaker fringes at x = 4.0 and 
10.0 cm, and two very weak fringes at x = 1.0 and 13.0 cm. No 
electrons are detected at x 6 0 cm or x 7 14 cm.

 a. Sketch a graph of 0c(x) 0 2 for these electrons.
 b. Sketch a possible graph of c(x).
 c. Are there other possible graphs for c(x)? If so, draw one.
 13. | FIgUrE Ex39.13 shows the probability density for an electron 

that has passed through an experimental apparatus. What is the 
probability that the electron will land in a 0.010-mm-wide strip 
at (a) x = 0.000 mm, (b) x = 0.500 mm, (c) x = 1.000 mm, and 
(d) x = 2.000 mm?

Section 39.4 Normalization

 14. || FIgUrE Ex39.14 is a graph of 0c(x) 0 2 for an electron.
 a. What is the value of a?
 b. Draw a graph of the wave function c(x). (There is more than 

one acceptable answer.)
 c. What is the probability that the electron is located between 

x = 1.0 nm and x = 2.0 nm?

 15. || FIgUrE Ex39.15 is a graph of 0c(x) 0 2 for a neutron.
 a. What is the value of a?
 b. Draw a graph of the wave function c(x). (There is more than 

one acceptable answer.)
 c. What is the probability that the neutron is located at a posi-

tion with 0 x 0 Ú 2 fm?

 16. || FIgUrE Ex39.16 shows the wave function of an electron.
 a. What is the value of c?
 b. Draw a graph of 0c(x) 0 2.
 c. What is the probability that the electron is located between 

x = -1.0 nm and x = 1.0 nm?

 17. || FIgUrE Ex39.17 shows the wave function of a neutron.
 a. What is the value of c?
 b. Draw a graph of 0c(x) 0 2.
 c. What is the probability that the neutron is located between 

x = -1.0 mm and x = 1.0 mm?

Section 39.5 Wave Packets

 18. | What minimum bandwidth is needed to transmit a pulse that 
consists of 100 cycles of a 1.00 MHz oscillation?

 19. || A radio-frequency amplifier is designed to amplify signals in 
the frequency range 80 MHz to 120 MHz. What is the shortest-
duration radio-frequency pulse that can be amplified with-
out distortion?

 20. || Sound waves of 498 Hz and 502 Hz are superimposed at a 
temperature where the speed of sound in air is 340 m/s. What is 
the length �x of one wave packet?

 21. || A 1.5@mm@wavelength laser pulse is transmitted through a 
2.0-GHz-bandwidth optical fiber. How many oscillations are in 
the shortest-duration laser pulse that can travel through the fiber?

Section 39.6 The Heisenberg Uncertainty Principle

 22. || A thin solid barrier in the xy-plane has a 10@mm@diameter 
circular hole. An electron traveling in the z-direction with 
vx = 0 m/s passes through the hole. Afterward, is it certain that 
vx is still zero? If not, within what range is vx likely to be?

 23. || Andrea, whose mass is 50 kg, thinks she’s sitting at rest in 
her 5.0-m-long dorm room as she does her physics homework. 
Can Andrea be sure she’s at rest? If not, within what range is her 
velocity likely to be?

FIgUrE Ex39.13 
x (mm)

0 21 3�3 �1�2

0.50

P(x) � 0c(x) 02 (mm�1)

FIgUrE Ex39.14 
x (nm)

0 21�1�2

a

0c(x) 02

FIgUrE Ex39.15 
x (fm)

0 42�2�4

a

0c(x) 02

FIgUrE Ex39.16 

x (nm)

c

c

c

�c

c(x)

1
2

1
2�

21�1�2

FIgUrE Ex39.17 

x (mm)

c

�c

c(x)

42�2�4

x (mm)
0 21 3�3 �1�2

0.333

P(x) � 0c(x) 02 (mm�1)

FIgUrE Ex39.11 
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 24. || What is the minimum uncertainty in position, in nm, of an 
electron whose velocity is known to be between 3.48 * 105 m/s 
and 3.58 * 105 m/s?

 25. || A proton is confined within an atomic nucleus of diameter 
4.0 m. Use a one-dimensional model to estimate the smallest 
range of speeds you might find for a proton in the nucleus.

Problems

 26. | A 1.0-mm-diameter sphere bounces back and forth between 
two walls at x = 0 mm and x = 100 mm. The collisions are per-
fectly elastic, and the sphere repeats this motion over and over 
with no loss of speed. At a random instant of time, what is the 
probability that the center of the sphere is

 a. At exactly x = 50.0 mm?
 b. Between x = 49.0 mm and x = 51.0 mm?
 c. At x Ú 75 mm?
 27. | A radar antenna broadcasts electromagnetic waves with a 

period of 0.100 ns. What range of frequencies would need to be 
superimposed to create a 1.0-ns-long radar pulse?

 28. || Ultrasound pulses with a frequency of 1.000 MHz are trans-
mitted into water, where the speed of sound is 1500 m/s. The 
spatial length of each pulse is 12 mm.

 a. How many complete cycles are contained in one pulse?
 b. What range of frequencies must be superimposed to create 

each pulse?
 29. || FIgUrE P39.29 shows a pulse train. The period of the pulse train 

is T = 2�t, where �t is the duration of each pulse. What is the 
maximum pulse-transmission rate (pulses per second) through 
an electronics system with a 200 kHz bandwidth? (This is the 
bandwidth allotted to each FM radio station.)

 30. || Consider a single-slit diffraction experiment using electrons. 
(Single-slit diffraction was described in Section 22.4.) Using 
Figure 39.5 as a model, draw

 a. A dot picture showing the arrival positions of the first 40 or 
50 electrons.

 b. A graph of 0c(x) 0 2 for the electrons on the detection screen.
 c. A graph of c(x) for the electrons. Keep in mind that c, as a 

wave-like function, oscillates between positive and negative.
 31. | An experiment finds electrons to be uniformly distributed 

over the interval 0 cm … x … 2 cm, with no electrons falling 
outside this interval.

 a. Draw a graph of 0c(x) 0 2 for these electrons.
 b. What is the probability that an electron will land within the 

interval 0.79 to 0.81 cm?
 c. If 106 electrons are detected, how many will be detected in 

the interval 0.79 to 0.81 cm?
 d. What is the probability density at x = 0.80 cm?
 32. || In an experiment with 10,000 electrons, which land sym-

metrically on both sides of x = 0 cm, 5000 are detected in 
the range -1.0 cm … x … +1.0 cm, 7500 are detected in the 
range -2.0 cm … x … +2.0 cm, and all 10,000 are detected in
the range -3.0 cm … x … +3.0 cm. Draw a graph of a prob-
ability density that is consistent with these data. (There may be 
more than one acceptable answer.)

 33. || FIgUrE P39.33 shows 0c(x) 0 2 for the electrons in an experiment.
 a. Is the electron wave function normalized? Explain.
 b. Draw a graph of c(x) over this same interval. Provide a 

numerical scale on both axes. (There may be more than one 
acceptable answer.)

 c. What is the probability that an electron will be detected in a 
0.0010-cm-wide region at x = 0.00 cm? At x = 0.50 cm? At 
x = 0.999 cm?

 d. If 104 electrons are detected, how many are expected to land 
in the interval -0.30 cm … x … 0.30 cm?

 34. || FIgUrE P39.34 shows the wave function of a particle confined 
between x = 0 nm and x = 1.0 nm. The wave function is zero 
outside this region.

 a. Determine the value of the constant c, as defined in the 
figure.

 b. Draw a graph of the probability density P(x) = 0c(x) 0 2.
 c. Draw a dot picture showing where the first 40 or 50 particles 

might be found.
 d. Calculate the probability of finding the particle in the interval 

0 nm … x … 0.25 nm.
 35. ||| FIgUrE P39.35 shows the wave function of a particle confined 

between x = -4.0 mm and x = 4.0 mm. The wave function is 
zero outside this region.

 a. Determine the value of the constant c, as defined in the figure.
 b. Draw a graph of the probability density P(x) = 0c(x) 0 2.
 c. Draw a dot picture showing where the first 40 or 50 particles 

might be found.
 d. Calculate the probability of finding the particle in the interval 

-2.0 mm … x … 2.0 mm.

 36. || FIgUrE P39.36 shows the probability density for finding a par-
ticle at position x.

 a. Determine the value of the constant a, as defined in the 
figure.

 b. At what value of x are you most likely to find the particle? 
Explain.

 c. Within what range of positions centered on your answer to 
part b are you 75% certain of finding the particle?

 d. Interpret your answer to part c by drawing the probability 
density graph and shading the appropriate region.
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 37. || An electron that is confined to x Ú 0 nm has the normalized 
wave function

 c(x) = b 0 x 6 0 nm

(1.414 nm-1/2 )e-x/(1.0 nm) x Ú 0 nm

  where x is in nm.
 a. What is the probability of finding the electron in a 0.010-nm-

wide region at x = 1.0 nm?
 b. What is the probability of finding the electron in the interval 

0.50 nm … x … 1.50 nm?
 38. || A particle is described by the wave function

 c(x) = b cex/L x … 0 mm

ce-x/L x Ú 0 mm

  where L = 2.0 mm.
 a. Sketch graphs of both the wave function and the probability 

density as functions of x.
 b. Determine the normalization constant c.
 c. Calculate the probability of finding the particle within 

1.0 mm of the origin.
 d. Interpret your answer to part b by shading the region repre-

senting this probability on the appropriate graph in part a.
 39. || Consider the electron wave function

 c(x) = b c 21 - x2 0 x 0 … 1 cm

0 0 x 0 Ú 1 cm

  where x is in cm.
 a. Determine the normalization constant c.
 b. Draw a graph of c(x) over the interval -2 cm … x …  2 cm. 

Provide numerical scales on both axes.
 c. Draw a graph of 0c(x) 0 2 over the interval -2 cm … x …

2 cm. Provide numerical scales.
 d. If 104 electrons are detected, how many will be in the interval 

0.00 cm … x … 0.50 cm?
 40. || Consider the electron wave function

 
c(x) = c c sin12px

L 2 0 … x … L

0 x 6 0 or x 7 L

 a. Determine the normalization constant c. Your answer will be 
in terms of L.

 b. Draw a graph of c(x) over the interval -L … x … 2L.
 c. Draw a graph of 0c(x) 0 2 over the interval -L … x … 2L.
 d. What is the probability that an electron is in the interval 

0 … x … L/3?
 41. || The probability density for finding a particle at position x is

 P(x) = •
a

(1 - x)
 -1 mm … x 6 0 mm

b(1 - x)  0 mm … x … 1 mm

  and zero elsewhere.
 a. You will learn in Chapter 40 that the wave function must be a 

continuous function. Assuming that to be the case, what can 
you conclude about the relationship between a and b?

 b. Determine values for a and b.
 c. Draw a graph of the probability density over the interval 

-2 mm … x … 2 mm.
 d. What is the probability that the particle will be found to the 

left of the origin?

 42. || A pulse of light is created by the superposition of many waves 
that span the frequency range f0 -

1
2 �f … f …  f0 +

1
2 �f, where 

f0 = c/l is called the center frequency of the pulse. Laser tech-
nology can generate a pulse of light that has a wavelength of 
600 nm and lasts a mere 6.0 fs (1 fs = 1 femtosecond = 10-15 s).

 a. What is the center frequency of this pulse of light?
 b. How many cycles, or oscillations, of the light wave are com-

pleted during the 6.0 fs pulse?
 c. What range of frequencies must be superimposed to create 

this pulse?
 d. What is the spatial length of the laser pulse as it travels 

through space?
 e. Draw a snapshot graph of this wave packet.
 43. ||| What is the smallest one-dimensional box in which you can 

confine an electron if you want to know for certain that the elec-
tron’s speed is no more than 10 m/s?

 44. || A small speck of dust with mass 1.0 * 10-13 g has fallen into 
the hole shown in FIgUrE P39.44 and appears to be at rest. Accord-
ing to the uncertainty principle, could this particle have enough 
energy to get out of the hole? If not, what is the deepest hole of 
this width from which it would have a good chance to escape?

 45. || You learned in Chapter 37 that, except for hydrogen, the mass 
of a nucleus with atomic number Z is larger than the mass of the 
Z protons. The additional mass was ultimately discovered to be 
due to neutrons, but prior to the discovery of the neutron it was 
suggested that a nucleus with mass number A might contain A 
protons and (A - Z) electrons. Such a nucleus would have the 
mass of A protons, but its net charge would be only Ze.

 a. We know that the diameter of a nucleus is approximately 
10 fm. Model the nucleus as a one-dimensional box and find 
the minimum range of speeds that an electron would have in 
such a box.

 b. What does your answer imply about the possibility that the 
nucleus contains electrons? Explain.

 46. || a.  Starting with the expression �f �t � 1 for a wave packet, 
find an expression for the product �E �t for a photon.

   b. Interpret your expression. What does it tell you?
   c.  The Bohr model of atomic quantization says that an atom 

in an excited state can jump to a lower-energy state by 
emitting a photon. The Bohr model says nothing about how 
long this process takes. You’ll learn in Chapter 41 that the 
time any particular atom spends in the excited state before 
emitting a photon is unpredictable, but the average life-
time �t of many atoms can be determined. You can think 
of �t as being the uncertainty in your knowledge of how 
long the atom spends in the excited state. A typical value is 
�t � 10 ns. Consider an atom that emits a photon with a 
500 nm wavelength as it jumps down from an excited state. 
What is the uncertainty in the energy of the photon? Give 
your answer in eV.

   d.   What is the fractional uncertainty �E/E in the photon’s 
energy?

FIgUrE P39.44 

Frictionless
surface

1.0 mm

10 mm
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Challenge Problems

 47. Figure CP39.47 shows 1.0@mm@ 
diameter  dust  particles  (m =  
1.0 * 10-15 kg)  in  a  vacuum 
chamber.  The  dust  particles 
are  released  from  rest  above 
a  1.0@mm@diameter  hole,  fall 
through  the  hole  (there’s  just 
barely  room  for  the  particles 
to  go  through),  and  land on  a 
detector at distance d below.

  a.  If the particles were purely classical, they would all land in 
the same 1.0@mm@diameter circle. But quantum effects don’t 
allow this. If d = 1.0 m, by how much does the diameter of 
the circle in which most dust particles land exceed 1.0 mm? 
Is this increase in diameter likely to be detectable?

  b.  Quantum effects would be noticeable if the detection-circle 
diameter  increased  by  10%  to  1.1 mm.  At  what  distance  d 
would the detector need to be placed to observe this increase 
in the diameter?

 48. Physicists use laser beams to create an atom trap in which atoms 
are confined within a spherical region of space with a diameter 
of about 1 mm. The scientists have been able to cool the atoms 
in an atom trap to a temperature of approximately 1 nK, which 
is extremely close to absolute zero, but it would be interesting 
to know if this temperature is close to any limit set by quantum 
physics. We can explore this issue with a one-dimensional model 
of a sodium atom in a 1.0-mm-long box.

  a.  Estimate  the smallest  range of  speeds you might  find  for a 
sodium atom in this box.

  b.  Even if we do our best to bring a group of sodium atoms to 
rest, individual atoms will have speeds within the range you 
found in part a. Because there’s a distribution of speeds, sup-
pose we estimate that the root-mean-square speed vrms of the 
atoms in the trap is half the value you found in part a. Use this 
vrms  to estimate  the  temperature of  the atoms when  they’ve 
been cooled to the limit set by the uncertainty principle.

 49. The wave function of a particle is

c(x) = B b

p(x2 + b2)

    where b is a positive constant. Find the probability that the parti-
cle is located in the interval -b … x … b.

 50. The wave function of a particle is

c(x) = c b

(1 + x2)
  -1 mm … x 6 0 mm

c(1 + x)2  0 mm … x … 1 mm

    and zero elsewhere.
  a.  You will learn in Chapter 40 that the wave function must be a 

continuous function. Assuming that to be the case, what can 
you conclude about the relationship between b and c?

  b.  Draw graphs of the wave function and the probability density 
over the interval -2 mm … x … 2 mm.

  c.  What is the probability that the particle will be found to the 
right of the origin?

 51. Consider the electron wave function

  c(x) = c cx 0 x 0 … 1 nm

c

x
0 x 0 Ú 1 nm

    where x is in nm.
  a.  Determine the normalization constant c.
  b.  Draw a graph of c(x) over the interval -5 nm … x … 5 nm. 

Provide numerical scales on both axes.
  c.  Draw  a  graph  of  0c(x) 0 2  over  the  interval  -5 nm … x …

5 nm. Provide numerical scales.
  d.  If 106 electrons are detected, how many will be in the interval 

-1.0 nm … x … 1.0 nm?

StoP to think AnSwerS

Stop to Think 39.1: 10. The probability of a 1 is P1 =
1
6. Similarly, 

P6 =
1
6. The probability of a 1 or a 6 is P1 or 6 =

1
6 +

1
6 =  1

3. Thus the 
expected number is 30(1

3) = 10.

Stop to Think 39.2: A + B � D + C.  0A(x) 0 2 is proportional to 
the density of dots.

Stop to Think 39.3: xC. The probability is largest at the point where 
the square of c(x) is largest.

Stop to Think 39.4: b. The area 12 a(2 mm) must equal 1.

Stop to Think 39.5: b.  �t = 1.0 * 10-7 s. The bandwidth is  �fB =
1/�t = 1.0 * 107 Hz = 10 MHz.

Stop to Think 39.6: A. Wave packet A has a smaller spatial extent 
�x. The wavelength isn’t relevant.

Figure CP39.47 
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40

In this example of atomic engi-
neering, thirty-five xenon atoms 
have been manipulated with the 
probe tip of a scanning tunnel-
ing microscope.

One-Dimensional  
Quantum Mechanics

 Looking Ahead The goal of Chapter 40 is to understand and apply the essential ideas of quantum mechanics.

The Law of Psi
The basic law of quantum mechanics is 
the Schrödinger equation. It plays a 
role analogous to Newton’s second law 
in classical mechanics.

We will limit our study to quantum me-
chanics in one dimension so as to focus 
on the physics without becoming bogged 
down by mathematical details.

You’ll learn how the solutions to the 
Schrödinger equation predict the energy 
levels of a quantum system.

U(x)

U0

E

x

Classically forbidden regions

Particle energy

Potential
well

0

Energy level

Wave function for this energy

E

x

U(x)
�

Classically
forbidden
region

 Looking Back
Sections 39.3–39.4 Wave functions and 
normalization

Quantum Models
Classical systems are described in terms 
of forces. In contrast, a quantum system 
is described by a potential-energy func-
tion U(x).

You’ll learn to use 
potential wells 
to model different 
physical situations. 
A region in which 
E 6 U0 is forbidden 
to a classical particle 
but not always to a 
quantum particle.

 Looking Back
Section 10.6 Energy diagrams

Tunneling
A surprising conclusion of quantum 
mechanics is that a wave function can 
penetrate some distance into a classically 
forbidden region.

Wave function

Energy barrier

U0

E

0

You’ll learn that a particle can tunnel 
through a potential-energy barrier, emerging 
on the other side with no loss of energy. 
This totally nonclassical behavior is the basis 
of the scanning tunneling microscope.

Quantum Mechanics
Quantum mechanics is not just for 
physicists anymore. A knowledge of 
quantum mechanics is needed to under-
stand the properties of materials and to 
design semiconductor devices. Quantum 
mechanics will be even more important 
in the near future for atomic level 
engineering of nanostructures and the 
development of quantum computing.

Quantum Applications
You’ll study practical applications of 
quantum mechanics:
■	 Quantum-well lasers
■	 Molecular bonds
■	 Nuclear energy levels

I

A quantum-well laser 
is made with a layer 
of gallium arsenide 
only about 1 nm thick. 
Electrons confined 
within this layer have 
discrete, quantized 
energy levels.

Wave Functions
You’ll learn to understand why wave 
functions have the shapes they do.
■	 The wave function oscillates between 

the classical turning points.
■	 The wave function decays exponen-

tially in a classically forbidden region.

 Looking Back
Sections 38.4–38.5 Matter waves and 
the Bohr model of quantization
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40.1 Schrödinger’s Equation: The Law of Psi
In the winter of 1925, just before Christmas, the Austrian physicist Erwin Schrödinger 
gathered together a few books and headed off to a villa in the Swiss Alps. He had 
recently learned of de Broglie’s 1924 suggestion that matter has wave-like properties, 
and he wanted some time free from distractions to think about it. Before the trip was 
over, Schrödinger had discovered the law of quantum mechanics.

Schrödinger’s goal was to predict the outcome of atomic experiments, a goal that 
had eluded classical physics. The mathematical equation that he developed is now 
called the Schrödinger equation. It is the law of quantum mechanics in the same way 
that Newton’s laws are the laws of classical mechanics. It would make sense to call it 
Schrödinger’s law, but by tradition it is called simply the Schrödinger equation.

You learned in Chapter 39 that a matter particle is characterized in quantum physics by 
its wave function c(x). If you know a particle’s wave function, you can predict the prob-
ability of detecting it in some region of space. That’s all well and good, but Chapter 39 
didn’t provide any method for determining wave functions. The Schrödinger equation is 
the missing piece of the puzzle. It is an equation for finding a particle’s wave function c(x).

Consider an atomic particle with mass m and mechanical energy E whose inter-
actions with the environment can be characterized by a one-dimensional potential-
energy function U(x). The Schrödinger equation for the particle’s wave function is

 
d 2c

dx2 = -  
2m

U2  3E - U(x)4c(x)  (the Schrödinger equation) (40.1)

This is a differential equation whose solution is the wave function c(x) that we seek. 
Our first goal is to learn what this equation means and how it is used.

Justifying the Schrödinger Equation
The Schrödinger equation can be neither derived nor proved. It is not an outgrowth of 
any previous theory. Its success depended on its ability to explain the various phenom-
ena that had refused to yield to a classical-physics analysis and to make new predic-
tions that were subsequently verified.

Although the Schrödinger equation cannot be derived, the reasoning behind it can 
at least be made plausible. De Broglie had postulated a wave-like nature for matter 
in which a particle of mass m, velocity v, and momentum p = mv has a wavelength

 l =
h
p

=
h

mv
 (40.2)

Schrödinger’s goal was to find a wave equation for which the solution would be a 
wave function having the de Broglie wavelength.

An oscillatory wave-like function with wavelength l is

 c(x) = c0 sin12px

l 2  (40.3)

where c0 is the amplitude of the wave function. Suppose we take a second derivative 
of c(x):

 
d 2c

dx2 =
d

dx
 
dc

dx
=

d

dx
c 2p

l
 c0 cos12px

l 2 d = -  
(2p)2

l2  c0 sin12px

l 2
We can use Equation 40.3 to write this as

 
d 2c

dx2 = -  
(2p)2

l 2  c(x) (40.4)

Equation 40.4 relates the wavelength l to a combination of the wave function c(x) and 
its second derivative.

NoTE  These manipulations are not specific to quantum mechanics. Equation 40.4 
is well known for classical waves, such as sound waves and waves on a string. 

Erwin Schrödinger.
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Schrödinger’s insight was to identify l with the de Broglie wavelength of a particle. 
We can write the de Broglie wavelength in terms of the particle’s kinetic energy K as

 l =
h

mv
=

h32m 11
2 mv 22 =

h22mK
 (40.5)

Notice that the de Broglie wavelength increases as the particle’s kinetic energy 
decreases. This observation will play a key role.

If we square this expression for l and substitute it into Equation 40.4, we find

 
d 2c

dx2 = -  
(2p)2 2mK

h2  c(x) = -  
2m

U2  Kc(x) (40.6)

where U = h/2p. Equation 40.6 is a differential equation for the function c(x). The 
solution to this equation is the sinusoidal wave function of Equation 40.3, where l is 
the de Broglie wavelength for a particle with kinetic energy K.

Our derivation of Equation 40.6 assumed that the particle’s kinetic energy K is con-
stant. The energy diagram of FIgurE 40.1a reminds you that a particle’s kinetic energy 
remains constant as it moves along the x-axis only if its potential energy U is constant. 
In this case, the de Broglie wavelength is the same at all positions.

Total energy

Potential energy

x

x

Energy

c(x)

K

U

The kinetic energy
K � E � U is constant.

The de Broglie
wavelength is constant.

l

(a)

Total energy

x

x

Energy

c(x)

K

U

The kinetic energy
decreases as x increases.

The potential energy U(x)
is a function of position.

The de Broglie wavelength
increases as K decreases.

(b)

FIgurE 40.1 The de Broglie wavelength changes as a particle’s kinetic energy changes.

In contrast, FIgurE 40.1b shows the energy diagram for a particle whose kinetic 
energy is not constant. This particle speeds up or slows down as it moves along the 
x-axis, transforming potential energy to kinetic energy or vice versa. Consequently, its 
de Broglie wavelength changes with position.

Suppose a particle’s potential energy—gravitational or electric or any other kind 
of potential energy—is described by the function U(x). That is, the potential energy is 
a function of position along the axis of motion. For example, the potential energy of a 
spring is 12 kx2.

If E is the particle’s total mechanical energy, its kinetic energy at position x is

 K = E - U(x) (40.7)

If we use this expression for K in Equation 40.6, that equation becomes

 
d 2c

dx2 = -  
2m

U2  3E - U(x)4c(x)

This is Equation 40.1, the Schrödinger equation for the particle’s wave function c(x).
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NoTE  This has not been a derivation of the Schrödinger equation. We’ve made 
a plausibility argument, based on de Broglie’s hypothesis about matter waves, but 
only experimental evidence will show if this equation has merit. 

Stop to think 40.1 
 Three de Broglie waves are shown for particles of equal mass. 

Rank in order, from fastest to slowest, the speeds of particles a, b, and c.

Quantum-Mechanical Models
Long ago, in your study of Newtonian mechanics, you learned the importance of 
models. To understand the motion of an object, we made simplifying assumptions: 
that the object could be represented by a particle, that friction could be described in a 
simple way, that air resistance could be neglected, and so on. Models allowed us to un-
derstand the primary features of an object’s motion without getting lost in the details.

The same holds true in quantum mechanics. The exact description of a microscopic 
atom or a solid is extremely complicated. Our only hope for using quantum mechan-
ics effectively is to make a number of simplifying assumptions—that is, to make a 
quantum-mechanical model of the situation. Much of this chapter will be about 
building and using quantum-mechanical models.

The test of a model’s success is its agreement with experimental measurement. 
Laboratory experiments cannot measure c(x), and they rarely make direct measure-
ments of probabilities. Thus it will be important to tie our models to measurable quan-
tities such as wavelengths, charges, currents, times, and temperatures.

There’s one very important difference between models in classical mechanics and 
quantum mechanics. Classical models are described in terms of forces, and Newton’s 
laws are a connection between force and motion. The Schrödinger equation for the 
wave function is written in terms of energies. Consequently, quantum-mechanical 
modeling involves finding a potential-energy function U(x) that describes a particle’s 
interactions with its environment.

FIgurE 40.2 reminds you how to interpret an energy diagram. We will use energy 
diagrams extensively in this and the remaining chapters to portray quantum-mechanical 
models. A review of Section 10.6, where energy diagrams were introduced, is 
highly recommended.

x

(a)

x

(b)

x

(c)

Energy

Total energy line

x
xRxL

x � xL is a
classically
forbidden
region.

x � xR is a
classically
forbidden
region.

The potential-energy
curve U(x) is a
function of position.

Kinetic energy
is K � E � U.

Potential
energy at
this point

Point of maximum speed

Turning points

FIgurE 40.2 Interpreting an energy diagram.
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40.2 Solving the Schrödinger Equation
The Schrödinger equation is a second-order differential equation, meaning that it is a 
differential equation for c(x) involving its second derivative. However, this textbook 
does not assume that you know how to solve differential equations. As we did with 
Newton’s laws, we will restrict ourselves to situations for which you already have the 
mathematical skills from your calculus class.

The solution to an algebraic equation is simply a number. For example, x = 3 is 
the solution to the equation 2x = 6. In contrast, the solution to a differential equation 
is a function. You saw this idea in the preceding section, where Equation 40.6 was 
constructed so that the function c(x) = c0 sin(2px/l) was a solution.

The Schrödinger equation can’t be solved until the potential-energy function U(x) 
has been specified. Different potential-energy functions result in different wave func-
tions, just as different forces lead to different trajectories in classical mechanics. Once 
U(x) has been specified, the solution of the differential equation is a function c(x). We 
will usually display the solution as a graph of c(x) versus x.

restrictions and Boundary Conditions
Not all functions c(x) make acceptable solutions to the Schrödinger equation. That is, 
some functions may satisfy the Schrödinger equation but not be physically meaning-
ful. We have previously encountered restrictions in our solutions of algebraic equa-
tions. We insist, for physical reasons, that masses be positive rather than negative 
numbers, that positions be real rather than imaginary numbers, and so on. Mathemati-
cal solutions not meeting these restrictions are rejected as being unphysical.

Because we want to interpret 0c(x) 0 2 as a probability density, we have to insist that 
the function c(x) be one for which this interpretation is possible. The conditions or 
restrictions on acceptable solutions are called the boundary conditions. You will see, 
in later examples, how the boundary conditions help us choose the correct solution for 
c(x). The primary conditions the wave function must obey are:

 1. c(x) is a continuous function.
 2. c(x) = 0 if x is in a region where it is physically impossible for the particle to be.
 3. c(x) S 0 as x S + � and x S - �.
 4. c(x) is a normalized function.

The last is not, strictly speaking, a boundary condition but is an auxiliary condition we 
require for the wave function to have a useful interpretation. Boundary condition 3 is 
needed to enable the normalization integral e 0c(x) 0 2 dx to converge.

Once boundary conditions have been established, there are general approaches to 
solving the Schrödinger equation: Use general mathematical techniques for solving 
second-order differential equations, solve the equation numerically on a computer, or 
make a physically informed guess.

More advanced courses make extensive use of the first and second approaches. 
However, we are not assuming a knowledge of differential equations, so you will not 
be asked to use these methods. The third, although it sounds almost like cheating, is 
widely used in simple situations where we can use physical arguments to infer the 
form of the wave function. The upcoming examples will illustrate this third approach.

A quadratic algebraic equation has two different solutions. Similarly, a second-
order differential equation has two independent solutions c1(x) and c2(x). By “inde-
pendent solutions” we mean that c2(x) is not just a constant multiple of c1(x), such as 
3c1(x), but that c1(x) and c2(x) are totally different functions.

Suppose that c1(x) and c2(x) are known to be two independent solutions of the 
Schrödinger equation. A theorem you will learn in differential equations states that a 
general solution of the equation can be written as

 c(x) = Ac1(x) + Bc2(x) (40.8)

where A and B are constants whose values are determined by the boundary conditions. 
Equation 40.8 is a powerful statement, although one that will make more sense after 
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ProBLEM-SoLvINg
STrATEgy 40.1  Quantum-mechanics problems

ModEL Determine a potential-energy function that describes the particle’s inter-
actions. Make simplifying assumptions.

vISuALIzE The potential-energy curve is the pictorial representation.

 ■	 Draw the potential-energy curve.
	■	 Identify known information.
 ■	 Establish the boundary conditions that the wave function must satisfy.

SoLvE The Schrödinger equation is the mathematical representation.

 ■	 Utilize the boundary conditions.
 ■	 Normalize the wave functions.
 ■	 Draw graphs of c(x) and 0c(x) 0 2.
 ■	 Determine the allowed energy levels.
 ■	 Calculate probabilities, wavelengths, or other specific quantities.

ASSESS Check that your result has the correct units, is reasonable, and answers 
the question.

you see it applied in upcoming examples. The main point is that if we can find two 
independent solutions C1(x) and C2(x) by guessing, then Equation 40.8 is the gen-
eral solution to the Schrödinger equation.

Quantization
We’ve asserted that the Schrödinger equation is the law of quantum mechanics, but 
thus far we’ve not said anything about quantization. Although the particle’s total en-
ergy E appears in the Schrödinger equation, it is treated in the equation as an unspeci-
fied constant. However, it will turn out that there are no acceptable solutions for most 
values of E. That is, there are no functions c(x) that satisfy both the Schrödinger equa-
tion and the boundary conditions. Acceptable solutions exist only for discrete values 
of E. The energies for which solutions exist are the quantized energies of the system. 
Thus, as you’ll see, the Schrödinger equation has quantization built in.

Problem Solving in Quantum Mechanics
Our problem-solving strategy for classical mechanics focused on identifying and us-
ing forces. In quantum mechanics we’re interested in energy rather than forces. The 
critical step in solving a problem in quantum mechanics is to determine the particle’s 
potential-energy function U(x). Identifying the interactions that cause a potential en-
ergy is the physics of the problem. Once the potential-energy function is known, it is 
“just mathematics” to solve for the wave function.

The solutions to the Schrödinger equation are the stationary states of the system. 
Bohr had postulated the existence of stationary states, but he didn’t know how to find 
them. Now we have a strategy for finding them.

Bohr’s idea of transitions, or quantum jumps, between stationary states remains 
very important in Schrödinger’s quantum mechanics. The system can jump from one 
stationary state, characterized by wave function ci(x) and energy Ei, to another state, 
characterized by cf (x) and Ef, by emitting or absorbing a photon of frequency

 f =
�E

h
=

0Ef - Ei 0
h

Thus the solutions to the Schrödinger equation will allow us to predict the emission 
and absorption spectra of a quantum system. These predictions will test the validity of 
Schrödinger’s theory.
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40.3  A Particle in a rigid Box: 
Energies and Wave Functions

FIgurE 40.3 shows a particle of mass m confined in a rigid, one-dimensional box of 
length L. The walls of the box are assumed to be perfectly rigid, and the particle un-
dergoes perfectly elastic reflections from the ends. This situation, which we looked at 
in Chapter 38, is known as a “particle in a box.”

A classical particle bounces back and forth between the walls of the box. There 
are no restrictions on the speed or kinetic energy of a classical particle. In contrast, a 
wave-like particle characterized by a de Broglie wavelength sets up a standing wave 
as it reflects back and forth. In Chapter 38, we found that a standing de Broglie wave 
automatically leads to energy quantization. That is, only certain discrete energies are 
allowed. However, our hypothesis of a de Broglie standing wave was just a guess, with 
no real justification, because we had no theory about how a wave-like particle ought 
to behave.

We will now revisit this problem from the new perspective of quantum mechanics. 
The basic questions we want to answer in this, and any quantum-mechanics prob-
lem, are:

	■	 What are the allowed energies of the particle?
	■	 What is the wave function associated with each energy?
	■	 In which part of the box is the particle most likely to be found?

We can use Problem-Solving Strategy 40.1 to answer these questions.

Model: Identify a Potential-Energy Function
By a rigid box we mean a box whose walls are so sturdy that they can confine a par-
ticle no matter how fast the particle moves. Furthermore, the walls are so stiff that they 
do not flex or give as the particle bounces. No real container has these attributes, so 
the rigid box is a model of a situation in which a particle is extremely well confined. 
Our first task is to characterize the rigid box in terms of a potential-energy function.

Let’s establish a coordinate axis with the boundaries of the box at x = 0 and x = L. 
The rigid box has three important characteristics:

 1. The particle can move freely between 0 and L at constant speed and thus with 
constant kinetic energy.

 2. No matter how much kinetic energy the particle has, its turning points are at 
x = 0 and x = L.

 3. The regions x 6 0 and x 7 L are forbidden. The particle cannot leave the box.

A potential-energy function that describes the particle in this situation is

 Urigid box(x) = b0 0 … x … L

� x 6 0 or x 7 L
 (40.9)

Inside the box, the particle has only kinetic energy. The infinitely high potential-
energy barriers prevent the particle from ever having x 6 0 or x 7 L no matter how 
much kinetic energy it may have. It is this potential energy for which we want to solve 
the Schrödinger equation.

visualize: Establish Boundary Conditions
FIgurE 40.4 is the energy diagram of a particle in the rigid box. You can see that U = 0 
and E = K  inside the box. The upward arrows labeled � indicate that the potential 
energy becomes infinitely large at the walls of the box (x = 0 and x = L).

NoTE  Figure 40.4 is not a picture of the box. It is a graphical representation of the 
particle’s total, kinetic, and potential energy. 

L

vm

Perfectly rigid ends

FIgurE 40.3 A particle in a rigid box of 
length L.

� �

x

E

Classically
forbidden
region

Classically
forbidden
region

Total energy
of particle

The potential energy becomes
infinitely large at this point.

U(x)

0 L

U � 0 inside
the box.

Outside
the box

Outside
the box

K

FIgurE 40.4 The energy diagram of a 
particle in a rigid box of length L.
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Next, we need to establish the boundary conditions that the solution must satisfy. 
Because it is physically impossible for the particle to be outside the box, we require

 c(x) = 0 for x 6 0 or x 7 L (40.10)

That is, there is zero probability (i.e., 0c(x) 0 2 = 0) of finding the particle outside 
the box.

Furthermore, the wave function must be a continuous function. That is, there can 
be no break in the wave function at any point. Because the solution is zero everywhere 
outside the box, continuity requires that the wave function inside the box obey the two 
conditions

 c(at x = 0) = 0 and c(at x = L) = 0 (40.11)

In other words, as FIgurE 40.5 shows, the oscillating wave function inside the box must 
go to zero at the boundaries to be continuous with the wave function outside the box. 
This requirement of the wave function is equivalent to saying that a standing wave on 
a string must have a node at the ends.

Solve I: Find the Wave Functions
At all points inside the box the potential energy is U(x) = 0. Thus the Schrödinger 
equation inside the box is

 
d 2c

dx2 = -  
2mE

U2  c(x) (40.12)

There are two aspects to solving this equation:

 1. For what values of E does Equation 40.12 have physically meaningful solutions?
 2. What are the solutions c(x) for those values of E?

To begin, let’s simplify the notation by defining b2 = 2mE/U2. Equation 40.12 is then

 
d 2c

dx2 = -b2c(x) (40.13)

We’re going to solve this differential equation by guessing! Can you think of any func-
tions whose second derivative is a negative constant times the function itself? Two 
such functions are

 c1(x) = sin bx and c2(x) = cos bx (40.14)

Both are solutions to Equation 40.13 because

  
d 2c1

dx2 =
d 2

dx2 (sin bx) = -b2 sin bx = -b2c1(x)

  
d 2c2

dx2 =
d 2

dx2 (cos bx) = -b2 cos bx = -b2c2(x)

Furthermore, these are independent solutions because c2(x) is not a multiple or a 
rearrangement of c1(x). Consequently, according to Equation 40.8, the general solu-
tion to the Schrödinger equation for the particle in a rigid box is

 c(x) = A sin bx + B cos bx (40.15)

where

 b =
22mE

U
 (40.16)

The constants A and B must be determined by using the boundary conditions of 
Equation 40.11. First, the wave function must go to zero at x = 0. That is,

 c(at x = 0) = A # 0 + B # 1 = 0 (40.17)

x

c(x)

L

1. Inside the box, c is oscillating in
 some way still to be determined.

2. c � 0 outside the box.

3. Continuity of c requires
 c(at x � L) � 0.

FIgurE 40.5 Applying boundary 
conditions to the wave function of a 
particle in a box.



This boundary condition can be satisfied only if B = 0. The cos bx term may satisfy 
the differential equation in a mathematical sense, but it is not a physically meaningful 
solution for this problem because it does not satisfy the boundary conditions. Thus the 
physically meaningful solution is

 c(x) = A sin bx

The wave function must also go to zero at x = L. That is,

 c(at x = L) = A sin bL = 0 (40.18)

This condition could be satisfied by A = 0, but then we wouldn’t have a wave func-
tion at all! Fortunately, that isn’t necessary. This boundary condition is also satisfied 
if sin bL = 0, which requires

 bL = np or bn =
np

L
  n = 1, 2, 3, p  (40.19)

Notice that n starts with 1, not 0. The value n = 0 would give b = 0 and make c = 0 
at all points, a physically meaningless solution.

Thus the solutions to the Schrödinger equation for a particle in a rigid box are

 cn(x) = A sin bnx = A sin1npx

L 2  n = 1, 2, 3, p  (40.20)

We’ve found a whole family of solutions, each corresponding to a different value of 
the integer n. These wave functions represent the stationary states of the particle in the 
box. The constant A remains to be determined.

Solve II: Find the Allowed Energies
Equation 40.16 defined b. The boundary condition of Equation 40.19 then placed 
restrictions on the possible values of b:

 bn =
22mEn

U
=

np

L
  n = 1, 2, 3, p  (40.21)

where the value of b and the energy associated with the integer n have been labeled bn 
and En. We can solve for En by squaring both sides:

 En = n2 
p2U2

2mL2 = n2 
h2

8mL2  n = 1, 2, 3, p  (40.22)

where, in the last step, we used the definition U = h/2p. For a particle in a box, 
these energies are the only values of E for which there are physically meaning-
ful solutions to the Schrödinger equation. That is, the particle’s energy is quan-
tized! It is worth emphasizing that quantization is not inherent in the wave function 
itself but arises because the boundary conditions—the physics of the situation—are 
satisfied by only a small subset of the mathematical solutions to the Schrödinger 
equation.

It is useful to write the energies of the stationary states as

 En = n2E1 (40.23)

where En is the energy of the stationary state with quantum number n. The smallest 
possible energy E1 = h2/8mL2 is the energy of the n = 1 ground state. These allowed 
energies are shown in the energy-level diagram of FIgurE 40.6. Recall, from Chapter 38, 
that an energy-level diagram is not a graph (the horizontal axis doesn’t represent 
anything) but a “ladder” of allowed energies.

Equation 40.22 is identical to the energies we found in Chapter 38 by requiring the 
de Broglie wave of a particle in a box to form a standing wave. Only now we have a 
theory that tells not only the energies but also the wave functions.

E4 � 16E1

n � 1

n � 2

n � 3

n � 4

E3 � 9E1

E2 � 4E1

E1
0

Energy

The ground-state energy E1

is greater than 0.

The allowed energies 
increase with the square 
of the quantum number.

FIgurE 40.6 The energy-level diagram 
for a particle in a box.
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Solve III: Normalize the Wave Functions
We can determine the constant A by requiring the wave functions to be normalized. 
The normalization condition, which we found in Chapter 39, is

 3
�

-�

 0c(x) 0 2 dx = 1

This is the mathematical statement that the particle must be somewhere on the x-axis. 
The integration limits extend to {�, but here we need to integrate only from 0 to L 
because the wave function is zero outside the box. Thus

 3
L

0

 0cn(x) 0 2 dx = An 

2 3
L

0

 sin21npx

L 2dx = 1 (40.24)

or

 An = c 3
L

0

 sin21npx

L 2dx d
-1/2

 (40.25)

We placed a subscript n on An because it is possible that the normalization constant 
is different for each wave function in the family. This is a standard integral. We will 
leave it as a homework problem for you to show that its value, for any n, is

 An = B 2

L
  n = 1, 2, 3, p  (40.26)

We now have a complete solution to the problem. The normalized wave function for 
the particle in quantum state n is

 cn(x) = c A 2

L
 sin1npx

L 2 0 … x … L

0 x 6 0 and x 7 L

 (40.27)

40.4  A Particle in a rigid Box: 
Interpreting the Solution

Our solution to the quantum-mechanical problem of a particle in a box tells us that:

 1. The particle must have energy En = n2E1, where n = 1, 2, 3, p is the quantum 
number. E1 = h2/8mL2 is the energy of the n = 1 ground state.

 2. The wave function for a particle in quantum state n is

 cn(x) = c A 2

L
 sin1npx

L 2 0 … x … L

0 x 6 0 and x 7 L

  These are the stationary states of the system.

 �E = 3E1 =
3h2

8mL2 = 3.0 eV = 4.8 * 10-19 J

The length of the box for which �E = 3.0 eV is

 L = B 3h2

8m �E
= 6.14 * 10-10 m = 0.614 nm

ASSESS The expression for E1 is in SI units, so energies must be 
in J, not eV.

ExAMPLE 40.1  An electron in a box
An electron is confined to a rigid box. What is the length of the 
box if the energy difference between the first and second states is 
3.0 eV?

ModEL Model the electron as a particle in a rigid one-dimensional 
box of length L.

SoLvE The first two quantum states, with n = 1 and n = 2, have 
energies E1 and E2 = 4E1. Thus the energy difference between 
the states is
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 3. The probability density for finding the particle at position x inside the box is

 Pn(x) = 0cn(x) 0 2 =
2

L
 sin21npx

L 2  (40.28)

A graphical presentation will make these results more meaningful. FIgurE 40.7 shows 
the wave functions c(x) and the probability densities P(x) = 0c(x) 0 2 for quantum 
states n = 1 to 3. Notice that the wave functions go to zero at the boundaries and thus 
are continuous with c = 0 outside the box.

The wave functions c(x) for a particle in a rigid box are analogous to standing 
waves on a string that is tied at both ends. You can see that Cn(x) has (n � 1) nodes 
(zeros), excluding the ends, and n antinodes (maxima and minima). This is a gen-
eral result for any wave function, not just for a particle in a rigid box.

FIgurE 40.8 shows another way in which energies and wave functions are shown 
graphically in quantum mechanics. First, the graph shows the potential-energy func-
tion U(x) of the particle. Second, the allowed energies are shown as horizontal lines 
(total energy lines) across the potential-energy graph. These are labeled with the quan-
tum number n and the energy En. Third—and this is a bit tricky—the wave function for 
each n is drawn as if the energy line were the zero of the y-axis. That is, the graph of 
cn(x) is drawn on top of the En energy line. This allows energies and wave functions 
to be displayed simultaneously, but it does not imply that c2 is in any sense “above” 
c1. Both oscillate sinusoidally about zero, as Figure 40.7 shows.

c1(x) c2(x) c3(x)

0c1(x) 02 0c2(x) 02 0c3(x) 02

n � 1

0 L 0 L 0 L

0 L 0 L 0 L

n � 3n � 2

x

x

x

x

x

x

The electron is
never found here.

The electron is most
likely to be here.

FIgurE 40.7 Wave functions and probability densities for a particle in a rigid box of length L.

� �

n � 1E1

n � 2E2 � 4E1

E3 � 9E1
n � 3

0 L
x

U(x)
This is the x-axis
for the c3(x) wave
function.

Wave
functions

Allowed
energies

FIgurE 40.8 An alternative way to show 
the potential-energy diagram, the 
energies, and the wave functions.

ExAMPLE 40.2  Energy levels and quantum jumps
A semiconductor device known as a quantum-well device is de-
signed to “trap” electrons in a 1.0-nm-wide region. Treat this as a 
one-dimensional problem.

 a. What are the energies of the first three quantum states?
 b. What wavelengths of light can these electrons absorb?

ModEL Model an electron in a quantum-well device as a particle 
confined in a rigid box of length L = 1.0 nm.

vISuALIzE FIgurE 40.9 shows the first three energy levels and the 
transitions by which an electron in the ground state can absorb a 
photon.

n � 1

n � 2

n � 3E3 � 3.393 eV

E2 � 1.508 eV

E1 � 0.377 eV

0

Energy

1S3

1S2

FIgurE 40.9 Energy levels and quantum jumps 
for an electron in a quantum-well device.

Continued
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SoLvE a. The particle’s mass is m = me = 9.11 * 10-31 kg. The 
allowed energies, in both J and eV, are

 E1 =
h2

8mL2 = 6.03 * 10-20 J = 0.377 eV

 E2 = 4E1 = 1.508 eV

 E3 = 9E1 = 3.393 eV

 b. An electron spends most of its time in the n = 1 ground state. 
According to Bohr’s model of stationary states, the electron can 
absorb a photon of light and undergo a transition, or quantum 
jump, to n = 2 or n = 3 if the light has frequency f = �E/h. 
The wavelengths, given by l = c/f = hc/�E, are

  l1S2 =
hc

E2 - E1
= 1098 nm

  l1S3 =
hc

E3 - E1
= 411 nm

ASSESS In practice, various complications usually make the 1 S 3 
transition unobservable. But quantum-well devices do indeed ex-
hibit strong absorption and emission at the l1S2 wavelength. In 
this example, which is typical of quantum-well devices, the wave-
length is in the near-infrared portion of the spectrum. Devices such 
as these are used to construct the semiconductor lasers used in 
DVD players and laser printers.

NoTE  The wavelengths of light emitted or absorbed by a quantum system are de-
termined by the difference between two allowed energies. Quantum jumps involve 
two stationary states. 

zero-Point Motion
The lowest energy state in Example 40.2, the ground state, has E1 =  0.38 eV. There is 
no stationary state having E = 0. Unlike a classical particle, a quantum particle in a 
box cannot be at rest! No matter how much its energy is reduced, such as by cooling 
it toward absolute zero, it cannot have energy less than E1.

The particle motion associated with energy E1, called the zero-point motion, is a 
consequence of Heisenberg’s uncertainty principle. Because the particle is somewhere 
in the box, its position uncertainty is � x = L. If the particle were at rest in the box, 
we would know that its velocity and momentum are exactly zero with no uncertainty: 
�px = 0. But then � x �px = 0 would violate the Heisenberg uncertainty principle. 
One of the conclusions that follow from the uncertainty principle is that a confined 
particle cannot be at rest.

Although the particle’s position and velocity are uncertain, the particle’s energy in 
each state can be calculated with a high degree of precision. This distinction between a 
precise energy and uncertain position and velocity seems strange, but it is just our old 
friend the standing wave. In order to have a stationary state at all, the de Broglie waves 
have to form standing waves. Only for very precise frequencies, and thus precise ener-
gies, can the standing-wave pattern appear.

  E1 =
h2

8mL2 = 3.29 * 10-13 J = 2.06 MeV

  E2 = 4E1 = 8.24 MeV

  E3 = 9E1 = 18.54 MeV

ASSESS You’ve seen that an electron confined in an atom-size 
space has energies of a few eV. A neutron confined in a nucleus-
size space has energies of a few million eV.

ExAMPLE 40.3  Nuclear energies
Protons and neutrons are tightly bound within the nucleus of 
an atom. If we use a one-dimensional model of a nucleus, what 
are the first three energy levels of a neutron in a 10-fm-diameter 
nucleus (1 fm = 10-15 m)?

ModEL Model the nucleus as a one-dimensional box of length 
L = 10 fm. The neutron is confined within the box.

SoLvE The energy levels, with L = 10 fm and m = mn = 1.67 *
10-27 kg, are

 c. What is the probability of finding the particle between L/4 and 
3L/4?

ModEL The wave functions for a particle in a rigid box have been 
determined.

ExAMPLE 40.4  The probabilities of locating the particle
A particle in a rigid box of length L is in its ground state.

 a. Where is the particle most likely to be found?
 b. What are the probabilities of finding the particle in an interval 

of width 0.01L at x = 0.00L, 0.25L, and 0.50L?
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vISuALIzE FIgurE 40.10 shows the probability density P1(x) =  
0c1(x) 0 2 in the ground state.

 Prob(in 0.01L at x = 0.00L) = 0.000 = 0.0%

 Prob(in 0.01L at x = 0.25L) = 0.010 = 1.0%

 Prob(in 0.01L at x = 0.50L) = 0.020 = 2.0%

 c. You learned in Chapter 39 that the probability of being in an 
interval is the area under the probability-density curve. We cal-
culate this by integrating:

  Prob1in interval 
1

4
 L to 

3

4
 L2 = 3

3L/4

L/4

 P1(x) dx

  =
2

L
 3

3L/4

L/4

 sin21px

L 2  dx

  = c x

L
-

1
p

 sin1px

L 2  cos1px

L 2 d 3L/4

L/4

  =
1

2
 +

1
p

= 0.818

The integral of sin2 was taken from the table of integrals in 
Appendix A.

ASSESS If a particle in a box is in the n = 1 ground state, there 
is an 81.8% chance of finding it in the center half of the box. 
The probability is greater than 50% because, as you can see in 
Figure 40.10, the probability density P1(x) is larger near the center 
of the box than near the boundaries.

P1(x) �  0c1(x) 02

0 LL/2
x

The probability of being in the interval
from L/4 to 3L/4 is the area under the curve.

Maximum
probability
at x �  L/2

FIgurE 40.10 Probability density for a particle 
in the ground state.

SoLvE a. The particle is most likely to be found at the point where 
the probability density P(x) is a maximum. You can see from 
Figure 40.10 that the point of maximum probability for n = 1 
is x = L/2.

 b. For a small width dx, the probability of finding the particle in 
dx at position x is

 Prob(in dx at x) = P1(x) dx = 0c1(x) 0 2 dx =
2

L
 sin21px

L 2  dx

The interval dx = 0.01L is sufficiently small for this to be 
valid. The probabilities of finding the particle are

This has been a lengthy presentation of the particle-in-a-box problem. However, 
it was important that we explore the method of solution completely. Future examples 
will now go more quickly because many of the issues discussed here will not need to 
be repeated.

Stop to think 40.2 
 A particle in a rigid box in the n = 2 stationary state is most likely 

to be found

 a. In the center of the box.
 b. One-third of the way from either end.
 c. One-quarter of the way from either end.
 d. It is equally likely to be found at any point in the box.

40.5 The Correspondence Principle
Suppose we confine an electron in a microscopic box, then allow the box to get bigger 
and bigger. What started out as a quantum-mechanical situation should, when the box 
becomes macroscopic, eventually look like a classical-physics situation. Similarly, 
a classical situation such as two charged particles revolving about each other should 
begin to exhibit quantum behavior as the orbit size becomes smaller and smaller.

These examples suggest that there should be some in-between size, or energy, for 
which the quantum-mechanical solution corresponds in some way to the solution of 
classical mechanics. Niels Bohr put forward the idea that the average behavior of 
a quantum system should begin to look like the classical solution in the limit that 
the quantum number becomes very large—that is, as n S �. Because the radius of 
the Bohr hydrogen atom is r = n2aB, the atom becomes a macroscopic object as n 
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becomes very large. Bohr’s idea, that the quantum world should blend smoothly into 
the classical world for high quantum numbers, is today known as the correspondence 
principle.

Our quantum knowledge of a particle in a box is given by its probability density

 Pquant(x) = 0cn(x) 0 2 =
2

L
 sin21npx

L 2  (40.29)

To what classical quantity can the probability density be compared as n S �?
Interestingly, we can also define a classical probability density Pclass(x). A classical 

particle follows a well-defined trajectory, but suppose we observe the particle at ran-
dom times. For example, suppose the box containing a classical particle has a viewing 
window. The window is normally closed, but at random times, selected by a random-
number generator, the window opens for a brief interval dt and you can measure the 
particle’s position. When the window opens, what is the probability that the particle 
will be in a narrow interval dx at position x?

The probability of finding a classical particle within a small interval dx is equal to 
the fraction of its time that it spends passing through dx. That is, you’re more likely to 
find the particle in those intervals dx where it spends lots of time, less likely to find it 
in a dx where it spends very little time.

Consider a classical particle oscillating back and forth between two turning points 
with period T. The time it spends moving from one turning point to the other is 12 T. As 
it moves between the turning points, it passes once through the interval dx at position 
x, taking time dt to do so. Consequently, the probability of finding the particle within 
this interval is

 Probclass(in dx at x) = fraction of time spent in dx =
dt

1
2 T

 (40.30)

The amount of time needed to pass through dx is dt = dx/v(x), where v(x) is the par-
ticle’s velocity at position x. Thus the probability of finding the particle in the interval 
dx at position x is

 Probclass(in dx at x) =
dx/v(x)

1
2 T

=
2

Tv(x)
 dx (40.31)

You learned in Chapter 39 that the probability is related to the probability density by

 Probclass(in dx at x) = Pclass(x) dx

Thus the classical probability density for finding a particle at position x is

 Pclass(x) =
2

Tv(x)
 (40.32)

where the velocity v(x) is expressed as a function of x. Classically, a particle is more 
likely to be found where it is moving slowly, less likely to be found where it is 
moving quickly.

NoTE  Our derivation of Equation 40.32 made no assumptions about the particle’s 
motion other than the requirement that it be periodic. This is the classical probabil-
ity density for any oscillatory motion. 

FIgurE 40.11a is the motion diagram of a classical particle in a rigid box of length L. 
The particle’s speed is a constant v(x) = v0 as it bounces back and forth between the 
walls. The particle travels distance 2L during one round trip, so the period is T = 2L/v0. 
Consequently, the classical probability density for a particle in a box is

 Pclass(x) =
2

(2L/v0)v0
=

1

L
 (40.33)

Pclass(x) is independent of x, telling us that the particle is equally likely to be found 
anywhere in the box.

x

Particle in an empty box

Motion diagram

The probability of finding the particle
in dx is the fraction of time the particle
spends in dx.

(a) Uniform speed

dx

dx

x

Particle on a spring

Motion diagram

The particle is more
likely to be found
where it’s moving
slowly, p

p less likely to be
found where it’s
moving quickly.

(b) Nonuniform speed

dx

FIgurE 40.11 The classical probability 
density is indicated by the density of 
dots in a motion diagram.
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In contrast, FIgurE 40.11b shows a particle with nonuniform speed. A mass on a 
spring slows down near the turning points, so it spends more time near the ends of the 
box than in the middle. Consequently the classical probability density for this particle 
is a maximum at the edges and a minimum at the center. We’ll look at this classical 
probability density again later in the chapter.

The probability that the particle is in an interval of width dx =  
1.0 mm = 0.10 cm is

  Prob(in dx at x = 5 cm) = P(x)dx = (0.10 cm-1)(0.10 cm)

  = 0.010 = 1.0%

ASSESS The classical probability is 1.0% because 1.0 mm is 1% 
of the 10 cm length.

A classical particle is in a rigid 10-cm-long box. What is the prob-
ability that, at a random instant of time, the particle is in a 1.0-mm- 
wide interval at the center of the box?

SoLvE The particle’s probability density is

 Pclass(x) =
1

L
=

1

10 cm
= 0.10 cm-1

ExAMPLE 40.5  The classical probability of locating the particle

FIgurE 40.12 shows the quantum and the classical probability densities for the n = 1 
and n = 20 quantum states of a particle in a rigid box. Notice that:

	■	 The quantum probability density oscillates between a minimum of 0 and a maxi-
mum of 2/L, so it oscillates around the classical probability density 1/L.

	■	 For n = 1, the quantum and classical probability densities are quite different. The 
ground state of the quantum system will be very nonclassical.

	■	 For n = 20, on average the quantum particle’s behavior looks very much like that 
of the classical particle.

xx
0 L 0 L

The quantum and classical probability
densities are very different.0c1(x) 02 0c20(x) 02

2
L

1
L

2
L

1
L

Pquant for n � 1

Pclass

Pclass

Pquant for n � 20

On average, the quantum probability
density matches the classical value.

FIgurE 40.12 The quantum and classical probability densities for a particle in a box.

As n gets even bigger and the number of oscillations increases, the probability of 
finding the particle in an interval dx will be the same for both the quantum and the 
classical particles as long as dx is large enough to include several oscillations of the 
wave function. As Bohr predicted, the quantum-mechanical solution “corresponds” to 
the classical solution in the limit n S �.

40.6 Finite Potential Wells
Figure 40.4, the potential-energy diagram for a particle in a rigid box, is an example 
of a potential well, so named because the graph of the potential-energy “hole” looks 
like a well from which you might draw water. The rigid box was an infinite potential 
well. There was no chance that a particle inside could escape the infinitely high walls.

A more realistic model of a confined particle is the finite potential well shown in 
FIgurE 40.13a on the next page. A particle with total energy E 6 U0 is confined within 
the well, bouncing back and forth between turning points at x = 0 and x = L. The 
regions x 6 0 and x 7 L are classically forbidden regions for a particle with E 6 U0. 
However, the particle will escape the well if it manages to acquire energy E 7 U0.

For example, consider an electron confined within a metal or semiconductor. An 
electron with energy less than the work function moves freely until it reaches the edge, 
where it reflects to stay within the solid. But the electron can escape if it somehow—such 
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as absorbing energy from a photon—acquires an energy larger than the work function. 
Similarly, a neutron is confined within the nucleus by the nuclear force, but it can 
escape the nucleus if it has enough energy. The electron, the neutron, and many other 
particles that are confined can be modeled as a particle in a finite potential well, so it 
is one of the most important models in quantum mechanics. The Schrödinger equation 
depends on the shape of the potential-energy function, not the cause.

FIgurE 40.13b is the same potential well, simply redrawn to place the zero of potential 
energy—which, you will recall, is arbitrary—at the level of the “energy plateau.” Both 
have width L and depth U0 so both have the same wave functions and the same energy 
levels relative to the bottom of the well. Which one we use is a matter of convenience.

Although it is possible to solve the Schrödinger equation exactly for the finite po-
tential well, the result is cumbersome and not especially illuminating. Instead, we’ll 
present the results of numerical calculations. The derivation of the wave functions and 
energy levels is not as important as understanding and interpreting the results.

As a first example, consider an electron in a 2.0-nm-wide potential well of depth 
U0 = 1.0 eV. These are reasonable parameters for an electron in a semiconductor 
device. FIgurE 40.14a is a graphical presentation of the allowed energies and wave 
functions. For comparison, FIgurE 40.14b shows the first three energy levels and wave 
functions for a rigid box (U0 S �) with the same 2.0 nm width.

c(x) c(x)

�1 0 1 2 3 0 1 2
x (nm)x (nm)

n � 4

E4 � 0.949 eV
1.0 eV

E3 � 0.585 eV

E2 � 0.263 eV

E1 � 0.068 eV E1 � 0.094 eV

E2 � 0.377 eV

E3 � 0.848 eV

n � 3

n � 2

n � 1

� �

(a) Finite potential well (b) Particle in a rigid box

0 eV

The wave function
extends into the
classically forbidden
region.

The wave
function is zero
at the edge of
the box.

FIgurE 40.14 Energy levels and wave functions for a finite potential well. For comparison, 
the energies and wave functions are shown for a rigid box of equal width.

The quantum-mechanical solution for a particle in a finite potential well has some 
important properties:

	■	 The particle’s energy is quantized. A particle in the potential well must be in one of 
the stationary states with quantum numbers n = 1, 2, 3, p .

	■	 There are only a finite number of bound states—four in this example, although 
the number will be different in other examples. These wave functions represent 
electrons confined to, or bound in, the potential well. There are no stationary states 
with E 7 U0 because such a particle would not remain in the well.

	■	 The wave functions are qualitatively similar to those of a particle in a rigid box, but 
the energies are somewhat lower. This is because the wave functions are slightly 
more spread out horizontally. A slightly longer de Broglie wavelength corresponds 
to a lower velocity and thus a lower energy.

	■	 Most interesting, perhaps, is that the wave functions of Figure 40.14a extend into 
the classically forbidden regions. It is as though a tennis ball penetrated partly 
through the racket’s strings before bouncing back, but without breaking the 
strings.

(a) U � 0 inside the well.

U � 0 inside the well.

Turning
points

U0 is the depth of the
potential-energy well.

U(x)

U0

The particle’s
energy is E � U0.

E

x

Classically
forbidden
region

Classically
forbidden
region

0 L
0

(b) U � 0 outside the well.

The zero of energy has
been changed, but this
well still has width L
and depth U0.

U(x)

E

L

x0

U � �U0 inside the well.

�U0

FIgurE 40.13 A finite potential well of 
width L and depth U0.



Stop to think 40.3 
 This is a wave function for 

a particle in a finite quantum well. What is the 
particle’s quantum number?

The Classically Forbidden region
The extension of a particle’s wave functions into the classically forbidden region is an 
important difference between classical and quantum physics. Let’s take a closer look 
at the wave function in the region x Ú L of Figure 40.13a. The potential energy in the 
classically forbidden region is U0; thus the Schrödinger equation for x Ú L is

 
d 2c

dx2 = -  
2m

U2  (E - U0)c(x)

We’re assuming a confined particle, with E less than U0, so E - U0 is negative. It will 
be useful to reverse the order of these and write

 
d 2c

dx2 =
2m

U2  (U0 - E)c(x) =
1

h2 c(x) (40.34)

where

 h2 =
U2

2m(U0 - E)
 (40.35)

is a positive constant. As a homework problem, you can show that the units of h are 
meters.

The Schrödinger equation of Equation 40.34 is one we can solve by guessing. We 
simply need to think of two functions whose second derivatives are a positive constant 
times the functions themselves. Two such functions, as you can quickly confirm, are 
ex/h and e-x/h. Thus, according to Equation 40.8, the general solution of the Schrödinger 
equation for x Ú L is

 c(x) = Aex/h + Be-x/h for x Ú L (40.36)

One requirement of the wave function is that c S 0 as x S �. The function ex/h 
diverges as x S �, so the only way to satisfy this requirement is to set A = 0. Thus

 c(x) = Be-x/h for x Ú L (40.37)

This is an exponentially decaying function. Notice that all the wave functions in 
Figure 40.14a look like exponential decays for x 7 L.

The wave function must also be continuous. Suppose the oscillating wave func-
tion within the potential well (x … L) has the value cedge when it reaches the classical 
boundary at x = L. To be continuous, the wave function of Equation 40.37 has to 
match this value at x = L. That is,

 c(at x = L) = Be-L/h = cedge (40.38)

The absorption wavelengths l = c/f  are

 lnSm =
hc

�E
=

hc

0En - Em 0
For this example, we find

 

�E1-2 = 0.195 eV  l1S2 = 6.37 mm

�E1-3 = 0.517 eV  l1S3 = 2.40 mm

�E1-4 = 0.881 eV  l1S4 = 1.41 mm

ASSESS These transitions are all infrared wavelengths.

ExAMPLE 40.6  Absorption spectrum of an electron
What wavelengths of light are absorbed by a semiconductor de-
vice in which electrons are confined in a 2.0-nm-wide region with 
a potential-energy depth of 1.0 eV?

ModEL The electron is in the finite potential well whose energies 
and wave functions were shown in Figure 40.14a.

SoLvE Photons can be absorbed if their energy Ephoton = hf  
exactly matches the energy difference �E between two energy 
levels. Because most electrons are in the n = 1 ground state, the 
absorption transitions are 1 S 2, 1 S 3, and 1 S 4.

x

40.6 . Finite Potential Wells    1195



1196    c h a p t e r  40 . One-Dimensional Quantum Mechanics

This boundary condition at x = L is sufficient to determine that the constant B is

 B = cedgeeL/h (40.39)

If we use the Equation 40.39 result for B in Equation 40.37, we find that the wave 
function in the classically forbidden region of a finite potential well is

 c(x) = cedgee-(x-L)/h  for x Ú L (40.40)

In other words, the wave function oscillates until it reaches the classical turning 
point at x � L, then it decays exponentially within the classically forbidden re-
gion. A similar analysis could be done for x … 0.

FIgurE 40.15 shows the wave function in the classically forbidden region. You can 
see that the wave function at x = L + h has decreased to

 c(at x = L + h) = e-1cedge = 0.37cedge

Although an exponential decay does not have a sharp ending point, the parameter h 
measures “about how far” the wave function extends past the classical turning point 
before the probability of finding the particle has decreased nearly to zero. This dis-
tance is called the penetration distance:

 penetration distance h =
U22m(U0 - E)

 (40.41)

A classical particle reverses direction at the x = L turning point. But atomic par-
ticles are not classical. Because of wave–particle duality, an atomic particle is “fuzzy” 
with no well-defined edge. Thus an atomic particle can spread a distance of roughly h 
into the classically forbidden region.

The penetration distance is unimaginably small for any macroscopic mass, but it 
can be significant for atomic particles. Notice that the penetration distance depends 
inversely on the quantity U0 - E, the distance of the energy level below the top of the 
potential well. You can see in Figure 40.14a that h is much larger for the n = 4 state, 
near the top of the potential well, than for the n = 1 state.

NoTE  In making use of Equation 40.41, you must use SI units of J s for U and J for 
the energies. The penetration distance h is then in meters. 

cedge

c(x)

c(x) � cedgee
�(x � L)/h

0.37cedge

0
L L � h L � 2h

x

The oscillating wave function
inside the potential well

The wave functions
match at x � L.

Penetration
distance h

An exponentially decaying
wave function in the
classically forbidden region

Classically
forbidden region

Classical
turning
point

FIgurE 40.15 The wave function in the 
classically forbidden region.

SoLvE The ground state has U0 - E1 = 1.000 eV - 0.068 eV =  
0.932 eV. Similarly, U0 - E4 = 0.051 eV in the n = 4 state. We 
can use Equation 40.41 to calculate

 h =
U22m(U0 - E)

= b 0.20 nm n = 1

0.86 nm n = 4

ASSESS These values are consistent with Figure 40.14a.

ExAMPLE 40.7  Penetration distance of an electron
An electron is confined in a 2.0-nm-wide region with a potential-
energy depth of 1.00 eV. What are the penetration distances into 
the classically forbidden region for an electron in the n = 1 and 
n = 4 states?

ModEL The electron is in the finite potential well whose energies 
and wave functions were shown in Figure 40.14a.

Quantum-Well devices
In Part VI we developed a model of electrical conductivity in which the valence elec-
trons of a metal form a loosely bound “sea of electrons.” The typical speed of an 
electron is the rms speed:

 vrms = B3kBT

m



where kB is Boltzmann’s constant. Hence at room temperature, where vrms � 1 *  
105 m/s, the de Broglie wavelength of a typical conduction electron is

 l �
h

mvrms
� 7 nm

There is a range of wavelengths because the electrons have a range of speeds, but this 
is a typical value.

You’ve now seen many times that wave effects are significant only when the sizes 
of physical structures are comparable to or smaller than the wavelength. Because the de 
Broglie wavelength of conduction electrons is only a few nm, quantum effects are insig-
nificant in electronic devices whose features are larger than about 100 nm. The electrons 
in macroscopic devices can be treated as classical particles, which is how we analyzed 
electric current in Chapter 30.

However, devices smaller than about 100 nm do exhibit quantum effects. Some 
semiconductor devices, such as the semiconductor lasers used in fiber-optic commu-
nications, now incorporate features only a few nm in size. Quantum effects play an 
important role in these devices.

FIgurE 40.16a shows a semiconductor diode laser through which a current travels 
from left to right. In the center is a very thin layer of the semiconductor gallium arse-
nide (GaAs). It is surrounded on either side by layers of gallium aluminum arsenide 
(GaAlAs), and these in turn are embedded within the larger structure of the diode. 
The electrons within the central GaAs layer begin to emit laser light when the current 
through the diode exceeds a threshold current. The laser beam diverges because of 
diffraction through the “slit” of the GaAs layer, with the wider axis of the laser beam 
corresponding to the narrower portion of the lasing region.

You can learn in a solid-state physics or materials engineering course that the elec-
tric potential energy of an electron is slightly lower in GaAs than in GaAlAs. This 
makes the GaAs layer a potential well for electrons, with higher-potential-energy 
GaAlAs “walls” on either side. As a result, the electrons become trapped within the 
thin GaAs layer. Such a device is called a quantum-well laser.

As an example, FIgurE 40.16b shows a quantum-well device with a 1.0-nm-thick 
GaAs layer in which the electron’s potential energy is 0.300 eV lower than in the 
surrounding GaAlAs layers. A numerical solution of the Schrödinger equation finds 
that this potential well has only a single quantum state, n = 1 with E1 = 0.125 eV. 
Every electron trapped in this quantum well has the same energy—a very nonclassical 
result! The fact that the electron energies are so well defined, in contrast to the range 
of electron energies in bulk material, is what makes this a useful device. You can also 
see from the probability density 0c 0 2 that the electrons are more likely to be found in 
the center of the layer than at the edges. This concentration of electrons makes it easier 
for the device to begin laser action.

Nuclear Physics
The nucleus of an atom consists of an incredibly dense assembly of protons and neu-
trons. The positively charged protons exert extremely strong electric repulsive forces 
on each other, so you might wonder how the nucleus keeps from exploding. During the 
1930s, physicists found that protons and neutrons also exert an attractive force on each 
other. This force, one of the fundamental forces of nature, is called the strong force. It 
is the force that holds the nucleus together.

The primary characteristic of the strong force, other than its strength, is that it is 
a short-range force. The attractive strong force between two nucleons (a nucleon is 
either a proton or a neutron; the strong force does not distinguish between them) rap-
idly decreases to zero if they are separated by more than about 2 fm. This is in sharp 
contrast to the long-range nature of the electric force.

A reasonable model of the nucleus is to think of the protons and neutrons as par-
ticles in a nuclear potential well that is created by the strong force. The diameter of the 

Laser light Metal contact

Current

GaAlAs GaAs

E1

0.300 eV

0.125 eV

0.000 eV

GaAlAs GaAs GaAlAs

0c1(x)02

(b)

(a) Quantum-well laser

1.0 nm

FIgurE 40.16 A semiconductor diode 
laser with a single quantum well.
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potential well is equal to the diameter of the nucleus (this varies with atomic mass), 
and nuclear physics experiments have found that the depth of the potential well is 
�50 MeV.

The real potential well is three-dimensional, but let’s make a simplified model of 
the nucleus as a one-dimensional potential well. FIgurE 40.17 shows the potential energy 
of a neutron along an x-axis passing through the center of the nucleus. Notice that the 
zero of energy has been chosen such that a “free” neutron, one outside the nucleus, has 
E = 0. Thus the potential energy inside the nucleus is -50 MeV. The 8.0 fm diameter 
shown is appropriate for a nucleus having atomic mass number A � 40, such as argon 
or potassium. Lighter nuclei will be a little smaller, heavier nuclei somewhat larger. 
(The potential-energy diagram for a proton is similar, but is complicated a bit by the 
electric potential energy.)

A numerical solution of the Schrödinger equation finds the four stationary states 
shown in Figure 40.17. The wave functions have been omitted, but they look es-
sentially identical to the wave functions in Figure 40.14a. The major point to note is 
that the allowed energies differ by several million electron volts! These are enormous 
energies compared to those of an electron in an atom or a semiconductor. But recall 
that the energies of a particle in a rigid box, En = n2h2/8mL2, are proportional to 1/L2. 
Our previous examples, with nanometer-size boxes, found energies in the eV range. 
When the box size is reduced to femtometers, the energies jump up into the MeV 
range.

It often happens that the nuclear decay of a radioactive atom leaves a neutron in 
an excited state. For example, Figure 40.17 shows a neutron that has been left in the 
n = 3 state by a previous radioactive decay. This neutron can now undergo a quantum 
jump to the n = 1 ground state by emitting a photon with energy

 Ephoton = E3 - E1 = 19.1 MeV

and wavelength

 lphoton =
c

f
=

hc

Ephoton 
= 6.50 * 10-5 nm

This photon is �107 times more energetic, and its wavelength �107 times smaller, 
than the photons of visible light! These extremely high-energy photons are called 
gamma rays. Gamma-ray emission is, indeed, one of the primary processes in the 
decay of radioactive elements.

Our one-dimensional model cannot be expected to give accurate results for the 
energy levels or gamma-ray energies of any specific nucleus. Nonetheless, this model 
does provide a reasonable understanding of the energy-level structure in nuclei and 
correctly predicts that nuclei can emit photons having energies of several million 
electron volts. This model, when extended to three dimensions, becomes the basis 
for the shell model of the nucleus in which the protons and neutrons are grouped in 
various shells analogous to the electron shells around an atom that you remember 
from chemistry. You can learn more about nuclear physics and the shell model in 
Chapter 42.

40.7 Wave-Function Shapes
Bound-state wave functions are standing de Broglie waves. In addition to boundary 
conditions, two other factors govern the shapes of wave functions:

 1. The de Broglie wavelength is inversely dependent on the particle’s speed. Con-
sequently, the node spacing is smaller (shorter wavelength) where the kinetic 
energy is larger, and the spacing is larger (longer wavelength) where the kinetic 
energy is smaller.

�13.4 MeV

0 MeV

�28.5 MeV

�40.4 MeV

�47.6 MeV

�50.0 MeV

n � 4

n � 3

n � 2
n � 1

The diameter of the
nucleus is 8.0 fm.

A radioactive decay has left the neutron
in the n � 3 excited state. The neutron
jumps to the n � 1 ground state, emitting
a gamma-ray photon.

Energy levels of a
neutron in the nucleus

Gamma-ray
emission

FIgurE 40.17 There are four allowed 
energy levels for a neutron in this 
nuclear potential well.



40.7 . Wave-Function Shapes    1199

 2. A classical particle is more likely to be found where it is moving more slowly. 
In quantum mechanics, the probability of finding the particle increases as the 
wave-function amplitude increases. Consequently, the wave-function amplitude 
is larger where the kinetic energy is smaller, and it is smaller where the kinetic 
energy is larger.

We can use this information to draw reasonably accurate wave functions for the 
different allowed energies in a potential-energy well.

TACTICS
B o x  4 0 . 1 

 drawing wave functions

 ●1 Draw a graph of the potential energy U(x). Show the allowed energy E as a 
horizontal line. Locate the classical turning points.

 ●2 Draw the wave function as a continuous, oscillatory function between the 
turning points. The wave function for quantum state n has n antinodes and 
(n - 1) nodes (excluding the ends).

 ●3 Make the wavelength longer (larger node spacing) and the amplitude 
higher in regions where the kinetic energy is smaller. Make the wave-
length shorter and the amplitude lower in regions where the kinetic energy 
is larger.

 ●4 Bring the wave function to zero at the edge of an infinitely high potential-
energy “wall.”

 ●5 Let the wave function decay exponentially inside a classically forbidden re-
gion where E 6 U. The penetration distance h increases as E gets closer to 
the top of the potential-energy well.

Exercises 10–13 

vISuALIzE The steps of Tactics Box 40.1 have been followed to 
sketch the wave functions shown in FIgurE 40.19.

ExAMPLE 40.8  Sketching wave functions
FIgurE 40.18 shows a potential-energy well and the allowed ener-
gies for the n = 1 and n = 4 quantum states. Sketch the n = 1 and 
n = 4 wave functions.

� �
U(x)

E4

E1

x

FIgurE 40.18 A potential-energy well.

Shorter wavelength, smaller
amplitude where K is larger

Locate turning
points.

Longer wavelength, higher
amplitude where K is smaller

Exponential decay inside a
classically forbidden region

1 antinode
for n � 1

4 antinodes
for n � 4

c � 0 at an
infinitely
high wall.

3 3

2

1

52

4

FIgurE 40.19 The n = 1 and n = 4 wave functions.
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40.8 The Quantum Harmonic oscillator
Simple harmonic motion is exceptionally important in classical physics, where it 
serves as a prototype for more complex oscillations. As you might expect, a micro-
scopic oscillator—the quantum harmonic oscillator—is equally important as a model 
of oscillations at the atomic level.

The defining characteristic of simple harmonic motion is a linear restoring force: 
F = -kx, where k is the spring constant. The corresponding potential-energy func-
tion, as you learned in Chapter 10, is

 U(x) =
1

2
 kx2 (40.42)

where we’ll assume that the equilibrium position is xe = 0. The potential energy of a 
harmonic oscillator is shown in FIgurE 40.20. It is a potential-energy well with curved 
sides.

A classical particle of mass m oscillates with angular frequency

 v = B k
m

 (40.43)

between the two turning points where the energy line crosses the parabolic potential-
energy curve. As you’ve learned, this classical description fails if m represents an 
atomic particle, such as an electron or an atom. In that case, we need to solve the 
Schrödinger equation to find the wave functions.

The Schrödinger equation for a quantum harmonic oscillator is

 
d 2c

dx2 = -  
2m

U2 1E -
1

2
 kx22c(x) (40.44)

where we used U(x) =
1
2 kx2. We will assert, without deriving them, that the wave 

functions of the first three states are

  c1(x) = A1e-x2/2b2

  c2(x) = A2 
x

b
 e-x2/2b2

 (40.45)

  c3(x) = A311 -
2x2

b2 2e-x2/2b2

where

 b = B U

mv
 (40.46)

Stop to think 40.4 
 For which potential energy U(x) is this an 

appropriate n = 4 wave function?
x

x

E4

U(x) U(x) U(x) U(x)

E4 E4 E4

� �

x

� �

x

�

x

�

(a) (b) (c) (d)

xL xR

x

E

0

Classically
forbidden
region

Classical
turning points

Classically
forbidden
region

Energy

U(x) � kx21
2

FIgurE 40.20 The potential energy of a 
harmonic oscillator.
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The constant b has dimensions of length. We will leave it as a homework problem 
for you to show that b is the classical turning point of an oscillator in the n = 1 ground 
state. The constants A1, A2, and A3 are normalization constants. For example, A1 can 
be found by requiring

 3
�

-�

 0c1(x) 0 2 dx = A1 

2
3

�

-�

 e-x2/b2

 dx = 1 (40.47)

The completion of this calculation also will be left as a homework problem.
As expected, stationary states of a quantum harmonic oscillator exist only for cer-

tain discrete energy levels, the quantum states of the oscillator. The allowed energies 
are given by the simple equation

 En = 1n -
1

2 2Uv  n = 1, 2, 3, p  (40.48)

where v is the classical angular frequency, Equation 40.43, and n is the quantum 
number.

NoTE  The ground-state energy of the quantum harmonic oscillator is E1 =  1
2 Uv. 

An atomic mass on a spring can not be brought to rest. This is a consequence of the 
uncertainty principle. 

FIgurE 40.21 shows the first three energy levels and wave functions of a quantum 
harmonic oscillator. Notice that the energy levels are equally spaced by �E = Uv. 
This result differs from the particle in a box, where the energy levels get increasingly 
farther apart. Also notice that the wave functions, like those of the finite potential well, 
extend beyond the turning points into the classically forbidden region.

E3 � Uv
5
2

U(x) � kx21
2

E2 � Uv
3
2

E1 �

x

Uv

Uv

2Uv

3Uv

4Uv

1
2

n � 3

n � 2

n � 1

Energy

0 b�b�2b�3b 2b 3b

c1

c2

c3

Classical turning
point for n � 1

The energy levels
are equally spaced.

FIgurE 40.21 The first three energy levels and wave functions of a quantum harmonic 
oscillator.

FIgurE 40.22 shows the probability density 0c(x) 0 2 for the n = 11 state of a quantum 
harmonic oscillator. Notice how the node spacing and the amplitude both increase as 
the particle moves away from the equilibrium position at x = 0. This is consistent with 
item 3 of Tactics Box 40.1. The particle slows down as it moves away from the origin, 
causing its de Broglie wavelength and the probability of finding it to increase.

Section 40.5 introduced the classical probability density Pclass(x) and noted that a 
classical particle is most likely to be found where it is moving the slowest. Figure 40.22 

x

Pclass

�4b �2b 0 2b 4b

Pquant � 0c(x) 02

Classical
turning
point

FIgurE 40.22 The quantum and classical 
probability densities for the n = 11 state 
of a quantum harmonic oscillator.
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shows Pclass(x) for a classical particle with the same total energy as the n = 11 quan-
tum state. You can see that on average the quantum probability density 0c(x) 0 2 mimics 
the classical probability density. This is just what the correspondence principle leads 
us to expect.

The emitted photon has energy Ephoton = hfph = �E. Thus

 Uve =
h

2p
 ve = hfph =

hc

l

The wavelength of the light is l = 600 nm, so the classical angular 
frequency of the oscillating electron is

 ve = 2p 
c

l
= 3.14 * 1015 rad/s

The electron’s angular frequency is related to the spring constant 
of the restoring force by

 ve = B k

m

Thus k = mve 

2 = 9.0 N/m.

ExAMPLE 40.9  Light emission by an oscillating electron
An electron in a harmonic-oscillator potential well emits light of 
wavelength 600 nm as it jumps from one level to the next lowest 
level. What is the “spring constant” of the restoring force?

ModEL The electron is a quantum harmonic oscillator.

SoLvE A photon is emitted as the electron undergoes the quantum 
jump n S n - 1. We can use Equation 40.48 for the energy levels 
to find that the electron loses energy

 �E = En - En-1 = 1n -
1

2 2 Uve - 1n - 1 -
1

2 2 Uve = Uve

�E = Uve for all transitions, independent of n, because the energy 
levels of the quantum harmonic oscillator are equally spaced. We 
need to distinguish the harmonic oscillations of the electron from 
the oscillations of the light wave, hence the subscript e on ve.

Molecular vibrations
We’ve made many uses of the idea that atoms are held together by spring-like mo-
lecular bonds. We’ve always assumed that the bonds could be modeled as classical 
springs. The classical model is acceptable for some purposes, but it fails to explain 
some important features of molecular vibrations. Not surprisingly, the quantum har-
monic oscillator is a better model of a molecular bond.

FIgurE 40.23 shows the potential energy of two atoms connected by a molecular bond. 
Nearby atoms attract each other through a polarization force, much as a charged rod 
picks up small pieces of paper. If the atoms get too close, a repulsive force between the 
negative electrons pushes them apart. The equilibrium separation at which the attractive 
and repulsive forces are balanced is r0, and two classical atoms would be at rest at this 
separation. But quantum particles, even in their lowest energy state, have E 7 0. Conse-
quently, the molecule vibrates as the two atoms oscillate back and forth along the bond.

Udissoc is the energy at which the molecule will dissociate and the two atoms will 
fly apart. Dissociation can occur at very high temperatures or after the molecule has 
absorbed a high-energy (ultraviolet) photon, but under typical conditions a molecule 
has energy E V Udissoc. In other words, the molecule is in an energy level near the 
bottom of the potential well.

You can see that the lower portion of the potential well is very nearly a parabola. 
Consequently, we can model a molecular bond as a quantum harmonic oscillator. The 
energy associated with the molecular vibration is quantized and can have only the values

 Evib � 1n -
1

2 2Uv  n = 1, 2, 3, p  (40.49)

where v is the angular frequency with which the atoms would vibrate if the bond 
were a classical spring. The molecular potential-energy curve is not exactly that of a 
harmonic oscillator, hence the � sign, but the model is very good for low values of 
the quantum number n. The energy levels calculated by Equation 40.49 are called the 
vibrational energy levels of the molecule. The first few vibrational energy levels are 
shown in Figure 40.23.

At room temperature, most molecules are in the n = 1 vibrational ground state. 
Their vibrational motion can be excited by absorbing photons of frequency f = �E/h. 

Udissoc

0
0.0 0.2 0.4

Equilibrium separation

Allowed
energy
levels

r0

r (nm)

U(x)

The 1S2 transition
is associated with
infrared absorption.

The lower part of
the potential well
is nearly a parabola.

r

Bond

1
2
3
4
5

FIgurE 40.23 The potential energy of 
a molecular bond and a few of the 
allowed energies.
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This frequency is usually in the infrared region of the spectrum, and these vibrational 
transitions give each molecule a unique and distinctive infrared absorption spectrum.

As an example, FIgurE 40.24 shows the infrared absorption spectrum of acetone. The 
vertical axis is the percentage of the light intensity passing all the way through the sam-
ple. The sample is essentially transparent at most wavelengths (transmission �  100%), 
but there are two prominent absorption features. The transmission drops to �75% at 
l = 3.3 mm and to a mere 7% at l = 5.8 mm. The 3.3 mm absorption is due to the 
n = 1 to n = 2 transition in the vibration of a C-CH3 carbon-methyl bond. The 5.8 mm 
absorption is the 1 S 2 transition of a vibrating C= O carbon-oxygen double bond.

Absorption spectra are known for thousands of molecules, and chemists routinely 
use absorption spectroscopy to identify the chemicals in a sample. A specific bond 
has the same absorption wavelength regardless of the larger molecule in which it is 
embedded; thus the presence of that absorption wavelength is a “signature” that the 
bond is present within a molecule.

Stop to think 40.5 
 Which probability density represents a quantum harmonic 

oscillator with E =
5
2 Uv?

40.9 More Quantum Models
In this section we’ll look at two more examples of quantum-mechanical models.

A Particle in a Capacitor
Many semiconductor devices are designed to confine electrons within a layer only a 
few nanometers thick. If a potential difference is applied across the layer, the electrons 
act very much as if they are trapped within a microscopic capacitor.

FIgurE 40.25a shows two capacitor plates separated by distance L. The left plate is 
positive, so the electric field points to the right with strength E = �V0/L. Because of its 
negative charge, an electron launched from the left plate is slowed by a retarding force. 
The electron makes it across to the right plate if it starts with sufficient kinetic energy; 
otherwise, it reaches a turning point and then is pushed back toward the positive plate.

This classical analysis is a valid model of a macroscopic capacitor. But if L 
becomes sufficiently small, comparable to the de Broglie wavelength of an electron, 
then the wave-like properties of the electron cannot be ignored. We need a quantum-
mechanical model.

Let’s establish a coordinate system with x = 0 at the left plate and x = L at the 
right plate. We define the electric potential to be zero at the positive plate. The po-
tential decreases in the direction of the field, so the potential inside the capacitor (see 
Section 28.5) is

 V(x) = -Ex = -  
�V0

L
 x

The electron, with charge q = -e, has potential energy

 U(x) = qV(x) = +  
e �V0

L
 x  0 6 x 6 L (40.50)

This potential energy increases linearly for 0 6 x 6 L. If we assume that the capacitor 
plates act like the walls of a rigid box, then U(x) S � at x = 0 and x = L.

Transmission (%)

l (mm)
3

0
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100

4 5 6

1 S 2 transition
of a C–CH3 bond

1 S 2 transition
of a C�O bond

FIgurE 40.24 The absorption spectrum 
of acetone.
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FIgurE 40.25 An electron in a capacitor.
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FIgurE 40.25b shows the electron’s potential-energy function. It is the particle-in-
a-rigid-box potential with a sloping “floor” due to the electric field. The figure also 
shows the total energy line E of an electron in the capacitor. The energy is purely 
kinetic at x = 0, where K = E, but it is converted to potential energy as the electron 
moves to the right. The right turning point occurs where the energy line E crosses the 
potential-energy curve U(x). If the electron is a classical particle, it must reverse direc-
tion at this point.

NoTE  This is also the shape of the potential energy for a microscopic bouncing 
ball that is trapped between a floor at y = 0 and a ceiling at y = L. 

It is physically impossible for the electron to be outside the capacitor, so the wave 
function must be zero for x 6 0 and x 7 L. The continuity of c requires the same 
boundary conditions as for a particle in a rigid box: c = 0 at x = 0 and at x = L. 
The wave functions inside the capacitor are too complicated to find by guessing, so 
we have solved the Schrödinger equation numerically and will present the results 
graphically.

FIgurE 40.26 shows the wave functions and probability densities for the first five 
quantum states of an electron confined in a 5.0-nm-thick layer that has a 0.80 V poten-
tial difference across it. Each allowed energy is represented as a horizontal line, with 
the numerical values shown on the right. They range from E1 = 0.23 eV up to E5 =  
0.81 eV. An electron must have one of the allowed energies shown in the figure. An 
electron cannot have E = 0.30 eV in this capacitor because no de Broglie wave with 
that energy can match the necessary boundary conditions.

NoTE  Remember that each wave function and probability density is graphed as if 
its energy line is the zero of the y-axis. 

We can make some observations about the Schrödinger equation solutions:

 1. The energies En become more closely spaced as n increases, at least to n = 5. 
This contrasts with the particle in a box, for which En became more widely 
spaced.

 2. The spacing between the nodes of a wave function is not constant but increases 
toward the right. This is because an electron on the right side of the capacitor has 
less kinetic energy and thus a slower speed and a larger de Broglie wavelength.
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E (eV)n

c(x)

0

5 0.81

(a)

x (nm)
5

0.8

4 0.68

3 0.55

0.4 2 0.41

0.0

1 0.23

� �
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FIgurE 40.26 Energy levels, wave functions, and probability densities for an electron in a 
5.0-nm-wide capacitor with a 0.80 V potential difference.



 3. The height of the probability density 0c 0 2 increases toward the right. That is, we 
are more likely to find the electron on the right side of the capacitor than on the 
left. But this also makes sense if, classically, the electron is moving more slowly 
when on the right side and thus spending more time there than on the left side.

 4. The electron penetrates beyond the classical turning point into the classically 
forbidden region.

The Covalent Bond
You probably recall from chemistry that a covalent molecular bond, such as the 
bond between the two atoms in molecules such as H2 and O2, is a bond in which the 
electrons are shared between the atoms. The basic idea of covalent bonding can be 
understood with a one-dimensional quantum-mechanical model.

The simplest molecule, the hydrogen molecular ion H2 

+, consists of two protons and 
one electron. Although it seems surprising that such a system could be stable, the two 
protons form a molecular bond with one electron. This is the simplest covalent bond.

How can we model the H2 

+ ion? To begin, FIgurE 40.27a shows a one-dimensional 
model of a hydrogen atom in which the electron’s Coulomb potential energy, with its 
1/r dependence, has been approximated by a finite potential well of width 0.10 nm 
(�2aB) and depth 24.2 eV. You learned in Chapter 38 that an electron in the ground 
state of the Bohr hydrogen atom orbits the proton with radius r1 = aB (the Bohr 
radius) and energy E1 = -13.6 eV. A numerical solution of the Schrödinger equation 
finds that the ground-state energy of this finite potential well is E1 = -13.6 eV. This 
model of a hydrogen atom is very oversimplified, but it does have the correct size and 
ground-state energy.

We can model H2 

+ by bringing two of these potential wells close together. The 
molecular bond length of H2 

+ is known to be �0.12 nm, so FIgurE 40.27b shows poten-
tial wells with 0.12 nm between their centers. This is a model of H2 

+, not a complete 
H2 molecule, because this is the potential energy of a single electron. (Modeling H2 
is more complex because we would need to consider the repulsion between the two 
electrons.)

FIgurE 40.28 on the next page shows the allowed energies, wave functions, and prob-
ability densities for an electron with this potential energy. The n = 1 wave function 
has a high probability of being found within the classically forbidden region between 
the two protons. In other words, an electron in this quantum state really is “shared” by 
the protons and spends most of its time between them.

In contrast, an electron in the n = 2 energy level has zero probability of being 
found between the two protons because the n = 2 wave function has a node at the 
center. The probability density shows that an n = 2 electron is “owned” by one proton 
or the other rather than being shared.

To learn the consequences of these wave functions we need to calculate the total 
energy of the molecule: Emol = Ep9p + Eelec. The n = 1 and n = 2 energies shown 
in Figure 40.28 are the energies Eelec of the electron. At the same time, the protons 

�E4S1 =  0.45 eV. Thus

  l4S3 = 9500 nm = 9.5 mm

  l4S2 = 4600 nm = 4.6 mm

  l4S1 = 2800 nm = 2.8 mm

ASSESS The n = 4 electrons in this device emit three distinct in-
frared wavelengths.

ExAMPLE 40.10  The emission spectrum of an electron in a capacitor
What are the wavelengths of photons emitted by electrons in the 
n = 4 state of Figure 40.26?

SoLvE Photon emission occurs as the electrons make 4 S 3, 
4 S 2, and 4 S 1 quantum jumps. In each case, the photon fre-
quency is f = �E/h and the wavelength is

 l =
c

f
=

hc

�E

The energies of the quantum jumps, which can be read from 
Fig ure 40.26a, are �E4S3 = 0.13 eV, �E4S2 = 0.27 eV, and 

Proton

0.10 nm � 2aB

n � 1

0 eV

�13.6 eV

�24.2 eV
�

(a) Simple one-dimensional model
      of a hydrogen atom

0.10 nm

0.12 nm

0.10 nm
0 eV

�24.2 eV

(b) An H2 
� molecule modeled as an electron

      with two protons separated by 0.12 nm

� �

FIgurE 40.27 A molecule can be 
modeled as two closely spaced potential 
wells, one representing each atom.

40.9 . More Quantum Models    1205



1206    c h a p t e r  40 . One-Dimensional Quantum Mechanics

repel each other and have electric potential energy Ep9p. It’s not hard to calculate that 
Ep9p = 12.0 eV for two protons separated by 0.12 nm. Thus

 Emol = Ep9p + Eelec = b12.0 eV - 17.5 eV = -5.5 eV n = 1

12.0 eV -   9.0 eV = +3.0 eV n = 2

The n = 1 molecular energy is less than zero, showing that this is a bound state. 
The n = 1 wave function is called a bonding molecular orbital. Although the protons 
repel each other, the shared electron provides sufficient “glue” to hold the system to-
gether. The n = 2 molecular energy is positive, so this is not a bound state. The system 
would be more stable as a hydrogen atom and a distant proton. The n = 2 wave func-
tion is called an antibonding molecular orbital.

Both Eelec and Ep9p depend on the separation between the protons, which we assumed 
to be 0.12 nm in this calculation. If we were to calculate and graph Emol for many differ-
ent values of the proton separation, the graph would look like the molecular-bond energy 
curve shown in Figure 40.23. In other words, a molecular bond has an equilibrium length 
where the bond energy is a minimum because of the interplay between Ep9p and Eelec.

Although real molecular wave functions are more complex than this one-dimensional 
model, the n = 1 wave function captures the essential idea of a covalent bond. Notice 
that a “classical” molecule cannot have a covalent bond because the electron would not 
be able to exist in the classically forbidden region. Covalent bonds can be understood 
only within the context of quantum mechanics. In fact, the explanation of molecular 
bonds was one of the earliest successes of quantum mechanics.

40.10 Quantum-Mechanical Tunneling
FIgurE 40.29a shows a ball rolling toward a hill. A ball with sufficient kinetic energy can 
go over the top of the hill, slowing down as it ascends and speeding up as it rolls down 
the other side. A ball with insufficient energy rolls partway up the hill, then reverses 
direction and rolls back down.

The electron is
shared between
the protons.

0 eV

�24.2 eV

�17.5 eV
n � 1

(a) Bonding orbital

� �

c1(x)

0 eV

�24.2 eV

�17.5 eV
n � 1

� �

0c1(x)02 The electron is
with one proton
or the other.

0  c2(x) 02

0 eV

�24.2 eV
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FIgurE 40.28 The wave functions and probability densities of the electron in H2 

+.
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The ball has
kinetic energy K.
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Turning point

0

(b)

A ball with this energy slows down
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A ball with this energy 
reverses direction at
the turning point.

x
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U(x)

U0

E � U0

E � U0

FIgurE 40.29 A hill is an energy barrier to a rolling ball.

We can think of the hill as an “energy barrier” of height U0 = mgymax. As 
FIgurE 40.29b shows, a ball incident from the left with energy E 7 U0 can go over the 
barrier (i.e., roll over the hill), but a ball with E 6 U0 will reflect from the energy 
barrier at the turning point. According to the laws of classical physics, a ball that is 
incident on the energy barrier from the left with E 6 U0 will never be found on the 
right side of the barrier.

NoTE  Figure 40.29b is not a “picture” of the energy barrier. And when we say that 
a ball with energy E 7 U0 can go “over” the barrier, we don’t mean that the ball is 
thrown from a higher elevation in order to go over the top of the hill. The ball rolls 
on the ground the entire time, as Figure 40.29a shows, and Figure 40.29b describes 
the kinetic and potential energy of the ball as it rolls. A higher total energy line 
means a larger initial kinetic energy, not a higher elevation. 

FIgurE 40.30 shows the situation from the perspective of quantum mechanics. As 
you’ve learned, quantum particles can penetrate with an exponentially decreasing 
wave function into the classically forbidden region of an energy barrier. Suppose that 
the barrier is very narrow. Although the wave function decreases within the barrier, 
starting at the classical turning point, it hasn’t vanished when it reaches the other side. 
In other words, there is some probability that a quantum particle will pass through the 
barrier and emerge on the other side!

It is very much as if the ball of Figure 40.29a gets to the turning point and then, 
instead of reversing direction and rolling back down, tunnels its way through the hill 
and emerges on the other side. Although this feat is strictly forbidden in classical 
mechanics, it is apparently acceptable behavior for quantum particles. The process is 
called quantum-mechanical tunneling.

The process of tunneling through a potential-energy barrier is one of the strangest 
and most unexpected predictions of quantum mechanics. Yet it does happen, and you 
will see that it even has many practical applications.

NoTE  The word “tunneling” is used as a metaphor. If a classical particle really did 
tunnel, it would expend energy doing so and emerge on the other side with less en-
ergy. Quantum-mechanical tunneling requires no expenditure of energy. The total 
energy line is at the same height on both sides of the barrier. A particle that tunnels 
through a barrier emerges with no loss of energy. That is why the de Broglie wave-
length is the same on both sides of the potential barrier in Figure 40.30. 

To simplify our analysis of tunneling, FIgurE 40.31 shows an idealized energy barrier 
of height U0 and width w. We’ve superimposed the wave function on top of the energy 
diagram so that you can see how it aligns with the potential energy. The wave function 
to the left of the barrier is a sinusoidal oscillation with amplitude AL. The wave func-
tion within the barrier is the decaying exponential we found in Equation 40.40:

 cin(0 … x … w) = cedgee
-x/h = ALe-x/h (40.51)

The particle approaches from
the left with energy E � U0.

c decays exponentially
in the classically
forbidden region.

The particle emerges with the same
de Broglie wavelength after tunneling
through the energy barrier.

x

x
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c(x)

0

0

E � U0

FIgurE 40.30 A quantum particle can 
penetrate through the energy barrier.
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FIgurE 40.31 Tunneling through an ideal-
ized energy barrier.
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where we’ve assumed cedge = AL. The penetration distance h was given in Equa-
tion 40.41 as

 h =
U22m(U0 - E)

NoTE  You must use SI units when calculating values of h. Energies must be in J 
and U in J s. The penetration distance h has units of meters. 

The wave function decreases exponentially within the barrier, but before it can 
decay to zero, it emerges again on the right side (x 7 w) as an oscillation with amplitude

 AR = cin(at x = w) = ALe-w/h (40.52)

The probability that the particle is to the left of the barrier is proportional to 0AL 0 2, and 
the probability of finding it to the right of the barrier is proportional to 0AR 0 2. Thus the 
probability that a particle striking the barrier from the left will emerge on the right is

 Ptunnel =
0AR 0 2
0AL 0 2 = (e-w/h)2 = e-2w/h (40.53)

This is the probability that a particle will tunnel through the energy barrier.
Now, our analysis, we have to say, has not been terribly rigorous. For example, we 

assumed that the oscillatory wave functions on the left and the right were exactly at 
a maximum where they reached the barrier at x = 0 and x = w. There is no reason 
this has to be the case. We have taken other liberties, which experts will spot, but— 
fortunately—it really makes no difference. Our result, Equation 40.53, turns out to be 
perfectly adequate for most applications of tunneling.

Because the tunneling probability is an exponential function, it is very sensitive 
to the values of w and h. The tunneling probability can be substantially reduced 
by even a small increase in the thickness of the barrier. The parameter h, which 
measures how far the particle can penetrate into the barrier, depends both on the 
particle’s mass and on U0 - E. A particle with E only slightly less than U0 will have 
a larger value of h and thus a larger tunneling probability than will an identical 
particle with less energy.

Ptunnel = e-2w/h = e-2(1.0 nm)/(0.618 nm) = 0.039 = 3.9%

 b. Changing the width to w = 3.0 nm has no effect on h. The new 
tunneling probability is

 Ptunnel = e-2w/h = e-2(3.0 nm)/(0.618 nm) = 6.0 * 10-5

 = 0.006%

Increasing the width by a factor of 3 decreases the tunneling 
probability by a factor of 660!

 c. A proton is more massive than an electron. Thus a proton with 
U0 - E = 0.10 eV has h = 0.014 nm. Its probability of tun-
neling through a 1.0-nm-wide barrier is

Ptunnel = e-2w/h = e-2(1.0 nm)/(0.014 nm) � 1 * 10-64

For practical purposes, the probability that a proton will tunnel 
through this barrier is zero.

ASSESS If the probability of a proton tunneling through a mere 
1 nm is only 10-64, you can see that a macroscopic object will 
“never” tunnel through a macroscopic distance!

ExAMPLE 40.11  Electron tunneling
 a. Find the probability that an electron will tunnel through a 

1.0-nm-wide energy barrier if the electron’s energy is 0.10 eV 
less than the height of the barrier.

 b. Find the tunneling probability if the barrier in part a is widened 
to 3.0 nm.

 c. Find the tunneling probability if the electron in part a is re-
placed by a proton with the same energy.

SoLvE a. An electron with energy 0.10 eV less than the height 
of the barrier has U0 - E = 0.10 eV = 1.60 * 10-20 J. Thus its 
penetration distance is

 h =
U22m(U0 - E)

 =
1.05 * 10-34 J s22(9.11 * 10-31 kg)(1.60 * 10-20 J)

 = 6.18 * 10-10 m = 0.618 nm

The probability that this electron will tunnel through a barrier 
of width w = 1.0 nm is



Quantum-mechanical tunneling seems so obscure that it is hard to imagine practi-
cal applications. Surprisingly, it is the physics behind one of today’s most important 
technical tools, as we describe in the next section.

The Scanning Tunneling Microscope
Diffraction limits the resolution of an optical microscope to objects no smaller than 
about a wavelength of light—roughly 500 nm. This is more than 1000 times the 
size of an atom, so there is no hope of resolving atoms or molecules via optical 
microscopy. Electron microscopes are similarly limited by the de Broglie wavelength 
of the electrons. Their resolution is much better than that of an optical microscope, 
but still not quite at the level of resolving individual atoms.

This situation changed dramatically in 1981 with the invention of the scanning 
tunneling microscope, or STM as it is usually called. The STM allowed scientists, for 
the first time, to “see” surfaces literally atom by atom. The atomic-resolution photos at 
the beginning of Chapter 39 and this chapter demonstrate the power of an STM. These 
pictures and many others you have likely seen (but may not have known where they 
came from) are stupendous, but how are they made?

FIgurE 40.32a shows how the scanning tunneling microscope works. A conducting 
probe with a very sharp tip, just a few atoms wide, is brought to within a few tenths of a 
nanometer of a surface. Preparing the tips and controlling the spacing are both difficult 
technical challenges, but scientists have learned how to do both. Once positioned, the 
probe can mechanically scan back and forth across the surface.

When we analyzed the photoelectric effect, you learned that electrons are bound 
inside metals by an amount of energy called the work function E0. A typical work 
function is 4 or 5 eV. This is the energy that must be supplied—by a photon or other-
wise—to remove an electron from the metal. In other words, the electron’s energy in 
the metal is E0 less than its energy outside the metal.

This fact is the basis for the potential-energy diagram of FIgurE 40.32b. The small 
air gap between the sample and the probe tip is a potential-energy barrier. The energy 
of an electron in the metal of the sample or the probe tip is lower than the energy of 
an electron in the air by �4 eV, the work function. The absorption of a photon with 
Ephoton 7 4 eV would lift the electron over the barrier, from the sample to the probe. 
This is just the photoelectric effect. Alternatively, electrons can tunnel through the 
barrier if it is sufficiently narrow. This creates a tunneling current from the sample 
into the probe.

In operation, the tunneling current is recorded as the probe tip scans across the 
surface. You saw above that the tunneling current is extremely sensitive to the barrier 
thickness. As the tip scans over the position of an atom, the gap decreases by �0.1 nm 
and the current increases. The gap is larger when the tip is between atoms, so the cur-
rent drops. Today’s STMs can sense changes in the gap of as little as 0.001 nm, or 
about 1% of an atomic diameter! The images you see are computer-generated from the 
current measurements at each position.

The STM has revolutionized the science and engineering of microscopic objects. 
STMs are now used to study everything from how surfaces corrode and oxidize, a 
topic of great practical importance in engineering, to how biological molecules are 
structured. Another example of quantum mechanics working for you!

Stop to think 40.6 
 A particle with energy E approaches an energy barrier with height 

U0 7 E. If U0 is slowly decreased, the probability that the particle reflects from the 
barrier

 a. Increases.
 b. Decreases.
 c. Does not change.

(a)

�

�

�

�

�

�

�

Probe
tip

Sample

Air gap
� 0.5 nm

Current
monitor

Imaging
system

1. The sample can
be modeled as
positive ion cores
in an electron “sea.”

3. The current is
monitored as the
probe is moved
back and forth
across the sample.

4. An image shows the
current as a function of
the position of the probe
tip, giving a profile of
the surface.

2. The small positive
voltage causes electrons
to tunnel across the narrow
air gap between the probe
tip and the sample.

U(x)

(b)

U0

x

E

w

� 4 eV

0
Sample Air gap Probe tip

Energy level of
an electron in the
sample or the probe

FIgurE 40.32 A scanning tunneling 
microscope.
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You’ve seen that the probability of A or B happening is 
PA + PB. Similarly, the probability of A and B happening, assum-
ing they are independent events, is PA * PB. The probability of a 
head in a coin toss is 1

2. If you toss two coins, the probability that 
A is a head and B is a head is 12 *

1
2 =

1
4. If you toss three coins, the 

probability that all three are heads is 11
22 3 =

1
8. If the electron is 

still in the potential well after N bounces, it had to reflect N times. 
The probability of this happening is

 Pin well = Preflect * Preflect * Preflect * g * Preflect = (Preflect)
N

Because Preflect 6 1, the probability of still being in the potential 
well decreases as N increases.

We’ve focused not on Pescape but on Pin well = 1 - Pescape be-
cause staying in the well requires N specific events to happen. Es-
cape, on the other hand, could have occurred on any of N attempts, 
so a direct calculation of Pescape is much more complicated. If the 
probability of escape is 50%, then it’s also 50% probable that the 
electron is still in the potential well. We can find the number of 
reflections needed to get to the 50% probability by taking the loga-
rithm of both sides of the equation:

 log(Pin well) = log1(Preflect)
N2 = N log(Preflect)

 N =
log(Pin well)

log(Preflect)
=

log(0.50)

log(0.999999966)
= 2.0 * 107

After 20 million reflections, the electron is 50% likely to have 
escaped. Although that’s a large number of reflections, it 
doesn’t take long because the electron is moving only a very 
small distance between reflections at a fairly high speed. The 
electron’s energy inside the potential well is entirely kinetic, 
K = E = 0.125 eV = 2.0 * 10-20 J, so its speed is

 v = B 2K

m
= 2.1 * 105 m/s

The time between reflections is the time needed to travel across 
the 1.0-nm-wide GaAs layer:

 �t =
1.0 * 10-9 m

2.1 * 105 m/s
= 4.8 * 10-15 s

Thus the time needed for 2.0 * 107 reflections is

 t50% = N�t = 9.6 * 10-8 s = 96 ns

Because we’re making only an estimate, we can say that an elec-
tron has a 50% probability of tunneling out of the GaAs layer 
within about 100 ns.

ASSESS Even though the tunneling probability is very tiny, tunnel-
ing takes place very rapidly on a human time scale. An increasing 
number of semiconductor devices make practical use of this tun-
neling current. Note that no energy is lost in the tunneling process; 
“tunneling” is a metaphor, not a process that requires work. The 
electron emerges with 0.125 eV of kinetic energy.

CHALLENgE ExAMPLE 40.12  Tunneling in semiconductors
Quantum-mechanical tunneling can be important in semiconduc-
tors. Consider a 1.0-nm-thick layer of GaAs sandwiched between 
4.0-nm-thick layers of GaAlAs. This is the situation explored in 
Figure 40.16, where we learned that the electron’s potential en-
ergy is 0.300 eV lower in GaAs than in GaAlAs. An electron in 
the GaAs layer can tunnel through the GaAlAs to escape, but this 
doesn’t happen instantly. In quantum mechanics, we can’t predict 
exactly when tunneling will occur, only the probability of it hap-
pening. Estimate the time at which the probability of escape has 
reached 50%.

ModEL The electron is a particle in a finite potential well. The 
tunneling probability depends on the height and thickness of a po-
tential barrier.

vISuALIzE FIgurE 40.33 shows the potential well. An electron in a 
0.300-eV-deep, 1.0-nm-wide well is exactly the situation of Fig-
ure 40.16, so we know that the electron has a single quantum state 
with E1 = 0.125 eV. The wave function decreases exponentially 
with distance into the potential barriers, but a very tiny amplitude—
too small to see here—still exists at the far edge of the barrier.

SoLvE We can approach this problem by thinking of the electron 
as a particle bouncing back and forth between the walls of the po-
tential well. Each time it hits a wall, it has probability Ptunnel of tun-
neling and probability Preflect = 1 - Ptunnel of reflecting. The prob-
ability of tunneling is Ptunnel = e-2w/h. The penetration distance h 
depends on U0 - E, the “distance” from the energy level to the top 
of the barrier, which in this case is

 U0 - E = 0.300 eV - 0.125 eV = 0.175 eV = 2.8 * 10-20 J

Using this value, we can calculate the penetration distance to be

 h =
U22m(U0 - E)

= 0.465 nm

We then find the probability of tunneling through a 4.0-nm-wide 
barrier to be

 Ptunnel = e-2w/h = 3.4 * 10-8

It’s a very small probability, as expected. The probability of not 
tunneling, of reflecting back into the well, is then

 Preflect = 1 - Ptunnel = 0.999999966

FIgurE 40.33 The potential energy of an electron in a layer of 
GaAs sandwiched between layers of GaAlAs.
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S u M M A r y
The goal of Chapter 40 has been to understand and apply the essential ideas of quantum mechanics.

Quantum-mechanical models are characterized by the particle’s potential-energy function U(x).

•	 Wave-function solutions exist for only certain values of E. Thus energy is quantized.

•	 Photons are emitted or absorbed in quantum jumps.

Boundary conditions

•	 c(x) is a continuous function.

•	 c(x) S 0 as x S {�.

•	 c(x) = 0 in a region where it is 
physically impossible for the particle 
to be.

•	 c(x) is normalized.

Shapes of wave functions

•	 The wave function oscillates in the region between the 
classical turning points.

•	 State n has n antinodes.

•	 Node spacing and amplitude increase as kinetic 
energy K decreases.

•	 c(x) decays exponentially in a classically forbidden region.

The Schrödinger Equation (the law of psi)

d 2c

dx2 = -
2m

U2
3E - U(x)4c(x)

This equation determines the wave function c(x) and, through c(x), the probabilities of finding a particle of mass m with potential 
energy U(x).

general Principles

E

x

U(x)
�

Classically
forbidden
region

E3

E2

E1

n � 3

n � 2

n � 1

Quantum-mechanical tunneling

A wave function can penetrate into a classically  
forbidden region with

c(x) = cedgee
-(x-L)/h

where the penetration distance is

h =
U22m(U0 - E)

The probability of tunneling through a barrier of  
width w is

Ptunnel = e-2w/h

The correspondence principle 
says that the quantum world blends 
smoothly into the classical world 
for high quantum numbers. This is 
seen by comparing 0c(x) 0 2 to the 
classical probability density

Pclass =
2

Tv(x)

Pclass expresses the idea that a 
classical particle is more likely to be 
found where it is moving slowly.

Important Concepts

U0

E

L
0

U0

E

0
w

Particle in a rigid box:   En = n2 
h2

8mL2    n = 1, 2, 3, p

Quantum harmonic oscillator:   En = (n -
1
2) Uv   n = 1, 2, 3, p

Applications

Other applications were studied 
through numerical solution of 
the Schrödinger equation.
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Schrödinger equation
quantum-mechanical model
boundary conditions
zero-point motion
correspondence principle
potential well
classically forbidden regions

bound state
penetration distance, h
quantum-well laser
gamma rays
quantum harmonic oscillator
vibrational energy levels
covalent molecular bond

bonding molecular orbital
antibonding molecular orbital
quantum-mechanical tunneling
scanning tunneling microscope (STM)

Terms and Notation

C o N C E P T u A L  Q u E S T I o N S

 1. The correspondence principle says that the average behavior of 
a quantum system should begin to look like the Newtonian solu-
tion in the limit that the quantum number becomes very large. 
What is meant by “the average behavior” of a quantum system?

 2. A particle in a potential well is in the n = 5 quantum state. How 
many peaks are in the probability density P(x) = 0c(x) 0 2?

 3. What is the quantum number of the particle in FIgurE Q40.3? 
How can you tell?

 4. Rank in order, from largest to smallest, the penetration distances 
ha to hc of the wave functions corresponding to the three energy 
levels in FIgurE Q40.4.

 5. Consider a quantum harmonic oscillator.
 a. What happens to the spacing between the nodes of the wave 

function as 0 x 0  increases? Why?

 b. What happens to the heights of the antinodes of the wave 
function as 0 x 0  increases? Why?

 c. Sketch a reasonably accurate graph of the n = 8 wave func-
tion of a quantum harmonic oscillator.

 6. FIgurE Q40.6 shows two possible wave functions for an electron 
in a linear triatomic molecule. Which of these is a bonding or-
bital and which is an antibonding orbital? Explain how you can 
distinguish them.

 7. Four quantum particles, each with energy E, approach the 
potential-energy barriers seen in FIgurE Q40.7 from the left. Rank 
in order, from largest to smallest, the tunneling probabilities 
(Ptunnel)a to (Ptunnel)d.

E

FIgurE Q40.3 

10 eV

5 eV

0 eV
a

10 eV

5 eV

0 eV
b

16 eV

10 eV

0 eV
c

FIgurE Q40.4 

xx

ca(x) cb(x)

��� ���

FIgurE Q40.6 

E

w

1 eV

Barrier a

E

w

2 eV

Barrier b

E

0.5w

2 eV

Barrier d

E

2w

1 eV

Barrier c

FIgurE Q40.7 

E x E r C I S E S  A N d  P r o B L E M S

Problems labeled  integrate material from earlier chapters.

Exercises

Sections 40.3–40.4 A Particle in a Rigid Box

 1. || An electron in a rigid box absorbs light. The longest wavelength 
in the absorption spectrum is 600 nm. How long is the box?

 2. | The electrons in a rigid box emit photons of wavelength 
1484 nm during the 3 S 2 transition.

 a. What kind of photons are they—infrared, visible, or ultraviolet?
 b. How long is the box in which the electrons are confined?

 3. || FIgurE Ex40.3 shows the wave function of an electron in a rigid 
box. The electron energy is 6.0 eV. How long is the box?

 4. | FIgurE Ex40.4 shows the wave function of an electron in a rigid 
box. The electron energy is 12.0 eV. What is the energy of the 
electron’s ground state?

FIgurE Ex40.3 

x

c(x)

x

c(x)

FIgurE Ex40.4 

http://www.meetyourbrain.com/bookChapters.php?book=Physics-for-Scientists-and-Engineers-A-Strategic-Approach-with-Modern-Physics-3rd-Edition-Solutions&title=0
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Section 40.6 Finite Potential Wells

 5. | Show that the penetration distance h has units of m.
 6. | a.  Sketch graphs of the probability density 0c(x) 0 2 for the four 

states in the finite potential well of Figure 40.14a. Stack them 
vertically, similar to the Figure 40.14a graphs of c(x).

   b.  What is the probability that a particle in the n = 2 state of 
the finite potential well will be found at the center of the 
well? Explain.

   c.  Is your answer to part b consistent with what you know 
about waves? Explain.

 7. | A finite potential well has depth U0 = 2.00 eV. What is the 
penetration distance for an electron with energy (a) 0.50 eV,  
(b) 1.00 eV, and (c) 1.50 eV?

 8. || An electron in a finite potential well has a 1.0 nm penetration 
distance into the classically forbidden region. How far below U0 
is the electron’s energy?

 9. || The energy of an electron in a 2.00-eV-deep potential well is 
1.50 eV. At what distance into the classically forbidden region 
has the amplitude of the wave function decreased to 25% of its 
value at the edge of the potential well?

 10. | A helium atom is in a finite potential well. The atom’s energy 
is 1.0 eV below U0. What is the atom’s penetration distance into 
the classically forbidden region?

Section 40.7 Wave-Function Shapes

 11. | Sketch the n = 4 wave function for the potential energy 
shown in FIgurE Ex40.11.

 12. | Sketch the n = 8 wave function for the potential energy 
shown in FIgurE Ex40.12.

 13. | The graph in FIgurE Ex40.13 shows the potential-energy func-
tion U(x) of a particle. Solution of the Schrödinger equation 
finds that the n = 3 level has E3 = 0.5 eV and that the n = 6 
level has E6 = 2.0 eV.

 a. Redraw this figure and add to it the energy lines for the n = 3 
and n = 6 states.

 b. Sketch the n = 3 and n = 6 wave functions. Show them as 
oscillating about the appropriate energy line.

 14. | Sketch the n = 1 and n = 7 wave functions for the potential 
energy shown in FIgurE Ex40.14.

Section 40.8 The Quantum Harmonic Oscillator

 15. | An electron in a harmonic potential well absorbs a photon 
with a wavelength of 400 nm as it undergoes a 1 S 2 quantum 
jump. What wavelength is absorbed in a 1 S 3 quantum jump?

 16. | An electron is confined in a harmonic potential well that has a 
spring constant of 2.0 N/m.

 a. What are the first three energy levels of the electron?
 b. What wavelength photon is emitted if the electron undergoes 

a 3 S 1 quantum jump?
 17. | An electron is confined in a harmonic potential well that has a 

spring constant of 12.0 N/m. What is the longest wavelength of 
light that the electron can absorb?

 18. | An electron confined in a harmonic potential well emits a 
1200 nm photon as it undergoes a 3 S 2 quantum jump. What is 
the spring constant of the potential well?

 19. | Two adjacent energy levels of an electron in a harmonic po-
tential well are known to be 2.0 eV and 2.8 eV. What is the 
spring constant of the potential well?

Section 40.10 Quantum-Mechanical Tunneling

 20. || What is the probability that an electron will tunnel through a 
0.45 nm gap from a metal to a STM probe if the work function is 
4.0 eV?

 21. || An electron approaches a 1.0-nm-wide potential-energy bar-
rier of height 5.0 eV. What energy electron has a tunneling prob-
ability of (a) 10%, (b) 1.0%, and (c) 0.10%?

Problems

 22. || A 2.0@mm@diameter water droplet is moving with a speed of 
1.0 mm/s in a 20@mm@long box.

 a. Estimate the particle’s quantum number.
 b. Use the correspondence principle to determine whether quan-

tum mechanics is needed to understand the particle’s motion 
or if it is “safe” to use classical physics.

 23. || Suppose that c1(x) and c2(x) are both solutions to the 
Schrödinger equation for the same potential energy U(x). Prove 
that the superposition c(x) = Ac1(x) + Bc2(x) is also a solution 
to the Schrödinger equation.

 24. || Figure 40.27a modeled a hydrogen atom as a finite potential 
well with rectangular edges. A more realistic model of a hy-
drogen atom, although still a one-dimensional model, would 
be the electron + proton electrostatic potential energy in one 
dimension:

 U(x) = -  
e2

4pP0 0 x 0
 a. Draw a graph of U(x) versus x. Center your graph at x = 0.
 b. Despite the divergence at x = 0, the Schrödinger equation 

can be solved to find energy levels and wave functions for 
the electron in this potential. Draw a horizontal line across 
your graph of part a about one-third of the way from the bot-
tom to the top. Label this line E2, then, on this line, sketch a 
plausible graph of the n = 2 wave function.

 c. Redraw your graph of part a and add a horizontal line about 
two-thirds of the way from the bottom to the top. Label this 
line E3, then, on this line, sketch a plausible graph of the 
n = 3 wave function.

� �
U (eV)

2

1

0
0 1 2 3

x (nm)

FIgurE Ex40.13 

� �

E7

U(x)

E1 x

FIgurE Ex40.14 

� �

E4

U(x)

x
L0

FIgurE Ex40.11 

� �

E8

U(x)

x
L0

FIgurE Ex40.12 
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 25.	 ||  a.   Derive  an  expression  for  l2S1,  the  wavelength  of  light 
emitted by a particle in a rigid box during a quantum jump 
from n = 2 to n = 1.

      b.   In  what  length  rigid  box  will  an  electron  undergoing  a 
2 S 1 transition emit light with a wavelength of 694 nm? 
This is the wavelength of a ruby laser.

 26.	 |  Model an atom as an electron in a rigid box of length 0.100 nm, 
roughly twice the Bohr radius.

  a.  What are the four lowest energy levels of the electron?
  b.  Calculate all the wavelengths that would be seen in the emis-

sion spectrum of  this atom due  to quantum  jumps between 
these four energy levels. Give each wavelength a label lnSm 
to indicate the transition.

  c.  Are these wavelengths in the infrared, visible, or ultraviolet 
portion of the spectrum?

  d.  The stationary states of the Bohr hydrogen atom have nega-
tive energies. The stationary states of this model of the atom 
have positive energies. Is this a physically significant differ-
ence? Explain.

  e.  Compare this model of an atom to the Bohr hydrogen atom. 
In  what  ways  are  the  two  models  similar?  Other  than  the 
signs of the energy levels, in what ways are they different?

 27.	 ||  Show  that  the  normalization  constant  An  for  the  wave 
functions of a particle in a rigid box has the value given in Equa-
tion 40.26.

 28.	 ||  A particle confined in a rigid one-dimensional box of length 
10 fm has an energy level En = 32.9 MeV and an adjacent en-
ergy level En+1 = 51.4 MeV.

  a.  Determine the values of n and n + 1.
  b.  Draw  an  energy-level  diagram  showing  all  energy  levels 

from 1 through n + 1. Label each level and write the energy 
beside it.

  c.  Sketch the n + 1 wave function on the n + 1 energy level.
  d.  What is the wavelength of a photon emitted in the n + 1 S n

transition? Compare this to a typical visible-light wavelength.
  e.  What is the mass of the particle? Can you identify it?
 29.	 ||  Consider a particle in a rigid box of length L. For each of the 

states n = 1, n = 2, and n = 3:
  a.  Sketch graphs of  0c(x) 0 2. Label the points x = 0 and x = L.
  b.  Where, in terms of L, are the positions at which the particle is 

most likely to be found?
  c.  Where, in terms of L, are the positions at which the particle is 

least likely to be found?
  d.  Determine,  by  examining  your  0c(x) 0 2  graphs,  if  the  prob-

ability of finding the particle in the left one-third of the box is 
less than, equal to, or greater than 13. Explain your reasoning.

  e.  Calculate the probability that the particle will be found in the 
left one-third of the box.

 30.	 |||  For a particle in a finite potential well of width L and depth 
U0, what is the ratio of the probability Prob(in dx at x = L + h) 
to the probability Prob(in dx at x = L)?

 31.	 ||  For the quantum-well laser of Figure 40.16, estimate the prob-
ability that an electron will be found within one of the GaAlAs 
layers rather than in the GaAs layer. Explain your reasoning.

 32.	 |  Use  the  data  from  Figure  40.24  to  calculate  the  first  three 
vibrational  energy  levels  of  a  C = O  carbon-oxygen  double 
bond.

 33.	 |  Verify  that  the  n = 1  wave  function  c1(x)  of  the  quantum 
harmonic oscillator really is a solution of the Schrödinger equa-
tion. That is, show that the right and left sides of the Schrödinger 
equation are equal if you use the c1(x) wave function.

 34.	 ||  Show  that  the  constant  b  used  in  the  quantum-harmonic-
oscillator wave  functions  (a) has units of  length and (b)  is  the 
classical turning point of an oscillator in the n = 1 ground state.

 35.	 ||  a.   Determine  the  normalization  constant  A1  for  the  n = 1 
ground-state wave  function of  the quantum harmonic os-
cillator. Your answer will be in terms of b.

      b.   Write an expression for the probability that a quantum har-
monic oscillator in its n = 1 ground state will be found in 
the classically forbidden region.

      c.   (Optional) Use a numerical integration program to evaluate 
your probability expression of part b.

    Hint:  It  helps  to  simplify  the  integral  by  making  a  change  of 
variables to u = x/b.

 36.	 ||  a.   Derive an expression  for  the classical probability density 
Pclass(x) for a simple harmonic oscillator with amplitude A.

      b.   Graph your expression between x = -A and x = +A.
      c.   Interpret your graph. Why is it shaped as it is?
 37.	 ||  a.   Derive  an  expression  for  the  classical  probability  density 

Pclass(y)  for  a  ball  that  bounces  between  the  ground  and 
height h. The collisions with the ground are perfectly elastic.

      b.   Graph your expression between y = 0 and y = h.
      c.   Interpret your graph. Why is it shaped as it is?
 38.	 ||  Figure 40.17 showed that a typical nuclear radius is 4.0 fm. As 

you’ll learn in Chapter 42, a typical energy of a neutron bound 
inside the nuclear potential well is En = -20 MeV. To find out 
how “fuzzy”  the  edge of  the nucleus  is, what  is  the neutron’s 
penetration  distance  into  the  classically  forbidden  region  as  a 
fraction of the nuclear radius?

 39.	 ||  Even  the  smoothest mirror  finishes are “rough” when viewed 
at a scale of 100 nm. When two very smooth metals are placed in 
contact with each other, the actual distance between the surfaces 
varies from 0 nm at a few points of real contact to �100 nm. The 
average distance between the surfaces is �50 nm. The work func-
tion of aluminum is 4.3 eV. What is the probability that an electron 
will tunnel between two pieces of aluminum that are 50 nm apart? 
Give your answer as a power of 10 rather than a power of e.

 40.	 ||  A proton’s energy is 1.0 MeV below the top of a 10-fm-wide 
energy barrier. What is the probability that the proton will tunnel 
through the barrier?

Challenge	Problems

 41.  A typical electron in a piece of metallic sodium has energy  -E0 
compared to a free electron, where E0 is the 2.7 eV work func-
tion of sodium.

  a.  At what distance beyond the surface of the metal is the elec-
tron’s probability density 10% of its value at the surface?

  b.  How does this distance compare to the size of an atom?
 42.  In a nuclear physics experiment, a proton is fired toward a Z = 13 

nucleus  with  the  diameter  and  neutron  energy  levels  shown  in 
Figure 40.17. The nucleus, which was initially in its ground state, 
subsequently emits a gamma ray with wavelength 1.73 * 10-4 nm. 
What was the minimum initial speed of the proton?

    Hint: Don’t neglect the proton-nucleus collision.
 43.  A particle of mass m has the wave function c(x) =  Ax exp(-x2/a2) 

when it is in an allowed energy level with E = 0.
  a.  Draw a graph of c(x) versus x.
  b.  At what value or values of x is the particle most likely to be 

found?
  c.  Find and graph the potential-energy function U(x).



	44.	 In	most	metals,	the	atomic	ions	form	a	regular	arrangement	called	
a	crystal lattice.	The	conduction	electrons	in	the	sea	of	electrons	
move	 through	 this	 lattice.	 Figure CP40.44	 is	 a	 one-dimensional	
model	of	a	crystal	lattice.	The	ions	have	mass	m,	charge	e,	and	
an	equilibrium	separation	b.

	 a.	 Suppose	the	middle	charge	is	displaced	a	very	small	distance	
(x V b)	from	its	equilibrium	position	while	the	outer	charges	
remain	fixed.	Show	that	the	net	electric	force	on	the	middle	
charge	is	given	approximately	by

	 F = - 	
e2

b3pP0

	x

	 	 In	other	words,	the	charge	experiences	a	linear	restoring	force.
	 b.	 Suppose	this	crystal	consists	of	aluminum	ions	with	an	equi-

librium	spacing	of	0.30	nm.	What	are	the	energies	of	the	four	
lowest	vibrational	states	of	these	ions?

	 c.	 What	wavelength	photons	are	emitted	during	quantum	jumps	
between	 adjacent	 energy	 levels?	 Is	 this	 wavelength	 in	 the	
infrared,	visible,	or	ultraviolet	portion	of	the	spectrum?

	45.	 a.	 	What	 is	 the	probability	 that	an	electron	will	 tunnel	 through	
a	0.50	nm	air	gap	from	a	metal	to	a	STM	probe	if	the	work	
function	is	4.0	eV?

	 b.	 	The	probe	passes	over	 an	 atom	 that	 is	 0.050	nm	“tall.”	By	
what	factor	does	the	tunneling	current	increase?

	 c.	 	If	 a	 10%	 current	 change	 is	 reliably	 detectable,	 what	 is	 the	
smallest	height	change	the	STM	can	detect?

	46.	 Tennis	balls	traveling	faster	than	100	mph	routinely	bounce	off	
tennis	rackets.	At	some	sufficiently	high	speed,	however,	the	ball	
will	break	 through	 the	strings	and	keep	going.	The	 racket	 is	a	
potential-energy	barrier	whose	height	is	the	energy	of	the	slow-
est	string-breaking	ball.	Suppose	that	a	100	g	tennis	ball	traveling	
at	200	mph	is	just	sufficient	to	break	the	2.0-mm-thick	strings.	
Estimate	the	probability	that	a	120	mph	ball	will	tunnel	through	
the	racket	without	breaking	the	strings.	Give	your	answer	as	a	
power	of	10	rather	than	a	power	of	e.

StoP to think AnSwSerS

Stop to Think 40.1:	 va � vb + vc.	The	de	Broglie	wavelength	 is	
l = h/mv,	 so	 slower	 particles	 have	 longer	 wavelengths.	 The	 wave	
amplitude	is	not	relevant.

Stop to Think 40.2:	c.	The	n = 2	state	has	a	node	in	the	middle	of	the	
box.	The	antinodes	are	centered	in	the	left	and	right	halves	of	the	box.

Stop to Think 40.3:	n � 4.	There	are	four	antinodes	and	three	nodes	
(excluding	the	ends).

Stop to Think 40.4:	 d.	 The	 wave	 function	 reaches	 zero	 abruptly	
on	 the	right,	 indicating	an	 infinitely	high	potential-energy	wall.	The	

exponential	decay	on	the	left	shows	that	the	left	wall	of	the	potential	
energy	is	not	infinitely	high.	The	node	spacing	and	the	amplitude	in-
crease	steadily	in	going	from	right	to	left,	indicating	a	steadily	decreas-
ing	kinetic	energy	and	thus	a	steadily	increasing	potential	energy.

Stop to Think 40.5:	c.	E = (n -
1
2)Uv,	so	 5

2	Uv	 is	 the	energy	of	 the	
n = 3	state.	An	n = 3	state	has	3	antinodes.

Stop to Think 40.6:	b.	The	probability	of	tunneling	through	the	bar-
rier	increases	as	the	difference	between	E	and	U0	decreases.	If	the	tun-
neling	probability	increases,	the	reflection	probability	must	decrease.

� � �

b bFigure CP40.44 
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Atomic Physics41

Lasers are one of the most 
important applications of the 
quantum-mechanical properties 
of atoms and light.

 Looking Ahead The goal of Chapter 41 is to understand the structure and properties of atoms.

Electron Spin
In addition to having an inherent mass 
and an inherent charge, the electron has 
an inherent magnetic moment called 
the electron spin. As a result, a fourth 
quantum number is needed to specify a 
quantum state completely

The Hydrogen Atom
You’ll learn to interpret the hydrogen 
atom as a three-dimensional wave func-
tion giving the probability of locating 
the electron in a region of space.

Atomic Spectra
You’ll learn to interpret spectra in terms 
of excitation followed by emission. You’ll 
also learn that emission doesn’t occur 
instantly; instead, the excited state has a 
lifetime of typically a few nanoseconds.

■	 Excitation is by the absorption of a 
photon or by collision with another 
particle.

■	 Emission obeys selection rules that 
allow some quantum jumps but not 
others.

Atomic Models
Our understanding of the atom has 
evolved as the experimental evidence 
has grown. You should review:
■	 The atom as an indivisible object.
■	 Thomson’s plum-pudding model.
■	 Rutherford’s solar-system model.
■	 Bohr’s semi-classical model.

You will learn how Schrödinger’s 
quantum-mechanical model of the atom 
finally succeeds at explaining all the 
experimental evidence about atoms.

Lasers
You’ll learn that lasers work because 
of the stimulated emission of light, a 
process in which an incoming photon 
causes an excited atom to emit an identi-
cal photon.

 Looking Back
Sections 39.3–39.4 Wave functions

11 12

3 4

1

Na Mg

Li Be

H

In some lasers, 
an intense burst 
of light from a 
flashlamp creates 
a population 
inversion with 
more atoms in an 
excited state than 
in the ground state.

Excitation

Emission

We’ll need three 
quan tum numbers 
to describe the state 
of the electron. The 
wave function is often 
pictured graphically as 
an electron cloud.

z

y
x

Multielectron Atoms
The quantum-mechanical model of the 
atom is able to explain the properties 
of multielectron atoms, including their 
energy levels, ionization energies, and 
spectra.

0 eV

3s
3p

2p

3d

2s

1s

You’ll use atomic 
energy-level 
diagrams like this 
to understand 
which states are 
occupied and 
how spectra are 
produced.

 Looking Back
Sections 38.5–38.7 The Bohr model

You’ll learn how the 
Pauli exclusion 
principle, which says 
that only one electron 
can occupy each 
quantum state, is the 
key to understanding 
the periodic table of 
the elements.
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41.1  The Hydrogen Atom: Angular 
Momentum and Energy

Bohr’s concept of stationary states provided a means of understanding both the sta-
bility of atoms and the quantum jumps that lead to discrete spectra. Yet, as we have 
seen, the Bohr model was not successful for any neutral atom other than hydrogen. 
Is Schrödinger’s quantum mechanics better at explaining atomic structure than other 
models? The answer, as you can probably anticipate, is a decisive yes. This chapter is 
an overview of how quantum mechanics finally provides us with an understanding of 
atomic structure and atomic properties.

Let’s begin with a quantum-mechanical model of the hydrogen atom. FigurE 41.1  
shows an electron at distance r from a proton. The proton is much more massive than 
the electron, so we will assume that the proton remains at rest at the origin.

As you learned in Chapter 40, the problem-solving procedure in quantum mechan-
ics consists of two basic steps:

 1. Specify a potential-energy function.
 2. Solve the Schrödinger equation to find the wave functions, allowed energy 

levels, and other quantum properties.

The first step is easy. The proton and electron are charged particles with q = {e, so 
the potential energy of a hydrogen atom as a function of the electron distance r is

 U(r) = -  
1

4pP0
 
e2

r
 (41.1)

The difficulty arises with the second step. The Schrödinger equation of Chapter 40 
was for one-dimensional problems. Atoms are three-dimensional, and the three-
dimensional Schrödinger equation turns out to be a partial differential equation whose 
solution is outside the scope of this textbook. Consequently, we’ll present results without 
derivation or proof. The good news is that you have learned enough quantum mechanics 
to interpret and use the results.

Stationary States of Hydrogen
In one dimension, energy quantization appeared as a consequence of boundary condi-
tions on the wave function. That is, only for certain discrete energies, characterized by 
the quantum number n, did solutions to the Schrödinger equation satisfy the bound-
ary conditions. In three dimensions, the wave function must satisfy three different 
boundary conditions. Consequently, solutions to the three-dimensional Schrödinger 
equation have three quantum numbers and three quantized parameters.

Solutions to the Schrödinger equation for the hydrogen atom potential energy exist 
only if three conditions are satisfied:

 1. The atom’s energy must be one of the values

  En = -  
1

n2 1 1

4pP0
 

e2

2aB
2 = -  

13.60 eV

n2   n = 1, 2, 3, p  (41.2)

  where aB = 4pP0U2/me2 = 0.0529 nm is the Bohr radius. The integer n is called 
the principal quantum number. These energies are the same as those predicted 
by the Bohr model of the hydrogen atom.

 2. The orbital angular momentum L of the electron’s orbit must be one of the values

 L = 2l(l + 1) U  l = 0, 1, 2, 3, p , n - 1 (41.3)

  The integer l is called the orbital quantum number.

FigurE 41.1 The electron in a hydrogen 
atom is distance r from the proton.

�
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Electron
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 3. The z-component of the angular momentum Lz must be one of the values

 Lz = m U  m = - l, - l + 1, p , 0, p , l - 1, l (41.4)

  The integer m is called the magnetic quantum number.

In other words, each stationary state of the hydrogen atom is identified by a triplet 
of quantum numbers (n, l, m). Each quantum number is associated with a physical 
property of the atom.

NoTE  The energy of the stationary state depends only on the principal quantum 
number n, not on l or m. 

l = 0, the only possible value for the magnetic quantum number m 
is m = 0. If l = 1, then the atom could have m = -1, m = 0, or 
m = +1. Thus the possible quantum numbers are

n l m

2 0 0

2 1 1

2 1 0

2 1 -1

These four states all have the same energy.

ExAMPLE 41.1  Listing quantum numbers
List all possible states of a hydrogen atom that have energy 
E = -3.40 eV.

SoLvE Energy depends only on the principal quantum number n. 
States with E = -3.40 eV have

 n = B -13.60 eV

-3.40 eV
= 2

An atom with principal quantum number n = 2 could have either 
l = 0 or l = 1, but l Ú 2 is excluded by the rule l … n - 1. If 

Hydrogen turns out to be unique. For all other elements, the allowed energies 
depend on both n and l (but not m). Consequently, it is useful to label the stationary 
states by their values of n and l. The lowercase letters shown in Table 41.1 are custom-
arily used to represent the various values of quantum number l. These symbols come 
from spectroscopic notation used in prequantum-mechanics days, when some spectral 
lines were classified as sharp, others as principal, and so on.

Using these symbols, we call the ground state of the hydrogen atom, with n = 1 
and l = 0, the 1s state. The 3d state has n = 3, l = 2. In Example 41.1, we found one 
2s state (with l = 0) and three 2p states (with l = 1), all with the same energy.

Angular Momentum is Quantized
A planet orbiting the sun has two different angular momenta: orbital angular momentum 
due to its orbit around the sun (a 365-day period for the earth) and rotational angular 
momentum as it rotates on its axis (a 24-hour period for the earth). We introduced angular 
momentum in Chapter 12, and a brief review of Section 12.11 is highly recommended.

A classical model of the hydrogen atom would be similar. Although a circular orbit is 
possible, it’s more likely that the electron would follow an elliptical orbit with the proton 
at one focus of the ellipse. Further, the orbit need not lie in the xy-plane. FigurE 41.2 shows 
a classical orbit tilted at angle u  below the xy-plane. The electron, like a planet, has orbital 
angular momentum, and Figure 41.2 reminds you that the orbital angular momentum 
vector L

u

 is perpendicular to the plane of the orbit. (The electron also has a quantum 
version of rotational angular momentum, called spin, that we’ll introduce in Section 41.3.) 
The orbital angular momentum vector has component Lz = L cos u  along the z-axis.

Classically, L and Lz can have any values. Not so in quantum mechanics. Quantum 
conditions 2 and 3 tell us that the electron’s orbital angular momentum is quantized. 
The magnitude of the orbital angular momentum must be one of the discrete values

 L = 2l(l + 1) U = 0, 22 U, 26 U, 212 U, p

where l is an integer. Simultaneously, the z-component Lz must have one of the values 
Lz = mU, where m is an integer between - l and l. No other values of L or Lz allow the 
wave function to satisfy the boundary conditions.

TABLE 41.1 Symbols 
used to represent 
quantum number l

l Symbol

0 s

1 p

2 d

3 f

FigurE 41.2 The angular momentum of 
an elliptical orbit.

z

y

x
Nucleus u

u
LLz � L  cos u
r

Electron Classical
elliptical
orbit

The angular momentum
vector L is tilted from the
z-axis by the same angle u
that the orbital plane is tilted
below the xy-plane.

r
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The quantization of angular momentum places restrictions on the shape and orien-
tation of the electron’s orbit. To see this, consider a hydrogen atom with orbital quan-
tum number l = 2. In this state, the magnitude of the electron’s angular momentum 
must be L = 16 U = 2.45U. Furthermore, the angular momentum vector must point 
in a direction such that Lz = mU, where m is one of only five integers in the range 
-2 … m … 2.

The combination of these two requirements allows L
u

 to point only in certain directions 
in space, as shown in FigurE 41.3. This is a rather unusual figure that requires a little thought 
to understand. Suppose m = 0 and thus Lz = 0. With no z-component, the angular mo-
mentum vector L

u

 must lie somewhere in the xy-plane. Furthermore, because the length of 
L
u

 is constrained to be 2.45U, the tip of L
u

 must lie somewhere on the circle labeled m = 0. 
These values of L

u

 correspond to classical orbits tipped into a vertical plane.
Similarly, m = 2 requires L

u

 to lie along the surface of the cone whose height is 2U 
and whose side has length 2.45U. These values of L

u

 correspond to classical orbits tilted 
slightly out of the xy-plane. Notice that L

u

 cannot point directly along the z-axis. The 
maximum possible value of Lz, when m = l, is (Lz)max = lU. But l 6 1l(l + 1), so 
(Lz)max 6 L. The angular momentum vector must have either an x- or a y-component 
(or both). In other words, the corresponding classical orbit cannot lie in the xy-plane.

An angular momentum vector L
u

 tilted at angle u from the z-axis corresponds to 
an orbit tilted at angle u out of the xy-plane. The quantization of angular momentum 
restricts the orbital planes to only a few discrete angles. For quantum state (n, l, m), the 
angle of the angular momentum vector is

 ulm = cos-11Lz

L 2 = cos-11 mU2l(l + 1)U
2 = cos-11 m2l(l + 1)

2  (41.5)

Angles u22, u21, and u20 are labeled in Figure 41.3. Orbital planes at other angles are not 
allowed because they don’t satisfy the quantization conditions for angular momentum.

FigurE 41.3 The five possible orientations 
of the angular momentum vector for 
l = 2. The angular momentum vectors all 
have length L = 16U = 2.45U.

u20

If m � 2, L lies somewhere on the
surface of this cone with Lz � 2U.

Lz

2U

�2U

U

�U

0
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m � 0

m � �1

m � �2

L
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r

L
r

u22
u21

m � 2

m � 1

L
r

If m � 0, L lies somewhere on 
this disk in the xy-plane. The 
corresponding classical electron 
orbit would be in a vertical plane.

 u21 = cos-1 1 126
2 = 65.9�

ASSESS This quantum state corresponds to a classical orbit tilted 
65.9� away from the xy-plane.

ExAMPLE 41.2  The angle of the angular momentum vector

What is the angle between L
u

 and the z-axis for a hydrogen atom in 
the stationary state (n, l, m) = (4, 2, 1)?

SoLvE The angle u21 is labeled in Figure 41.3. The state (4, 2, 1) 
has l = 2 and m = 1, thus

NoTE  The ground state of hydrogen, with l = 0, has zero angular momentum. 
A classical particle cannot orbit unless it has angular momentum, but apparently a 
quantum particle does not have this requirement. 

Energy Levels of the Hydrogen Atom
The energy of the hydrogen atom is quantized. Only those energies given by Equa-
tion 41.2 allow the wave function to satisfy the boundary conditions. The allowed 
energies of hydrogen depend only on the principal quantum number n, but for other 
atoms the energies will depend on both n and l. In anticipation of using both quantum 
numbers, FigurE 41.4 is an energy-level diagram for the hydrogen atom in which the 
rows are labeled by n and the columns by l. The left column contains all of the l = 0 s 
states, the next column is the l = 1 p states, and so on.

Because the quantum condition of Equation 41.3 requires n 7 l, the s states begin 
with n = 1, the p states begin with n = 2, and the d states with n = 3. That is, the 
lowest-energy d state is 3d because states with n = 1 or n = 2 cannot have l = 2. 
For hydrogen, where the energy levels do not depend on l, the energy-level diagram 
shows that the 3s, 3p, and 3d states have equal energy. Figure 41.4 shows only the first 
few energy levels for each value of l, but there really are an infinite number of levels, 
as n S �, crowding together beneath E = 0. The dashed line at E = 0 is the atom’s 
ionization limit, the energy of a hydrogen atom in which the electron has been moved 
infinitely far away to form an H+ ion.

FigurE 41.4 Energy-level diagram for the 
hydrogen atom.

Quantum number l

Symbol

E � 0 eV
Ionization limit

�0.85 eV

�1.51 eV

�3.40 eV

�13.60 eV
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1
Ground state

n

0 1 2 3

s p d f

4s 4p 4d 4f

3s 3p 3d

2s 2p

1s
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The lowest energy state, the 1s state with E1 = -13.60 eV, is the ground state of 
hydrogen. The value 0E1 0 = 13.60 eV is the ionization energy, the minimum energy 
that would be needed to form a hydrogen ion by removing the electron from the ground 
state. All of the states with n 7 1 (i.e., the states with energy higher than the ground 
state) are excited states.

Stop to think 41.1 
 What are the quantum numbers n and l for a hydrogen atom with 

E = -(13.60/9) eV and L = 12 U?

41.2  The Hydrogen Atom: Wave Functions 
and Probabilities

You learned in Chapter 40 that the probability of finding a particle in a small interval 
of width dx at the position x is given by

 Prob(in dx at x) = 0c(x) 0 2 dx = P(x) dx

where P(x) = 0c(x) 0 2 is the probability density. This interpretation of 0c(x) 0 2 as a 
probability density lies at the heart of quantum mechanics. However, P(x) was for a 
one-dimensional wave function.

For a three-dimensional atom, the wave function is c(x, y, z), a function of three vari-
ables. We now want to consider the probability of finding a particle in a small volume of 
space dV  at the position described by the three coordinates (x, y, z). This probability is

 Prob(in dV at x, y, z) = 0c(x, y, z) 0 2 dV  (41.6)

We can still interpret the square of the wave function as a probability density.
In one-dimensional quantum mechanics we could simply graph P(x) versus x. Portray-

ing the probability density of a three-dimensional wave function is more of a challenge. 
One way to do so, shown in FigurE 41.5, is to use denser shading to indicate regions of larger 
probability density. That is, the amplitude of c is larger, and the electron is more likely 
to be found in regions where the shading is darker. These figures show the probability 
densities of the 1s, 2s, and 2p states of hydrogen. As you can see, the probability density in 
three dimensions creates what is often called an electron cloud around the nucleus.

The red color of this nebula is due to 
the emission of light from hydrogen 
atoms. The atoms are excited by intense 
ultraviolet light from the star in the center. 
They then emit red light (l = 656 nm) in a 
3 S 2 transition, part of the Balmer series 
of spectral lines emitted by hydrogen.

FigurE 41.5 The probability densities of the electron in the 1s, 2s, and 2p states of 
hydrogen.
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An electron in the 1s
state is most likely to
be found at the origin.

An electron in a 2s state is
likely to be found either at the
origin or in a surrounding shell.

The p electrons are more likely to be
found in some directions than in others.

1s
m � 0

2s
m � 0

2p
m � 0

2p
m � �1

These figures contain a lot of information. For example, notice how the p electrons 
have directional properties. These directional properties allow p electrons to “reach 
out” toward nearby atoms, forming molecular bonds. The quantum mechanics of 
bonding goes beyond what we can study in this text, but the electron-cloud pictures of 
the p electrons begin to suggest how bonds could form.
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radial Wave Functions
In practice, the probability of finding the electron at a certain point in space is often 
less useful than the probability of finding the electron at a certain distance from the 
nucleus. That is, what is the probability that the electron is to be found within the small 
range of distances dr at the distance r?

It turns out that the solutions to the three-dimensional Schrödinger equation, the 
wave functions c(x, y, z), can be written in a form that focuses on the electron’s 
radial distance r from the proton. The portion of the wave function that depends 
only on r is called the radial wave function. These functions, which depend on 
the quantum numbers n and l, are designated Rnl(r). The first three radial wave 
functions are

  R1s(r) =
12paB 

3
  e-r/aB

  R2s(r) =
128paB 

3
 11 -

r

2aB
2e-r/2aB (41.7)

  R2p(r) =
1224paB 

3
 1 r

2aB
2e-r/2aB

where aB is the Bohr radius.
The radial wave functions may seem mysterious, because we haven’t shown where 

they come from, but they are essentially the same as the one-dimensional wave func-
tions c(x) you learned to work with in Chapter 40. In fact, these radial wave functions 
are mathematically similar to the one-dimensional wave functions of the simple har-
monic oscillator. One important difference, however, is that r ranges from 0 to �. For 
one-dimensional wave functions, x ranged from - � to �.

NoTE  Don’t be confused by the notation. R is not a radius but, like c, is the sym-
bol for a wave function, the radial wave function. It is a function of the distance r 
from the proton. 

FigurE 41.6 shows the radial wave functions for the 1s and 2s states. Notice that the 
radial wave function is nonzero at r = 0, the position of the nucleus. This is surprising, 
but it is consistent with our observation in Figure 41.5 that the 1s and 2s electrons have 
a strong probability of being found at the origin.

Our purpose for introducing the radial wave functions was to determine the prob-
ability of finding the electron a certain distance from the nucleus. FigurE 41.7 shows a 
shell of radius r and thickness dr centered on the nucleus. The probability of finding 
the electron at distance r from the nucleus is equivalent to the probability that the elec-
tron is located somewhere within this shell. The volume of a thin shell is its surface 
area multiplied by its thickness dr. The surface area of a sphere is 4pr2, so the volume 
of this thin shell is

 dV = 4pr2 dr

Just as 0c(x) 0 2 is the probability in one dimension of finding a particle within an 
interval dx, the probability of locating the electron within this spherical shell can be 
written in terms of the radial wave function Rnl(r) as

 Prob(in dr at r) = 0Rnl(r) 0 2 dV = 4pr2 0Rnl(r) 0 2 dr (41.8)

If we define the radial probability density Pr (r) for state nl as

 Pr (r) = 4pr2 0Rnl(r) 0 2 (41.9)

then, exactly analogous to the one-dimensional quantum mechanics of Chapter 40, we 
can write the probability of finding the electron within a small interval dr at distance r as

 Prob(in dr at r) = Pr (r)dr (41.10)

FigurE 41.6 The 1s and 2s radial wave 
functions of hydrogen.
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The radial probability density tells us the relative likelihood of finding the electron 
at distance r from the nucleus. The volume factor 4pr2 reflects the fact that more 
space is available in a shell of larger r, and this additional space increases the prob-
ability of finding the electron at that distance.

The probability of finding the electron between rmin and rmax is

 Prob(rmin … r … rmax) = 3
rmax

rmin

Pr (r) dr = 4p3
rmax

rmin

r2 0Rnl(r) 0 2 dr (41.11)

The electron must be somewhere between r = 0 and r = �, so the integral of Pr (r) 
between 0 and � must equal 1. This normalization condition was used to determine 
the constants in front of the radial wave functions of Equations 41.7.

FigurE 41.8 shows the radial probability densities for the n = 1, 2, and 3 states of the 
hydrogen atom. You can see that the 1s, 2p, and 3d states, with maxima at aB, 4aB, and 
9aB, respectively, are following the pattern rpeak = n2aB of the radii of the orbits in the 
Bohr hydrogen atom. There we simply bent a one-dimensional de Broglie wave into a 
circle of that radius. Now we have a three-dimensional wave function for which the elec-
tron is most likely to be this distance from the nucleus, although it could be found at other 
values of r. The physical situation is very different in quantum mechanics, but it is good 
to see that various aspects of the Bohr model of the hydrogen atom can be reproduced.

But why is it the 3d state that agrees with the Bohr atom rather than 3s or 3p? 
All states with the same value of n form a collection of “orbits” having the same 
energy. In FigurE 41.9, the state with l = n - 1 has the largest angular momentum of 
the group. Consequently, the maximum-l state corresponds to a circular classical orbit 
and matches the circular orbits of the Bohr atom. Notice that the radial probability 
densities for the 2p and 3d states have a single peak, corresponding to a classical orbit 
at a constant distance.

States with smaller l correspond to elliptical orbits. You can see in Figure 41.8 that 
the radial probability density of a 3s electron has a peak close to the nucleus. The 3s 
electron also has a good chance of being found farther from the nucleus than a 3d elec-
tron, suggesting an orbit that alternately swings in near the nucleus, then moves out past 
the circular orbit with the same energy. This distinction between circular and elliptical 
orbits will be important when we discuss the energy levels in multielectron atoms.

NoTE  In quantum mechanics, nothing is really orbiting. However, the probability 
densities for the electron to be, or not to be, any given distance from the nucleus 
mimic certain aspects of classical orbits and provide a useful analogy. 

You can see in Figure 41.8 that the most likely distance from the nucleus of an n = 1 
electron is approximately aB. The distance of an n = 2 electron is most likely to be be-
tween about 3aB and 7aB. An n = 3 electron is most likely to be found between about 8aB 
and 15aB. In other words, the radial probability densities give the clear impression that 
each value of n has a fairly well-defined range of radii where the electron is most likely to 
be found. This is the basis of the shell model of the atom that is used in chemistry.

However, there’s one significant puzzle. In Figure 41.5, the fuzzy sphere represent-
ing the 1s ground state is densest at the center, where the electron is most likely to 
be found. This maximum density at r = 0 agrees with the 1s radial wave function of 
Figure 41.6, which is a maximum at r = 0, but it seems to be in sharp disagreement 
with the 1s graph of Figure 41.8, which is zero at the nucleus and peaks at r = aB.

To resolve this puzzle, we must distinguish between the probability density 
0c(x, y, z) 0 2 and the radial probability density Pr (r). The 1s wave function, and thus 
the 1s probability density, really does peak at the nucleus. But 0c(x, y, z) 0 2 is the prob-
ability of being in a small volume dV, such as a small box with sides dx, dy, and dz, 
whereas Pr (r) is the probability of being in a spherical shell of thickness dr. Compared 
to r = 0, the probability density 0c(x, y, z) 0 2 is smaller at any one point having r = aB. 
But the volume of all points with r � aB (i.e., the volume of the spherical shell at 
r = aB) is so large that the radial probability density Pr peaks at this distance.

FigurE 41.8 The radial probability 
densities for n = 1, 2, and 3.
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To use a mass analogy, consider a fuzzy ball that is densest at the center. Even 
though the density away from the center has decreased, a spherical shell of modest 
radius r can have more total mass than a small-radius spherical shell of the same thick-
ness simply because it has so much more volume.

Maximum probability occurs at the point where the first de-
rivative of Pr (r) is zero:

  
dPr

dr
= C(4r3)(e-r/aB) + C(r4)1 -1

aB
 e-r/aB2

  = Cr314 -
r

aB
2e-r/aB = 0

This expression is zero only if r = 4aB, so Pr (r) is maximum at 
r = 4aB. An electron in the 2p state is most likely to be found at 
this distance from the nucleus.

ExAMPLE 41.3  Maximum probability
Show that an electron in the 2p state is most likely to be found at 
r = 4aB.

SoLvE We can use the 2p radial wave function from Equations 41.7 
to write the radial probability density

  Pr (r) = 4pr2 0R2p(r) 0 2 = 4pr2 c 1224paB 

3
 1 r

2aB
2e-r/2aB d

2

  = Cr4e-r/aB

where C = (24aB 

5)-1 is a constant. This expression for Pr (r) was 
graphed in Figure 41.8.

Stop to think 41.2 
 How many maxima will there be in a graph of the radial probabil-

ity density for the 4s state of hydrogen?

41.3 The Electron’s Spin
Recall, from Chapter 32, that an orbiting electron generates a microscopic magnetic 
moment m

u
. FigurE 41.10 reminds you that a magnetic moment, like a compass needle, 

has north and south poles. Consequently, a magnetic moment in an external magnetic 
field experiences forces and torques. In the early 1920s, the German physicists Otto 
Stern and Walter Gerlach developed a technique to measure the magnetic moments of 
atoms. Their apparatus, shown in FigurE 41.11, prepares an atomic beam by evaporating 
atoms out of a hole in an “oven.” These atoms, traveling in a vacuum, pass through 
a nonuniform magnetic field. Reducing the size of the upper pole tip makes the field 
stronger toward the top of the magnet, weaker toward the bottom.

FigurE 41.10 An orbiting electron 
generates a magnetic moment.
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is a current loop.

A current loop generates a magnetic moment
with north and south magnetic poles.
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A magnetic moment experiences a net force in the nonuniform magnetic field be-
cause the field exerts forces of different strengths on the moment’s north and south 
poles. If we define a z-axis to point upward, then an atom whose magnetic moment 
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vector m
u

 is tilted upward (mz 7 0) has an upward force on its north pole that is larger 
than the downward force on its south pole. As the figure shows, this atom is deflected 
upward as it passes through the magnet. A downward-tilted magnetic moment 
(mz 6 0) experiences a net downward force and is deflected downward. A magnetic 
moment perpendicular to the field (mz = 0) feels no net force and passes through the 
magnet without deflection. In other words, an atom’s deflection as it passes through 
the magnet is proportional to mz, the z-component of its magnetic moment.

It’s not hard to show, although we will omit the proof, that an atom’s magnetic 
moment is proportional to the electron’s orbital angular momentum: m

u
� L

u

. Because 
the deflection of an atom depends on mz, measuring the deflections in a nonuniform 
field provides information about the Lz values of the atoms in the atomic beam. The 
measurements are made by allowing the atoms to stick on a collector plate at the end of 
the apparatus. After the experiment has been run for several hours, the collector plate 
is removed and examined to learn how the atoms were deflected.

With the magnet off, the atoms pass through without deflection and land along a 
narrow line at the center, as shown in FigurE 41.12a. If the orbiting electrons are classi-
cal particles, they should have a continuous range of angular momenta. Turning on the 
magnet should produce a continuous range of vertical deflections, and the distribution 
of atoms collected on the plate should look like FigurE 41.12b. But if angular momen-
tum is quantized, as Bohr had suggested several years earlier, the atoms should be 
deflected to discrete positions on the collector plate.

For example, an atom with l = 1 has three distinct values of Lz corresponding to 
quantum numbers m = -1, 0, and 1. This leads to a prediction of the three distinct 
groups of atoms shown in FigurE 41.12c. There should always be an odd number of 
groups because there are 2l + 1 values of Lz.

In 1927, with Schrödinger’s quantum theory brand new, the Stern-Gerlach 
technique was used to measure the magnetic moment of hydrogen atoms. The ground 
state of hydrogen is 1s, with l = 0, so the atoms should have no magnetic moment and 
there should be no deflection at all. Instead, the experiment produced the two-peaked 
distribution shown in FigurE 41.13.

Because the hydrogen atoms were deflected, they must have a magnetic mo-
ment. But where does it come from if L = 0? Even stranger was the deflection into 
two groupings, rather than an odd number. The deflection is proportional to Lz, and 
Lz = mU where m ranges in integer steps from - l to + l. The experimental results 
would make sense only if l =

1
2, allowing m to take the two possible values -  12 and 

+  12. But according to Schrödinger’s theory, the quantum numbers l and m must be 
integers.

An explanation for these observations was soon suggested, then confirmed: The 
electron has an inherent magnetic moment. After all, the electron has an inherent grav-
itational character, its mass me, and an inherent electric character, its charge qe = -e. 
These are simply part of what an electron is. Thus it is plausible that an electron should 
also have an inherent magnetic character described by a built-in magnetic moment m

u

e. 
A classical electron, if thought of as a little ball of charge, could spin on its axis as it 
orbits the nucleus. A spinning ball of charge would have a magnetic moment associ-
ated with its angular momentum. This inherent magnetic moment of the electron is 
what caused the unexpected deflection in the Stern-Gerlach experiment.

If the electron has an inherent magnetic moment, it must have an inherent angular 
momentum. This angular momentum is called the electron’s spin, which is designated 
S
u

. The outcome of the Stern-Gerlach experiment tells us that the z-component of this 
spin angular momentum is

 Sz = msU where ms = +  12 or -  12 (41.12)

The quantity ms is called the spin quantum number.
The z-component of the spin angular momentum vector is determined by the elec-

tron’s orientation. The ms = +  12 state, with Sz = +  12 U, is called the spin-up state, and 

FigurE 41.12 Distribution of the atoms 
on the collector plate.
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FigurE 41.13 The outcome of the Stern-
Gerlach experiment for hydrogen atoms.
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the ms = -  12 state is called the spin-down state. It is convenient to picture a little 
angular momentum vector that can be drawn c  for an ms = +  12 state and T  for an 
ms = -  12 state. We will use this notation in the next section. Because the electron 
must be either spin-up or spin-down, a hydrogen atom in the Stern-Gerlach experi-
ment will be deflected either up or down. This causes the two groups of atoms seen in 
Figure 41.13. No atoms have Sz = 0, so there are no undeflected atoms in the center.

NoTE  The atom has spin angular momentum in addition to any orbital angular 
momentum that the electrons may have. Only in s states, for which L = 0, can we 
see the effects of “pure spin.” 

The spin angular momentum S is analogous to Equation 41.3 for L:

 S = 2s(s + 1) U =
23

2
 U (41.13)

where s is a quantum number with the single value s =
1
2. S is the inherent angular mo-

mentum of the electron. Because of the single value of s, physicists usually say that the 
electron has “spin one-half.” FigurE 41.14, which should be compared to Figure 41.3, 
shows that the terms “spin up” and “spin down” refer to Sz, not the full spin angular 
momentum. As was the case with L

u

, it’s not possible for S
u

 to point along the z-axis.

NoTE  The term “spin” must be used with caution. Although a classical charged par-
ticle could generate a magnetic moment by spinning, the electron most assuredly is 
not a classical particle. It is not spinning in any literal sense. It simply has an inherent 
magnetic moment, just as it has an inherent mass and charge, and that magnetic mo-
ment makes it look as if the electron is spinning. It is a convenient figure of speech, 
not a factual statement. The electron has a spin, but it is not a spinning electron! 

The electron’s spin has significant implications for atomic structure. The solutions 
to the Schrödinger equation could be described by the three quantum numbers n, l, and 
m, but the Stern-Gerlach experiment implies that this is not a complete description of 
an atom. Knowing that a ground-state atom has quantum numbers n = 1, l = 0, and 
m = 0 is not sufficient to predict whether the atom will be deflected up or down in 
a nonuniform magnetic field. We need to add the spin quantum number ms to make 
our description complete. (Strictly speaking, we also need to add the quantum number 
s, but it provides no additional information because its value never changes.) So we 
really need four quantum numbers (n, l, m, ms) to characterize the stationary states 
of the atom. The spin orientation does not affect the atom’s energy, so a ground-
state electron in hydrogen could be in either the (1, 0, 0, +  12) spin-up state or the 
(1, 0, 0, -  12) spin-down state.

The fact that s has the single value s =
1
2 has other interesting implications. The 

correspondence principle tells us that a quantum particle begins to “act classical” in 
the limit of large quantum numbers. But s cannot become large! The electron’s spin 
is an intrinsic quantum property of the electron that has no classical counterpart.

Stop to think 41.3
 Can the spin angular momentum vector lie in the xy-plane? Why 

or why not?

41.4 Multielectron Atoms
The Schrödinger-equation solution for the hydrogen atom matches the experimental 
evidence, but so did the Bohr hydrogen atom. The real test of Schrödinger’s theory is 
how well it works for multielectron atoms. A neutral multielectron atom consists of Z 
electrons surrounding a nucleus with Z protons and charge +Ze. Z, the atomic num-
ber, is the order in which elements are listed in the periodic table. Hydrogen is Z = 1, 
helium Z = 2, lithium Z = 3, and so on.

FigurE 41.14 The spin angular momentum 
has two possible orientations.
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The potential-energy function of a multielectron atom is that of Z electrons inter-
acting with the nucleus and Z electrons interacting with each other. The electron-
electron interaction makes the atomic-structure problem more difficult than the  
solar-system problem, and it proved to be the downfall of the simple Bohr model. The 
planets in the solar system do exert attractive gravitational forces on each other, but 
their masses are so much less than that of the sun that these planet-planet forces are 
insignificant for all but the most precise calculations. Not so in an atom. The electron 
charge is the same as the proton charge, so the electron-electron repulsion is just as 
important to atomic structure as is the electron-nucleus attraction.

The potential energy due to electron-electron interactions fluctuates rapidly in 
value as the electrons move and the distances between them change. Rather than treat 
this interaction in detail, we can reasonably consider each electron to be moving in an 
average potential due to all the other electrons. That is, electron i has potential energy

 U(ri) = -  
Ze2

4pP0ri

+ Uelec(ri) (41.14)

where the first term is the electron’s interaction with the Z protons in the nucleus 
and Uelec is the average potential energy due to all the other electrons. Because 
each electron is treated independently of the other electrons, this approach is called 
the independent particle approximation, or IPA. This approximation allows the 
Schrödinger equation for the atom to be broken into Z separate equations, one for 
each electron.

A major consequence of the IPA is that each electron can be described by a wave 
function having the same four quantum numbers n, l, m, and ms used to describe 
the single electron of hydrogen. Because m and ms do not affect the energy, we can 
still refer to electrons by their n and l quantum numbers, using the same labeling 
scheme that we used for hydrogen.

A major difference, however, is that the energy of an electron in a multielectron 
atom depends on both n and l. Whereas the 2s and 2p states in hydrogen had the same 
energy, their energies are different in a multielectron atom. The difference arises from 
the electron-electron interactions that do not exist in a single-electron hydrogen atom.

FigurE 41.15 shows an energy-level diagram for the electrons in a multielectron atom. 
For comparison, the hydrogen-atom energies are shown on the right edge of the figure. 
The comparison is quite interesting. States in a multielectron atom that have small 
values of l are significantly lower in energy than the corresponding state in hydrogen. 
For each n, the energy increases as l increases until the maximum-l state has an energy 
very nearly that of the same n in hydrogen. Can we understand this pattern?

Indeed we can. Recall that states of lower l correspond to elliptical classical orbits 
and the highest-l state corresponds to a circular orbit. Except for the smallest values of 
n, an electron in a circular orbit spends most of its time outside the electron cloud of 
the remaining electrons. This is illustrated in FigurE 41.16. The outer electron is orbiting 
a ball of charge consisting of Z protons and (Z - 1) electrons. This ball of charge has 
net charge qnet = +e, so the outer electron “thinks” it is orbiting a proton. An electron 
in a maximum-l state is nearly indistinguishable from an electron in the hydrogen 
atom; thus its energy is very nearly that of hydrogen.

The low-l states correspond to elliptical orbits. A low-l electron penetrates in very 
close to the nucleus, which is no longer shielded by the other electrons. The electron’s 
interaction with the Z protons in the nucleus is much stronger than the interaction 
it would have with the single proton in a hydrogen nucleus. This strong interaction 
lowers its energy in comparison to the same state in hydrogen.

As we noted earlier, a quantum electron does not really orbit. Even so, the probability 
density of a 3s electron has in-close peaks that are missing in the probability density of a 
3d electron, as you should confirm by looking back at Figure 41.8. Thus a low-l electron 
really does have a likelihood of being at small r, where its interaction with the Z protons 
is strong, whereas a high-l electron is most likely to be farther from the nucleus.

FigurE 41.15 An energy-level diagram 
for electrons in a multielectron atom.
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The Pauli Exclusion Principle
By definition, the ground state of a quantum system is the state of lowest energy. What 
is the ground state of an atom having Z electrons and Z protons? Because the 1s state 
is the lowest energy state in the independent particle approximation, it seems that the 
ground state should be one in which all Z electrons are in the 1s state. However, this 
idea is not consistent with the experimental evidence.

In 1925, the young Austrian physicist Wolfgang Pauli hypothesized that no two 
electrons in a quantum system can be in the same quantum state. That is, no two 
electrons can have exactly the same set of quantum numbers (n, l, n, ms). If 
one electron is present in a state, it excludes all others. This statement, which is called 
the Pauli exclusion principle, turns out to be an extremely profound statement about 
the nature of matter.

The exclusion principle is not applicable to the hydrogen atom, which has only a 
single electron. But in helium, with Z = 2 electrons, we must make sure that the two 
electrons are in different quantum states. This is not difficult. For a 1s state, with l = 0, 
the only possible value of the magnetic quantum number is m = 0. But there are 
two possible values of ms, namely +  12 and -  12. If a first electron is in the spin-up 
1s state (1, 0, 0, +  12), a second 1s electron can still be added to the atom as long as 
it is in the spin-down state (1, 0, 0, -  12). This is shown schematically in FigurE 41.17a, 
where the dots represent electrons on the rungs of the “energy ladder” and the arrows 
represent spin-up or spin-down.

The Pauli exclusion principle does not prevent both electrons of helium from be-
ing in the 1s state as long as they have opposite values of ms, so we predict this to 
be the ground state. A list of an atom’s occupied energy levels is called its electron 
configuration. The electron configuration of the helium ground state is written 1s2, 
where the superscript 2 indicates two electrons in the 1s energy level. An excited state 
of the helium atom might be the electron configuration 1s2s. This state is shown in 
FigurE 41.17b. Here, because the two electrons have different values of n, there is no 
restriction on their values of ms.

The states (1, 0, 0, +  12) and (1, 0, 0,-  12) are the only two states with n = 1. 
The ground state of helium has one electron in each of these states, so all the 
possible n = 1 states are filled. Consequently, the electron configuration 1s2 is 
called a closed shell. Because the two electron magnetic moments point in op-
posite directions, we can predict that helium has no net magnetic moment and 
will be undeflected in a Stern-Gerlach apparatus. This prediction is confirmed 
by experiment.

The next element, lithium, has Z = 3 electrons. The first two electrons can 
go into 1s states, with opposite values of ms, but what about the third electron? 
The 1s2 shell is closed, and there are no additional quantum states having n = 1. 
The only option for the third electron is the next energy state, n = 2. The 2s and 
2p states had equal energies in the hydrogen atom, but they do not in a multi-
electron atom. As Figure 41.15 showed, a lower-l state has lower energy than a 
higher-l state with the same n. The 2s state of lithium is lower in energy than 2p, so 
lithium’s third ground-state electron will be 2s. This requires l = 0 and m = 0 for 
the third electron, but the value of ms is not relevant because there is only a single 
electron in 2s. FigurE 41.18a shows the electron configuration with the 2s electron 
being spin-up, but it could equally well be spin-down. The electron configuration 
for the lithium ground state is written 1s22s. This indicates two 1s electrons and a 
single 2s electron.

FigurE 41.19a shows the probability density of electrons in the 1s22s ground state 
of lithium. You can see the 2s electron shell surrounding the inner 1s2 core. For 
comparison, FigurE 41.19b shows the first excited state of lithium, in which the 2s 
electron has been excited to the 2p energy level. This forms the 1s22p configuration, 
also shown in FigurE 41.18b.

FigurE 41.17 The ground state and the 
first excited state of helium.
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FigurE 41.18 The ground state and the 
first excited state of lithium.
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The Schrödinger equation accurately predicts the energies of the 1s22s and the 1s22p 
configurations of lithium, but the Schrödinger equation does not tell us which states 
the electrons actually occupy. The electron spin and the Pauli exclusion principle were 
the final pieces of the puzzle. Once these were added to Schrödinger’s theory, the 
initial phase of quantum mechanics was complete. Physicists finally had a successful 
theory for understanding the structure of atoms.

41.5 The Periodic Table of the Elements
The 19th century was a time when scientists were discovering new elements and 
studying their chemical properties. Several chemists in the 1860s began to point 
out the regular recurrence of chemical properties. For example, there are obvious 
similarities among the alkali metals lithium, sodium, potassium, and cesium. But 
attempts at organization were hampered by the fact that many elements had yet to 
be discovered.

The Russian chemist Dmitri Mendeléev was the first to propose, in 1867, a 
periodic arrangement of the elements. He did so by explicitly pointing out “gaps” 
where, according to his hypothesis, undiscovered elements should exist. He could then 
predict the expected properties of the missing elements. The subsequent discovery of 
these elements verified Mendeléev’s organizational scheme, which came to be known 
as the periodic table of the elements.

FigurE 41.20 shows a modern periodic table. (A larger version can be found in 
Appendix B.) The significance of the periodic table to a physicist is the implication 
that there is a basic regularity or periodicity to the structure of atoms. Any successful 
theory of the atom needs to explain why the periodic table looks the way it does.

FigurE 41.20 The modern periodic table of the elements, showing the atomic number 
Z of each.
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The First Two rows
Quantum mechanics successfully explains the structure of the periodic table. We need 
three basic ideas to see how this works:

 1. The energy levels of an atom are found by solving the Schrödinger equation 
for multielectron atoms. Figure 41.15, a very important figure for under-
standing the periodic table, showed that the energy depends on the quantum 
numbers n and l.

 2. For each value l of the orbital quantum number, there are 2l + 1 possible values 
of the magnetic quantum number m and, for each of these, two possible values 
of the spin quantum number ms. Consequently, each energy level in Figure 41.15 
is actually 2(2l + 1) different states. Each of these states has the same energy.

 3. The ground state of the atom is the lowest-energy electron configuration that is 
consistent with the Pauli exclusion principle.

We used these ideas in the last section to look at the elements helium (Z = 2) and 
lithium (Z = 3). Four-electron beryllium (Z = 4) comes next. The first two electrons 
go into 1s states, forming a closed shell, and the third goes into 2s. There is room in 
the 2s level for a second electron as long as its spin is opposite that of the first 2s elec-
tron. Thus the third and fourth electrons occupy states (2, 0, 0, +  12) and (2, 0, 0, -  12). 
These are the only two possible 2s states. All the states with the same values of n and l 
are called a subshell, so the fourth electron closes the 2s subshell. (The outer two 
electrons are called a subshell, rather than a shell, because they complete only the 2s 
possibilities. There are still spaces for 2p electrons.) The ground state of beryllium, 
shown in FigurE 41.21, is 1s22s2.

These principles can continue to be applied as we work our way through the ele-
ments. There are 2l + 1 values of m associated with each value of l, and each of these 
can have ms = {1

2. This gives, altogether, 2(2l + 1) distinct quantum states in each 
nl subshell. Table 41.2 lists the number of states in each subshell.

Boron (1s22s22p) opens the 2p subshell. The remaining possible 2p states are filled 
as we continue across the second row of the periodic table. These elements are shown 
in FigurE 41.22. With neon (1s22s22p6), which has six 2p electrons, the n = 2 shell is 
complete, and we have another closed shell. The second row of the periodic table is 
eight elements wide because of the two 2s electrons plus the six 2p electrons needed 
to fill the n = 2 shell.

TABLE 41.2 Number of states in each 
subshell of an atom

Subshell l Number of states

s 0  2

p 1  6

d 2 10

f 3 14

FigurE 41.21 The ground state of 
beryllium (Z = 4).

2s

2p

1s

Be ground state

FigurE 41.22 Filling the 2p subshell with the elements boron through neon.

Z � 5 B
1s22s22p

Z � 6 C
1s22s22p2

Z � 7 N
1s22s22p3

Z � 8 O
1s22s22p4

Z � 9 F
1s22s22p5

Z � 10 Ne
1s22s22p6

2p

2s

1s

Elements with Z + 10
The third row of the periodic table is similar to the second. The two 3s states are filled 
in sodium and magnesium. The two columns on the left of the periodic table represent 
the two electrons that can go into an s subshell. Then the six 3p states are filled, one by 
one, in aluminum through argon. The six columns on the right represent the six elec-
trons of the p subshell. Argon (Z = 18, 1s22s22p63s23p6) is another inert gas, although 
this may seem surprising because the 3d subshell is still open.
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The fourth row is where the periodic table begins to get complicated. You might 
expect the closure of the 3p subshell in argon to be followed, starting with potassium 
(Z = 19), by filling the 3d subshell. But if you look back at Figure 41.15, where the 
energies of the different nl states are shown, you will see that the 3d state is slightly 
higher in energy than the 4s state. Because the ground state is the lowest energy state 
consistent with the Pauli exclusion principle, potassium finds it more favorable to fill 
a 4s state than to fill a 3d state. Thus the ground-state configuration of potassium is 
1s22s22p63s23p64s rather than the expected 1s22s22p63s23p63d.

At this point, we begin to see a competition between increasing n and decreasing l. 
The highly elliptical characteristic of the 4s state brings part of its orbit in so close to 
the nucleus that its energy is less than that of the more circular 3d state. The 4p state, 
though, reverts to the “expected” pattern. We find that

 E4s 6 E3d 6 E4p

so the states across the fourth row are filled in the order 4s, then 3d, and finally 4p.
Because there had been no previous d states, the 3d subshell “splits open” the 

periodic table to form the 10-element-wide group of transition elements. Most 
commonly occurring metals are transition elements, and their metallic properties 
are determined by their partially filled d subshell. The 3d subshell closes with 
zinc, at Z = 30, then the next six elements fill the 4p subshell up to krypton, at 
Z = 36.

Things get even more complex starting in the sixth row, but the ideas are famil-
iar. The l = 3 subshell (f electrons) becomes a possibility with n = 4, but it turns 
out that the 5s, 5p, and 6s states are all lower in energy than 4f. Not until barium 
(Z = 56) fills the 6s subshell (and lanthanum (Z = 57) adds a 5d electron) is it 
energetically favorable to add a 4f electron. Immediately after barium you have to 
switch down to the lanthanides at the bottom of the table. The lanthanides fill in 
the 4f states.

The 4f subshell is complete with Z = 70 ytterbium. Then Z = 71 lutetium through 
Z = 80 mercury complete the transition-element 5d subshell, followed by the 6p sub-
shell in the six elements thallium through radon at the end of the sixth row. Radon, the 
last inert gas, has Z = 86 electrons and the ground-state configuration

 1s22s22p63s23p64s23d 104p65s24d 105p66s24f 145d 106p6

This is frightening to behold, but we can now understand it!

ExAMPLE 41.4  The ground state of arsenic
Predict the ground-state electron configuration of arsenic.

SoLvE The periodic table shows that arsenic (As) has Z = 33, so we must identify the 
states of 33 electrons. Arsenic is in the fourth row, following the first group of transition 
elements. Argon (Z = 18) filled the 3p subshell, then calcium (Z = 20) filled the 4s sub-
shell. The next 10 elements, through zinc (Z = 30), filled the 3d subshell. The 4p subshell 
starts filling with gallium (Z = 31), and arsenic is the third element in this group, so it will 
have three 4p electrons. Thus the ground-state configuration of arsenic is

1s22s22p63s23p64s23d 104p3

The white lettering on the periodic table of Figure 41.20 summarizes the results, 
showing the subshells as they are filled. It is especially important to note how the 
electron’s spin is absolutely essential for understanding the periodic table. Explaining 
the periodic table of the elements is a remarkable success of the quantum model of 
the atom.
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ionization Energies
Ionization energy is the minimum energy needed to remove a ground-state electron 
from an atom and leave a positive ion behind. The ionization energy of hydrogen is 
13.60 eV because the ground-state energy is E1 = -13.60 eV. FigurE 41.23 shows the 
ionization energies of the first 60 elements in the periodic table.

FigurE 41.23 Ionization energies of the elements up to Z = 60.
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The ionization energy is different for each element, but there’s a clear pattern to the 
values. Ionization energies are �5 eV for the alkali metals, on the left edge of the periodic 
table, then increase steadily to Ú15 eV for the inert gases before plunging back to �5 eV. 
Can the quantum theory of atoms explain this recurring pattern in the ionization energies?

Indeed it can. The inert-gas elements (helium, neon, argon, . . .) in the right col-
umn of the periodic table have closed shells. A closed shell is a very stable structure, 
and that is why these elements are chemically nonreactive (i.e., inert). It takes a large 
amount of energy to pull an electron out of a stable closed shell; thus the inert gases 
have the largest ionization energies.

The alkali metals, in the left column of the periodic table, have a single s-electron 
outside a closed shell. This electron is easily disrupted, which is why these elements 
are highly reactive and have the lowest ionization energies. Between the edges of 
the periodic table are elements such as beryllium (1s22s2) with a closed 2s subshell. 
You can see in Figure 41.23 that the closed subshell gives beryllium a larger ioniza-
tion energy than its neighbors lithium (1s22s) or boron (1s22s22p). However, a closed 
subshell is not nearly as tightly bound as a closed shell, so the ionization energy of 
beryllium is much less than that of helium or neon.

All in all, you can see that the basic idea of shells and subshells, which follows 
from the Schrödinger-equation energy levels and the Pauli principle, provides a good 
understanding of the recurring features in the ionization energies.

Stop to think 41.4 
 Is the electron configuration 1s22s22p43s a ground-state configura-

tion or an excited-state configuration?

 a. Ground-state b. Excited-state
 c. It’s not possible to tell without knowing which element it is.

41.6 Excited States and Spectra
The periodic table organizes information about the ground states of the elements. These 
states are chemically most important because most atoms spend most of the time in 
their ground states. All the chemical ideas of valence, bonding, reactivity, and so on are 
consequences of these ground-state atomic structures. But the periodic table does not 
tell us anything about the excited states of atoms. It is the excited states that hold the key 
to understanding atomic spectra, and that is the topic to which we turn next.
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Sodium (Z = 11) is a multielectron atom that we will use as a prototypical atom. 
The ground-state electron configuration of sodium is 1s22s22p63s. The first 10 elec-
trons completely fill the n = 1 and n = 2 shells, creating a neon core, while the 3s 
electron is a valence electron. It is customary to represent this configuration as [Ne]3s 
or, more simply, as just 3s.

The excited states of sodium are produced by raising the valence electron to a higher 
energy level. The electrons in the neon core are unchanged. Thus the excited states 
can be labeled [Ne]nl or, more simply, just nl. FigurE 41.24 is an energy-level diagram 
showing the ground state and some of the excited states of sodium. Notice that the 1s, 
2s, and 2p states of the neon core are not shown on the diagram. These states are filled 
and unchanging, so only the states available to the valence electron are shown.

Figure 41.24 has a new feature: The zero of energy has been shifted to the ground 
state. As we have discovered many times, the zero of energy can be located where it 
is most convenient. For analyzing spectra it is convenient to let the ground state have 
E = 0. With this choice, the excited-state energies tell us how far each state is above 
the ground state. The ionization limit now occurs at the value of the atom’s ionization 
energy, which is 5.14 eV for sodium.

The first energy level above 3s is 3p, so the first excited state of sodium is 
1s22s22p63p, written as [Ne]3p or, more simply, 3p. The valence electron is excited, 
while the core electrons are unchanged. This state is followed, in order of increas-
ing energy, by [Ne]4s, [Ne]3d, and [Ne]4p. Notice that the order of excited states is 
exactly the same order (3p–4s–3d–4p) that explained the fourth row of the periodic 
table.

Other atoms with a single valence electron have energy-level diagrams similar to 
that of sodium. Things get more complicated when there is more than one valence 
electron, so we’ll defer those details to more advanced courses. Nevertheless, you 
already can utilize the information shown on an energy-level diagram without having 
to understand precisely why each level is where it is.

Excitation by Absorption
Left to itself, an atom will be in its lowest-energy ground state. How does an atom 
get into an excited state? The process of getting an atom into an excited state is called 
excitation, and there are two basic mechanisms: absorption and collision. We’ll begin 
by looking at excitation by absorption.

One postulate of the Bohr model is that an atom can jump from one stationary state, 
of energy E1, to a higher-energy state E2 by absorbing a photon of frequency

 f =
�Eatom

h
=

E2 - E1

h
 (41.15)

Because we are interested in spectra, it is more useful to write Equation 41.15 in terms 
of the wavelength:

 l =
c

f
=

hc

�Eatom
=

1240 eV nm

�E (in eV)
 (41.16)

The final expression, which uses the value hc = 1240 eV nm, gives the wavelength in 
nanometers if �Eatom is in electron volts.

Bohr’s idea of quantum jumps remains an integral part of our interpretation of the 
results of quantum mechanics. By absorbing a photon, an atom jumps from its ground 
state to one of its excited states. However, a careful analysis of how the electrons in an 
atom interact with a light wave shows that not every conceivable transition can occur. 
The allowed transitions must satisfy a selection rule: A transition (either absorption 
or emission) from a state in which the valence electron has orbital quantum number l1 
to another with orbital quantum number l2 is allowed only if

�l = 0 l2 - l1 0 = 1    (selection rule for emission and absorption) (41.17)

FigurE 41.24 The [Ne]3s ground state 
of the sodium atom and some of the 
excited states.

4.51
4.11

3.19

0.00

2.104

3.75

4.34 4.28

3.62

4.296s 5p 4d

3d

4f

4p

3p

5s

4s

3s

5

4

3

2

1

0

Energy (eV)
l � 0 l � 2

Ionization limit 5.14 eV
l � 1 l � 3

Ground state at E � 0

First excited state

Filled 1s, 2s, and 2p levels

Energies for each
level are in eV.

The dots of light are being emitted by two 
beryllium ions held in a device called an 
ion trap. Each ion, which is excited by an 
invisible ultraviolet laser, emits about 106 
visible-light photons per second.



That is, the electron’s orbital quantum number must change by exactly 1. Thus an 
atom in an s state (l = 0) can absorb a photon and be excited to a p state (l = 1) but 
not to another s state or to a d state. An atom in a p state (l = 1) can emit a photon 
by dropping to a lower-energy s state or to a lower-energy d state but not to another 
p state.

The wavelength of this transition is

 l =
1240 eV nm

10.2 eV
= 122 nm

This is an ultraviolet wavelength. Because of the selection rule, the 
transition is 1s S 2p, not 1s S 2s.

ExAMPLE 41.5  Absorption in hydrogen
What is the longest wavelength in the absorption spectrum of 
hydrogen? What is the transition?

SoLvE The longest wavelength corresponds to the smallest energy 
change �Eatom. Because the atom starts from the 1s ground state, 
the smallest energy change occurs for absorption to the first n = 2 
excited state. The energy change is

 �Eatom = E2 - E1 =
-13.6 eV

22 -
-13.6 eV

12 = 10.2 eV

The corresponding wavelength is

 l =
1240 eV nm

2.104 eV
= 589 nm

ASSESS This wavelength (yellow color) is a prominent feature in 
the spectrum of sodium. Because the ground state has l = 0, ab-
sorption must be to a p state. The s states and d states of sodium 
cannot be excited by absorption. 

ExAMPLE 41.6  Absorption in sodium
What is the longest wavelength in the absorption spectrum of 
sodium? What is the transition?

SoLvE The sodium ground state is [Ne]3s. The lowest excited 
state is the 3p state. 3s S 3p is an allowed transition (�l = 1), 
so this is the longest wavelength. You can see from the data in 
Figure 41.24 that �Eatom = 2.104 eV for this transition.

Collisional Excitation
A particle traveling with a speed of 1.0 * 106 m/s has a kinetic energy of 2.85 eV. If this 
particle collides with a ground-state sodium atom, a portion of its energy can be used to 
excite the atom to its 3p state. This process is called collisional excitation of the atom.

Collisional excitation differs from excitation by absorption in one very fundamen-
tal way. In absorption, the photon disappears. Consequently, all of the photon’s energy 
must be transferred to the atom. Conservation of energy requires Ephoton = �Eatom. In 
contrast, the particle is still present after collisional excitation and can carry away 
some kinetic energy. That is, the particle does not have to transfer its entire energy 
to the atom. If the particle has an incident kinetic energy of 2.85 eV, it could transfer 
2.10 eV to the sodium atom, thereby exciting it to the 3p state, and still depart the 
collision with an energy of 0.75 eV.

To excite the atom, the incident energy of the particle merely has to exceed �Eatom. 
That is Eparticle Ú �Eatom. There’s a threshold energy for exciting the atom, but no upper 
limit. It is all a matter of energy conservation. FigurE 41.25 shows the idea graphically.

Collisional excitation by electrons is the predominant method of excitation in elec-
trical discharges such as fluorescent lights, street lights, and neon signs. A gas is placed in a 
tube at reduced pressure (�1 mm of Hg), then a fairly high voltage (�1000 V) between 
electrodes at the ends of the tube causes the gas to ionize, creating a current in which both 
ions and electrons are charge carriers. The mean free path of electrons between collisions is 
large enough for the electrons to gain several eV of kinetic energy as they accelerate in the 
electric field. This energy is then transferred to the gas atoms upon collision. The process 
does not work at atmospheric pressure because the mean free path between collisions is too 
short for the electrons to gain enough kinetic energy to excite the atoms.

NoTE  There are no selection rules for collisional excitation. Any state can be 
excited if the colliding particle has sufficient energy. 

FigurE 41.25 Excitation by photon 
absorption and electron collision.
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Balmer series is emitted by an n = 3 to n = 2 quantum jump with 
�Eatom = 1.89 eV. But to cause this emission, the electron must 
excite an atom from its ground state, with n = 1, up to the n = 3 
level. The necessary excitation energy is

  �Eatom = E3 - E1 = (-1.51 eV) - (-13.60 eV)

  = 12.09 eV

The electron does not have sufficient energy to excite the atom to 
the state from which the emission would occur.

ExAMPLE 41.7  Excitation of hydrogen
Can an electron traveling at 2.0 * 106 m/s cause a hydrogen 
atom to emit the prominent red spectral line (l = 656 nm) in the 
Balmer series?

MoDEL The electron must have sufficient energy to excite the 
upper state of the transition.

SoLvE The electron’s energy is Eelec =
1
2 mv 2 = 11.4 eV. This 

is significantly larger than the 1.89 eV energy of a photon with 
wavelength 656 nm, but don’t confuse the energy of the photon 
with the energy of the excitation. The red spectral line in the 

Emission Spectra
The absorption of light is an important process, but it is the emission of light that really 
gets our attention. The overwhelming bulk of sensory information that we perceive 
comes to us in the form of light. With the small exception of cosmic rays, all of our 
knowledge about the cosmos comes to us in the form of light and other electromag-
netic waves emitted in various processes.

Understanding emission hinges on the three ideas shown in FigurE 41.26. Once we 
have determined the energy levels of an atom, by solving the Schrödinger equation, 
we can immediately predict its emission spectrum. Conversely, we can use the mea-
sured emission spectrum to determine an atom’s energy levels.

As an example, FigurE 41.27a shows some of the transitions and wavelengths ob-
served in the emission spectrum of sodium. This diagram makes the point that each 
wavelength represents a quantum jump between two well-defined energy levels. 
Notice that the selection rule �l = 1 is being obeyed in the sodium spectrum. The 5p 
levels can undergo quantum jumps to 3s, 4s, or 3d but not to 3p or 4p.

FigurE 41.27b shows the emission spectrum of sodium as it would be recorded in a 
spectrometer. (Many of the lines seen in this spectrum start from higher excited states 
that are not seen in the rather limited energy-level diagram of Figure 41.27a.) By com-
paring the spectrum to the energy-level diagram, you can recognize that the spectral 
lines at 589 nm, 330 nm, 286 nm, and 268 nm form a series of lines due to all the 
possible np S 3s transitions. They are the dominant features in the sodium spectrum.

The most obvious visual feature of sodium emission is its bright yellow color, pro-
duced by the emission wavelength of 589 nm. This is the basis of the flame test used 
in chemistry to test for sodium: A sample is held in a Bunsen burner, and a bright yel-
low glow indicates the presence of sodium. The 589 nm emission is also prominent 
in the pinkish-yellow glow of the common sodium-vapor street lights. These operate 
by creating an electrical discharge in sodium vapor. Most sodium-vapor lights use 
high-pressure lamps to increase their light output. The high pressure, however, causes 
the formation of Na2 molecules, and these molecules, which have a different spectral 
fingerprint, emit the pinkish portion of the light.

Some cities close to astronomical observatories use low-pressure sodium lights, and 
these emit the distinctive yellow 589 nm light of sodium. The glow of city lights is a severe 
problem for astronomers, but the very specific 589 nm emission from sodium is easily 
removed with a sodium filter. The light from the telescope is passed through a container of 
sodium vapor, and the sodium atoms absorb only the unwanted 589 nm photons without 
disturbing any other wavelengths! However, this cute trick does not work for the other 
wavelengths emitted by high-pressure sodium lamps or light from other sources.

Color in Solids
It is worth concluding this section with a few remarks about color in solids. Whether it 
is the intense multihued colors of a stained glass window, the bright colors of flowers 
or paint, or the deep luminescent red of a ruby, most of the colors we perceive in our 

FigurE 41.26 Generation of an emission 
spectrum.
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FigurE 41.27 The emission spectrum of 
sodium.
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lives come from solids rather than free atoms. The basic principles are the same, but 
the details are different for solids.

An excited atom in a gas has little choice but to give up its energy by emitting a 
photon. Its only other option, which is rare for gas atoms, is to collide with another atom 
and transfer its energy into the kinetic energy of recoil. But the atoms in a solid are in 
intimate contact with each other at all times. Although an excited atom in a solid has 
the option of emitting a photon, it is often more likely that the energy will be converted, 
via interactions with neighboring atoms, to the thermal energy of the solid. A process 
in which an atom is de-excited without radiating is called a nonradiative transition.

This is what happens in pigments, such as those in paints, plants, and dyes. Pigment 
molecules absorb certain wavelengths of light but not other wavelengths. The energy-
level structure of a molecule is complex, so the absorption consists of “bands” of 
wavelengths rather than discrete spectral lines. But instead of re-radiating the energy 
by photon emission, as a free atom would, the pigment molecules undergo nonra-
diative transitions and convert the energy into increased thermal energy. That is why 
darker objects get hotter in the sun than lighter objects.

When light falls on an object, it can be either absorbed or reflected. If all wave-
lengths are reflected, the object is perceived as white. Any wavelengths absorbed by 
the pigments are removed from the reflected light. A pigment with blue-absorbing 
properties converts the energy of blue-wavelength photons into thermal energy, but 
photons of other wavelengths are reflected without change. A blue-absorbing pigment 
reflects the red and yellow wavelengths, causing the object to be perceived as the color 
orange!

Some solids, though, are a little different. The color of many minerals and crystals 
is due to so-called impurity atoms embedded in them. For example, the gemstone 
ruby is a very simple and common crystal of aluminum oxide, called corundum, that 
happens to have chromium atoms present at the concentration of about one part in a 
thousand. Pure corundum is transparent, so all of a ruby’s color comes from these 
chromium impurity atoms.

FigurE 41.28 shows what happens when ruby is illuminated by white light. The chro-
mium atoms have a group of excited states that absorb all wavelengths shorter than 
about 600 nm—that is, everything except orange and red. Unlike the pigments in red 
glass, which convert all the absorbed energy into thermal energy, the chromium atoms 
dissipate only a small amount of heat as they undergo a nonradiative transition to an-
other excited state. From there they emit a photon with l = hc/(E2 - E1) � 690 nm 
(dark red color) as they jump back to the ground state.

The net effect is that short-wavelength photons, rather than being completely ab-
sorbed, are re-radiated as longer-wavelength photons. This is why rubies sparkle and 
have such intense color, whereas red glass is a dull red color. The color of other miner-
als and gems is due to different impurity atoms, but the principle is the same.

The colors in a stained-glass window are 
due to the selective absorption of light.

FigurE 41.28 Absorption and emission 
in a crystal of ruby.
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Stop to think 41.5 
 In this hypothetical atom, 

what is the photon energy Ephoton of the longest-
wavelength photons emitted by atoms in the 5p 
state?

 a. 1.0 eV
 b. 2.0 eV
 c. 3.0 eV
 d. 4.0 eV

Energy (eV)

0

1

2

5s

3

4

5

4s

4p

5p

4d

3d

41.6 . Excited States and Spectra    1235



1236    c h a p t e r  41 . Atomic Physics

41.7 Lifetimes of Excited States
Excitation of an atom, by either absorption or collision, leaves it in an excited state. 
From there it jumps back to a lower energy level by emitting a photon. How long does 
this process take? There are actually two questions here. First, how long does an atom 
remain in an excited state before undergoing a quantum jump to a lower state? Second, 
how long does the transition last as the quantum jump is occurring?

Our best understanding of the quantum physics of atoms is that quantum jumps are 
instantaneous. The absorption or emission of a photon is an all-or-nothing event, so 
there is not a time when a photon is “half emitted.” The prediction that quantum jumps 
are instantaneous has troubled many physicists, but careful experimental tests have 
never revealed any evidence that the jump itself takes a measurable amount of time.

The time spent in the excited state, waiting to make a quantum jump, is another 
story. FigurE 41.29 shows experimental data for the length of time that doubly charged 
xenon ions Xe++ spend in a certain excited state. In this experiment, a pulse of elec-
trons was used to excite the atoms to the excited state. The number of excited-state 
atoms was then monitored by detecting the photons emitted—one by one!—as the ex-
cited atoms jumped back to the ground state. The number of photons emitted at time t 
is directly proportional to the number of excited-state atoms present at time t. As the 
figure shows, the number of atoms in the excited state decreases exponentially with 
time, and virtually all have decayed within 25 ms of their creation.

Figure 41.29 has two important implications. First, atoms spend time in the excited state 
before undergoing a quantum jump back to a lower state. Second, the length of time spent 
in the excited state is not a constant value but varies from atom to atom. If every excited 
xenon ion lived for 5 ms in the excited state, then we would detect no photons for 5 ms, a 
big burst right at 5 ms as they all decay, then no photons after that. Instead, the data tell us 
that there is a range of times spent in the excited state. Some undergo a quantum jump and 
emit a photon after 1 ms, others after 5 ms or 10 ms, and a few wait as long as 20 or 25 ms.

Consider an experiment in which N0 excited atoms are created at time t = 0. As the 
curve in Figure 41.29 shows, the number of excited atoms remaining at time t is well 
described by the exponential function

 Nexc = N0e-t/t (41.18)

where t is the point in time at which e-1 = 0.368 = 36.8% of the original atoms 
remain in the excited state. Thus 63.2% of the atoms, nearly two-thirds, have emitted 
a photon and jumped to the lower state by time t = t. The interval of time t is called 
the lifetime of the excited state. From Figure 41.29 we can deduce that the lifetime 
of this state in Xe++ is �4 ms because that is the point in time at which the curve has 
decayed to 36.8% of its initial value.

This lifetime in Xe++ is abnormally long, which is why the state was studied. More 
typical excited-state lifetimes are a few nanoseconds. Table 41.3 gives some measured 
values of excited-state lifetimes. Whatever the value of t, the number of excited-state 
atoms decreases exponentially. Why is this?

The Decay Equation
Quantum mechanics is about probabilities. We cannot say exactly where the electron 
is located, but we can use quantum mechanics to calculate the probability that the 
electron is located in a small interval �x at position x. Similarly, we cannot say exactly 
when an excited electron will undergo a quantum jump and emit a photon. However, 
we can use quantum mechanics to find the probability that the electron will undergo a 
quantum jump during a small time interval �t at time t.

Let us assume that the probability of an excited atom emitting a photon during time 
interval �t is independent of how long the atom has been waiting in the excited state. For 
example, a newly excited atom may have a 10% probability of emitting a photon within 
the 1 ns interval from 0 ns to 1 ns. If it survives until t = 7 ns, our assumption is that it 
still has a 10% probability of emitting a photon during the 1 ns interval from 7 ns to 8 ns.

FigurE 41.29 Experimental data for the 
photon emission rate from an excited 
state in Xe++.

The solid line is an
exponential-decay
“fit” to the data.
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TABLE 41.3 Some excited-state lifetimes

Atom State Lifetime (ns)

Hydrogen 2p 1.6

Sodium 3p 17

Neon 3p 20

Potassium 4p 26
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This assumption, which can be justified with a detailed analysis, is similar to flip-
ping coins. The probability of a head on your first flip is 50%. If you flip seven heads 
in a row, the probability of a head on your eighth flip is still 50%. It is unlikely that 
you will flip seven heads in a row, but doing so does not influence the eighth flip. 
Likewise, it may be unlikely for an excited atom to live for 7 ns, but doing so does not 
affect its probability of emitting a photon during the next 1 ns.

If �t is small, the probability of photon emission during time interval �t is directly 
proportional to �t. That is, if the emission probability in 1 ns is 1%, it will be 2% in 
2 ns and 0.5% in 0.5 ns. (This logic fails if �t gets too big. If the probability is 70% in 
20 ns, we can not say that the probability would be 140% in 40 ns because a probabil-
ity 7 1 is meaningless.) We will be interested in the limit �t S dt, so the concept is 
valid and we can write

 Prob(emission in �t at time t) = r �t (41.19)

where r is called the decay rate because the number of excited atoms decays with time. 
It is a probability per second, with units of s-1, and thus is a rate. For example, if an 
atom has a 5% probability of emitting a photon during a 2 ns interval, its decay rate is

 r =
P

�t
=

0.05

2 ns
= 0.025 ns-1 = 2.5 * 107 s-1

NoTE  Equation 41.19 is directly analogous to Prob(found in �x at x) = P �x, 
where P, which had units of m-1, was the probability density. 

FigurE 41.30 shows Nexc atoms in an excited state. During a small time interval �t, 
the number of these atoms that we expect to undergo a quantum jump and emit a 
photon is Nexc multiplied by the probability of decay. That is,

  number of photons in �t at time t = Nexc * Prob(emission in �t at t)

  = rNexc �t  
(41.20)

Now the change in Nexc is the negative of Equation 41.20. For example, suppose 1000 
excited atoms are present at time t and each has a 5% probability of emitting a pho-
ton in the next 1 ns. On average, the number of photons emitted during the next 1 ns 
will be 1000 * 0.05 = 50. Consequently, the number of excited atoms changes by 
�Nexc = -50, with the minus sign indicating a decrease.

Thus the change in the number of atoms in the excited state is

 �Nexc(in �t at t) = -Nexc * Prob(decay in �t at t) = -rNexc �t (41.21)

Now let �t S dt. Then �Nexc S dNexc and Equation 41.21 becomes

 
dNexc

dt
= -rNexc (41.22)

Equation 41.22 is a rate equation because it describes the rate at which the excited-
state population changes. If r is large, the population will decay at a rapid rate and will 
have a short lifetime. Conversely, a small value of r implies that the population will 
decay slowly and will live a long time.

The rate equation is a differential equation, but we solved a similar equation for RC 
circuits in Chapter 31. First, we rewrite Equation 41.22 as

 
dNexc

Nexc
= -r dt

Then we integrate both sides from t = 0, when the initial excited-state population is 
N0, to an arbitrary time t when the population is Nexc. That is,

 3
Nexc

N0

 
dNexc

Nexc
= -r3

t

0

dt (41.23)

FigurE 41.30 The number of atoms 
that emit photons during �t is directly 
proportional to the number of excited 
atoms.

Nexc atoms are in an excited state.

The number of photons emitted
during �t is rNexc �t.

Each photon emitted represents
the loss of 1 excited atom.
Thus �Nexc � �rNexc �t.
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Both are well-known integrals, giving

 ln Nexc `
Nexc

N0

= ln Nexc - ln N0 = ln1Nexc

N0
2 = -rt

We can solve for the number of excited atoms at time t by taking the exponential of 
both sides, then multiplying by N0. Doing so gives

 Nexc = N0e-rt (41.24)

Notice that Nexc = N0 at t = 0, as expected. Equation 41.24, the decay equation, 
shows that the excited-state population decays exponentially with time, as we saw in 
the experimental data of Figure 41.29.

It will be more convenient to write Equation 41.24 as

 Nexc = N0e-t/t (41.25)

where

 t =
1
r

= the lifetime of the excited state (41.26)

This is the definition of the lifetime we used in Equation 41.18 to describe the experi-
mental results. The lifetime is the inverse of the decay rate r.

 b. If there are N0 = 1.0 * 1010 excited atoms at t = 0, the number 
still remaining at t = 1.0 ns is

 Nexc = N0e-t/t = (1.0 * 1010)e-(1.0 ns)/(1.3 ns) = 4.63 * 109

This result implies that 5.37 * 109 atoms undergo quantum 
jumps during the first 1.0 ns. Each of these atoms emits one 
photon, so the number of photons emitted during the first 
1.0 ns is 5.37 * 109.

ExAMPLE 41.8  The lifetime of an excited state in mercury
The mercury atom has two valence electrons. One is always in the 
6s state, the other is in a state with quantum numbers n and l. One 
of the excited states in mercury is the state designated 6s6p. The 
decay rate of this state is 7.7 * 108 s-1.

 a. What is the lifetime of this state?

 b. If 1.0 * 1010 mercury atoms are created in the 6s6p state at 
t = 0, how many photons will be emitted during the first 1.0 ns?

SoLvE a. The lifetime is

 t =
1
r

=
1

7.7 * 108 s-1 = 1.3 * 10-9 s = 1.3 ns

Stop to think 41.6 
 An equal number of excited A atoms and excited B atoms are cre-

ated at t = 0. The decay rate of B atoms is twice that of A atoms: rB = 2rA. At t = tA 
(i.e., after one lifetime of A atoms has elapsed), the ratio NB/NA of the number of 
excited B atoms to the number of excited A atoms is

 a. 72 b. 2 c. 1 d. 1
2  e. 6  12

41.8 Stimulated Emission and Lasers
We have seen that an atom can jump from a lower-energy level E1 to a higher-energy 
level E2 by absorbing a photon. FigurE 41.31a illustrates the basic absorption process, 
with a photon of frequency f = �Eatom/h disappearing as the atom jumps from level 
1 to level 2. Once in level 2, as shown in FigurE 41.31b, the atom can emit a photon of 
the same frequency as it jumps back to level 1. This transition is called spontaneous 
emission.
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In 1917, four years after Bohr’s proposal of stationary states in atoms but still prior 
to de Broglie and Schrödinger, Einstein was puzzled by how quantized atoms reach 
thermodynamic equilibrium in the presence of electromagnetic radiation. Einstein 
found that absorption and spontaneous emission were not sufficient to allow a collec-
tion of atoms to reach thermodynamic equilibrium. To resolve this difficulty, Einstein 
proposed a third mechanism for the interaction of atoms with light.

The left half of FigurE 41.31c shows a photon with frequency f = �Eatom/h 
approaching an excited atom. If a photon can induce the 1 S 2 transition of absorption, 
then Einstein proposed that it should also be able to induce a 2 S 1 transition. In a 
sense, this transition is a reverse absorption. But to undergo a reverse absorption, the 
atom must emit a photon of frequency f = �Eatom/h. The end result, as seen in the 
right half of Figure 41.31c, is an atom in level 1 plus two photons! Because the first 
photon induced the atom to emit the second photon, this process is called stimulated 
emission.

Stimulated emission occurs only if the first photon’s frequency exactly matches 
the E2 - E1 energy difference of the atom. This is precisely the same condition that 
absorption has to satisfy. More interesting, the emitted photon is identical to the in-
cident photon. This means that as the two photons leave the atom they have exactly 
the same frequency and wavelength, are traveling in exactly the same direction, and 
are exactly in phase with each other. In other words, stimulated emission produces a 
second photon that is an exact clone of the first.

Stimulated emission is of no importance in most practical situations. Atoms 
typically spend only a few nanoseconds in an excited state before undergoing sponta-
neous emission, so the atom would need to be in an extremely intense light wave for 
stimulated emission to occur prior to spontaneous emission. Ordinary light sources 
are not nearly intense enough for stimulated emission to be more than a minor effect; 
hence it was many years before Einstein’s prediction was confirmed. No one had 
doubted Einstein because he had clearly demonstrated that stimulated emission was 
necessary to make the energy equations balance, but it seemed no more important than 
would pennies to a millionaire balancing her checkbook. At least, that is, until 1960, 
when a revolutionary invention appeared that made explicit use of stimulated emis-
sion: the laser.

Lasers
The word laser is an acronym for light amplification by the stimulated emission of 
radiation. The first laser, a ruby laser, was demonstrated in 1960, and several other 
kinds of lasers appeared within a few months. The driving force behind much of the 
research was the American physicist Charles Townes. Townes was awarded the Nobel 
Prize in 1964 for the invention of the maser, an earlier device using microwaves, and 
his theoretical work leading to the laser.

Today, lasers do everything from being the light source in fiber-optic communica-
tions to measuring the distance to the moon and from playing your DVD to performing 
delicate eye surgery. But what is a laser? Basically it is a device that produces a beam 
of highly coherent and essentially monochromatic (single-color) light as a result of 
stimulated emission. Coherent light is light in which all the electromagnetic waves 
have the same phase, direction, and amplitude. It is the coherence of a laser beam that 
allows it to be very tightly focused or to be rapidly modulated for communications.

Let’s take a brief look at how a laser works. FigurE 41.32 represents a system of at-
oms that have a lower energy level E1 and a higher energy level E2. Suppose there are 
N1 atoms in level 1 and N2 atoms in level 2. Left to themselves, all the atoms would 
soon end up in level 1 because of the spontaneous emission 2 S 1. To prevent this, we 
can imagine that some type of excitation mechanism, perhaps an electrical discharge, 
is continuing to produce new excited atoms in level 2.

Let a photon of frequency f = (E2 - E1)/h be incident on this group of atoms. 
Because it has the correct frequency, it could be absorbed by one of the atoms in 

FigurE 41.31 Three types of radiative 
transitions.
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level 1. Another possibility is that it could cause stimulated emission from one of the 
level 2 atoms. Ordinarily N2 V N1, so absorption events far outnumber stimulated 
emission events. Even if a few photons were generated by stimulated emission, they 
would quickly be absorbed by the vastly larger group of atoms in level 1.

But what if we could somehow arrange to place every atom in level 2, making 
N1 = 0? Then the incident photon, upon encountering its first atom, will cause stimu-
lated emission. Where there was initially one photon of frequency f, now there are 
two. These will strike two additional excited-state atoms, again causing stimulated 
emission. Then there will be four photons. As FigurE 41.33 shows, there will be a chain 
reaction of stimulated emission until all N2 atoms emit a photon of frequency f.

Charles Townes.

FigurE 41.33 Stimulated emission creates a chain reaction of photon production in a 
population of excited atoms.

Stage 2 Stage 3

Output of many
identical photons

Stage 1

Incident
photon

In stimulated emission, each emitted photon is identical to the incident photon. The 
chain reaction of Figure 41.33 will lead not just to N2 photons of frequency f, but to 
N2 identical photons, all traveling together in the same direction with the same phase. 
If N2 is a large number, as would be the case in any practical device, the one initial 
photon will have been amplified into a gigantic coherent pulse of light! A collection of 
excited-state atoms is called an optical amplifier.

As FigurE 41.34 shows, the stimulated emission is sustained by placing the lasing 
medium—the sample of atoms that emits the light—in an optical cavity consisting of 
two facing mirrors. One of the mirrors will be partially transmitting so that some of the 
light emerges as the laser beam.

Although the chain reaction of Figure 41.33 illustrates the idea most clearly, it 
is not necessary for every atom to be in level 2 for amplification to occur. All that 
is needed is to have N2 7 N1 so that stimulated emission exceeds absorption. Such 
a situation is called a population inversion. The process of obtaining a population 
inversion is called pumping, and we will look at two specific examples. Pumping is 
the technically difficult part of designing and building a laser because normal excita-
tion mechanisms do not create population inversions. In fact, lasers would likely have 
been discovered accidentally long before 1960 if population inversions were easy to 
create.

The ruby Laser
The first laser to be developed was a ruby laser. FigurE 41.35a shows the energy-level 
structure of the chromium atoms that gives ruby its optical properties. Normally, the 
number of atoms in the ground-state level E1 far exceeds the number of excited-state 
atoms with energy E2. That is, N2 V N1. Under these circumstances 690 nm light is 
absorbed rather than amplified. But suppose that we could rapidly excite more than 
half the chromium atoms to level E2. Then we would have a population inversion 
(N2 7 N1) between levels E1 and E2.

This can be accomplished by optically pumping the ruby with a very intense pulse 
of white light from a flashlamp. A flashlamp is like a camera flash, only vastly more 

FigurE 41.34 Lasing takes place in an 
optical cavity.
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intense. In the basic arrangement of FigurE 41.35b, a helical flashlamp is coiled around 
a ruby rod that has mirrors bonded to its end faces. The lamp is fired by discharging 
a high-voltage capacitor through it, creating a very intense light pulse lasting just a 
few microseconds. This intense light excites nearly all the chromium atoms from the 
ground state to the upper energy levels. From there, they quickly (�10-8 s) decay 
nonradiatively to level 2. With N2 7 N1, a population inversion has been created.

Once a photon initiates the laser pulse, the light intensity builds quickly into a 
brief but incredibly intense burst of light. A typical output pulse lasts 10 ns and has an 
energy of 1 J. This gives a peak power of

 P =
�E

�t
=

1 J

10-8 s
= 108 W = 100 MW

One hundred megawatts of light power! That is more than the electrical power 
used by a small city. The difference, of course, is that a city consumes that power 
continuously but the laser pulse lasts a mere 10 ns. The laser cannot fire again until 
the capacitor is recharged and the laser rod cooled. A typical firing rate is a few pulses 
per second, so the laser is “on” only a few billionths of a second out of each second.

Ruby lasers have been replaced by other pulsed lasers that, for various practical 
reasons, are easier to operate. However, they all operate with the same basic idea of 
rapid optical pumping to upper states, rapid nonradiative decay to level 2 where the 
population inversion is formed, then rapid buildup of an intense optical pulse.

The Helium-Neon Laser
The familiar red laser used in lecture demonstrations, laboratories, and supermarket 
checkout scanners is the helium-neon laser, often called a HeNe laser. Its output is a 
continuous, rather than pulsed, wavelength of 632.8 nm. The medium of a HeNe laser 
is a mixture of �90% helium and �10% neon gases. As FigurE 41.36a shows, the gases 
are sealed in a glass tube, then an electrical discharge is established along the bore of 
the tube. Two mirrors are bonded to the ends of the discharge tube, one a total reflec-
tor and the other having �2% transmission so that the laser beam can be extracted.

The atoms that lase are the neon atoms, but the pumping method involves the he-
lium atoms. The electrons in the discharge collisionally excite the 1s2s state of helium. 
This state has a very low spontaneous decay rate (i.e., a very long lifetime) because a 
decay back to the 1s2 state would violate the �l selection rule, so it is possible to build 
up a fairly large population (but not an inversion) of excited helium atoms in the 1s2s 
state. The energy of the 1s2s state is 20.6 eV.

Interestingly, an excited state of neon, the 5s state, also has an energy of 20.6 eV. 
If a 1s2s excited helium atom collides with a ground-state neon atom, as frequently 
happens, the excitation energy can be transferred from one atom to the other! Written 
as a chemical reaction, the process is

 He* + Ne S He + Ne*

where the asterisk indicates the atom is in an excited state. This process, called exci-
tation transfer, is very efficient for the 5s state because the process is resonant—a 
perfect energy match. Thus the two-step process of collisional excitation of helium, 
followed by excitation transfer between helium and neon, pumps the neon atoms into 
the excited 5s state. This is shown in FigurE 41.36b.

The 5s energy level in neon is �1.95 eV above the 3p state. The 3p state is very 
nearly empty of population, both because it is not efficiently populated in the discharge 
and because it undergoes very rapid spontaneous emission to the 3s states. Thus the 
large number of atoms pumped into the 5s state creates a population inversion with 
respect to the lower 3p state. These are the necessary conditions for laser action.

Because the lower level of the laser transition is normally empty of population, plac-
ing only a small fraction of the neon atoms in the 5s state creates a population inversion. 
Thus a fairly modest pumping action is sufficient to create the inversion and start the 
laser. Furthermore, a HeNe laser can maintain a continuous inversion and thus sustain 

FigurE 41.35 A flashlamp-pumped ruby 
laser.
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continuous lasing. The electrical discharge continuously creates 5s excited atoms in the 
upper level, via excitation transfer, and the rapid spontaneous decay of the 3p atoms 
from the lower level keeps its population low enough to sustain the inversion.

A typical helium-neon laser has a power output of 1 mW = 10-3 J/s at 632.8 nm 
in a 1-mm-diameter laser beam. As you can show in a homework problem, this output 
corresponds to the emission of 3.2 * 1015 photons per second. Other continuous lasers 
operate by similar principles, but can produce much more power. The argon laser, 
which is widely used in scientific research, can produce up to 20 W of power at green 
and blue wavelengths. The carbon dioxide laser produces output power in excess of 
1000 W at the infrared wavelength of 10.6 mm. It is used in industrial applications for 
cutting and welding.

ExAMPLE 41.9  An ultraviolet laser
An ultraviolet laser generates a 10 MW, 5.0-ns-long light pulse 
at a wavelength of 355 nm. How many photons are in each 
pulse?

SoLvE The energy of each light pulse is the power multiplied by 
the duration:

 Epulse = P �t = (1.0 * 107 W)(5.0 * 10-9 s) = 0.050 J

Each photon in the pulse has energy

 Ephoton = hf =
hc

l
= 3.50 eV = 5.60 * 10-19 J

Because Epulse = NEphoton, the number of photons is

 N = Epulse /Ephoton = 8.9 * 1016 photons

To evaluate this integral, it will be useful to change variables. 
Let  u = 2r/aB, so that the exponential can be written more simply 
as e -u. Turning this around, we have r =

1
2 aBu and thus

 r2 dr = 11
2 aBu2211

2 aB du2 =
1
8 aB 

3u2 du

A change of variables requires a corresponding change of limits: 
When r = 0, u = 0 also; when r =

1
2 aB, u = 1. With these substi-

tutions, the probability calculation becomes

 Prob1r …
1
2 aB2 =

1

2
 3

1

0

u2e -u du

This looks much nicer! Notice that all the aB have disappeared, so 
our answer will be a numerical value.

This is not an easy integral, but it is a common one. It can be 
found in integral tables, such as in Appendix A, or evaluated with 
mathematical software. The result is

  Prob1r …
1
2 aB2 =

1

2
3- (u2 + 2u + 2)e -u4 1

0

  =
1

2
32 - 5e -14 = 0.080

The probability that a 1s hydrogen electron is less than half the 
Bohr radius from the proton is 0.080, or 8.0%.

ASSESS The probability is small, but that is not unexpected. The 
graph of the radial probability density in Figure 41.8  shows that 
the probability peaks at r = aB and then decreases rather slowly. 
We can see that the area under that curve from r = 0 to r =

1
2 aB is 

not large. The electron can be found much closer to the proton than 
one Bohr radius, but not with a large probability.

What is the probability that a 1s hydrogen electron is found at a 
distance from the proton that is less than half the Bohr radius?

MoDEL The Schrödinger model of the hydrogen atom represents 
the electron as a wave function. We can’t say exactly where the 
electron is, but we can calculate the probability of finding it in a 
specified region of space.

SoLvE We’re interested in finding the electron not at a certain 
point in space but within a certain distance from the nucleus. For 
this we use the radial probability density

 Pr (r) = 4pr2 0Rnl(r) 0 2
where Rnl(r) is the radial wave function, rather than the square of 
the wave function c(x, y, z). The probability of finding the elec-
tron at a distance between rmin and rmax is

  Prob(rmin … r … rmax) = 3
rmax

rmin

Pr (r) dr

  = 4p3
rmax

rmin

r2 0Rnl(r) 0 2 dr

The 1s radial wave function was given in Equations 41.7:

 R1s(r) =
12paB 

3
 e -r/aB

where aB is the Bohr radius. We specify that the electron is less 
than half the Bohr radius from the proton by setting rmin = 0 and 
rmax =

1
2 aB. Thus the probability we seek is

  Prob1r …
1
2 aB2 = 4p3

aB/2

0

r2 0R1s(r) 0 2 dr

  =
4p

paB 

3 3
aB/2

0

r2e -2r/aB dr

CHALLENgE ExAMPLE 41.10  Electron probability in hydrogen
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Atomic spectra are generated by excitation 
followed by a photon-emitting quantum jump.

•	 Excitation by absorption or collision

•	 Quantum-jump selection rule �l = {1

Lifetimes of excited states

The excited-state population decreases  
exponentially as

Nexc = N0 e
-t/t

where t = 1/r is the lifetime and r is the decay 
rate. It’s not possible to predict when a particular 
atom will decay, but the probability is

Prob(in dt at t) = r dt

Stimulated emission of an excited state can 
be caused by a photon with Ephoton = E2 - E1. 
Laser action can occur if N2 7 N1, a condition 
called a population inversion.

Hydrogen Atom
The three-dimensional Schrödinger equation has stationary-state solutions for the 
hydrogen atom potential energy only if three conditions are satisfied:

• Energy En = -13.60 eV/n2  n = 1, 2, 3, . . .

• Angular momentum L = 2l(l + 1) U  l = 0, 1, 2, 3, p , n - 1

• z-component of angular momentum
  Lz = mU  m = - l,- l + 1, p , 0, p , l - 1, l

Each state is characterized by quantum numbers 
(n, l, m), but the energy depends only on n.

The probability of finding the electron within  
a small distance interval dr at distance r is

 Prob(in dr at r) = Pr (r)dr

where Pr (r) = 4pr2 0Rnl(r) 0 2 is the radial 
probability density.

Graphs of Pr (r) suggest that the electrons are 
arranged in shells.

Multielectron Atoms
The potential energy is electron-nucleus plus 
electron-electron. In the independent particle 
approximation, each electron is described by 
the same quantum  
numbers (n, l, m, ms) 
used for the hydrogen  
atom. The energy of a  
state depends on n and l. 
For each n, energy 
increases as l increases.

• High-l states correspond 
to circular orbits. These  
stay outside the core.

• Low-l states correspond 
to elliptical orbits. These  
penetrate the core to  
interact more strongly  
with the nucleus. This  
interaction lowers  
their energy.

Electron spin

The electron has an inherent angular momentum S
u

 and magnetic moment m
u

 
as if it were spinning. The spin angular momentum has a fixed magnitude 
S = 1s(s + 1) U, where s =

1
2. The z-component is Sz = ms U, where ms = {1

2. 
These two states are called spin-up and spin-down. Each atomic state is fully 
characterized by the four quantum numbers (n, l, m, ms).

The Pauli exclusion principle says that no 
more than one electron can occupy each quan-
tum state. The periodic table of the elements 
is based on the fact that the ground state is the 
lowest-energy electron configuration compatible 
with the Pauli principle.

S u M M A r y
The goal of Chapter 41 has been to understand the structure and properties of atoms.

important Concepts

Applications
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principal quantum number, n
orbital quantum number, l
magnetic quantum number, m
ionization energy
electron cloud
radial wave function, Rnl (r)
radial probability density, Pr (r)
shell model
spin

spin quantum number, ms

spin-up
spin-down
independent particle 

approximation (IPA)
Pauli exclusion principle
electron configuration
closed shell

subshell
excitation
allowed transition
selection rule
collisional excitation
nonradiative transition
lifetime, t
decay rate, r

spontaneous emission
stimulated emission
laser
coherent
optical cavity
population inversion
pumping
excitation transfer

Terms and Notation

E x E r C i S E S  A N D  P r o B L E M S

Problems labeled  integrate material from earlier chapters.

Exercises

Sections 41.1–41.2 The Hydrogen Atom

 1. | What is the angular momentum of a hydrogen atom in (a) a 6s 
state and (b) a 4f state? Give your answers as a multiple of U.

 2. | List the quantum numbers, excluding spin, of (a) all possible 
3p states and (b) all possible 3d states.

 3. | A hydrogen atom has orbital angular momentum 3.65 *  
10-34 J s.

 a. What letter (s, p, d, or f ) describes the electron?
 b. What is the atom’s minimum possible energy? Explain.
 4. | What is the maximum possible angular momentum L (as a 

multiple of U) of a hydrogen atom with energy -0.544 eV?

C o N C E P T u A L  Q u E S T i o N S

 1. Consider the two hydrogen-atom states 5d and 4f. Which has the 
higher energy? Explain.

 2. What is the difference between the probability density and the 
radial probability density?

 3. What is the difference between l and L?
 4. What is the difference between s and S?
 5. FigurE Q41.5 shows the outcome of a 

Stern-Gerlach experiment with atoms 
of element X.

 a. Do the peaks represent different val-
ues of the atom’s total angular mo-
mentum or different values of the 
z-component of its angular momen-
tum? Explain.

 b. What angular momentum quantum 
numbers characterize these four 
peaks?

 6. Does each of the configurations in 
FigurE Q41.6 represent a possible elec-
tron configuration of an element? If so, 
(i) identify the element and (ii) determine whether this is the 
ground state or an excited state. If not, why not?

 7. What is an atom’s ionization energy? In other words, if you 
know the ionization energy of an atom, what is it that you know 
about the atom?

 8. Figure 41.23 shows that the ionization energy of cadmium 
(Z = 48) is larger than that of its neighbors. Why is this?

 9. A neon discharge tube emits a bright reddish-orange spectrum, 
but a glass tube filled with neon is completely transparent. Why 
doesn’t the neon in the tube absorb orange and red wavelengths?

 10. The hydrogen atom 1s wave function is a maximum at r = 0. 
But the 1s radial probability density, shown in Figure 41.8, peaks 
at r = aB and is zero at r = 0. Explain this paradox.

 11. In a multielectron atom, the lowest-l state for each n (2s, 3s, 4s, 
etc.) is significantly lower in energy than the hydrogen state hav-
ing the same n. But the highest-l state for each n (2p, 3d, 4f, 
etc.) is very nearly equal in energy to the hydrogen state with the 
same n. Explain.

 12. In FigurE Q41.12, a photon with energy 2.0 eV is incident on an 
atom in the p state. Does the atom undergo an absorption transi-
tion, a stimulated emission transition, or neither? Explain.
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 5. | What are E and L (as a multiple of U) of a hydrogen atom in 
the 6f state?

Section 41.3 The Electron’s Spin

 6. || When all quantum numbers are considered, how many different 
quantum states are there for a hydrogen atom with n = 1? With 
n = 2? With n = 3? List the quantum numbers of each state.

 7. | How many lines of atoms would you expect to see on the col-
lector plate of a Stern-Gerlach apparatus if the experiment is 
done with (a) lithium and (b) beryllium? Explain.

Section 41.4 Multielectron Atoms

Section 41.5 The Periodic Table of the Elements

 8. | Predict the ground-state electron configurations of Mg, Sr, 
and Ba.

 9. | Predict the ground-state electron configurations of Al, Ga, and In.
 10. | Identify the element for each of these electron configurations. 

Then determine whether this configuration is the ground state or 
an excited state.

 a. 1s22s22p5

 b. 1s22s22p63s23p64s23d 104p
 11. | Identify the element for each of these electron configurations. 

Then determine whether this configuration is the ground state or 
an excited state.

 a. 1s22s22p53s
 b. 1s22s22p63s23p64s23d 2

Section 41.6 Excited States and Spectra

 12. | Show that hc = 1240 eV nm.
 13. || What is the electron configuration of the second excited state 

of lithium?
 14. || An electron accelerates through a 12.5 V potential difference, 

starting from rest, and then collides with a hydrogen atom, excit-
ing the atom to the highest energy level allowed. List all the pos-
sible quantum-jump transitions by which the excited atom could 
emit a photon and the wavelength (in nm) of each.

 15. | a.  Is a 4p S 4s transition allowed in sodium? If so, what is its 
wavelength (in nm)? If not, why not?

   b.  Is a 3d S 4s transition allowed in sodium? If so, what is its 
wavelength (in nm)? If not, why not?

Section 41.7 Lifetimes of Excited States

 16. | An excited state of an atom has a 25 ns lifetime. What is the 
probability that an excited atom will emit a photon during a 
0.50 ns interval?

 17. | 1.0 * 106 sodium atoms are excited to the 3p state at t = 0 s. 
How many of these atoms remain in the 3p state at (a)  t = 10 ns, 
(b) t = 30 ns, and (c) t = 100 ns?

 18. | A hydrogen atom is in the 2p state. How much time must 
elapse for there to be a 1% chance that this atom will undergo a 
quantum jump to the ground state?

 19. || 1.0 * 106 atoms are excited to an upper energy level at 
t = 0 s. At the end of 20 ns, 90% of these atoms have undergone 
a quantum jump to the ground state.

 a. How many photons have been emitted?
 b. What is the lifetime of the excited state?

 20. || 1.00 * 106 sodium atoms are excited to the 3p state at t = 0 s. 
At what time have 8.0 * 105 photons been emitted?

Section 41.8 Stimulated Emission and Lasers

 21. | A 1.0 mW helium-neon laser emits a visible laser beam with 
a wavelength of 633 nm. How many photons are emitted per 
second?

 22. || In LASIK surgery, a laser is used to reshape the cornea of the 
eye to improve vision. The laser produces extremely short pulses 
of light, each containing 1.0 mJ of energy.

 a. There are 9.7 * 1014 photons in each pulse. What is the 
wavelength of the laser?

 b. Each pulse lasts a mere 20 ns. What is the average power 
delivered to the cornea during a pulse?

 23. | A laser emits 1.0 * 1019 photons per second from an excited 
state with energy E2 = 1.17  eV. The lower energy level is 
E1 = 0 eV.

 a. What is the wavelength of this laser?
 b. What is the power output of this laser?

Problems

 24. || a.  Draw a diagram similar to Figure 41.3 to show all the pos-
sible orientations of the angular momentum vector L

u

 for the 
case l = 3. Label each L

u

 with the appropriate value of m.
   b.  What is the minimum angle between L

u

 and the z-axis?
 25. || There exist subatomic particles whose spin is characterized by 

s = 1, rather than the s =
1
2 of electrons. These particles are said 

to have a spin of one.
 a. What is the magnitude (as a multiple of U) of the spin angular 

momentum S for a particle with a spin of one?
 b. What are the possible values of the spin quantum number?
 c. Draw a vector diagram similar to Figure 41.14 to show the 

possible orientations of S
u

.
 26. || A hydrogen atom in its fourth excited state emits a photon 

with a wavelength of 1282 nm. What is the atom’s maximum 
possible orbital angular momentum (as a multiple of U) after the 
emission?

 27. || A hydrogen atom has l = 2. What are the (a) minimum 
(as a multiple of U) and (b) maximum values of the quantity 
(Lx 

2 + Ly 

2)1/2?
 28. | Calculate (a) the radial wave function and (b) the radial prob-

ability density at r =
1
2 aB for an electron in the 1s state of hydro-

gen. Give your answers in terms of aB.
 29. || For an electron in the 1s state of hydrogen, what is the prob-

ability of being in a spherical shell of thickness 0.010aB at dis-
tance (a) 12 aB, (b) aB, and (c) 2aB from the proton?

 30. || Prove that the normalization constant of the 1s radial wave 
function of the hydrogen atom is (paB 

3)-1/2, as given in Equa-
tions 41.7.

  Hint: A useful definite integral is

 3
�

0

xne-ax dx =
n

an+1

 31. || Prove that the normalization constant of the 2p radial wave 
function of the hydrogen atom is (24paB 

3)-1/2, as shown in 
Equations 41.7.

  Hint: See the hint in Problem 30.

BIO
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 42. || FigurE P41.42 shows a few energy levels of the mercury atom.
 a. Make a table showing all the allowed transitions in the emis-

sion spectrum. For each transition, indicate the photon wave-
length, in nm.

 b. What minimum speed must an electron have to excite the 
492-nm-wavelength blue emission line in the Hg spectrum?

 43. ||| Suppose you put five electrons into a 0.50-nm-wide one-
dimensional rigid box (i.e., an infinite potential well).

 a. Use an energy-level diagram to show the electron configura-
tion of the ground state.

 b. What is the ground-state energy of this configuration?
 44. || Three electrons are in a one-dimensional rigid box (i.e., an 

infinite potential well) of length 0.50 nm. Two are in the n = 1 
state and one is in the n = 6 state. The selection rule for the rigid 
box allows only those transitions for which �n is odd.

 a. Draw an energy-level diagram. On it, show the filled levels 
and show all transitions that could emit a photon.

 b. What are all the possible wavelengths that could be emitted 
by this system?

 45. || a.  What is the decay rate for the 2p state of hydrogen?
   b.  During what interval of time will 10% of a sample of 2p 

hydrogen atoms decay?
 46. || An atom in an excited state has a 1.0% chance of emitting a 

photon in 0.10 ns. What is the lifetime of the excited state?
 47. || a.  Find an expression in terms of t for the half-life t1/2 of a 

sample of excited atoms. The half-life is the time at which 
half of the excited atoms have undergone a quantum jump 
and emitted a photon.

   b.  What is the half-life of the 3p state of sodium?
 48. || In fluorescence microscopy, an important tool in biology, a 

laser beam is absorbed by target molecules in a sample. These 
molecules are then imaged by a microscope as they emit longer-
wavelength photons in quantum jumps back to lower energy 
levels, a process known as fluorescence. A variation on this 
technique is two-photon excitation. If two photons are absorbed 
simultaneously, their energies add. Consequently, a molecule 
that is normally excited by a photon of energy Ephoton can be ex-
cited by the simultaneous absorption of two photons having half 
as much energy. For this process to be useful, the sample must be 
irradiated at the very high intensity of at least 1032 photons/m2 s. 
This is achieved by concentrating the laser power into very short 
pulses (100 fs pulse length) and then focusing the laser beam 
to a small spot. The laser is fired at the rate of 108 pulses each 
second. Suppose a biologist wants to use two-photon excitation 

BIO

 32. || Prove that the radial probability density peaks at r = aB for 
the 1s state of hydrogen.

 33. || a.  Calculate and graph the hydrogen radial wave function 
R2p(r) over the interval 0 … r … 8aB.

   b.  Determine the value of r (in terms of aB) for which R2p(r) 
is a maximum.

   c.  Example 41.3 and Figure 41.8 showed that the radial prob-
ability density for the 2p state is a maximum at r = 4aB. 
Explain why this differs from your answer to part b.

 34. || In general, an atom can have both orbital angular momen-
tum and spin angular momentum. The total angular momen-
tum is defined to be J

u

=L
u

+ S
u

. The total angular momentum is 
quantized in the same way as L

u

 and S
u

. That is, J = 1j(j + 1) U, 
where j is the total angular momentum quantum number. The 
z-component of J

u

 is Jz = Lz + Sz = mj U, where mj goes in inte-
ger steps from - j to + j. Consider a hydrogen atom in a p state, 
with l = 1.

 a. Lz has three possible values and Sz has two. List all possible 
combinations of Lz and Sz. For each, compute Jz and deter-
mine the quantum number mj. Put your results in a table.

 b. The number of values of Jz that you found in part a is too 
many to go with a single value of j. But you should be able to 
divide the values of Jz into two groups that correspond to two 
values of j. What are the allowed values of j? Explain. In a 
classical atom, there would be no restrictions on how the two 
angular momenta L

u

 and S
u

 can combine. Quantum mechanics 
is different. You’ve now shown that there are only two al-
lowed ways to add these two angular momenta.

 35. | Draw a series of pictures, similar to Figure 41.22, for the 
ground states of K, Sc, Co, and Ge.

 36. | Draw a series of pictures, similar to Figure 41.22, for the 
ground states of Ca, Ni, As, and Kr.

 37. | a.  What downward transitions are possible for a sodium atom 
in the 6s state? (See Figure 41.24.)

   b.  What are the wavelengths of the photons emitted in each of 
these transitions?

 38. || The 5d S 3p transition in the emission spectrum of sodium 
has a wavelength of 499 nm. What is the energy of the 5d state?

 39. || A sodium atom emits a photon with wavelength 818 nm 
shortly after being struck by an electron. What minimum speed 
did the electron have before the collision?

 40. || The ionization energy of an atom is known to be 5.5 eV. The 
emission spectrum of this atom contains only the four wave-
lengths 310.0 nm, 354.3 nm, 826.7 nm, and 1240.0 nm. Draw 
an energy-level diagram with the fewest possible energy levels 
that agrees with these experimental data. Label each level with 
an appropriate l quantum number.

  Hint: Don’t forget about the �l selection rule.
 41. | FigurE P41.41 shows the first 

few energy levels of the lithium 
atom. Make a table showing all 
the allowed transitions in the 
emission spectrum. For each 
transition, indicate

 a. The wavelength, in nm.
 b. Whether the transition is in 

the infrared, the visible, or the 
ultraviolet spectral region.

 c. Whether or not the transition 
would be observed in the 
lithium absorption spectrum.
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to excite a molecule that in normal fluorescence microscopy 
would be excited by a laser with a wavelength of 420 nm. If she 
focuses the laser beam to a 2.0-mm-diameter spot, what mini-
mum energy must each pulse have?

 49. || An electrical discharge in a neon-filled tube maintains a steady 
population of 1.0 * 109 atoms in an excited state with t = 20 ns. 
How many photons are emitted per second from atoms in this 
state?

 50. || A ruby laser emits a 100 MW, 10-ns-long pulse of light with 
a wavelength of 690 nm. How many chromium atoms undergo 
stimulated emission to generate this pulse?

Challenge Problems

 51. Two excited energy levels are separated by the very small energy 
difference �E. As atoms in these levels undergo quantum jumps 
to the ground state, the photons they emit have nearly identical 
wavelengths l.

 a. Show that the wavelengths differ by

 �l =
l2

hc
 �E

 b. In the Lyman series of hydrogen, what is the wavelength dif-
ference between photons emitted in the n = 20 to n = 1 tran-
sition and photons emitted in the n = 21 to n = 1 transition?

 52. What is the probability of finding a 1s hydrogen electron at dis-
tance r 7 aB from the proton?

 53. Prove that the most probable distance from the proton of an elec-
tron in the 2s state of hydrogen is 5.236aB.

 54. Find the distance, in terms of aB, between the two peaks in the 
radial probability density of the 2s state of hydrogen.

  Hint: This problem requires a numerical solution.
 55. Suppose you have a machine that gives you pieces of candy 

when you push a button. Eighty percent of the time, pushing 
the button gets you two pieces of candy. Twenty percent of the 
time, pushing the button yields 10 pieces. The average number 
of pieces per push is Navg = 2 * 0.80 + 10 *  0.20 = 3.6. That 
is, 10 pushes should get you, on average, 36 pieces. Mathemati-
cally, the average value when the probabilities differ is Navg =g(Ni * Probability of i). We can do the same thing in quantum 
mechanics, with the difference that the sum becomes an integral. 
If you measured the distance of the electron from the proton in 
many hydrogen atoms, you would get many values, as indicated 

by the radial probability density. But the average value of r 
would be

 ravg = 3
�

0

rPr(r) dr

  Calculate the average value of r in terms of aB for the electron in 
the 1s and the 2p states of hydrogen.

 56. An atom in an excited state has a 1.0% chance of emitting a 
photon in 0.20 ns. How long will it take for 25% of a sample of 
excited atoms to decay?

 57. The 1997 Nobel Prize in physics went to Steven Chu, Claude 
Cohen-Tannoudji, and William Phillips for their development 
of techniques to slow, stop, and “trap” atoms with laser light. 
To see how this works, consider a beam of rubidium atoms 
(mass 1.4 * 10-25 kg) traveling at 500 m/s after being evaporated 
out of an oven. A laser beam with a wavelength of 780 nm is 
directed against the atoms. This is the wavelength of the 5s S 5p 
transition in rubidium, with 5s being the ground state, so the 
photons in the laser beam are easily absorbed by the atoms. After 
an average time of 15 ns, an excited atom spontaneously emits a 
780-nm-wavelength photon and returns to the ground state.

 a. The energy-momentum-mass relationship of Einstein’s theory 
of relativity is E2 = p2c2 + m2c4. A photon is massless, so the 
momentum of a photon is p = Ephoton/c. Assume that the atoms 
are traveling in the positive x-direction and the laser beam in 
the negative x-direction. What is the initial momentum of an 
atom leaving the oven? What is the momentum of a photon of 
light?

 b. The total momentum of the atom and the photon must be con-
served in the absorption processes. As a consequence, how 
many photons must be absorbed to bring the atom to a halt?

NoTE  Momentum is also conserved in the emission processes. 
However, spontaneously emitted photons are emitted in random 
directions. Averaged over many absorption/emission cycles, 
the net recoil of the atom due to emission is zero and can be 
ignored. 

 c. Assume that the laser beam is so intense that a ground-state 
atom absorbs a photon instantly. How much time is required 
to stop the atoms?

 d. Use Newton’s second law in the form F = �p/�t to calcu-
late the force exerted on the atoms by the photons. From this, 
calculate the atoms’ acceleration as they slow.

 e. Over what distance is the beam of atoms brought to a halt?

SToP To THiNk ANSWErS

Stop to Think 41.1: n � 3, l � 1, or a 3p state.

Stop to Think 41.2: 4. You can see in Figure 41.8 that the ns state 
has n maxima.

Stop to Think 41.3: No. ms = {1
2 , so the z-component Sz cannot be 

zero.

Stop to Think 41.4: b. The atom would have less energy if the 3s 
electron were in a 2p state.

Stop to Think 41.5: c. Emission is a quantum jump to a lower-energy 
state. The 5p S 4p transition is not allowed because �l = 0 violates 
the selection rule. The lowest-energy allowed transition is 5p S 3d, 
with Ephoton = �Eatom = 3.0 eV.

Stop to Think 41.6: e. Because rB = 2rA, the ratio is e-2/e-1 =
e-1 6

1
2.
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The Shell Model
The force holding the nucleus together is 
a fundamental force of nature called the 
strong force. It is a short-range force 
whose influence extends over only a few 
femtometers.

Nuclear Applications
You’ll learn about some of the applica-
tions of nuclear physics, which range 
from measuring ages to curing diseases. 
You’ll also learn how radiation dose is 
measured and what it means.

Nuclear Decay
You’ll learn the three basic ways in 
which an unstable nucleus can decay.
■	 Alpha decay: Emission of a 4He 

nucleus (alpha particle).
■	 Beta decay: Emission of an electron 

or positron (beta particle).
■	 Gamma decay: Emission of a high-

energy photon (gamma ray).

Nuclear Structure
You’ll learn how the nucleus is constructed, 
what holds it together, and why some 
nuclei are more stable than others.

Nuclear Physics42

A photographic emulsion records 
the tracks of alpha particles 
emitted by a speck of radium.

 Looking Ahead The goal of Chapter 42 is to understand the physics of the nucleus and some applications of nuclear physics.

Nuclear Stability
More than 3000 isotopes are known, 
but only 266 have a stable nucleus. In a 
graph of neutron number against proton 
number, the stable nuclei all cluster near 
a well-defined line of stability.

 Looking Back
Section 40.6 Finite potential wells

1
2
1
4

Nuclei remaining

0
0 t

N0

N0

N0

t1/2 2t1/2

Atom

Nucleons

The nucleus consists 
of positively charged 
protons and electrically 
neutral neutrons. 
Together, these are 
called nucleons. The 
nuclear diameter is only 
a few femtometers.

 Looking Back
Sections 37.6–37.7 The nucleus

Line of stability

Stable

Unstable

Neutrons

Protons

As nuclei grow, the 
neutron number 
increases faster than 
the proton number. 
You’ll learn how this 
is necessary to hold 
the nucleus together.

Half-Lives
The number of unstable nuclei in a 
sample decreases exponentially with 
time. We describe nuclear decay by its 
half-life, the time for half the atoms to 
decay. Half-lives range from microsec-
onds to billions of years.

Nuclear decay releases 
large amounts of energy. 
This plutonium sphere—
used to power spacecraft—
will glow for decades from 
the energy of alpha decay.

2
4

2

2
4

2

ProtonsNeutrons

12CYou’ll learn to use 
a shell model of 
nuclear structure, 
analogous to the 
electron shells of 
atoms, to explain 
nuclear properties.
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don’t vanish—they 
become some 
other kind of 
nucleus called the 
daughter nucleus. 
You’ll learn how 
to identify the 
daughter nucleus 
of a decay.

This image of the 
brain of a stroke 
patient was made 
with nuclei that 
decay by emitting 
gamma-ray photons. 
The damaged area, 
with reduced activity, 
is clearly visible.
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42.1 Nuclear Structure
The 1890s was a decade of mysterious rays. Cathode rays were being studied in sev-
eral laboratories, and, in 1895, Röntgen discovered x rays. In 1896, after hearing of 
Röntgen’s discovery, the French scientist A. H. Becquerel wondered if mineral crys-
tals that fluoresce after exposure to sunlight were emitting x rays. He put a piece of 
film in an opaque envelope, then placed a crystal on top and left it in the sun. To his 
delight, the film in the envelope was exposed.

Becquerel thought he had discovered x rays coming from crystals, but his joy was 
short lived. He soon found that the film could be exposed equally well simply by be-
ing stored in a closed drawer with the crystals. Further investigation showed that the 
crystal, which happened to be a mineral containing uranium, was spontaneously emit-
ting some new kind of ray. Rather than finding x rays, as he had hoped, Becquerel had 
discovered what became known as radioactivity.

Ernest Rutherford soon took up the investigation and found not one but three dis-
tinct kinds of rays emitted from crystals containing uranium. Not knowing what they 
were, he named them for their ability to penetrate matter and ionize air. The first, 
which caused the most ionization and penetrated the least, he called alpha rays. The 
second, with intermediate penetration and ionization, were beta rays, and the third, 
with the least ionization but the largest penetration, became gamma rays.

Within a few years, Rutherford was able to show that alpha rays are helium nuclei 
emitted from the crystal at very high velocities. These became the projectiles that he 
used in 1909 to probe the structure of the atom. The outcome of that experiment, as 
you learned in Chapter 37, was Rutherford’s discovery that atoms have a very small, 
dense nucleus at the center.

Rutherford’s discovery of the nucleus may have settled the question of atomic 
structure, but it raised many new issues for scientific research. Foremost among them 
were:

	■	 What is nuclear matter? What are its properties?
	■	 What holds the nucleus together? Why doesn’t the repulsive electrostatic force 

blow it apart?
	■	 What is the connection between the nucleus and radioactivity?

These questions marked the beginnings of nuclear physics, the study of the properties 
of the atomic nucleus.

Nucleons
The nucleus is a tiny speck in the center of a vastly larger atom. As Figure 42.1 shows, 
the nuclear diameter of roughly 10-14 m is only about 1/10,000 the diameter of the 
atom. Even so, the nucleus is more than 99.9% of the atom’s mass. What we call 
matter is overwhelmingly empty space!

The nucleus is composed of two types of particles: protons and neutrons, which to-
gether are referred to as nucleons. The role of the neutrons, which have nothing to do 
with keeping electrons in orbit, is an important issue that we’ll address in this chapter. 
Table 42.1 summarizes the basic properties of protons and neutrons.

As you can see, protons and neutrons are virtually identical other than that the 
proton has one unit of the fundamental charge e whereas the neutron is electrically 
neutral. The neutron is slightly more massive than the proton, but the difference is very 
small, only about 0.1%. Notice that the proton and neutron, like the electron, have an 
inherent angular momentum and magnetic moment with spin quantum number s =

1
2. 

As a consequence, protons and neutrons obey the Pauli exclusion principle.
The number of protons Z is the element’s atomic number. In fact, an element is 

identified by the number of protons in the nucleus, not by the number of orbiting elec-
trons. Electrons are easily added and removed, forming negative and positive ions, but 
doing so doesn’t change the element. The mass number A is defined to be A = Z + N, 

TABLe 42.1 Protons and neutrons

Proton Neutron

Number Z N

Charge q +e 0

Spin s 1
2

1
2

Mass, in u 1.00728 1.00866

� 10�10 m

� 10�14 m

Nucleus
� 10�14 m

Atom

Nucleons
(protons and neutrons)

The nucleus has a fairly
sharp boundary.

This picture of an atom would need to be 10 m
in diameter if it were drawn to the same scale as
the dot representing the nucleus.

Figure 42.1 The nucleus is a tiny speck 
within an atom.
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where N is the neutron number. The mass number is the total number of nucleons in 
a nucleus.

NoTe  The mass number, which is dimensionless, is not the same thing as the 
atomic mass m. We’ll look at actual atomic masses later. 

isotopes and isobars
It was discovered early in the 20th century that not all atoms of the same element 
(same Z) have the same mass. There are a range of neutron numbers that happily form 
a nucleus with Z protons, creating a group of nuclei having the same Z-value (i.e., they 
are all the same chemical element) but different A-values. The atoms of an element 
with different values of A are called isotopes of that element.

Chemical behavior is determined by the orbiting electrons. All isotopes of one ele-
ment have the same number of orbiting electrons (if the atoms are electrically neutral) 
and thus have the same chemical properties, but different isotopes of the same element 
can have quite different nuclear properties.

The notation used to label isotopes is AZ, where the mass number A is given as a 
leading superscript. The proton number Z is not specified by an actual number but, 
equivalently, by the chemical symbol for that element. Hence ordinary carbon, which 
has six protons and six neutrons in the nucleus, is written 12C and pronounced “carbon 
twelve.” The radioactive form of carbon used in carbon dating is 14C. It has six pro-
tons, making it carbon, and eight neutrons.

More than 3000 isotopes are known. The majority of these are radioactive, mean-
ing that the nucleus is not stable but, after some period of time, will either fragment or 
emit some kind of subatomic particle in an effort to reach a more stable state. Many of 
these radioactive isotopes are created by nuclear reactions in the laboratory and have 
only a fleeting existence. Only 266 isotopes are stable (i.e., nonradioactive) and occur 
in nature. We’ll begin to look at the issue of nuclear stability in the next section.

The naturally occurring nuclei include the 266 stable isotopes and a handful of 
radioactive isotopes with such long half-lives, measured in billions of years, that they 
also occur naturally. The most well-known example of a naturally occurring radioac-
tive isotope is the uranium isotope 238U. For each element, the fraction of naturally 
occurring nuclei represented by one particular isotope is called the natural abundance 
of that isotope.

Although there are many radioactive isotopes of the element iodine, iodine occurs 
naturally only as 127I. Consequently, we say that the natural abundance of 127I is 100%. 
Most elements have multiple naturally occurring isotopes. The natural abundance of 
14N is 99.6%, meaning that 996 out of every 1000 naturally occurring nitrogen atoms 
are the isotope 14N. The remaining 0.4% of naturally occurring nitrogen is the isotope 
15N, with one extra neutron.

A series of nuclei having the same A-value (the same mass number) but different 
values of Z and N are called isobars. For example, the three nuclei 14C, 14N, and 14O 
are isobars with A = 14. Only 14N is stable; the other two are radioactive.

Atomic Mass
You learned in Chapter 16 that atomic masses are specified in terms of the atomic 
mass unit u, defined such that the atomic mass of the isotope 12C is exactly 12 u. The 
conversion to SI units is

 1 u = 1.6605 * 10-27 kg

Alternatively, we can use Einstein’s E0 = mc2 to express masses in terms of their 
energy equivalent. The energy equivalent of 1 u of mass is

  E0 = (1.6605 * 10-27 kg)(2.9979 * 108 m/s)2 
(42.1)

  = 1.4924 * 10-10 J = 931.49 MeV
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Thus the atomic mass unit can be written

 1 u = 931.49 MeV/c2

It may seem unusual, but the units MeV/c2 are units of mass.

NoTe  We’re using more significant figures than usual. Many nuclear calculations 
look for the small difference between two masses that are almost the same. Those 
two masses must be calculated or specified to four or five significant figures if their 
difference is to be meaningful. 

Table 42.2 shows the atomic masses of the electron, the nucleons, and three 
important light elements. Appendix C contains a more complete list. Notice that 
the mass of a hydrogen atom is the sum of the masses of a proton and an electron.  
But a quick calculation shows that the mass of a helium atom (2 protons, 2 neutrons, 
and 2 electrons) is 0.03038 u less than the sum of the masses of its constituents. 
The difference is due to the binding energy of the nucleus, a topic we’ll look at in 
Section 42.2.

The isotope 2H is a hydrogen atom in which the nucleus is not simply a proton 
but a proton and a neutron. Although the isotope is a form of hydrogen, it is called 
deuterium. The natural abundance of deuterium is 0.015%, or about 1 out of every 
6700 hydrogen atoms. Water made with deuterium (sometimes written D2O rather 
than H2O) is called heavy water.

NoTe  Don’t let the name deuterium cause you to think this is a different element. 
Deuterium is an isotope of hydrogen. Chemically, it behaves just like ordinary 
hydrogen. 

The chemical atomic mass shown on the periodic table of the elements is the 
weighted average of the atomic masses of all naturally occurring isotopes. For exam-
ple, chlorine has two stable isotopes: 35Cl, with m = 34.97 u, is 75.8% abundant 
and 37Cl, at 36.97 u, is 24.2% abundant. The average, weighted by abundance, is 
0.758 * 34.97 + 0.242 * 36.97 = 35.45. This is the value shown on the periodic table 
and is the correct value for most chemical calculations, but it is not the mass of any 
particular isotope of chlorine.

NoTe  The atomic masses of the proton and the neutron are both �1 u. Conse-
quently, the value of the mass number A is approximately the atomic mass in u. 
The approximation m � A u is sufficient in many contexts, such as when we’re 
calculating the masses of atoms in the kinetic theory of gases, but in nuclear physics 
calculations, we almost always need the more accurate mass values that you find in 
Table 42.2 or Appendix C. 

Nuclear Size and Density
Unlike the atom’s electron cloud, which is quite diffuse, the nucleus has a fairly sharp 
boundary. Experimentally, the radius of a nucleus with mass number A is found to be

 R = r0 A1/3 (42.2)

where r0 = 1.2 fm. Recall that 1 fm = 1 femtometer = 10-15 m.
As Figure 42.2 shows, the radius is proportional to A1/3. Consequently, the volume of 

the nucleus (proportional to R3) is directly proportional to A, the number of nucleons. 
A nucleus with twice as many nucleons will occupy twice as much volume. This find-
ing has three implications:

	■	 Nucleons are incompressible. Adding more nucleons doesn’t squeeze the inner 
nucleons into a smaller volume.

	■	 The nucleons are tightly packed, looking much like the drawing in Figure 42.1.
	■	 Nuclear matter has a constant density.

TABLe 42.2 Some atomic masses

Particle Symbol Mass (u)
Mass  

(MeV/c2)

Electron e 0.00055    0.51

Proton p 1.00728  938.28

Neutron n 1.00866  939.57

Hydrogen 1H 1.00783  938.79

Deuterium 2H 2.01410 1876.12

Helium 4He 4.00260 3728.40

R (fm)

0
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0
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Mass number A
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V �   pR3 (fm3)4
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R is proportional to A1/3.

V is proportional to A.

Figure 42.2 The nuclear radius and 
volume as a function of A.
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In fact, we can use Equation 42.2 to estimate the density of nuclear matter. Con-
sider a nucleus with mass number A. Its mass, within 1%, is A atomic mass units. Thus

  rnuc �
A u

4
3 pR3

=
A u

4
3 pr0 

3A
=

1 u
4
3 pr0 

3
=

1.66 * 10-27 kg
4
3 p(1.2 * 10-15 m)3

 
(42.3)

  = 2.3 * 1017 kg/m3

The fact that A cancels means that all nuclei have this density. It is a staggeringly 
large density, roughly 1014 times larger than the density of familiar liquids and solids. 
One early objection to Rutherford’s model of a nuclear atom was that matter simply 
couldn’t have a density this high. Although we have no direct experience with such 
matter, nuclear matter really is this dense.

Figure 42.3 shows the density profiles of three nuclei. The constant density right 
to the edge is analogous to that of a drop of incompressible liquid, and, indeed, one 
successful model of many nuclear properties is called the liquid-drop model. Notice 
that the range of nuclear radii, from small helium to large uranium, is not quite 
a factor of 4. The fact that 56Fe is a fairly typical atom in the middle of the peri-
odic table is the basis for our earlier assertion that the nuclear diameter is roughly 
10-14 m, or 10 fm.

Stop to think 42.1 
 Three electrons orbit a neutral 6Li atom. How many electrons orbit 

a neutral 7Li atom?

42.2 Nuclear Stability
We’ve noted that fewer than 10% of the known nuclei are stable (i.e., not radioactive). 
Because nuclei are characterized by two independent numbers, N and Z, it is useful 
to show the known nuclei on a plot of neutron number N versus proton number Z. 
Figure 42.4 shows such a plot. Stable nuclei are represented by blue diamonds and un-
stable, radioactive nuclei by red dots.

r (fm)

rnuc (kg/m3)

1.90
0

4.6 7.4

2.3 � 1017

4He
nucleus

56Fe
nucleus

4He 56Fe 238U

238U
nucleus

r

All nuclei have the same
density up to the “edge.”

Imagine the nucleus is a drop of liquid. Its
density is the same up to the edge of the drop.

Figure 42.3 Density profiles of three 
nuclei.
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Figure 42.4 Stable and unstable nuclei shown on a plot of neutron number N versus 
proton number Z.
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We can make several observations from this graph:

	■	 The stable nuclei cluster very close to the curve called the line of stability.
	■	 There are no stable nuclei with Z 7 83 (bismuth).
	■	 Unstable nuclei are in bands along both sides of the line of stability.
	■	 The lightest elements, with Z 6 16, are stable when N � Z. The familiar elements 

4He, 12C, and 16O all have equal numbers of protons and neutrons.
	■	 As Z increases, the number of neutrons needed for stability grows increasingly 

larger than the number of protons. The N/Z ratio is �1.2 at Z = 40 but has grown 
to �1.5 at Z = 80.

Stop to think 42.2 
 The isobars corresponding to one specific value of A are found on 

the plot of Figure 42.4 along

 a. A vertical line. b. A horizontal line.
 c. A diagonal line that goes d. A diagonal line that goes
  up and to the left.       up and to the right.

Binding energy
A nucleus is a bound system. That is, you would need to supply energy to disperse 
the nucleons by breaking the nuclear bonds between them. Figure 42.5 shows this idea 
schematically.

You learned a similar idea in atomic physics. The energy levels of the hydrogen 
atom are negative numbers because the bound system has less energy than a free pro-
ton and electron. The energy you must supply to an atom to remove an electron is 
called the ionization energy.

In much the same way, the energy you would need to supply to a nucleus to disas-
semble it into individual protons and neutrons is called the binding energy. Whereas 
ionization energies of atoms are only a few eV, the binding energies of nuclei are 
tens or hundreds of MeV, energies large enough that their mass equivalent is not 
negligible.

Consider a nucleus with mass mnuc. It is found experimentally that mnuc is less 
than the total mass Zmp + Nmn of the Z protons and N neutrons that form the nucleus, 
where mp and mn are the masses of the proton and neutron. That is, the energy equiva-
lent mnucc

2 of the nucleus is less than the energy equivalent (Zmp + Nmn)c
2 of the 

individual nucleons. The binding energy B of the nucleus (not the entire atom) is 
defined as

 B = (Zmp + Nmn - mnuc)c
2 (42.4)

This is the energy you would need to supply to disassemble the nucleus into its 
pieces.

The practical difficulty is that laboratory scientists use mass spectroscopy to mea-
sure atomic masses, not nuclear masses. The atomic mass matom is mnuc plus the mass 
Zme of Z orbiting electrons. (Strictly speaking, we should allow for the binding energy 
of the electrons, but these binding energies are roughly a factor of 106 smaller than the 
nuclear binding energies and can be neglected in all but the most precise measurements 
and calculations.)

Fortunately, we can switch from the nuclear mass to the atomic mass by the simple 
trick of both adding and subtracting Z electron masses. We begin by writing Equa-
tion 42.4 in the equivalent form

 B = (Zmp + Zme + Nmn - mnuc - Zme)c
2 (42.5)

Nucleus Disassembled
nucleus

Energy

mnucc
2 (Zmp � Nmn)c

2B � �

The binding energy is the energy 
that would be needed to disassemble 
a nucleus into individual nucleons.

Figure 42.5 The nuclear binding energy.
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Now mnuc + Zme = matom, the atomic mass, and Zmp + Zme = Z(mp + me) =  ZmH, 
where mH is the mass of a hydrogen atom. Finally, we use the conversion factor 
1 u = 931.49 MeV/c2 to write c2 = 931.49 MeV/u. The binding energy is then

 
B = (ZmH + Nmn - matom) * (931.49 MeV/u)

(binding energy)
 

(42.6)

where all three masses are in atomic mass units.

where, from Table 42.2, 1.0078 u is the mass of the hydrogen 
atom. Thus the binding energy of 56Fe is

 B = (0.529 u) * (931.49 MeV/u) = 493 MeV

ASSeSS The binding energy is extremely large, the energy equiva-
lent of more than half the mass of a proton or a neutron.

exAMpLe 42.1  The binding energy of iron
What is the binding energy of the 56Fe nucleus?

SoLve The isotope 56Fe has Z = 26 and N = 30. The atomic mass 
of 56Fe, found in Appendix C, is 55.9349 u. Thus the mass differ-
ence between the 56Fe nucleus and its constituents is

 B = 26(1.0078 u) + 30(1.0087 u) - 55.9349 u = 0.529 u

The nuclear binding energy increases as A increases simply because there are more 
nuclear bonds. A more useful measure for comparing one nucleus to another is the 
quantity B/A, called the binding energy per nucleon. Iron, with B =  493 MeV and 
A = 56, has 8.80 MeV per nucleon. This is the amount of energy, on average, you 
would need to supply in order to remove one nucleon from the nucleus. Nuclei with 
larger values of B/A are more tightly held together than nuclei with smaller values 
of B/A.

Figure 42.6 is a graph of the binding energy per nucleon versus mass number A. The 
line connecting the points is often called the curve of binding energy. This curve has 
three important features:

	■	 There are peaks in the binding energy curve at A = 4, 12, and 16. The one at A = 4, 
corresponding to 4He, is especially pronounced. As you’ll see, these peaks, which 
represent nuclei more tightly bound than their neighbors, are due to closed shells in 
much the same way that the graph of atomic ionization energies (see Figure 41.23) 
peaked for closed electron shells.

	■	 The binding energy per nucleon is roughly constant at �8 MeV per nucleon for 
A 7 20. This suggests that, as a nucleus grows, there comes a point where the 
nuclear bonds are saturated. Each nucleon interacts only with its nearest neighbors, 
the ones it’s actually touching. This, in turn, implies that the nuclear force is a 
short-range force.
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Figure 42.6 The curve of binding energy.
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	■	 The curve has a broad maximum at A � 60. This will be important for our under-
standing of radioactivity. In principle, heavier nuclei could become more stable 
(more binding energy per nucleon) by breaking into smaller pieces. Lighter nuclei 
could become more stable by fusing together into larger nuclei. There may not 
always be a mechanism for such nuclear transformations to take place, but if there 
is a mechanism, it is energetically favorable for it to occur.

42.3 The Strong Force
Rutherford’s discovery of the atomic nucleus was not immediately accepted by all sci-
entists. Their primary objection was that the protons would blow themselves apart at 
tremendously high speeds due to the extremely large electrostatic forces between them 
at a separation of a few femtometers. No known force could hold the nucleus together.

It soon became clear that a previously unknown force of nature operates within 
the nucleus to hold the nucleons together. This new force had to be stronger than the 
repulsive electrostatic force; hence it was named the strong force. It is also called the 
nuclear force.

The strong force has four important properties:

 1. It is an attractive force between any two nucleons.
 2. It does not act on electrons.
 3. It is a short-range force, acting only over nuclear distances.
 4. Over the range where it acts, it is stronger than the electrostatic force that tries 

to push two protons apart.

The fact that the strong force is short-range, in contrast to the long-range 1/r2 
electric, magnetic, and gravitational forces, is apparent from the fact that we see no 
evidence for nuclear forces outside the nucleus.

Figure 42.7 summarizes the three interactions that take place within the nucleus. 
Whether the strong force between two protons is the same strength as the force be-
tween two neutrons or between a proton and a neutron is an important question that 
can be answered experimentally. The primary means of investigating the strong force 
is to accelerate a proton to very high speed, using a cyclotron or some other particle 
accelerator, then to study how the proton is scattered by various target materials.

The conclusion of many decades of research is that the strong force between two 
nucleons is independent of whether they are protons or neutrons. Charge is the basis 
for electromagnetic interactions, but it is of no relevance to the strong force. Protons 
and neutrons are identical as far as nuclear forces are concerned.

potential energy
Unfortunately, there’s no simple formula to calculate the strong force or the potential 
energy of two nucleons interacting via the strong force. Figure 42.8 is an experimentally 
determined potential-energy diagram for two interacting nucleons, with r the distance 
between their centers. The potential-energy minimum at r � 1 fm is a point of stable 
equilibrium.

Recall that the force is the negative of the slope of a potential-energy diagram. The 
steeply rising potential for r 6 1 fm represents a strongly repulsive force. That is, the 
nucleon “cores” strongly repel each other if they get too close together. The force is 
attractive for r 7 1 fm, where the slope is positive, and it is strongest where the slope 
is steepest, at r � 1.5 fm. The strength of the force quickly decreases for r 7 1.5 fm 
and is zero for r 7 3 fm. That is, the strong force represented by this potential energy 
is effective only over a very short range of distances.

Notice how small the electrostatic energy of two protons is in comparison to the 
potential energy of the strong force. At r � 1.0 fm, the point of stable equilibrium, the 
magnitude of the nuclear potential energy is �100 times larger than the electrostatic 
potential energy.

p

n

n

p

p

n
The attractive
strong force 
is the same 
for any two 
nucleons.

Two protons also experience a smaller 
electrostatic repulsive force.

Figure 42.7 The strong force is the same 
between any two nucleons.
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But why does the nucleus have neutrons at all? The answer is related to the short 
range of the strong force. Protons throughout the nucleus exert repulsive electrostatic 
forces on each other, but, because of the short range of the strong force, a proton feels 
an attractive force only from the very few other protons with which it is in close con-
tact. Even though the strong force at its maximum is much larger than the electrostatic 
force, there wouldn’t be enough attractive nuclear bonds for an all-proton nucleus 
to be stable. Because neutrons participate in the strong force but exert no repulsive 
forces, the neutrons provide the extra “glue” that holds the nucleus together. In 
small nuclei, where most nucleons are in contact, one neutron per proton is sufficient 
for stability. Hence small nuclei have N � Z. But as the nucleus grows, the repulsive 
force increases faster than the binding energy. More neutrons are needed for stability, 
causing heavy nuclei to have N 7 Z.

42.4 The Shell Model
Figure 42.8 shows the potential energy of two interacting nucleons. To solve 
Schrödinger’s equation for the nucleus, we would need to know the total potential 
energy of all interacting nucleon pairs within the nucleus, including both the strong 
force and the electrostatic force. This is far too complex to be a tractable problem.

We faced a similar situation with multielectron atoms. Calculating an atom’s exact 
potential energy is exceedingly complicated. To simplify the problem, we made a 
model of the atom in which each electron moves independently with an average poten-
tial energy due to the nucleus and all other electrons. That model, although not perfect, 
correctly predicted electron shells and explained the periodic table of the elements.

The shell model of the nucleus, using multielectron atoms as an analogy, was pro-
posed in 1949 by Maria Goeppert-Mayer. The shell model considers each nucleon to 
move independently with an average potential energy due to the strong force of all 
the other nucleons. For the protons, we also have to include the electrostatic potential 
energy due to the other protons.

Figure 42.9 shows the average potential energy of a neutron and a proton. Here r 
is the distance from the center of the nucleus, not the nucleon–nucleon distance as it 
was in Figure 42.8. On average, a nucleon’s interactions with neighboring nucleons  
are independent of the nucleon’s position inside the nucleus; hence the constant poten - 
tial energy inside the nucleus. You can see that, to a good approximation, a nucleon 
appears to be a particle in a finite potential well, a quantum-mechanics problem you 
studied in Chapter 40.

Maria Goeppert-Mayer received the 1963 
Nobel Prize in Physics for her work in 
nuclear physics.
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Figure 42.9 The average potential energy of a neutron and a proton.

Three observations are worthwhile:

 1. The depth of the neutron’s potential-energy well is �50 MeV for all nuclei. The 
radius of the potential-energy well is the nuclear radius R = r0 A1/3.
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 2. For protons, the positive electrostatic potential energy “lifts” the potential-
energy well. The lift varies from essentially none for very light elements to a 
significant fraction of the well depth for very heavy elements. The potential 
energy shown in the figure would be appropriate for a nucleus with Z � 30.

 3. Outside the nucleus, where the strong force has vanished, a proton’s potential 
energy is U = (Z - 1)e2/4pP0r due to its electrostatic interaction with the 
(Z - 1) other protons within the nucleus. This positive potential energy decreases 
slowly with increasing distance.

The task of quantum mechanics is to solve for the energy levels and wave functions 
of the nucleons in these potential-energy wells. Once the energy levels are found, we 
build up the nuclear state, just as we did with atoms, by placing all the nucleons in the 
lowest energy levels consistent with the Pauli principle. The Pauli principle affects 
nucleons, just as it did electrons, because they are spin@12 particles. Each energy level 
can hold only a certain number of spin-up particles and spin-down particles, depend-
ing on the quantum numbers. Additional nucleons have to go into higher energy levels.

Low-Z Nuclei
As an example, we’ll consider the energy levels of low-Z nuclei (Z 6 8). Because 
these nuclei have so few protons, we can use a reasonable approximation that neglects 
the electrostatic potential energy due to proton-proton repulsion and considers only the 
much larger nuclear potential energy. In that case, the proton and neutron potential-
energy wells and energy levels are the same.

Figure 42.10 shows the three lowest energy levels and the maximum number of nu-
cleons that the Pauli principle allows in each. Energy values vary from nucleus to 
nucleus, but the spacing between these levels is several MeV. It’s customary to draw 
the proton and neutron potential-energy diagrams and energy levels back to back. No-
tice that the radial axis for the proton potential-energy well points to the right, while 
the radial axis for the neutron potential-energy well points to the left.

Let’s apply this model to the A = 12 isobar. Recall that an isobar is a series of nu-
clei with the same total number of neutrons and protons. Figure 42.11 shows the energy-
level diagrams of 12B, 12C, and 12N. Look first at 12C, a nucleus with six protons and 
six neutrons. You can see that exactly six protons are allowed in the n = 1 and n = 2 
energy levels. Likewise for the six neutrons. Thus 12C has a closed n = 2 proton shell 
and a closed n = 2 neutron shell.

NoTe  Protons and neutrons are different particles, so the Pauli principle is not 
violated if a proton and a neutron have the same quantum numbers. 

Figure 42.11 The A = 12 isobar has to place 12 nucleons in the lowest available energy 
levels.
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ProtonsNeutrons

Figure 42.10 The three lowest energy 
levels of a low-Z nucleus. The neutron 
energy levels are on the left, the proton 
energy levels on the right.

12N has seven protons and five neutrons. The sixth proton fills the n = 2 proton 
shell, so the seventh proton has to go into the n = 3 energy level. The n = 2 neutron 
shell has one vacancy because there are only five neutrons. 12B is just the opposite, 
with the seventh neutron in the n = 3 energy level. You can see from the diagrams that 
the 12B and 12N nuclei have significantly more energy—by several MeV—than 12C.
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In atoms, electrons in higher energy levels decay to lower energy levels by emitting 
a photon as the electron undergoes a quantum jump. That can’t happen here because 
the higher-energy nucleon in 12B is a neutron whereas the vacant lower energy level 
is that of a proton. But an analogous process could occur if a neutron could some-
how turn into a proton. And that’s exactly what happens! We’ll explore the details in 
Section 42.6, but both 12B and 12N decay into 12C in the process known as beta decay.

12C is just one of three low-Z nuclei in which both the proton and neutron shells are 
full. The other two are 4He (filling both n = 1 shells with Z = 2, N = 2) and 16O (fill-
ing both n = 3 shells with Z = 8, N = 8). If the analogy with closed electron shells is 
valid, these nuclei should be more tightly bound than nuclei with neighboring values 
of A. And indeed, we’ve already noted that the curve of binding energy (Figure 42.6) 
has peaks at A = 4, 12, and 16. The shell model of the nucleus satisfactorily explains 
these peaks. Unfortunately, the shell model quickly becomes much more complex as 
we go beyond n = 3. Heavier nuclei do have closed shells, but there’s no evidence for 
them in the curve of binding energy.

High-Z Nuclei
We can use the shell model to give a qualitative explanation for one more observation, 
although the details are beyond the scope of this text. Figure 42.12 shows the neutron 
and proton potential-energy wells of a high-Z nucleus. In a nucleus with many protons, 
the electrostatic potential energy lifts the proton potential-energy well higher than the 
neutron potential-energy well. Protons and neutrons now have a different set of energy 
levels.

As a nucleus is “built,” by the addition of protons and neutrons, the proton energy 
well and the neutron energy well must fill to just about the same height. If there were 
neutrons in energy levels above vacant proton levels, the nucleus would lower its 
energy by using beta decay to change the neutron into a proton. Similarly, beta decay 
would change a proton into a neutron if there were a vacant neutron energy level 
beneath a filled proton level. The net result of beta decay is to keep the levels on 
both sides filled to just about the same energy.

Because the neutron potential-energy well starts at a lower energy, more neutron 
states are available than proton states. Consequently, a high-Z nucleus will have 
more neutrons than protons. This conclusion is consistent with our observation in 
Figure 42.4 that N 7 Z for heavy nuclei.

42.5 radiation and radioactivity
Becquerel’s 1896 discovery of “rays” from crystals of uranium prompted a burst of 
activity. In England, J. J. Thomson and, especially, his student and protégé Ernest 
Rutherford worked to identify the unknown rays. Using combinations of electric and 
magnetic fields, much as Thomson had done in his investigations of cathode rays, 
they found three distinct types of radiation. Figure 42.13 shows the basic experimental 
procedure, and Table 42.3 on the next page summarizes the results.

rprn 0

U

Protons

Neutrons
Neutrons and protons 
fill energy levels to 
the same height. This 
takes more neutrons 
than protons.

Figure 42.12 The proton energy levels 
are displaced upward in a high-Z 
nucleus.
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Radioactive
source
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Alpha particles are deflected only a little. 
They are positive and heavy.

Gamma rays are not deflected and so
must not be charged.

Beta particles are deflected significantly in
the opposite direction. They are negative
and light.

Figure 42.13 Identifying radiation by its deflection in a magnetic field.
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Within a few years, as Rutherford and others deduced the basic structure of the 
atom, it became clear that these emissions of radiation were coming from the atomic 
nucleus. We now define radioactivity or radioactive decay to be the spontaneous 
emission of particles or high-energy photons from unstable nuclei as they decay from 
higher-energy to lower-energy states. Radioactivity has nothing to do with the orbiting 
valence electrons.

NoTe  The term “radiation” merely means something that is radiated outward, 
similar to the word “radial.” Electromagnetic waves are often called “electromag-
netic radiation.” Infrared waves from a hot object are referred to as “thermal ra-
diation.” Thus it was no surprise that these new “rays” were also called radiation. 
Unfortunately, the general public has come to associate the word “radiation” with 
nuclear radiation, something to be feared. It is important, when you use the term, to 
be sure you’re not conveying a wrong impression to a listener or a reader. 

ionizing radiation
Electromagnetic waves, from microwaves through ultraviolet radiation, are absorbed 
by matter. The absorbed energy increases an object’s thermal energy and its tempera-
ture, which is why objects sitting in the sun get warm.

In contrast to visible-light photon energies of a few eV, the energies of the alpha 
and beta particles and the gamma-ray photons of nuclear decay are typically in the 
range 0.1–10 MeV, a factor of roughly 106 larger. These energies are much larger than 
the ionization energies of atoms and molecules. Rather than simply being absorbed 
and increasing an object’s thermal energy, nuclear radiation ionizes matter and breaks 
molecular bonds. Nuclear radiation (and also x rays, which behave much the same in 
matter) is called ionizing radiation.

An alpha or beta particle traveling through matter creates a trail of ionization, as 
shown in Figure 42.14. Because the ionization energy of an atom is �10 eV, a particle 
with 1 MeV of kinetic energy can ionize �100,000 atoms or molecules before finally 
stopping. The low-mass electrons are kicked sideways, but the much more massive 
positive ions barely move and form the trail. This ionization is the basis for the geiger 
counter, one of the most well-known detectors of nuclear radiation. Figure 42.15 shows 
how a Geiger counter works. The important thing to remember is that a Geiger counter 
detects only ionizing radiation.

Ionizing radiation damages materials. Ions drive chemical reactions that wouldn’t 
otherwise occur. Broken molecular bonds alter the workings of molecular machinery, 
especially in large biological molecules. It is through these mechanisms—ionization 
and bond breaking—that nuclear radiation can cause mutations or tumors. We’ll look 
at the biological issues in Section 42.7.

NoTe  Ionizing radiation causes structural damage to materials, but irradiated 
objects do not become radioactive. Ionization drives chemical processes involv-
ing the electrons. An object could become radioactive only if its nuclei were some-
how changed, and that does not happen. 

Stop to think 42.3 
 A very bright spotlight shines on a Geiger counter. Does it click?

TABLe 42.3 Three types of radiation

Radiation Identification Charge Stopped by

Alpha, a 4He nucleus +2e Sheet of paper

Beta, b Electron -e Few mm of aluminum

Gamma, g High-energy photon 0 Many cm of lead

a or b
������������������

Ejected
electron

Trail of
ionization

Figure 42.14 Alpha and beta particles 
create a trail of ionization as they pass 
through matter.

Trail of several
hundred ions

Point of ionization

Ejected
electrons

Gas
molecule

Thin window

�1000 VRadiation

Neon or
argon gas

Stiff wire
through middle

�

1. Ejected electrons cause a chain reaction
 of ionization of the gas as they accelerate
 toward the positive wire.

2. Thousands of 
 electrons reach the 
 wire, causing a 
 surge of current.

3. The negative 
 current pulse in 
 the wire causes the 
 “click” of the 
 Geiger counter.

Figure 42.15 A Geiger counter.
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Nuclear Decay and Half-Lives
Rutherford discovered experimentally that the number of radioactive atoms in a sam-
ple decreases exponentially with time. The reason is that radioactive decay is a ran-
dom process. That is, we can predict only the probability that a nucleus will decay, 
not the exact moment. We encountered exactly this situation when we investigated the 
lifetimes of excited states of atoms in Section 41.7.

As we did with atoms, let r be the decay rate, the probability of decay within the 
next second by the emission of an alpha or beta particle or a gamma-ray photon. Then 
the probability of decay within a small time interval �t is

 Prob(decay in time interval �t) = r �t (42.7)

This equation was also the starting point in our analysis of the spontaneous emission 
of photons by atoms. The mathematical analysis is exactly the same as in Section 41.7, 
to which you should refer, leading to the exponential-decay equation

 N = N0e-t/t (42.8)

where t = 1/r is the lifetime of the nucleus.
Figure 42.16 shows the decrease of N with time. The number of radioactive nuclei 

decreases from N0 at t = 0 to e-1N0 = 0.368N0 at time t = t. In practical terms, the 
number decreases by roughly two-thirds during one lifetime.

NoTe  An important aspect of exponential decay is that you can choose any instant 
you wish to be t = 0. The number of radioactive nuclei present at that instant is N0. 
If at one instant you have 10,000 radioactive nuclei whose lifetime is t = 10 min, 
you’ll have roughly 3680 nuclei 10 min later. The fact that you may have had more 
than 10,000 nuclei earlier isn’t relevant. 

In practice, it’s much easier to measure the time at which half of a sample has de-
cayed than the time at which 36.8% has decayed. Let’s define the half-life t1/2 as the 
time interval in which half of a sample of radioactive atoms decays. The half-life is 
shown in Figure 42.16.

The half-life is easily related to the lifetime t because we know, by definition, that 
N =

1
2 N0 at t = t1/2. Thus, according to Equation 42.8,

 
N0

2
= N0  e-t1/2/t (42.9)

The N0 cancels, and we can then take the natural logarithm of both sides to find

 ln11

2 2 = - ln 2 = -  
t1/2

t
 (42.10)

With one final rearrangement we have

 t1/2 = t ln 2 = 0.693t (42.11)

Equation 42.8 can be written in terms of the half-life as

 N = N011

2 2 t/t1/2

 (42.12)

Thus N = N0/2 at t = t1/2, N = N0/4 at t = 2t1/2, N = N0/8 at t = 3t1/2, and so on. No 
matter how many nuclei there are, the number decays by half during the next 
half-life.

NoTe  Half the nuclei decay during one half-life, but don’t fall into the trap of 
thinking that all will have decayed after two half-lives. 

The half-life is the
time in which half
the nuclei decay.

The lifetime is the time
at which the number
of nuclei is e�1, or 37%, 
of the initial number.

t

Number of nuclei remaining

t1/20

0.13N0

0
t 2t

0.37N0

0.50N0

N0

Figure 42.16 The number of radioactive 
atoms decreases exponentially with 
time.



Figure 42.17 shows the half-life graphically. This figure also conveys two other im-
portant ideas:

 1. Nuclei don’t vanish when they decay. The decayed nuclei have merely become 
some other kind of nuclei, called the daughter nuclei.

 2. The decay process is random. We can predict that half the nuclei will decay in 
one half-life, but we can’t predict which ones.

Each radioactive isotope, such as 14C, has its own half-life. That half-life doesn’t 
change with time as a sample decays. If you’ve flipped a coin 10 times and, against 
all odds, seen 10 heads, you may feel that a tail is overdue. Nonetheless, the prob-
ability that the next flip will be a head is still 50%. After 10 half-lives have gone by, 
(1/2)10 = 1/1024 of a radioactive sample is still there. There was nothing special or 
distinctive about these nuclei, and, despite their longevity, each remaining nucleus has 
exactly a 50% chance of decay during the next half-life.

t
t1/20

0

N0

N0

2t1/2 3t1/2

1
2

N0
1
4

N0
1
8

N0

N0 /2

Undecayed nucleus

Daughter nucleus

N0 /4
N0 /8

N0 nuclei at t � 0

Figure 42.17 Half the nuclei decay 
during each half-life.

To solve for t, we first write this as

 
0.50

2.00
= 0.25 = 11

2 2 t/8 days

Now we take the logarithm of both sides. Either natural loga-
rithms or base–10 logarithms can be used, but we’ll use natural 
logarithms:

 ln(0.25) = -1.39 =
t

t1/2
 ln(0.5) = -0.693 

t

t1/2

Solving for t gives

 t = 2.00t1/2 = 16 days

ASSeSS The weakest usable sample is one-quarter of the initial 
sample. You saw in Figure 42.17 that a radioactive sample decays 
to one-quarter of its initial number in 2 half-lives.

exAMpLe 42.2  The decay of iodine
The iodine isotope 131I, which has an eight-day half-life, is used in 
nuclear medicine. A sample of 131I containing 2.00 * 1012 atoms 
is created in a nuclear reactor.

 a. How many 131I atoms remain 36 hours later when the sample is 
delivered to a hospital?

 b. The sample is constantly getting weaker, but it remains usable 
as long as there are at least 5.0 * 1011 131I atoms. What is the 
maximum delay before the sample is no longer usable?

MoDeL The number of 131I atoms decays exponentially.

SoLve a. The half-life is t1/2 = 8 days = 192 h. After 36 h have 
elapsed,

 N = (2.00 * 1012)11

2 2 36/192

= 1.76 * 1012 nuclei

 b. The time after creation at which 5.0 * 1011 131I atoms remain is 
given by

 5.0 * 1011 = 0.50 * 1012 = (2.0 * 1012)11

2 2 t/8 days

Activity
The activity R of a radioactive sample is the number of decays per second. This is 
simply the absolute value of dN/dt, or

 R = ` dN

dt
` = rN = rN0e-t/t = R0e-t/t = R011

2 2 t/t1/2

 (42.13)

where R0 = rN0 is the activity at t = 0. The activity of a sample decreases exponen-
tially along with the number of remaining nuclei.

The SI unit of activity is the becquerel, defined as

 1 becquerel = 1 Bq K 1 decay/s or 1 s-1

An older unit of activity, but one that continues in widespread use, is the curie. The 
curie was originally defined as the activity of 1 g of radium. Today, the conversion 
factor is

 1 curie = 1 Ci K 3.7 * 1010 Bq

42.5 . Radiation and Radioactivity    1261
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One curie is a substantial activity. The radioactive samples used in laboratory 
experiments are typically �1 mCi or, equivalently, �40,000 Bq. These samples 
can be handled with only minor precautions. Larger sources of radioactivity 
require lead shielding and special precautions to prevent exposure to high levels 
of radiation.

Thus the number of 137Cs atoms is

N0 =
R0

r
=

1.85 * 105 Bq

7.33 * 10-10 s-1 = 2.5 * 1014 atoms

 b. The activity decreases exponentially, just like the number of 
nuclei. After 10 years,

R = R011

2 2 t/t1/2

= (5.0 mCi)11

2 2 10/30

= 4.0 mCi

ASSeSS Although N0 is a very large number, it is a very small frac-
tion (�10-10) of a mole. The sample is about 60 ng (nanograms) 
of 137Cs.

exAMpLe 42.3  A laboratory source
The isotope 137Cs is a standard laboratory source of gamma rays. 
The half-life of 137Cs is 30 years.

 a. How many 137Cs atoms are in a 5.0 mCi source?
 b. What is the activity of the source 10 years later?

MoDeL The number of 137Cs atoms decays exponentially.

SoLve a. The number of atoms can be found from N0 = R0/r. The 
activity in SI units is

 R = 5.0 * 10-6 Ci *
3.7 * 1010 Bq

1 Ci
= 1.85 * 105 Bq

To find the decay rate, first convert the half-life to seconds:

 t1/2 = 30 years *
3.15 * 107 s

1 year
= 9.45 * 108 s

Then

r =
1
t

=
ln 2

t1/2
= 7.33 * 10-10 s-1

radioactive Dating
Many geological and archeological samples can be dated by measuring the decays 
of naturally occurring radioactive isotopes. Because we have no way to know N0, 
the initial number of radioactive nuclei, radioactive dating depends on the use of 
ratios.

The most well-known dating technique is carbon dating. The carbon isotope 14C 
has a half-life of 5730 years, so any 14C present when the earth formed 4.5 billion 
years ago would long since have decayed away. Nonetheless, 14C is present in atmo-
spheric carbon dioxide because high-energy cosmic rays collide with gas molecules 
high in the atmosphere. These cosmic rays are energetic enough to create 14C nuclei 
from nuclear reactions with nitrogen and oxygen nuclei. The creation and decay of 14C 
have reached a steady state in which the 14C/12C ratio is 1.3 * 10-12. That is, atmo-
spheric carbon dioxide has 14C at the concentration of 1.3 parts per trillion. As small 
as this is, it’s easily measured by modern chemical techniques.

All living organisms constantly exchange carbon dioxide with the atmosphere, so 
the 14C/12C ratio in living organisms is also 1.3 * 10-12. When an organism dies, the 
14C in its tissue begins to decay and no new 14C is added. Objects are dated by compar-
ing the measured 14C/12C ratio to the 1.3 * 10-12 value of living material.

Carbon dating is used to date skeletons, wood, paper, fur, food material, and any-
thing else made of organic matter. It is quite accurate for ages to about 15,000 years, 
roughly three half-lives of 14C. Beyond that, the difficulty of measuring such a small 
ratio and some uncertainties about the cosmic ray flux in the past combine to decrease 
the accuracy. Even so, items are dated to about 50,000 years with a fair degree of 
reliability.

Other isotopes with longer half-lives are used to date geological samples. Potassium-
argon dating, using 40K with a half-life of 1.25 billion years, is especially useful for 
dating rocks of volcanic origin.

A researcher is extracting a small sample 
of an ancient bone. She will determine the 
age of the bone by measuring the ratio of 
14C to 12C.
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Stop to think 42.4 
 A sample starts with 1000 radioactive atoms. How many half-

lives have elapsed when 750 atoms have decayed?

 a. 0.25
 b. 1.5
 c. 2.0
 d. 2.5

42.6 Nuclear Decay Mechanisms
This section will look in more detail at the mechanisms of the three types of radioac-
tive decay.

Alpha Decay
An alpha particle, symbolized as a, is a 4He nucleus, a strongly bound system of two 
protons and two neutrons. An unstable nucleus that ejects an alpha particle will lose 
two protons and two neutrons, so we can write the decay as

 AXZ S A-4YZ-2 + a + energy (42.14)

Figure 42.18 shows the alpha-decay process. The original nucleus X is called the 
parent nucleus, and the decay-product nucleus Y is the daughter nucleus. This reac-
tion can occur only when the mass of the parent nucleus is greater than the mass of the 
daughter nucleus plus the mass of an alpha particle. This requirement is met for heavy, 

Thus

 N(14C) =
R

r
=

0.35 Bq

3.84 * 10-12 s-1 = 9.1 * 1010 nuclei

and the present 14C/12C ratio is N(14C)/N(12C) = 0.36 * 10-12. Be-
cause this ratio has been decaying with a half-life of 5730 years, 
the time needed to reach the present ratio is found from

 0.36 * 10-12 = (1.3 * 10-12)11

2 2 t/t1/2

To solve for t, we first write this as

 
0.36

1.3
= 0.277 = 11

2 2 t/t1/2

Now we take the logarithm of both sides:

 ln(0.277) = -1.28 =
t

t1/2
 ln(0.5) = -0.693 

t

t1/2

Thus the age of the hunters’ camp is

 t = 1.85t1/2 = 10,600 years

ASSeSS This is a realistic example of how radioactive dating is 
done.

exAMpLe 42.4  Carbon dating
Archeologists excavating an ancient hunters’ camp have recov-
ered a 5.0 g piece of charcoal from a fireplace. Measurements on 
the sample find that the 14C activity is 0.35 Bq. What is the ap-
proximate age of the camp?

MoDeL Charcoal, from burning wood, is almost pure carbon. The 
number of 14C atoms in the wood has decayed exponentially since 
the branch fell off a tree. Because wood rots, it is reasonable to as-
sume that there was no significant delay between when the branch 
fell off the tree and the hunters burned it.

SoLve The 14C/12C ratio was 1.3 * 10-12 when the branch fell 
from the tree. We first need to determine the present ratio, then 
use the known 14C half-life t1/2 = 5730 years to calculate the time 
needed to reach the present ratio. The number of ordinary 12C 
nuclei in the sample is

  N(12C) = 1 5.0 g

12 g/mol 2  (6.02 * 1023 atoms/mol)

  = 2.5 * 1023 nuclei

The number of 14C nuclei can be found from the activity to be 
N(14C) = R/r, but we need to determine the 14C decay rate r. 
After converting the half-life to seconds, t1/2 = 5730 years =
1.807 * 1011 s, we can compute

 r =
1
t

=
1

t1/2 /ln 2
= 3.84 * 10-12 s-1

Parent nucleusBefore:

After:

The daughter nucleus has two fewer protons
and four fewer nucleons. It has a small recoil.

The alpha particle, a fast 
helium nucleus, carries 
away most of the energy 
released in the decay.

AXZ

A�4YZ�2

Figure 42.18 Alpha decay.
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high-Z nuclei well above the maximum on the Figure 42.6 curve of binding energy. It 
is energetically favorable for these nuclei to eject an alpha particle because the daugh-
ter nucleus is more tightly bound than the parent nucleus.

Although the mass requirement is based on the nuclear masses, we can express 
it—as we did the binding energy equation—in terms of atomic masses. The energy 
released in an alpha decay, essentially all of which goes into the alpha particle’s ki-
netic energy, is

 �E � Ka = (mX - mY - mHe)c
2 (42.15)

  Ka = (238.0508 u - 234.0436 u - 4.0026 u)c2

  = 10.0046 u *
931.5 MeV/c2

1 u 2c2 = 4.3 MeV

ASSeSS This is a typical alpha-particle energy. Notice how the c2 
canceled from the calculation so that we never had to evaluate c2.

exAMpLe 42.5  Alpha decay of uranium
The uranium isotope 238U undergoes alpha decay to 234Th. The 
atomic masses are 238.0508 u for 238U and 234.0436 u for 234Th. 
What is the kinetic energy, in MeV, of the alpha particle?

MoDeL Essentially all of the energy release �E goes into the al-
pha particle’s kinetic energy.

SoLve The atomic mass of helium is 4.0026 u. Thus

Alpha decay is a purely quantum-mechanical effect. Figure 42.19 shows the potential 
energy of an alpha particle, where the 4He nucleus of an alpha particle is so tightly 
bound that we can think of it as existing “prepackaged” inside the parent nucleus. Both 
the depth of the energy well and the height of the Coulomb barrier are twice those of 
a proton because the charge of an a particle is 2e.

Because of the high Coulomb barrier (alpha decay occurs only in high-Z nuclei), 
there may be one or more allowed energy levels with E 7 0. Energy levels with 
E 6 0 are completely bound, but an alpha particle in an energy level with E 7 0 can 
tunnel through the Coulomb barrier and escape. That is exactly how alpha decay 
occurs.

Energy must be conserved, so the kinetic energy of the escaping a particle is the 
height of the energy level above E = 0. That is, potential energy is transformed into 
kinetic energy as the particle escapes. Notice that the width of the barrier decreases as 
E increases. The tunneling probability depends very sensitively on the barrier width, 
as you learned in conjunction with the scanning tunneling microscope. Thus an alpha 
particle in a higher energy level should have a shorter half-life and escape with more 
kinetic energy. The full analysis is beyond the scope of this text, but this prediction is 
in excellent agreement with measured energies and half-lives.

Beta Decay
Beta decay was initially associated with the emission of an electron e-, the beta par-
ticle. It was later discovered that some nuclei can undergo beta decay by emitting a 
positron e+, the antiparticle of the electron, although this decay mode is not as com-
mon. A positron is identical to an electron except that it has a positive charge. To be 
precise, the emission of an electron is called beta-minus decay and the emission of a 
positron is beta-plus decay.

A typical example of beta-minus decay occurs in the carbon isotope 14C, which 
undergoes the beta-decay process 14C S 14N + e-. Carbon has Z = 6 and nitrogen 
has Z = 7. Because Z increases by 1 but A doesn’t change, it appears that a neutron 
within the nucleus has changed itself into a proton and an electron. That is, the basic 
beta-minus decay process appears to be

 n S p+ + e- (42.16)

Indeed, a free neutron turns out not to be a stable particle. It decays with a half-life 
of approximately 10 min into a proton and an electron. This decay is energetically al-
lowed because mn 7 mp + me. Furthermore, it conserves charge.

r
R

30

0

�60

U (MeV)

An alpha particle in this energy level can tunnel
through the Coulomb barrier and escape.

This is the kinetic 
energy of the escaping 
alpha particle.

Coulomb barrier

Bound energy levels

Figure 42.19 The potential-energy 
diagram of an alpha particle in the 
parent nucleus.



Whether a neutron within a nucleus can decay depends on the masses of the parent 
and daughter nuclei. The electron is ejected from the nucleus in beta-minus decay, but 
the proton is not. Thus the decay process shown in Figure 42.20a is

 AXZ S AYZ + 1 + e- + energy  (beta@minus decay) (42.17)

Energy is released because the mass decreases in this process, but we have to be care-
ful when calculating the mass loss. Although not explicitly shown in Equation 42.17, 
the daughter AY is actually the ionized atom AY+  because it gained a proton but didn’t 
gain an orbital electron. Its mass is the atomic mass of AY minus the mass of an elec-
tron. But the full right-hand side of the reaction includes an additional electron, the 
beta particle, so the total mass of the decay products is simply the atomic mass of AY.

Consequently, the energy released in beta-minus decay, based on the mass loss, is

 �E = (mX - mY)c2 (42.18)

The energy release has to be positive, so we see that beta-minus decay occurs only if 
mX + mY. 14C can undergo beta-minus decay to 14N because m(14C) 7 m(14N). But 
m(12C) 6 m(12N), so 12C is stable and its neutrons cannot decay.

NoTe  The electron emitted in beta-minus decay has nothing to do with the atom’s 
orbital electrons. The beta particle is created in the nucleus and ejected directly 
from the nucleus when a neutron is transformed into a proton and an electron. 

Beta-plus decay is the conversion of a proton into a neutron and a positron:

 p+ S n + e+ (42.19)

The full decay process, shown in Figure 42.20b, is

 AXZ S AYZ - 1 + e+ + energy  (beta@plus decay) (42.20)

Beta-plus decay does not happen for a free proton because mp 6 mn. It can happen 
within a nucleus as long as energy is conserved for the entire nuclear system.

In our earlier discussion of Figure 42.11 we noted that the 12B and 12N nuclei could 
reach a lower energy state if a proton could change into a neutron, and vice versa. 
Now we see that such a change can occur if the energy conditions are favorable. And, 
indeed, 12B undergoes beta-minus decay to 12C while 12N undergoes beta-plus decay 
to 12C.

In general, beta decay is a process used by nuclei with too many neutrons or too 
many protons in order to move closer to the line of stability in Figure 42.4.

A third form of beta decay occurs in some nuclei that have too many protons but not 
enough mass to undergo beta-plus decay. In this case, a proton changes into a neutron 
by “capturing” an electron from the innermost shell of orbiting electrons (an n = 1 
electron). The process is

 p+ + orbital e- S n (42.21)

This form of beta decay is called electron capture, abbreviated EC. The net result, 
AXZ S AYZ - 1, is the same as beta-plus decay but without the emission of a posi-
tron. Electron capture is the only nuclear decay mechanism that involves the orbital 
electrons.

The Weak interaction
We’ve presented beta decay as if it were perfectly normal for one kind of matter 
to change spontaneously into a completely different kind of matter. For example, it 
would be energetically favorable for a large truck to spontaneously turn into a Cadillac 
and a VW Beetle, ejecting the Beetle at high speed. But it doesn’t happen.

Before:

After:

A neutron changes into a 
proton and an electron. 
The electron is ejected 
from the nucleus.

AXZ

AYZ�1

(a) Beta-minus decay

e�

Before:

After:

A proton changes into a 
neutron and a positron. 
The positron is ejected 
from the nucleus.

AXZ

AYZ�1

(b) Beta-plus decay

e�

Figure 42.20 Beta decay.
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Once you stop to think of it, the process n S p+ + e- seems ludicrous, not because 
it violates mass-energy conservation but because we have no idea how a neutron could 
turn into a proton. Alpha decay may be a strange process because tunneling in gen-
eral goes against our commonsense notions, but it is a perfectly ordinary quantum-
mechanical process. Now we’re suggesting that one of the basic building blocks of 
matter can somehow morph into a different basic building block.

To make matters more confusing, measurements in the 1930s found that beta decay 
didn’t seem to conserve either energy or momentum. Faced with these difficulties, the 
Italian physicist Enrico Fermi made two bold suggestions:

 1. A previously unknown fundamental force of nature is responsible for beta de-
cay. This force, which has come to be known as the weak interaction, has the 
ability to turn a neutron into a proton, and vice versa.

 2. The beta-decay process emits a particle that, at that time, had not been detected. 
This new particle has to be electrically neutral, in order to conserve charge, and 
it has to be much less massive than an electron. Fermi called it the neutrino, 
meaning “little neutral one.” Energy and momentum really are conserved, but 
the neutrino carries away some of the energy and momentum of the decaying 
nucleus. Thus experiments that detect only the electron seem to violate conser-
vation laws.

The neutrino is represented by the symbol n, a lowercase Greek nu. The beta-decay 
processes that Fermi proposed are

  n S p+ + e- + n 
(42.22)

  p+ S n + e+ + n

The symbol n is an antineutrino, although the reason one is a neutrino and the other an 
antineutrino need not concern us here. Figure 42.21 shows that the electron and antineu-
trino (or positron and neutrino) share the energy released in the decay.

The neutrino interacts with matter so weakly that a neutrino can pass straight 
through the earth with only a very slight chance of a collision. Trillions of neutrinos 
created by nuclear fusion reactions in the core of the sun are passing through your 
body every second. Neutrino interactions are so rare that the first laboratory detection 
did not occur until 1956, over 20 years after Fermi’s proposal.

It was initially thought that the neutrino had not only zero charge but also zero 
mass. However, experiments in the 1990s showed that the neutrino mass, although 
very tiny, is not zero. The best current evidence suggests a mass about one-millionth 
the mass of an electron. Experiments now under way will attempt to determine a more 
accurate value.

The Super Kamiokande neutrino detector 
in Japan looks for the neutrinos emitted 
from nuclear fusion reactions in the core 
of the sun.

Before:

After:

If only the electron and the daughter nucleus 
are measured, energy and momentum appear 
not to be conserved. The “missing” energy and
momentum are carried away by the undetected
antineutrino.

AXZ

AYZ�1

e�

–�

Figure 42.21 A more accurate picture of 
beta decay includes neutrinos.

exAMpLe 42.6  Beta decay of 14C
How much energy is released in the beta-minus decay of 14C?

MoDeL The decay is 14C S 14N + e- + n.

SoLve In Appendix C we find m(14C) = 14.003 242 u and m(14N) = 14.003 074 u. The 
mass difference is a mere 0.000 168 u, but this is the mass that is converted into the 
kinetic energy of the escaping particles. The energy released is

E = (�m)c2 = (0.000 168 u) * (931.5 MeV/u) = 0.156 MeV

ASSeSS This energy is shared between the electron and the antineutrino.

gamma Decay
Gamma decay is the easiest form of nuclear decay to understand. You learned that an 
atomic system can emit a photon with Ephoton = �Eatom when an electron undergoes 
a quantum jump from an excited energy level to a lower energy level. Nuclei are no 



different. A proton or a neutron in an excited nuclear state, such as the one shown in 
Figure 42.22, can undergo a quantum jump to a lower-energy state by emitting a high-
energy photon. This is the gamma-decay process.

The spacing between atomic energy levels is only a few eV. Nuclear energy 
levels, by contrast, are typically 1 MeV apart. Hence gamma-ray photons have 
Egamma � 1 MeV. Photons with this much energy have tremendous penetrating power 
and deposit an extremely large amount of energy at the point where they are finally 
absorbed.

Nuclei left to themselves are usually in their ground states and thus cannot emit 
gamma-ray photons. However, alpha and beta decay often leave the daughter nucleus 
in an excited nuclear state, so gamma emission is usually found to accompany alpha 
and beta emission.

The cesium isotope 137Cs is a good example. We noted earlier that 137Cs is used 
as a laboratory source of gamma rays. Actually, 137Cs undergoes beta-minus decay to 
137Ba. Figure 42.23 shows the full process. A 137Cs nucleus undergoes beta-minus decay 
by emitting an electron and an antineutrino, which share between them a total energy 
of 0.51 MeV. The half-life for this process is 30 years. This leaves the daughter 137Ba 
nucleus in an excited state 0.66 MeV above the ground state. The excited Ba nucleus 
then decays within a few seconds to the ground state by emitting a 0.66 MeV gamma-
ray photon. Thus a 137Cs sample is a source of gamma-ray photons, but the photons are 
actually emitted by barium nuclei rather than cesium nuclei.

r0

U

A nucleon makes a 
quantum jump to a 
lower energy level.

The jump is accompanied
by the emission of a photon 
with Ephoton � 1 MeV.

Gamma-ray
photon

Excited
level

Lower
level

Figure 42.22 Gamma decay.
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state

1.17
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0.51
MeV

0.66
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Ground
state

Gamma decay

Beta decay

g

e�

137Cs

137Ba

Figure 42.23 The decay of 137Cs involves both beta and gamma decay.
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Alpha decay reduces A by 4 and Z by 2.

Beta decay increases Z by 1.

Some nuclei can
undergo either
a or b decay.

235U

207Pb is stable.

Figure 42.24 The decay series of 235U.

Decay Series
A radioactive nucleus decays into a daughter nucleus. In many cases, the daughter nu-
cleus is also radioactive and decays to produce its own daughter nucleus. The process 
continues until reaching a daughter nucleus that is stable. The sequence of isotopes, 
starting with the original unstable isotope and ending with the stable isotope, is called 
a decay series.

Decay series are especially important for very heavy nuclei. As an example, 
Figure 42.24 shows the decay series of 235U, an isotope of uranium with a 700-million-
year half-life. This is a very long time, but it is only about 15% the age of the earth, 
thus most (but not all) of the 235U nuclei present when the earth was formed have now 
decayed. There are many unstable nuclei along the way, but all 235U nuclei eventually 
end as the 207Pb isotope of lead, a stable nucleus.

Notice that some nuclei can decay by either alpha or beta decay. Thus there are a 
variety of paths that a decay can follow, but they all end at the same point.

Stop to think 42.5 
 The cobalt isotope 60Co (Z = 27) decays to the nickel isotope 60Ni 

(Z = 28). The decay process is

 a. Alpha decay. b. Beta-minus decay. c. Beta-plus decay.
 d. Electron capture. e. Gamma decay.
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42.7  Biological Applications 
of Nuclear physics

Nuclear physics has brought both peril and promise to society. Radiation can cause 
tumors, but it also can be used to cure some cancers. This section is a brief survey of 
medical and biological applications of nuclear physics.

radiation Dose
Nuclear radiation, which is ionizing radiation, disrupts a cell’s machinery by alter-
ing and damaging the biological molecules. The consequences of this disruption vary 
from genetic mutations to uncontrolled cell multiplication (i.e., tumors) to cell death.

Beta and gamma radiation can penetrate the entire body and damage internal or-
gans. Alpha radiation has less penetrating ability, but it deposits all its energy in a very 
small, localized volume. Internal organs are usually safe from alpha radiation, but the 
skin is very susceptible, as are the lungs if radioactive dust is inhaled.

Biological effects of radiation depend on two factors. The first is the physical factor 
of how much energy is absorbed by the body. The second is the biological factor of 
how tissue reacts to different forms of radiation.

The absorbed dose of radiation is the energy of ionizing radiation absorbed per 
kilogram of tissue. The SI unit of absorbed dose is the gray, abbreviated Gy. It is 
defined as

 1 gray = 1 Gy K 1.00 J/kg of absorbed energy

The absorbed dose depends only on the energy absorbed, not at all on the type of radia-
tion or on what the absorbing material is.

Biologists and biophysicists have found that a 1 Gy dose of gamma rays and a 1 Gy 
dose of alpha particles have different biological consequences. To account for such 
differences, the relative biological effectiveness (RBE) is defined as the biological 
effect of a given dose relative to the biological effect of an equal dose of x rays.

Table 42.4 shows the relative biological effectiveness of different forms of radia-
tion. Larger values correspond to larger biological effects. Beta radiation and neutrons 
have a range of values because the biological effect varies with the energy of the 
particle. Alpha radiation has the largest RBE because the energy is deposited in the 
smallest volume.

The product of the absorbed dose with the RBE is called the dose equivalent. Dose 
equivalent is measured in sieverts, abbreviated Sv. To be precise,

 dose equivalent in Sv = absorbed dose in Gy * RBE

1 Sv of radiation produces the same biological damage regardless of the type of ra-
diation. An older but still widely used unit for dose equivalent is the rem, defined as 
1 rem = 0.010 Sv. Small radiation doses are measured in millisievert (mSv) or mil-
lirem (mrem).

TABLe 42.4 Relative 
biological effectiveness  
of radiation

Radiation type RBE

X rays 1

Gamma rays 1

Beta particles 1–2

Neutrons 5–20

Alpha particles 20

technician’s body is 0.075 J. The energy of each absorbed photon 
is 0.66 MeV, but this value must be converted into joules. The 
number of photons in 0.075 J is

  N =
0.075 J

(6.6 * 105 eV/photon)(1.60 * 10-19 J/eV)

  = 7.1 * 1011 photons

ASSeSS The energy deposited, 0.075 J, is very small. Radiation 
does its damage not by thermal effects, which would require sub-
stantially more energy, but by ionization.

exAMpLe 42.7  radiation exposure
A 75 kg laboratory technician working with the radioactive iso-
tope 137Cs receives an accidental 1.0 mSv exposure. 137Cs emits 
0.66 MeV gamma-ray photons. How many gamma-ray photons 
are absorbed in the technician’s body?

MoDeL The radiation dose is a combination of deposited ener-
gy and biological effectiveness. The RBE for gamma rays is 1. 
Gamma rays are penetrating, so this is a whole-body exposure.

SoLve The absorbed dose is the dose in Sv divided by the RBE. In 
this case, because RBE = 1, the dose is 0.0010 Gy = 0.0010 J/kg. 
This is a whole-body exposure, so the total energy deposited in the 
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Table 42.5 gives some basic information about radiation exposure. We are all ex-
posed to a continuous natural background of radiation from cosmic rays and from natu-
rally occurring radioactive atoms (uranium and other atoms in the uranium decay series) 
in the ground, the atmosphere, and even the food we eat. This background averages 
about 3 mSv per year, although there are wide regional variations depending on the soil 
type and the elevation. (Higher elevations have a larger exposure to cosmic rays.)

Medical x rays vary significantly. The average person in the United States receives 
approximately 0.6 mSv per year from all medical sources. All other sources, such as 
fallout from atmospheric nuclear tests many decades ago, nuclear power plants, and 
industrial uses of radioactivity, add up to less than 0.1 mSv per year.

The question inevitably arises: What is a safe dose? This remains a controversial 
topic and the subject of ongoing research. The effects of large doses of radiation are 
easily observed. The effects of small doses are hard to distinguish from other natural 
and environmental causes. Thus there’s no simple or clear definition of a safe dose. 
A prudent policy is to avoid unnecessary exposure to radiation but not to worry over 
exposures less than the natural background. It’s worth noting that the mCi radioactive 
sources used in laboratory experiments provide exposures much less than the natural 
background, even if used on a regular basis.

Medical uses of radiation
Radiation can be put to good use killing cancer cells. This area of medicine is called 
radiation therapy. Gamma rays are the most common form of radiation, often from the 
isotope 60Co. As Figure 42.25 shows, the gamma rays are directed along many different 
lines, all of which intersect the tumor. The goal is to provide a lethal dose to the can-
cer cells without overexposing nearby tissue. The patient and the radiation source are 
rotated around each other under careful computer control to deliver the proper dose.

Other tumors are treated by surgically implanting radioactive “seeds” within or 
next to the tumor. Alpha particles, which are very damaging locally but don’t pen-
etrate far, can be used in this fashion.

Radioactive isotopes are also used as tracers in diagnostic procedures. This 
technique is based on the fact that all isotopes of an element have identical chemical 
behavior. As an example, a radioactive isotope of iodine is used in the diagnosis of 
certain thyroid conditions. Iodine is an essential element in the body, and it concen-
trates in the thyroid gland. A doctor who suspects a malfunctioning thyroid gland 
gives the patient a small dose of sodium iodide in which some of the normal 127I atoms 
have been replaced with 131I. (Sodium iodide, which is harmless, dissolves in water 
and can simply be drunk.) The 131I isotope, with a half-life of eight days, undergoes 
beta decay and subsequently emits a gamma-ray photon that can be detected.

The radioactive iodine concentrates inside the thyroid gland within a few hours. 
The doctor then monitors the gamma-ray photon emissions over the next few days to 
see how the iodine is being processed within the thyroid and how quickly it is elimi-
nated from the body.

Other important radioactive tracers include the chromium isotope 51Cr, which is 
taken up by red blood cells and can be used to monitor blood flow, and the xenon 
isotope 133Xe, which is inhaled to reveal lung functioning. Radioactive tracers are 
noninvasive, meaning that the doctor can monitor the inside of the body without 
surgery.

Magnetic resonance imaging
The proton, like the electron, has an inherent angular momentum (spin) and an inher-
ent magnetic moment. You can think of the proton as being like a little compass needle 
that can be in one of two positions, the positions we call spin up and spin down.

A compass needle aligns itself with an external magnetic field. This is the needle’s 
lowest-energy position. Turning a compass needle by hand is like rolling a ball uphill; 
you’re giving it energy, but, like the ball rolling downhill, it will realign itself with the 

TABLe 42.5 Radiation exposure

Radiation source
Typical exposure 

(mSv)

CT scan 10

Natural background (1 year) 3

Mammogram x ray  0.8

Chest x ray  0.3

Dental x ray  0.03

g

g

g

g

g

Gamma radiation is incident along many 
lines, all of which intersect the tumor.

Tumor

Figure 42.25 Radiation therapy is 
designed to deliver a lethal dose to the 
tumor without damaging nearby tissue.

Radiation therapy is a beneficial use of 
nuclear physics.



1270    c h a p t e r  42 . Nuclear Physics

lowest-energy position when you remove your finger. There is, however, an unstable 
equilibrium position, like a ball at the top of a hill, in which the needle is anti-aligned 
with the field. The slightest jostle will cause it to flip around, but the needle will be 
steady in its upside-down configuration if you can balance it perfectly.

A proton in a magnetic field behaves similarly, but with a major difference: Be-
cause the proton’s energy is quantized, the proton cannot assume an intermediate posi-
tion. It’s either aligned with the magnetic field (the spin-up orientation) or anti-aligned 
(spin-down). Figure 42.26a shows these two quantum states. Turning on a magnetic field 
lowers the energy of a spin-up proton and increases the energy of an anti-aligned, spin-
down proton. In other words, the magnetic field creates an energy difference between 
these states.

(a)

Radio-frequency photons 
drive protons back and forth
between these two energy levels.

The magnetic field is off. 
Spin-up and spin-down 
protons have the same energy.

These are the energy levels
with the magnetic field on.

m � � 1
2

m � 1
2

Increasing
energy Spin down, anti-aligned with field

Spin up, aligned with field

f

Absorption

nmr resonance
frequency

Magnet

Sample

Coil

N

f

S Oscillator

(b)

Figure 42.26 Nuclear magnetic resonance is possible because spin-up and spin-down 
protons have slightly different energies in a magnetic field.

The energy difference is very tiny, only about 10-7 eV. Nonetheless, photons 
whose energy matches the energy difference cause the protons to move back and forth 
between these two energy levels as the photons are absorbed and emitted. In effect, 
the photons are causing the proton’s spin to flip back and forth rapidly. The photon 
frequency, which depends on the magnetic field strength, is typically about 100 MHz, 
similar to FM radio frequencies.

Figure 42.26b shows how this behavior is put to use. A sample containing protons 
is placed in a magnetic field. A coil is wrapped around the sample, and a variable 
frequency AC source drives a current through this coil. The protons absorb power 
from the coil when its frequency is just right to flip the spin back and forth; otherwise, 
no power is absorbed. A resonance is seen by scanning the coil through a small range 
of frequencies.

This technique of observing the spin flip of nuclei (the technique also works for 
nuclei other than hydrogen) in a magnetic field is called nuclear magnetic resonance, 
or nmr. It has many applications in physics, chemistry, and materials science. Its medi-
cal use exploits the fact that tissue is mostly water, and two out of the three nuclei in 
a water molecule are protons. Thus the human body is basically a sample of protons, 
with the proton density varying as the tissue density varies.

The medical procedure known as magnetic resonance imaging, or MRI, places 
the patient in a spatially varying magnetic field. The variations in the field cause the 
proton absorption frequency to vary from point to point. From the known shape of 
the field and measurements of the frequencies that are absorbed, and how strongly, 
sophisticated computer software can transform the raw data into detailed images such 
as the one shown in Figure 42.27.

Figure 42.27 Magnetic resonance 
imaging shows internal organs in 
exquisite detail.



As an interesting footnote, the technique was still being called nuclear magnetic 
resonance when it was first introduced into medicine. Unfortunately, doctors soon 
found that many patients were afraid of it because of the word “nuclear.” Hence the 
alternative term “magnetic resonance imaging” was coined. It is true that the public 
perception of nuclear technology is not always positive, but equally true that nuclear 
physics has made many important and beneficial contributions to society.

The half-life in seconds is

 t1/2 = 5.0 days *
86,400 s

1 day
= 4.3 * 105 s

Thus the total number of beta decays over the course of several 
weeks, as the sample completely decays, is

N0 =
t1/2

ln 2
 R0 =

(4.3 * 105 s)(1.1 * 106 decays/s)

ln 2
= 6.8 * 1011

Ninety percent of these decays deposit, on average, 0.35 MeV in 
the body, so the absorbed energy is

  Eabs = (0.90)(6.8 * 1011)1(3.5 * 105 eV) *
1.60 * 10-19 J

1 eV 2
  = 0.034 J

This is not a lot of energy in an absolute sense, but it is all damag-
ing, ionizing radiation. The absorbed dose is

 absorbed dose =
0.034 J

85 kg
= 4.0 * 10-4 Gy

and thus the dose equivalent is

 dose equivalent = 1.5 * (4.0 * 10-4 Gy) = 0.60 mSv

ASSeSS This dose, typical of many medical uses of radiation, is 
about 20% of the yearly radiation dose from the natural back-
ground. Although one should always avoid unnecessary radiation, 
this dose would not cause concern if there were a medical reason 
for it.

CHALLeNge exAMpLe 42.8  A radioactive tracer
An 85 kg patient swallows a 30 mCi beta emitter that is to be used 
as a tracer. The isotope’s half-life is 5.0 days. The average energy 
of the beta particles is 0.35 MeV, and they have an RBE (relative 
biological effectiveness) of 1.5. Ninety percent of the beta par-
ticles are stopped inside the patient’s body and 10% escape. What 
total dose equivalent does this patient receive?

MoDeL Beta radiation penetrates the body—enough that 10% of 
the particles escape—so this is a whole-body exposure. Even the 
escaping particles probably deposit some energy in the body, but 
we’ll assume that the dose is from only those particles that stop 
inside the body.

SoLve The dose equivalent is the absorbed dose in Gy multiplied 
by the RBE of 1.5. The absorbed dose is the energy absorbed per 
kilogram of tissue, so we need to find the total energy absorbed 
from the time the patient swallows the emitter until it has all de-
cayed. The sample’s initial activity R0 is related to the nuclear 
decay rate r and the initial number of radioactive atoms N0 by 
R0 = rN0. Thus the number of radioactive atoms in the sample, all 
of which are going to decay and emit a beta particle, is

 N0 =
R0

r
= tR0 =

t1/2

ln 2
 R0

In developing this relationship, we used first the fact that the life-
time t is the inverse of the decay rate, then the connection between 
the lifetime and the half-life.

The initial activity is given in microcuries. Converting to bec-
querels, we have

  R0 = (30 * 10-6 Ci) *
3.7 * 1010 Bq

1 Ci

  = 1.1 * 106 Bq = 1.1 * 106 decays/s

Challenge Example    1271
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S u M M A r Y
The goal of Chapter 42 has been to understand the physics of the nucleus and some applications of nuclear physics.

The Nucleus
The nucleus is a small, dense,  
positive core at the center of  
an atom.

Z protons: charge +e, spin 12

N neutrons: charge 0, spin 12

The mass number is A = Z + N.

The nuclear radius is R = r0 A1/3, where r0 = 1.2 fm. 
Typical radii are a few fm.

Nuclear Stability
Most nuclei are not stable. 
Unstable nuclei undergo  
radioactive decay. Stable 
nuclei cluster along the line 
of stability in a plot of the 
isotopes.

Three mechanisms by which unstable nuclei decay:

Decay Particle Mechanism Energy Penetration

a 4He nucleus tunneling few MeV low

b e- n S p+ + e- �  1 MeV medium

e+ p+ S n + e+ �  1 MeV medium

g photon quantum jump �  1 MeV high

general principles

Nuclear forces

Attractive strong force
•	 Acts between any two 

nucleons
•	 Is short range, 6 3 fm
•	 Is felt between nearest 

neighbors

Repulsive electric force
•	 Acts between two 

protons
•	 Is long range
•	 Is felt across the 

nucleus

Neutron

Proton Line of stabilityN

Z

Alpha decay is
energetically
favorable for
high-Z nuclei.

Low-Z nuclei
move closer to
the line of
stability by
beta decay.

Shell model

Each nucleon  
moves with an  
average potential  
energy due to all  
other nucleons.

Curve of binding  
energy

The average  
binding energy  
per nucleon has a  
broad maximum  
at A � 60.

important Concepts

rprn 0

U

Protons

Neutrons

Protons and neutrons
fill to equal heights,
thus N � Z.

Coulomb energy

Proton energy levels

Neutron energy levels
A

MeV per nucleon

1200

4

240
0

8

Radioactive decay

The number of undecayed  
nuclei decreases exponentially  
with time t:

  N = N0 exp (- t/t)

  = N0(1/2)t/t1/2

The lifetime t is 1/r, 
where r is the decay rate. 
The half-life

 t1/2 = tln 2 = 0.693t

is the time in which half of any sample decays.

Measuring radiation

The activity R = rN  of a radioactive sample, measured in 
becquerels or curies, is the number of decays per second.

The absorbed dose is measured in gray, where

1 Gy K 1.00 J/kg of absorbed energy

The relative biological effectiveness (RBE) is the biological 
effect of a dose relative to the biological effects of x rays. 

The dose equivalent is measured in Sv, where Sv = Gy * RBE. 
One Sv of radiation produces the same biological effect  
regardless of the type of radiation. Dose equivalent is also  
measured in rem, where 1 rem = 0.010 Sv.

Applications

t

N

t1/20 t

0.37N0

0

0.50N0
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nuclear physics
nucleon
atomic number, Z
mass number, A
neutron number, N
isotope
radioactive
stable
natural abundance
isobar
deuterium

liquid-drop model
line of stability
binding energy, B
curve of binding energy
strong force
shell model
alpha decay
beta decay
gamma decay
ionizing radiation
Geiger counter

half-life, t1/2

activity, R
becquerel, Bq
curie, Ci
parent nucleus
daughter nucleus
electron capture
weak interaction
neutrino
decay series
absorbed dose

gray, Gy
relative biological effectiveness 

(RBE)
dose equivalent
sievert, Sv
rem
nuclear magnetic resonance (nmr)
magnetic resonance imaging (MRI)

Terms and Notation

C o N C e p T u A L  Q u e S T i o N S

 1. Consider the atoms 16O, 18O, 18F, 18Ne, and 20Ne. Some of the 
following questions may have more than one answer. Give all 
answers that apply.

 a. Which are isotopes?
 b. Which are isobars?
 c. Which have the same chemical properties?
 d. Which have the same number of neutrons?
 2. a. Is the binding energy of a nucleus with A = 200 more than, 

less than, or equal to the binding energy of a nucleus with 
A = 60? Explain.

 b. Is a nucleus with A = 200 more tightly bound, less tightly 
bound, or bound equally tightly as a nucleus with A = 60? 
Explain.

 3. a. How do we know the strong force exists?
 b. How do we know the strong force is short range?
 4. Does each nuclear energy-level diagram in Figure Q42.4 repre-

sent a nuclear ground state, an excited nuclear state, or an impos-
sible nucleus? Explain.

 5. Are the following decays possible? If not, why not?
 a. 232Th (Z = 90) S 236U (Z = 92) + a

 b. 238Pu (Z = 94) S 236U (Z = 92) + a

 c. 11B (Z = 5) S 11B (Z = 5) + g

 d. 33P (Z = 15) S 32S (Z = 16) + e-

 6. Nucleus A decays into nucleus B with a half-life of 10 s. At 
t = 0 s, there are 1000 A nuclei and no B nuclei. At what time 
will there be 750 B nuclei?

 7. What kind of decay, if any, can occur for the nuclei in
Fig ure Q42.7?

 8. Apple A in Figure Q42.8 is strongly irradiated by nuclear radia-
tion for 1 hour. Apple B is not irradiated. Afterward, in what 
ways are apples A and B different?

 9. The three isotopes 212Po, 137Cs, and 90Sr decay as 212Po S 208Pb +  
a, 137Cs S 137Ba + e- + g, and 90Sr S 90Y + e-. Which of these 
isotopes would be most useful as a biological tracer? Why?

(a)

Neutrons Protons Neutrons Protons Neutrons Protons

(b) (c)

Figure Q42.4 

Neutrons Protons Neutrons Protons Neutrons Protons

(a) (b) (c)

Figure Q42.7 

A

B
Figure Q42.8 
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e x e r C i S e S  A N D  p r o B L e M S

See Appendix C for data on atomic masses, isotopic abundance, 
radioactive decay modes, and half-lives.

Problems labeled  integrate material from earlier chapters.

exercises

Section 42.1 Nuclear Structure

 1. | How many protons and how many neutrons are in (a) 3He, 
(b) 32P, (c) 32S, and (d) 238U?

 2. | How many protons and how many neutrons are in (a) 6Li, 
(b) 54Cr, (c) 54Fe, and (d) 220Rn?

 3. | Calculate the nuclear diameters of (a) 4He, (b) 40Ar, and 
(c) 220Rn.

 4. | Which stable nuclei have a diameter of 7.46 fm?
 5. | Calculate the mass, radius, and density of the nucleus of 

(a) 7Li and (b) 207Pb. Give all answers in SI units.

Section 42.2 Nuclear Stability

 6. | Use data in Appendix C to make your own chart of stable 
and unstable nuclei, similar to Figure 42.4, for all nuclei with 
Z … 8. Use a blue or black dot to represent stable isotopes, a red 
dot to represent isotopes that undergo beta-minus decay, and a 
green dot to represent isotopes that undergo beta-plus decay or 
electron-capture decay.

 7. | a.  What is the smallest value of A for which there are two 
stable nuclei? What are they?

   b.  For which values of A less than this are there no stable 
nuclei?

 8. | Calculate (in MeV) the total binding energy and the binding 
energy per nucleon for 3H and for 3He.

 9. | Calculate (in MeV) the total binding energy and the binding 
energy per nucleon for 54Cr and for 54Fe.

 10. || Calculate (in MeV) the binding energy per nucleon for 3He 
and 4He. Which is more tightly bound?

 11. || Calculate (in MeV) the binding energy per nucleon for 14O 
and 16O. Which is more tightly bound?

 12. | Calculate the chemical atomic mass of neon.

Section 42.3 The Strong Force

 13. || Use the potential-energy diagram in Figure 42.8 to estimate 
the strength of the strong force between two nucleons separated 
by 1.5 fm.

 14. || Use the potential-energy diagram in Figure 42.8 to sketch an 
approximate graph of the strong force between two nucleons 
versus the distance r between their centers.

 15. || Use the potential-energy diagram in Figure 42.8 to estimate 
the ratio of the gravitational potential energy to the nuclear 
potential energy for two neutrons separated by 1.0 fm.

Section 42.4 The Shell Model

 16. | a.  Draw energy-level diagrams, similar to Figure 42.11, for 
all A = 10 nuclei listed in Appendix C. Show all the oc-
cupied neutron and proton levels.

   b.  Which of these nuclei are stable? What is the decay mode 
of any that are radioactive?

 17. | a.  Draw energy-level diagrams, similar to Figure 42.11, 
for all A = 14 nuclei listed in Appendix C. Show all the 
occupied neutron and proton levels.

   b.  Which of these nuclei are stable? What is the decay mode 
of any that are radioactive?

Section 42.5 Radiation and Radioactivity

 18. | The radium isotope 226Ra has a half-life of 1600 years. A sam-
ple begins with 1.00 * 1010 226Ra atoms. How many are left after 
(a) 200 years, (b) 2000 years, and (c) 20,000 years?

 19. | The barium isotope 131Ba has a half-life of 12 days. A 250 mg 
sample of 131Ba is prepared. What is the mass of 131Ba after 
(a) 1 day, (b) 10 days, and (c) 100 days?

 20. | The radioactive hydrogen isotope 3H, called tritium, has a 
half-life of 12 years.

 a. What are the decay mode and the daughter nucleus of tritium?
 b. What are the lifetime and the decay rate of tritium?
 21. | A sample of 1.0 * 1010 atoms that decay by alpha emission 

has a half-life of 100 min. How many alpha particles are emitted 
between t = 50 min and t = 200 min?

 22. || The half-life of 60Co is 5.27 years. The activity of a 60Co 
sample is 3.50 * 109 Bq. What is the mass of the sample?

 23. || What is the half-life in days of a radioactive sample with 
5.0 * 1015 atoms and an activity of 5.0 * 108 Bq?

Section 42.6 Nuclear Decay Mechanisms

 24. | Identify the unknown isotope X in the following decays.
 a. 230Th S X + a

 b. 35S S X + e- + n

 c. X S 40K + e+ + n

 d. 24Na S 24Mg + e- + n S X + g

 25. | Identify the unknown isotope X in the following decays.
 a. X S 224Ra + a

 b. X S 207Pb + e- + n

 c. 7Be + e- S X + n

 d. X S 60Ni + g

 26. | a.  What are the isotopic symbols of all A = 17 isobars?
   b.  Which of these are stable nuclei?
   c.  For those that are not stable, identify both the decay mode 

and the daughter nucleus.
 27. |  a.  What are the isotopic symbols of all A = 19 isobars?
   b.  Which of these are stable nuclei?
   c.  For those that are not stable, identify both the decay mode 

and the daughter nucleus.
 28. || What is the energy (in MeV) released in the alpha decay 

of 239Pu?
 29. || An unstable nucleus undergoes alpha decay with the release 

of 5.52 MeV of energy. The combined mass of the parent and 
daughter nuclei is 452 u. What was the parent nucleus?

 30. || What is the total energy (in MeV) released in the beta-minus 
decay of 3H?

http://www.meetyourbrain.com/bookChapters.php?book=Physics-for-Scientists-and-Engineers-A-Strategic-Approach-with-Modern-Physics-3rd-Edition-Solutions&title=0
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 31. || What is the total energy (in MeV) released in the beta-minus 
decay of 24Na?

 32. || What is the total energy (in MeV) released in the beta decay of 
a neutron?

Section 42.7 Biological Applications of Nuclear Physics

 33. | 1.5 Gy of gamma radiation are directed into a 150 g tumor 
during radiation therapy. How much energy does the tumor 
absorb?

 34. | The doctors planning a radiation therapy treatment have de-
termined that a 100 g tumor needs to receive 0.20 J of gamma 
radiation. What is the dose in gray?

 35. || A 50 kg laboratory worker is exposed to 20 mJ of beta radia-
tion with RBE = 1.5. What is the dose equivalent in mrem?

 36. | How many gray of gamma-ray photons cause the same 
biological damage as 30 Gy of alpha radiation?

problems

 37. ||| a.  What initial speed must an alpha particle have to just touch 
the surface of a 197Au gold nucleus before being turned 
back? Assume the nucleus stays at rest.

   b.  What is the initial energy (in MeV) of the alpha particle?
Hint: The alpha particle is not a point particle.

 38. ||| Particle accelerators fire protons at target nuclei for investiga-
tors to study the nuclear reactions that occur. In one experiment, 
the proton needs to have 20 MeV of kinetic energy as it impacts 
a 207Pb nucleus. With what initial kinetic energy (in MeV) must 
the proton be fired toward the lead target? Assume the nucleus 
stays at rest.
Hint: The proton is not a point particle.

 39. || Stars are powered by nuclear reactions that fuse hydrogen into 
helium. The fate of many stars, once most of the hydrogen is 
used up, is to collapse, under gravitational pull, into a neutron 
star. The force of gravity becomes so large that protons and elec-
trons are fused into neutrons in the reaction p+ + e- S n + n. 
The entire star is then a tightly packed ball of neutrons with the 
density of nuclear matter.

 a. Suppose the sun collapses into a neutron star. What will its 
radius be? Give your answer in km.

 b. The sun’s rotation period is now 27 days. What will its 
rotation period be after it collapses? 

Rapidly rotating neutron stars emit pulses of radio waves at the 
rotation frequency and are known as pulsars.

 40. || The element gallium has two stable isotopes: 69Ga with an 
atomic mass of 68.92 u and 71Ga with an atomic mass of 70.92 u. 
A periodic table shows that the chemical atomic mass of gallium 
is 69.72 u. What is the percent abundance of 69Ga?

 41. || You learned in Chapter 41 that the binding energy of the elec-
tron in a hydrogen atom is 13.6 eV.

 a. By how much does the mass decrease when a hydrogen atom 
is formed from a proton and an electron? Give your answer 
both in atomic mass units and as a percentage of the mass of 
the hydrogen atom.

 b. By how much does the mass decrease when a helium nucleus 
is formed from two protons and two neutrons? Give your 
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answer both in atomic mass units and as a percentage of the 
mass of the helium nucleus.

 c. Compare your answers to parts a and b. Why do you hear it 
said that mass is “lost” in nuclear reactions but not in chemi-
cal reactions?

 42. ||| Use the graph of binding energy to estimate the total energy 
released if a nucleus with mass number 240 fissions into two 
nuclei with mass number 120.

 43. ||| Use the graph of binding energy to estimate the total 
energy released if three 4He nuclei fuse together to form a 12C 
nucleus.

 44. || Could a 56Fe nucleus fission into two 28Al nuclei? Your an-
swer, which should include some calculations, should be based 
on the curve of binding energy.

 45. ||| What energy (in MeV) alpha particle has a de Broglie wave-
length equal to the diameter of a 238U nucleus?

 46. || What is the age in years of a bone in which the 14C/12C ratio is 
measured to be 1.65 * 10-13?

 47. || The activity of a sample of the cesium isotope 137Cs, with a 
half-life of 30 years, is 2.0 * 108 Bq. Many years later, after the 
sample has fully decayed, how many beta particles will have 
been emitted?

 48. || A 115 mCi radioactive tracer is made in a nuclear reactor. 
When it is delivered to a hospital 16 hours later its activity is  
95 mCi. The lowest usable level of activity is 10 mCi.

 a. What is the tracer’s half-life?
 b. For how long after delivery is the sample usable?
 49. || The radium isotope 223Ra, an alpha emitter, has a half-life of 

11.43 days. You happen to have a 1.0 g cube of 223Ra, so you 
decide to use it to boil water for tea. You fill a well-insulated 
container with 100 mL of water at 18�C and drop in the cube of 
radium.

 a. How long will it take the water to boil?
 b. Will the water have been altered in any way by this method 

of boiling? If so, how?
 50. || How many half-lives must elapse until (a) 90% and (b) 99% of 

a radioactive sample of atoms has decayed?
 51. || A sample contains radioactive atoms of two types, A and B. 

Initially there are five times as many A atoms as there are B 
atoms. Two hours later, the numbers of the two atoms are equal. 
The half-life of A is 0.50 hour. What is the half-life of B?

 52. || Radioactive isotopes often occur together in mixtures. 
Suppose a 100 g sample contains 131Ba, with a half-life of 
12 days, and 47Ca, with a half-life of 4.5 days. If there are 
initially twice as many calcium atoms as there are barium 
atoms, what will be the ratio of calcium atoms to barium atoms 
2.5 weeks later?

 53. || The technique known as potassium-argon dating is used 
to date old lava flows. The potassium isotope 40K has a 
1.28 billion year half-life and is naturally present at very low 
levels. 40K decays by two routes: 89% undergo beta-minus 
decay into 40Ca while 11% undergo electron capture to become 
40Ar. Argon is a gas, and there is no argon in flowing lava 
because the gas escapes. Once the lava solidifies, any argon 
produced in the decay of 40K is trapped inside and cannot 
escape. A geologist brings you a piece of solidified lava in 
which you find the 40Ar/40K ratio to be 0.013. What is the age 
of the rock?

BIO
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 54. || The half-life of the uranium isotope 235U is 700 million years. 
The earth is approximately 4.5 billion years old. How much 
more 235U was there when the earth formed than there is today? 
Give your answer as the then-to-now ratio.

 55. || A chest x ray uses 10 keV photons with an RBE of 0.85. A 
60 kg person receives a 0.30 mSv dose from one chest x ray that 
exposes 25% of the patient’s body. How many x ray photons are 
absorbed in the patient’s body?

 56. || The rate at which a radioactive tracer is lost from a patient’s 
body is the rate at which the isotope decays plus the rate at which 
the element is excreted from the body. Medical experiments 
have shown that stable isotopes of a particular element are ex-
creted with a 6.0 day half-life. A radioactive isotope of the same 
element has a half-life of 9.0 days. What is the effective half-life 
of the isotope in a patient’s body?

 57. || The plutonium isotope 239Pu has a half-life of 24,000 years 
and decays by the emission of a 5.2 MeV alpha particle. 
Plutonium is not especially dangerous if handled because the  
activity is low and the alpha radiation doesn’t penetrate the 
skin. However, there are serious health concerns if even 
the tiniest particles of plutonium are inhaled and lodge deep 
in the lungs. This could happen following any kind of fire or 
explosion that disperses plutonium as dust. Let’s determine 
the level of danger.

 a. Soot particles are roughly 1 mm in diameter, and it is known 
that these particles can go deep into the lungs. How many at-
oms are in a 1.0@mm@diameter particle of 239Pu? The density 
of plutonium is 19,800 kg/m3.

 b. What is the activity, in Bq, of a 1.0@mm@diameter particle?
 c. The activity of the particle is very small, but the penetrat-

ing power of alpha particles is also very small. The alpha 
particles are all stopped, and each deposits its energy in a 
50@mm@diameter sphere around the particle. What is the 
dose, in mSv/year, to this small sphere of tissue in the lungs? 
Assume that the tissue density is that of water.

 d. Is this exposure likely to be significant? How does it compare 
to the natural background of radiation exposure?

Challenge problems

 58. The uranium isotope 238U is naturally present at low levels in 
many soils. One of the nuclei in the decay series of 238U is the 
radon isotope 222Rn, which decays by emitting a 5.50 MeV alpha 
particle with t1/2 = 3.82 days. Radon is a gas, and it tends to seep 
from soil into basements. The Environmental Protection Agency 
recommends that homeowners take steps to remove radon, by 
pumping in fresh air, if the radon activity exceeds 4 pCi per liter 
of air.

 a. How many 222Rn atoms are there in 1 m3 of air if the activity 
is 4 pCi/L?

 b. The range of alpha particles in air is �3 cm. Suppose we 
model a person as a 180-cm-tall, 25-cm-diameter cylinder 
with a mass of 65 kg. Only decays within 3 cm of the cylinder 
can cause exposure, and only �50% of the decays direct the 
alpha particle toward the person. Determine the dose in mSv 
per year for a person who spends the entire year in a room 
where the activity is 4 pCi/L. 

 c. Does the EPA recommendation seem appropriate? Why?
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 59. Estimate the stopping distance in air of a 5.0 MeV alpha particle. 
Assume that the particle loses on average 30 eV per collision.

 60. Beta-plus decay is AXZ S AYZ-1 + e+ + n.
 a. Determine the mass threshold for beta-plus decay. That is, 

what is the minimum atomic mass mX for which this decay 
is energetically possible? Your answer will be in terms of the 
atomic mass mY and the electron mass me.

 b. Can 13N undergo beta-plus decay into 13C? If so, how much 
energy is released in the decay?

 61. All the very heavy atoms found in the earth were created long 
ago by nuclear fusion reactions in a supernova, an exploding 
star. The debris spewed out by the supernova later coalesced into 
the gases from which the sun and the planets of our solar system 
were formed. Nuclear physics suggests that the uranium isotopes 
235U and 238U should have been created in roughly equal num-
bers. Today, 99.28% of uranium is 238U and only 0.72% is 235U. 
How long ago did the supernova occur?

 62. It might seem strange that in beta decay the positive proton, 
which is repelled by the positive nucleus, remains in the nucleus 
while the negative electron, which is attracted to the nucleus, 
is ejected. To understand beta decay, let’s analyze the decay of 
a free neutron that is at rest in the laboratory. We’ll ignore the 
antineutrino and consider the decay n S p+ + e-. The analysis 
requires the use of relativistic energy and momentum, from 
Chapter 36.

 a. What is the total kinetic energy, in MeV, of the proton and 
electron?

 b. Write the equation that expresses the conservation of relativ-
istic energy for this decay. Your equation will be in terms of 
the three masses mn, mp, and me and the relativistic factors gp 
and ge .

 c. Write the equation that expresses the conservation of relativ-
istic momentum for this decay. Let v represent speed, rather 
than velocity, then write any minus signs explicitly.

 d. You have two simultaneous equations in the two unknowns 
vp and ve. To help in solving these, first prove that gv =  
(g2 - 1)1/2c.

 e. Solve for vp and ve. (It’s easiest to solve for gp and ge, then 
find v from g.) First get an algebraic expression for each, in 
terms of the masses. Then evaluate each, giving v as a frac-
tion of c.

 f. Calculate the kinetic energy in MeV of the proton and the 
electron. Verify that their sum matches your answer to part a.

 g. Now explain why the electron is ejected in beta decay while 
the proton remains in the nucleus.

 63. Alpha decay occurs when an alpha particle tunnels through the 
Coulomb barrier. Figure Cp42.63 shows a simple one-dimensional 
model of the potential-energy well of an alpha particle in a 
nucleus with A � 235. The 15 fm width of this one-dimensional 
potential-energy well is the diameter of the nucleus. Further, to 
keep the model simple, the Coulomb barrier has been modeled 
as a 20-fm-wide, 30-MeV-high rectangular potential-energy bar-
rier. The goal of this problem is to calculate the half-life of an 
alpha particle in the energy level E = 5.0 MeV.

 a. What is the kinetic energy of the alpha particle while inside 
the nucleus? What is its kinetic energy after it escapes from 
the nucleus?

 b. Consider the alpha particle within the nucleus to be a point 
particle bouncing back and forth with the kinetic energy you 



stated in part a. What is the particle’s collision rate, the num-
ber of times per second it collides with a wall of the potential?

 c. What is the tunneling probability Ptunnel?
 d. Ptunnel is the probability that on any one collision with a wall 

the alpha particle tunnels through instead of reflecting. The 
probability of not tunneling is 1 - Ptunnel. Hence the probabil-
ity that the alpha particle is still inside the nucleus after N 
collisions is (1 - Ptunnel )

N � 1 - NPtunnel, where we’ve used 
the binomial approximation because Ptunnel V 1. The half-
life is the time at which half the nuclei have not yet decayed. 
Use this to determine (in years) the half-life of the nucleus.

x

U (MeV)

30

�60

20 fm 15 fm 20 fm

E � 5.0 MeV

Figure Cp42.63 

STop To THiNk ANSWerS

Stop to Think 42.1: 3. Different isotopes of an element have different 
numbers of neutrons but the same number of protons. The number of 
electrons in a neutral atom matches the number of protons.

Stop to Think 42.2: c. To keep A constant, increasing N by 1 (going 
up) requires decreasing Z by 1 (going left).

Stop to Think 42.3: No. A Geiger counter responds only to ionizing 
radiation. Visible light is not ionizing radiation.

Stop to Think 42.4: c. One-quarter of the atoms are left. This is one-
half of one-half, or (1/2)2.

Stop to Think 42.5: b. An increase of Z with no change in A occurs 
when a neutron changes to a proton and an electron, ejecting the 
electron.
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P a r t

Niels Bohr was right on target with his remark, “Anyone 
who is not shocked by quantum theory has not understood it.” 
Quantum mechanics is shocking. The predictability of New-
tonian physics has been replaced by a mysterious world in 
which physical entities that by all rights should be waves 
sometimes act like particles. Electrons and neutrons somehow 
produce wave-like interference with themselves. These dis-
coveries stood common sense on its head.

According to quantum mechanics, the wave function and 
its associated probabilities are all we can know about an 

atomic particle. This idea is so unsettling that many great 
scientists were reluctant to accept it. Einstein famously said, 
“God does not play dice with the universe.” But Einstein was 
wrong. As strange as it seems, this is the way that nature 
really is.

As we conclude our journey into physics, the knowledge 
structure for Part VII summarizes the important ideas of rela-
tivity and quantum physics. Whether you’re shocked or not, 
these are the scientific theories behind the emerging technolo-
gies of the 21st century.

Relativity and Quantum PhysicsVII
SuMMARY

eSSeNTiAL CoNCepTS Reference frame, event, atom, photon, quantization, wave function, probability density
BASiC goALS What are the properties and characteristics of space and time?
 How do we know about light and atoms?
 How are atomic and nuclear phenomena explained by energy levels, wave functions, and photons?

geNerAL priNCipLeS Principle of relativity All the laws of physics are the same in all inertial reference frames.

 Schrödinger’s equation 
d 2c

dx2 = -
2m

U2
3E - U(x)4c(x)

 Pauli exclusion principle No more than one electron or nucleon can occupy the same quantum state.

 Uncertainty principle �x �p Ú h/2

reLATiviTY It follows from the principle of relativity that:

•	 The speed of light c is the same in all inertial reference 
frames. No particle or causal influence can travel faster  
than c.

•	 Length contraction: The length of an object in a reference 
frame in which the object moves with speed v is

L = 21 - b2 / … /

 where / is the proper length and b = v/c.

•	 Time dilation: The proper time interval �t between two 
events is measured in a reference frame in which the two  
events occur at the same position. The time interval �t in a 
frame moving with relative speed v is

�t = �t/21 - b2 Ú �t

•	 E = mc2 is the energy equivalent of mass. Mass can be 
transformed into energy and energy into mass.

QuANTuM pHYSiCS Quantum systems are described by a wave 
function c(x).

• The probability that a particle will be found in the narrow  
interval dx at position x is Prob(in dx at x) = P(x) dx. The 
probability density is P(x) = 0c(x) 0 2.

• The wave function must be normalized

3
�

-�

0c(x) 0 2 dx = 1

• The wave function can penetrate into a classically forbidden  
region with penetration distance

h =
U22m(U0 - E)

•	 A particle can tunnel through an energy barrier of height U0 
and width w with probability Ptunnel = e-2w/h.

kNoWLeDge STruCTure vii  relativity and Quantum physics

properties of light

•	 A photon of light of frequency f has energy Ephoton = hf.

•	 Photons are emitted and absorbed on an all-or-nothing basis.

properties of atoms

•	 Quantized energy levels, found by solving the Schrödinger 
equation, depend on quantum numbers n and l.

•	 An atom can jump from one state to another by emitting or 
absorbing a photon of energy Ephoton = �Eatom.

•	 The ground-state electron configuration is the lowest-energy 
configuration consistent with the Pauli principle.

properties of nuclei

•	 The nucleus is held together by the strong force, an attractive 
short-range force between any two nucleons.

•	 Nuclei are stable only if the proton and neutron numbers fall 
along the line of stability.

•	 Unstable nuclei decay by alpha, beta, or gamma decay. The 
number of nuclei decreases exponentially with time.
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by small capacitors that are either charged or uncharged. 
Suppose we wanted to represent information not with 
capacitors but with a quantum system that has two states. 
We could say that the system represents a 0 when it is in 
state ca and a 1 when it is in cb. Such a quantum system is 
an ordinary binary bit as long as the system is in one state 
or the other.

But the quantum system, unlike a classical bit, has the 
possibility of being in a superposition state. Using 0 and 1, 
rather than ca and cb, we could say that the system can be in 
the state c = a # 0 + b # 1. This basic unit of quantum com-
puting is called a qubit. It may seem at first that we could 
do the same thing with a classical system by allowing the 
capacitor charge to vary, but a partially charged capacitor is 
still a single, well-defined state. In contrast, the qubit—like 
the electron that goes through both slits—is simultaneously 
in both state 0 and state 1.

To illustrate the possibilities, suppose you have three 
classical bits and three qubits. The three bits can represent 
eight different numbers (000 to 111), but only one at a time. 
The three qubits represent all eight numbers simultaneously. 
To perform a mathematical operation, you must do it eight 
times on the three bits to learn all the possible outcomes. 
But you would learn all eight outcomes simultaneously 
from one operation on the three qubits. In general, comput-
ing with n qubits provides a theoretical improvement of 2n 
over computing with n bits.

We say “theoretical” because quantum computing is still 
mostly in the concept stage, much as digital computers were 
150 years ago. What kind of quantum systems can actu-
ally be placed in an appropriate superposition state? How 
do you manipulate qubits? How do you read information in 
and out? What kinds of computations would be improved 
by quantum computing?

These are all questions that are being actively researched 
today. Quantum computing is in its infancy, and the tech-
nology for making a real quantum computer is largely 
unknown. Just as Charles Babbage couldn’t possibly 
have imagined today’s computers, the uses of tomorrow’s 
quantum computers are still unforeseen. But, quite possi-
bly, there are uses that some of you may help to invent.

All the systems we studied in Part VII were in a single, 
well-defined quantum state. For example, a hydrogen atom 
was in the 1s state or, perhaps, the 2p state. But there’s 
another possibility. Some quantum systems can exist in a 
superposition of two or more quantum states.

We hinted at the possibility of superposition when we re- 
examined the double-slit interference experiment in the 
light of quantum physics. We noted that a photon or elec-
tron must, in some sense, go through both slits and then 
interfere with itself to produce the dot-by-dot buildup of an 
interference pattern on the screen. Suppose we say that an 
electron that has passed through the top slit in the figure is 
in quantum state ca. An electron that has passed through the 
bottom slit is in state cb.

Quantum Computers

ONE STEP BEYOND

Incident
electron

The electron behind the
slits is in the superposition
state c � aca � bcb.

The electron through the top slit is in state ca.

The electron through the bottom slit is in state cb.

Figure pSvii.1 The electron emerging from the double slit is 
in a superposition state.

To say that the electron goes through both slits is to 
say that the electron emerges from the double slit in the 
superposition state c = aca + bcb, where the coefficients 
a and b must satisfy a2 + b2 = 1. (Notice that this is like 
finding the magnitude of a vector from its components.) 
If we were to detect the electron, a2 and b2 are the prob-
abilities that we would find it to be in state ca or state cb, 
respectively. But until we detect it, the electron exists in 
the superposition of both states ca and cb. It is this super-
position that allows the electron to interfere with itself to 
produce the interference pattern.

But what does this have to do with computers? As you 
know, everything a modern digital computer does, from 
surfing the Internet to crunching numbers, is accomplished 
by manipulating binary strings of 0s and 1s. The concept of 
computing with binary bits goes back to Charles Babbage in 
the mid-19th century, but it wasn’t until the mid-20th cen-
tury that scientists and engineers developed the technology 
that gives this concept a physical representation.

A binary bit is always a 1 or a 0; there’s no in-between 
state. These are represented in a modern microprocessor 

Figure pSvii.2 This string of beryllium ions held in an ion 
trap is being studied as a possible quantum computer. 
The quantum states of the ions are manipulated with laser 
beams.
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Algebra

Using exponents: a-x =
1

ax axay = a(x +  y) 
ax

ay = a(x -  y) (ax)y = ax  y

 a0 = 1 a1 = a a1/n = 2n
a

Fractions: 1a

b 2 1c

d 2 =
ac

bd
 

a/b

c/d
=

ad

bc
 

1

1/a
= a

Logarithms: If a = ex, then ln (a) = x ln (ex) = x e ln (x) = x

 ln (ab) = ln (a) + ln (b) ln 1a

b 2 = ln (a) - ln (b) ln (an) = n ln (a)

 The expression ln (a + b) cannot be simplified.

Linear equations: The graph of the equation y = ax + b is a straight line.
a is the slope of the graph. b is the y-intercept.

Proportionality: To say that y is proportional to x, written y � x, means
that y = ax, where a is a constant. Proportionality is a
special case of linearity. A graph of a proportional rela-
tionship is a straight line that passes through the origin. 
If y � x, then

   
y1

y2
=

x1

x2

Quadratic equation: The quadratic equation ax2 + bx + c = 0 has the two solutions x =
-b { 2b2 - 4ac

2a
.

Geometry and Trigonometry

Area and volume: Rectangle

A = ab

Rectangular box

V = abc

Triangle

A =
1
2 ab

Right circular cylinder

V = pr2l

Circle

C = 2pr

A = pr2

Sphere

A = 4pr2

V =
4
3 pr3

Mathematics Review

y

x
b

�x

�y

y-intercept � b

Slope a � rise
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Arc length and angle: The angle u in radians is defined as u = s/r.

The arc length that spans angle u is s = ru.

2p rad = 360�

Right triangle: Pythagorean theorem c = 2a2 + b2 or a2 + b2 = c2

sin u =
b
c

=
far side

hypotenuse
 u =  sin -11b

c 2
cos u =

a
c

=
adjacent side

hypotenuse
 u =  cos -11a

c 2
tan u =

b
a

=
far side

adjacent side
 u =  tan -11b

a 2
General triangle: a + b + g = 180� = p rad

Law of cosines c2 = a2 + b2 - 2ab cos g

Identities: tan a =
sin a
cos a

   sin2 a +  cos2 a = 1

sin (-a) = -sin a    cos (-a) = cos a

sin (a { b) = sin a  cos b { cos a  sin b cos (a { b) = cos a  cos b | sin a  sin b

sin (2a) = 2 sin a  cos a    cos (2a) = cos2 a - sin2 a

sin (a { p/2) = {cos a    cos (a { p/2) = <sin a

sin (a { p) = -sin a    cos (a { p) = -cos a

Expansions and Approximations 

Binomial expansion: (1 + x)n = 1 + nx +
n(n - 1)

2
 x2 + g

Binomial approximation: (1 + x)n � 1 + nx if x V 1

Trigonometric expansions: sin a = a -
a3

3!
+
a5

5!
-
a7

7!
+ g for a in rad

cos a = 1 -
a2

2!
+
a4

4!
-
a6

6!
+ g for a in rad

Small-angle approximation: If a V 1 rad, then sin a �  tan a � a and cos a � 1.

The small-angle approximation is excellent for a 6 5� (�  0.1 rad) and generally 
acceptable up to a � 10�.

u

sr

r

u

c

a

b

b g

ac

a

b
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Calculus
The letters a and n represent constants in the following derivatives and integrals.

Derivatives

d

dx
 1 ln(ax)2 =

1
x

d

dx
 (eax) = aeax

d

dx
1sin(ax)2 = a cos(ax)

d

dx
1cos(ax)2 = -a sin(ax)

d

dx
 (a) = 0

d

dx
 (ax) = a

d

dx1a
x 2 = -

a

x2

d

dx
 (axn ) = anxn-1

Integrals

3x dx =
1

2
 x2

3x2 dx =
1

3
 x3

3
1

x2 dx = -
1
x

3xn dx =
xn +1

n + 1
  n � -1

3
dx
x

= ln x

3
dx

a + x
= ln (a + x)

3
x dx

a + x
= x - a ln (a + x)

3
dx2x2 { a2

= ln1x + 2x2 { a22

3
x dx2x2 { a2

= 2x2 { a2

3
dx

x2 + a2 =
1
a

  tan-11x
a 2

3
dx

(x2 + a2)2 =
1

2a3  tan-11x
a 2 +

x

2a2(x2 + a2)

3
dx

(x2 { a2)3/2 =
{x

a22x2 { a2

3
x dx

(x2 { a2)3/2 = -
12x2 { a2

3eax dx =
1
a

 eax

3xe -x dx = -(x + 1)e-x

3x2e-x dx = -(x2 + 2x + 2)e-x

3sin(ax) dx = -
1
a

 cos(ax)

3cos(ax) dx =
1
a

 sin(ax)

3sin2(ax) dx =
x

2
-

sin(2ax)

4a

3cos2(ax) dx =
x

2
+

sin(2ax)

4a

3
�

0

xne-ax dx =
n!

an+1

3
�

0

e-ax2

 dx =
1

2
 Ap

a
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B
periodic Table of elements

An atomic mass in brackets is that of the longest-lived isotope of an element with no stable isotopes.

Na Mg Al Si P S Cl Ar

Li Be B

H He

C N O F Ne

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe

Cs Ba Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At RnLu

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb

Lr

Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No

Fr Ra Rf Db Sg Bh Hs Mt Ds Rg

11 12 13 14 15 16 17 18

3 4 5

1 2

6 7 8 9 10

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

55 56 72 73 74 75 76 77 78 79 80 81 82 83 84 85 8671

58 59 60 61 62 63 64 65 66 67 68 69 70

103

90 91 92 93 94 95 96 97 98 99 100 101 102

87 88 104 105 106 107 108 109 110 111

23.0 24.3 27.0 28.1 31.0 32.1 35.5 39.9

6.9 9.0 10.8

1.0 4.0

12.0 14.0 16.0 19.0 20.2

39.1 40.1 45.0 47.9 50.9 52.0 54.9 55.8 58.9 58.7 63.5 65.4 69.7 72.6 74.9 79.0 79.9 83.8

85.5 87.6 88.9 91.2 92.9 95.9 [98] 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3

132.9 137.3 178.5 180.9 183.9 186.2 190.2 192.2 195.1 197.0 200.6 204.4 207.2 209.0 [209] [210] [222]175.0

140.1 140.9 144.2 144.9 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0

[262]

232.0 231.0 238.0 [237] [244] [243] [247] [247] [251] [252] [257] [258] [259]

[223] [226] [265] [268] [271] [272] [270] [276] [281] [280]
Cn

112

[285]

113 114 115 116 117 118

Transition elements

Atomic number

Atomic mass
Symbol

27
Co
58.9

Inner transition elements

Lanthanides

Actinides

6

7

Period 1

2

3

4

5

6

7

La

Ac

57

89
138.9

[227]
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C
Atomic  

Number (Z ) Element Symbol
Mass  

Number (A)
Atomic  

Mass (u)
Percent  

Abundance
Decay  
Mode

Half-Life  
t1/2

 0 (Neutron) n 1  1.008 665 b- 10.4 min

 1 Hydrogen H 1  1.007 825  99.985 stable

Deuterium D 2  2.014 102   0.015 stable

Tritium T 3  3.016 049 b- 12.33 yr

 2 Helium He 3  3.016 029   0.000 1 stable

 4  4.002 602  99.999 9 stable

6  6.018 886 b- 0.81 s

 3 Lithium Li 6  6.015 121   7.50 stable

7  7.016 003  92.50 stable

8  8.022 486 b- 0.84 s

 4 Beryllium Be 7  7.016 928 EC 53.3 days

9  9.012 174 100 stable

10 10.013 534 b- 1.5 * 106 yr

 5 Boron B 10 10.012 936  19.90 stable

11 11.009 305  80.10 stable

12 12.014 352 b- 0.020 2 s

 6 Carbon C 10 10.016 854 b+ 19.3 s

11 11.011 433 b+ 20.4 min

12 12.000 000  98.90 stable

13 13.003 355   1.10 stable

14 14.003 242 b- 5 730 yr

15 15.010 599 b- 2.45 s

 7 Nitrogen N 12 12.018 613 b+ 0.011 0 s

13 13.005 738 b+ 9.96 min

14 14.003 074  99.63 stable

15 15.000 108   0.37 stable

16 16.006 100 b- 7.13 s

17 17.008 450 b- 4.17 s

 8 Oxygen O 14 14.008 595 EC 70.6 s

15 15.003 065 b+ 122 s

16 15.994 915  99.76 stable

17 16.999 132   0.04 stable

18 17.999 160   0.20 stable

19 19.003 577 b- 26.9 s

 9 Fluorine F 17 17.002 094 EC 64.5 s

18 18.000 937 b+ 109.8 min

19 18.998 404 100 stable

20 19.999 982 b- 11.0 s

10 Neon Ne 19 19.001 880 b+ 17.2 s

20 19.992 435  90.48 stable

21 20.993 841   0.27 stable

22 21.991 383   9.25 stable

atomic and nuclear data
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C
Atomic  

Number (Z ) Element Symbol
Mass  

Number (A)
Atomic  

Mass (u)
Percent  

Abundance
Decay  
Mode

Half-Life  
t1/2

11 Sodium Na 22 21.994 434 b+ 2.61 yr

23 22.989 770 100 stable

24 23.990 961 b- 14.96 hr

12 Magnesium Mg 24 23.985 042  78.99 stable

25 24.985 838  10.00 stable

26 25.982 594  11.01 stable

13 Aluminum Al 27 26.981 538 100 stable

28 27.981 910 b- 2.24 min

14 Silicon Si 28 27.976 927  92.23 stable

29 28.976 495   4.67 stable

30 29.973 770   3.10 stable

31 30.975 362 b- 2.62 hr

15 Phosphorus P 30 29.978 307 b+ 2.50 min

31 30.973 762 100 stable

32 31.973 908 b- 14.26 days

16 Sulfur S 32 31.972 071  95.02 stable

33 32.971 459   0.75 stable

34 33.967 867   4.21 stable

35 34.969 033 b- 87.5 days

36 35.967 081   0.02 stable

17 Chlorine Cl 35 34.968 853  75.77 stable

36 35.968 307 b- 3.0 * 105 yr

37 36.965 903  24.23 stable

18 Argon Ar 36 35.967 547   0.34 stable

38 37.962 732   0.06 stable

39 38.964 314 b- 269 yr

40 39.962 384  99.60 stable

42 41.963 049 b- 33 yr

19 Potassium K 39 38.963 708  93.26 stable

40 39.964 000   0.01 b+ 1.28 * 109 yr

41 40.961 827   6.73 stable

20 Calcium Ca 40 39.962 591  96.94 stable

42 41.958 618   0.64 stable

43 42.958 767   0.13 stable

44 43.955 481   2.08 stable

47 46.954 547 b- 4.5 days

48 47.952 534   0.18 stable

24 Chromium Cr 50 49.946 047   4.34 stable

52 51.940 511  83.79 stable

53 52.940 652   9.50 stable

54 53.938 883   2.36 stable

26 Iron Fe 54 53.939 613   5.9 stable

55 54.938 297 EC 2.7 yr

56 55.934 940  91.72 stable

57 56.935 396   2.1 stable

58 57.933 278   0.28 stable
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Atomic  

Number (Z ) Element Symbol
Mass  

Number (A)
Atomic  

Mass (u)
Percent  

Abundance
Decay  
Mode

Half-Life  
t1/2

27 Cobalt Co 59 58.933 198 100 stable

60 59.933 820 b- 5.27 yr

28 Nickel Ni 58 57.935 346  68.08 stable

60 59.930 789  26.22 stable

61 60.931 058   1.14 stable

62 61.928 346   3.63 stable

64 63.927 967   0.92 stable

29 Copper Cu 63 62.929 599  69.17 stable

65 64.927 791  30.83 stable

47 Silver Ag 107 106.905 091  51.84 stable

109 108.904 754  48.16 stable

48 Cadmium Cd 106 105.906 457   1.25 stable

109 108.904 984 EC 462 days

110 109.903 004  12.49 stable

111 110.904 182  12.80 stable

112 111.902 760  24.13 stable

113 112.904 401  12.22 stable

114 113.903 359  28.73 stable

116 115.904 755   7.49 stable

53 Iodine I 127 126.904 474 100 stable

129 128.904 984 b- 1.6 * 107 yr

131 130.906 124 b- 8 days

54 Xenon Xe 128 127.903 531   1.9 stable

129 128.904 779  26.4 stable

130 129.903 509   4.1 stable

131 130.905 069  21.2 stable

132 131.904 141  26.9 stable

133 132.905 906 b- 5.4 days

134 133.905 394  10.4 stable

136 135.907 215   8.9 stable

55 Cesium Cs 133 132.905 436 100 stable

137 136.907 078 b- 30 yr

56 Barium Ba 131 130.906 931 EC 12 days

133 132.905 990 EC 10.5 yr

134 133.904 492   2.42 stable

135 134.905 671   6.59 stable

136 135.904 559   7.85 stable

137 136.905 816  11.23 stable

138 137.905 236  71.70 stable

79 Gold Au 197 196.966 543 100 stable

81 Thallium Tl 203 202.972 320  29.524 stable

205 204.974 400  70.476 stable

207 206.977 403 b- 4.77 min

82 Lead Pb 204 203.973 020   1.4 stable

205 204.974 457 EC 1.5 * 107 yr
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Atomic  

Number (Z ) Element Symbol
Mass  

Number (A)
Atomic  

Mass (u)
Percent  

Abundance
Decay  
Mode

Half-Life  
t1/2

206 205.974 440  24.1 stable

207 206.975 871  22.1 stable

208 207.976 627  52.4 stable

210 209.984 163 a, b- 22.3 yr

211 210.988 734 b- 36.1 min

83 Bismuth Bi 208 207.979 717 EC 3.7 * 105 yr

209 208.980 374 100 stable

211 210.987 254 a 2.14 min

215 215.001 836 b- 7.4 min

84 Polonium Po 209 208.982 405 a 102 yr

210 209.982 848 a 138.38 days

215 214.999 418 a 0.001 8 s

218 218.008 965 a, b- 3.10 min

85 Astatine At 218 218.008 685 a, b- 1.6 s

219 219.011 294 a, b- 0.9 min

86 Radon Rn 219 219.009 477 a 3.96 s

220 220.011 369 a 55.6 s

222 222.017 571 a, b- 3.823 days

87 Francium Fr 223 223.019 733 a, b- 22 min

88 Radium Ra 223 223.018 499 a 11.43 days

224 224.020 187 a 3.66 days

226 226.025 402 a 1 600 yr

228 228.031 064 b- 5.75 yr

89 Actinium Ac 227 227.027 749 a, b- 21.77 yr

228 228.031 015 b- 6.15 hr

90 Thorium Th 227 227.027 701 a 18.72 days

228 228.028 716 a 1.913 yr

229 229.031 757 a 7 300 yr

230 230.033 127 a 75.000 yr

231 231.036 299 a, b- 25.52 hr

232 232.038 051 100 a 1.40 * 1010 yr

234 234.043 593 b- 24.1 days

91 Protactinium Pa 231 231.035 880 a 32.760 yr

234 234.043 300 b- 6.7 hr

92 Uranium U 233 233.039 630 a 1.59 * 105 yr

234 234.040 946 a 2.45 * 105 yr

235 235.043 924   0.72 a 7.04 * 108 yr

236 236.045 562 a 2.34 * 107 yr

238 238.050 784  99.28 a 4.47 * 109 yr

93 Neptunium Np 236 236.046 560 EC 1.15 * 105 yr

237 237.048 168 a 2.14 * 106 yr

94 Plutonium Pu 238 238.049 555 a 87.7 yr

239 239.052 157 a 2.412 * 104 yr

240 240.053 808 a 6 560 yr

242 242.058 737 a 3.73 * 106 yr
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13.4 Magnetic Force on a Particle  940
13.5 Magnetic Force on a Wire  947
13.6 Magnetic Torque on a Loop  948
13.7 Mass Spectrometer  942
13.8 Velocity Selector  942
13.9 Electromagnetic Induction  975
13.10 Motional emf  975
14.1 The RL Circuit  991
14.2 The RLC Oscillator  1043
14.3 The Driven Oscillator  1043
15.1 Reflection and Refraction  661
15.2 Total Internal Reflection  661
15.3 Refraction Applications  661
15.4 Plane Mirrors  659
15.5 Spherical Mirrors: Ray Diagrams  682
15.6 Spherical Mirror: The Mirror 

Equation  682
15.7 Spherical Mirror: Linear 

Magnification  682
15.8 Spherical Mirror: Problems  682
15.9 Thin-Lens Ray Diagrams  673
15.10 Converging Lens Problems  679
15.11 Diverging Lens Problems  679
15.12 Two-Lens Optical Systems  679
16.1 Two-Source Interference: 

Introduction  631
16.2 Two-Source Interference: Qualitative 

Questions  631
16.3 Two-Source Interference: Problems  631
16.4 The Grating: Introduction and 

Qualitative Questions  636
16.5 The Grating: Problems  636
16.6 Single-Slit Diffraction  637
16.7 Circular Hole Diffraction  640
16.8 Resolving Power  709
16.9 Polarization  1024
17.1 Relativity of Time  1074
17.2 Relativity of Length  1078
17.3 Photoelectric Effect  1128
17.4 Compton Scattering
17.5 Electron Interference  1135
17.6 Uncertainty Principle  1169
17.7 Wave Packets  1169
18.1 The Bohr Model  1138
18.2 Spectroscopy  1104, 1232
18.3 The Laser  1238
19.1 Particle Scattering  1114
19.2 Nuclear Binding Energy  1253
19.3 Fusion  836
19.4 Radioactivity  1263
19.5 Particle Physics  1266
20.1 Potential Energy Diagrams  1182
20.2 Particle in a Box  1185
20.3 Potential Wells  1194
20.4 Potential Barriers  1206
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1.3 Vector Addition  7, 71, 75
1.8 Estimation  27
2.1 Equation Grapher  36
2.2 Calculus Grapher  40, 44
2.3 *The Moving Man  42
4.1 Motion in 2D  86, 102
4.1 Maze Game  86, 88
4.1  Ladybug Motion in 2D  86
4.3 *Projectile Motion  93
4.5 Ladybug Revolution  99
5.5 *Forces in 1 Dimension  126, 127
5.7 *The Ramp  130
6.1 Molecular Motors  139
6.2 Lunar Lander, *The Ramp  142
6.4 *Forces in 1 Dimension, Friction  149
6.6 *The Ramp  155
8.2 Ladybug Revolution, Motion in 2D  194
8.3 My Solar System  199
8.5 Ladybug Motion in 2D  205
9.5 Lunar Lander  236
10.2 *Energy Skate Park  248, 261
10.5 *Masses & Springs  257
10.6 Stretching DNA  261
11.2 *The Ramp  280
11.7 States of Matter  292
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12.3 Torque  317, 322, 340
13.3 Gravity Force Lab  357
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14.6 *Pendulum Lab  392, 395
15.1 States of Matter  408
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16.1 States of Matter  445, 451
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17.8 Blackbody Spectrum  493
17.8 The Greenhouse Effect  494
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20.2 *Wave Interference  565, 574
20.3 Waves on a String  570, 574
20.5 Sound, Radio Waves and EM Fields  574
21.1 Fourier: Making Waves, Waves on a String  592
21.3 Waves on a String  595
21.4 *Wave Interference  599
22.2 *Wave Interference  630, 637

23.5 Color Vision  667
23.6 *Geometric Optics  672, 674
24.4 *Geometric Optics  703
25.3 Conductivity  727
25.3 Balloons and Static Electricity, 

John Travoltage  728, 731
25.5 *Charges and Fields  740
26.2 *Charges and Fields  752, 754, 759, 760, 764
26.6 Electric Field of Dreams, Electric Field Hockey  767
26.6 Microwaves, Optical Tweezers and 

Applications  767
28.4 *Charges and Fields  819, 828
29.2 Battery Voltage  843
30.2 Signal Circuit  871
30.5 Resistance in a Wire, Ohm’s Law  880
30.5 Battery-Resistor Circuit  883
31.2 *Circuit Construction (DC Only)  893, 898, 904, 

906, 910
31.3 Battery-Resistor Circuit  896
32.1 Magnet and Compass  922
32.5 Magnets and Electromagnets  931, 939
33.1 *Faraday’s Electromagnetic Lab, Faraday’s 

Law  963
33.3 *Faraday’s Electromagnetic Lab  969
33.4 Faraday’s Law  972
33.7 Generator, *Faraday’s Electromagnetic Lab  983
33.8 *Circuit Construction (AC + DC)  986
34.5 Radio Waves & Electromagnetic Fields  1016, 

1023
35.1 *Circuit Construction (AC + DC)  1034, 1036, 

1041, 1043
36.10 Nuclear Fission  1094
37.1 Blackbody Spectrum  1104
37.4 Neon Lights and Other Discharge Lamps  1108
37.6 Rutherford Scattering  1114
38.1 Photoelectric Effect  1128
38.6 Models of the Hydrogen Atom  1141
38.7 Neon Lights and Other Discharge Lamps  1146
39.1 Wave Interference  1157
39.1 Plinko Probability  1158
39.1 Quantum Wave Interference  1159
40.6 Quantum Bound States  1194
40.9 Double Wells and Covalent Bonds  1206
40.10 Quantum Tunneling and Wave Packets  1206
41.1 Models of the Hydrogen Atom  1217
41.3 Stern-Gerlach Experiment  1223
41.6 Neon Lights and Other Discharge Lamps  1234
41.8 Lasers  1238
42.5 Radioactive Dating Game  1260
42.6 Alpha Decay, Beta Decay  1264
42.7 Simplified MRI  1270
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Chapter 1
 1. 

x
Skid

begins
Stops

 3. ar ar

t � 0 s Enter town
t � 30 s

t � 60 s

v0 � 60 mph v0 � 60 mph v0 � 60 mph

v1 � 45 mph v2 � 30 mph

 5. 
Ball released

Ground

rv0

y

rv1

rv3

rv2

 7. 
Stop

vr

 9. a. Greater
  b. 

r

rv1

v1

r�v0

�v

rv0

2

1

0

a

r

 11. a. 

ar
rv3

rv1

3 2 1 

  b. 

ar
v2
r v1

r

3 2 1

 13. 

ar ar ar

rv

Stops

ar

Rocky patch

rra � 0
rra � 0

 15. 

Hits bottom

Starts

Water level

ar

ar

ar

vr

a � 0r r

a � 0r r

 17. 

ar
ar

ar

vr

a � 0r r
a � 0r r

 21. 

x0, v0x, t0 x1, v1x, t1

x

a0
r

x1

Known
v0x � 0 m/s  t0 � 0 s  x0 � 0 m
a0 � 1.5 m/s2

v1 � 7.5 m/s

Find

 23. a. 6.15 * 10-3 s b. 27.2 * 103 m c. 31.1 m/s
d. 7.2 * 10-2 m/s

 25. a. 4 * 103 s b. 9 * 104 s c. 3 * 107 s d. 65.5 m/s
 27. a. 12 in b. 50 mph  c. 3 mi d. 0.3 in
 29. a. 1.95 * 103 b. 65.1 c. 2.3 d. 0.0800
 31. 50 ft or 15 m, about 8 times my height
 33. 9.8 * 10-9 m/s = 40 mm/h
 35. 

Known

ax

x0 � 0 m
v0x  � 300 m/s     t0 � 0 s

x1 � 4 km

Find

ar

ar

Pictorial representation

Motion diagram

x0 , v0 x , t0 x1, v1x , t1

rv

Answers
Answers to Odd-Numbered Exercises and Problems

A-11
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 37. 

y1, v1y, t1

y0, v0y, t0

y

ra0
ra0

rv

t1

Known
y0 � 0 m  v0y � 10 m/s    
t0 � 0 s    y1 � 3.0 m     
a0y � 0

Find

Ceiling

Start

Pictorial representation Motion diagram

 39. 

ar

ar

rv

x0, v0, t0

x1, v1, t1

30�

v1x

Known
x0 � 0 m      x1 � 10 m/s
t0 � 0 s        ax � (9.8 m/s2) sin (30�)
v0x � 0 m/s

Find

Pictorial representation

Motion diagram

 41. 

ar

ar

rv

Pictorial representation

Motion diagram

Stops

x0 , v0 x , t0

x1, v1x , t1

Known

x1

x0 � 0 m
t0 � 0 s
v0x � 30 m/s

v1x � 0 m/s
ax � �(9.8 m/s2) sin (10�)

Find

10�

 43. 
r r

Known
aTxxD0  � 0 m

tD0  � 0 s
vD0 x  � 30 m/s
aD0 x  � 0 m/s2

xT0  � 0 m
tT0  � 0 s
vT0 x  � 0 m/s

Find

Pictorial representation

Motion diagram

xD0 , tD0 , vD0 x

David

Tina

xT0 , tT0 , vT0 x xT1, tT1, vT1x

xD1, tD1, vD1x

aD � 0

aT
r

aT
r

r r
aD � 0

vD
r

vT
r

 49. 

ar

rv
ra � 0

r

 51. 

ra

ra

rv

rv

 53. Smallest: 6.4 * 103 m2 , largest: 8.3 * 103 m2

 55. 

t (s)

1200

900

600

300

100806040200

x (m)

0

Chapter 2
 1. a. Beth b. 20 min
 3. a. 48 mph b. 50 mph
 5. a. vx (m/s)

t (s)0
1 2 3 4

�10

�20

10

20

 b. 1 s
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 7. 8.0 cm
 9. 

t (s)

ax (m/s2)

2 4

1

0

�1

 11. a. 6.0 m b. 4.0 m/s c. 2.0 m/s2

 13. 8.8 m/s2; this is reasonable for a jet
 15. -2.8 m/s2

 17. a. 78.4 m b. -39.2 m/s
 19. 3.2 s
 21. a. 64 m b. 7.1 s
 23. a. 7 m b. 7 m/s c. 4 m/s2

 25. 16 m/s
 27. -10 m/s, -20 m/s, 75 m/s
 29. a. Zero at t = 0 s, 1 s, 2 s, 3 s, . . . ; most positive at t = 0.5 s, 2.5 s, 

most negative at t = 1.5 s, 3.5 s, . . .
  b. 

vy

1 2 3 4
t (s)0

 31. a. 0 s and 3 s b. 12 m and -18 m/s2; -15 m and 18 m/s2

 33. 2.0 m/s3

 35. 

t0

s

t

t

0

0

vs

as

 37. 

0 t

s

0 t

as

0
t

vs

 39. 
v0 � 0

s � 0
Ball rolls off left edge

 41. a. 2.7 m/s2 b. 28% c. 1.3 * 102 m = 4.3 * 102 ft
 43. a. 100 m b. -2 m/s2 c. 11.5 s
 45. a. 5 m b. 22 m/s
 47. 5.2 cm
 49. a. 54.8 km b. 228 s 
  c. 

t (s)

�300

�600

�900

300

600

900

0
30 90

150

210

vy (m/s)

Fuel out

Max altitude

Impact

 51. 19.7 m
 53. 216 m
 55. 9.9 m/s
 57. a. vf = 22gh b. 2.4 m/s
 59. Yes
 61. a. gh/d b. 70 m/s2

 63. 5.7 m/s
 65. a. 900 m b. 60 m/s
 67. 17.2 m
 69. 4.4 m/s2

 71. a. Yes b. 7.9 m/s2

 73. c. 17.2 m/s
 75. c. 750 m
 77. 5.5 m/s2

 79. a. 10 s b. 3.8 m/s2 c. 5.6%
 81. 12.5 m/s
 83. 4500 m/s2
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Chapter 3
 1. a. r

A

r
B

r
B

r
A

Known

Find

r
A, B

r

A � B
r r

A � B, A � B
r r r r

  b. 

r
A

r r r
A � B �B

 3. a. -E cos u, E sin u b. Ex = -E sin f, Ey = E cos f
 5. 6 m
 7. a. 0 m/s, -10 m/s b. 17 m/s2, -10 m/s2 c. -60 N, 80 N
 9. 2.2 T, 27 below the +x@axis
 11. a.  7.2, 56 below the +x@axis 
  b. 94 m, 58 above the +x@axis 
  c. 45 m/s, 63 above the -x@axis
  d. 6.3 m/s2, 18 right of the -y@axis
 13. a. 1 in + 3jn
  b.  

r

r

x
�4 �2

�2

�4

4

y

2

6

20 4

r
A � 4i � 2j r

B
r

C

r
A

Known

Find

r
B � �3i � 5j 

u

nn

nn

r
A

rr
C � A � B
C and u

  c. 3.2, 72 above the +x@axis
 15. a. 10 in + 2jn
  b. 

r r

nn

nn

r

r

A � 4i � 2j

C � A � B
C and u

Known

Find

B � �3i � 5j
r
E

r
A

x
�4 �2

�2

�4

4

y

6

2

20 4 6

u

8 10

r
B

  c. 10, 11 above the +x@axis
 17. a. Bx = -4.3 m, By = 2.5 m b. Bx = -2.5 m, By = 4.3 m
 19. a. 

Find
Ax  Ay  Bx  By  Cx  Cy

D � A � B � C
D and uD relative to � x

Known
A � 3.0 m   uA � 20�

B � 2.0 m   uB � 90�

C � 5.0 m   uC � 70�

r rr r

north

south

eastwest

C
r

A
r

B
r

uB

uAuC

y

x

  b. A
u

= (2.8 in + 1.0jn) m, B
u

= (2.0jn) m, C
u

= ( - 1.7 in - 4.7jn) m
  c. 3.9 m, 74 below the +x@axis
 21. a. 0 m, 26 m, 160 m b. (10 in + 8.0jn)t m/s
  c. 0 m/s, 26 m/s, 64 m/s
 23. a. -4 in + 3jn, b. 5.0, 37 above the -x@axis
 25. -1 in - 3jn

 27. B
u

=
122

in +
122

jn

 29. a. 100 m lower b. 5.0 km
 31. a.  

r
A

r
B

r
D

C
r

Known
A   B   C

Find
D   u

30�
45�

y

x

north

eastwest

south

0
r r r u

  b. 360 m, 59 north of east c. Yes
 33. 7.5 m
 35. a. 34 b. 1.7 m/s
 37. a. 50 m
  b. 

50 m

r
Dcurrent

r
Dnet

r
Drow

 39. -15 m/s
 41. 49 west of south
 43. a. 0.50 N up-slope b. 1.7 N
  c. 1.7 N, 73 clockwise from the -x@axis

Chapter 4
 1. a. 

rv

ra

ra

ra

 3. H
 5. E
 7. 111 m
 9. a. 62° above the +x@axis b. 180 cm
 11. a. v  

u
(0) = (2.0 in + 4.0jn) m/s, v  

u
(2) = (2.0 in + 0.0jn) m/s, 

v  

u
(3) = (2.0 in - 2.0jn) m/s b. 2.0 m/s2 c. 63 above the +x@axis

 13. a. 0.064 s b. 780 m/s
 15. 2.0 km/h
 17. a. 300 m b. 3.2 m/s

 19. a. 0 rad/s b. -
p

2
 rad/s c. 3p rad/s



Answer to Odd-Numbered Exercises and Problems    A-15

 21. 

t (s)

u (rad)
80

60

40

20

0
20 4 6 8

 23. 8.0°/h
 25. 1680 km/h, 1040 mph
 27. a. 3.0 * 104 m/s b. 2.0 * 10-7 rad/s c. 6.0 * 10-3 m/s2

 29. a. -100 rad/s2 b. 0 rad/s2 c. 50 rad/s2

 31. 9.5 rev
 33. 47 rad/s2

 35. a. -2.6 m/s2 b. 31 rev

 37. r  

u
= (710 in - 400jn + 160kn) * 103 km

 39. a. 
v0 

2sin2 u

2g

  b. h = 14.4 m, 28.8 m, 43.2 m; d = 99.8 m, 115.2 m, 99.8 m
 41. a. 81 m higher b. 34 m
 43. a. 6 times farther, or 276 m farther
  b. 6 times longer, or 12.8 s longer
 45. Clears by 1.0 m
 47. No
 49. 3.7 m
 51. 470 m/s2

 53. a. 42 west of north b. 45 s
 55. 69 m/s at 21 from the vertical
 57. a. 40 m/s2 b. 80 m/s2

 59. a. 0.97 m/s2 b. 14g
 61. a. 420 m/s b. 200 m/s
 63. a. 12 m/s b. 36 rev
 65. a. -100 rad/s2 b. 50 rev
 67. 0.75 rad/s2

 69. a. v = 22auR b. a = 2auR
 71. 26 rad/s2

 73. 5500 rpm
 75. b. 30 m west
 77. 6.6 * 1012 m/s2

 79. 110 m/s
 81. 4.8 m/s
 83. 59 m away, 11 m lower
 85. 10

Chapter 5
 1. Tension, gravity
 3. Thrust, normal force, gravity, air resistance
 5. Gravity, air resistance
 7. a. 2.4 m/s2 b. 0.60 m/s2

 9. 12/25
 11. 3.7 s
 13. a. 1 N b. 2 N
 15. 3.6 N

 17. a. �0.05 N b. �100 N
 19. 

r
F2

r
F3

r
F1

r
F2

r
F1

r
F1

r
F1 � F2

 25. 

r
Fnet � 0

r

y

x

Normal force nr

rn

r
FG

Free-body diagramForce identification

Gravity FG

r

 27. 

F}

r

y

x

r r

r

Fnet � 0

FG

r
T2

r
T1

Free-body diagram

r
FG

r
T2

r
T1

Force identification

 29. 

(a) (b)

r
Fnet

ra

rv

Motion diagrams

r
Fnet

rv

ra

 31. 

t (s)

0.75

0.50

0.25

0.0

Fx (N)

2 41 3

�0.25

 33. 

t (s)

3.0

2.0

1.0

0.0

ax (m/s2)

2 41 3

�1.0

 35. a. 5.0 m/s2 b. 30 m/s2

  c. 10 m/s2 d. 2.5 m/s2
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 37. 

r
Fnet

ra

rv

y

x

r
fk

rn

r
FG

r
T

 39. 

r
FG

y

x

r
fk

r
Fsp

rn

r
Fnet

ra

rv

 41. 

r
FG

y

x

r
fk

rn r
Fnet

rarv

 43. 

r
T

y

x

r
Fnet

ra

rv

Tension T
r

FG

r
Gravity FG

r

 45. 

Fthrust

r

y

x

rn

r
Fnet

r
D

ra

rv

Thrust Fthrust Drag D

Normal force n

r r

rGravity FG

r

FG

r

 47. 

Normal force nr

Kinetic friction fk

r

Wind Fw

r y

x

r
FG

r
fk

rn

r
Fw

r
Fnet

ra

rv

Gravity FG

r

 49. 

Drag D
r

y

x

r
Fnet

r
D

rv

ra

FG

r

Gravity FG

r

 51. y

x

r
Fnet

rv

ra

r
FG

Gravity FG

r

 53. y

x

rn

FG

r

 55. y

x

Normal force nr

r
fs

r r
Fnet

ra

rvrvrv

FG

rn

Gravity FG

r

Static friction fs

r

 57. a. y

x

Normal force nr
r
FG

rn

Gravity FG

r

r
Fnet � 0

r

 

  f. 

r

y

x

Normal force n
Static friction fs

r FG

rn
r
fs

r
Gravity FG

r

r
Fnet � 0

r
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Chapter 6
 1. T1 = 86.7 N, T2 = 50.0 N
 3. 147 N
 5. 800 N
 7. a. ax = 1.5 m/s2, ay = 0 m/s2 b. ax = -0.28 m/s2, ay = 0 m/s2

 9. 0 m/s2, 4 m/s
 11. a. 490 N b. 490 N c. 740 N d. 240 N
 13. a. 540 N b. m = 55 kg; mg = 210 N
 15. 1035 N, 740 N, 590 N
 17. 0.250
 19. a.–b. 

(a) (b)

y

x

Direction
of motion

r
Fnet � 0

r
Fnet

rn

y

x

FG

r
fs

rn

r
FG

r

  c. 4.9 m/s2

 21. 10,000 N
 23. 2.6 km
 25. 69 g
 27. 9 m/s
 29. a. 0.0036 N b. 0.010 N
 31. a. Down b. 77 kg c. 39 m
 33. a. 59 N b. 67.8 c. 79 N
 35. a. -12 N b. 12 N
 37. 3.1 m
 39. a. 6700 N b. 600 ms
  c. 

t (ms)

200

400

vx (m/s)

300 6000

 41. a. 32g (h-mk2L2-h2)  b. 9.9 m/s
 43. 0.165
 45. 2.7 m/s
 47. 190 kN
 49. 0.12

 51. a. 
v0 

2

2msg
 b. 14 m

 53. a. Yes b. Yes
 55. Stay at rest
 57. 37 m/s
 59. 3/8 in
 61. a. 0 N b. 220 N

 63. a. 
F0

m
 
T

2
 b. 

F0

m
 
T 2

3
 65. a. 9.4 * 10-10 N, 5.7 * 10-13 N b. 1.8 m/s2, 130 m/s2

 67. b. 0.36 s
 69. c. 102 m
 71. c. 2.8 m/s2

 73. 13 m/s2

 75. a. v0e
-

6phRt

m  b. 61 s

 77. b. 160 s, 480 s b. No

Chapter 7
 1. a. 

BB

WL

S

EE

System

Push

Gravity

Normal

BB � Barbells 
WL � Weight lifter
S � Surface  EE � Entire Earth

Gravity

Interaction diagram

  b. The system is the weightlifter and barbell. 

  c. Free-body diagrams

FBB on WL

rnWL

r

y

x

r
(FG)WL

r
FWL on BB

y

x

r
(FG)BB

Barbells Weight lifter

 3. a. 

MC SuR

S

EE

Interaction diagram

Pull Pull

System

Gravity

MC � Mountain climber
R � Rope   Su � Supply bag
S � Surface
EE � Entire Earth

Normal

Normal
Friction

Friction

Gravity

 

  b. The system consists of the mountain climber, rope, and bag of supplies. 
  c. 

x

y

45�

TR on Su

( fk)Su

r

nSu
r

r

(FG)Su

r

Supply bag

TSu on R

r

x

y

45�

TMC on R

r

(FG)R

r

Rope

( fs)MC

r

x

y

45� TR on MC

nr

r

(FG)MC

r

Mountain climber

Free-body diagrams
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  b.  (FG)U = 2.0 N, nT on U = 8.0 N, FL on U = 6.0 N, (FG)T = 20 N, 
nU on T = 8.0 N, nL on T = 4.0 N, nS on T = 24 N, nS on T = 24 N, 
nT on L = 4.0 N, FU on L = 6.0 N

 21. 60 N
 23. 2.7 * 102 N
 25. No
 27. 99 m
 29. a. 2.3 * 102 N b. 0.20 m/s
 31. 1.5 s
 33. a. 3.9 N b. 2.2 m/s2

 35. 1.8 m/s2

 37. 160 N
 39. T1 = 100 N, T2 = T3 = T5 = F = 50 N, T4 = 150 N
 41. a. 1.8 kg b. 1.3 m/s2

 43. a. 0.67 m b. Slides back down
 45. a. 8.2 * 103 N b. 4.8 * 102 N
 47. a = 2T/m - mrg
 49. F = (m1 + m2)g tan u
 53.  a. 1.0 m/s b. 90 N c. 90 N
 55. 3.3 m/s2

 57. a. 2a3y + a2y + a1y = 0 m/s2

  c. a1y - 2.2 m/s2, a2y = 2.9 m/s2, a3y = -0.32 m/s2

Chapter 8
 1. 39 m
 3. a. 56 h b. 0.092 c. Yes
 5. 6.8 kN
 7. 6.6 * 1015 rev/s
 9. 2.01 * 1020 N
 11. 1.58 m/s2

 13. 22 m/s
 15. 3
 17. 30 r p m
 19. 8.2 s
 21. 4.5 m/s
 23. 105 m

 25. a. y =
1

2
 x b. Straight line c. 1090 m

 27. a. 165 m b. Straight line
 29. a. 24.0 h b. 0.223 m/s2 c. 0 N
 31. 5.5 m/s

 33. a. A g

L sin u
 b. 72 rpm

 35. 4 m/s
 37. a. 2.9 m/s b. 14 N
 39. Horizontal circle
 41. aA = -9.8 m/s2, aB = -12.9 m/s2, aC = -6.7 m/s2

 43. a. 320 N, 1400 N b. 5.7 s

 45. a. A g

L
 b. 30 rpm

 47. 0.38 N
 49. a. 1gL b. 2.6 m/s, 5.9 mph
 51. 1.4 m
 53. 13 N
 55. a. 6.6 rad/s b. 44 N
 57. b. 20 rad/s = 190 rpm

 59. a. u =
1
2tan-1(mg/F) b. 11.5%

 61. 1gy
 63. T1 = 14.2 N, T2 = 8.3 N
 65. 37 km

 67. 
rv0

r + v0mkt

 5. a. 

A B

 Interaction diagram

System

R

S

EE

Gravity

Friction

Friction

Tension

 

  b. The system consists of the two blocks. 
  c. 

y

x

r
TA on B

TB on A

rnA on B

rnA

( fk)A

r
(FG)B

r
( fk)B on A

y

x

r

r

r

r
(FG)A

Free-body diagrams

Block B

Block AnB on A

ar

ar

r
( fk)A on B

 7. a. 7.8 * 102 N b. 1.6 * 103 N
 9. a. 3000 N b. 3000 N
 11. 5.0 kg
 13. a. 32 N b. 19 N c. 16 N d. 3.2 N
 15. a. 20 N b. 21 N
 17. a. � 0.05 N b. � 100 N
 19. a. Interaction diagram

S

L

T

U

EE

Gravity

Gravity

Gravity

Known

System

Pull

Upper

Normal
Normal

U � Upper magnet
L � Lower magnet
T � Table
S � Surface
EE � Entire Earth

(FG)T � 20.0 N

(FG)U � 2.0 N

(FG)L � 2.0 N

FU on L� 3(FG)L

x
r

(FG)U
r
FL on U

rnT on U

y

Lower

x

y

Table

x

r
(FG)T

r
(FG)L

rnU on T

rnL on T

rnT on L

rnS on T

y

FU on L

r
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 37. a. 2.3 m/s b. v(u) = 29 - 1.96(1 - cos u) m/s
 39. 9.7 J
 41. v0>12
 43. a. 2.6 m/s b. 33 cm
 45. 2.0 * 105 N/m
 47. a. 2.2 * 104 N/m b. 18 m/s
 49. a. 3.3 m/s b. 11.8 cm c. 0.83 m/s, 6.5 cm

 51. a. B c21m + M

m 2 2

gd - 1m + M

m2 2M 2g2

k
+ k1m + M

m2 2(d - Mg  / k)2 d
  b. 450 m/s

 53. 5
2R

 55. 7.9 m/s
 57. 100 g ball: 0.80 m/s to the left; 400 g ball: 2.2 m/s to the right

 59. a. x1 =
p

3
 and x2 =

2p

3
 b. 

p

3
: unstable; 

2p

3
: stable

 61. a. Yes b. 1.0 mJ/m
 63. c. 15 m/s
 65. c. 32 cm
 67. 93 cm
 69. 20 N/m
 71. a. 1.5 m b. 20 cm
 73. a. 4.6 cm b. v2 kg = 1.33 m/s and v1 kg = 5.3 m/s
 75. 100 g ball rebounds to 79; 200 g ball rebounds to 14.7

Chapter 11
 1.  a. -18 b. 10
 3.  a. 125 b. 67

 5.  a. 11 b. -4.6 c. 0
 7.  a. -6.0 J b. 12 J
 9. 0 J
 11. 1.25 * 104 J, -7.92 * 103 J, -4.58 * 103 J
 13. AB = 0 J, BC = 0 J, CD = -4 J, DE = 4 J
 15. 3.7 m/s, 6.6 m/s, 9.7 m/s
 17. 8 N
 19. -60 N at x = 1 m, 15 N at x = 4 m
 21. 2.5 N, 0.40 N, 0.16 N
 23. 1360 m/s
 25. Energy (J)

Ki Ui Wext Kf Uf �Eth

400

0

�

�
�400

� � � � �

� � � � �

 27. -1 J of work is done to the environment
 29.  a. 9.80 * 105 J b. 1.96 * 104 W
 31. 42 m2

 33. 5.5 * 104 liters
 37. a. 50 J b. 50 J c. 50 J, yes
 39. a. 

x (cm)

400

200

0
2 4 6 8

�200

�400

F (N)   b. -2 J c. 22 m/s

Chapter 9
 1.  a. 4.5 * 104 kg m/s b. 8.0 kg m/s
 3. 4 N s
 5. 1.5 * 103 N
 7. 800 N in the -x@direction
 9. 1.0 m/s to the left
 11. a. 1. 5 * 104 N s b. 30 s, 110 m/s
 13. 0.2 s
 15. 5.0 * 102 kg
 17. 4.8 m/s
 19. 3.0 * 102 m/s
 21. 3.6 m/s
 23. (2 in + 4jn ) kg m/s
 25. 45 north of east at 1.7 m/s
 27. a. 6.4 m/s b. Favg = 3.6 * 102 N = 612(FG)B

 29. 0.497 m
 31. 7.5 * 10-10 kg m/s
 33. 8.0 * 102 N

 35. vf =
m1

(m1 + m2)A2dF

m1

 37. 2.2 * 10-10%
 39. 32 m/s
 41. v0>12, 45 east of north

 43.  a. vbullet =
m + M

m
12mkgd b. 4.4 * 102 m/s

 45. 28 m/s
 47. 20 m/s downward
 49. 2.0 m/s
 51. 8.6 m/s
 53. 3v0

 55. 16 m/s
 57. 4.5 km
 59. 14.0 u
 61. a.  -1.4 * 10-22 kg m/s 
  b. and c. 1.4 * 10-22 kg m/s in the direction of the electron
 63. 0.85 m/s, 72 below the +x@axis
 65. 2.0 * 103 m/s
 67. b. (vix)2 = 6.0 m/s
 69. c. (vfx)1 = -12 m/s
 71. 1.5 * 107 m/s in the forward direction
 73. 1.2 km/s

Chapter 10
 1. The bullet
 3. 112 km/h
 5. a. 25.1 m b. 10 m/s c. 22 m/s
 7. 2
 9. 4.5 m/s
 11. 4.2 m/s
 13. 98 N/m
 15. 31 cm
 17. a. 49 N b. 1450 N/m c. 3.4 cm
 19. 18 J
 21. 4.0 cm
 23. Go hungry
 25. a. Right b. 17.3 m/s c. x = 1.0 m and 6.0 m
 27. a. 7.7 m/s b. 10 m/s
 29. 0.86 m/s and 2.9 m/s
 31. a. -5.0 m/s and 5.0 m/s b. 2.5 m/s
 33. a. 0.34 m
 35. 81 m/s
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 65. a. -0.25 kJ b. 2.6 * 105 kg
 67. a. 6.53 m/s2 b. 11/7 m/s c. 1.79 s
 69 c. 6.3 m/s
 71. c. 3.2 kW
 73. 6.7 m
 75. 24 W

Chapter 12
 1. 13.2 m/s
 3. a. 1.5 m/s b. 13 rev
 5. 4.7 * 106 m
 7. xcm = 6.7, ycm = 5.0
 9. 2.57 * 1029 J
 11. a. 0.032 kg m2 b. 16 J
 13. a. (5.7 cm, 4.6 cm) b. 0.0066 kg m2

 15. a. (0.060 m, 0.040 m) b. 0.0020 kg m2 c. 0.0013 kg m2

 17. a. 3.8 * 10-5 kg m2 b. 1.14 * 10-4 kg m2

 19. 4.3 N m
 21. 12.5 kN m
 23. 8.0 N m
 25. 0.28 N m in the ccw direction
 27. 8.0 rad/s
 29. No
 31. 1.5 m
 33. 0.38 J
 35. 43 cm
 37. a. (21, into the page) b. (24, out of the page)

 39. a. - jn  b. 0
u

 41. a. n in  b. 2jn  c. 1kn

 43. 1.20kn kg m2/s 
 45. (2.1 kg m2/s, out of the page)
 47. 91 rpm
 49. 7.5 cm
 51. 28 m/s
 53. a. 0.010 kg m2 b. 0.030 kg m2

 55. 
M

3L
 [(L - d)3 + d 3]

 57. 
1

6
 ML2

 59. 0.91 m
 61. F1 = 750 N, F2 = 1000 N
 63. 1.0 m
 65. 31 kg
 67. a. 39 mN b. 38 rpm
 69. 1.1 s
 71. 1.6 N
 73. 4.3 m
 75. a. 12g/R b. 18gR

 77. 
20Tr

13MR2

 79. 1.2 rad/s
 81. 22 rpm
 83. 4.0 rpm
 85. Emily
 87. 67

Chapter 13
 1. 6.00 * 10-4

 3. 2.18
 5. 2.3 * 10-7 N

 41. a. 

t (s)

10

0
1 2 3 4

�10

ax (m/s2)   

  b. 

t (s)

40

20

1 2 3 4
0

x (m)  

  c.

t (s)

100

50

1 2 3 4
0

K (J)  

  d. 

t (s)
1

5

0

�5
2 3 4

F (N)  

  e. 10 N  s, -5 N  s f. 20 m/s, 10 m/s 
  g. 

x (m)
10

5

0

�5

20 30 40 50

Fx (N)  

  h. 100 J, −75 J i. 20 m/s, 10 m/s
 43. a. 2.3 * 102 J b. 2.3 * 102 N c. 6.8 kW
 45. 16 m/s
 47. 0.54 m
 49. 0.12 km

 51. a. vf = 22gh(m - mkM)/(M + m) b. vf = 22gmh/(M + m)
 53. 10 m/s
 55. a. 0.51 m b. 0.38 m
 57. a. 14 m/s b. 32 m
 61. a. N b. m-1 c. p/(2c)

  d. Fx

x

F0

0
0

xmax � p/2c

 

  e. 2v0 

2 + 2F0>(mc)
 63. a. 78 J b. 1.3 W
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 7.  a. 274 m/s2 b. 5.90 * 10-3 m/s2

 9. 2.4 km
 11.  a. 3.0 * 1024 kg b. 0.89 m/s2

 13. 60.2 km/s
 15. 4.21 * 104 m/s
 17. 4.4 * 1011 m, 1.7 * 104 m/s
 19. 1600 earth days
 21. a. T2 = 250 min, T3 = 459 min b. F2 = 20,000 N, F3 = 4,440 N 
  c. 1.50
 23. 4.2 h
 25. 46 kg and 104 kg
 27. 3.0 * 10-7jn N
 29. -1.96 * 10-7 J
 31. 12 cm
 33.  a. 3.02 km/s b. 3.13 km/s c. 3.6%
 35. 4.2 * 105 m
 37. 33 km/s
 39. 2.78 km/s
 41. 3.0 * 104 m/s
 43. 3.7 * 105 m/s
 45. 6.7 * 108 J
 47.  a. 7.0 m/s b. 12 m/s
 49. 6.71 * 107 m

 51.  a. y = 1q

p 2x +
 log C

p
 b. Straight line

  c. q/p d. 1.996 * 1030 kg
 53.  a. 2.1 * 108 y b. 24 c. 1.9 * 1041 kg d. 9.4 * 1010

 55. 3.71 km/s
 57. 4.49 km/s
 59. c. 6.21 * 107 m
 61. c. 1680 m/s
 63. 1.50 * 109 m
 65. Crash
 67. 11.8%

 69. a. -
GMm

L
 ln 1x + L/2

x - L/2 2  b. -GMm1 4

4x2 - L2 2 , x Ú
L

2

Chapter 14
 1. 2.27 ms
 3. a. 13 cm b. 9.0 cm
 5. a. 10 cm b. 0.50 Hz c. +120

 9. x(t) = (8.0 cm)cos [(p rad/s)t - p rad]
 11. a. 2.8 s b. 1.4 s c. 2.0 s d. 1.4 s
 13. a. 0.50 s b. 4p rad/s c. 5.5 cm d. 0.45 rad

e. 70 cm/s f. 8.8 m/s2 g. 0.049 J h. 3.8 cm
 15. a. 10 cm b. 35 cm/s
 17. a. 0.17 kg b. 0.57 m/s
 19. a. 4.0 s b. 5.7 s c. 2.8 s d. 4.0 s
 21. a. 2.0 s b. 2.1 s
 23. 3.67 m/s2

 25. 0.079 N/m
 27. 

t (s)

�1

�1

0
21 3 4 5 6 7 8 9 10

x

 29. 250 N/m
 31. a. 2

3p rad b. -13.6 cm/s c. 15.7 cm/s
 33. 0.41 s
 35. a. 55 kg b. 0.73 m/s

 37. a. 
3

4
 b. 

A22
 39. a. 6.4 cm b. 160 cm/s2 c.-6.4 cm d. 28 cm/s
 41. 1.02 m/s
 43. a. 3.2 Hz b. 7.1 cm 5.0 J
 45. a. 1.1 Hz b. 23 cm c. 4.1 cm below equilibrium point
 47. 1.7 Hz
 49. 0.72
 51. a. 7.5 m b. 0.45 m/s
 53. 0.65 m/s
 55. 0.66 s

 57. 
1

2pA5

7
 
g

R
 59. 8.7 * 10-2 kg m2

 61. a. 2.0 Hz b. 1.2 cm
 63. 7.9 * 1013 Hz
 65. a. Highest point b. 2.5 Hz
 67. a. 9.5 N/m b. 0.010 kg/s
 69. 25 s
 71. 236 oscillations
 75. 1.6 Hz
 77. 1.8 Hz

 79. a. T =
T

2
 
m

m
 b. 2.001s

Chapter 15
 1. 50 mL
 3. 1.4 * 105 kg
 5. 1.1 * 103 atmospheres
 7.  a. 6.3 m3 b. 1.2 * 105 Pa
 9. 3.2 km
 11. 10.3 m
 13. 3.5 cm
 15. 6.7 * 102 kg/m3

 17. 44 N
 19. 8.4 cm
 21. 56 kg
 23.  a. 1.0 m/s, 16 m/s b. 3.1 * 10-4 m3/s
 25. 110 kPa
 27. 5.5 * 109 N/m2

 29. 1 mm
 31. 0.20%
 33. a. 5.8 kN b. 6.0 kN
 35. 27 psi
 37. 5.27 * 1018 kg
 39.  a. 106 kPa b. 4.4 kPa 4.4 kPa
 41. 55 cm
 43. 7.5 cm

 45.  a. F = rgDWL b. F =
1
2rgD2L c. 0.78 kN, 1.4 kN

 47. 8.01%
 49.  a. rliq Agx b. 0.62 J
 51. 8.9 * 102 kg/m3

 53. 18 cm
 55. 5.2 cm
 57. 3.5 m/s
 59. 187 nm/s
 61. 28 cm
 63. 4.4 cm
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 57. a. 880 kPa b. T2 = 323C, T3 = -49C, T4 = 398C
 59. a. T1 = 122 K, T2 = 366 K b. Isobaric c. 3 atm
 61. 2364C
 63. a. 4.0 atm, -73C 
  b. p (atm)

V

4

1

12

3
Isothermal

Isobaric

1
4 V1

1
2 V1

3
4 V1

V1

3
2

0

 65.  b. p (atm)

V (cm3)

6

2

0

4

300200100

Isotherm

 

  c. 6 atm
 67.  b. p

V (cm3)

400�C

5004003002001000

50�C

Isobaric

 c. 417 cm3

 69. a. 23 cm b. 7.5 cm
 71. 93 cm3

 73. a. 4.0 * 105 Pa b. Irreversible

Chapter 17
 1. 60 J
 3. 200 cm3

 5. 

�

�

0

�

Eth i Eth fW Q

��

���

 65. a. v = 12g(h - y) b. x = v12y/g c. y = h/2, xmax = h/2,
 67. 1 mm
 69. 1 L

 71. 
h

l
= 11 -

r0

rf
2 1>3

 73. b. (Fnet)y = -rf Agy c. rf Ag e. 18.9 s

Chapter 16
 1. 1900 cm3

 3. 8.0 cm
 5. 4.8 * 1023 atoms
 7. a. 6.02 * 1028atoms/m3 b. 3.28 * 1028 atoms/m3

 9. 6.8 cm3

 11. -127F = 88C = 185 K; 136F = 58C = 331 K
 13. a. 171Z b. 671C = 944 K
 15. a. 2 b. Unchanged
 17. a. 1.27V0 b. 2V0

 19.  2.4 * 1022 molecules
 21. 7.4 kg/m3

 23. a. V2 = V1 b. T2 =
T1

3
 25. 2.6 atm
 27. a. 9500 kPa
  b. p (Pa)

V (cm3)

10,000 2

15,000

500 100

 29. a. 48 atm
 31. a. Isobaric b. 118C c. 9.35 * 10-3 mol
 33. 0.228 nm
 35. 3.3 * 1026 protons
 37. 1.1 * 1015 particles/m3

 39. 380 K = 107°C
 41. 1.8 g

 43. 
3

2
T0

 45. 2.4 m
 47. 35 psi
 49. 155 cm3

 51. 24 cm
 53. No
 55. p

V
2V1V1

2p1

p1

Is
oc

ho
ri

c

Isothermal

Isobaric

1

2

3

0
0
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 55.  a. T1 b. -nRT1ln2 c. nRT1ln2
 59. -330 J, 0 J
 61. g = 1.29
 63. a. 0.15 kJ b. -91 J
 65. a. Point p (atm) T (C) V (cm3)

  1 1.0 133 1000

  2 5.0 1757 1000

  3 1.0 1757 5000

  b.  W1S2 = 0, W2S3 = -815 J, W3S1 = 405 J c. Q1S2 = 609 J, 
Q2S3 = 815 J, Q3S1 = -1.01 kJ

 67. 28C
 69. a. 5.5 kK b. 0 J c. 54 kJ d. 20 
  e. 

10

20

p (atm)

V (L)
0 5 10

Isochoric

f

i

 71. 110C
 73. -18C
 75. b. 217C
 77. a. Point p (atm) T (C) V (cm3)

  1 3.0 946 1000

  2 1.0 946 3000

  3 0.48 310 3000

   b. -334 J, 0 J, 239 J c. 334 J, -239 J, 0 J
 79. 15 atm
 81. 150 J

Chapter 18
 1. 5.5 * 1024

 3. 0.023 Pa
 5. a. 300 nm b. 600 nm
 7. 13 cm
 9. a. (0 in + 0jn) b. 57 m/s c. 60 m/s
 11. a. 289 K b. 200 kPa
 13. 6.5 * 1025 s-1

 15. 283 m/s
 17. -246C
 19. 300 m/s
 21. 0.43 cm/s
 23. a. Doubles b. 12 c. Same
 25. a. 4.1 * 10-16 J b. 7.0 * 105 m/s
 27. 580 m/s
 29. 3.6 * 107 J
 31. 93 kJ
 33. a. 3.80 * 105 J b. 2.25 * 10-9 m c. 0 J
 35. 5000 J
 37. 61
 39. a. Helium b. 1370 m/s c. 1.86 mm

 7. 

�

�

0

�

Eth i Eth fW Q

��

���

 9. 60 J
 11. 52 kJ
 13. a. 36C b. 3000 J
 15. 0.98 g
 17. 272C, 522F
 19. Iron
 21.  a. 31 J b. 60C
 23. 2.5 kJ
 25.  a. 1.9 * 10-3 m3 b. 74C
 27. 16 kW
 29. 230 W
 31. 16 kJ
 33. 15 m
 35. 6.6 h
 37. 12 J/s
 39. -56C
 41. Aluminum
 43. 650 J/kg K
 45. a. 2.0 kJ/kg K b. 2.7 kJ/kg K c. -20C, 40C

d. 4.0 * 104 J/kg, 1.2 * 105 J/kg
 47. 2.4 * 106 L
 49.  a.  5.5 kJ b. 3.4 kJ 
  c. 

ViVi

 V

p (atm)

2

1

4

3
Isothermal

Isobaric

f

f i

5

0 2
3Vi

1
3

 51.  a. 350 Pa b. 4.9 * 1020 c. 110C d. 26 cm e. -0.57 J
 53.  a. 3.1 atm b. 9.7 L 
  c. 

 V (L)

p (atm)

2

1

3
Isochoric

Isobaric

f

fi

2 4 6 8 10
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 55.  a.   Ws (kJ) Q (kJ) Eth (kJ)

  1 S 2 0.991 2.476 1.486

  2 S 3 0 -1.693 -1.693

  3 S 1 -0.207 0 0.207

  Net 0.783 0.783 0

  b. 0.32
 57. a. p1 = 100 kPa V1 = 2690 cm3 T1 = 269 K
 b.  Eth (J) Ws (J) Q (J)

  1 S 2 327 -327 0

  2 S 3 0 553 553

  3 S 1 -327 -131 -458

  Net 0 95 95

  c. 17%
 59.  a.  p (atm) T (K) V (cm3)

  1 1.0 406 1000

  2 5.0 2030 1000

  3 1.0 2030 5000

  b. 29% c. 80%
 61. a. T1 = 1620 K T2 = 2407 K T3 = 6479 K
 b.    Eth (J) Ws (J) Q (J)

  1 S 2 327 -327  0

  2 S 3 1692 677  2369

  3 S 1 -2019 0 - 2019

  Net 0 350 350

  c. 15%
 63.  a. Wnet = 350 J b. h = 0.24
 65.  b. 1.1 * 103C
 67.  b. QC = 80 J
 69.  b. 10 J c. 0.13

Chapter 20
 1. 110 N
 3. 2.0 m
 5. 

At x � 5.0 m

t (s)
2

1

�1

4 6 8

D (cm)

 7. 

x (m)

At t � 0.0 s

1 m/s

2

1

�1

4 6 8

D (cm)

 41. a. 4 * 10-22 atm b. 270 m/s c. 2.5 * 105 m
 43. 1.004
 45. 1.9 * 104 Pa
 47. 29 J/mol K
 49. a. (EHe)i = 1900 J, (EO)i = 3100 J 
  b. (EHe)f = 2700 J, (EO)f = 2300 J
  c. 850 J from oxygen to helium d. 436 K
 51. 7
 55. a. Increase factor of 2 b. Increase by factor of 4 

c. Increase by factor of 4 d. Same
 57. a. 4 b. 1 c. 16
 59. a. 141,000 K b. 10,100 K
 61. a. 2.0 * 106 J b. 4.8 * 10-6 c. 0.0013 K

 63. 
15n + 3

2
 piVi

 65. c. 436 K; 850 J is transferred from oxygen to helium

Chapter 19
 1. a. 250 J b. 150J
 3. a. 0.27 b. 15 kJ
 5. a. 200 J b. 250 J
 7. 96,000
 9. Eth Ws Q

 A +  0 +

 B -  +  0

 C 0 +  +

 D -  -  -

 11. 40 J
 13. a. 30 J, 0.15 kJ b. 0.21
 15. 285 J
 17. 0.24
 19. a. (b) b. (a)
 21. 7C
 23. a. 25% b. 232C
 25. 135C
 27. 1.7
 29. a. 60 J b. -23C
 31. 1.7 MJ
 37. 8.3%
 39. 47C
 41. 218
 43. 8.57 J
 45. No
 47. a. 48 m b. 32%
 49. 37%
 51. a. 5.0 kW b. 1.7
 53. a.   Ws (J) Q  (J) Eth

  1 S 2 3.04 16.97 13.93

  2 S 3 0 -10.13 -10.13

  3 S 1 -1.52 -5.32 -3.80

  Net 1.52 1.52 0

  b. 9.0% c. 13 W
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Chapter 21
 1. 

D (cm)

x (m)
6 7 8 9 1043 521

t � 6 s

D (cm)

x (m)
6 7 8 9 1043 521

1.0

�1.0

t � 0 s

1 m/s

1 m/s

0

D (cm)

x (m)
6 7 8 9 1043 521

t � 5 s

D (cm)

x (m)
6 7 8 9 1043 521

t � 1 s

D (cm)

x (m)
6 7 8 9 1043 521

t � 4 s

D (cm)

x (m)
6 7 8 9 1043 521

t � 2 s

D (cm)

x (m)
6 7 8 9 1043 521

t � 3 s

1.0

�1.0

0

1.0

�1.0

0

1.0

�1.0

0

1.0

�1.0

0

1.0

�1.0

0

1.0

�1.0

0

 3. D (cm)

t � 2.0 s

t � 4.0 s

t � 6.0 s

t � 8.0 s

0
1.0

�1.0

0

0

0

D (cm)

1.0

�1.0

D (cm)

1.0

�1.0

D (cm)

6 7 8 9 1043 5 12 1314 15 1611 17 1821

6 7 8 9 1043 5 12 13 14 15 1611 17 1821

6 7 8 9 1043 5 12 13 14 15 1611 17 1821

6 7 8 9 1043 5 1213 14 15 1611 17 1821

1.0

�1.0

 9. 

x (cm)
2 3 51

0

1.0

0.5

�0.5

�1.0

4 6 7 8 9 10

D (cm)

Equilibrium
t � 0 s

 11. a. 3.1 rad/m b. 9.5 m/s
 13. a. 11 Hz b. 1.1 m c. 13 m/s

 15. 
p

2
 rad, 32p rad

 17. 2.5 m
 19. 1500 m/s
 21. a. 1.5 GHz b. 990 nm
 23. a. 2.96 m b. 116 Hz
 25. a. 1.5 * 10-11 s b. 3.4 mm
 27. a. 1.88 * 108 m/s b. 4.48 * 1014 Hz
 29. 6.0 * 105 J
 31. 110 dB
 33. a. 65 dB b. 105 dB
 35. 5.0 W
 37. a. 650 Hz b. 560 Hz
 39. 38.1 m/s

 41. a. 0.80 m b. 1
2 p rad

  c. D(x, t) = (2.0 mm)sin (2.5px - 10pt +
1
2 p)

 43. 
v0

2

 45. 

 x (km)

d (km)

�1

�2

�3

�4

�5

�6

0
605040302010

 47. 410 ms
 49. a. 440 Hz b. 3.4 m
 51. a. -y@direction b. y-axis c. 0.701 m, 350 m/s, 2.00 ms
 53. a. 12.6 N b. 2.00 cm c. 12.8 m/s

 55. D(x, t) = (0.010 mm)sin [(p rad/m)x - (400p rad/s)t +
1
2 p rad]

 57. -19 m/s, 0 m/s, 19 m/s
 59. 8
 61. 9.4 m/s
 63. a. 0.095 W/m2 b. 1.6 MW/m2

 65. a. 6.67 * 104 W b. 8.5 * 1010 W/m2

 67. 50 m
 69. 1.3
 71. 21 min
 75. Receding at 1.5 * 106 m/s
 77. 0.07C
 81. 29 s
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 31. A(x = 10 cm) = 0.62 cm, A(x = 20 cm) = 1.18 cm, 
A(x = 30 cm) = 1.62 cm, A(x = 40 cm) = 1.90 cm, 
A(x = 50 cm) = 2.00 cm

 33. 1.4 cm
 35. 180 Hz
 37. 28.4 cm
 39. 18 cm
 41. 140 N/m
 43. 6.1 cm
 45. 9m0/4
 47. 13.0 cm
 49. 580 Hz, 4.9 kHz
 51. 12.1 kHz
 53. 450 N
 55. 93 m
 57. 7.9 cm
 59. a. 850 Hz b. -p/2 rad
 61. 7.2 cm
 63. 20
 65. 170 Hz
 67. 1/3
 69. a. a b. 1.0 m c. 9
 71. a. 5 b. 4.6 mm
 73. 7.0 m/s
 75. 4.0 cm, 35 cm, 65 cm
 77. 2.0 kg
 79. a. l1 = 20.0 m, l2 = 10.0 m, l3 = 6.67 m

b. v1 = 5.59 m/s, v2 = 3.95 m/s, v3 = 3.22 m/s
  d. T1 = 3.58 s, T2 = 2.53 s, T3 = 2.07 s

Chapter 22
 1. 0.023 rad = 1.3

 3. 1000 nm
 5. 0.36 mm
 7. 0.286

 9. 1.6, 3.2

 11. 530
 13. 7.9 mm
 15. 0.20 mm
 17. 0.50 mm
 19. 4.0 mm
 21. 7.6 m
 23. 0.015 rad = 0.87

 25. 0.25 mm
 27. 400 nm
 29. 0.2895 mm
 31. a. Single slit b. 0.15 mm
 33. 1.67 m
 35. 3 mW/m2

 37. 12.0 mm
 39. 667.8 nm
 41. 25 cm
 43. 3
 45. a. 1230 lines/mm b. 46.5

 47. 670 lines/mm
 49. 16

 51. 800 lines/mm
 53. a. 2 b. 1.15 c. 1
 55. 670 nm
 57. 0.12 mm
 59. a. 550 nm b. 0.40 mm
 61. 50 cm

 5. D (cm)

t � 2.0 s

6 743 521
0

D (cm)

t � 8.0 s

6 743 521
0

D (cm)

t � 6.0 s

6 743 521
0

D (cm)

t � 4.0 s

6 743 521
0

 7. 50 Hz
 9. a. 4.8 m, 2.4 m, 1.6 m b. 75 Hz
 11. 12 kg
 13. a. 2.42 m, 1.21 m, 0.807 m b. 4.84 m, 1.61 m, 0.968 m
 15. 512 Hz
 17. 2180 N
 19. a. 80 cm b. 100 cm
 21. 216 nm
 23. a. In phase
 b.  r1 r2 r C/D

  P 3l 4l l C

  Q 7
2l 2l 3

2l D

  R 5
2l 7

2l l C

 25. Perfect destructive
 27. 203 Hz
 29. 1.26 cm
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 15. 6.3 cm
 17. 5.0 cm
 19. 6.0 mm
 21. a. 8.0 cm b. 1.2 cm
 23. Upright image, 1.0 cm tall, 6.4 cm to left of the second lens
 25. a. Both images 2.0 cm tall; one upright 10 cm left of lens, the other 

inverted 20 cm to right of lens.

 27. a. f2 + f1 b. 
f2

0 f1 0 w1

 29. 16 cm placed 80 cm from screen
 31. 23 cm
 33. 5.0 cm
 35. a. +3.0 D as objective b. -1.5 c. 0.56 m
 37. 4.6 mm
 39. 15 km
 41. a. 3.8 cm b. Sun is too bright
 43. 3.5 m

 45. b. n2 =
1

2
n1 c. Crown converging, flint diverging d. 4.18 cm

Chapter 25
 1. a. Electrons added b. 7.5 * 1010

 3. 2.5 * 1010

 5. 1.9 * 105

 9. Right negatively charged, left positively charged
 13. a. 0.056 N b. 2.9
 15. a. 58 N b. 4.7 * 10-35 N c. 1.2 * 1036

 17. - (4.1 * 10-4 N)jn
 19. a. 1.3 * 1014 m/s2 toward bead b. 2.4 * 1017 m/s2 away from bead
 21. a. (6.4 in +  1.6jn) * 10-17 N

b. - (6.4 in +  1.6jn) * 10-17 N c. 4.0 * 1010 m/s2 d. 7.3 * 1013 m/s2

 23. -4.5 * 104 rn  N/C (i.e., toward the bead)
 25. 3.3 * 106 N/C, downward
 27. -6.8 * 104 in N/C, 3.0 * 104 in N/C, (8.1 * 103 in - 3.9 * 104jn) N/C
 29. a. 0.36 m/s2 toward glass bead b. 0.18 m/s2 toward plastic bead
 31. 82 nC
 33. 3.1 * 10-4 N, upward
 35. 4.3 * 10-3 N, 253 ccw
 37. 2.0 * 10-4 N, 45 cw
 39. -1.0 * 10-3 in N
 41. (1.02 * 10-5 in + 2.2 * 10-5jn) N
 43. 0.68 nC

 45. (Fnet)x =
-2KQqa

(a2 + y2)3/2

 47. (2 - 12)
KQq

L2

 49. -
4
9 q, x =

1
3 L

 51. 6.6 * 1015 rev/s
 53. a. 2.3 * 10-6 b. 4.3 * 107 N/C, upward
 55. 33 nC
 57. a. 1.1 * 1018 m/s2 b. 1.0 * 10-12 N c. 6.3 * 106 N/C d. 69 nC
 59. 0.75 mC
 61. 1.8 * 105 N/C, 60 ccw from the +x@axis; 1.8 * 105 N/C, 60 cw 

from the -x@axis
 63. a. (4.0 cm, 1.0 cm) b. (0.0 cm, 2.0 cm) c. (-2.0 cm, -2.0 cm)
 65. a.  E

u

1 = (8.5 in - 2.8jn) kN/C, E
u

2 =  10 in kN/C, 
E
u

3 = (8.5 in + 2.8jn) kN/C c. 27 in kN/C
 67. 14

 69. b. 22 nC
 71. b. 5.1 nC

 63. a. 22.3 b. 16.6

 65. 19
 67. a. Dark b. 1.597
 69. a. No b. 0.044 c. 4.6 mm d. 1.5 m
 71. b. 0.022, 0.058

 73. b. -11.5, -53.1

 75. a. 0.52 mm b. 0.074 c. 1.3 m

Chapter 23
 1. a. 3.3 ns b. 75 cm, 67 cm, 46 cm
 3. 0.40 ns
 5. 30

 7. 6.1 m
 9. 433 cm
 11. 16

 13. 1.39
 15. 76.7

 17. 3.2 cm
 19. 1.52
 21. 1.48
 23. 1600 nm
 25. 6.0 cm behind the lens, inverted
 27. 7.5 cm in front of the lens, upright
 29. 68 cm
 31. 200 cm
 33. 36 cm
 35. 40 cm in front of mirror, inverted
 37. 12 cm behind mirror, upright
 39. a. 3 b. B(+1.0 m, -2.0 m), C(-1.0 m, +2.0 m), D(+1.0 m, +2.0 m)
 41. 10 m
 43. 1.7
 45. a. 87 cm b. 65 cm c. 43 cm
 47. 4.0 m
 49. a. Total internal reflection b. Refraction at 72 c. 18 cm
 51. 1.58
 53. 1.0

 55. 2.00
 57. b. -15 cm, 1.5 cm, agree
 59. b. 50 cm, 0.67 cm, agree
 61. b. -20 cm, 0.33 cm, agree
 63. 15.1 cm
 65. -15 cm, 0.75 cm, behind, upright
 67. Concave, 3.6 cm
 69. 67 cm, 1.0 m
 71. a. 5.9 cm b. 6.0 cm
 73. 16 cm
 75. 13 cm

 79. a. t =
n1

c
2x2 + a2 +

n2

c
2(w - x)2 + b2

  b. 0 =
n1x

c2x2 + a2
-

n2(w - x)

c2(w - x)2 + b2

 81. b. 1.574

Chapter 24
 1. b. s =

2 = 49 cm, h =
2 = 4.6 cm

 3. b. s =
2 = 30 cm, h =

2 = 6.0 cm
 5. b. s =

2 = -3.33 cm, h =
2 = 0.66 cm

 7. 5.0
 9. 3.0 mm
 11. 6.0 mm
 13. a. Myopia b. 100 cm
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 67. a. 
2h

4pP0
 ln 12x + L

2x - L 2 in
  c. 

L0 3L 4L2L
x

E

h
pE0

h

2pE0

 69. -2.3 nC/m

 71. a. k =
qQ

4pP0R
3
 c. 2.0 * 1012 Hz

Chapter 27

 1. 

 3. 

E � 0 N/C
r r

 5. No charge
 7. Into the front face of the cube; field strength must exceed 5 N/C
 9. 1.0 N m2/C
 11. 1.4 * 103 N/C
 13. a. 0.0 N m2/C b. 3.0 * 10-2 N m2/C
 15. 3.5 * 10-4 N m2/C
 19. +2q, +q, -3q
 21. 0.11 kN m2/C
 23. -1.00 N m2/C
 25. 2.7 * 10-5 C/m2

 27. a. E
u

= (25kn) kN/C, upward from the plate
  b. 0.0 N/C c. 2.5 kN/C, downward from the plate
 29. a.-0.39  N m2/C, 0.23 N m2/C, 0.39 N m2/C, 

-0.23 N m2/C b. 0 N m2/C
 31. a. -3.5 N m2/C b. 1.2 N m2/C
 33. 0.19 kN m2/C
 35. a. 2.0 kN/C b. 0.25 kN m2/C c. 2.2 nC
 37. a. -100 nC b. +50 nC

 73. 0.11 mC
 75. 1.7 * 10-4 N

Chapter 26
 1. 7.6 * 103 N/C along the +x@axis
 3. 1.0 * 104 N/C at 11 below the +x@axis
 5. a. 36 N/C b. 18 N/C
 7. 4000 N/C
 9. 1.3 * 105 N/C, 0.0 N/C, 1.3 * 105 N/C
 11. a. 2.6 * 104 N/C, left b. 2.6 * 10-5 N, right
 13. a. 7.6 * 104 N/C, left b. 7.6 * 10-5 N, right
 15. 27 nC
 17. 1.9 cm
 19. 2.7 * 1011

 21. a. 3.6 * 106 N/Cb. 8.3 * 105 m/s
 23. 18 cm
 25. 3.1 * 10-21 N m
 27. 9.0 * 10-13 Np

u

 29. a. (-9.7 * 104 in + 9.2 * 104jn) N/C
  b. 1.34 * 105 N/C, 136ccw from the +x@axis

 31. 
1

4pP0

Q

L2
 (12 - 1)( in +  jn)

 33. a. 
2qx

4pP0(x
2 + s2/4)3/2

  b. 0 N/C, 768,000 N/C, 576,000 N/C, 358,000 N/C, 158,000 N/C

 35. a. 
2q

4pP0
 c 1

x2
-

x

(x2 + d 2)3/2
d in

 37. 
1

4pP0
 

8ld

4y2 + d 2

 39. -0.056 nC

 41. 
Q

4pP0
 

1

x2x2 + L2
in -  

Q

4pP0Lx11 -
x2x2 + L2 2 jn

 43. a. 
R12

 b. 
2

313
 

Q

4pP0R
2

 45. c. 
1

4pP0
 

2Q

pR2
( in + jn)

 47. 1.41 * 105 N/C
 49. 2.2 mm
 51. 1.19 * 107 m/s

 53. a. 

4

3
 pr3rg + qE

6phr
 b. 0.067 mm/s c. 0.049 mm/s

 55. 6.56 * 1015 Hz

 57. a. 
C2 s2

kg
 b. 1 1

4pP0
2 22q2a

r5
, toward ion

 59. b. 1.0 mm

 61. b. 
R13

 63. 4.2 * 10-4 N

 65. a. 

L/2�L/2

aL
2

0

l

y

  b. 
4Q

L2
 c. 

8Q

4pP0L
2
c1 -

x2x2 + L2>4
d
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 29. a. Positive, positive b. 1

  c. 

� �

Ex

x

 31. 1.4 * 10-3 N
 33. a. +103 V b. 5.40 * 104 V/m
 35. {12 cm
 37. 0.49 m/s
 39. a. 1.1 * 10-20 J b. 2 * 1021 ions
 41. 54 kHz
 43. a. 2.1 * 106 V/m b. 9.4 * 107 m/s
 45. a. 0.85 m b. 2.6 m
 47. 8.0 * 107 m/s
 49. -5.1 * 10-19 J
 51. 310 nC
 53. 6.8 fm
 55. a. Yes c. 8.21 * 108 m/s
 57. a. 2.1 * 10-10 C, 3.0 kV/m, 15 V b. 2.1 * 10-10 C, 3.0 kV/m, 30 V 

c. 2.1 * 10-10 C, 0.75 kV/m, 3.8 V

 59. a. 
V0

R
 b. 100 kV/m

 61. a. 8.3 mC b. 3.3 * 106 V/m
 63. 2.1 kV, b is higher

 65. a. 
2q

4pP0x
 

121 + s2/4x2

  b. V

0
x

V2q

Vq�q

q

pP0 s

 67. (Q/4pP0L) ln 3(x + L/2)/(x - L/2)4
 69. Q/4pP0R
 71. b. q1 and q2 are 10 nC and 30 nC
 73. b. 6.0 cm
 75. vA = 0.018 m/s, vB = 0.011 m/s

 79. a. 
1

4pP0
 
q

R
 dq b. 

1

4pP0
 
Q 2

2R
 c. 2.3 * 10-13 J

 81. 
3Q

8pP0R
31R2R2 + z 2 +  ln 1 0 z 0

R + 2R2 + z 2 2 2
Chapter 29
 1. -200 V
 3. -0.30 kV
 5. 1.5 * 10-6 J
 7. 3.0 C
 9. - (20jn) kV/m

 39. a. 2.4 * 10-6 C/m3

  b. 1 nC, 10 nC, 80 nC c. 5 kN/C, 9.0 kN/C, 1.8 * 104 N/C
 41. -4.51 * 105 C
 43. 2.5 * 104 N/C, outward; 0 N/C; 7.9 * 103 N/C, outward

 45. 0
u

 N/C, 
1

4pP0

Q

r2
rn

 47.  0
u

 N/C, (h/2P0)jn, - (h/2P0)jn, 0
u

 N/C 

 49. (h/2P0)jn, 0
u

 N/C, (h/2P0)jn, - (h/2P0)jn

 51. a. 
l

2pP0

r 
u

r
 b. 

3l

2pP0
 
r 
u

r

 53. a. 
1

4pP0
 
Q

r2
rn b. E

u

=  0
u

 c. 
1

4pP0
 
Q

r21 r3 - Rin 

3

Rout 

3 - Rin 

3 2 rn

 55. a. 
lL2dy

4pP03y2 + (L/22)4  b. lL/(4P0)Qin/P0

 57. a. C =
Q

4pR
 b. 

1

4pP0
 
Q

Rr
rn c. Yes

 59.  a. 
Q

4pP0R
2
 b. 

3Qr3

2pR6

Chapter 28
 1. 1.4 * 105 m/s
 3. 2.1 * 106 m/s
 5. -2.2 * 10-19 J
 7. 4.8 * 10-6 J
 9. a. -1.0 mJ b. 1.0 mJ
 11. 1.87 * 107 m/s
 13. -8.4 * 104 V
 15. a. Lower b. -0.712 V
 17. a. 1.5 V b. 2.1 * 10-11 C
 19. a. 200 V b. 6.3 * 10-9 C
 21. a. 1800 V, 1800 V, 900 V b. 0 V, -900 V
 23. a. 27 V b. 4.3 * 10-18 J
 25. -1600 V
 27. a. { b. 0, {

c.  

V

x
1.0 cm�1.0 cm 0

E

x
1.0 cm�1.0 cm 0
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 67. 0.13 F
 69. 2.4 * 10-14 J
 73. b. (10 - z 2) V, with z in meters
 75. b. 2 mF

 77. a. V =
q

4pP0
c 12x2 + (y - s/2)2

-
12x2 + (y + s/2)2

d

  b. V =
qsy

4pP0(x
2 + y2)3/2

  c. Ex =
qs(3xy)

4pP0(x
2 + y2)5/2

,  Ey =
qs(2y2 - x2)

4pP0(x
2 + y2)5/2

  d. E
u

on-axis =
2p

4pP0r
3
jn , yes

  e. Ebisecting axis = -
p

4pP0r
3
jn , yes

 79. a. Vr =
1

4pP0
 
Q

R
c 3

2
-

r2

2R2
d  b. 3/2

c. 

R 2R 3R0
r

V
3Q
2R

1
4pE0

Q
R

1
4pE0

 81. a. 
2pP0

 ln(R2/R1)
 b. 31 pF/m

Chapter 30
 1. 3.0 d
 3. 7.6 * 1026 electrons
 5. 0.023 V/m
 7. 1.0 * 1019 s-1

 9. a. 0.80 A b. 7.0 * 107 A/m2

 11. 130 C
 13. 1.88 * 1022

 15. 2.6 mA
 17. a. 6.3 * 105 A/m2 b. 6.5 * 10-5 m/s
 19. 1.68 A
 21. 5.0 * 10-8   m
 23. a. 1.64 * 10-3 V/m b. 1.10 * 10-5 m/s
 25. Tungsten

 27. 
1

2
 29. Tungsten
 31. a. 30 m b. 1.0 A
 33. 4100 
 35. 380
 37. 0.64 mm
 39. Yes, 2.2 * 105 -1 m-1

 41. a. 75 nA b. 130 s
 43. a. 6.6 * 1015 Hz b. 1.05 * 10-3 A 
 45. a. 120 C b. 0.45 mm
 47. 1.4   m
 49. 0.50 mm

 11. Ex (V/m)

x (cm)0
10 20 30

�2000

 13. -1.0 kV/m
 15. a. 27 V/m b. 3.7 V/m
 17. a. 13 pF b. 1.3 nC
 19. 3.0 V
 21. 32 mF
 23. 150 mF, in series
 25. 1.4 kV
 27. 1/2
 29. a. 1.1 * 10-7 J b. 0.71 J/m3

 31. a. 62 pC, 9.0 V, 29 kV/m b. 20 pC, 9.0 V, 90 kV/m
 33. a. A b. -70 V

 35. a. 

x (m)

�2500

0 0.5 1.0�1.0 �0.5

V (V)

x (m)

�5000

5000

0 1.0�1.0

Ex (V/m)

  b. V(x) = - (2500 x2) V

 37. a. E
u

= - (1.4 * 107 in) V/m, V = 7 * 104 V
  b. E = 0.0 V/m, V = 1.4 * 105 V
  c. E

u

= 1.4 * 107 in V/m, V = 7 * 104 V

 39. E
u

disk(z) =
Q

2pP0R
2

 c1 -
z2R2 + z 2

d kn

 41. Point 1: 3750 V/m, downward; point 2: 7500 V/m, upward
 43. 1000 V/m, 127 ccw from the +x@axis
 45. Q1f = 2 nC, Q2f = 4 nC
 47. 1.1 nC
 49. a. {32pC, 9.0 V b. {16pC, 9.0 V
 51. 7.5 mF
 53. 5.0 V, 15 V, 10 V
 55. Q1 = 45 mC, V1 = 9 V; Q2 = 22 mC V2 = 5.4 V; and Q3 = 22 mC, 

V3 = 3.6 V

 57.  a. 
3

2
C b. 0 V

 59. Q1 = 0.83 mC, Q2 = Q3 = 0.67 mC, 
V1 = 55 V, V2 = 34 V, V3 = 22 V

 61. Q1 = 33 mC, Q2 = 67 mC, V =
1 = V =

2 = 3.3 V
 63. a. 5.7 * 10-7 J b. 11.4 * 10-7 J

c. Work was done on the capacitor.
 65. 0.85 kV
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 39. 

6.0 �3.0 �

2.0 �

6.0 V

 41. 7 
 43. 60 V, 10 
 45. 9.0 V, 0.50 
 47. 1.8 V
 49. 1.0 A, 2.0 A, 15 V
 51. $65 for the incandescent bulb, $20 for the fluorescent tube
 53. a. 0.231 A b. 0.214 S c. 7.4%
 55. 900 
 57. a. 0.505  b. 0.500 
 59. Resistor Potential difference (V) Current (A)

  3  6.0 2.0

  4  6.0 1.5

 48  6.0 0.125

 16  6.0 0.375

 61. Resistor Potential difference (V) Current (A)

 24  6.00 0.25

  3  3.00 1.00

  5  3.75 0.75

  4  2.25 0.56

 12  2.25 0.19

 63. 9/25 A, left to right
 65. 150 V, bottom
 67. 0.41 A, left to right
 69. a. 65 k b. 87 V
 71. 73 
 73. a. E b. CE c. +dQ/dt

  d. 1ER 2e-t/t 

0

0.2

1 2 3 4 5

0.4

0.6

0.8

1.0

t/t

I/(E/R)

 75. 2.0 m, 0.49 mm
 77. 20 V
 79. a. E2C b. E2C/2 c. E2C/2 d. Yes
 81. 0.60 A

 51. a. E =
I

4psr2
 b. Einner = 3.3 * 10-4 V/m, Eouter = 5.3 * 10-5 N/C

 53. a. I(t) = (10 A)e-t/2.0 s b. 10 A 
  c. 

5

5

10

100
t (s)

I (A)

 55. 2.0 A, 5.0 * 10-5 m/s
 57. 7.2 mm
 59. 0.16 V/m
 61. 2R
 63. a. 4.2 * 105 A b. Decrease c. 1.1 * 10-5 J
 65. 1.8 * 108 A/m2

 67. a. 2.5 C b. 1.8 cm
 69. 1.01 * 1023

 71. a. 9.4 * 1015 b. 115 A/m2

 73. a. h =
P0I

A 1 1

s2
-

1

s1
2  b. 3.7 * 10-18 C

Chapter 31
 1. 

75 �

50 �

100 �

9 V

 3. 1 A to left
 5. a. 0.9 A ccw 
  b. 

0

Wire Wire

Wire
s

Wire Wire

Battery 1

Battery 2

�3

3

V (V)

�6
Resistor

 7. 9.60 , 12.5 A
 9. 60 W bulb is brighter
 11. a. 11.6 A b. 10.4 
 13. 75 
 15. a. 0.65  b. 3.5 W
 17. 3.2%
 19. 240 
 21. 40 
 23. 183 
 25. 9 V, 1 V
 29. 2 ms
 31.  a. 36 mC, 0.36 A b. 22 mC, 0.22 A c. 4.9 mC, 49 mA
 33. 18 mF
 35. D
 37. 93 W



A-32    A n s w e r s

 13. 1.6 V
 15. 

0.0
0

4

6

2

0.20.1 0.3 0.4
t (s)

E (�10�4 V/m)

 17. a. 4.8 * 104 m/s2, up b. 0 c. 4.8 * 104 m/s2, down
d. 9.6 * 104 m/s2, down

 19. 1.0 ms
 21. 9.5 * 10-5 J
 23. 250 kHz to 360 kHz
 25. 750 
 27. 3.5 * 10-4 Wb
 29. 1.6 A, 0.0 A, -1.6 A
 31. 8.7 T/s
 33. a. -0.0050 V b. 0.0100 V
 35. 44 mA
 37. a. 0 mA b. 160 mA c. 0 mA
 39. a. 0.0 A b. 79 mA
 41. a. 0.93 V b. 0 V
 43. a. 12 500 b. 2.0 A
 45. a. 

11

2010
0

0
t (ms)

I (A)

  b. 11 A when halfway in
 47. a. 4.0 V b. 100 A c. 3.0 V
 49. a. (4.9 * 10-3)f sin (2pft) A b. 4.1 * 102 Hz, not feasible
 51. 0.28 T
 53. a. (vlB cos u)/R b. (mgR tan u)/l 2B2cos u
 55. 2.5 * 10-4 V
 57. 12 V
 59. (R2/2r)/(dB/dt)
 61. a. 3.9 * 10-4 J/m3 b. 3.1 A
 63. 3.0 s
 65. 

0

0.20

0.40

20 40
t (ms)

I (A)

 67. a. VL = 1LI0

t 2e-t/t b. 0.37 V

 69. 1.0 mF
 71. 0.50 m
 73. a. 76 mA b. 0.50 ms

Chapter 32
 1. B

u

1 = (2.0 mT, into the page), B
u

2 = (4.0 mT, into the page)

 3. a. 0 T b. 1.60 * 10-15kn T c. -4.0 * 10-16kn T

 5. -1.13 * 10-15kn T
 7. 6.3 * 106 m/s in the +z@direction
 9.  4.0 cm, 0.40 mm, 20 mm to 2.0 mm, 0.20 mm
 11. a. 20 A b. 1.6 * 10-3 m
 13. 2.0 * 10-4 in T, 4.0 * 10-4 in T, 2.0 * 10-4 in T
 15. a.  0.025 A m2 b. 1.5 mT
 17. 1.4 cm
 19. 0.071 T m
 21. 7.00 A
 23. 1.26 * 10-6 T m
 25. 1.0 mm

 27. a. 8.0 * 10-13jn N b. 5.7 * 10-13(- jn - kn) N
 29. 1.6 * 10-3 T
 31. 81 mT
 33. 0.131 T, out of page
 35. 3.0 
 37. 7.5 * 10-4 N m
 39. a. 1.26 * 10-11 N m b. Rotated by{90

 41. 0.040 mA

 43. (5.2 * 10-5 T, out of page), 0
u

 T
 45. 0.77R
 47. (7.9 * 10-5 T, into page)
 49. #18, 4.1 A
 51. a. 1.13 * 1010 A b. 0.014 A/m2 c. 1.3 * 106 A/m2

 53. a. 5.7 * 10-6 A b. 2.9 * 10-8 A m2

 55. 
m0I

4R

 57. 0;  
m0I

2pr1 r2 - R1 

2

R2 

2 - R1 

2 2 ; 
m0I

2pr
 59. 1.50 mT, 30 ccw from the +x@axis
 61. 2.9 * 10-3 T
 63. 2.4 * 1010 m/s2, up
 65. Ion Accelerating voltage (V)

 a. O2
+ 96.793

 b. N2
+  110.25

 c. CO+ 110.29

 67. 0.12 T
 69. 87 mT

 71. a. 
mg tan u

I
, down b. 11 mT, down

 73. 13 T
 75. a. 2pRIB sin u b. 4.3 * 10-3 N

 77. a. 
m0IL

4pd2(L/2)2 + d 2
 b. 

12m0I

pR
 c. 0.900

 79. a. 
3I

2pR2
 b. 

m0

2p
 
Ir2

R3
 c. Yes

 81. a.  Horizontal and to the left above the sheet; horizontal and to the 

right below the sheet b. 1
2 m0 Js

Chapter 33
 1. 2.0 * 104 m/s
 3. a. 1.0 N b. 2.2 T
 5. 6.3 * 10-5 Wb in both cases
 7. Decreasing
 9. Clockwise current
 11. a. 3.9 mV, 20 mA, ccw b. 3.9 mV, 20 mA, ccw c. No current
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Chapter 35
 1. a. 22 * 102 rad/s b. -10 V
 3. 

0

Phasor at
t � 3.0 ms

119�

E0

E

 5. a. 50 mA b. 50 mA
 7. a. 1.9 mA b. 1.9 A
 9. a. 80 Hz b. 0 V
 11. a. 95 pF b. 660 mA
 13. 1.6 mF
 15. VR = 6.0 V, VC = 8.0 V
 17. a. 1000 Hz b. 2.24 V, 3.53 V, 4.47 V
 19. a. 0.80 A b. 0.80 mA
 21. a. 3.2 * 104 Hz b. 0 V
 23. a. 200 kHz b. 141 kHz
 25. 1.3 mF
 27. a. 70 , 72 mA, -44 b. 50 , 0.10 A, 0 c. 62 , 80 mA, 37

 29. 9.6 
 31. 30

 33. 44 
 35. a. (13RC)-1 b. 13E0 /2
 37. a. 9.95 V, 9.57 V, 7.05 V, 3.15 V, 0.990 V
  b. 

40 60
 f (kHz)

VC (V)

20

5

10

0 80 100
0

 43. 44 Hz
 45. a. 50 Hz b. 4.8 mF

 47. a. E0/2R2 + v2L2, E0R/2R2 + v2L2, E0vL/2R2 + v2L2

b. VR S E0, VR S 0 c. Low pass d. R/L
 49. a. 69 V b. 24 c. 0.17 kW
 51. a. 5.0 * 103 Hz b. 10 V, 32 V
 53. 0.17 A
 55. a. 3.6 V b. 3.5 V c. -3.6 V
 59.  a. 11.6 pF b. 1.49 * 10-3 
 61. 14 W in 40 W bulb, 9.6 W in 60 W bulb, 100 W in 100 W bulb
 65. 

R2 � 18.7 �

R1 � 7.8 �

C � 100 mF

12.0 V

6.0 V

 75. a. 0.50 A b. 1.0 A
 77. a. Vbat/R b. I = I0(1 - e-t /(L/R))
 79. (mv0I/2p) ln[(d + l)/d]

 81. a. 0.10 s b. 2.931 (0.10)2 - 2[0.0707 + (0.293)t]22(0.10)2 - [0.0707 + (0.293)t]2 2  A

   c. 

t 

I

I0

0

 83.  a. 32 A b. 1.3 m/s
 85.  a. (m0/2p) ln(r2/r1) b. 0.36 mH/m

Chapter 34
 1. a. (2.0 * 106 m/s, 45 from the y@axis) 45

b. (1.47 * 106 m/s, 16.2 from the y@axis) 16.2

 3. -1.0 * 106kn V/m, -1.11 * 10-5jn T
 5. 16.3 above the +x@axis
 9. 1.0 mF
 11. 17 mA
 13. 3.3 * 10-8 T
 15. a. 10.0 nm b. 3.00 * 1016 Hz c. 6.67 * 10-8 T
 17. a. 3.33 * 10-7 T b. 13.3 W/m2

 19. 980 V/m, 3.3 mT
 21. a. 2.2 * 10-6 W/m2 b. 0.041 V/m
 23. 3.3 * 10-6 N
 25. 60

 27. 30

 29. (1.73 * 106 V/m, left)

 31. a. (0.10 T, into page) b. 0 V/m, (0.10 T, into page)
 33. 1.0 * 107 m/s parallel to the current
 35. a. 0.94 V/m b. 10 T
 37. b. 1.5 * 10-13 A
 39. 

t (ms)0

�5

5

10

4

3

2

1

Idisp (A)

 41. 20 V
 43. b. 6.67 * 10-6 J/m3

 45. a. 3.85 * 1026 W b. 589 W/m2

 47. a. (1/2)f  b. (3/4)f
 49. Yes
 51. 1.8 * 107 V/m
 53. 1.3 m
 55. 4.9 * 107 W/m2

 57. 8.8 h
 59. (-6.0 * 105 in + 1.0 * 105 jn) V/m
 61. 5.2 mV/m
 63. a. E = IR/L, B =

m0I

2pr
 IR/L b. (I 2R/2prL, radially inward)
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 17. a. 10 keV b. 0.14 MeV c. 1.2 * 1019 eV
 19. a. 3 electrons, 3 protons, 3 neutrons
  b. 7 electrons, 8 protons, 8 neutrons
  c. 5 electrons, 7 protons, 6 neutrons
 21. a. 11B b. 14C +

 23. a. 79 electrons, 79 protons, 118 neutrons
  b. 2.29 * 1017 kg/m3

c. 2.01 * 1013

 25. a. 6660 MeV b. 3.6 MeV
 27. a. 0.512 MeV b. 939 MeV
 29. 173 MeV
 31. 46 mT, into the page
 33. 1.2 mA
 35. 0.000000000058% contains mass, 99.999999999942% empty space
 37. a. 5.0 * 104 kg/m3

b. 1.7 * 10-29 m3, 1.6 * 10-10 m
c. 1.7 * 1017 kg/m3, 6.2 * 1013

 39. a. 58 N b. 4.7 * 10-35 N
 41. Aluminum
 43. a. 2.3 * 107 m/s b. 2.9 MeV
 45. 2.52 * 105 m/s, 65.1 below +x@axis
 47. a. mg/E0 b. mg/b d. 2.4 * 1018 C e. 15

Chapter 38
 1. 6.25 * 1013 electrons/s
 3. 3.20 eV
 5. 1.78 eV
 7. a. 2.26 eV b. 0.166 nm
 9. a. 1.86 * 10-6 eV b. 2.76 eV c. 27.6 keV
 11. 497 nm
 13. 1 * 1019 photons/s
 15. 6.0 * 10-6 V
 17. a. 1.1 * 10-34 m b. 1.7 * 10-23 m/s
 19. 6
 21. 0.427 nm
 23. a. Yes b. 0.50 eV
 25. n = 2: yes; n = 3: no
 27. 1.90 nm
 29. a. 0.332 nm, 0.665 nm, 0.997 nm

  c. 

 33. 97.26 nm
 35. n rn (nm) vn (m/s) En (eV)

 1 0.026 4.38 * 106 -54.4

 2 0.106 2.19 * 106 -13.6

 3 0.238 1.46 * 106 -6.0

 37. 1.24 V
 39. 4.3 * 10-10 W
 41. a. 2.3 eV b. 244 nm
 43. a. 4.14 eV b. 6.4 * 10-34 J s
 45. a. Potassium b. 4.24 * 10-15 eV s
 47. 2.0 * 10-18 m, no
 49. 200 m/s
 51. 0.35 nm

 67. a. 0.44 kA b. 1.8 * 10-4 F c. 7.4 MW
 69. b. 10 V, 12 V
 71. b. ,  c. 1/1LC
  d. I (A)

E0

v0

v (rad/s)R

Chapter 36
 1. x =

1 = 5.0 m at t = 1.0 s, x =
2 = -5.0 m at t = 5.0 s

 3. vsound = 345 m/s, vsprinter = 15 m/s
 5. a. 13 m/s b. 3.0 m/s c. 9.4 m/s
 7. 3.0 * 108 m/s
 9. 167 ns
 11. 2.0 ms
 13. No, bolt 2 hits 20 ms before bolt 1.
 15. Yes
 17. 0.866c
 19. a. 0.9965c b. 59.8 ly
 21. 46 m/s
 23. Yes
 25. 4600 kg/m3

 27. 3.0 * 106 m/s
 29. x = 8.3 * 1010 m, t = 330 s
 31. 0.36c
 33. 0.71c
 35. 0.80c
 37. 0.707c
 39. a. 1.8 * 1016 J b. 9.0 * 109

 41. 0.943c
 43. u50 final = 1.33 m/s to the right, u100 final = 3.33 m/s to the right
 45. 11.2 h
 47. a. No b. 67.1 y
 49. a. 0.80c b. 16 y
 51. 0.78 m
 53. a. 17 y b. 15 y c. Both
 55. 0.96c
 57. 3.1 * 106 V
 59. a. 0.98c b. 8.5 * 10-11 J
 61. b. Lengths perpendicular to the motion are not affected.
 63. a. uy

= = uy /g11 - uxv/c22  b. 0.877c
 65. a.  3.5 * 10-18 kg m/s, 1.1 * 10-9 J b. 1.6 * 10-18 kg m/s
 67. a. 7.6 * 1016 J  b. 0.84 kg
 69. 7.5 * 1013 J
 71. 1 pm
 73. 22 m
 75. 0.85c

Chapter 37
 1. a. (m, n) = (2, 3), (2, 4), (2, 5), (2, 6) b. 397.1 nm
 3. 121.6 nm, 102.6 nm, 97.3 nm, 95.0 nm
 5. a. 9.39 * 104C b. 694C
 7. 2.4 mm
 9. a. 6.0 * 107 m/s b. 17 cm
 11. a. 2.4 * 10-16 kg b. 1.3 * 10-18 C c. 8
 13. 1.33 * 1019 C
 15. a. 3.7 * 107 m/s b. 2.7 * 107 m/s c. Electron
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 19. 25 ns
 21. 1.0 * 105

 23. -0.65 * 10-36m/s … vx … 0.65 * 10-36 m/s
 25. 0.0 m/s … vx … 2.5 * 107 m/s
 27. 9.5 GHz … f …  10.5 GHz
 29. 1.0 * 105 pulses/s
 31. a. |c(x)|2

x
2 cm1 cm

0.5 cm�1

0

  b. 1% c. 104 d. 0.5 cm-1

 33. a. Yes b. 

� 1

1

1

�1

x (cm)

c(x)

  c. 0.000, 0.00050, 0.0010 d. 900
 35. a. 13/8 mm-1/2

  b. 

420�2�4

3/8

x (mm)

|c(x)|2 (mm�1) 

  c.      

  d. 0.13
 37. a. 0.27% b. 32%
 39. a. 0.87 cm-1/2

  b. 

�1�2 1

1 cm�1/2

x (cm)
0 2

c(x)

  c. 

1 cm�1

x (cm)
�1�2 1 20

|c(x)|2

  d. 3.4 * 103

 41. a. a = b b. a = b = 0.84 
  c.   

0 1 2

0.5a

a

x (mm)

P(x)

�1�2

 d. 58.1%

 53. 18 fm
 55. a. 

Absorption
transitions

Emission
transitions

0 eV

2.49 eV

4.14 eV

6.21 eV

l42

l43

l32

l12 � 500 nm

l13 � 300 nm

l14 � 200 nm

l31

l21l41

n � 1

n � 2

n � 3

n � 4

  b. 200 nm, 300 nm, 334 nm, 500 nm, 601 nm, 753 nm
 57. 6.2 * 105 m/s
 59. 410.3 nm, 434.2 nm, 486.3 nm, 656.5 nm
 61. a. 0.362 m b. 0.000368 nm
 63. 3 S 2:10.28 nm, 4 S 2:7.62 nm, 5 S 2: 6.80 nm; all ultraviolet
 65. a. 2.06 * 106 m/s b. 12.09 V
 67. a. 1.0 m/s b. 3.2 c. 1.1 cm
 69. b. 25.7 nm, 36.3 nm, 44.5 nm, 51.4 nm c. n(pUfcyc)

Chapter 39
 1. PC = 0.20, PD = 0.10
 3. a. 7.7% b. 25%
 5. a. 1/6 b. 1/6 c. 5/18
 7. 100 V/m
 9. 4.0 m-1

 11. a. 3300 b. 1100
 13. a. 5.0 * 10-3 b. 2.5 * 10-3 c. 0 d. 2.5 * 10-3

 15. a. 0.25 fm-1 b. 

2�2 0� 4 4

0.5

�0.5

x (fm)

c(x)  c. 0.75

 17. a. 0.354 mm-1/2

  b. |c|2 (mm�1)

x (mm)
0 2

c2

4�4 �2

  c. 0.25



A-36    A n s w e r s

 21. a. 4.95 eV b. 4.80 eV c. 4.55 eV
 25. a. l2S1 = 8mcL2/3h b. 0.795 nm
 29. a. 

x
L0

|c1(x)|2

x
L0

|c2(x)|2

x
L0

|c3(x)|2

 n 5 1 2 3

  b. Most likely 1
2L 1

4L, 34L 1
6L, 36L, 56L

  c. Least likely  0, L  0, 12L, L 0, 13L, 23L, L

  d. Prob in left 13 from graph 7
1
3 7

1
3 1

3

  e. Prob in left 13 calculated  0.195 0.402 0.333

 31. 10%

 35. a. A1 =
1

(pb2)1/4
 b. Prob(x 6 -b or x 7 b) =

22pb23


b

e-x2/b2

dx

  c. 15.7%

 37. a. Pclass(x) =
1

2h21 - (y/h)

  b. Pclass (y)

0.2

4/h

5/h

3/h

2/h

1/h

0 0.4 0.6 0.8 1.0
y/h

 39. 10-463

 41. a. 0.136 nm b. One atomic diameter

 43. a. 

0 1�2 �1 2

c(x)

x/a

 43. 18 mm
 45. a. 0 m/s to 1.8 * 1010 m/s
  b. The speed in part a exceeds the speed of light, so it is impossible.
 47. a. 1.5 * 10-13 m b. 4.4 * 1011 m
 49. 50%
 51. a. c = 13/8
  b. 

0.6

x (nm)

0.4

0.2

�0.2
�1�2�3�5 1 2 3 4 5

�0.4

�0.6

c(x) (nm�1/2) 

�4

  c. 

x (nm)
�1 0�2�3�4�5 1 2 3 4 5

0.3

0.2

0.1

0.4

|c(x)|2 (nm�1) 

  d. 2.5 * 105

Chapter 40
 1. 0.739 nm
 3. 1.0 nm
 7. a. 0.159 nm b. 0.159 nm c. 0.275 nm
 9. 0.38 nm
 11. 

U(x)

�
�

E4

0 L
x

 13. 

10

1

2

Turning points

2 3
0

U (eV)

x (nm)

E6

E3

(a)

10

1

2

2 3
0

U (eV)

x (nm)

E6

E3

(b)

 15. 200 nm
 17. 519 nm
 19. 1.4 N/m
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 35. 
4s

3d

3s

4s

3s

2s

1s

1s

1s

K

Sc

3p

3p

2p

3d4s

3s

2s

3p

2p

2p
2s

(1s2 2s2 2p6 3s2 3p6 4s1)

(1s2 2s2 2p6 3s2 3p6 4s2 3d)

Cu
(1s2 2s2 2p6 3s2 3p6 4s 3d10)

1s

3d4s

3s

2s

3p

2p

Ge
(1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p2)

4p

 37. a. Transition 6s S 5p  6s S 4p  6s S 3p

   b.    l(nm)  7290 1630 515 

 39. 1.13 * 106 m/s
 41.  Transition   (a) Wavelength   (b) Type   (c) Absorption

   2p S 2s 670 nm VIS Yes

  3s S 2p  816 nm IR No

  3p S 2s 324 nm UV Yes

  3p S 3s 2696 nm IR No

  3d S 2p 611 nm  VIS No

  3d S 3p  24800 nm IR No

  4s S 2p 498 nm VIS No

  4s S 3p 2430 nm IR No

 43.  a. 

13.59 eV

6.04 eV

1.51 eV
0 eV

Energy  b. 28.7 eV

 45. a. 6.3 * 108 s-1 b. 0.17 ns
 47. a. tln 2 b. 12 ns
 49. 5.0 * 1016

 51. b. 0.021 nm
 55. 1.5aB, 5.0aB

  b. {a/22 c. U(x) =
2U2

ma211x

a 2 2

-
3

2 2
  

1�2�3 �1 2 3

U(x)

x/a

 45. a. 3.4 * 10-5 b. 2.8 c. 0.005 nm

Chapter 41
 1. a. 0 b. 112U

 3.  a. f b. -0.85 eV
 5.  -0.378 eV; 112U

 7.  a. 2 b. 1
 9. 1s22s22p63s23p, 1s22s22p63s23p64s23d 104p, 

1s22s22p63s23p64s23d 104p65s24d 105p
 11. a. Excited state of Ne b. Ground state of Ti
 13. 1s23s
 15. a. Yes, 2.21 mm b. No
 17. a. 5.6 * 105 b. 1.7 * 105 c. 3.0 * 103

 19. a. 9.0 * 105 b. 8.7 ns
 21. 3.2 * 1015 s-1

 23. a. 1.06 mm b. 1.9 W
 25. a. 12U b. -1, 0, 1
  c. 

0

Sz � 

� 

z-axis Circle of radius
S � 2

 27. a. 12U b. 16U

 29. a. 3.7 * 10-3 b. 5.4 * 10-3 c. 2.9 * 10-3

 33. a. R2p(r) =
A2p

2aB

re-r/2aB

    

0 2 4

0.4A2p

R2p(r)

r/aB

6 8 10

  b. 2aB
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 19. a. 236 mg b. 140 mg c. 0.775 mg
 21. 4.6 * 109

 23. 80 d
 25. a. 228Th b. 207Tl c. 7Li d. 60Ni
 27. a. 19O, 19F, 19Ne b. 19F
  c. 19O decays by b- to 19F; 19Ne decays by b+ to 19F
 29. 228Th
 31. 5.51 MeV
 33. 0.225 J
 35. 60 mrem
 37. a. 3.5 * 107 m/s b. 25 MeV
 39. a. 12.7 km b. 780 ms
 41. a. 1.46 * 10-8 u, 1.45 * 10-6% b. 0.0304 u, 0.76%
 43. 6.0 MeV
 45. 0.93 MeV
 47. 2.7 * 1017

 49. a. 19 s b. No
 51. 1.2 h
 53. 210 million years
 55. 3.3 * 1012

 57. a. 2.6 * 107 b. 0.024 Bq c. 1.9 * 105 mSv
  d. Yes, many times more than the background radiation
 59. 15 cm
 61. � 6 billion years ago
 63. a. Kin = 65.0 MeV; Kout = 5.0 MeV b. 3.7 * 1021 collisions/s
  c. 6.6 * 10-39 d. 650 million years

 57. a. patom = 7.0 * 10-23 kg m/s; pphoton = -8.5 * 10-28 kg m/s
  b. 82 000 photons c. 1.2 ms d. -5.7 * 10-20 N, -4.0 * 105 m/s2 
  e. 31 cm

Chapter 42

 1.  Protons Neutrons

 a. 3He 2 1
 b. 32P 15 17
 c. 32S 16 16
 d. 238U 92 146

 3. a. 3.8 fm b. 8.2 fm c. 14.5 fm
 5. a. m = 9.988 * 10-27 kg;r = 2.2 * 10-15 m; r = 2.3 * 1017 kg/m3 
  b. m = 3.437 * 10-25 kg;r = 7.1 * 10-15 m; r = 2.3 * 1017 kg/m3

 7. a. 36S and 36Ar b. 5, 8
 9. 54Cr: 474 MeV, 8.78 MeV; 54Fe: 472 MeV, 8.74 MeV 
 11. 14O = 7.05 MeV;16O = 7.98 MeV; 16O is more tightly bound
 13. 8000 N
 15. 2.3 * 10-38

 17. a. 
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  b.  14N is stable; 14C undergoes beta-minus decay and 14O undergoes 
beta-plus decay
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A

Absolute temperature, 450
Absolute zero, 449, 450, 452
Absorbed dose, 1268
Absorption

excitation by, 1232–33
in hydrogen, 1233
of light, 1234, 1235
in sodium, 1233

Absorption spectra, 1105, 1184, 1190, 
1203

Acceleration, 1, 86–87
angular, 103–05, 205, 313–14
average, 13, 86, 88, 89
centripetal, 102–03, 194, 200, 205
constant, 90–91, 124
force and, 124–25, 133, 141
free-fall, 52
Galilean transformation of, 1005
instantaneous, 58–60, 89–90
nonuniform, 58–59
sign of, 16–17, 61
tangential, 105–06, 205
in two dimensions, 192–93
in uniform circular motion, 102–03

Acceleration constraints, 174–75, 184
Acceleration vectors, 13–14, 86–87
AC circuits, 1031–55

AC sources, 1034
capacitor circuits, 1036–38
inductor circuits, 1041–42
phasors, 1024
power in, 1046–49
RC filter circuits, 1038–41
resistor circuits, 1034–36
series RLC circuits, 1042–46

Accommodation, 701, 702
Action/reaction pair, 168. See also Newton’s 

third law of motion
identifying, 169–72
massless spring approximation and, 179
propulsion, 171

Activity of radioactive sample, 1261
Adiabatic processes, 479, 488–91
Adiabats, 489
Agent of force, 117
Air resistance, 51, 121, 128, 153
Airplanes, lift in, 429

Allowed transitions, 1232
Alpha decay, 1264
Alpha particles, 836, 1113–14, 1116, 1258, 

1263–64
Alpha rays, 1113, 1249
Alternating current (AC), 983. See also 

AC circuits
Ammeters, 900
Amorphous solids, 445
Ampere (A), 875
Ampère-Maxwell law, 1012–14, 1015, 

1019–20
Ampère’s law, 934–40, 1011–12
Amplitude, 378, 380, 396, 398–99, 566, 

570, 573, 579, 593–94
Amplitude function, 595
Angle of incidence, 658, 661, 662
Angle of reflection, 658
Angle of refraction, 661, 662
Angular acceleration, 103–05, 108, 205, 

313–14
Angular displacement, 99
Angular frequency, 379, 381
Angular magnification, 704, 705, 706
Angular momentum, 312, 340–45, 

1223–25
conservation of, 342, 368
hydrogen atom, 1218–19
quantization of, 1145
of a rigid body, 341

Angular momentum vector, 340
Angular position, 98–99, 631
Angular resolution, 709
Angular size, 703
Angular velocity, 99–101, 108, 205, 

313–14, 342–45
Angular velocity vector, 337–40
Antennas, 1023
Antibonding molecular orbital, 1206
Antimatter, 1093
Antinodal lines, 612, 630
Antinodes, 594, 599, 600, 601
Antireflection coatings, 608–10
Apertures, 657, 698
Archimedes’ principle, 420
Arc length, 99
Area vector, 787, 970
Atmospheric pressure, 411–13, 416–17

Atomic clocks, 23, 1076–77
Atomic magnets, 950
Atomic mass, 292, 447, 1250–51
Atomic mass number (A), 447, 1198
Atomic mass unit (u), 447, 1250, 1251, 

1254
Atomic model, 120, 264
Atomic number, 1117, 1249
Atomic physics, 1216–47

electron spin, 1218, 1223–25
emission spectra, 1231–35
excited states, 1236–38
hydrogen atom, 1217–23
lasers, 1238–42
multielectron atoms, 1225–28
periodic table of the elements, 1228–31

Atoms, 217, 453, 1103, 1108. See also 
Electrons; Hydrogen; Nuclear 
Physics; Nucleus; Protons

Bohr model of, 1138, 1141–46
electricity and, 725–26
hard-sphere model of, 453
nuclear model of, 1114, 1116–17
plum-pudding or raisin-cake model of, 

1112–13
shell model of, 1222, 1228–31, 1256–57
structure of, 725, 729, 1118, 1138, 1249

Avogadro’s number, 292, 447–48

B

Ballistic pendulum, 253, 344–45
Balmer formula, 1105
Balmer series, 1105
Bandwidth, 1168
Bar charts, 223–24, 249–50, 295–96
Barometers, 416
Basic energy model, 245, 246–47, 279–80
Batteries, 849–50, 881–82, 892–900. 

See also Circuits
charge escalator model of, 843–44
emf of, 843
ideal, 843
real, 901–03
short circuited, 902
as source of potential, 823, 882

Beats, 615–18
beat frequency, 617
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Before-and-after pictorial representation, 
223–24

Bernoulli’s equation, 426–30
Beta decay, 1258–59, 1264–66
Beta particles, 1258–59
Binding energy, 1145, 1253–55
Binoculars, 675
Binomial approximation, 762, 1086
Biot-Savart law, 925, 927–28, 1006–07
Blackbody radiation, 493, 1104
Blood pressure, 417–18
Bohr radius, 1143, 1221
Bohr’s analysis of hydrogen atom, 

1141–46, 1147
Bohr’s model of atomic quantization, 

1138–41, 1217, 1222
Boiling point, 449, 451, 482–83
Boltzmann’s constant, 455, 1197
Bonding molecular orbital, 1206
Boundary conditions

for standing sound waves, 599–601
for standing waves on a string, 596–99
for wave functions, 1183–87

Bound states, 1194, 1206
Bound system, 369, 1253
Brayton cycle, 536–38
Breakdown field strength, 748
Bulk modulus, 432–33
Bulk properties, 444
Buoyancy, 419–23
Buoyant force, 419

C

Calories, 477
Calorimetry, 483–85
Camera obscura, 657
Cameras, 695–99

controlling exposure, 698–99
focusing, 697
zoom lenses, 697

Capacitance, 850, 851, 899
Capacitative resistance, 1037
Capacitor circuits, 1036–38
Capacitors

and capacitance, 849–50
charging, 764, 912
current and voltage in AC circuits, 1036
dielectrics in, 855–58
discharging, 868, 870, 912
energy stored in, 854–55
parallel and series capacitors, 851–85
parallel-plate capacitors, 764–66
RC circuits, 909–12

Carbon dating, 1250, 1264
Carnot cycle, 542–46
Carnot engine, 542–46

Cathode rays, 1106–08
Cathode-ray tube (CRT) devices, 768, 

1107, 1108
Causal influence, 1089–90
CCD (charge-coupled device), 696, 699
Celsius scale, 449, 452
Center of mass, 312, 394

in balance and stability, 333
rotation around, 314–17

Central maximum, 630, 631, 636–37, 639, 
640–41

Centrifugal force, 202–03
Centripetal acceleration, 102–03, 194, 

200, 205
Charge carriers, 727, 868–69
Charge density, 757
Charge diagrams, 726
Charge distribution. See also Electric 

fields
continuous, 756–760, 828–29
symmetric, 781–83

Charge model, 721–25
Charge polarization, 729–31
Charge quantization, 726
Charges, 719, 722, 725–26, 1056

atoms and electricity, 725
on capacitors, 850
conservation of, 726, 892, 896
discharging, 724
fundamental unit of, 725, 1111–12
like charges, 722
neutral, 723, 726
opposite, 722
positive and negative, 725
units of, 732–33

Charge-to-mass ratio, 767, 942
Charging, 719, 721

frictional, 721–23, 726
by induction, 731
insulators and conductors, 727–28
parallel-plate capacitors, 849–50

Chromatic aberration, 707
Circuits, 891–920. See also AC circuits; 

DC circuits
diagrams, 892
elements, 892
energy and power in, 896–98
grounded circuits, 908–09
Kirchhoff’s laws and, 892–96
LC, 988–90
LR, 391–93
oscillator, 920
parallel resistors, 903–06
RC, 909–12
resistor circuits, 906–08
series resistors, 898–901

Circular-aperture diffraction, 640–42, 708

Circular motion, 3, 98–107, 108, 216. 
See also Rotational motion

angular acceleration, 103–07
dynamics of, 193–99
fictitious forces, 201–04
nonuniform, 103–107, 205–08
orbits, 199–201
period of, 98, 100–01
problem-solving strategy, 207
simple harmonic motion (SHM) and, 

381–84
uniform. See Uniform circular motion

Circular waves, 572, 610–15
Classically forbidden region, 1195–96
Classical physics, 1015, 1127–29

end of, 1118–1129
Clocks

atomic, 1076
synchronizing, 1070
time dilation and, 1075

Closed-cycle devices, 529
Coaxial cable, 961, 1002
Coefficients of friction, 149

kinetic friction, 149, 206
rolling friction, 149
static friction, 148

Coefficients of performance, 532, 544
Cold reservoir, 528, 531
Collisional excitation, 1233–34
Collisions, 219, 221–26, 870, 873–74

elastic, 232, 265–69, 1065
inelastic, 232–34, 253–54
mean free path between, 503–04
mean time between, 874
molecular, 503–07, 514–20
pressure and, 503

Color, 667–70
chromatic aberration, 707
human color vision, 700
in solids, 1234–35

Compasses, 923
Component vectors, 75–77
Compression, 431

adiabatic, 479, 488–89
isobaric, 458
in sound waves, 574, 599

Concave mirrors, 682
Condensation point, 450, 451
Conduction

electrical, 868–70, 1127
heat, 491–92
model of, 873–74

Conductivity
electrical, 878–80
thermal, 492

Conductors, 724, 727–31
charge carriers, 868–69
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Current, 719, 727, 867–90, 892–94. 
See also Circuits; Electron current; 
Induced currents

batteries and, 849–50
conservation of, 876–78, 892, 896, 

903, 920
creating, 870–73
displacement, 1011–14
eddy currents, 968
magnetic field of, 925–31
magnetic forces on wires carrying, 

946–50
and magnetism, 923–25
root-mean-square (rms) current, 

1046–47
Current density, 876, 878
Current loops, 930

forces and torques on, 948–50
as magnetic dipoles, 932–34
magnetic field of, 930–31

Curve of binding energy, 1254
Cyclotron, 943–44
Cyclotron frequency, 942
Cyclotron motion, 941–43

D

Damped oscillations, 395–99
Damping constant, 395
Daughter nucleus, 1261, 1263
DC circuits, 1034
de Broglie wavelength, 1135, 1194, 

1197, 1204
Decay equation, 1236–38
Decay, exponential, 396, 992
Decay, nuclear, 1263–67
Decay rate, 1237
Decay series, 1267
Decibels (dB), 579–80
Defibrillators, 854, 858
Degrees of freedom, 511–13
Density, 408–09, 421, 756

mass density, 408, 445
nuclear density, 1251–52
number density, 446
surface charge, 757

Destructive interference, 605, 609–11, 
612, 630–39

Deuterium, 1251
Diatomic gases, 447, 453, 487
Diatomic molecules, 264–65, 512–14
Dielectric constant, 857
Dielectric strength, 858
Dielectrics, 855–58
Diesel cycle, 536
Diffraction, 628, 657, 707–09

circular-aperture, 640–42

of electrons, 1108, 1135–36
single-slit, 636–40

Diffraction grating, 634–36
resolution of, 653

Diffuse reflection, 659
Diodes, 883
Diopter, 701
Dipole moment, 754
Dipoles. See Electric dipoles; Magnetic 

dipoles
Direct current (DC) circuits, 1034. See 

also Circuits
Discharging, 724, 728–29, 870, 909, 910
Discrete spectra, 1105
Disk of charge, electric field of, 761–63
Disordered systems, 518–19
Dispersion, 668–69, 707
Displaced fluid, 420
Displacement, 6–9, 43, 61

angular, 99
work and, 281

Displacement current, 1011–14
Displacement vectors, 70–71
Dissipative forces, 289–90, 293–94
Diverging lenses, 671, 675–76, 702
Doppler effect, 580–83
Dose, absorbed, 1268
Dose equivalent, 1268
Dot product of vectors, 284–85, 298
Double-slit experiment, 629–34, 668
Double-slit interference, 629–34, 637–38, 

668, 1157
intensity of, 633–34
interference fringes, 629–630, 1159

Drag coefficient, 153
Drag force, 121, 152–53

terminal speed and, 154
Drift speed, electron, 868, 869, 873
Driven oscillations, 398–99
Driving frequency, 398–99
Dynamic equilibrium, 128, 141
Dynamics, 1, 216

fluid, 423–30
of nonuniform circular motion,  

205–08
in one dimension, 138–66
problems, strategy for solving, 142, 159
of rotational motion, 325–27
of simple harmonic motion (SHM), 

386–89
in two dimensions, 192–93
of uniform circular motion, 193–99

E

Earthquakes, 257
Eddy currents, 968

in electrostatic equilibrium, 799–802, 
848–49

Conservation of angular momentum, 
342–43

Conservation of charge, 726, 877, 892, 
896

Conservation of current, 876–78, 892, 
896, 903, 920

Conservation of energy, 219, 294–97, 301, 
813–14, 897

in charge interactions, 820
in double-slit interference, 633
in fluid flow, 419, 426
in relativity, 1093–95
in simple harmonic motion (SHM), 

385–86, 440
Conservation laws, 219–20
Conservation of mass, 219, 235, 1093
Conservation of mechanical energy, 

254–55, 270
Conservation of momentum, 219, 220, 

226–32, 1065
Conservative forces, 288–89, 294, 811
Constant-pressure (isobaric) process, 

458–59
Constant-temperature (isothermal) 

process, 459–60
Constant-volume gas thermometer, 449
Constant-volume (isochoric) process, 

457–59
Constructive interference, 594, 605–07, 

609–15, 630–39
Contact forces, 117–22
Continuity, equation of, 424–25
Continuous spectra, 1103–04
Contour maps, 614, 823–25
Convection, 491, 492
Converging lenses, 671–73, 702
Convex mirrors, 682
Coordinate systems, 5, 74–77

displacement and, 8
right-handed, 339
rtz, for circular dynamics, 193–94, 209
tilted axes, 79–80

Correspondence principle, 1191–93
Coulomb (C), 732
Coulomb electric fields, 979
Coulomb’s law, 731–32, 733–36, 739, 

753, 814, 1006, 1007
Covalent bonds, 1205–06
Critical angle, 333, 665
Critical point, 452
Crookes tubes, 1107
Crossed-field experiment, 1109–10
Crossed polarizers, 1025
Crossover frequency, 1039
Cross product, 338–39, 927
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Electron capture, 1265
Electron cloud, 725, 1220
Electron configuration, 1227
Electron current, 868–870
Electron spin, 950–51, 952
Electronic ignition, 987
Electrons

beams, 769
charge of, 725–26
charge carriers in metals, 868–69
diffraction of, 1135
discovery of, 1108–11
sea of, 727
spin of, 1218, 1223–25

Electron volt, 1115
Electroscope, 728–29, 731
Electrostatic constant, 732, 733
Electrostatic equilibrium, 727, 870–71

conductors in, 799–802, 848–50
Electrostatic forces, and Coulomb’s law, 

733–36
Electroweak force, 217
Elements, 1117, 1139, 1228–31
emf

of batteries, 843
induced emf, 975–78, 983
motional emf, 964–68

Emission spectrum, 1103–04, 1105, 1234
hydrogen atom, 1106, 1146–47

Emissivity, 493
Endoscope, 685–86
Energy, 219, 470. See also Conservation 

of energy; Kinetic energy; 
Mechanical energy; Potential energy; 
Thermal energy; Work

allowed energy for quantum mechanics 
problems, 1187–88

angular and linear momentum and, 341
bar charts, 249–50, 295–96, 301
basic energy model, 245, 246–47, 

279–80, 301
binding energy, 1145, 1253–55
in circuits, 896–98
in damped systems, 396–97
diagrams, 261–65, 813
in electric fields, 855
of electromagnetic waves, 1021
forms of, 245, 246
ionization energy, 1145
in magnetic fields, 988
of photons, 1133–34
of photoelectrons, 1127–28
problem-solving strategy, 297, 301
quantization of, 1136–38, 1184
relativistic, 1090–95
rotational, 317–19, 440
thermodynamic model, 478

uniform, 766, 811–14
units, volts per meter, 822

Electric flux, 785–94, 1010, 1012, 1013, 
1017, 1019

of nonuniform electric field, 787–88
Electric force, 121–22, 264–65, 816
Electric potential, 818–838

batteries and, 843
in closed circuits or loops, 893
of conductor in electrostatic 

equilibrium, 848–49
electric potential energy vs., 819
finding from electric field, 840–41
finding electric field from, 844–48
inside parallel-plate capacitor, 821–25
of many charges, 828–30
of a point charge, 826–27
sources of, 842–44

Electric potential energy, 811–14
of a dipole, 817–18
electric potential vs., 819
of point charges, 814–17

Electrical oscillators, 1034
Electricity, 719–49, 1056

charge, 723–26, 1056
charge model, 721–25
field model, 736–42
insulators and conductors, 727–31
phenomena and theories, 719

Electrodes, 763–64, 765
capacitance and, 850, 851
equipotential surface close to, 848

Electromagnetic fields, 1003–16
forces and, 1004
Maxwell’s equations, 1014–16
transformation of, 1005–10

Electromagnetic induction, 962–1002
Faraday’s law, 975–78
induced currents, 963
induced fields, 978–81
Lenz’s law, 971–74
motional emf, 964–68
problem-solving strategy for, 976

Electromagnetic radiation, quantized, 
1129

Electromagnetic spectrum, 576
Electromagnetic waves, 561, 575–77, 

1016–20, 1066
Ampère-Maxwell law, 1019–20
energy and intensity, 1021–22
generated by antennas, 1023
light, 628
Maxwell’s theory of, 981–82
polarization, 1024–26
radiation pressure, 1022
speed of, 1020

Electromagnets, 932

Effective focal length, 697. See also Focal 
length

Effective gravitational force, 146, 202
Efficiency, thermal, 529–30
Einstein, Albert

explanation of photoelectric effect, 
1129–32

photons and photon model of light, 
1132–34

principle of relativity, 1066–68, 1278
Elasticity, 255, 430–33

tensile stress, 430–32
volume stress, 432–33

Elastic collisions, 232, 265–69, 1065
Elastic potential energy, 257–61
Electric charge. See Charges
Electric dipoles, 730

electric field of a dipole, 754–55
motion in an electric field, 770–72
potential energy of, 817–18

Electric field lines, 755–56
Electric field strength, 738, 878
Electric fields, 737–42, 750–79, 818–19, 

1004, 1012
changing, producing induced magnetic 

fields, 981–82
of charged wires, 924
of conductors in electrostatic 

equilibrium, 799–801, 848–49
of continuous charge distribution, 

756–60
Coulomb and non-Coulomb, 979
crossed-field experiment, 1109–10
of disk of charge, 761–63
of electric dipole, 754–55, 933
electric potential and, 823, 840
energy in, 855, 988
establishing in a wire, 871–72
finding electric potential from,  

840–41
finding with Gauss’s law, 795–99
Gauss’s law, 791–94
induced, 856, 978–81, 1010, 1013
insulators in, 856–57
models of, 751
motion of charged particle in, 767–69
motion of dipole in, 770–71
of plane of charge, 763–64
of a point charge, 739–40
of multiple point charges, 752–55
of parallel-plate capacitor, 764–66, 

821–22, 850, 851
picturing, 755–56
of ring of charge, 60–61
of sphere of charge, 764–66
symmetry of, 781–83, 791
transformations of, 1005–10
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gravitational, 119, 357–58
identifying, 122–23, 130, 133
impulsive, 221
as interactions, 127, 173
internal, 234
long-range, 117, 736–37
magnetic, 121–22
net force, 80, 118
normal, 120
restoring forces, 255–57
SI unit, 126
spring, 119
superposition of, 118
tension, 119–20, 156, 177–81
thrust, 121

Free-body diagrams, 130–32, 133
Free fall, 51–54, 61

weightlessness and, 147–48
Free-fall acceleration, 52
Freezing point, 449, 451
Frequency, 378–79, 382

angular, 379, 381, 388, 594
beat, 617
crossover, 1039
cyclotron, 942
fundamental, 597, 600–02
of mass on spring, 385
natural, 398
of pendulum, 392, 394
resonance, 398
of sinusoidal waves, 566
of sound waves, 574–75

Friction, 120–21, 128, 148–52
causes of, 152
coefficients of, 148–49, 206
kinetic, 148, 176
model of, 149
rolling, 149
static, 148–49, 176

Fringe field, 765
Fringe spacing, 631–32
Fundamental frequency, 597, 600–02
Fundamental unit of charge, 725, 1111–12
Fusion, 836

G

Galilean field transformation equations, 
1007–09

Galilean relativity, 1008–09, 1061–65
principle of relativity, 1064

Galilean transformations
of acceleration, 1005
of electromagnetic fields, 1007–10
of position, 1063
of velocity, 97, 267–68, 1004, 1063, 

1068

F

Fahrenheit scale, 449
Far point (FP) of eye, 701
Farad (F), 850
Faraday’s law, 963, 975–81, 1015

electromagnetic fields and, 1009–11
and electromagnetic waves, 982, 

1017–19
for inductors, 985–86

Farsightedness, 701
Fermat’s principle, 693
Ferromagnetism, 951
Fiber optics, 665–66, 685–86
Fictitious forces, 201–04
Field diagrams, 739–40
Field model, 736–42
Fields, 737. See also Electric fields; 

Electromagnetic fields; Magnetic 
fields

Finite potential wells, 1193–98
First law of thermodynamics, 478–80, 

490–91, 527, 556, 1015
Fission, 1094
Flat-earth approximation, 145
Flow tube, 424
Fluids, 311, 407–40

Archimedes’ principle, 420
Bernoulli’s equation, 426–30
buoyancy, 419–23
density, 408–09
displaced, 420
dynamics, 423
equation of continuity, 424–26

Fluorescence, 1106–07
Flux. See Electric flux; Magnetic flux
f-number, 698–99
Focal length, 671, 682, 684

angular magnification and, 704
effective focal length of combination  

lenses, 697
Focal point, 671, 674, 676, 682
Force, 1, 116–137

acceleration and, 124–25, 141, 157–58, 
205

action/reaction pair, 170, 172–73, 175
buoyant, 419–23
combining, 118
conservative and nonconservative, 

288–89, 811
contact, 117
dissipative, 293–94
drag, 121, 152–54
electric, 121–22, 733–36
external, 169
fictitious, 201–04
friction, 120–21, 148–52

Energy bar charts, 249–50, 295–96, 301
Energy density, 855, 858, 988
Energy diagrams, 261–65, 813, 1140

equilibrium positions, 263
molecular bonds and, 264–65

Energy equation, 295, 301, 471
Energy-level diagrams, 1140–41

for hydrogen atom, 1146–47, 1219
for multielectron atoms, 1226, 1232

Energy levels, 1137
allowed, 1184, 1187, 1189
of hydrogen atom, 1143–45, 1219–20

Energy reservoirs, 527–28
Energy transfer, 246, 279–80, 470–71

heat and energy, 471
rate of (power), 297–98

Energy transformations, 246, 279–80, 470
Engines. See also Heat engines

Carnot engine, 542–46
diesel, 536
gas turbine engines, 536
gasoline internal combustion, 536

English units, 24–25
Entropy, 518–520, 557
Environment, 169, 279
Equation of continuity, 425, 429–30
Equation of motion, 387–89, 393, 395
Equilibrium, 133, 138

dynamic, 128, 141
electrostatic, 799–802, 848–50, 870–71
hydrostatic, 414, 416
mechanical, 128
phase, 452
problem-solving strategies, 139, 159
static, 128, 140
thermal, 514–20

Equipartition theorem, 510–11
Equipotential surfaces, 823, 825, 826, 

828, 840–41, 845–47
Equivalence, principle of, 358–59
Equivalent capacitance, 851, 852
Equivalent resistance, 899, 903, 904, 905
Escape speed, 363–64, 815
Estimates, order-of-magnitude, 27
Evaporation, 557
Events, 1069–70, 1073–76, 1081–83

and observations, 1070–71
time of, 1071

Excitation, 1232
collisional, 1233–34

Excited states, 1231–35
lifetime of, 1236–38

Explosions, 220, 234–36
Exponential decay, 396, 992
External forces, 169, 228, 294
Eyepiece, 704, 706
Eyes. See Vision
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constant-pressure process, 458–58
constant-temperature process, 459–60
constant-volume process, 457–59
pV diagram, 456
quasi-static processes, 456–57
work in, 471–75

Ideal wire, 883
Image distance, 660, 667, 676
Image formation

by refraction, 666–67
with spherical mirrors, 682–85
with thin-lenses, 680–81

Image plane, 672
Impedance, 1043
Impulse, 220–26
Impulse approximation, 225
Impulse-momentum theorem, 222–23, 

226
similarity to work-kinetic energy 

theorem, 281–82
Impulsive force, 221
Inclined plane, motion on, 54–58
Independent particle approximation (IPA), 

1226, 1227
Index of refraction, 576–77, 609, 646, 

662, 663, 664
Induced current, 963–78, 985, 986

in a circuit, 966–67
eddy currents, 968
Faraday’s law, 975–78, 1009
Lenz’s law, 971–74
magnetic flux and, 968–71
motional emf, 964–65

Induced electric dipole, 754–55
Induced electric fields, 856, 978–981, 

1010, 1013
Induced emf, 975–78, 985, 986
Induced magnetic dipoles, 951–53
Induced magnetic fields, 981–82, 985, 

1013–14
Inductance, 984, 985
Inductive reactance, 1041–42
Inductor circuits, 1041–42
Inductors, 984–88
Inelastic collisions, 232–34
Inertia, 126

law of, 128
Inertial mass, 126, 318, 358–59
Inertial reference frames, 129, 201, 202, 

1064
Insulators, 724, 727–31, 883

dielectrics, 856–58
Intensity, 578–80, 1025

of double-slit interference pattern, 
633–34

of electromagnetic waves, 1021–22
of standing waves, 594

Harmonics, 597, 602, 603
Hearing, threshold of, 579
Heat, 279, 293, 471, 475–77

defined, 476
in ideal-gas processes, 488
specific heat and temperature change, 

480–81
temperature and thermal energy vs., 477
thermal interactions, 476
transfer mechanisms, 491–94
units of, 477
work and, 471, 476, 490, 527–29

Heat engines, 526–555
Brayton cycle, 536–38
Carnot cycle, 542–46
ideal-gas, 534–36
perfect, 530, 533
perfectly reversible, 541–42
problem-solving strategy for, 535–36
thermal efficiency of, 529–30

Heat exchanger, 537
Heat of fusion, 482
Heat pump, 551
Heat-transfer mechanisms, 491–94
Heat of transformation, 482–83
Heat of vaporization, 482
Heisenberg uncertainty principle, 

1169–72, 1190
Helium-neon laser, 1241–42
Henry (H), 984
Hertz (Hz), 378, 382
History graphs, 564–65, 566
Holography, 645–46
Hooke’s law, 256–57, 289, 361, 387
Hot reservoir, 527
Huygens’ principle, 637–39
Hydraulic lifts, 418–19
Hydrogen atom

angular momentum, 1217–19
Bohr’s analysis of, 1141–46
energy levels of, 1219
spectrum, 1146–49
wave functions and probabilities, 

1220–23
Hydrogen-like ions, 1147–48
Hydrostatics, 413–15
Hyperopia, 701, 702

I

Ideal battery, 843, 902
Ideal-fluid model, 423
Ideal gases, 452–56
ideal-gas heat engines, 534–38
Ideal-gas processes, 456–61, 478–80, 534

adiabatic process, 479, 488–91, 536–39, 
543–44

Gamma decay, 1266–67
Gamma rays, 1093–94, 1198, 1249, 

1258–59, 1266–67
medical uses of, 1269

Gases, 408, 445, 446
ideal gases, 452–56
ideal-gas processes, 456–61, 478–80
monatomic and diatomic, 447
pressure, 411, 505–07
specific heats of, 485–91

Gas turbine engines, 536–38
Gauge pressure, 415
Gaussian surfaces, 784

calculating electric flux, 785–87
electric field and, 785
symmetry of, 784, 791

Gauss’s law, 791–809, 934, 1010, 1015, 
1017

and conductors in electrostatic 
equilibrium, 799–802

Coulomb’s law vs. , 791, 794
for magnetic fields, 936

Geiger counter, 859,1259
Generators, 842, 982–83, 1034
Geomagnetism, 923, 931
Geosynchronous orbits, 367
Global positioning systems (GPS), 212
Global warming, 494
Grand unified theory, 217
Gravitational constant (G), 357, 359–61
Gravitational field, 737, 811
Gravitational force, 119, 145–46, 357, 

359–61
and weight, 357–58

Gravitational mass, 358
Gravitational potential energy, 246, 

248–54, 362–65
flat-earth approximation, 364
zero of, 363

Gravitational torque, 324–25, 394
Gravity, 145–46, 311, 736–37, 811–12. 

See also Newton’s law of gravity
little g (gravitational force) and big G 

(gravitational constant), 359–61
moon’s orbit and, 201
Newton’s law of, 145
on rotating earth, 202–03
universal force, 356

Gray (Gy), 1268
Greenhouse effect, 494
Grounded circuits, 729, 908–09
Ground state, 1218, 1219, 1220, 1231

H

Half-life, 397, 1077, 1260
Hall effect, 944
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emission and absorption of, 1103–06
interference of, 629–34
models of, 628–29
photon model of, 629, 1133–34
properties of, 1278
ray model of, 629, 641–42, 656–58
wave model of, 629, 641–42

Light clock, 1074, 1075
Light rays, 656
Light waves, 575–77. See also 

Electromagnetic waves
Doppler effect for, 582–83
interference of, 604, 608–10
polarization of, 1024–26

Light years, 1077
Line of action, 323
Linear acceleration, 12–13
Linear charge density, 757, 759
Linear density, 562, 570
Linear restoring force, 393
Line of charge, 758–60
Line integrals, 934–935, 936, 937, 939
Line of nuclear stability, 1253
Liquid-drop model, 1252
Liquids, 408, 445. See also Fluids

pressure in, 413
Longitudinal waves, 561, 599
Long-range forces, 117, 721, 736
Lorentz force law, 1015
Lorentz transformations, 1082–87, 1090
Loschmidt number, 522
LC circuits, 988–91
LR circuits, 991–93
Lyman series, 1147

M

Macrophysics, 292
Macroscopic systems, 444–46, 470
Magnetic dipole moment, 933, 949
Magnetic dipoles, 922, 931–34

induced, 951–53
Magnetic domains, 951, 952
Magnetic field lines, 924
Magnetic field strength, 925, 988
Magnetic fields, 923–39, 1009

Ampère’s law, 934–37
Biot-Savart law, 925, 926, 927, 928
of current, 927–31
of current loop, 930–31
of cyclotron, 944
energy in, 984, 988
Gauss’s law for, 1010
induced, 981–82, 1013–14
of moving charge, 925–27
properties of, 924
of solenoids, 938–39

Kepler’s laws of planetary motion, 354, 
355, 365–68

Kinematics, 1, 33–68
circular motion, 98–107
with constant acceleration, 45–51
with instantaneous acceleration, 58–60
free fall, 51–54
in two dimensions, 87–91, 108
uniform motion, 34–38

Kinetic energy, 246, 247–51
in elastic collisions, 265–69
in relativity, 1090–91
of rolling object, 335–36
rotational, 312, 317–19
temperature and, 508–09
work and, 280–82

Kinetic friction, 120, 148–49, 155, 206
Kirchhoff’s laws,

junction law, 878, 892–93
loop law, 847, 893–95, 989, 991, 1035

L

Laminar flow, 423
Lasers

creating using stimulated emission, 
1238–42

helium-neon laser, 1241–42
quantum-well laser, 1197
ruby laser, 1240–41

Lateral magnification, 674, 684, 698, 704
LC circuits, 988–91
Length contraction, 1078–82, 1085
Lenses, 670. See also Cameras; Thin 

lenses
aberrations, 707–10
achromatic doublet, 715
angular resolution, 709
in combination, 695–97
converging, 671
diffraction limited, 708–09
diverging, 695, 697, 701
f-number of, 698–99
focal length, 695–98
ray tracing, 670–73, 695–96

Lens maker’s equation, 680
Lens plane, 671
Lenz’s law, 971–74, 985
Lever arm, 323–25, 394
Lifetime (of excited states), 1236–38
Lift, 429–30
Light, 627–654, 982. See also 

Electromagnetic waves
absorption or reflection by objects, 

1235
color and dispersion, 667–70
early theories of, 1103

Interacting systems, 168–72
analyzing, 169–70
revised problem-solving strategy for, 

175–77
Interaction diagrams, 169, 170
Interference, 594, 604–610. See also 

Constructive interference; Destructive 
interference

of light, 596, 629–34
in one dimensional waves, 604–07
mathematics of, 607–10
and phase difference, 605–07
photon analysis of, 1159–60
problem-solving strategy for, 613
in two- and three-dimensional waves, 

610–15
wave analysis of, 1157–58

Interference fringes, 630, 631–32, 644
Interferometers, 642–46, 1135–36

acoustical, 643
atom, 1135–36
Michelson, 644–45

Internal energy, 470
Internal resistance, 901–02, 905
Inverse-square law, 354, 356, 357
Inverted images, 672
Ion cores, 727
Ionization, 726, 1108
Ionization energy, 1145, 1220, 1231
Ionization limit, 1146, 1147
Ionizing radiation, 1259
Ions, 726

hydrogen-like ions, 1147–48
Irreversible processes, 516–17
Isobaric (constant-pressure) processes, 

458–59, 474, 488
Isobars, 1250
Isochoric (constant-volume) processes, 

457, 474, 479, 488
Isolated systems, 220, 228, 231–32, 234

conservation of energy, 295
conservation of mechanical energy, 

254–55
second law of thermodynamics, 519–20

Isothermal (constant-temperature) 
processes, 459–61, 474–75, 479

Isotherms, 460, 485
Isotopes, 1118, 1250

J

Joules (J), 248, 281, 454

K

Kelvin scale, 450, 452
Kelvins (K), 451
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Molecular mass, 447
Molecular vibrations, 265, 1202–03
Moles, 447–48
Moment arm, 323–25, 394
Moment of inertia, 311, 317–21, 335
Momentum, 222

angular, 340–45
changes in kinetic energy and, 282
conservation of, 226–32, 1067
and impulse, 221–23
problem-solving strategy for, 223–26
quantization of angular momentum, 

1145–46
relativistic, 1087–90
in two dimensions, 236–37
velocity-energy-momentum triangle, 

1092
Momentum bar charts, 223
Monatomic gases, 447, 453, 487
Motion, 1–32, 216. See also Acceleration; 

Circular motion; Kinematics; Linear 
motion; Newton’s laws of motion; 
Oscillations; Projectile motion; 
Relative motion; Rotational motion; 
Simple harmonic motion (SHM); 
Uniform circular motion; Velocity

of charged particle in electric field, 
767–69

with constant acceleration, 90–91, 124
cyclotron, 941–43
graphical representations of, 1, 2, 

17–19, 45, 56–58, 61
on inclined plane, 54–58
in one dimension, 15–19
types of, 3
uniform, 34–37
vectors, 2, 6

Motional emf, 964–68, 1009
Motion diagrams, 3–6, 38

acceleration vectors, 13–14
displacement vectors, 9
examples, 14–16
velocity vectors, 11–12

Motion graphs, 56–58, 61
Motors, 949, 1048–49
MRI (magnetic resonance imaging), 939, 

952, 1269–70
Myopia, 702–03

N

Natural frequency, 398–99
Near point (NP) of eye, 701
Nearsightedness, 702–03
Neutral buoyancy, 421
Neutrino, 1266
Neutron number, 1250

Melting point, 445, 449, 482–83
Metal detectors, 984
Metals, 868–69, 879, 882–83, 1056
Meter (m), 23, 1208
Michelson interferometer, 644–45
Micro/macro connection, 502–525

equilibrium, 517–18
gas pressure, 505–07
irreversible processes, 516–17
molecular collisions, 503–04
order, disorder, and entropy, 518–19
second law of thermodynamics, 519–20
temperature and, 508–09
thermal interactions and heat, 514–16

Microphysics, 292
Microscopes, 675, 704–05, 710, 711
Millikan-oil-drop experiment, 1111–12
Minimum spot size, 708–09
Mirror equation, 684–85
Mirrors

plane mirrors, 659–60
spherical mirrors, 682–85

Models, 1, 21
atomic model, 120, 221, 264
basic energy model, 245, 246–47, 

279–80, 301
Bohr’s model of the atom, 1138, 

1141–46
charge escalator model, 843
charge model, 721–25
of electrical conduction, 873–74
electric field models, 751
field model, 736–42
of friction, 149
ideal-fluid model, 423
ideal-gas model, 452–56
nuclear model of atoms, 1114, 1116–17
particle model, 4–5
photon model of light, 629, 1133–34
quantum-mechanical models, 1138–41, 

1148
raisin-cake model of atoms, 1112–13
ray model of light, 629, 641–42, 

656–58
rigid-body model, 311, 313
shell model of atoms, 1222, 1228–31,  

1256–58
thermodynamic energy model, 478
wave model of light, 561–63, 629, 

641–42
Modes, 597, 619
Molar mass, 447–48
Molar specific heats, 481, 510–13

at constant pressure, 486
at constant volume, 486

Molecular bonds, 264–65
covalent, 1205–06

Magnetic fields (continued) 
transformations of, 1005–10
uniform, 038

Magnetic flux, 962, 968–970, 982, 983, 
984, 985, 994

Faraday’s law, 975–78
Lenz’s law, 972
in nonuniform field, 970–71

Magnetic force, 121–22
on current-carrying wires, 924–25, 932
on moving charge, 925–26

Magnetic poles, 922, 932, 948
Magnetic quantum number, 1218
Magnetic resonance imaging (MRI), 939, 

952, 1269–70
Magnetism, 719, 922, 1056

ferromagnetism, 951
magnetic properties of matter, 950–53

Magnification, 704–07
angular, 704
lateral, 674, 684, 698

Magnifier/magnifying glasses, 675, 703
Malus’s law, 1024–25
Manometers, 416
Mass, 126, 133, 138, 144, 1057

atomic, 447
conservation of, 219, 1093
equivalence to energy in relativity, 

1092–94, 1250
gravitational, 358–59
inertial, 126, 318
measurement of, 24
molar, 448
molecular, 447
weight, gravitational force, and, 119, 

144–147
Mass density, 408–09, 445
Mass-energy equivalence, 1092–94, 1250
Massless string approximation, 178–80
Mass number, 1118, 1249
Mass spectrometers, 960, 1117
Matter waves, 1134–36
Maxwell’s equations, 1014–16, 1016, 

1066
Mean free path, 503–04
Mean time between collisions, 874
Mechanical energy, 254

conservation of, 254–55, 318
conservative forces and, 289–90

Mechanical equilibrium, 128, 471
Mechanical interaction, 471
Mechanical waves, 561
Medium, 561

displacement of particles by wave, 566
electromagnetic waves and, 661
speed of sound in, 574
wave speed in, 563
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damped, 397
physical, 394

Penetration distance, 1196
Perfect destructive interference, 605, 606, 

608, 611, 612, 619
Perfectly elastic collisions, 265
Perfectly inelastic collisions, 232
Perfectly reversible engine, 540–42
Period, 98, 366

of oscillation, 378, 392, 562
of planetary bodies, 367
of sinusoidal waves, 566

Periodic table of the elements, 1228–31, 
A-4

Permanent magnets, 932, 952
Permeability constant, 925
Permittivity constant, 733
Phase (oscillation), 382
Phase (wave), 573–74
Phase angle, 1044
Phase changes of matter, 445, 450–52, 

482–83
Phase constant, 382–84, 569
Phase diagram, 451
Phase difference, 573, 605–07, 611
Phase equilibrium, 451
Phasors, 1024
Photodissociation, 265
Photoelectric effect, 1126, 1209

classical interpretation of, 1127–29
Einstein’s explanation of, 1129–32

Photoelectrons, 1126
Photolithography, 708
Photon model of light, 629, 1133–34
Photons, 628, 1067, 1093, 1132–34. 

See also Light
absorption and emission, 1103–06
connecting wave and photon views of 

interference, 1160–61
energy of, 1133–34
photon emission rate, 1134
photon model of light, 629, 1133–34

Photosynthesis, 669–70
Physical pendulum, 394
Pictorial representations, 19–21
Pinhole cameras, 657
Pivot point, 322, 330, 394
Planck’s constant, 1093, 1129, 1135
Plane mirror, 659–60
Plane of polarization, 1024
Plane waves, 572, 1016, 1017, 1021
Planets. See also Orbits

extrasolar, 368
Kepler’s laws of planetary orbits, 355, 

365–68
Plasma ball, 827
Point charges, 732, 733

Optical axis, 667
Optical cavity, 1240
Optical instruments, 694–715

for magnification, 703–07
resolution of, 707–10

Optics, 628, 716. See also Light; Optical 
instruments; Ray optics; Wave optics

Orbital angular momentum, 1218
Orbital quantum number, 1217
Orbits, 354

circular, 199–201, 355, 371
elliptical, 355
energetics of, 369–70
geosynchronous, 367
Kepler’s laws, 355, 365–68

Order (of diffraction), 635
Oscillations, 257, 262–63, 311, 377–406, 

440. See also Simple harmonic 
motion (SHM)

amplitude of, 378
angular frequency, 379
damped, 395–99
driven, resonance and, 398–99
frequency of, 378
initial conditions, 381–84
period of, 378, 562
phase of, 382
turning points in, 363, 379

Oscillators, 378, 388–89
quantum harmonic oscillator, 1200–05

Otto cycle, 536

P

Parallel-axis theorem, 321, 346
Parallel-plate capacitors, 764–66, 787, 

849–59
electric field of, 765–66, 841
electric flux inside, 787–88
electric potential of, 821–25, 841

Paraxial rays, 667, 676–77
Parent nucleus, 1263–65
Particle accelerators, 943
“Particle in a box”

energies and wave function, 1183–88
interpreting the solution, 1188–91
potential energy function for, 1185, 

1189
Particle model, 4–5, 117
Particles, 4
Pascal (Pa), 410, 417
Pascal’s principle, 414
Path-length difference, 605–06, 611, 612,  

630–31, 643
Pauli exclusion principle 1227–28, 1257
Pendulums, 268–69, 311, 391–94

ballistic, 253–54, 344–45

Neutrons, 1117–18, 1197, 1249
Newtons (N), 126, 281
Newton’s first law of motion, 127–29, 

133, 139, 216, 390
Newton’s law of gravity, 145–46, 354–76, 

440
Newton’s second law of motion, 126–27, 

133, 141–44, 205, 207, 216
examples of, 155–58
for oscillations, 387, 570, 571
for rotational motion, 326, 327, 330
in terms of momentum, 222

Newton’s third law of motion, 172–77, 
216, 472, 505

conservation of momentum and, 
226–29

problem-solving strategy for interacting 
objects, 175–77

reasoning within, 173–74
Newton’s zeroth law, 127
Nodal lines, 612
Nodes, 594, 595
Nonconservative forces, 289, 294
Normal force, 120, 203–04
Normalization, 1164–66, 1188
Normal modes, 597
Nuclear decay, 1263–67
Nuclear fission, 1094
Nuclear force, 1254, 1255–56
Nuclear fusion, 836
Nuclear magnetic resonance (nmr), 1270
Nuclear model of the atom, 1114, 

1116–17
Nuclear physics, 1197–98, 1248–79

biological applications, 1268–71
decay mechanisms, 1263–67
nuclear size and density, 1251–52
nuclear stability, 1252–1255
nucleons, 1197, 1249
properties of nuclei, 1278
shell model, 1256–57
strong force, 1255–56

Nucleons, 1197, 1249
Nucleus, 1114. See also Nuclear physics

discovery of, 1112–17
nuclear size and density, 1251–52

Number density, 446

O

Object distance, 667, 676, 679, 682
Objective, 704
Object plane, 672
Ohm (Ω), 880
Ohmic materials, 882, 883
Ohm’s law, 881, 882–84, 1035
One-dimensional waves, 564–66
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problem-solving strategy, 1184, 1217
wave functions, 1162

Quantum numbers, 1137, 1225
in hydrogen atoms, 1217–18
and Pauli exclusion principle 1227–28
in protons and neutrons, 1257

Quantum-well laser, 1197
Quasars, 583
Quasi-static processes, ideal gases, 

456–57, 473

R

Radial acceleration, 105
Radial axis, 194, 195
Radial probability density, 1221
Radial wave functions, 1221–23
Radians, 99, 379
Radiated power, 493
Radiation, 1258–63

blackbody radiation, 493, 1104
medical uses of radiation, 1269
radiation dose, 1268–69
radioactivity, 1113, 1249
thermal radiation, 493–94

Radiation pressure, 1022–23
Radio waves, 982
Rainbows, 669
Rarefactions, 574, 599
Rate equations, 1237–38
Ray diagrams, 657
Ray optics, 655–93

color and dispersion, 667–70
ray model of light, 656–58
reflection, 658–60
refraction, 661–70

Ray tracing, 670–76, 682–83
Rayleigh scattering, 670
Rayleigh’s criterion, 709
RC circuits, 909–12
RC filter circuits, 1038–41
Real images, 672, 675, 677, 680, 682
Red shift, 582
Reference frames, 96–98, 1061–62, 1064

accelerating, 129
in Einstein’s principle of relativity, 

1066, 1078
in Galilean relativity, 1061–62
inertial, 129

Reflection, 658–60
diffuse, 659
law of, 658, 659
specular, 658
total internal reflection (TIR), 664–65

Reflection gratings, 636
Refraction, 661–66

image formation by, 666–67

blood pressure, 417–18
causes of, 410–11
constant-pressure process, ideal gases, 

458–59
in gases, 411, 453–55, 505–07
in liquids, 413–15
measuring, 415
units of, 417

Pressure gauge, 407, 415
Principal quantum number, 1217
Prisms, 668
Probabilities, 1158

of detecting particle, 1162–64
of detecting photon, 1160, 1162–63, 

1190–91
Probability density, 1161, 1164

corresponding classical quantity, 
1192–93

radial probability density, 1221
Projectile motion, 3, 91–95, 193

launch angle, 92
problem-solving strategy for, 94–95
reasoning about, 93

Proper length, 1079–80
Proper time, 1075–76
Proportionality, 125
Proportionality constant, 124, 125
Propulsion, 171–72
Protons, 1116, 1197, 1249
Pulleys, 175, 180
pV diagrams, 456

Q

Quadrants of coordinate system, 74
Quanta of light, 1130–32
Quantization, 1129, 1184

of angular momentum, 1145–46, 
1218–19

of charge, 726
Bohr’s model of atomic quantization,  

1138–41
of energy, 1136–38

Quantum computers, 1279
Quantum harmonic oscillator, 1200–05
Quantum jumps, 1184, 1189, 1198
Quantum-mechanical models, 1182
Quantum mechanics, 1137,

correspondence principle, 1191–93
drawing wave functions, 1199
law of, Schrödinger equation,  

1180–1184
particle in a box, energies and wave 

function, 1183–88
particle in a box, interpreting solution,  

1188–91
potential wells, 1193–1198

Point charges (continued)
electric field of, 739–40, 751
electric field of multiple point charges, 

752–56
magnetic field of, 927
potential energy of, 814–17

Point source of light rays, 657
Polarization

charge polarization, 729–31
of electromagnetic wave, 1024–26
Malus’s law, 1025

Polarization force, 265, 729–30, 770
Polarizing filters, 1024
Polaroid, 1024
Poles, magnetic, 922, 932, 948
Population inversion, 1240
Position vectors, 6–7
Position-versus-time graphs, 17–19, 

38–39, 45
Positron-emission tomography (PET 

scans), 1094
Positrons, 1093, 1264
Potassium-argon dating, 1262
Potential differences, 820, 822, 944–45, 

964–65
across batteries, 843–44
across capacitors, 849–53
across inductors, 985–87
across resistors, 894, 895

Potential energy, 246, 295
conservative force and, 288–89, 294, 811
elastic, 257–61
electric, 811–18
finding force from, 290–92
gravitational, 246, 248–54, 362–65
in mechanical energy, 254–55
at microscopic level, 292–93
inside the nucleus, 1198
work and, 288–90
zero of, 824, 908

Potential-energy curve, 261–63
Potential-energy function, 1182, 1183, 

1184, 1189
Potential wells, 1193–1198, 1205

classically forbidden region, 1195–96
nuclear physics, 1197–98

Power, 297–300
in AC circuits, 1046–49
in DC circuits, 896–98
of lenses, 701
of waves, 578–80

Power factor, 1048–49
Poynting vector, 1021
Prefixes, denoting powers of ten, 24
Presbyopia, 701
Pressure, 409–15

atmospheric, 411–13
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for refracting surfaces, 677
for rotational motion, 314
for spherical mirrors, 684
for thin lenses, 680

Significant figures, 2, 25–27
SI units, 2, 23–25
Simple harmonic motion (SHM), 378–81, 

569, 595, 1034
and circular motion, 381–84
dynamics of, 386–89
energy in, 384–86
kinematics of, 379–81

Simultaneity, 1071–75, 1089
Single-slit diffraction, 636–40
Sinusoidal waves, 366–72

fundamental relationship for, 567–68
mathematics of, 568–70
standing waves, 593
wave motion on a string, 570–72

Small-angle approximation, 391–93
Snapshot graphs, 563–64, 566
Snell’s law, 661, 662, 663, 667, 677
Sodium

emission spectra, 1234
excited states of, 1232

Solenoids, 938–39, 952. See also 
Inductors

Solids, 445–46
color in, 1234–35
induced electric field in, 980
phase changes, 450–52, 482–83
specific heat of, 511–12

Sound intensity levels, 579–80
Sound waves, 561, 574–75

beats, 615–18
Doppler effect, 580–83
standing sound waves and musical 

acoustics, 599–604
Source charges, 737, 738, 740, 821
Spacetime coordinates, 1069, 1081–1083
Spacetime interval, 1081–82
Special relativity, 1061
Specific heat, 480–81

of gases, 485–91
thermal energy and, 510–13

Specific heat ratio, 489
Spectrometer, 1103
Spectroscopy, 636
Spectrum, 1103. See also Absorption 

spectrum; Emission spectrum
excited states and spectra, 1231–35
hydrogen atom spectrum, 1146–49

Specular reflection, 658
Speed, 35

escape, 363–64, 815
of light, 575, 1020, 1066–67
molecular, 503–04

Ring of charge
electric field of, 760–61, 844, 872
electric potential of, 829–30

RLC circuits, series, 1042–46
Rocket propulsion, 171, 236
Rolling constraint, 334
Rolling friction, 149, 153
Rolling motion, 334–37
Root-mean-square (rms) current, 1046–47
Root-mean-square speed (rms speed), 

506–07
Ropes and pulleys, 177–81

acceleration constraints, 175
massless string approximation, 178–80
tension, 177–78

Rotational kinematics, 98–107, 313–14, 
346

Rotational kinetic energy, 312, 317, 508, 
511

Rotational motion, 3, 103–05, 311, 
313–14, 440

angular momentum, 340–45
about the center of mass, 314–17
about a fixed axis, 327–29
dynamics, 325–27
rolling motion, 334–37
torque, 312, 321–25
vector description of, 337–40

rtz coordinate system, 193–94, 209
Rutherford model of atom, 1114

S

Satellites, 365
orbital energetics, 369–70
orbits, 365–68

s-axis, 35–36
Scalar product, 337–40
Scalars, 6, 70
Scanning tunneling microscope (STM), 

1209
Schrödinger equation, 1180–82, 1228

solving, 1183–84
Screening, 800
Sea of electrons, 727
Second law of thermodynamics, 519–20, 

527, 533, 541, 545, 556, 1017
Selection rules, 1232
Self-inductance, 984
Series RLC circuits 1042–46
Shell model of atom, 1222, 1228–31, 

1256–57
Short-range forces, 217, 1197
Sieverts (Sv), 1268
Sign convention

for electric and magnetic flux, 1018
for motion in one dimension, 16–17

index of refraction, 576–77, 609, 
646, 662

sign conventions for refractive surfaces, 
677

Snell’s law of, 661
total internal reflection (TIR), 664–65

Refrigerators, 526, 532–33
coefficient of performance, 532–33
ideal-gas, 538–39
perfect, 533

Relative biological effectiveness (RBE), 
1268

Relative motion, 95–98, 108
Relativity, 441, 1008–09, 1278. See also 

Galilean relativity
causal influence, 1089–90
clock synchronization, 1070
Einstein’s principle of, 1066–68
energy and, 1090–95
events, 1068–69, 1070–71
Galilean, 1008–09, 1061–65
general, 1061
length contraction, 1078–82
Lorentz transformations, 1082–87
measurements, 1069–70
momentum and, 1087–90
proper time, 1075
simultaneity and, 1071–75
special, 1061
time dilation, 1074–78

Resistance, 880–84
equivalent, 899, 903
internal, 901, 905

Resistivity, 879
Resistor circuits, 906–08, 1034–36
Resistors, 882, 883

Ohm’s law and, 893, 898
parallel resistors circuit, 903–05
power dissipated by, 897
series resistors circuit, 1042–46

Resolution,
angular, 709
of diffraction grating, 653
of optical instruments, 707–09

Resonance, 398
LC circuits, 1044–45
mechanical resonance, 398–99
standing-wave resonance, 603

Resonance frequency, 398, 1044
Rest energy, 1091
Rest frame, 1074
Restoring forces, 255–57, 361, 387
Resultant vector, 71
Right-hand rule, 338, 923, 927, 946
Rigid bodies, 312. See also Rotational 

motion
Rigid-body model, 313
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refraction theory, 676–81
sign conventions for, 680

Threshold frequency, 1126, 1131
Thrust, 121, 171
Time

direction or arrow of, 519–20
measurement of, 10, 23
spacetime coordinates, 1069, 1081

Time constant
in LR circuits, 991, 992
in oscillations, 396, 397, 399
in RC circuits, 910

Time dilation, 1074–78
Torque, 312, 321–25, 346

angular acceleration and, 313–14
on current loops, 948–50
gravitational, 324–25
net torque, 324, 341
torque vector, 339–40

Total internal reflection (TIR), 664–66
Total momentum, 227–28
Trajectory, 3, 87–89, 141. See also 

Projectile motion
parabolic, 199, 204
in projectile motion, 193, 216

Transformers, 983–84
Transitions, 1220, 1232

nonradiative, 1235
radiative, 1239

Translational kinetic energy, 508–15
Translational motion, 3, 313
Transmission grating, 636
Transverse waves, 561
Traveling waves, 558–590

amplitude of, 566
displacement, 566
Doppler effect, 580–83
electromagnetic waves, 575–76
frequency of, 566
power, intensity, and decibels, 578–80
sinusoidal waves, 566–72
spherical waves, 572
types of, 561

Triple point, 452
Tsunami, 717
Tunneling current, 1209
Turbulent flow, 423, 424
Turning points, 41, 43, 261, 262, 263, 379
Twin paradox, 1077–78

U

Ultrasonic frequencies, 575
Uncertainty, 1168–69
Uncertainty principle, 1169–72
Uniform circular motion, 79, 98–103, 

108, 193–99, 216

creating a wave packet, 1167
of electric fields, 751–52, 757, 759
of forces, 118
of magnetic fields, 926–27
principle of, 592–93
of two or more quantum states, 1279

Surface charge density, 757, 821
Surface integrals, 785–86, 788–89
Symmetry

of electric fields, 781–83, 791
of magnetic fields, 930, 931, 934

Systems, 169, 219, 227
disordered, 518–19
energy of, 279–80, 293, 295
isolated, 220, 228
ordered, 518–19
self-organizing, 557
total momentum of, 227–30, 260

T

Tangential acceleration, 105–06, 205
Tangential axis, 194
Telescopes, 706–07, 711

resolution of, 709
Temperature, 449–54, 508–09

absolute, 450
change in, and specific heat, 480
heat and thermal energy vs., 477

Tensile strength, 431–32
Tensile stress, 430–32
Tension force, 119–20, 156
Terminal speed, 154
Tesla (T), 925
Thermal conductivity, 492
Thermal efficiency, 529–30, 537–38

limits of, 540–42
Thermal energy, 246, 247, 254, 279, 292–94

heat and temperature vs., 449, 477
in inelastic collisions, 265
properties of matter, 480–83
and specific heat, 510–13

Thermal equilibrium, 446, 453–54, 476, 
514–20

Thermal interactions, 471, 476
Thermal properties of matter, 480–83
Thermal radiation, 1104
Thermodynamic energy model, 478
Thermodynamics, 443–468, 527, 556

first law of, 480–82, 490–91, 556, 1015
nonequilibrium, 557
second law of, 519–20, 527, 533, 541, 

545, 556, 1015
Thermometers, 497
Thin-film optical coatings, 608–10
Thin lenses, 670–76

ray tracing, 670–76, 682–83

Speed (continued)
root-mean-square (rms), 1046–47
of sound, 574
terminal, 154
velocity vs., 11
wave, 561–63

Sphere of charge, 764, 795–97
Spherical aberration, 707
Spherical mirrors, 682–86
Spherical symmetry, 783, 784
Spherical waves, 572, 610–15
Spin, of electrons, 950–51, 952, 1219
Spin quantum number, 1224
Spontaneous emission, 1238
Spring constant, 255–56
Spring force, 119, 124
Springs. See also Oscillations; Simple 

harmonic motion (SHM)
elastic potential energy, 257–60
restoring forces and Hooke’s law, 

255–57, 289
work-kinetic theorem for, 287

Spring scale, 272
Stability and balance, 332–34
Stable equilibrium, 263
Stable isotopes, 1250
Standard atmosphere (atm), 413, 417
Standing waves, 591, 593–603, 1136, 

1142, 1190. See also Superpositon
electromagnetic waves, 598–99
mathematics of, 594–95
nodes and antinodes, 594
sound waves and musical acoustics, 

599–604
on a string, 595–98

State variables, 445–46, 453–54
Static equilibrium, 128, 140. 330–34
Static friction, 121, 148, 157
Stationary states, 1139, 1140, 1141, 1184

allowed energies for, 1187–88
hydrogen atom, 1142, 1143, 1144, 

1217–18
Stern-Gerlach experiment, 1223–23
Stick-slip motion, 256–57
Stimulated emission, 1238–42
Stopping potential, 1126, 1127–28, 1131–32
STP (standard temperature and pressure), 

455
Strain, 431–32
Streamlines, 424
Stress, 417, 430–32
Strong force, 217, 1197, 1255–56
Subatomic particles, 1111
Sublimation, 451
Superconductivity, 879–80, 933
Superposition, 591–626, 751, 828

beats, 615–18
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Wave packets, 1166–69
photons as, 1134
uncertainty about, 1168–71

Waves, 559–590, 716. See also 
Electromagnetic waves; Light waves; 
Sinusoidal waves; Sound waves; 
Standing waves; Traveling waves

amplitude of, 566
circular, 572
displacement, 566
Doppler effect, 580–83
frequency of, 566
longitudinal, 565
matter waves, 1134–36
medium of, 561
phase of, 573–74
plane, 572–73
power, intensity, and decibels, 578–80
sinusoidal, 566–72
spherical, 572
traverse, 561

Weber (Wb), 970
Weight, 119, 138, 146–47

gravitational force and, 357–58
mass vs., 146

Weightlessness, 147–48, 200
Wien’s law, 1104
Work, 278–309, 470, 811, 818

basic energy model, 279–80
calculating and using, 282–86
heat and, 471, 476, 490, 527–29
in ideal-gas processes, 471–75
and kinetic energy, 280–82
and potential energy, 288–90, 362

Work function, 1127
Work-kinetic energy theorem, 281–82, 

289, 294

X

X-rays, 1108, 1269

Y

Young’s double-slit experiment, 629–34, 
668

Young’s modulus, 431–32

Z

Zero-point motion, 1190
Zero vector, 8, 73
Zoom lenses, 697–98

Venturi tube, 429
Vibrational energy levels, 1202
Virial theorem, 1123
Virtual images, 660, 674–75, 677, 680, 

683
Viscosity, 423
Visible spectrum, 576, 668
Vision, 700–03
Visualizing physics problems, 22–23
Volt (V), 819
Voltage, 820, 983

of a battery, 820
of capacitors, 849, 856–59, 1036
Hall, 944–45
of inductors, 967, 986–87
peak, 1034–35
of resistors, 1035
rms, 1046–47
terminal, 843, 901

Voltmeters, 905
Volume, 408–09, 445–46, 453–56

flow rate, 425
ideal gas processes, 449, 456–460
unit, 409

Volume strain, 432
Volume stress, 432–33. See also 

Pressure

W

Waste heat, 530
Water molecules, 770
Watts (W), 297–98
Wave fronts, 572
Wave functions, 1162–63

drawing, 1199
finding, 1186
normalizing, 1166–68, 1188
radial wave function, 1221–23

Wavelengths, 567
de Broglie wavelength, 1135
and index of refraction, 577
of light waves, 576, 632, 668
measuring, 643
of sinusoidal waves, 567–68
of sound waves, 574–75

Wave model of light, 629, 641–42, 662,  
707–09

Wave number, 569
Wave optics, 627–654

circular-aperture diffraction, 640–42
diffraction grating, 634–36
interference of light, 629–34
single-slit diffraction, 636–40

acceleration in, 86–87, 101–03
dynamics of, 195–99
simple harmonic motion (SHM) and, 

381–84
velocity in, 101–03, 194–95

Uniform electric fields, 766, 770, 811–14
electric potential energy of charge in, 

812–14
Uniform magnetic fields, 938
Uniform motion, 34–38
Unit vectors, 69, 77, 740, 927
Units, 2, 23–27
Universal constant, 361
Universal gas constant, 454
Unstable equilibrium, 263
Upright images, 675

V

Vacuum, 411–13
Van Allen radiation belt, 943
Van de Graaf generators, 842
Vapor pressure, 411, 416
Vector algebra, 77–80

addition, 7, 71–73, 77–78
multiplication, 73, 79, 927
subtraction, 8, 73, 79

Vector product, 338–39
Vectors, 2, 6, 69–84

area vector, 787, 970
components, 74–77
displacement, 6–9
magnitude and direction, 70
notation, 6
properties of, 70–74
unit vectors, 69, 77, 740, 927
zero, 8

Velocity, 10–12, 1067
angular, 99–101, 108, 205, 313–14
finding from acceleration, 58, 59
finding position from, 42–45
Galilean transformation of, 97, 267–68, 

1004, 1063, 1068
instantaneous, 38–42
Lorentz transformation of, 1086–87
magnetic fields and force dependent on, 

1004
momentum and, 222
relative, 95–96
sign of, 16–17, 61
speed vs., 11
in uniform circular motion, 101–03, 194

Velocity vectors, 11
Velocity-versus-time graphs, 39, 40, 42, 45
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Astronomical Data
Planetary  
body

Mean distance  
from sun (m)

Period  
(years)

Mass  
(kg)

Mean radius  
(m)

Sun — — 1.99 * 1030 6.96 * 108

Moon  3.84 * 108*  27.3 days 7.36 * 1022 1.74 * 106

Mercury 5.79 * 1010   0.241 3.18 * 1023 2.43 * 106

Venus 1.08 * 1011   0.615 4.88 * 1024 6.06 * 106

Earth 1.50 * 1011   1.00 5.98 * 1024 6.37 * 106

Mars 2.28 * 1011   1.88 6.42 * 1023 3.37 * 106

Jupiter 7.78 * 1011  11.9 1.90 * 1027 6.99 * 107

Saturn 1.43 * 1012  29.5 5.68 * 1026 5.85 * 107

Uranus 2.87 * 1012  84.0 8.68 * 1025 2.33 * 107

Neptune 4.50 * 1012 165 1.03 * 1026 2.21 * 107

*Distance from earth

Properties of Materials
Substance R (kg/m3) c (J/kg K)

Air at STP* 1.28
Ethyl alcohol 790 2400
Gasoline 680
Glycerin 1260
Mercury 13,600 140
Oil (typical) 900
Seawater 1030
Water 1000 4190
Aluminum 2700 900
Copper 8920 385
Gold 19,300 129
Ice 920 2090
Iron 7870 449
Lead 11,300 128
Silicon 2330 703

*Standard temperature (0�C) and pressure (1 atm)

Molar Specific Heats of Gases
Gas CP (J/mol K) CV (J/mol K)

Monatomic Gases
He 20.8 12.5
Ne 20.8 12.5
Ar 20.8 12.5
Diatomic Gases
H2 28.7 20.4
N2 29.1 20.8
O2 29.2 20.9

Indices of Refraction
Material Index of refraction

Vacuum 1 exactly
Air 1.0003
Water 1.33
Glass 1.50
Diamond 2.42

Typical Coefficients of Friction

Material
Static  
Ms

Kinetic  
Mk

Rolling  
Mr

Rubber on concrete 1.00 0.80 0.02
Steel on steel (dry) 0.80 0.60 0.002
Steel on steel (lubricated) 0.10 0.05
Wood on wood 0.50 0.20
Wood on snow 0.12 0.06
Ice on ice 0.10 0.03

Melting/Boiling Temperatures and Heats of Transformation
Substance Tm (°C) Lf (J/kg) Tb (°C) Lv (J/kg)

Water 0 3.33 * 105 100 22.6 * 105

Nitrogen (N2) -210 0.26 * 105 -196 1.99 * 105

Ethyl alcohol -114 1.09 * 105 78 8.79 * 105

Mercury -39 0.11 * 105 357 2.96 * 105

Lead 328 0.25 * 105 1750 8.58 * 105



Resistivity and Conductivity of Conductors
Metals Resistivity (�  m) Conductivity (�-1 m-1)

Aluminum 2.8 * 10-8 3.5 * 107

Copper 1.7 * 10-8 6.0 * 107

Gold 2.4 * 10-8 4.1 * 107

Iron 9.7 * 10-8 1.0 * 107

Silver 1.6 * 10-8 6.2 * 107

Tungsten 5.6 * 10-8 1.8 * 107

Nichrome 1.5 * 10-6 6.7 * 105

Carbon 3.5 * 10-5 2.9 * 104

Atomic and Nuclear Data 
Atom Z Mass (u) Mass (MeV/c2)

Electron —   0.00055   0.51
Proton —   1.00728 938.28
Neutron —   1.00866 939.57
1H  1   1.00783 938.79
2H  1   2.01410
4He  2   4.00260
12C  6  12.00000
14C  6  14.00324
14N  7  14.00307
16O  8  15.99492
20Ne 10  19.99244
27Al 13  26.98154
40Ar 18  39.96238
207Pb 82 206.97444
238U 92 238.05078

Hydrogen Atom Energies and Radii
n En (eV) rn (nm)

1 -13.60 0.053
2 -3.40 0.212
3 -1.51 0.476
4 -0.85 0.848
5 -0.54 1.322

Work Functions of Metals
Metal E0 (eV)

Potassium 2.30
Sodium 2.75
Aluminum 4.28
Tungsten 4.55
Iron 4.65
Copper 4.70
Gold 5.10
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